Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/anon_inodes.h>
19#include <linux/export.h>
20#include <linux/debugfs.h>
21#include <linux/module.h>
22#include <linux/seq_file.h>
23#include <linux/poll.h>
24#include <linux/dma-resv.h>
25#include <linux/mm.h>
26#include <linux/mount.h>
27#include <linux/pseudo_fs.h>
28
29#include <uapi/linux/dma-buf.h>
30#include <uapi/linux/magic.h>
31
32static inline int is_dma_buf_file(struct file *);
33
34struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
37};
38
39static struct dma_buf_list db_list;
40
41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42{
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
46
47 dmabuf = dentry->d_fsdata;
48 spin_lock(&dmabuf->name_lock);
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 spin_unlock(&dmabuf->name_lock);
52
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
55}
56
57static void dma_buf_release(struct dentry *dentry)
58{
59 struct dma_buf *dmabuf;
60
61 dmabuf = dentry->d_fsdata;
62 if (unlikely(!dmabuf))
63 return;
64
65 BUG_ON(dmabuf->vmapping_counter);
66
67 /*
68 * Any fences that a dma-buf poll can wait on should be signaled
69 * before releasing dma-buf. This is the responsibility of each
70 * driver that uses the reservation objects.
71 *
72 * If you hit this BUG() it means someone dropped their ref to the
73 * dma-buf while still having pending operation to the buffer.
74 */
75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
76
77 dmabuf->ops->release(dmabuf);
78
79 mutex_lock(&db_list.lock);
80 list_del(&dmabuf->list_node);
81 mutex_unlock(&db_list.lock);
82
83 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
84 dma_resv_fini(dmabuf->resv);
85
86 module_put(dmabuf->owner);
87 kfree(dmabuf->name);
88 kfree(dmabuf);
89}
90
91static const struct dentry_operations dma_buf_dentry_ops = {
92 .d_dname = dmabuffs_dname,
93 .d_release = dma_buf_release,
94};
95
96static struct vfsmount *dma_buf_mnt;
97
98static int dma_buf_fs_init_context(struct fs_context *fc)
99{
100 struct pseudo_fs_context *ctx;
101
102 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
103 if (!ctx)
104 return -ENOMEM;
105 ctx->dops = &dma_buf_dentry_ops;
106 return 0;
107}
108
109static struct file_system_type dma_buf_fs_type = {
110 .name = "dmabuf",
111 .init_fs_context = dma_buf_fs_init_context,
112 .kill_sb = kill_anon_super,
113};
114
115static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
116{
117 struct dma_buf *dmabuf;
118
119 if (!is_dma_buf_file(file))
120 return -EINVAL;
121
122 dmabuf = file->private_data;
123
124 /* check if buffer supports mmap */
125 if (!dmabuf->ops->mmap)
126 return -EINVAL;
127
128 /* check for overflowing the buffer's size */
129 if (vma->vm_pgoff + vma_pages(vma) >
130 dmabuf->size >> PAGE_SHIFT)
131 return -EINVAL;
132
133 return dmabuf->ops->mmap(dmabuf, vma);
134}
135
136static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
137{
138 struct dma_buf *dmabuf;
139 loff_t base;
140
141 if (!is_dma_buf_file(file))
142 return -EBADF;
143
144 dmabuf = file->private_data;
145
146 /* only support discovering the end of the buffer,
147 but also allow SEEK_SET to maintain the idiomatic
148 SEEK_END(0), SEEK_CUR(0) pattern */
149 if (whence == SEEK_END)
150 base = dmabuf->size;
151 else if (whence == SEEK_SET)
152 base = 0;
153 else
154 return -EINVAL;
155
156 if (offset != 0)
157 return -EINVAL;
158
159 return base + offset;
160}
161
162/**
163 * DOC: implicit fence polling
164 *
165 * To support cross-device and cross-driver synchronization of buffer access
166 * implicit fences (represented internally in the kernel with &struct dma_fence)
167 * can be attached to a &dma_buf. The glue for that and a few related things are
168 * provided in the &dma_resv structure.
169 *
170 * Userspace can query the state of these implicitly tracked fences using poll()
171 * and related system calls:
172 *
173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174 * most recent write or exclusive fence.
175 *
176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177 * all attached fences, shared and exclusive ones.
178 *
179 * Note that this only signals the completion of the respective fences, i.e. the
180 * DMA transfers are complete. Cache flushing and any other necessary
181 * preparations before CPU access can begin still need to happen.
182 */
183
184static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
185{
186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 unsigned long flags;
188
189 spin_lock_irqsave(&dcb->poll->lock, flags);
190 wake_up_locked_poll(dcb->poll, dcb->active);
191 dcb->active = 0;
192 spin_unlock_irqrestore(&dcb->poll->lock, flags);
193}
194
195static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
196{
197 struct dma_buf *dmabuf;
198 struct dma_resv *resv;
199 struct dma_resv_list *fobj;
200 struct dma_fence *fence_excl;
201 __poll_t events;
202 unsigned shared_count, seq;
203
204 dmabuf = file->private_data;
205 if (!dmabuf || !dmabuf->resv)
206 return EPOLLERR;
207
208 resv = dmabuf->resv;
209
210 poll_wait(file, &dmabuf->poll, poll);
211
212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
213 if (!events)
214 return 0;
215
216retry:
217 seq = read_seqcount_begin(&resv->seq);
218 rcu_read_lock();
219
220 fobj = rcu_dereference(resv->fence);
221 if (fobj)
222 shared_count = fobj->shared_count;
223 else
224 shared_count = 0;
225 fence_excl = rcu_dereference(resv->fence_excl);
226 if (read_seqcount_retry(&resv->seq, seq)) {
227 rcu_read_unlock();
228 goto retry;
229 }
230
231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
233 __poll_t pevents = EPOLLIN;
234
235 if (shared_count == 0)
236 pevents |= EPOLLOUT;
237
238 spin_lock_irq(&dmabuf->poll.lock);
239 if (dcb->active) {
240 dcb->active |= pevents;
241 events &= ~pevents;
242 } else
243 dcb->active = pevents;
244 spin_unlock_irq(&dmabuf->poll.lock);
245
246 if (events & pevents) {
247 if (!dma_fence_get_rcu(fence_excl)) {
248 /* force a recheck */
249 events &= ~pevents;
250 dma_buf_poll_cb(NULL, &dcb->cb);
251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 dma_buf_poll_cb)) {
253 events &= ~pevents;
254 dma_fence_put(fence_excl);
255 } else {
256 /*
257 * No callback queued, wake up any additional
258 * waiters.
259 */
260 dma_fence_put(fence_excl);
261 dma_buf_poll_cb(NULL, &dcb->cb);
262 }
263 }
264 }
265
266 if ((events & EPOLLOUT) && shared_count > 0) {
267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 int i;
269
270 /* Only queue a new callback if no event has fired yet */
271 spin_lock_irq(&dmabuf->poll.lock);
272 if (dcb->active)
273 events &= ~EPOLLOUT;
274 else
275 dcb->active = EPOLLOUT;
276 spin_unlock_irq(&dmabuf->poll.lock);
277
278 if (!(events & EPOLLOUT))
279 goto out;
280
281 for (i = 0; i < shared_count; ++i) {
282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
283
284 if (!dma_fence_get_rcu(fence)) {
285 /*
286 * fence refcount dropped to zero, this means
287 * that fobj has been freed
288 *
289 * call dma_buf_poll_cb and force a recheck!
290 */
291 events &= ~EPOLLOUT;
292 dma_buf_poll_cb(NULL, &dcb->cb);
293 break;
294 }
295 if (!dma_fence_add_callback(fence, &dcb->cb,
296 dma_buf_poll_cb)) {
297 dma_fence_put(fence);
298 events &= ~EPOLLOUT;
299 break;
300 }
301 dma_fence_put(fence);
302 }
303
304 /* No callback queued, wake up any additional waiters. */
305 if (i == shared_count)
306 dma_buf_poll_cb(NULL, &dcb->cb);
307 }
308
309out:
310 rcu_read_unlock();
311 return events;
312}
313
314/**
315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316 * The name of the dma-buf buffer can only be set when the dma-buf is not
317 * attached to any devices. It could theoritically support changing the
318 * name of the dma-buf if the same piece of memory is used for multiple
319 * purpose between different devices.
320 *
321 * @dmabuf: [in] dmabuf buffer that will be renamed.
322 * @buf: [in] A piece of userspace memory that contains the name of
323 * the dma-buf.
324 *
325 * Returns 0 on success. If the dma-buf buffer is already attached to
326 * devices, return -EBUSY.
327 *
328 */
329static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
330{
331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 long ret = 0;
333
334 if (IS_ERR(name))
335 return PTR_ERR(name);
336
337 dma_resv_lock(dmabuf->resv, NULL);
338 if (!list_empty(&dmabuf->attachments)) {
339 ret = -EBUSY;
340 kfree(name);
341 goto out_unlock;
342 }
343 spin_lock(&dmabuf->name_lock);
344 kfree(dmabuf->name);
345 dmabuf->name = name;
346 spin_unlock(&dmabuf->name_lock);
347
348out_unlock:
349 dma_resv_unlock(dmabuf->resv);
350 return ret;
351}
352
353static long dma_buf_ioctl(struct file *file,
354 unsigned int cmd, unsigned long arg)
355{
356 struct dma_buf *dmabuf;
357 struct dma_buf_sync sync;
358 enum dma_data_direction direction;
359 int ret;
360
361 dmabuf = file->private_data;
362
363 switch (cmd) {
364 case DMA_BUF_IOCTL_SYNC:
365 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
366 return -EFAULT;
367
368 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
369 return -EINVAL;
370
371 switch (sync.flags & DMA_BUF_SYNC_RW) {
372 case DMA_BUF_SYNC_READ:
373 direction = DMA_FROM_DEVICE;
374 break;
375 case DMA_BUF_SYNC_WRITE:
376 direction = DMA_TO_DEVICE;
377 break;
378 case DMA_BUF_SYNC_RW:
379 direction = DMA_BIDIRECTIONAL;
380 break;
381 default:
382 return -EINVAL;
383 }
384
385 if (sync.flags & DMA_BUF_SYNC_END)
386 ret = dma_buf_end_cpu_access(dmabuf, direction);
387 else
388 ret = dma_buf_begin_cpu_access(dmabuf, direction);
389
390 return ret;
391
392 case DMA_BUF_SET_NAME_A:
393 case DMA_BUF_SET_NAME_B:
394 return dma_buf_set_name(dmabuf, (const char __user *)arg);
395
396 default:
397 return -ENOTTY;
398 }
399}
400
401static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
402{
403 struct dma_buf *dmabuf = file->private_data;
404
405 seq_printf(m, "size:\t%zu\n", dmabuf->size);
406 /* Don't count the temporary reference taken inside procfs seq_show */
407 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
408 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
409 spin_lock(&dmabuf->name_lock);
410 if (dmabuf->name)
411 seq_printf(m, "name:\t%s\n", dmabuf->name);
412 spin_unlock(&dmabuf->name_lock);
413}
414
415static const struct file_operations dma_buf_fops = {
416 .mmap = dma_buf_mmap_internal,
417 .llseek = dma_buf_llseek,
418 .poll = dma_buf_poll,
419 .unlocked_ioctl = dma_buf_ioctl,
420 .compat_ioctl = compat_ptr_ioctl,
421 .show_fdinfo = dma_buf_show_fdinfo,
422};
423
424/*
425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
426 */
427static inline int is_dma_buf_file(struct file *file)
428{
429 return file->f_op == &dma_buf_fops;
430}
431
432static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433{
434 struct file *file;
435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436
437 if (IS_ERR(inode))
438 return ERR_CAST(inode);
439
440 inode->i_size = dmabuf->size;
441 inode_set_bytes(inode, dmabuf->size);
442
443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 flags, &dma_buf_fops);
445 if (IS_ERR(file))
446 goto err_alloc_file;
447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 file->private_data = dmabuf;
449 file->f_path.dentry->d_fsdata = dmabuf;
450
451 return file;
452
453err_alloc_file:
454 iput(inode);
455 return file;
456}
457
458/**
459 * DOC: dma buf device access
460 *
461 * For device DMA access to a shared DMA buffer the usual sequence of operations
462 * is fairly simple:
463 *
464 * 1. The exporter defines his exporter instance using
465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467 * as a file descriptor by calling dma_buf_fd().
468 *
469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470 * to share with: First the filedescriptor is converted to a &dma_buf using
471 * dma_buf_get(). Then the buffer is attached to the device using
472 * dma_buf_attach().
473 *
474 * Up to this stage the exporter is still free to migrate or reallocate the
475 * backing storage.
476 *
477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
478 * access to the shared buffer. In the kernel this is done by calling
479 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
480 *
481 * 4. Once a driver is done with a shared buffer it needs to call
482 * dma_buf_detach() (after cleaning up any mappings) and then release the
483 * reference acquired with dma_buf_get by calling dma_buf_put().
484 *
485 * For the detailed semantics exporters are expected to implement see
486 * &dma_buf_ops.
487 */
488
489/**
490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
491 * with this buffer, so it can be exported.
492 * Also connect the allocator specific data and ops to the buffer.
493 * Additionally, provide a name string for exporter; useful in debugging.
494 *
495 * @exp_info: [in] holds all the export related information provided
496 * by the exporter. see &struct dma_buf_export_info
497 * for further details.
498 *
499 * Returns, on success, a newly created dma_buf object, which wraps the
500 * supplied private data and operations for dma_buf_ops. On either missing
501 * ops, or error in allocating struct dma_buf, will return negative error.
502 *
503 * For most cases the easiest way to create @exp_info is through the
504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505 */
506struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
507{
508 struct dma_buf *dmabuf;
509 struct dma_resv *resv = exp_info->resv;
510 struct file *file;
511 size_t alloc_size = sizeof(struct dma_buf);
512 int ret;
513
514 if (!exp_info->resv)
515 alloc_size += sizeof(struct dma_resv);
516 else
517 /* prevent &dma_buf[1] == dma_buf->resv */
518 alloc_size += 1;
519
520 if (WARN_ON(!exp_info->priv
521 || !exp_info->ops
522 || !exp_info->ops->map_dma_buf
523 || !exp_info->ops->unmap_dma_buf
524 || !exp_info->ops->release)) {
525 return ERR_PTR(-EINVAL);
526 }
527
528 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
529 (exp_info->ops->pin || exp_info->ops->unpin)))
530 return ERR_PTR(-EINVAL);
531
532 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
533 return ERR_PTR(-EINVAL);
534
535 if (!try_module_get(exp_info->owner))
536 return ERR_PTR(-ENOENT);
537
538 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
539 if (!dmabuf) {
540 ret = -ENOMEM;
541 goto err_module;
542 }
543
544 dmabuf->priv = exp_info->priv;
545 dmabuf->ops = exp_info->ops;
546 dmabuf->size = exp_info->size;
547 dmabuf->exp_name = exp_info->exp_name;
548 dmabuf->owner = exp_info->owner;
549 spin_lock_init(&dmabuf->name_lock);
550 init_waitqueue_head(&dmabuf->poll);
551 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
552 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
553
554 if (!resv) {
555 resv = (struct dma_resv *)&dmabuf[1];
556 dma_resv_init(resv);
557 }
558 dmabuf->resv = resv;
559
560 file = dma_buf_getfile(dmabuf, exp_info->flags);
561 if (IS_ERR(file)) {
562 ret = PTR_ERR(file);
563 goto err_dmabuf;
564 }
565
566 file->f_mode |= FMODE_LSEEK;
567 dmabuf->file = file;
568
569 mutex_init(&dmabuf->lock);
570 INIT_LIST_HEAD(&dmabuf->attachments);
571
572 mutex_lock(&db_list.lock);
573 list_add(&dmabuf->list_node, &db_list.head);
574 mutex_unlock(&db_list.lock);
575
576 return dmabuf;
577
578err_dmabuf:
579 kfree(dmabuf);
580err_module:
581 module_put(exp_info->owner);
582 return ERR_PTR(ret);
583}
584EXPORT_SYMBOL_GPL(dma_buf_export);
585
586/**
587 * dma_buf_fd - returns a file descriptor for the given dma_buf
588 * @dmabuf: [in] pointer to dma_buf for which fd is required.
589 * @flags: [in] flags to give to fd
590 *
591 * On success, returns an associated 'fd'. Else, returns error.
592 */
593int dma_buf_fd(struct dma_buf *dmabuf, int flags)
594{
595 int fd;
596
597 if (!dmabuf || !dmabuf->file)
598 return -EINVAL;
599
600 fd = get_unused_fd_flags(flags);
601 if (fd < 0)
602 return fd;
603
604 fd_install(fd, dmabuf->file);
605
606 return fd;
607}
608EXPORT_SYMBOL_GPL(dma_buf_fd);
609
610/**
611 * dma_buf_get - returns the dma_buf structure related to an fd
612 * @fd: [in] fd associated with the dma_buf to be returned
613 *
614 * On success, returns the dma_buf structure associated with an fd; uses
615 * file's refcounting done by fget to increase refcount. returns ERR_PTR
616 * otherwise.
617 */
618struct dma_buf *dma_buf_get(int fd)
619{
620 struct file *file;
621
622 file = fget(fd);
623
624 if (!file)
625 return ERR_PTR(-EBADF);
626
627 if (!is_dma_buf_file(file)) {
628 fput(file);
629 return ERR_PTR(-EINVAL);
630 }
631
632 return file->private_data;
633}
634EXPORT_SYMBOL_GPL(dma_buf_get);
635
636/**
637 * dma_buf_put - decreases refcount of the buffer
638 * @dmabuf: [in] buffer to reduce refcount of
639 *
640 * Uses file's refcounting done implicitly by fput().
641 *
642 * If, as a result of this call, the refcount becomes 0, the 'release' file
643 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
644 * in turn, and frees the memory allocated for dmabuf when exported.
645 */
646void dma_buf_put(struct dma_buf *dmabuf)
647{
648 if (WARN_ON(!dmabuf || !dmabuf->file))
649 return;
650
651 fput(dmabuf->file);
652}
653EXPORT_SYMBOL_GPL(dma_buf_put);
654
655/**
656 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
657 * calls attach() of dma_buf_ops to allow device-specific attach functionality
658 * @dmabuf: [in] buffer to attach device to.
659 * @dev: [in] device to be attached.
660 * @importer_ops: [in] importer operations for the attachment
661 * @importer_priv: [in] importer private pointer for the attachment
662 *
663 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
664 * must be cleaned up by calling dma_buf_detach().
665 *
666 * Returns:
667 *
668 * A pointer to newly created &dma_buf_attachment on success, or a negative
669 * error code wrapped into a pointer on failure.
670 *
671 * Note that this can fail if the backing storage of @dmabuf is in a place not
672 * accessible to @dev, and cannot be moved to a more suitable place. This is
673 * indicated with the error code -EBUSY.
674 */
675struct dma_buf_attachment *
676dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
677 const struct dma_buf_attach_ops *importer_ops,
678 void *importer_priv)
679{
680 struct dma_buf_attachment *attach;
681 int ret;
682
683 if (WARN_ON(!dmabuf || !dev))
684 return ERR_PTR(-EINVAL);
685
686 if (WARN_ON(importer_ops && !importer_ops->move_notify))
687 return ERR_PTR(-EINVAL);
688
689 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
690 if (!attach)
691 return ERR_PTR(-ENOMEM);
692
693 attach->dev = dev;
694 attach->dmabuf = dmabuf;
695 if (importer_ops)
696 attach->peer2peer = importer_ops->allow_peer2peer;
697 attach->importer_ops = importer_ops;
698 attach->importer_priv = importer_priv;
699
700 if (dmabuf->ops->attach) {
701 ret = dmabuf->ops->attach(dmabuf, attach);
702 if (ret)
703 goto err_attach;
704 }
705 dma_resv_lock(dmabuf->resv, NULL);
706 list_add(&attach->node, &dmabuf->attachments);
707 dma_resv_unlock(dmabuf->resv);
708
709 /* When either the importer or the exporter can't handle dynamic
710 * mappings we cache the mapping here to avoid issues with the
711 * reservation object lock.
712 */
713 if (dma_buf_attachment_is_dynamic(attach) !=
714 dma_buf_is_dynamic(dmabuf)) {
715 struct sg_table *sgt;
716
717 if (dma_buf_is_dynamic(attach->dmabuf)) {
718 dma_resv_lock(attach->dmabuf->resv, NULL);
719 ret = dma_buf_pin(attach);
720 if (ret)
721 goto err_unlock;
722 }
723
724 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
725 if (!sgt)
726 sgt = ERR_PTR(-ENOMEM);
727 if (IS_ERR(sgt)) {
728 ret = PTR_ERR(sgt);
729 goto err_unpin;
730 }
731 if (dma_buf_is_dynamic(attach->dmabuf))
732 dma_resv_unlock(attach->dmabuf->resv);
733 attach->sgt = sgt;
734 attach->dir = DMA_BIDIRECTIONAL;
735 }
736
737 return attach;
738
739err_attach:
740 kfree(attach);
741 return ERR_PTR(ret);
742
743err_unpin:
744 if (dma_buf_is_dynamic(attach->dmabuf))
745 dma_buf_unpin(attach);
746
747err_unlock:
748 if (dma_buf_is_dynamic(attach->dmabuf))
749 dma_resv_unlock(attach->dmabuf->resv);
750
751 dma_buf_detach(dmabuf, attach);
752 return ERR_PTR(ret);
753}
754EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
755
756/**
757 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
758 * @dmabuf: [in] buffer to attach device to.
759 * @dev: [in] device to be attached.
760 *
761 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
762 * mapping.
763 */
764struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
765 struct device *dev)
766{
767 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
768}
769EXPORT_SYMBOL_GPL(dma_buf_attach);
770
771/**
772 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
773 * optionally calls detach() of dma_buf_ops for device-specific detach
774 * @dmabuf: [in] buffer to detach from.
775 * @attach: [in] attachment to be detached; is free'd after this call.
776 *
777 * Clean up a device attachment obtained by calling dma_buf_attach().
778 */
779void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
780{
781 if (WARN_ON(!dmabuf || !attach))
782 return;
783
784 if (attach->sgt) {
785 if (dma_buf_is_dynamic(attach->dmabuf))
786 dma_resv_lock(attach->dmabuf->resv, NULL);
787
788 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
789
790 if (dma_buf_is_dynamic(attach->dmabuf)) {
791 dma_buf_unpin(attach);
792 dma_resv_unlock(attach->dmabuf->resv);
793 }
794 }
795
796 dma_resv_lock(dmabuf->resv, NULL);
797 list_del(&attach->node);
798 dma_resv_unlock(dmabuf->resv);
799 if (dmabuf->ops->detach)
800 dmabuf->ops->detach(dmabuf, attach);
801
802 kfree(attach);
803}
804EXPORT_SYMBOL_GPL(dma_buf_detach);
805
806/**
807 * dma_buf_pin - Lock down the DMA-buf
808 *
809 * @attach: [in] attachment which should be pinned
810 *
811 * Returns:
812 * 0 on success, negative error code on failure.
813 */
814int dma_buf_pin(struct dma_buf_attachment *attach)
815{
816 struct dma_buf *dmabuf = attach->dmabuf;
817 int ret = 0;
818
819 dma_resv_assert_held(dmabuf->resv);
820
821 if (dmabuf->ops->pin)
822 ret = dmabuf->ops->pin(attach);
823
824 return ret;
825}
826EXPORT_SYMBOL_GPL(dma_buf_pin);
827
828/**
829 * dma_buf_unpin - Remove lock from DMA-buf
830 *
831 * @attach: [in] attachment which should be unpinned
832 */
833void dma_buf_unpin(struct dma_buf_attachment *attach)
834{
835 struct dma_buf *dmabuf = attach->dmabuf;
836
837 dma_resv_assert_held(dmabuf->resv);
838
839 if (dmabuf->ops->unpin)
840 dmabuf->ops->unpin(attach);
841}
842EXPORT_SYMBOL_GPL(dma_buf_unpin);
843
844/**
845 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
846 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
847 * dma_buf_ops.
848 * @attach: [in] attachment whose scatterlist is to be returned
849 * @direction: [in] direction of DMA transfer
850 *
851 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
852 * on error. May return -EINTR if it is interrupted by a signal.
853 *
854 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
855 * the underlying backing storage is pinned for as long as a mapping exists,
856 * therefore users/importers should not hold onto a mapping for undue amounts of
857 * time.
858 */
859struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
860 enum dma_data_direction direction)
861{
862 struct sg_table *sg_table;
863 int r;
864
865 might_sleep();
866
867 if (WARN_ON(!attach || !attach->dmabuf))
868 return ERR_PTR(-EINVAL);
869
870 if (dma_buf_attachment_is_dynamic(attach))
871 dma_resv_assert_held(attach->dmabuf->resv);
872
873 if (attach->sgt) {
874 /*
875 * Two mappings with different directions for the same
876 * attachment are not allowed.
877 */
878 if (attach->dir != direction &&
879 attach->dir != DMA_BIDIRECTIONAL)
880 return ERR_PTR(-EBUSY);
881
882 return attach->sgt;
883 }
884
885 if (dma_buf_is_dynamic(attach->dmabuf)) {
886 dma_resv_assert_held(attach->dmabuf->resv);
887 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
888 r = dma_buf_pin(attach);
889 if (r)
890 return ERR_PTR(r);
891 }
892 }
893
894 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
895 if (!sg_table)
896 sg_table = ERR_PTR(-ENOMEM);
897
898 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
899 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
900 dma_buf_unpin(attach);
901
902 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
903 attach->sgt = sg_table;
904 attach->dir = direction;
905 }
906
907 return sg_table;
908}
909EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
910
911/**
912 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
913 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
914 * dma_buf_ops.
915 * @attach: [in] attachment to unmap buffer from
916 * @sg_table: [in] scatterlist info of the buffer to unmap
917 * @direction: [in] direction of DMA transfer
918 *
919 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
920 */
921void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
922 struct sg_table *sg_table,
923 enum dma_data_direction direction)
924{
925 might_sleep();
926
927 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
928 return;
929
930 if (dma_buf_attachment_is_dynamic(attach))
931 dma_resv_assert_held(attach->dmabuf->resv);
932
933 if (attach->sgt == sg_table)
934 return;
935
936 if (dma_buf_is_dynamic(attach->dmabuf))
937 dma_resv_assert_held(attach->dmabuf->resv);
938
939 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
940
941 if (dma_buf_is_dynamic(attach->dmabuf) &&
942 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
943 dma_buf_unpin(attach);
944}
945EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
946
947/**
948 * dma_buf_move_notify - notify attachments that DMA-buf is moving
949 *
950 * @dmabuf: [in] buffer which is moving
951 *
952 * Informs all attachmenst that they need to destroy and recreated all their
953 * mappings.
954 */
955void dma_buf_move_notify(struct dma_buf *dmabuf)
956{
957 struct dma_buf_attachment *attach;
958
959 dma_resv_assert_held(dmabuf->resv);
960
961 list_for_each_entry(attach, &dmabuf->attachments, node)
962 if (attach->importer_ops)
963 attach->importer_ops->move_notify(attach);
964}
965EXPORT_SYMBOL_GPL(dma_buf_move_notify);
966
967/**
968 * DOC: cpu access
969 *
970 * There are mutliple reasons for supporting CPU access to a dma buffer object:
971 *
972 * - Fallback operations in the kernel, for example when a device is connected
973 * over USB and the kernel needs to shuffle the data around first before
974 * sending it away. Cache coherency is handled by braketing any transactions
975 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
976 * access.
977 *
978 * Since for most kernel internal dma-buf accesses need the entire buffer, a
979 * vmap interface is introduced. Note that on very old 32-bit architectures
980 * vmalloc space might be limited and result in vmap calls failing.
981 *
982 * Interfaces::
983 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
984 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
985 *
986 * The vmap call can fail if there is no vmap support in the exporter, or if
987 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
988 * that the dma-buf layer keeps a reference count for all vmap access and
989 * calls down into the exporter's vmap function only when no vmapping exists,
990 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
991 * provided by taking the dma_buf->lock mutex.
992 *
993 * - For full compatibility on the importer side with existing userspace
994 * interfaces, which might already support mmap'ing buffers. This is needed in
995 * many processing pipelines (e.g. feeding a software rendered image into a
996 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
997 * framework already supported this and for DMA buffer file descriptors to
998 * replace ION buffers mmap support was needed.
999 *
1000 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1001 * fd. But like for CPU access there's a need to braket the actual access,
1002 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1003 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1004 * be restarted.
1005 *
1006 * Some systems might need some sort of cache coherency management e.g. when
1007 * CPU and GPU domains are being accessed through dma-buf at the same time.
1008 * To circumvent this problem there are begin/end coherency markers, that
1009 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1010 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1011 * sequence would be used like following:
1012 *
1013 * - mmap dma-buf fd
1014 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1015 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1016 * want (with the new data being consumed by say the GPU or the scanout
1017 * device)
1018 * - munmap once you don't need the buffer any more
1019 *
1020 * For correctness and optimal performance, it is always required to use
1021 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1022 * mapped address. Userspace cannot rely on coherent access, even when there
1023 * are systems where it just works without calling these ioctls.
1024 *
1025 * - And as a CPU fallback in userspace processing pipelines.
1026 *
1027 * Similar to the motivation for kernel cpu access it is again important that
1028 * the userspace code of a given importing subsystem can use the same
1029 * interfaces with a imported dma-buf buffer object as with a native buffer
1030 * object. This is especially important for drm where the userspace part of
1031 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1032 * use a different way to mmap a buffer rather invasive.
1033 *
1034 * The assumption in the current dma-buf interfaces is that redirecting the
1035 * initial mmap is all that's needed. A survey of some of the existing
1036 * subsystems shows that no driver seems to do any nefarious thing like
1037 * syncing up with outstanding asynchronous processing on the device or
1038 * allocating special resources at fault time. So hopefully this is good
1039 * enough, since adding interfaces to intercept pagefaults and allow pte
1040 * shootdowns would increase the complexity quite a bit.
1041 *
1042 * Interface::
1043 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1044 * unsigned long);
1045 *
1046 * If the importing subsystem simply provides a special-purpose mmap call to
1047 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1048 * equally achieve that for a dma-buf object.
1049 */
1050
1051static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1052 enum dma_data_direction direction)
1053{
1054 bool write = (direction == DMA_BIDIRECTIONAL ||
1055 direction == DMA_TO_DEVICE);
1056 struct dma_resv *resv = dmabuf->resv;
1057 long ret;
1058
1059 /* Wait on any implicit rendering fences */
1060 ret = dma_resv_wait_timeout_rcu(resv, write, true,
1061 MAX_SCHEDULE_TIMEOUT);
1062 if (ret < 0)
1063 return ret;
1064
1065 return 0;
1066}
1067
1068/**
1069 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1070 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1071 * preparations. Coherency is only guaranteed in the specified range for the
1072 * specified access direction.
1073 * @dmabuf: [in] buffer to prepare cpu access for.
1074 * @direction: [in] length of range for cpu access.
1075 *
1076 * After the cpu access is complete the caller should call
1077 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1078 * it guaranteed to be coherent with other DMA access.
1079 *
1080 * Can return negative error values, returns 0 on success.
1081 */
1082int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1083 enum dma_data_direction direction)
1084{
1085 int ret = 0;
1086
1087 if (WARN_ON(!dmabuf))
1088 return -EINVAL;
1089
1090 if (dmabuf->ops->begin_cpu_access)
1091 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1092
1093 /* Ensure that all fences are waited upon - but we first allow
1094 * the native handler the chance to do so more efficiently if it
1095 * chooses. A double invocation here will be reasonably cheap no-op.
1096 */
1097 if (ret == 0)
1098 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1099
1100 return ret;
1101}
1102EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1103
1104/**
1105 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1106 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1107 * actions. Coherency is only guaranteed in the specified range for the
1108 * specified access direction.
1109 * @dmabuf: [in] buffer to complete cpu access for.
1110 * @direction: [in] length of range for cpu access.
1111 *
1112 * This terminates CPU access started with dma_buf_begin_cpu_access().
1113 *
1114 * Can return negative error values, returns 0 on success.
1115 */
1116int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1117 enum dma_data_direction direction)
1118{
1119 int ret = 0;
1120
1121 WARN_ON(!dmabuf);
1122
1123 if (dmabuf->ops->end_cpu_access)
1124 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1125
1126 return ret;
1127}
1128EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1129
1130
1131/**
1132 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1133 * @dmabuf: [in] buffer that should back the vma
1134 * @vma: [in] vma for the mmap
1135 * @pgoff: [in] offset in pages where this mmap should start within the
1136 * dma-buf buffer.
1137 *
1138 * This function adjusts the passed in vma so that it points at the file of the
1139 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1140 * checking on the size of the vma. Then it calls the exporters mmap function to
1141 * set up the mapping.
1142 *
1143 * Can return negative error values, returns 0 on success.
1144 */
1145int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1146 unsigned long pgoff)
1147{
1148 struct file *oldfile;
1149 int ret;
1150
1151 if (WARN_ON(!dmabuf || !vma))
1152 return -EINVAL;
1153
1154 /* check if buffer supports mmap */
1155 if (!dmabuf->ops->mmap)
1156 return -EINVAL;
1157
1158 /* check for offset overflow */
1159 if (pgoff + vma_pages(vma) < pgoff)
1160 return -EOVERFLOW;
1161
1162 /* check for overflowing the buffer's size */
1163 if (pgoff + vma_pages(vma) >
1164 dmabuf->size >> PAGE_SHIFT)
1165 return -EINVAL;
1166
1167 /* readjust the vma */
1168 get_file(dmabuf->file);
1169 oldfile = vma->vm_file;
1170 vma->vm_file = dmabuf->file;
1171 vma->vm_pgoff = pgoff;
1172
1173 ret = dmabuf->ops->mmap(dmabuf, vma);
1174 if (ret) {
1175 /* restore old parameters on failure */
1176 vma->vm_file = oldfile;
1177 fput(dmabuf->file);
1178 } else {
1179 if (oldfile)
1180 fput(oldfile);
1181 }
1182 return ret;
1183
1184}
1185EXPORT_SYMBOL_GPL(dma_buf_mmap);
1186
1187/**
1188 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1189 * address space. Same restrictions as for vmap and friends apply.
1190 * @dmabuf: [in] buffer to vmap
1191 *
1192 * This call may fail due to lack of virtual mapping address space.
1193 * These calls are optional in drivers. The intended use for them
1194 * is for mapping objects linear in kernel space for high use objects.
1195 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1196 *
1197 * Returns NULL on error.
1198 */
1199void *dma_buf_vmap(struct dma_buf *dmabuf)
1200{
1201 void *ptr;
1202
1203 if (WARN_ON(!dmabuf))
1204 return NULL;
1205
1206 if (!dmabuf->ops->vmap)
1207 return NULL;
1208
1209 mutex_lock(&dmabuf->lock);
1210 if (dmabuf->vmapping_counter) {
1211 dmabuf->vmapping_counter++;
1212 BUG_ON(!dmabuf->vmap_ptr);
1213 ptr = dmabuf->vmap_ptr;
1214 goto out_unlock;
1215 }
1216
1217 BUG_ON(dmabuf->vmap_ptr);
1218
1219 ptr = dmabuf->ops->vmap(dmabuf);
1220 if (WARN_ON_ONCE(IS_ERR(ptr)))
1221 ptr = NULL;
1222 if (!ptr)
1223 goto out_unlock;
1224
1225 dmabuf->vmap_ptr = ptr;
1226 dmabuf->vmapping_counter = 1;
1227
1228out_unlock:
1229 mutex_unlock(&dmabuf->lock);
1230 return ptr;
1231}
1232EXPORT_SYMBOL_GPL(dma_buf_vmap);
1233
1234/**
1235 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1236 * @dmabuf: [in] buffer to vunmap
1237 * @vaddr: [in] vmap to vunmap
1238 */
1239void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1240{
1241 if (WARN_ON(!dmabuf))
1242 return;
1243
1244 BUG_ON(!dmabuf->vmap_ptr);
1245 BUG_ON(dmabuf->vmapping_counter == 0);
1246 BUG_ON(dmabuf->vmap_ptr != vaddr);
1247
1248 mutex_lock(&dmabuf->lock);
1249 if (--dmabuf->vmapping_counter == 0) {
1250 if (dmabuf->ops->vunmap)
1251 dmabuf->ops->vunmap(dmabuf, vaddr);
1252 dmabuf->vmap_ptr = NULL;
1253 }
1254 mutex_unlock(&dmabuf->lock);
1255}
1256EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1257
1258#ifdef CONFIG_DEBUG_FS
1259static int dma_buf_debug_show(struct seq_file *s, void *unused)
1260{
1261 int ret;
1262 struct dma_buf *buf_obj;
1263 struct dma_buf_attachment *attach_obj;
1264 struct dma_resv *robj;
1265 struct dma_resv_list *fobj;
1266 struct dma_fence *fence;
1267 unsigned seq;
1268 int count = 0, attach_count, shared_count, i;
1269 size_t size = 0;
1270
1271 ret = mutex_lock_interruptible(&db_list.lock);
1272
1273 if (ret)
1274 return ret;
1275
1276 seq_puts(s, "\nDma-buf Objects:\n");
1277 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1278 "size", "flags", "mode", "count", "ino");
1279
1280 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1281
1282 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1283 if (ret)
1284 goto error_unlock;
1285
1286 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1287 buf_obj->size,
1288 buf_obj->file->f_flags, buf_obj->file->f_mode,
1289 file_count(buf_obj->file),
1290 buf_obj->exp_name,
1291 file_inode(buf_obj->file)->i_ino,
1292 buf_obj->name ?: "");
1293
1294 robj = buf_obj->resv;
1295 while (true) {
1296 seq = read_seqcount_begin(&robj->seq);
1297 rcu_read_lock();
1298 fobj = rcu_dereference(robj->fence);
1299 shared_count = fobj ? fobj->shared_count : 0;
1300 fence = rcu_dereference(robj->fence_excl);
1301 if (!read_seqcount_retry(&robj->seq, seq))
1302 break;
1303 rcu_read_unlock();
1304 }
1305
1306 if (fence)
1307 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1308 fence->ops->get_driver_name(fence),
1309 fence->ops->get_timeline_name(fence),
1310 dma_fence_is_signaled(fence) ? "" : "un");
1311 for (i = 0; i < shared_count; i++) {
1312 fence = rcu_dereference(fobj->shared[i]);
1313 if (!dma_fence_get_rcu(fence))
1314 continue;
1315 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1316 fence->ops->get_driver_name(fence),
1317 fence->ops->get_timeline_name(fence),
1318 dma_fence_is_signaled(fence) ? "" : "un");
1319 dma_fence_put(fence);
1320 }
1321 rcu_read_unlock();
1322
1323 seq_puts(s, "\tAttached Devices:\n");
1324 attach_count = 0;
1325
1326 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1327 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1328 attach_count++;
1329 }
1330 dma_resv_unlock(buf_obj->resv);
1331
1332 seq_printf(s, "Total %d devices attached\n\n",
1333 attach_count);
1334
1335 count++;
1336 size += buf_obj->size;
1337 }
1338
1339 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1340
1341 mutex_unlock(&db_list.lock);
1342 return 0;
1343
1344error_unlock:
1345 mutex_unlock(&db_list.lock);
1346 return ret;
1347}
1348
1349DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1350
1351static struct dentry *dma_buf_debugfs_dir;
1352
1353static int dma_buf_init_debugfs(void)
1354{
1355 struct dentry *d;
1356 int err = 0;
1357
1358 d = debugfs_create_dir("dma_buf", NULL);
1359 if (IS_ERR(d))
1360 return PTR_ERR(d);
1361
1362 dma_buf_debugfs_dir = d;
1363
1364 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1365 NULL, &dma_buf_debug_fops);
1366 if (IS_ERR(d)) {
1367 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1368 debugfs_remove_recursive(dma_buf_debugfs_dir);
1369 dma_buf_debugfs_dir = NULL;
1370 err = PTR_ERR(d);
1371 }
1372
1373 return err;
1374}
1375
1376static void dma_buf_uninit_debugfs(void)
1377{
1378 debugfs_remove_recursive(dma_buf_debugfs_dir);
1379}
1380#else
1381static inline int dma_buf_init_debugfs(void)
1382{
1383 return 0;
1384}
1385static inline void dma_buf_uninit_debugfs(void)
1386{
1387}
1388#endif
1389
1390static int __init dma_buf_init(void)
1391{
1392 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1393 if (IS_ERR(dma_buf_mnt))
1394 return PTR_ERR(dma_buf_mnt);
1395
1396 mutex_init(&db_list.lock);
1397 INIT_LIST_HEAD(&db_list.head);
1398 dma_buf_init_debugfs();
1399 return 0;
1400}
1401subsys_initcall(dma_buf_init);
1402
1403static void __exit dma_buf_deinit(void)
1404{
1405 dma_buf_uninit_debugfs();
1406 kern_unmount(dma_buf_mnt);
1407}
1408__exitcall(dma_buf_deinit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/dma-fence-unwrap.h>
19#include <linux/anon_inodes.h>
20#include <linux/export.h>
21#include <linux/debugfs.h>
22#include <linux/module.h>
23#include <linux/seq_file.h>
24#include <linux/sync_file.h>
25#include <linux/poll.h>
26#include <linux/dma-resv.h>
27#include <linux/mm.h>
28#include <linux/mount.h>
29#include <linux/pseudo_fs.h>
30
31#include <uapi/linux/dma-buf.h>
32#include <uapi/linux/magic.h>
33
34#include "dma-buf-sysfs-stats.h"
35
36static inline int is_dma_buf_file(struct file *);
37
38struct dma_buf_list {
39 struct list_head head;
40 struct mutex lock;
41};
42
43static struct dma_buf_list db_list;
44
45static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
46{
47 struct dma_buf *dmabuf;
48 char name[DMA_BUF_NAME_LEN];
49 size_t ret = 0;
50
51 dmabuf = dentry->d_fsdata;
52 spin_lock(&dmabuf->name_lock);
53 if (dmabuf->name)
54 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
55 spin_unlock(&dmabuf->name_lock);
56
57 return dynamic_dname(buffer, buflen, "/%s:%s",
58 dentry->d_name.name, ret > 0 ? name : "");
59}
60
61static void dma_buf_release(struct dentry *dentry)
62{
63 struct dma_buf *dmabuf;
64
65 dmabuf = dentry->d_fsdata;
66 if (unlikely(!dmabuf))
67 return;
68
69 BUG_ON(dmabuf->vmapping_counter);
70
71 /*
72 * If you hit this BUG() it could mean:
73 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
74 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
75 */
76 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
77
78 dma_buf_stats_teardown(dmabuf);
79 dmabuf->ops->release(dmabuf);
80
81 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 dma_resv_fini(dmabuf->resv);
83
84 WARN_ON(!list_empty(&dmabuf->attachments));
85 module_put(dmabuf->owner);
86 kfree(dmabuf->name);
87 kfree(dmabuf);
88}
89
90static int dma_buf_file_release(struct inode *inode, struct file *file)
91{
92 struct dma_buf *dmabuf;
93
94 if (!is_dma_buf_file(file))
95 return -EINVAL;
96
97 dmabuf = file->private_data;
98 if (dmabuf) {
99 mutex_lock(&db_list.lock);
100 list_del(&dmabuf->list_node);
101 mutex_unlock(&db_list.lock);
102 }
103
104 return 0;
105}
106
107static const struct dentry_operations dma_buf_dentry_ops = {
108 .d_dname = dmabuffs_dname,
109 .d_release = dma_buf_release,
110};
111
112static struct vfsmount *dma_buf_mnt;
113
114static int dma_buf_fs_init_context(struct fs_context *fc)
115{
116 struct pseudo_fs_context *ctx;
117
118 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
119 if (!ctx)
120 return -ENOMEM;
121 ctx->dops = &dma_buf_dentry_ops;
122 return 0;
123}
124
125static struct file_system_type dma_buf_fs_type = {
126 .name = "dmabuf",
127 .init_fs_context = dma_buf_fs_init_context,
128 .kill_sb = kill_anon_super,
129};
130
131static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
132{
133 struct dma_buf *dmabuf;
134 int ret;
135
136 if (!is_dma_buf_file(file))
137 return -EINVAL;
138
139 dmabuf = file->private_data;
140
141 /* check if buffer supports mmap */
142 if (!dmabuf->ops->mmap)
143 return -EINVAL;
144
145 /* check for overflowing the buffer's size */
146 if (vma->vm_pgoff + vma_pages(vma) >
147 dmabuf->size >> PAGE_SHIFT)
148 return -EINVAL;
149
150 dma_resv_lock(dmabuf->resv, NULL);
151 ret = dmabuf->ops->mmap(dmabuf, vma);
152 dma_resv_unlock(dmabuf->resv);
153
154 return ret;
155}
156
157static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
158{
159 struct dma_buf *dmabuf;
160 loff_t base;
161
162 if (!is_dma_buf_file(file))
163 return -EBADF;
164
165 dmabuf = file->private_data;
166
167 /* only support discovering the end of the buffer,
168 but also allow SEEK_SET to maintain the idiomatic
169 SEEK_END(0), SEEK_CUR(0) pattern */
170 if (whence == SEEK_END)
171 base = dmabuf->size;
172 else if (whence == SEEK_SET)
173 base = 0;
174 else
175 return -EINVAL;
176
177 if (offset != 0)
178 return -EINVAL;
179
180 return base + offset;
181}
182
183/**
184 * DOC: implicit fence polling
185 *
186 * To support cross-device and cross-driver synchronization of buffer access
187 * implicit fences (represented internally in the kernel with &struct dma_fence)
188 * can be attached to a &dma_buf. The glue for that and a few related things are
189 * provided in the &dma_resv structure.
190 *
191 * Userspace can query the state of these implicitly tracked fences using poll()
192 * and related system calls:
193 *
194 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
195 * most recent write or exclusive fence.
196 *
197 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
198 * all attached fences, shared and exclusive ones.
199 *
200 * Note that this only signals the completion of the respective fences, i.e. the
201 * DMA transfers are complete. Cache flushing and any other necessary
202 * preparations before CPU access can begin still need to happen.
203 *
204 * As an alternative to poll(), the set of fences on DMA buffer can be
205 * exported as a &sync_file using &dma_buf_sync_file_export.
206 */
207
208static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
209{
210 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
211 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
212 unsigned long flags;
213
214 spin_lock_irqsave(&dcb->poll->lock, flags);
215 wake_up_locked_poll(dcb->poll, dcb->active);
216 dcb->active = 0;
217 spin_unlock_irqrestore(&dcb->poll->lock, flags);
218 dma_fence_put(fence);
219 /* Paired with get_file in dma_buf_poll */
220 fput(dmabuf->file);
221}
222
223static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
224 struct dma_buf_poll_cb_t *dcb)
225{
226 struct dma_resv_iter cursor;
227 struct dma_fence *fence;
228 int r;
229
230 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
231 fence) {
232 dma_fence_get(fence);
233 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
234 if (!r)
235 return true;
236 dma_fence_put(fence);
237 }
238
239 return false;
240}
241
242static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
243{
244 struct dma_buf *dmabuf;
245 struct dma_resv *resv;
246 __poll_t events;
247
248 dmabuf = file->private_data;
249 if (!dmabuf || !dmabuf->resv)
250 return EPOLLERR;
251
252 resv = dmabuf->resv;
253
254 poll_wait(file, &dmabuf->poll, poll);
255
256 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
257 if (!events)
258 return 0;
259
260 dma_resv_lock(resv, NULL);
261
262 if (events & EPOLLOUT) {
263 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
264
265 /* Check that callback isn't busy */
266 spin_lock_irq(&dmabuf->poll.lock);
267 if (dcb->active)
268 events &= ~EPOLLOUT;
269 else
270 dcb->active = EPOLLOUT;
271 spin_unlock_irq(&dmabuf->poll.lock);
272
273 if (events & EPOLLOUT) {
274 /* Paired with fput in dma_buf_poll_cb */
275 get_file(dmabuf->file);
276
277 if (!dma_buf_poll_add_cb(resv, true, dcb))
278 /* No callback queued, wake up any other waiters */
279 dma_buf_poll_cb(NULL, &dcb->cb);
280 else
281 events &= ~EPOLLOUT;
282 }
283 }
284
285 if (events & EPOLLIN) {
286 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
287
288 /* Check that callback isn't busy */
289 spin_lock_irq(&dmabuf->poll.lock);
290 if (dcb->active)
291 events &= ~EPOLLIN;
292 else
293 dcb->active = EPOLLIN;
294 spin_unlock_irq(&dmabuf->poll.lock);
295
296 if (events & EPOLLIN) {
297 /* Paired with fput in dma_buf_poll_cb */
298 get_file(dmabuf->file);
299
300 if (!dma_buf_poll_add_cb(resv, false, dcb))
301 /* No callback queued, wake up any other waiters */
302 dma_buf_poll_cb(NULL, &dcb->cb);
303 else
304 events &= ~EPOLLIN;
305 }
306 }
307
308 dma_resv_unlock(resv);
309 return events;
310}
311
312/**
313 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
314 * It could support changing the name of the dma-buf if the same
315 * piece of memory is used for multiple purpose between different devices.
316 *
317 * @dmabuf: [in] dmabuf buffer that will be renamed.
318 * @buf: [in] A piece of userspace memory that contains the name of
319 * the dma-buf.
320 *
321 * Returns 0 on success. If the dma-buf buffer is already attached to
322 * devices, return -EBUSY.
323 *
324 */
325static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
326{
327 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
328
329 if (IS_ERR(name))
330 return PTR_ERR(name);
331
332 spin_lock(&dmabuf->name_lock);
333 kfree(dmabuf->name);
334 dmabuf->name = name;
335 spin_unlock(&dmabuf->name_lock);
336
337 return 0;
338}
339
340#if IS_ENABLED(CONFIG_SYNC_FILE)
341static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
342 void __user *user_data)
343{
344 struct dma_buf_export_sync_file arg;
345 enum dma_resv_usage usage;
346 struct dma_fence *fence = NULL;
347 struct sync_file *sync_file;
348 int fd, ret;
349
350 if (copy_from_user(&arg, user_data, sizeof(arg)))
351 return -EFAULT;
352
353 if (arg.flags & ~DMA_BUF_SYNC_RW)
354 return -EINVAL;
355
356 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
357 return -EINVAL;
358
359 fd = get_unused_fd_flags(O_CLOEXEC);
360 if (fd < 0)
361 return fd;
362
363 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
364 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
365 if (ret)
366 goto err_put_fd;
367
368 if (!fence)
369 fence = dma_fence_get_stub();
370
371 sync_file = sync_file_create(fence);
372
373 dma_fence_put(fence);
374
375 if (!sync_file) {
376 ret = -ENOMEM;
377 goto err_put_fd;
378 }
379
380 arg.fd = fd;
381 if (copy_to_user(user_data, &arg, sizeof(arg))) {
382 ret = -EFAULT;
383 goto err_put_file;
384 }
385
386 fd_install(fd, sync_file->file);
387
388 return 0;
389
390err_put_file:
391 fput(sync_file->file);
392err_put_fd:
393 put_unused_fd(fd);
394 return ret;
395}
396
397static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
398 const void __user *user_data)
399{
400 struct dma_buf_import_sync_file arg;
401 struct dma_fence *fence, *f;
402 enum dma_resv_usage usage;
403 struct dma_fence_unwrap iter;
404 unsigned int num_fences;
405 int ret = 0;
406
407 if (copy_from_user(&arg, user_data, sizeof(arg)))
408 return -EFAULT;
409
410 if (arg.flags & ~DMA_BUF_SYNC_RW)
411 return -EINVAL;
412
413 if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
414 return -EINVAL;
415
416 fence = sync_file_get_fence(arg.fd);
417 if (!fence)
418 return -EINVAL;
419
420 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
421 DMA_RESV_USAGE_READ;
422
423 num_fences = 0;
424 dma_fence_unwrap_for_each(f, &iter, fence)
425 ++num_fences;
426
427 if (num_fences > 0) {
428 dma_resv_lock(dmabuf->resv, NULL);
429
430 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
431 if (!ret) {
432 dma_fence_unwrap_for_each(f, &iter, fence)
433 dma_resv_add_fence(dmabuf->resv, f, usage);
434 }
435
436 dma_resv_unlock(dmabuf->resv);
437 }
438
439 dma_fence_put(fence);
440
441 return ret;
442}
443#endif
444
445static long dma_buf_ioctl(struct file *file,
446 unsigned int cmd, unsigned long arg)
447{
448 struct dma_buf *dmabuf;
449 struct dma_buf_sync sync;
450 enum dma_data_direction direction;
451 int ret;
452
453 dmabuf = file->private_data;
454
455 switch (cmd) {
456 case DMA_BUF_IOCTL_SYNC:
457 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
458 return -EFAULT;
459
460 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
461 return -EINVAL;
462
463 switch (sync.flags & DMA_BUF_SYNC_RW) {
464 case DMA_BUF_SYNC_READ:
465 direction = DMA_FROM_DEVICE;
466 break;
467 case DMA_BUF_SYNC_WRITE:
468 direction = DMA_TO_DEVICE;
469 break;
470 case DMA_BUF_SYNC_RW:
471 direction = DMA_BIDIRECTIONAL;
472 break;
473 default:
474 return -EINVAL;
475 }
476
477 if (sync.flags & DMA_BUF_SYNC_END)
478 ret = dma_buf_end_cpu_access(dmabuf, direction);
479 else
480 ret = dma_buf_begin_cpu_access(dmabuf, direction);
481
482 return ret;
483
484 case DMA_BUF_SET_NAME_A:
485 case DMA_BUF_SET_NAME_B:
486 return dma_buf_set_name(dmabuf, (const char __user *)arg);
487
488#if IS_ENABLED(CONFIG_SYNC_FILE)
489 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
490 return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
491 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
492 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
493#endif
494
495 default:
496 return -ENOTTY;
497 }
498}
499
500static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
501{
502 struct dma_buf *dmabuf = file->private_data;
503
504 seq_printf(m, "size:\t%zu\n", dmabuf->size);
505 /* Don't count the temporary reference taken inside procfs seq_show */
506 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
507 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
508 spin_lock(&dmabuf->name_lock);
509 if (dmabuf->name)
510 seq_printf(m, "name:\t%s\n", dmabuf->name);
511 spin_unlock(&dmabuf->name_lock);
512}
513
514static const struct file_operations dma_buf_fops = {
515 .release = dma_buf_file_release,
516 .mmap = dma_buf_mmap_internal,
517 .llseek = dma_buf_llseek,
518 .poll = dma_buf_poll,
519 .unlocked_ioctl = dma_buf_ioctl,
520 .compat_ioctl = compat_ptr_ioctl,
521 .show_fdinfo = dma_buf_show_fdinfo,
522};
523
524/*
525 * is_dma_buf_file - Check if struct file* is associated with dma_buf
526 */
527static inline int is_dma_buf_file(struct file *file)
528{
529 return file->f_op == &dma_buf_fops;
530}
531
532static struct file *dma_buf_getfile(size_t size, int flags)
533{
534 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
535 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
536 struct file *file;
537
538 if (IS_ERR(inode))
539 return ERR_CAST(inode);
540
541 inode->i_size = size;
542 inode_set_bytes(inode, size);
543
544 /*
545 * The ->i_ino acquired from get_next_ino() is not unique thus
546 * not suitable for using it as dentry name by dmabuf stats.
547 * Override ->i_ino with the unique and dmabuffs specific
548 * value.
549 */
550 inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
551 flags &= O_ACCMODE | O_NONBLOCK;
552 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
553 flags, &dma_buf_fops);
554 if (IS_ERR(file))
555 goto err_alloc_file;
556
557 return file;
558
559err_alloc_file:
560 iput(inode);
561 return file;
562}
563
564/**
565 * DOC: dma buf device access
566 *
567 * For device DMA access to a shared DMA buffer the usual sequence of operations
568 * is fairly simple:
569 *
570 * 1. The exporter defines his exporter instance using
571 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
572 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
573 * as a file descriptor by calling dma_buf_fd().
574 *
575 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
576 * to share with: First the file descriptor is converted to a &dma_buf using
577 * dma_buf_get(). Then the buffer is attached to the device using
578 * dma_buf_attach().
579 *
580 * Up to this stage the exporter is still free to migrate or reallocate the
581 * backing storage.
582 *
583 * 3. Once the buffer is attached to all devices userspace can initiate DMA
584 * access to the shared buffer. In the kernel this is done by calling
585 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
586 *
587 * 4. Once a driver is done with a shared buffer it needs to call
588 * dma_buf_detach() (after cleaning up any mappings) and then release the
589 * reference acquired with dma_buf_get() by calling dma_buf_put().
590 *
591 * For the detailed semantics exporters are expected to implement see
592 * &dma_buf_ops.
593 */
594
595/**
596 * dma_buf_export - Creates a new dma_buf, and associates an anon file
597 * with this buffer, so it can be exported.
598 * Also connect the allocator specific data and ops to the buffer.
599 * Additionally, provide a name string for exporter; useful in debugging.
600 *
601 * @exp_info: [in] holds all the export related information provided
602 * by the exporter. see &struct dma_buf_export_info
603 * for further details.
604 *
605 * Returns, on success, a newly created struct dma_buf object, which wraps the
606 * supplied private data and operations for struct dma_buf_ops. On either
607 * missing ops, or error in allocating struct dma_buf, will return negative
608 * error.
609 *
610 * For most cases the easiest way to create @exp_info is through the
611 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
612 */
613struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
614{
615 struct dma_buf *dmabuf;
616 struct dma_resv *resv = exp_info->resv;
617 struct file *file;
618 size_t alloc_size = sizeof(struct dma_buf);
619 int ret;
620
621 if (WARN_ON(!exp_info->priv || !exp_info->ops
622 || !exp_info->ops->map_dma_buf
623 || !exp_info->ops->unmap_dma_buf
624 || !exp_info->ops->release))
625 return ERR_PTR(-EINVAL);
626
627 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
628 (exp_info->ops->pin || exp_info->ops->unpin)))
629 return ERR_PTR(-EINVAL);
630
631 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
632 return ERR_PTR(-EINVAL);
633
634 if (!try_module_get(exp_info->owner))
635 return ERR_PTR(-ENOENT);
636
637 file = dma_buf_getfile(exp_info->size, exp_info->flags);
638 if (IS_ERR(file)) {
639 ret = PTR_ERR(file);
640 goto err_module;
641 }
642
643 if (!exp_info->resv)
644 alloc_size += sizeof(struct dma_resv);
645 else
646 /* prevent &dma_buf[1] == dma_buf->resv */
647 alloc_size += 1;
648 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
649 if (!dmabuf) {
650 ret = -ENOMEM;
651 goto err_file;
652 }
653
654 dmabuf->priv = exp_info->priv;
655 dmabuf->ops = exp_info->ops;
656 dmabuf->size = exp_info->size;
657 dmabuf->exp_name = exp_info->exp_name;
658 dmabuf->owner = exp_info->owner;
659 spin_lock_init(&dmabuf->name_lock);
660 init_waitqueue_head(&dmabuf->poll);
661 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
662 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
663 INIT_LIST_HEAD(&dmabuf->attachments);
664
665 if (!resv) {
666 dmabuf->resv = (struct dma_resv *)&dmabuf[1];
667 dma_resv_init(dmabuf->resv);
668 } else {
669 dmabuf->resv = resv;
670 }
671
672 ret = dma_buf_stats_setup(dmabuf, file);
673 if (ret)
674 goto err_dmabuf;
675
676 file->private_data = dmabuf;
677 file->f_path.dentry->d_fsdata = dmabuf;
678 dmabuf->file = file;
679
680 mutex_lock(&db_list.lock);
681 list_add(&dmabuf->list_node, &db_list.head);
682 mutex_unlock(&db_list.lock);
683
684 return dmabuf;
685
686err_dmabuf:
687 if (!resv)
688 dma_resv_fini(dmabuf->resv);
689 kfree(dmabuf);
690err_file:
691 fput(file);
692err_module:
693 module_put(exp_info->owner);
694 return ERR_PTR(ret);
695}
696EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
697
698/**
699 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
700 * @dmabuf: [in] pointer to dma_buf for which fd is required.
701 * @flags: [in] flags to give to fd
702 *
703 * On success, returns an associated 'fd'. Else, returns error.
704 */
705int dma_buf_fd(struct dma_buf *dmabuf, int flags)
706{
707 int fd;
708
709 if (!dmabuf || !dmabuf->file)
710 return -EINVAL;
711
712 fd = get_unused_fd_flags(flags);
713 if (fd < 0)
714 return fd;
715
716 fd_install(fd, dmabuf->file);
717
718 return fd;
719}
720EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
721
722/**
723 * dma_buf_get - returns the struct dma_buf related to an fd
724 * @fd: [in] fd associated with the struct dma_buf to be returned
725 *
726 * On success, returns the struct dma_buf associated with an fd; uses
727 * file's refcounting done by fget to increase refcount. returns ERR_PTR
728 * otherwise.
729 */
730struct dma_buf *dma_buf_get(int fd)
731{
732 struct file *file;
733
734 file = fget(fd);
735
736 if (!file)
737 return ERR_PTR(-EBADF);
738
739 if (!is_dma_buf_file(file)) {
740 fput(file);
741 return ERR_PTR(-EINVAL);
742 }
743
744 return file->private_data;
745}
746EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
747
748/**
749 * dma_buf_put - decreases refcount of the buffer
750 * @dmabuf: [in] buffer to reduce refcount of
751 *
752 * Uses file's refcounting done implicitly by fput().
753 *
754 * If, as a result of this call, the refcount becomes 0, the 'release' file
755 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
756 * in turn, and frees the memory allocated for dmabuf when exported.
757 */
758void dma_buf_put(struct dma_buf *dmabuf)
759{
760 if (WARN_ON(!dmabuf || !dmabuf->file))
761 return;
762
763 fput(dmabuf->file);
764}
765EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
766
767static void mangle_sg_table(struct sg_table *sg_table)
768{
769#ifdef CONFIG_DMABUF_DEBUG
770 int i;
771 struct scatterlist *sg;
772
773 /* To catch abuse of the underlying struct page by importers mix
774 * up the bits, but take care to preserve the low SG_ bits to
775 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
776 * before passing the sgt back to the exporter. */
777 for_each_sgtable_sg(sg_table, sg, i)
778 sg->page_link ^= ~0xffUL;
779#endif
780
781}
782static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
783 enum dma_data_direction direction)
784{
785 struct sg_table *sg_table;
786 signed long ret;
787
788 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
789 if (IS_ERR_OR_NULL(sg_table))
790 return sg_table;
791
792 if (!dma_buf_attachment_is_dynamic(attach)) {
793 ret = dma_resv_wait_timeout(attach->dmabuf->resv,
794 DMA_RESV_USAGE_KERNEL, true,
795 MAX_SCHEDULE_TIMEOUT);
796 if (ret < 0) {
797 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
798 direction);
799 return ERR_PTR(ret);
800 }
801 }
802
803 mangle_sg_table(sg_table);
804 return sg_table;
805}
806
807/**
808 * DOC: locking convention
809 *
810 * In order to avoid deadlock situations between dma-buf exports and importers,
811 * all dma-buf API users must follow the common dma-buf locking convention.
812 *
813 * Convention for importers
814 *
815 * 1. Importers must hold the dma-buf reservation lock when calling these
816 * functions:
817 *
818 * - dma_buf_pin()
819 * - dma_buf_unpin()
820 * - dma_buf_map_attachment()
821 * - dma_buf_unmap_attachment()
822 * - dma_buf_vmap()
823 * - dma_buf_vunmap()
824 *
825 * 2. Importers must not hold the dma-buf reservation lock when calling these
826 * functions:
827 *
828 * - dma_buf_attach()
829 * - dma_buf_dynamic_attach()
830 * - dma_buf_detach()
831 * - dma_buf_export(
832 * - dma_buf_fd()
833 * - dma_buf_get()
834 * - dma_buf_put()
835 * - dma_buf_mmap()
836 * - dma_buf_begin_cpu_access()
837 * - dma_buf_end_cpu_access()
838 * - dma_buf_map_attachment_unlocked()
839 * - dma_buf_unmap_attachment_unlocked()
840 * - dma_buf_vmap_unlocked()
841 * - dma_buf_vunmap_unlocked()
842 *
843 * Convention for exporters
844 *
845 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
846 * reservation and exporter can take the lock:
847 *
848 * - &dma_buf_ops.attach()
849 * - &dma_buf_ops.detach()
850 * - &dma_buf_ops.release()
851 * - &dma_buf_ops.begin_cpu_access()
852 * - &dma_buf_ops.end_cpu_access()
853 *
854 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
855 * reservation and exporter can't take the lock:
856 *
857 * - &dma_buf_ops.pin()
858 * - &dma_buf_ops.unpin()
859 * - &dma_buf_ops.map_dma_buf()
860 * - &dma_buf_ops.unmap_dma_buf()
861 * - &dma_buf_ops.mmap()
862 * - &dma_buf_ops.vmap()
863 * - &dma_buf_ops.vunmap()
864 *
865 * 3. Exporters must hold the dma-buf reservation lock when calling these
866 * functions:
867 *
868 * - dma_buf_move_notify()
869 */
870
871/**
872 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
873 * @dmabuf: [in] buffer to attach device to.
874 * @dev: [in] device to be attached.
875 * @importer_ops: [in] importer operations for the attachment
876 * @importer_priv: [in] importer private pointer for the attachment
877 *
878 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
879 * must be cleaned up by calling dma_buf_detach().
880 *
881 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
882 * functionality.
883 *
884 * Returns:
885 *
886 * A pointer to newly created &dma_buf_attachment on success, or a negative
887 * error code wrapped into a pointer on failure.
888 *
889 * Note that this can fail if the backing storage of @dmabuf is in a place not
890 * accessible to @dev, and cannot be moved to a more suitable place. This is
891 * indicated with the error code -EBUSY.
892 */
893struct dma_buf_attachment *
894dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
895 const struct dma_buf_attach_ops *importer_ops,
896 void *importer_priv)
897{
898 struct dma_buf_attachment *attach;
899 int ret;
900
901 if (WARN_ON(!dmabuf || !dev))
902 return ERR_PTR(-EINVAL);
903
904 if (WARN_ON(importer_ops && !importer_ops->move_notify))
905 return ERR_PTR(-EINVAL);
906
907 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
908 if (!attach)
909 return ERR_PTR(-ENOMEM);
910
911 attach->dev = dev;
912 attach->dmabuf = dmabuf;
913 if (importer_ops)
914 attach->peer2peer = importer_ops->allow_peer2peer;
915 attach->importer_ops = importer_ops;
916 attach->importer_priv = importer_priv;
917
918 if (dmabuf->ops->attach) {
919 ret = dmabuf->ops->attach(dmabuf, attach);
920 if (ret)
921 goto err_attach;
922 }
923 dma_resv_lock(dmabuf->resv, NULL);
924 list_add(&attach->node, &dmabuf->attachments);
925 dma_resv_unlock(dmabuf->resv);
926
927 /* When either the importer or the exporter can't handle dynamic
928 * mappings we cache the mapping here to avoid issues with the
929 * reservation object lock.
930 */
931 if (dma_buf_attachment_is_dynamic(attach) !=
932 dma_buf_is_dynamic(dmabuf)) {
933 struct sg_table *sgt;
934
935 dma_resv_lock(attach->dmabuf->resv, NULL);
936 if (dma_buf_is_dynamic(attach->dmabuf)) {
937 ret = dmabuf->ops->pin(attach);
938 if (ret)
939 goto err_unlock;
940 }
941
942 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
943 if (!sgt)
944 sgt = ERR_PTR(-ENOMEM);
945 if (IS_ERR(sgt)) {
946 ret = PTR_ERR(sgt);
947 goto err_unpin;
948 }
949 dma_resv_unlock(attach->dmabuf->resv);
950 attach->sgt = sgt;
951 attach->dir = DMA_BIDIRECTIONAL;
952 }
953
954 return attach;
955
956err_attach:
957 kfree(attach);
958 return ERR_PTR(ret);
959
960err_unpin:
961 if (dma_buf_is_dynamic(attach->dmabuf))
962 dmabuf->ops->unpin(attach);
963
964err_unlock:
965 dma_resv_unlock(attach->dmabuf->resv);
966
967 dma_buf_detach(dmabuf, attach);
968 return ERR_PTR(ret);
969}
970EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
971
972/**
973 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
974 * @dmabuf: [in] buffer to attach device to.
975 * @dev: [in] device to be attached.
976 *
977 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
978 * mapping.
979 */
980struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
981 struct device *dev)
982{
983 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
984}
985EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
986
987static void __unmap_dma_buf(struct dma_buf_attachment *attach,
988 struct sg_table *sg_table,
989 enum dma_data_direction direction)
990{
991 /* uses XOR, hence this unmangles */
992 mangle_sg_table(sg_table);
993
994 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
995}
996
997/**
998 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
999 * @dmabuf: [in] buffer to detach from.
1000 * @attach: [in] attachment to be detached; is free'd after this call.
1001 *
1002 * Clean up a device attachment obtained by calling dma_buf_attach().
1003 *
1004 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1005 */
1006void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1007{
1008 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1009 return;
1010
1011 dma_resv_lock(dmabuf->resv, NULL);
1012
1013 if (attach->sgt) {
1014
1015 __unmap_dma_buf(attach, attach->sgt, attach->dir);
1016
1017 if (dma_buf_is_dynamic(attach->dmabuf))
1018 dmabuf->ops->unpin(attach);
1019 }
1020 list_del(&attach->node);
1021
1022 dma_resv_unlock(dmabuf->resv);
1023
1024 if (dmabuf->ops->detach)
1025 dmabuf->ops->detach(dmabuf, attach);
1026
1027 kfree(attach);
1028}
1029EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1030
1031/**
1032 * dma_buf_pin - Lock down the DMA-buf
1033 * @attach: [in] attachment which should be pinned
1034 *
1035 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1036 * call this, and only for limited use cases like scanout and not for temporary
1037 * pin operations. It is not permitted to allow userspace to pin arbitrary
1038 * amounts of buffers through this interface.
1039 *
1040 * Buffers must be unpinned by calling dma_buf_unpin().
1041 *
1042 * Returns:
1043 * 0 on success, negative error code on failure.
1044 */
1045int dma_buf_pin(struct dma_buf_attachment *attach)
1046{
1047 struct dma_buf *dmabuf = attach->dmabuf;
1048 int ret = 0;
1049
1050 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1051
1052 dma_resv_assert_held(dmabuf->resv);
1053
1054 if (dmabuf->ops->pin)
1055 ret = dmabuf->ops->pin(attach);
1056
1057 return ret;
1058}
1059EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1060
1061/**
1062 * dma_buf_unpin - Unpin a DMA-buf
1063 * @attach: [in] attachment which should be unpinned
1064 *
1065 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1066 * any mapping of @attach again and inform the importer through
1067 * &dma_buf_attach_ops.move_notify.
1068 */
1069void dma_buf_unpin(struct dma_buf_attachment *attach)
1070{
1071 struct dma_buf *dmabuf = attach->dmabuf;
1072
1073 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1074
1075 dma_resv_assert_held(dmabuf->resv);
1076
1077 if (dmabuf->ops->unpin)
1078 dmabuf->ops->unpin(attach);
1079}
1080EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1081
1082/**
1083 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1084 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1085 * dma_buf_ops.
1086 * @attach: [in] attachment whose scatterlist is to be returned
1087 * @direction: [in] direction of DMA transfer
1088 *
1089 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1090 * on error. May return -EINTR if it is interrupted by a signal.
1091 *
1092 * On success, the DMA addresses and lengths in the returned scatterlist are
1093 * PAGE_SIZE aligned.
1094 *
1095 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1096 * the underlying backing storage is pinned for as long as a mapping exists,
1097 * therefore users/importers should not hold onto a mapping for undue amounts of
1098 * time.
1099 *
1100 * Important: Dynamic importers must wait for the exclusive fence of the struct
1101 * dma_resv attached to the DMA-BUF first.
1102 */
1103struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1104 enum dma_data_direction direction)
1105{
1106 struct sg_table *sg_table;
1107 int r;
1108
1109 might_sleep();
1110
1111 if (WARN_ON(!attach || !attach->dmabuf))
1112 return ERR_PTR(-EINVAL);
1113
1114 dma_resv_assert_held(attach->dmabuf->resv);
1115
1116 if (attach->sgt) {
1117 /*
1118 * Two mappings with different directions for the same
1119 * attachment are not allowed.
1120 */
1121 if (attach->dir != direction &&
1122 attach->dir != DMA_BIDIRECTIONAL)
1123 return ERR_PTR(-EBUSY);
1124
1125 return attach->sgt;
1126 }
1127
1128 if (dma_buf_is_dynamic(attach->dmabuf)) {
1129 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1130 r = attach->dmabuf->ops->pin(attach);
1131 if (r)
1132 return ERR_PTR(r);
1133 }
1134 }
1135
1136 sg_table = __map_dma_buf(attach, direction);
1137 if (!sg_table)
1138 sg_table = ERR_PTR(-ENOMEM);
1139
1140 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1141 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1142 attach->dmabuf->ops->unpin(attach);
1143
1144 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1145 attach->sgt = sg_table;
1146 attach->dir = direction;
1147 }
1148
1149#ifdef CONFIG_DMA_API_DEBUG
1150 if (!IS_ERR(sg_table)) {
1151 struct scatterlist *sg;
1152 u64 addr;
1153 int len;
1154 int i;
1155
1156 for_each_sgtable_dma_sg(sg_table, sg, i) {
1157 addr = sg_dma_address(sg);
1158 len = sg_dma_len(sg);
1159 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1160 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1161 __func__, addr, len);
1162 }
1163 }
1164 }
1165#endif /* CONFIG_DMA_API_DEBUG */
1166 return sg_table;
1167}
1168EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1169
1170/**
1171 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1172 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1173 * dma_buf_ops.
1174 * @attach: [in] attachment whose scatterlist is to be returned
1175 * @direction: [in] direction of DMA transfer
1176 *
1177 * Unlocked variant of dma_buf_map_attachment().
1178 */
1179struct sg_table *
1180dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1181 enum dma_data_direction direction)
1182{
1183 struct sg_table *sg_table;
1184
1185 might_sleep();
1186
1187 if (WARN_ON(!attach || !attach->dmabuf))
1188 return ERR_PTR(-EINVAL);
1189
1190 dma_resv_lock(attach->dmabuf->resv, NULL);
1191 sg_table = dma_buf_map_attachment(attach, direction);
1192 dma_resv_unlock(attach->dmabuf->resv);
1193
1194 return sg_table;
1195}
1196EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1197
1198/**
1199 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1200 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1201 * dma_buf_ops.
1202 * @attach: [in] attachment to unmap buffer from
1203 * @sg_table: [in] scatterlist info of the buffer to unmap
1204 * @direction: [in] direction of DMA transfer
1205 *
1206 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1207 */
1208void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1209 struct sg_table *sg_table,
1210 enum dma_data_direction direction)
1211{
1212 might_sleep();
1213
1214 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1215 return;
1216
1217 dma_resv_assert_held(attach->dmabuf->resv);
1218
1219 if (attach->sgt == sg_table)
1220 return;
1221
1222 __unmap_dma_buf(attach, sg_table, direction);
1223
1224 if (dma_buf_is_dynamic(attach->dmabuf) &&
1225 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1226 dma_buf_unpin(attach);
1227}
1228EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1229
1230/**
1231 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1232 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1233 * dma_buf_ops.
1234 * @attach: [in] attachment to unmap buffer from
1235 * @sg_table: [in] scatterlist info of the buffer to unmap
1236 * @direction: [in] direction of DMA transfer
1237 *
1238 * Unlocked variant of dma_buf_unmap_attachment().
1239 */
1240void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1241 struct sg_table *sg_table,
1242 enum dma_data_direction direction)
1243{
1244 might_sleep();
1245
1246 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1247 return;
1248
1249 dma_resv_lock(attach->dmabuf->resv, NULL);
1250 dma_buf_unmap_attachment(attach, sg_table, direction);
1251 dma_resv_unlock(attach->dmabuf->resv);
1252}
1253EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1254
1255/**
1256 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1257 *
1258 * @dmabuf: [in] buffer which is moving
1259 *
1260 * Informs all attachmenst that they need to destroy and recreated all their
1261 * mappings.
1262 */
1263void dma_buf_move_notify(struct dma_buf *dmabuf)
1264{
1265 struct dma_buf_attachment *attach;
1266
1267 dma_resv_assert_held(dmabuf->resv);
1268
1269 list_for_each_entry(attach, &dmabuf->attachments, node)
1270 if (attach->importer_ops)
1271 attach->importer_ops->move_notify(attach);
1272}
1273EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1274
1275/**
1276 * DOC: cpu access
1277 *
1278 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1279 *
1280 * - Fallback operations in the kernel, for example when a device is connected
1281 * over USB and the kernel needs to shuffle the data around first before
1282 * sending it away. Cache coherency is handled by braketing any transactions
1283 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1284 * access.
1285 *
1286 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1287 * vmap interface is introduced. Note that on very old 32-bit architectures
1288 * vmalloc space might be limited and result in vmap calls failing.
1289 *
1290 * Interfaces::
1291 *
1292 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1293 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1294 *
1295 * The vmap call can fail if there is no vmap support in the exporter, or if
1296 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1297 * count for all vmap access and calls down into the exporter's vmap function
1298 * only when no vmapping exists, and only unmaps it once. Protection against
1299 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1300 *
1301 * - For full compatibility on the importer side with existing userspace
1302 * interfaces, which might already support mmap'ing buffers. This is needed in
1303 * many processing pipelines (e.g. feeding a software rendered image into a
1304 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1305 * framework already supported this and for DMA buffer file descriptors to
1306 * replace ION buffers mmap support was needed.
1307 *
1308 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1309 * fd. But like for CPU access there's a need to braket the actual access,
1310 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1311 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1312 * be restarted.
1313 *
1314 * Some systems might need some sort of cache coherency management e.g. when
1315 * CPU and GPU domains are being accessed through dma-buf at the same time.
1316 * To circumvent this problem there are begin/end coherency markers, that
1317 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1318 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1319 * sequence would be used like following:
1320 *
1321 * - mmap dma-buf fd
1322 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1323 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1324 * want (with the new data being consumed by say the GPU or the scanout
1325 * device)
1326 * - munmap once you don't need the buffer any more
1327 *
1328 * For correctness and optimal performance, it is always required to use
1329 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1330 * mapped address. Userspace cannot rely on coherent access, even when there
1331 * are systems where it just works without calling these ioctls.
1332 *
1333 * - And as a CPU fallback in userspace processing pipelines.
1334 *
1335 * Similar to the motivation for kernel cpu access it is again important that
1336 * the userspace code of a given importing subsystem can use the same
1337 * interfaces with a imported dma-buf buffer object as with a native buffer
1338 * object. This is especially important for drm where the userspace part of
1339 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1340 * use a different way to mmap a buffer rather invasive.
1341 *
1342 * The assumption in the current dma-buf interfaces is that redirecting the
1343 * initial mmap is all that's needed. A survey of some of the existing
1344 * subsystems shows that no driver seems to do any nefarious thing like
1345 * syncing up with outstanding asynchronous processing on the device or
1346 * allocating special resources at fault time. So hopefully this is good
1347 * enough, since adding interfaces to intercept pagefaults and allow pte
1348 * shootdowns would increase the complexity quite a bit.
1349 *
1350 * Interface::
1351 *
1352 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1353 * unsigned long);
1354 *
1355 * If the importing subsystem simply provides a special-purpose mmap call to
1356 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1357 * equally achieve that for a dma-buf object.
1358 */
1359
1360static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1361 enum dma_data_direction direction)
1362{
1363 bool write = (direction == DMA_BIDIRECTIONAL ||
1364 direction == DMA_TO_DEVICE);
1365 struct dma_resv *resv = dmabuf->resv;
1366 long ret;
1367
1368 /* Wait on any implicit rendering fences */
1369 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1370 true, MAX_SCHEDULE_TIMEOUT);
1371 if (ret < 0)
1372 return ret;
1373
1374 return 0;
1375}
1376
1377/**
1378 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1379 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1380 * preparations. Coherency is only guaranteed in the specified range for the
1381 * specified access direction.
1382 * @dmabuf: [in] buffer to prepare cpu access for.
1383 * @direction: [in] length of range for cpu access.
1384 *
1385 * After the cpu access is complete the caller should call
1386 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1387 * it guaranteed to be coherent with other DMA access.
1388 *
1389 * This function will also wait for any DMA transactions tracked through
1390 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1391 * synchronization this function will only ensure cache coherency, callers must
1392 * ensure synchronization with such DMA transactions on their own.
1393 *
1394 * Can return negative error values, returns 0 on success.
1395 */
1396int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1397 enum dma_data_direction direction)
1398{
1399 int ret = 0;
1400
1401 if (WARN_ON(!dmabuf))
1402 return -EINVAL;
1403
1404 might_lock(&dmabuf->resv->lock.base);
1405
1406 if (dmabuf->ops->begin_cpu_access)
1407 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1408
1409 /* Ensure that all fences are waited upon - but we first allow
1410 * the native handler the chance to do so more efficiently if it
1411 * chooses. A double invocation here will be reasonably cheap no-op.
1412 */
1413 if (ret == 0)
1414 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1415
1416 return ret;
1417}
1418EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1419
1420/**
1421 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1422 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1423 * actions. Coherency is only guaranteed in the specified range for the
1424 * specified access direction.
1425 * @dmabuf: [in] buffer to complete cpu access for.
1426 * @direction: [in] length of range for cpu access.
1427 *
1428 * This terminates CPU access started with dma_buf_begin_cpu_access().
1429 *
1430 * Can return negative error values, returns 0 on success.
1431 */
1432int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1433 enum dma_data_direction direction)
1434{
1435 int ret = 0;
1436
1437 WARN_ON(!dmabuf);
1438
1439 might_lock(&dmabuf->resv->lock.base);
1440
1441 if (dmabuf->ops->end_cpu_access)
1442 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1443
1444 return ret;
1445}
1446EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1447
1448
1449/**
1450 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1451 * @dmabuf: [in] buffer that should back the vma
1452 * @vma: [in] vma for the mmap
1453 * @pgoff: [in] offset in pages where this mmap should start within the
1454 * dma-buf buffer.
1455 *
1456 * This function adjusts the passed in vma so that it points at the file of the
1457 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1458 * checking on the size of the vma. Then it calls the exporters mmap function to
1459 * set up the mapping.
1460 *
1461 * Can return negative error values, returns 0 on success.
1462 */
1463int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1464 unsigned long pgoff)
1465{
1466 int ret;
1467
1468 if (WARN_ON(!dmabuf || !vma))
1469 return -EINVAL;
1470
1471 /* check if buffer supports mmap */
1472 if (!dmabuf->ops->mmap)
1473 return -EINVAL;
1474
1475 /* check for offset overflow */
1476 if (pgoff + vma_pages(vma) < pgoff)
1477 return -EOVERFLOW;
1478
1479 /* check for overflowing the buffer's size */
1480 if (pgoff + vma_pages(vma) >
1481 dmabuf->size >> PAGE_SHIFT)
1482 return -EINVAL;
1483
1484 /* readjust the vma */
1485 vma_set_file(vma, dmabuf->file);
1486 vma->vm_pgoff = pgoff;
1487
1488 dma_resv_lock(dmabuf->resv, NULL);
1489 ret = dmabuf->ops->mmap(dmabuf, vma);
1490 dma_resv_unlock(dmabuf->resv);
1491
1492 return ret;
1493}
1494EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1495
1496/**
1497 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1498 * address space. Same restrictions as for vmap and friends apply.
1499 * @dmabuf: [in] buffer to vmap
1500 * @map: [out] returns the vmap pointer
1501 *
1502 * This call may fail due to lack of virtual mapping address space.
1503 * These calls are optional in drivers. The intended use for them
1504 * is for mapping objects linear in kernel space for high use objects.
1505 *
1506 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1507 * dma_buf_end_cpu_access() around any cpu access performed through this
1508 * mapping.
1509 *
1510 * Returns 0 on success, or a negative errno code otherwise.
1511 */
1512int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1513{
1514 struct iosys_map ptr;
1515 int ret;
1516
1517 iosys_map_clear(map);
1518
1519 if (WARN_ON(!dmabuf))
1520 return -EINVAL;
1521
1522 dma_resv_assert_held(dmabuf->resv);
1523
1524 if (!dmabuf->ops->vmap)
1525 return -EINVAL;
1526
1527 if (dmabuf->vmapping_counter) {
1528 dmabuf->vmapping_counter++;
1529 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1530 *map = dmabuf->vmap_ptr;
1531 return 0;
1532 }
1533
1534 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1535
1536 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1537 if (WARN_ON_ONCE(ret))
1538 return ret;
1539
1540 dmabuf->vmap_ptr = ptr;
1541 dmabuf->vmapping_counter = 1;
1542
1543 *map = dmabuf->vmap_ptr;
1544
1545 return 0;
1546}
1547EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1548
1549/**
1550 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1551 * address space. Same restrictions as for vmap and friends apply.
1552 * @dmabuf: [in] buffer to vmap
1553 * @map: [out] returns the vmap pointer
1554 *
1555 * Unlocked version of dma_buf_vmap()
1556 *
1557 * Returns 0 on success, or a negative errno code otherwise.
1558 */
1559int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1560{
1561 int ret;
1562
1563 iosys_map_clear(map);
1564
1565 if (WARN_ON(!dmabuf))
1566 return -EINVAL;
1567
1568 dma_resv_lock(dmabuf->resv, NULL);
1569 ret = dma_buf_vmap(dmabuf, map);
1570 dma_resv_unlock(dmabuf->resv);
1571
1572 return ret;
1573}
1574EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1575
1576/**
1577 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1578 * @dmabuf: [in] buffer to vunmap
1579 * @map: [in] vmap pointer to vunmap
1580 */
1581void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1582{
1583 if (WARN_ON(!dmabuf))
1584 return;
1585
1586 dma_resv_assert_held(dmabuf->resv);
1587
1588 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1589 BUG_ON(dmabuf->vmapping_counter == 0);
1590 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1591
1592 if (--dmabuf->vmapping_counter == 0) {
1593 if (dmabuf->ops->vunmap)
1594 dmabuf->ops->vunmap(dmabuf, map);
1595 iosys_map_clear(&dmabuf->vmap_ptr);
1596 }
1597}
1598EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1599
1600/**
1601 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1602 * @dmabuf: [in] buffer to vunmap
1603 * @map: [in] vmap pointer to vunmap
1604 */
1605void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1606{
1607 if (WARN_ON(!dmabuf))
1608 return;
1609
1610 dma_resv_lock(dmabuf->resv, NULL);
1611 dma_buf_vunmap(dmabuf, map);
1612 dma_resv_unlock(dmabuf->resv);
1613}
1614EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1615
1616#ifdef CONFIG_DEBUG_FS
1617static int dma_buf_debug_show(struct seq_file *s, void *unused)
1618{
1619 struct dma_buf *buf_obj;
1620 struct dma_buf_attachment *attach_obj;
1621 int count = 0, attach_count;
1622 size_t size = 0;
1623 int ret;
1624
1625 ret = mutex_lock_interruptible(&db_list.lock);
1626
1627 if (ret)
1628 return ret;
1629
1630 seq_puts(s, "\nDma-buf Objects:\n");
1631 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1632 "size", "flags", "mode", "count", "ino");
1633
1634 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1635
1636 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1637 if (ret)
1638 goto error_unlock;
1639
1640
1641 spin_lock(&buf_obj->name_lock);
1642 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1643 buf_obj->size,
1644 buf_obj->file->f_flags, buf_obj->file->f_mode,
1645 file_count(buf_obj->file),
1646 buf_obj->exp_name,
1647 file_inode(buf_obj->file)->i_ino,
1648 buf_obj->name ?: "<none>");
1649 spin_unlock(&buf_obj->name_lock);
1650
1651 dma_resv_describe(buf_obj->resv, s);
1652
1653 seq_puts(s, "\tAttached Devices:\n");
1654 attach_count = 0;
1655
1656 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1657 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1658 attach_count++;
1659 }
1660 dma_resv_unlock(buf_obj->resv);
1661
1662 seq_printf(s, "Total %d devices attached\n\n",
1663 attach_count);
1664
1665 count++;
1666 size += buf_obj->size;
1667 }
1668
1669 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1670
1671 mutex_unlock(&db_list.lock);
1672 return 0;
1673
1674error_unlock:
1675 mutex_unlock(&db_list.lock);
1676 return ret;
1677}
1678
1679DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1680
1681static struct dentry *dma_buf_debugfs_dir;
1682
1683static int dma_buf_init_debugfs(void)
1684{
1685 struct dentry *d;
1686 int err = 0;
1687
1688 d = debugfs_create_dir("dma_buf", NULL);
1689 if (IS_ERR(d))
1690 return PTR_ERR(d);
1691
1692 dma_buf_debugfs_dir = d;
1693
1694 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1695 NULL, &dma_buf_debug_fops);
1696 if (IS_ERR(d)) {
1697 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1698 debugfs_remove_recursive(dma_buf_debugfs_dir);
1699 dma_buf_debugfs_dir = NULL;
1700 err = PTR_ERR(d);
1701 }
1702
1703 return err;
1704}
1705
1706static void dma_buf_uninit_debugfs(void)
1707{
1708 debugfs_remove_recursive(dma_buf_debugfs_dir);
1709}
1710#else
1711static inline int dma_buf_init_debugfs(void)
1712{
1713 return 0;
1714}
1715static inline void dma_buf_uninit_debugfs(void)
1716{
1717}
1718#endif
1719
1720static int __init dma_buf_init(void)
1721{
1722 int ret;
1723
1724 ret = dma_buf_init_sysfs_statistics();
1725 if (ret)
1726 return ret;
1727
1728 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1729 if (IS_ERR(dma_buf_mnt))
1730 return PTR_ERR(dma_buf_mnt);
1731
1732 mutex_init(&db_list.lock);
1733 INIT_LIST_HEAD(&db_list.head);
1734 dma_buf_init_debugfs();
1735 return 0;
1736}
1737subsys_initcall(dma_buf_init);
1738
1739static void __exit dma_buf_deinit(void)
1740{
1741 dma_buf_uninit_debugfs();
1742 kern_unmount(dma_buf_mnt);
1743 dma_buf_uninit_sysfs_statistics();
1744}
1745__exitcall(dma_buf_deinit);