Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#define pr_fmt(fmt) "DMAR-IR: " fmt
4
5#include <linux/interrupt.h>
6#include <linux/dmar.h>
7#include <linux/spinlock.h>
8#include <linux/slab.h>
9#include <linux/jiffies.h>
10#include <linux/hpet.h>
11#include <linux/pci.h>
12#include <linux/irq.h>
13#include <linux/intel-iommu.h>
14#include <linux/acpi.h>
15#include <linux/irqdomain.h>
16#include <linux/crash_dump.h>
17#include <asm/io_apic.h>
18#include <asm/apic.h>
19#include <asm/smp.h>
20#include <asm/cpu.h>
21#include <asm/irq_remapping.h>
22#include <asm/pci-direct.h>
23#include <asm/msidef.h>
24
25#include "../irq_remapping.h"
26
27enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30};
31
32struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37};
38
39struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44};
45
46struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52};
53
54struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60};
61
62#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65static int __read_mostly eim_mode;
66static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69/*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81static const struct irq_domain_ops intel_ir_domain_ops;
82
83static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84static int __init parse_ioapics_under_ir(void);
85
86static bool ir_pre_enabled(struct intel_iommu *iommu)
87{
88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89}
90
91static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92{
93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94}
95
96static void init_ir_status(struct intel_iommu *iommu)
97{
98 u32 gsts;
99
100 gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 if (gsts & DMA_GSTS_IRES)
102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103}
104
105static int alloc_irte(struct intel_iommu *iommu,
106 struct irq_2_iommu *irq_iommu, u16 count)
107{
108 struct ir_table *table = iommu->ir_table;
109 unsigned int mask = 0;
110 unsigned long flags;
111 int index;
112
113 if (!count || !irq_iommu)
114 return -1;
115
116 if (count > 1) {
117 count = __roundup_pow_of_two(count);
118 mask = ilog2(count);
119 }
120
121 if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 pr_err("Requested mask %x exceeds the max invalidation handle"
123 " mask value %Lx\n", mask,
124 ecap_max_handle_mask(iommu->ecap));
125 return -1;
126 }
127
128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 index = bitmap_find_free_region(table->bitmap,
130 INTR_REMAP_TABLE_ENTRIES, mask);
131 if (index < 0) {
132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 } else {
134 irq_iommu->iommu = iommu;
135 irq_iommu->irte_index = index;
136 irq_iommu->sub_handle = 0;
137 irq_iommu->irte_mask = mask;
138 irq_iommu->mode = IRQ_REMAPPING;
139 }
140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142 return index;
143}
144
145static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146{
147 struct qi_desc desc;
148
149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 | QI_IEC_SELECTIVE;
151 desc.qw1 = 0;
152 desc.qw2 = 0;
153 desc.qw3 = 0;
154
155 return qi_submit_sync(iommu, &desc, 1, 0);
156}
157
158static int modify_irte(struct irq_2_iommu *irq_iommu,
159 struct irte *irte_modified)
160{
161 struct intel_iommu *iommu;
162 unsigned long flags;
163 struct irte *irte;
164 int rc, index;
165
166 if (!irq_iommu)
167 return -1;
168
169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171 iommu = irq_iommu->iommu;
172
173 index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 irte = &iommu->ir_table->base[index];
175
176#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else
191#endif
192 {
193 set_64bit(&irte->low, irte_modified->low);
194 set_64bit(&irte->high, irte_modified->high);
195 }
196 __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198 rc = qi_flush_iec(iommu, index, 0);
199
200 /* Update iommu mode according to the IRTE mode */
201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205}
206
207static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208{
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++)
212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 return ir_hpet[i].iommu;
214 return NULL;
215}
216
217static struct intel_iommu *map_ioapic_to_ir(int apic)
218{
219 int i;
220
221 for (i = 0; i < MAX_IO_APICS; i++)
222 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223 return ir_ioapic[i].iommu;
224 return NULL;
225}
226
227static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228{
229 struct dmar_drhd_unit *drhd;
230
231 drhd = dmar_find_matched_drhd_unit(dev);
232 if (!drhd)
233 return NULL;
234
235 return drhd->iommu;
236}
237
238static int clear_entries(struct irq_2_iommu *irq_iommu)
239{
240 struct irte *start, *entry, *end;
241 struct intel_iommu *iommu;
242 int index;
243
244 if (irq_iommu->sub_handle)
245 return 0;
246
247 iommu = irq_iommu->iommu;
248 index = irq_iommu->irte_index;
249
250 start = iommu->ir_table->base + index;
251 end = start + (1 << irq_iommu->irte_mask);
252
253 for (entry = start; entry < end; entry++) {
254 set_64bit(&entry->low, 0);
255 set_64bit(&entry->high, 0);
256 }
257 bitmap_release_region(iommu->ir_table->bitmap, index,
258 irq_iommu->irte_mask);
259
260 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
261}
262
263/*
264 * source validation type
265 */
266#define SVT_NO_VERIFY 0x0 /* no verification is required */
267#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
268#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
269
270/*
271 * source-id qualifier
272 */
273#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
274#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
275 * the third least significant bit
276 */
277#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
278 * the second and third least significant bits
279 */
280#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
281 * the least three significant bits
282 */
283
284/*
285 * set SVT, SQ and SID fields of irte to verify
286 * source ids of interrupt requests
287 */
288static void set_irte_sid(struct irte *irte, unsigned int svt,
289 unsigned int sq, unsigned int sid)
290{
291 if (disable_sourceid_checking)
292 svt = SVT_NO_VERIFY;
293 irte->svt = svt;
294 irte->sq = sq;
295 irte->sid = sid;
296}
297
298/*
299 * Set an IRTE to match only the bus number. Interrupt requests that reference
300 * this IRTE must have a requester-id whose bus number is between or equal
301 * to the start_bus and end_bus arguments.
302 */
303static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
304 unsigned int end_bus)
305{
306 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
307 (start_bus << 8) | end_bus);
308}
309
310static int set_ioapic_sid(struct irte *irte, int apic)
311{
312 int i;
313 u16 sid = 0;
314
315 if (!irte)
316 return -1;
317
318 down_read(&dmar_global_lock);
319 for (i = 0; i < MAX_IO_APICS; i++) {
320 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
321 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
322 break;
323 }
324 }
325 up_read(&dmar_global_lock);
326
327 if (sid == 0) {
328 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
329 return -1;
330 }
331
332 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
333
334 return 0;
335}
336
337static int set_hpet_sid(struct irte *irte, u8 id)
338{
339 int i;
340 u16 sid = 0;
341
342 if (!irte)
343 return -1;
344
345 down_read(&dmar_global_lock);
346 for (i = 0; i < MAX_HPET_TBS; i++) {
347 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
348 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
349 break;
350 }
351 }
352 up_read(&dmar_global_lock);
353
354 if (sid == 0) {
355 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
356 return -1;
357 }
358
359 /*
360 * Should really use SQ_ALL_16. Some platforms are broken.
361 * While we figure out the right quirks for these broken platforms, use
362 * SQ_13_IGNORE_3 for now.
363 */
364 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
365
366 return 0;
367}
368
369struct set_msi_sid_data {
370 struct pci_dev *pdev;
371 u16 alias;
372 int count;
373 int busmatch_count;
374};
375
376static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
377{
378 struct set_msi_sid_data *data = opaque;
379
380 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
381 data->busmatch_count++;
382
383 data->pdev = pdev;
384 data->alias = alias;
385 data->count++;
386
387 return 0;
388}
389
390static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
391{
392 struct set_msi_sid_data data;
393
394 if (!irte || !dev)
395 return -1;
396
397 data.count = 0;
398 data.busmatch_count = 0;
399 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400
401 /*
402 * DMA alias provides us with a PCI device and alias. The only case
403 * where the it will return an alias on a different bus than the
404 * device is the case of a PCIe-to-PCI bridge, where the alias is for
405 * the subordinate bus. In this case we can only verify the bus.
406 *
407 * If there are multiple aliases, all with the same bus number,
408 * then all we can do is verify the bus. This is typical in NTB
409 * hardware which use proxy IDs where the device will generate traffic
410 * from multiple devfn numbers on the same bus.
411 *
412 * If the alias device is on a different bus than our source device
413 * then we have a topology based alias, use it.
414 *
415 * Otherwise, the alias is for a device DMA quirk and we cannot
416 * assume that MSI uses the same requester ID. Therefore use the
417 * original device.
418 */
419 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
420 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
421 dev->bus->number);
422 else if (data.count >= 2 && data.busmatch_count == data.count)
423 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
424 else if (data.pdev->bus->number != dev->bus->number)
425 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
426 else
427 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
428 pci_dev_id(dev));
429
430 return 0;
431}
432
433static int iommu_load_old_irte(struct intel_iommu *iommu)
434{
435 struct irte *old_ir_table;
436 phys_addr_t irt_phys;
437 unsigned int i;
438 size_t size;
439 u64 irta;
440
441 /* Check whether the old ir-table has the same size as ours */
442 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
443 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
444 != INTR_REMAP_TABLE_REG_SIZE)
445 return -EINVAL;
446
447 irt_phys = irta & VTD_PAGE_MASK;
448 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
449
450 /* Map the old IR table */
451 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
452 if (!old_ir_table)
453 return -ENOMEM;
454
455 /* Copy data over */
456 memcpy(iommu->ir_table->base, old_ir_table, size);
457
458 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
459
460 /*
461 * Now check the table for used entries and mark those as
462 * allocated in the bitmap
463 */
464 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
465 if (iommu->ir_table->base[i].present)
466 bitmap_set(iommu->ir_table->bitmap, i, 1);
467 }
468
469 memunmap(old_ir_table);
470
471 return 0;
472}
473
474
475static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
476{
477 unsigned long flags;
478 u64 addr;
479 u32 sts;
480
481 addr = virt_to_phys((void *)iommu->ir_table->base);
482
483 raw_spin_lock_irqsave(&iommu->register_lock, flags);
484
485 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
486 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
487
488 /* Set interrupt-remapping table pointer */
489 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
490
491 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
492 readl, (sts & DMA_GSTS_IRTPS), sts);
493 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
494
495 /*
496 * Global invalidation of interrupt entry cache to make sure the
497 * hardware uses the new irq remapping table.
498 */
499 qi_global_iec(iommu);
500}
501
502static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
503{
504 unsigned long flags;
505 u32 sts;
506
507 raw_spin_lock_irqsave(&iommu->register_lock, flags);
508
509 /* Enable interrupt-remapping */
510 iommu->gcmd |= DMA_GCMD_IRE;
511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
513 readl, (sts & DMA_GSTS_IRES), sts);
514
515 /* Block compatibility-format MSIs */
516 if (sts & DMA_GSTS_CFIS) {
517 iommu->gcmd &= ~DMA_GCMD_CFI;
518 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 readl, !(sts & DMA_GSTS_CFIS), sts);
521 }
522
523 /*
524 * With CFI clear in the Global Command register, we should be
525 * protected from dangerous (i.e. compatibility) interrupts
526 * regardless of x2apic status. Check just to be sure.
527 */
528 if (sts & DMA_GSTS_CFIS)
529 WARN(1, KERN_WARNING
530 "Compatibility-format IRQs enabled despite intr remapping;\n"
531 "you are vulnerable to IRQ injection.\n");
532
533 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
534}
535
536static int intel_setup_irq_remapping(struct intel_iommu *iommu)
537{
538 struct ir_table *ir_table;
539 struct fwnode_handle *fn;
540 unsigned long *bitmap;
541 struct page *pages;
542
543 if (iommu->ir_table)
544 return 0;
545
546 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
547 if (!ir_table)
548 return -ENOMEM;
549
550 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
551 INTR_REMAP_PAGE_ORDER);
552 if (!pages) {
553 pr_err("IR%d: failed to allocate pages of order %d\n",
554 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
555 goto out_free_table;
556 }
557
558 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
559 if (bitmap == NULL) {
560 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
561 goto out_free_pages;
562 }
563
564 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
565 if (!fn)
566 goto out_free_bitmap;
567
568 iommu->ir_domain =
569 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
570 0, INTR_REMAP_TABLE_ENTRIES,
571 fn, &intel_ir_domain_ops,
572 iommu);
573 if (!iommu->ir_domain) {
574 irq_domain_free_fwnode(fn);
575 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
576 goto out_free_bitmap;
577 }
578 iommu->ir_msi_domain =
579 arch_create_remap_msi_irq_domain(iommu->ir_domain,
580 "INTEL-IR-MSI",
581 iommu->seq_id);
582
583 ir_table->base = page_address(pages);
584 ir_table->bitmap = bitmap;
585 iommu->ir_table = ir_table;
586
587 /*
588 * If the queued invalidation is already initialized,
589 * shouldn't disable it.
590 */
591 if (!iommu->qi) {
592 /*
593 * Clear previous faults.
594 */
595 dmar_fault(-1, iommu);
596 dmar_disable_qi(iommu);
597
598 if (dmar_enable_qi(iommu)) {
599 pr_err("Failed to enable queued invalidation\n");
600 goto out_free_bitmap;
601 }
602 }
603
604 init_ir_status(iommu);
605
606 if (ir_pre_enabled(iommu)) {
607 if (!is_kdump_kernel()) {
608 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
609 iommu->name);
610 clear_ir_pre_enabled(iommu);
611 iommu_disable_irq_remapping(iommu);
612 } else if (iommu_load_old_irte(iommu))
613 pr_err("Failed to copy IR table for %s from previous kernel\n",
614 iommu->name);
615 else
616 pr_info("Copied IR table for %s from previous kernel\n",
617 iommu->name);
618 }
619
620 iommu_set_irq_remapping(iommu, eim_mode);
621
622 return 0;
623
624out_free_bitmap:
625 bitmap_free(bitmap);
626out_free_pages:
627 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
628out_free_table:
629 kfree(ir_table);
630
631 iommu->ir_table = NULL;
632
633 return -ENOMEM;
634}
635
636static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
637{
638 struct fwnode_handle *fn;
639
640 if (iommu && iommu->ir_table) {
641 if (iommu->ir_msi_domain) {
642 fn = iommu->ir_msi_domain->fwnode;
643
644 irq_domain_remove(iommu->ir_msi_domain);
645 irq_domain_free_fwnode(fn);
646 iommu->ir_msi_domain = NULL;
647 }
648 if (iommu->ir_domain) {
649 fn = iommu->ir_domain->fwnode;
650
651 irq_domain_remove(iommu->ir_domain);
652 irq_domain_free_fwnode(fn);
653 iommu->ir_domain = NULL;
654 }
655 free_pages((unsigned long)iommu->ir_table->base,
656 INTR_REMAP_PAGE_ORDER);
657 bitmap_free(iommu->ir_table->bitmap);
658 kfree(iommu->ir_table);
659 iommu->ir_table = NULL;
660 }
661}
662
663/*
664 * Disable Interrupt Remapping.
665 */
666static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
667{
668 unsigned long flags;
669 u32 sts;
670
671 if (!ecap_ir_support(iommu->ecap))
672 return;
673
674 /*
675 * global invalidation of interrupt entry cache before disabling
676 * interrupt-remapping.
677 */
678 qi_global_iec(iommu);
679
680 raw_spin_lock_irqsave(&iommu->register_lock, flags);
681
682 sts = readl(iommu->reg + DMAR_GSTS_REG);
683 if (!(sts & DMA_GSTS_IRES))
684 goto end;
685
686 iommu->gcmd &= ~DMA_GCMD_IRE;
687 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
688
689 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
690 readl, !(sts & DMA_GSTS_IRES), sts);
691
692end:
693 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
694}
695
696static int __init dmar_x2apic_optout(void)
697{
698 struct acpi_table_dmar *dmar;
699 dmar = (struct acpi_table_dmar *)dmar_tbl;
700 if (!dmar || no_x2apic_optout)
701 return 0;
702 return dmar->flags & DMAR_X2APIC_OPT_OUT;
703}
704
705static void __init intel_cleanup_irq_remapping(void)
706{
707 struct dmar_drhd_unit *drhd;
708 struct intel_iommu *iommu;
709
710 for_each_iommu(iommu, drhd) {
711 if (ecap_ir_support(iommu->ecap)) {
712 iommu_disable_irq_remapping(iommu);
713 intel_teardown_irq_remapping(iommu);
714 }
715 }
716
717 if (x2apic_supported())
718 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
719}
720
721static int __init intel_prepare_irq_remapping(void)
722{
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 int eim = 0;
726
727 if (irq_remap_broken) {
728 pr_warn("This system BIOS has enabled interrupt remapping\n"
729 "on a chipset that contains an erratum making that\n"
730 "feature unstable. To maintain system stability\n"
731 "interrupt remapping is being disabled. Please\n"
732 "contact your BIOS vendor for an update\n");
733 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
734 return -ENODEV;
735 }
736
737 if (dmar_table_init() < 0)
738 return -ENODEV;
739
740 if (!dmar_ir_support())
741 return -ENODEV;
742
743 if (parse_ioapics_under_ir()) {
744 pr_info("Not enabling interrupt remapping\n");
745 goto error;
746 }
747
748 /* First make sure all IOMMUs support IRQ remapping */
749 for_each_iommu(iommu, drhd)
750 if (!ecap_ir_support(iommu->ecap))
751 goto error;
752
753 /* Detect remapping mode: lapic or x2apic */
754 if (x2apic_supported()) {
755 eim = !dmar_x2apic_optout();
756 if (!eim) {
757 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
758 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
759 }
760 }
761
762 for_each_iommu(iommu, drhd) {
763 if (eim && !ecap_eim_support(iommu->ecap)) {
764 pr_info("%s does not support EIM\n", iommu->name);
765 eim = 0;
766 }
767 }
768
769 eim_mode = eim;
770 if (eim)
771 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
772
773 /* Do the initializations early */
774 for_each_iommu(iommu, drhd) {
775 if (intel_setup_irq_remapping(iommu)) {
776 pr_err("Failed to setup irq remapping for %s\n",
777 iommu->name);
778 goto error;
779 }
780 }
781
782 return 0;
783
784error:
785 intel_cleanup_irq_remapping();
786 return -ENODEV;
787}
788
789/*
790 * Set Posted-Interrupts capability.
791 */
792static inline void set_irq_posting_cap(void)
793{
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796
797 if (!disable_irq_post) {
798 /*
799 * If IRTE is in posted format, the 'pda' field goes across the
800 * 64-bit boundary, we need use cmpxchg16b to atomically update
801 * it. We only expose posted-interrupt when X86_FEATURE_CX16
802 * is supported. Actually, hardware platforms supporting PI
803 * should have X86_FEATURE_CX16 support, this has been confirmed
804 * with Intel hardware guys.
805 */
806 if (boot_cpu_has(X86_FEATURE_CX16))
807 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
808
809 for_each_iommu(iommu, drhd)
810 if (!cap_pi_support(iommu->cap)) {
811 intel_irq_remap_ops.capability &=
812 ~(1 << IRQ_POSTING_CAP);
813 break;
814 }
815 }
816}
817
818static int __init intel_enable_irq_remapping(void)
819{
820 struct dmar_drhd_unit *drhd;
821 struct intel_iommu *iommu;
822 bool setup = false;
823
824 /*
825 * Setup Interrupt-remapping for all the DRHD's now.
826 */
827 for_each_iommu(iommu, drhd) {
828 if (!ir_pre_enabled(iommu))
829 iommu_enable_irq_remapping(iommu);
830 setup = true;
831 }
832
833 if (!setup)
834 goto error;
835
836 irq_remapping_enabled = 1;
837
838 set_irq_posting_cap();
839
840 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
841
842 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
843
844error:
845 intel_cleanup_irq_remapping();
846 return -1;
847}
848
849static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
850 struct intel_iommu *iommu,
851 struct acpi_dmar_hardware_unit *drhd)
852{
853 struct acpi_dmar_pci_path *path;
854 u8 bus;
855 int count, free = -1;
856
857 bus = scope->bus;
858 path = (struct acpi_dmar_pci_path *)(scope + 1);
859 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
860 / sizeof(struct acpi_dmar_pci_path);
861
862 while (--count > 0) {
863 /*
864 * Access PCI directly due to the PCI
865 * subsystem isn't initialized yet.
866 */
867 bus = read_pci_config_byte(bus, path->device, path->function,
868 PCI_SECONDARY_BUS);
869 path++;
870 }
871
872 for (count = 0; count < MAX_HPET_TBS; count++) {
873 if (ir_hpet[count].iommu == iommu &&
874 ir_hpet[count].id == scope->enumeration_id)
875 return 0;
876 else if (ir_hpet[count].iommu == NULL && free == -1)
877 free = count;
878 }
879 if (free == -1) {
880 pr_warn("Exceeded Max HPET blocks\n");
881 return -ENOSPC;
882 }
883
884 ir_hpet[free].iommu = iommu;
885 ir_hpet[free].id = scope->enumeration_id;
886 ir_hpet[free].bus = bus;
887 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
888 pr_info("HPET id %d under DRHD base 0x%Lx\n",
889 scope->enumeration_id, drhd->address);
890
891 return 0;
892}
893
894static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
895 struct intel_iommu *iommu,
896 struct acpi_dmar_hardware_unit *drhd)
897{
898 struct acpi_dmar_pci_path *path;
899 u8 bus;
900 int count, free = -1;
901
902 bus = scope->bus;
903 path = (struct acpi_dmar_pci_path *)(scope + 1);
904 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
905 / sizeof(struct acpi_dmar_pci_path);
906
907 while (--count > 0) {
908 /*
909 * Access PCI directly due to the PCI
910 * subsystem isn't initialized yet.
911 */
912 bus = read_pci_config_byte(bus, path->device, path->function,
913 PCI_SECONDARY_BUS);
914 path++;
915 }
916
917 for (count = 0; count < MAX_IO_APICS; count++) {
918 if (ir_ioapic[count].iommu == iommu &&
919 ir_ioapic[count].id == scope->enumeration_id)
920 return 0;
921 else if (ir_ioapic[count].iommu == NULL && free == -1)
922 free = count;
923 }
924 if (free == -1) {
925 pr_warn("Exceeded Max IO APICS\n");
926 return -ENOSPC;
927 }
928
929 ir_ioapic[free].bus = bus;
930 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
931 ir_ioapic[free].iommu = iommu;
932 ir_ioapic[free].id = scope->enumeration_id;
933 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
934 scope->enumeration_id, drhd->address, iommu->seq_id);
935
936 return 0;
937}
938
939static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
940 struct intel_iommu *iommu)
941{
942 int ret = 0;
943 struct acpi_dmar_hardware_unit *drhd;
944 struct acpi_dmar_device_scope *scope;
945 void *start, *end;
946
947 drhd = (struct acpi_dmar_hardware_unit *)header;
948 start = (void *)(drhd + 1);
949 end = ((void *)drhd) + header->length;
950
951 while (start < end && ret == 0) {
952 scope = start;
953 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
954 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
955 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
956 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
957 start += scope->length;
958 }
959
960 return ret;
961}
962
963static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
964{
965 int i;
966
967 for (i = 0; i < MAX_HPET_TBS; i++)
968 if (ir_hpet[i].iommu == iommu)
969 ir_hpet[i].iommu = NULL;
970
971 for (i = 0; i < MAX_IO_APICS; i++)
972 if (ir_ioapic[i].iommu == iommu)
973 ir_ioapic[i].iommu = NULL;
974}
975
976/*
977 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
978 * hardware unit.
979 */
980static int __init parse_ioapics_under_ir(void)
981{
982 struct dmar_drhd_unit *drhd;
983 struct intel_iommu *iommu;
984 bool ir_supported = false;
985 int ioapic_idx;
986
987 for_each_iommu(iommu, drhd) {
988 int ret;
989
990 if (!ecap_ir_support(iommu->ecap))
991 continue;
992
993 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
994 if (ret)
995 return ret;
996
997 ir_supported = true;
998 }
999
1000 if (!ir_supported)
1001 return -ENODEV;
1002
1003 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1004 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1005 if (!map_ioapic_to_ir(ioapic_id)) {
1006 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1007 "interrupt remapping will be disabled\n",
1008 ioapic_id);
1009 return -1;
1010 }
1011 }
1012
1013 return 0;
1014}
1015
1016static int __init ir_dev_scope_init(void)
1017{
1018 int ret;
1019
1020 if (!irq_remapping_enabled)
1021 return 0;
1022
1023 down_write(&dmar_global_lock);
1024 ret = dmar_dev_scope_init();
1025 up_write(&dmar_global_lock);
1026
1027 return ret;
1028}
1029rootfs_initcall(ir_dev_scope_init);
1030
1031static void disable_irq_remapping(void)
1032{
1033 struct dmar_drhd_unit *drhd;
1034 struct intel_iommu *iommu = NULL;
1035
1036 /*
1037 * Disable Interrupt-remapping for all the DRHD's now.
1038 */
1039 for_each_iommu(iommu, drhd) {
1040 if (!ecap_ir_support(iommu->ecap))
1041 continue;
1042
1043 iommu_disable_irq_remapping(iommu);
1044 }
1045
1046 /*
1047 * Clear Posted-Interrupts capability.
1048 */
1049 if (!disable_irq_post)
1050 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1051}
1052
1053static int reenable_irq_remapping(int eim)
1054{
1055 struct dmar_drhd_unit *drhd;
1056 bool setup = false;
1057 struct intel_iommu *iommu = NULL;
1058
1059 for_each_iommu(iommu, drhd)
1060 if (iommu->qi)
1061 dmar_reenable_qi(iommu);
1062
1063 /*
1064 * Setup Interrupt-remapping for all the DRHD's now.
1065 */
1066 for_each_iommu(iommu, drhd) {
1067 if (!ecap_ir_support(iommu->ecap))
1068 continue;
1069
1070 /* Set up interrupt remapping for iommu.*/
1071 iommu_set_irq_remapping(iommu, eim);
1072 iommu_enable_irq_remapping(iommu);
1073 setup = true;
1074 }
1075
1076 if (!setup)
1077 goto error;
1078
1079 set_irq_posting_cap();
1080
1081 return 0;
1082
1083error:
1084 /*
1085 * handle error condition gracefully here!
1086 */
1087 return -1;
1088}
1089
1090static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1091{
1092 memset(irte, 0, sizeof(*irte));
1093
1094 irte->present = 1;
1095 irte->dst_mode = apic->irq_dest_mode;
1096 /*
1097 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1098 * actual level or edge trigger will be setup in the IO-APIC
1099 * RTE. This will help simplify level triggered irq migration.
1100 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1101 * irq migration in the presence of interrupt-remapping.
1102 */
1103 irte->trigger_mode = 0;
1104 irte->dlvry_mode = apic->irq_delivery_mode;
1105 irte->vector = vector;
1106 irte->dest_id = IRTE_DEST(dest);
1107 irte->redir_hint = 1;
1108}
1109
1110static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1111{
1112 struct intel_iommu *iommu = NULL;
1113
1114 if (!info)
1115 return NULL;
1116
1117 switch (info->type) {
1118 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1119 iommu = map_ioapic_to_ir(info->ioapic_id);
1120 break;
1121 case X86_IRQ_ALLOC_TYPE_HPET:
1122 iommu = map_hpet_to_ir(info->hpet_id);
1123 break;
1124 case X86_IRQ_ALLOC_TYPE_MSI:
1125 case X86_IRQ_ALLOC_TYPE_MSIX:
1126 iommu = map_dev_to_ir(info->msi_dev);
1127 break;
1128 default:
1129 BUG_ON(1);
1130 break;
1131 }
1132
1133 return iommu ? iommu->ir_domain : NULL;
1134}
1135
1136static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1137{
1138 struct intel_iommu *iommu;
1139
1140 if (!info)
1141 return NULL;
1142
1143 switch (info->type) {
1144 case X86_IRQ_ALLOC_TYPE_MSI:
1145 case X86_IRQ_ALLOC_TYPE_MSIX:
1146 iommu = map_dev_to_ir(info->msi_dev);
1147 if (iommu)
1148 return iommu->ir_msi_domain;
1149 break;
1150 default:
1151 break;
1152 }
1153
1154 return NULL;
1155}
1156
1157struct irq_remap_ops intel_irq_remap_ops = {
1158 .prepare = intel_prepare_irq_remapping,
1159 .enable = intel_enable_irq_remapping,
1160 .disable = disable_irq_remapping,
1161 .reenable = reenable_irq_remapping,
1162 .enable_faulting = enable_drhd_fault_handling,
1163 .get_ir_irq_domain = intel_get_ir_irq_domain,
1164 .get_irq_domain = intel_get_irq_domain,
1165};
1166
1167static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1168{
1169 struct intel_ir_data *ir_data = irqd->chip_data;
1170 struct irte *irte = &ir_data->irte_entry;
1171 struct irq_cfg *cfg = irqd_cfg(irqd);
1172
1173 /*
1174 * Atomically updates the IRTE with the new destination, vector
1175 * and flushes the interrupt entry cache.
1176 */
1177 irte->vector = cfg->vector;
1178 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1179
1180 /* Update the hardware only if the interrupt is in remapped mode. */
1181 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1182 modify_irte(&ir_data->irq_2_iommu, irte);
1183}
1184
1185/*
1186 * Migrate the IO-APIC irq in the presence of intr-remapping.
1187 *
1188 * For both level and edge triggered, irq migration is a simple atomic
1189 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1190 *
1191 * For level triggered, we eliminate the io-apic RTE modification (with the
1192 * updated vector information), by using a virtual vector (io-apic pin number).
1193 * Real vector that is used for interrupting cpu will be coming from
1194 * the interrupt-remapping table entry.
1195 *
1196 * As the migration is a simple atomic update of IRTE, the same mechanism
1197 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1198 */
1199static int
1200intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1201 bool force)
1202{
1203 struct irq_data *parent = data->parent_data;
1204 struct irq_cfg *cfg = irqd_cfg(data);
1205 int ret;
1206
1207 ret = parent->chip->irq_set_affinity(parent, mask, force);
1208 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1209 return ret;
1210
1211 intel_ir_reconfigure_irte(data, false);
1212 /*
1213 * After this point, all the interrupts will start arriving
1214 * at the new destination. So, time to cleanup the previous
1215 * vector allocation.
1216 */
1217 send_cleanup_vector(cfg);
1218
1219 return IRQ_SET_MASK_OK_DONE;
1220}
1221
1222static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1223 struct msi_msg *msg)
1224{
1225 struct intel_ir_data *ir_data = irq_data->chip_data;
1226
1227 *msg = ir_data->msi_entry;
1228}
1229
1230static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1231{
1232 struct intel_ir_data *ir_data = data->chip_data;
1233 struct vcpu_data *vcpu_pi_info = info;
1234
1235 /* stop posting interrupts, back to remapping mode */
1236 if (!vcpu_pi_info) {
1237 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1238 } else {
1239 struct irte irte_pi;
1240
1241 /*
1242 * We are not caching the posted interrupt entry. We
1243 * copy the data from the remapped entry and modify
1244 * the fields which are relevant for posted mode. The
1245 * cached remapped entry is used for switching back to
1246 * remapped mode.
1247 */
1248 memset(&irte_pi, 0, sizeof(irte_pi));
1249 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1250
1251 /* Update the posted mode fields */
1252 irte_pi.p_pst = 1;
1253 irte_pi.p_urgent = 0;
1254 irte_pi.p_vector = vcpu_pi_info->vector;
1255 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1256 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1257 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1258 ~(-1UL << PDA_HIGH_BIT);
1259
1260 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1261 }
1262
1263 return 0;
1264}
1265
1266static struct irq_chip intel_ir_chip = {
1267 .name = "INTEL-IR",
1268 .irq_ack = apic_ack_irq,
1269 .irq_set_affinity = intel_ir_set_affinity,
1270 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1271 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1272};
1273
1274static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1275 struct irq_cfg *irq_cfg,
1276 struct irq_alloc_info *info,
1277 int index, int sub_handle)
1278{
1279 struct IR_IO_APIC_route_entry *entry;
1280 struct irte *irte = &data->irte_entry;
1281 struct msi_msg *msg = &data->msi_entry;
1282
1283 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1284 switch (info->type) {
1285 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1286 /* Set source-id of interrupt request */
1287 set_ioapic_sid(irte, info->ioapic_id);
1288 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1289 info->ioapic_id, irte->present, irte->fpd,
1290 irte->dst_mode, irte->redir_hint,
1291 irte->trigger_mode, irte->dlvry_mode,
1292 irte->avail, irte->vector, irte->dest_id,
1293 irte->sid, irte->sq, irte->svt);
1294
1295 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1296 info->ioapic_entry = NULL;
1297 memset(entry, 0, sizeof(*entry));
1298 entry->index2 = (index >> 15) & 0x1;
1299 entry->zero = 0;
1300 entry->format = 1;
1301 entry->index = (index & 0x7fff);
1302 /*
1303 * IO-APIC RTE will be configured with virtual vector.
1304 * irq handler will do the explicit EOI to the io-apic.
1305 */
1306 entry->vector = info->ioapic_pin;
1307 entry->mask = 0; /* enable IRQ */
1308 entry->trigger = info->ioapic_trigger;
1309 entry->polarity = info->ioapic_polarity;
1310 if (info->ioapic_trigger)
1311 entry->mask = 1; /* Mask level triggered irqs. */
1312 break;
1313
1314 case X86_IRQ_ALLOC_TYPE_HPET:
1315 case X86_IRQ_ALLOC_TYPE_MSI:
1316 case X86_IRQ_ALLOC_TYPE_MSIX:
1317 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1318 set_hpet_sid(irte, info->hpet_id);
1319 else
1320 set_msi_sid(irte, info->msi_dev);
1321
1322 msg->address_hi = MSI_ADDR_BASE_HI;
1323 msg->data = sub_handle;
1324 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1325 MSI_ADDR_IR_SHV |
1326 MSI_ADDR_IR_INDEX1(index) |
1327 MSI_ADDR_IR_INDEX2(index);
1328 break;
1329
1330 default:
1331 BUG_ON(1);
1332 break;
1333 }
1334}
1335
1336static void intel_free_irq_resources(struct irq_domain *domain,
1337 unsigned int virq, unsigned int nr_irqs)
1338{
1339 struct irq_data *irq_data;
1340 struct intel_ir_data *data;
1341 struct irq_2_iommu *irq_iommu;
1342 unsigned long flags;
1343 int i;
1344 for (i = 0; i < nr_irqs; i++) {
1345 irq_data = irq_domain_get_irq_data(domain, virq + i);
1346 if (irq_data && irq_data->chip_data) {
1347 data = irq_data->chip_data;
1348 irq_iommu = &data->irq_2_iommu;
1349 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1350 clear_entries(irq_iommu);
1351 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1352 irq_domain_reset_irq_data(irq_data);
1353 kfree(data);
1354 }
1355 }
1356}
1357
1358static int intel_irq_remapping_alloc(struct irq_domain *domain,
1359 unsigned int virq, unsigned int nr_irqs,
1360 void *arg)
1361{
1362 struct intel_iommu *iommu = domain->host_data;
1363 struct irq_alloc_info *info = arg;
1364 struct intel_ir_data *data, *ird;
1365 struct irq_data *irq_data;
1366 struct irq_cfg *irq_cfg;
1367 int i, ret, index;
1368
1369 if (!info || !iommu)
1370 return -EINVAL;
1371 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1372 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1373 return -EINVAL;
1374
1375 /*
1376 * With IRQ remapping enabled, don't need contiguous CPU vectors
1377 * to support multiple MSI interrupts.
1378 */
1379 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1380 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1381
1382 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1383 if (ret < 0)
1384 return ret;
1385
1386 ret = -ENOMEM;
1387 data = kzalloc(sizeof(*data), GFP_KERNEL);
1388 if (!data)
1389 goto out_free_parent;
1390
1391 down_read(&dmar_global_lock);
1392 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1393 up_read(&dmar_global_lock);
1394 if (index < 0) {
1395 pr_warn("Failed to allocate IRTE\n");
1396 kfree(data);
1397 goto out_free_parent;
1398 }
1399
1400 for (i = 0; i < nr_irqs; i++) {
1401 irq_data = irq_domain_get_irq_data(domain, virq + i);
1402 irq_cfg = irqd_cfg(irq_data);
1403 if (!irq_data || !irq_cfg) {
1404 ret = -EINVAL;
1405 goto out_free_data;
1406 }
1407
1408 if (i > 0) {
1409 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1410 if (!ird)
1411 goto out_free_data;
1412 /* Initialize the common data */
1413 ird->irq_2_iommu = data->irq_2_iommu;
1414 ird->irq_2_iommu.sub_handle = i;
1415 } else {
1416 ird = data;
1417 }
1418
1419 irq_data->hwirq = (index << 16) + i;
1420 irq_data->chip_data = ird;
1421 irq_data->chip = &intel_ir_chip;
1422 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1423 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1424 }
1425 return 0;
1426
1427out_free_data:
1428 intel_free_irq_resources(domain, virq, i);
1429out_free_parent:
1430 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1431 return ret;
1432}
1433
1434static void intel_irq_remapping_free(struct irq_domain *domain,
1435 unsigned int virq, unsigned int nr_irqs)
1436{
1437 intel_free_irq_resources(domain, virq, nr_irqs);
1438 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1439}
1440
1441static int intel_irq_remapping_activate(struct irq_domain *domain,
1442 struct irq_data *irq_data, bool reserve)
1443{
1444 intel_ir_reconfigure_irte(irq_data, true);
1445 return 0;
1446}
1447
1448static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1449 struct irq_data *irq_data)
1450{
1451 struct intel_ir_data *data = irq_data->chip_data;
1452 struct irte entry;
1453
1454 memset(&entry, 0, sizeof(entry));
1455 modify_irte(&data->irq_2_iommu, &entry);
1456}
1457
1458static const struct irq_domain_ops intel_ir_domain_ops = {
1459 .alloc = intel_irq_remapping_alloc,
1460 .free = intel_irq_remapping_free,
1461 .activate = intel_irq_remapping_activate,
1462 .deactivate = intel_irq_remapping_deactivate,
1463};
1464
1465/*
1466 * Support of Interrupt Remapping Unit Hotplug
1467 */
1468static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1469{
1470 int ret;
1471 int eim = x2apic_enabled();
1472
1473 if (eim && !ecap_eim_support(iommu->ecap)) {
1474 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1475 iommu->reg_phys, iommu->ecap);
1476 return -ENODEV;
1477 }
1478
1479 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1480 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1481 iommu->reg_phys);
1482 return -ENODEV;
1483 }
1484
1485 /* TODO: check all IOAPICs are covered by IOMMU */
1486
1487 /* Setup Interrupt-remapping now. */
1488 ret = intel_setup_irq_remapping(iommu);
1489 if (ret) {
1490 pr_err("Failed to setup irq remapping for %s\n",
1491 iommu->name);
1492 intel_teardown_irq_remapping(iommu);
1493 ir_remove_ioapic_hpet_scope(iommu);
1494 } else {
1495 iommu_enable_irq_remapping(iommu);
1496 }
1497
1498 return ret;
1499}
1500
1501int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1502{
1503 int ret = 0;
1504 struct intel_iommu *iommu = dmaru->iommu;
1505
1506 if (!irq_remapping_enabled)
1507 return 0;
1508 if (iommu == NULL)
1509 return -EINVAL;
1510 if (!ecap_ir_support(iommu->ecap))
1511 return 0;
1512 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1513 !cap_pi_support(iommu->cap))
1514 return -EBUSY;
1515
1516 if (insert) {
1517 if (!iommu->ir_table)
1518 ret = dmar_ir_add(dmaru, iommu);
1519 } else {
1520 if (iommu->ir_table) {
1521 if (!bitmap_empty(iommu->ir_table->bitmap,
1522 INTR_REMAP_TABLE_ENTRIES)) {
1523 ret = -EBUSY;
1524 } else {
1525 iommu_disable_irq_remapping(iommu);
1526 intel_teardown_irq_remapping(iommu);
1527 ir_remove_ioapic_hpet_scope(iommu);
1528 }
1529 }
1530 }
1531
1532 return ret;
1533}
1// SPDX-License-Identifier: GPL-2.0
2
3#define pr_fmt(fmt) "DMAR-IR: " fmt
4
5#include <linux/interrupt.h>
6#include <linux/dmar.h>
7#include <linux/spinlock.h>
8#include <linux/slab.h>
9#include <linux/jiffies.h>
10#include <linux/hpet.h>
11#include <linux/pci.h>
12#include <linux/irq.h>
13#include <linux/acpi.h>
14#include <linux/irqdomain.h>
15#include <linux/crash_dump.h>
16#include <asm/io_apic.h>
17#include <asm/apic.h>
18#include <asm/smp.h>
19#include <asm/cpu.h>
20#include <asm/irq_remapping.h>
21#include <asm/pci-direct.h>
22
23#include "iommu.h"
24#include "../irq_remapping.h"
25#include "cap_audit.h"
26
27enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30};
31
32struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37};
38
39struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44};
45
46struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52};
53
54struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60};
61
62#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65static int __read_mostly eim_mode;
66static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69/*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81static const struct irq_domain_ops intel_ir_domain_ops;
82
83static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84static int __init parse_ioapics_under_ir(void);
85static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
86
87static bool ir_pre_enabled(struct intel_iommu *iommu)
88{
89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
90}
91
92static void clear_ir_pre_enabled(struct intel_iommu *iommu)
93{
94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
95}
96
97static void init_ir_status(struct intel_iommu *iommu)
98{
99 u32 gsts;
100
101 gsts = readl(iommu->reg + DMAR_GSTS_REG);
102 if (gsts & DMA_GSTS_IRES)
103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
104}
105
106static int alloc_irte(struct intel_iommu *iommu,
107 struct irq_2_iommu *irq_iommu, u16 count)
108{
109 struct ir_table *table = iommu->ir_table;
110 unsigned int mask = 0;
111 unsigned long flags;
112 int index;
113
114 if (!count || !irq_iommu)
115 return -1;
116
117 if (count > 1) {
118 count = __roundup_pow_of_two(count);
119 mask = ilog2(count);
120 }
121
122 if (mask > ecap_max_handle_mask(iommu->ecap)) {
123 pr_err("Requested mask %x exceeds the max invalidation handle"
124 " mask value %Lx\n", mask,
125 ecap_max_handle_mask(iommu->ecap));
126 return -1;
127 }
128
129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
130 index = bitmap_find_free_region(table->bitmap,
131 INTR_REMAP_TABLE_ENTRIES, mask);
132 if (index < 0) {
133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
134 } else {
135 irq_iommu->iommu = iommu;
136 irq_iommu->irte_index = index;
137 irq_iommu->sub_handle = 0;
138 irq_iommu->irte_mask = mask;
139 irq_iommu->mode = IRQ_REMAPPING;
140 }
141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
142
143 return index;
144}
145
146static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
147{
148 struct qi_desc desc;
149
150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
151 | QI_IEC_SELECTIVE;
152 desc.qw1 = 0;
153 desc.qw2 = 0;
154 desc.qw3 = 0;
155
156 return qi_submit_sync(iommu, &desc, 1, 0);
157}
158
159static int modify_irte(struct irq_2_iommu *irq_iommu,
160 struct irte *irte_modified)
161{
162 struct intel_iommu *iommu;
163 unsigned long flags;
164 struct irte *irte;
165 int rc, index;
166
167 if (!irq_iommu)
168 return -1;
169
170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
171
172 iommu = irq_iommu->iommu;
173
174 index = irq_iommu->irte_index + irq_iommu->sub_handle;
175 irte = &iommu->ir_table->base[index];
176
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else {
191 WRITE_ONCE(irte->low, irte_modified->low);
192 WRITE_ONCE(irte->high, irte_modified->high);
193 }
194 __iommu_flush_cache(iommu, irte, sizeof(*irte));
195
196 rc = qi_flush_iec(iommu, index, 0);
197
198 /* Update iommu mode according to the IRTE mode */
199 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
200 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
201
202 return rc;
203}
204
205static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
206{
207 int i;
208
209 for (i = 0; i < MAX_HPET_TBS; i++) {
210 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
211 return ir_hpet[i].iommu;
212 }
213 return NULL;
214}
215
216static struct intel_iommu *map_ioapic_to_iommu(int apic)
217{
218 int i;
219
220 for (i = 0; i < MAX_IO_APICS; i++) {
221 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
222 return ir_ioapic[i].iommu;
223 }
224 return NULL;
225}
226
227static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
228{
229 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
230
231 return drhd ? drhd->iommu->ir_domain : NULL;
232}
233
234static int clear_entries(struct irq_2_iommu *irq_iommu)
235{
236 struct irte *start, *entry, *end;
237 struct intel_iommu *iommu;
238 int index;
239
240 if (irq_iommu->sub_handle)
241 return 0;
242
243 iommu = irq_iommu->iommu;
244 index = irq_iommu->irte_index;
245
246 start = iommu->ir_table->base + index;
247 end = start + (1 << irq_iommu->irte_mask);
248
249 for (entry = start; entry < end; entry++) {
250 WRITE_ONCE(entry->low, 0);
251 WRITE_ONCE(entry->high, 0);
252 }
253 bitmap_release_region(iommu->ir_table->bitmap, index,
254 irq_iommu->irte_mask);
255
256 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
257}
258
259/*
260 * source validation type
261 */
262#define SVT_NO_VERIFY 0x0 /* no verification is required */
263#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
264#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
265
266/*
267 * source-id qualifier
268 */
269#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
270#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
271 * the third least significant bit
272 */
273#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
274 * the second and third least significant bits
275 */
276#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
277 * the least three significant bits
278 */
279
280/*
281 * set SVT, SQ and SID fields of irte to verify
282 * source ids of interrupt requests
283 */
284static void set_irte_sid(struct irte *irte, unsigned int svt,
285 unsigned int sq, unsigned int sid)
286{
287 if (disable_sourceid_checking)
288 svt = SVT_NO_VERIFY;
289 irte->svt = svt;
290 irte->sq = sq;
291 irte->sid = sid;
292}
293
294/*
295 * Set an IRTE to match only the bus number. Interrupt requests that reference
296 * this IRTE must have a requester-id whose bus number is between or equal
297 * to the start_bus and end_bus arguments.
298 */
299static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
300 unsigned int end_bus)
301{
302 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
303 (start_bus << 8) | end_bus);
304}
305
306static int set_ioapic_sid(struct irte *irte, int apic)
307{
308 int i;
309 u16 sid = 0;
310
311 if (!irte)
312 return -1;
313
314 down_read(&dmar_global_lock);
315 for (i = 0; i < MAX_IO_APICS; i++) {
316 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
317 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
318 break;
319 }
320 }
321 up_read(&dmar_global_lock);
322
323 if (sid == 0) {
324 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
325 return -1;
326 }
327
328 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
329
330 return 0;
331}
332
333static int set_hpet_sid(struct irte *irte, u8 id)
334{
335 int i;
336 u16 sid = 0;
337
338 if (!irte)
339 return -1;
340
341 down_read(&dmar_global_lock);
342 for (i = 0; i < MAX_HPET_TBS; i++) {
343 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
344 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
345 break;
346 }
347 }
348 up_read(&dmar_global_lock);
349
350 if (sid == 0) {
351 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
352 return -1;
353 }
354
355 /*
356 * Should really use SQ_ALL_16. Some platforms are broken.
357 * While we figure out the right quirks for these broken platforms, use
358 * SQ_13_IGNORE_3 for now.
359 */
360 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
361
362 return 0;
363}
364
365struct set_msi_sid_data {
366 struct pci_dev *pdev;
367 u16 alias;
368 int count;
369 int busmatch_count;
370};
371
372static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
373{
374 struct set_msi_sid_data *data = opaque;
375
376 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
377 data->busmatch_count++;
378
379 data->pdev = pdev;
380 data->alias = alias;
381 data->count++;
382
383 return 0;
384}
385
386static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
387{
388 struct set_msi_sid_data data;
389
390 if (!irte || !dev)
391 return -1;
392
393 data.count = 0;
394 data.busmatch_count = 0;
395 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
396
397 /*
398 * DMA alias provides us with a PCI device and alias. The only case
399 * where the it will return an alias on a different bus than the
400 * device is the case of a PCIe-to-PCI bridge, where the alias is for
401 * the subordinate bus. In this case we can only verify the bus.
402 *
403 * If there are multiple aliases, all with the same bus number,
404 * then all we can do is verify the bus. This is typical in NTB
405 * hardware which use proxy IDs where the device will generate traffic
406 * from multiple devfn numbers on the same bus.
407 *
408 * If the alias device is on a different bus than our source device
409 * then we have a topology based alias, use it.
410 *
411 * Otherwise, the alias is for a device DMA quirk and we cannot
412 * assume that MSI uses the same requester ID. Therefore use the
413 * original device.
414 */
415 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
416 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
417 dev->bus->number);
418 else if (data.count >= 2 && data.busmatch_count == data.count)
419 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
420 else if (data.pdev->bus->number != dev->bus->number)
421 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
422 else
423 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
424 pci_dev_id(dev));
425
426 return 0;
427}
428
429static int iommu_load_old_irte(struct intel_iommu *iommu)
430{
431 struct irte *old_ir_table;
432 phys_addr_t irt_phys;
433 unsigned int i;
434 size_t size;
435 u64 irta;
436
437 /* Check whether the old ir-table has the same size as ours */
438 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
439 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
440 != INTR_REMAP_TABLE_REG_SIZE)
441 return -EINVAL;
442
443 irt_phys = irta & VTD_PAGE_MASK;
444 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
445
446 /* Map the old IR table */
447 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
448 if (!old_ir_table)
449 return -ENOMEM;
450
451 /* Copy data over */
452 memcpy(iommu->ir_table->base, old_ir_table, size);
453
454 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
455
456 /*
457 * Now check the table for used entries and mark those as
458 * allocated in the bitmap
459 */
460 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
461 if (iommu->ir_table->base[i].present)
462 bitmap_set(iommu->ir_table->bitmap, i, 1);
463 }
464
465 memunmap(old_ir_table);
466
467 return 0;
468}
469
470
471static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
472{
473 unsigned long flags;
474 u64 addr;
475 u32 sts;
476
477 addr = virt_to_phys((void *)iommu->ir_table->base);
478
479 raw_spin_lock_irqsave(&iommu->register_lock, flags);
480
481 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
482 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
483
484 /* Set interrupt-remapping table pointer */
485 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
486
487 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
488 readl, (sts & DMA_GSTS_IRTPS), sts);
489 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
490
491 /*
492 * Global invalidation of interrupt entry cache to make sure the
493 * hardware uses the new irq remapping table.
494 */
495 if (!cap_esirtps(iommu->cap))
496 qi_global_iec(iommu);
497}
498
499static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
500{
501 unsigned long flags;
502 u32 sts;
503
504 raw_spin_lock_irqsave(&iommu->register_lock, flags);
505
506 /* Enable interrupt-remapping */
507 iommu->gcmd |= DMA_GCMD_IRE;
508 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
509 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
510 readl, (sts & DMA_GSTS_IRES), sts);
511
512 /* Block compatibility-format MSIs */
513 if (sts & DMA_GSTS_CFIS) {
514 iommu->gcmd &= ~DMA_GCMD_CFI;
515 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
516 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
517 readl, !(sts & DMA_GSTS_CFIS), sts);
518 }
519
520 /*
521 * With CFI clear in the Global Command register, we should be
522 * protected from dangerous (i.e. compatibility) interrupts
523 * regardless of x2apic status. Check just to be sure.
524 */
525 if (sts & DMA_GSTS_CFIS)
526 WARN(1, KERN_WARNING
527 "Compatibility-format IRQs enabled despite intr remapping;\n"
528 "you are vulnerable to IRQ injection.\n");
529
530 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
531}
532
533static int intel_setup_irq_remapping(struct intel_iommu *iommu)
534{
535 struct ir_table *ir_table;
536 struct fwnode_handle *fn;
537 unsigned long *bitmap;
538 struct page *pages;
539
540 if (iommu->ir_table)
541 return 0;
542
543 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
544 if (!ir_table)
545 return -ENOMEM;
546
547 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
548 INTR_REMAP_PAGE_ORDER);
549 if (!pages) {
550 pr_err("IR%d: failed to allocate pages of order %d\n",
551 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
552 goto out_free_table;
553 }
554
555 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
556 if (bitmap == NULL) {
557 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
558 goto out_free_pages;
559 }
560
561 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
562 if (!fn)
563 goto out_free_bitmap;
564
565 iommu->ir_domain =
566 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
567 0, INTR_REMAP_TABLE_ENTRIES,
568 fn, &intel_ir_domain_ops,
569 iommu);
570 if (!iommu->ir_domain) {
571 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
572 goto out_free_fwnode;
573 }
574
575 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR);
576 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
577
578 if (cap_caching_mode(iommu->cap))
579 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
580 else
581 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
582
583 ir_table->base = page_address(pages);
584 ir_table->bitmap = bitmap;
585 iommu->ir_table = ir_table;
586
587 /*
588 * If the queued invalidation is already initialized,
589 * shouldn't disable it.
590 */
591 if (!iommu->qi) {
592 /*
593 * Clear previous faults.
594 */
595 dmar_fault(-1, iommu);
596 dmar_disable_qi(iommu);
597
598 if (dmar_enable_qi(iommu)) {
599 pr_err("Failed to enable queued invalidation\n");
600 goto out_free_ir_domain;
601 }
602 }
603
604 init_ir_status(iommu);
605
606 if (ir_pre_enabled(iommu)) {
607 if (!is_kdump_kernel()) {
608 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
609 iommu->name);
610 clear_ir_pre_enabled(iommu);
611 iommu_disable_irq_remapping(iommu);
612 } else if (iommu_load_old_irte(iommu))
613 pr_err("Failed to copy IR table for %s from previous kernel\n",
614 iommu->name);
615 else
616 pr_info("Copied IR table for %s from previous kernel\n",
617 iommu->name);
618 }
619
620 iommu_set_irq_remapping(iommu, eim_mode);
621
622 return 0;
623
624out_free_ir_domain:
625 irq_domain_remove(iommu->ir_domain);
626 iommu->ir_domain = NULL;
627out_free_fwnode:
628 irq_domain_free_fwnode(fn);
629out_free_bitmap:
630 bitmap_free(bitmap);
631out_free_pages:
632 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
633out_free_table:
634 kfree(ir_table);
635
636 iommu->ir_table = NULL;
637
638 return -ENOMEM;
639}
640
641static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
642{
643 struct fwnode_handle *fn;
644
645 if (iommu && iommu->ir_table) {
646 if (iommu->ir_domain) {
647 fn = iommu->ir_domain->fwnode;
648
649 irq_domain_remove(iommu->ir_domain);
650 irq_domain_free_fwnode(fn);
651 iommu->ir_domain = NULL;
652 }
653 free_pages((unsigned long)iommu->ir_table->base,
654 INTR_REMAP_PAGE_ORDER);
655 bitmap_free(iommu->ir_table->bitmap);
656 kfree(iommu->ir_table);
657 iommu->ir_table = NULL;
658 }
659}
660
661/*
662 * Disable Interrupt Remapping.
663 */
664static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
665{
666 unsigned long flags;
667 u32 sts;
668
669 if (!ecap_ir_support(iommu->ecap))
670 return;
671
672 /*
673 * global invalidation of interrupt entry cache before disabling
674 * interrupt-remapping.
675 */
676 if (!cap_esirtps(iommu->cap))
677 qi_global_iec(iommu);
678
679 raw_spin_lock_irqsave(&iommu->register_lock, flags);
680
681 sts = readl(iommu->reg + DMAR_GSTS_REG);
682 if (!(sts & DMA_GSTS_IRES))
683 goto end;
684
685 iommu->gcmd &= ~DMA_GCMD_IRE;
686 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
687
688 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
689 readl, !(sts & DMA_GSTS_IRES), sts);
690
691end:
692 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
693}
694
695static int __init dmar_x2apic_optout(void)
696{
697 struct acpi_table_dmar *dmar;
698 dmar = (struct acpi_table_dmar *)dmar_tbl;
699 if (!dmar || no_x2apic_optout)
700 return 0;
701 return dmar->flags & DMAR_X2APIC_OPT_OUT;
702}
703
704static void __init intel_cleanup_irq_remapping(void)
705{
706 struct dmar_drhd_unit *drhd;
707 struct intel_iommu *iommu;
708
709 for_each_iommu(iommu, drhd) {
710 if (ecap_ir_support(iommu->ecap)) {
711 iommu_disable_irq_remapping(iommu);
712 intel_teardown_irq_remapping(iommu);
713 }
714 }
715
716 if (x2apic_supported())
717 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
718}
719
720static int __init intel_prepare_irq_remapping(void)
721{
722 struct dmar_drhd_unit *drhd;
723 struct intel_iommu *iommu;
724 int eim = 0;
725
726 if (irq_remap_broken) {
727 pr_warn("This system BIOS has enabled interrupt remapping\n"
728 "on a chipset that contains an erratum making that\n"
729 "feature unstable. To maintain system stability\n"
730 "interrupt remapping is being disabled. Please\n"
731 "contact your BIOS vendor for an update\n");
732 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
733 return -ENODEV;
734 }
735
736 if (dmar_table_init() < 0)
737 return -ENODEV;
738
739 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
740 return -ENODEV;
741
742 if (!dmar_ir_support())
743 return -ENODEV;
744
745 if (parse_ioapics_under_ir()) {
746 pr_info("Not enabling interrupt remapping\n");
747 goto error;
748 }
749
750 /* First make sure all IOMMUs support IRQ remapping */
751 for_each_iommu(iommu, drhd)
752 if (!ecap_ir_support(iommu->ecap))
753 goto error;
754
755 /* Detect remapping mode: lapic or x2apic */
756 if (x2apic_supported()) {
757 eim = !dmar_x2apic_optout();
758 if (!eim) {
759 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
760 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
761 }
762 }
763
764 for_each_iommu(iommu, drhd) {
765 if (eim && !ecap_eim_support(iommu->ecap)) {
766 pr_info("%s does not support EIM\n", iommu->name);
767 eim = 0;
768 }
769 }
770
771 eim_mode = eim;
772 if (eim)
773 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
774
775 /* Do the initializations early */
776 for_each_iommu(iommu, drhd) {
777 if (intel_setup_irq_remapping(iommu)) {
778 pr_err("Failed to setup irq remapping for %s\n",
779 iommu->name);
780 goto error;
781 }
782 }
783
784 return 0;
785
786error:
787 intel_cleanup_irq_remapping();
788 return -ENODEV;
789}
790
791/*
792 * Set Posted-Interrupts capability.
793 */
794static inline void set_irq_posting_cap(void)
795{
796 struct dmar_drhd_unit *drhd;
797 struct intel_iommu *iommu;
798
799 if (!disable_irq_post) {
800 /*
801 * If IRTE is in posted format, the 'pda' field goes across the
802 * 64-bit boundary, we need use cmpxchg16b to atomically update
803 * it. We only expose posted-interrupt when X86_FEATURE_CX16
804 * is supported. Actually, hardware platforms supporting PI
805 * should have X86_FEATURE_CX16 support, this has been confirmed
806 * with Intel hardware guys.
807 */
808 if (boot_cpu_has(X86_FEATURE_CX16))
809 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
810
811 for_each_iommu(iommu, drhd)
812 if (!cap_pi_support(iommu->cap)) {
813 intel_irq_remap_ops.capability &=
814 ~(1 << IRQ_POSTING_CAP);
815 break;
816 }
817 }
818}
819
820static int __init intel_enable_irq_remapping(void)
821{
822 struct dmar_drhd_unit *drhd;
823 struct intel_iommu *iommu;
824 bool setup = false;
825
826 /*
827 * Setup Interrupt-remapping for all the DRHD's now.
828 */
829 for_each_iommu(iommu, drhd) {
830 if (!ir_pre_enabled(iommu))
831 iommu_enable_irq_remapping(iommu);
832 setup = true;
833 }
834
835 if (!setup)
836 goto error;
837
838 irq_remapping_enabled = 1;
839
840 set_irq_posting_cap();
841
842 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
843
844 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
845
846error:
847 intel_cleanup_irq_remapping();
848 return -1;
849}
850
851static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
852 struct intel_iommu *iommu,
853 struct acpi_dmar_hardware_unit *drhd)
854{
855 struct acpi_dmar_pci_path *path;
856 u8 bus;
857 int count, free = -1;
858
859 bus = scope->bus;
860 path = (struct acpi_dmar_pci_path *)(scope + 1);
861 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
862 / sizeof(struct acpi_dmar_pci_path);
863
864 while (--count > 0) {
865 /*
866 * Access PCI directly due to the PCI
867 * subsystem isn't initialized yet.
868 */
869 bus = read_pci_config_byte(bus, path->device, path->function,
870 PCI_SECONDARY_BUS);
871 path++;
872 }
873
874 for (count = 0; count < MAX_HPET_TBS; count++) {
875 if (ir_hpet[count].iommu == iommu &&
876 ir_hpet[count].id == scope->enumeration_id)
877 return 0;
878 else if (ir_hpet[count].iommu == NULL && free == -1)
879 free = count;
880 }
881 if (free == -1) {
882 pr_warn("Exceeded Max HPET blocks\n");
883 return -ENOSPC;
884 }
885
886 ir_hpet[free].iommu = iommu;
887 ir_hpet[free].id = scope->enumeration_id;
888 ir_hpet[free].bus = bus;
889 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
890 pr_info("HPET id %d under DRHD base 0x%Lx\n",
891 scope->enumeration_id, drhd->address);
892
893 return 0;
894}
895
896static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
897 struct intel_iommu *iommu,
898 struct acpi_dmar_hardware_unit *drhd)
899{
900 struct acpi_dmar_pci_path *path;
901 u8 bus;
902 int count, free = -1;
903
904 bus = scope->bus;
905 path = (struct acpi_dmar_pci_path *)(scope + 1);
906 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
907 / sizeof(struct acpi_dmar_pci_path);
908
909 while (--count > 0) {
910 /*
911 * Access PCI directly due to the PCI
912 * subsystem isn't initialized yet.
913 */
914 bus = read_pci_config_byte(bus, path->device, path->function,
915 PCI_SECONDARY_BUS);
916 path++;
917 }
918
919 for (count = 0; count < MAX_IO_APICS; count++) {
920 if (ir_ioapic[count].iommu == iommu &&
921 ir_ioapic[count].id == scope->enumeration_id)
922 return 0;
923 else if (ir_ioapic[count].iommu == NULL && free == -1)
924 free = count;
925 }
926 if (free == -1) {
927 pr_warn("Exceeded Max IO APICS\n");
928 return -ENOSPC;
929 }
930
931 ir_ioapic[free].bus = bus;
932 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
933 ir_ioapic[free].iommu = iommu;
934 ir_ioapic[free].id = scope->enumeration_id;
935 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
936 scope->enumeration_id, drhd->address, iommu->seq_id);
937
938 return 0;
939}
940
941static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
942 struct intel_iommu *iommu)
943{
944 int ret = 0;
945 struct acpi_dmar_hardware_unit *drhd;
946 struct acpi_dmar_device_scope *scope;
947 void *start, *end;
948
949 drhd = (struct acpi_dmar_hardware_unit *)header;
950 start = (void *)(drhd + 1);
951 end = ((void *)drhd) + header->length;
952
953 while (start < end && ret == 0) {
954 scope = start;
955 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
956 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
957 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
958 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
959 start += scope->length;
960 }
961
962 return ret;
963}
964
965static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
966{
967 int i;
968
969 for (i = 0; i < MAX_HPET_TBS; i++)
970 if (ir_hpet[i].iommu == iommu)
971 ir_hpet[i].iommu = NULL;
972
973 for (i = 0; i < MAX_IO_APICS; i++)
974 if (ir_ioapic[i].iommu == iommu)
975 ir_ioapic[i].iommu = NULL;
976}
977
978/*
979 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
980 * hardware unit.
981 */
982static int __init parse_ioapics_under_ir(void)
983{
984 struct dmar_drhd_unit *drhd;
985 struct intel_iommu *iommu;
986 bool ir_supported = false;
987 int ioapic_idx;
988
989 for_each_iommu(iommu, drhd) {
990 int ret;
991
992 if (!ecap_ir_support(iommu->ecap))
993 continue;
994
995 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
996 if (ret)
997 return ret;
998
999 ir_supported = true;
1000 }
1001
1002 if (!ir_supported)
1003 return -ENODEV;
1004
1005 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1006 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1007 if (!map_ioapic_to_iommu(ioapic_id)) {
1008 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1009 "interrupt remapping will be disabled\n",
1010 ioapic_id);
1011 return -1;
1012 }
1013 }
1014
1015 return 0;
1016}
1017
1018static int __init ir_dev_scope_init(void)
1019{
1020 int ret;
1021
1022 if (!irq_remapping_enabled)
1023 return 0;
1024
1025 down_write(&dmar_global_lock);
1026 ret = dmar_dev_scope_init();
1027 up_write(&dmar_global_lock);
1028
1029 return ret;
1030}
1031rootfs_initcall(ir_dev_scope_init);
1032
1033static void disable_irq_remapping(void)
1034{
1035 struct dmar_drhd_unit *drhd;
1036 struct intel_iommu *iommu = NULL;
1037
1038 /*
1039 * Disable Interrupt-remapping for all the DRHD's now.
1040 */
1041 for_each_iommu(iommu, drhd) {
1042 if (!ecap_ir_support(iommu->ecap))
1043 continue;
1044
1045 iommu_disable_irq_remapping(iommu);
1046 }
1047
1048 /*
1049 * Clear Posted-Interrupts capability.
1050 */
1051 if (!disable_irq_post)
1052 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1053}
1054
1055static int reenable_irq_remapping(int eim)
1056{
1057 struct dmar_drhd_unit *drhd;
1058 bool setup = false;
1059 struct intel_iommu *iommu = NULL;
1060
1061 for_each_iommu(iommu, drhd)
1062 if (iommu->qi)
1063 dmar_reenable_qi(iommu);
1064
1065 /*
1066 * Setup Interrupt-remapping for all the DRHD's now.
1067 */
1068 for_each_iommu(iommu, drhd) {
1069 if (!ecap_ir_support(iommu->ecap))
1070 continue;
1071
1072 /* Set up interrupt remapping for iommu.*/
1073 iommu_set_irq_remapping(iommu, eim);
1074 iommu_enable_irq_remapping(iommu);
1075 setup = true;
1076 }
1077
1078 if (!setup)
1079 goto error;
1080
1081 set_irq_posting_cap();
1082
1083 return 0;
1084
1085error:
1086 /*
1087 * handle error condition gracefully here!
1088 */
1089 return -1;
1090}
1091
1092/*
1093 * Store the MSI remapping domain pointer in the device if enabled.
1094 *
1095 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1096 * remapping is disabled. Only update the pointer if the device is not
1097 * already handled by a non default PCI/MSI interrupt domain. This protects
1098 * e.g. VMD devices.
1099 */
1100void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1101{
1102 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1103 return;
1104
1105 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1106}
1107
1108static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1109{
1110 memset(irte, 0, sizeof(*irte));
1111
1112 irte->present = 1;
1113 irte->dst_mode = apic->dest_mode_logical;
1114 /*
1115 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1116 * actual level or edge trigger will be setup in the IO-APIC
1117 * RTE. This will help simplify level triggered irq migration.
1118 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1119 * irq migration in the presence of interrupt-remapping.
1120 */
1121 irte->trigger_mode = 0;
1122 irte->dlvry_mode = apic->delivery_mode;
1123 irte->vector = vector;
1124 irte->dest_id = IRTE_DEST(dest);
1125 irte->redir_hint = 1;
1126}
1127
1128struct irq_remap_ops intel_irq_remap_ops = {
1129 .prepare = intel_prepare_irq_remapping,
1130 .enable = intel_enable_irq_remapping,
1131 .disable = disable_irq_remapping,
1132 .reenable = reenable_irq_remapping,
1133 .enable_faulting = enable_drhd_fault_handling,
1134};
1135
1136static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1137{
1138 struct intel_ir_data *ir_data = irqd->chip_data;
1139 struct irte *irte = &ir_data->irte_entry;
1140 struct irq_cfg *cfg = irqd_cfg(irqd);
1141
1142 /*
1143 * Atomically updates the IRTE with the new destination, vector
1144 * and flushes the interrupt entry cache.
1145 */
1146 irte->vector = cfg->vector;
1147 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1148
1149 /* Update the hardware only if the interrupt is in remapped mode. */
1150 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1151 modify_irte(&ir_data->irq_2_iommu, irte);
1152}
1153
1154/*
1155 * Migrate the IO-APIC irq in the presence of intr-remapping.
1156 *
1157 * For both level and edge triggered, irq migration is a simple atomic
1158 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1159 *
1160 * For level triggered, we eliminate the io-apic RTE modification (with the
1161 * updated vector information), by using a virtual vector (io-apic pin number).
1162 * Real vector that is used for interrupting cpu will be coming from
1163 * the interrupt-remapping table entry.
1164 *
1165 * As the migration is a simple atomic update of IRTE, the same mechanism
1166 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1167 */
1168static int
1169intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1170 bool force)
1171{
1172 struct irq_data *parent = data->parent_data;
1173 struct irq_cfg *cfg = irqd_cfg(data);
1174 int ret;
1175
1176 ret = parent->chip->irq_set_affinity(parent, mask, force);
1177 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1178 return ret;
1179
1180 intel_ir_reconfigure_irte(data, false);
1181 /*
1182 * After this point, all the interrupts will start arriving
1183 * at the new destination. So, time to cleanup the previous
1184 * vector allocation.
1185 */
1186 send_cleanup_vector(cfg);
1187
1188 return IRQ_SET_MASK_OK_DONE;
1189}
1190
1191static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1192 struct msi_msg *msg)
1193{
1194 struct intel_ir_data *ir_data = irq_data->chip_data;
1195
1196 *msg = ir_data->msi_entry;
1197}
1198
1199static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1200{
1201 struct intel_ir_data *ir_data = data->chip_data;
1202 struct vcpu_data *vcpu_pi_info = info;
1203
1204 /* stop posting interrupts, back to remapping mode */
1205 if (!vcpu_pi_info) {
1206 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1207 } else {
1208 struct irte irte_pi;
1209
1210 /*
1211 * We are not caching the posted interrupt entry. We
1212 * copy the data from the remapped entry and modify
1213 * the fields which are relevant for posted mode. The
1214 * cached remapped entry is used for switching back to
1215 * remapped mode.
1216 */
1217 memset(&irte_pi, 0, sizeof(irte_pi));
1218 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1219
1220 /* Update the posted mode fields */
1221 irte_pi.p_pst = 1;
1222 irte_pi.p_urgent = 0;
1223 irte_pi.p_vector = vcpu_pi_info->vector;
1224 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1225 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1226 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1227 ~(-1UL << PDA_HIGH_BIT);
1228
1229 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1230 }
1231
1232 return 0;
1233}
1234
1235static struct irq_chip intel_ir_chip = {
1236 .name = "INTEL-IR",
1237 .irq_ack = apic_ack_irq,
1238 .irq_set_affinity = intel_ir_set_affinity,
1239 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1240 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1241};
1242
1243static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1244{
1245 memset(msg, 0, sizeof(*msg));
1246
1247 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1248 msg->arch_addr_lo.dmar_subhandle_valid = true;
1249 msg->arch_addr_lo.dmar_format = true;
1250 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1251 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1252
1253 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1254
1255 msg->arch_data.dmar_subhandle = subhandle;
1256}
1257
1258static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1259 struct irq_cfg *irq_cfg,
1260 struct irq_alloc_info *info,
1261 int index, int sub_handle)
1262{
1263 struct irte *irte = &data->irte_entry;
1264
1265 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1266
1267 switch (info->type) {
1268 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1269 /* Set source-id of interrupt request */
1270 set_ioapic_sid(irte, info->devid);
1271 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1272 info->devid, irte->present, irte->fpd,
1273 irte->dst_mode, irte->redir_hint,
1274 irte->trigger_mode, irte->dlvry_mode,
1275 irte->avail, irte->vector, irte->dest_id,
1276 irte->sid, irte->sq, irte->svt);
1277 sub_handle = info->ioapic.pin;
1278 break;
1279 case X86_IRQ_ALLOC_TYPE_HPET:
1280 set_hpet_sid(irte, info->devid);
1281 break;
1282 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1283 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1284 set_msi_sid(irte,
1285 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1286 break;
1287 default:
1288 BUG_ON(1);
1289 break;
1290 }
1291 fill_msi_msg(&data->msi_entry, index, sub_handle);
1292}
1293
1294static void intel_free_irq_resources(struct irq_domain *domain,
1295 unsigned int virq, unsigned int nr_irqs)
1296{
1297 struct irq_data *irq_data;
1298 struct intel_ir_data *data;
1299 struct irq_2_iommu *irq_iommu;
1300 unsigned long flags;
1301 int i;
1302 for (i = 0; i < nr_irqs; i++) {
1303 irq_data = irq_domain_get_irq_data(domain, virq + i);
1304 if (irq_data && irq_data->chip_data) {
1305 data = irq_data->chip_data;
1306 irq_iommu = &data->irq_2_iommu;
1307 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1308 clear_entries(irq_iommu);
1309 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1310 irq_domain_reset_irq_data(irq_data);
1311 kfree(data);
1312 }
1313 }
1314}
1315
1316static int intel_irq_remapping_alloc(struct irq_domain *domain,
1317 unsigned int virq, unsigned int nr_irqs,
1318 void *arg)
1319{
1320 struct intel_iommu *iommu = domain->host_data;
1321 struct irq_alloc_info *info = arg;
1322 struct intel_ir_data *data, *ird;
1323 struct irq_data *irq_data;
1324 struct irq_cfg *irq_cfg;
1325 int i, ret, index;
1326
1327 if (!info || !iommu)
1328 return -EINVAL;
1329 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1330 return -EINVAL;
1331
1332 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1333 if (ret < 0)
1334 return ret;
1335
1336 ret = -ENOMEM;
1337 data = kzalloc(sizeof(*data), GFP_KERNEL);
1338 if (!data)
1339 goto out_free_parent;
1340
1341 down_read(&dmar_global_lock);
1342 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1343 up_read(&dmar_global_lock);
1344 if (index < 0) {
1345 pr_warn("Failed to allocate IRTE\n");
1346 kfree(data);
1347 goto out_free_parent;
1348 }
1349
1350 for (i = 0; i < nr_irqs; i++) {
1351 irq_data = irq_domain_get_irq_data(domain, virq + i);
1352 irq_cfg = irqd_cfg(irq_data);
1353 if (!irq_data || !irq_cfg) {
1354 if (!i)
1355 kfree(data);
1356 ret = -EINVAL;
1357 goto out_free_data;
1358 }
1359
1360 if (i > 0) {
1361 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1362 if (!ird)
1363 goto out_free_data;
1364 /* Initialize the common data */
1365 ird->irq_2_iommu = data->irq_2_iommu;
1366 ird->irq_2_iommu.sub_handle = i;
1367 } else {
1368 ird = data;
1369 }
1370
1371 irq_data->hwirq = (index << 16) + i;
1372 irq_data->chip_data = ird;
1373 irq_data->chip = &intel_ir_chip;
1374 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1375 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1376 }
1377 return 0;
1378
1379out_free_data:
1380 intel_free_irq_resources(domain, virq, i);
1381out_free_parent:
1382 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1383 return ret;
1384}
1385
1386static void intel_irq_remapping_free(struct irq_domain *domain,
1387 unsigned int virq, unsigned int nr_irqs)
1388{
1389 intel_free_irq_resources(domain, virq, nr_irqs);
1390 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1391}
1392
1393static int intel_irq_remapping_activate(struct irq_domain *domain,
1394 struct irq_data *irq_data, bool reserve)
1395{
1396 intel_ir_reconfigure_irte(irq_data, true);
1397 return 0;
1398}
1399
1400static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1401 struct irq_data *irq_data)
1402{
1403 struct intel_ir_data *data = irq_data->chip_data;
1404 struct irte entry;
1405
1406 memset(&entry, 0, sizeof(entry));
1407 modify_irte(&data->irq_2_iommu, &entry);
1408}
1409
1410static int intel_irq_remapping_select(struct irq_domain *d,
1411 struct irq_fwspec *fwspec,
1412 enum irq_domain_bus_token bus_token)
1413{
1414 struct intel_iommu *iommu = NULL;
1415
1416 if (x86_fwspec_is_ioapic(fwspec))
1417 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1418 else if (x86_fwspec_is_hpet(fwspec))
1419 iommu = map_hpet_to_iommu(fwspec->param[0]);
1420
1421 return iommu && d == iommu->ir_domain;
1422}
1423
1424static const struct irq_domain_ops intel_ir_domain_ops = {
1425 .select = intel_irq_remapping_select,
1426 .alloc = intel_irq_remapping_alloc,
1427 .free = intel_irq_remapping_free,
1428 .activate = intel_irq_remapping_activate,
1429 .deactivate = intel_irq_remapping_deactivate,
1430};
1431
1432static const struct msi_parent_ops dmar_msi_parent_ops = {
1433 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1434 MSI_FLAG_MULTI_PCI_MSI |
1435 MSI_FLAG_PCI_IMS,
1436 .prefix = "IR-",
1437 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1438};
1439
1440static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1441 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1442 MSI_FLAG_MULTI_PCI_MSI,
1443 .prefix = "vIR-",
1444 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1445};
1446
1447/*
1448 * Support of Interrupt Remapping Unit Hotplug
1449 */
1450static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1451{
1452 int ret;
1453 int eim = x2apic_enabled();
1454
1455 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1456 if (ret)
1457 return ret;
1458
1459 if (eim && !ecap_eim_support(iommu->ecap)) {
1460 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1461 iommu->reg_phys, iommu->ecap);
1462 return -ENODEV;
1463 }
1464
1465 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1466 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1467 iommu->reg_phys);
1468 return -ENODEV;
1469 }
1470
1471 /* TODO: check all IOAPICs are covered by IOMMU */
1472
1473 /* Setup Interrupt-remapping now. */
1474 ret = intel_setup_irq_remapping(iommu);
1475 if (ret) {
1476 pr_err("Failed to setup irq remapping for %s\n",
1477 iommu->name);
1478 intel_teardown_irq_remapping(iommu);
1479 ir_remove_ioapic_hpet_scope(iommu);
1480 } else {
1481 iommu_enable_irq_remapping(iommu);
1482 }
1483
1484 return ret;
1485}
1486
1487int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1488{
1489 int ret = 0;
1490 struct intel_iommu *iommu = dmaru->iommu;
1491
1492 if (!irq_remapping_enabled)
1493 return 0;
1494 if (iommu == NULL)
1495 return -EINVAL;
1496 if (!ecap_ir_support(iommu->ecap))
1497 return 0;
1498 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1499 !cap_pi_support(iommu->cap))
1500 return -EBUSY;
1501
1502 if (insert) {
1503 if (!iommu->ir_table)
1504 ret = dmar_ir_add(dmaru, iommu);
1505 } else {
1506 if (iommu->ir_table) {
1507 if (!bitmap_empty(iommu->ir_table->bitmap,
1508 INTR_REMAP_TABLE_ENTRIES)) {
1509 ret = -EBUSY;
1510 } else {
1511 iommu_disable_irq_remapping(iommu);
1512 intel_teardown_irq_remapping(iommu);
1513 ir_remove_ioapic_hpet_scope(iommu);
1514 }
1515 }
1516 }
1517
1518 return ret;
1519}