Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL SHA1/SHA256 HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-sham.c drivers.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/sha.h>
 
  37#include <crypto/hash.h>
  38#include <crypto/internal/hash.h>
  39#include "atmel-sha-regs.h"
  40#include "atmel-authenc.h"
  41
  42#define ATMEL_SHA_PRIORITY	300
  43
  44/* SHA flags */
  45#define SHA_FLAGS_BUSY			BIT(0)
  46#define	SHA_FLAGS_FINAL			BIT(1)
  47#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  48#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  49#define SHA_FLAGS_INIT			BIT(4)
  50#define SHA_FLAGS_CPU			BIT(5)
  51#define SHA_FLAGS_DMA_READY		BIT(6)
  52#define SHA_FLAGS_DUMP_REG	BIT(7)
  53
  54/* bits[11:8] are reserved. */
  55
  56#define SHA_FLAGS_FINUP		BIT(16)
  57#define SHA_FLAGS_SG		BIT(17)
  58#define SHA_FLAGS_ERROR		BIT(23)
  59#define SHA_FLAGS_PAD		BIT(24)
  60#define SHA_FLAGS_RESTORE	BIT(25)
  61#define SHA_FLAGS_IDATAR0	BIT(26)
  62#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
  63
  64#define SHA_OP_INIT	0
  65#define SHA_OP_UPDATE	1
  66#define SHA_OP_FINAL	2
  67#define SHA_OP_DIGEST	3
  68
  69#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  70
  71#define ATMEL_SHA_DMA_THRESHOLD		56
  72
  73struct atmel_sha_caps {
  74	bool	has_dma;
  75	bool	has_dualbuff;
  76	bool	has_sha224;
  77	bool	has_sha_384_512;
  78	bool	has_uihv;
  79	bool	has_hmac;
  80};
  81
  82struct atmel_sha_dev;
  83
  84/*
  85 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  86 * tested by the ahash_prepare_alg() function.
  87 */
  88struct atmel_sha_reqctx {
  89	struct atmel_sha_dev	*dd;
  90	unsigned long	flags;
  91	unsigned long	op;
  92
  93	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  94	u64	digcnt[2];
  95	size_t	bufcnt;
  96	size_t	buflen;
  97	dma_addr_t	dma_addr;
  98
  99	/* walk state */
 100	struct scatterlist	*sg;
 101	unsigned int	offset;	/* offset in current sg */
 102	unsigned int	total;	/* total request */
 103
 104	size_t block_size;
 105	size_t hash_size;
 106
 107	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 108};
 109
 110typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 111
 112struct atmel_sha_ctx {
 113	struct atmel_sha_dev	*dd;
 114	atmel_sha_fn_t		start;
 115
 116	unsigned long		flags;
 117};
 118
 119#define ATMEL_SHA_QUEUE_LENGTH	50
 120
 121struct atmel_sha_dma {
 122	struct dma_chan			*chan;
 123	struct dma_slave_config dma_conf;
 124	struct scatterlist	*sg;
 125	int			nents;
 126	unsigned int		last_sg_length;
 127};
 128
 129struct atmel_sha_dev {
 130	struct list_head	list;
 131	unsigned long		phys_base;
 132	struct device		*dev;
 133	struct clk			*iclk;
 134	int					irq;
 135	void __iomem		*io_base;
 136
 137	spinlock_t		lock;
 138	struct tasklet_struct	done_task;
 139	struct tasklet_struct	queue_task;
 140
 141	unsigned long		flags;
 142	struct crypto_queue	queue;
 143	struct ahash_request	*req;
 144	bool			is_async;
 145	bool			force_complete;
 146	atmel_sha_fn_t		resume;
 147	atmel_sha_fn_t		cpu_transfer_complete;
 148
 149	struct atmel_sha_dma	dma_lch_in;
 150
 151	struct atmel_sha_caps	caps;
 152
 153	struct scatterlist	tmp;
 154
 155	u32	hw_version;
 156};
 157
 158struct atmel_sha_drv {
 159	struct list_head	dev_list;
 160	spinlock_t		lock;
 161};
 162
 163static struct atmel_sha_drv atmel_sha = {
 164	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 165	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 166};
 167
 168#ifdef VERBOSE_DEBUG
 169static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 170{
 171	switch (offset) {
 172	case SHA_CR:
 173		return "CR";
 174
 175	case SHA_MR:
 176		return "MR";
 177
 178	case SHA_IER:
 179		return "IER";
 180
 181	case SHA_IDR:
 182		return "IDR";
 183
 184	case SHA_IMR:
 185		return "IMR";
 186
 187	case SHA_ISR:
 188		return "ISR";
 189
 190	case SHA_MSR:
 191		return "MSR";
 192
 193	case SHA_BCR:
 194		return "BCR";
 195
 196	case SHA_REG_DIN(0):
 197	case SHA_REG_DIN(1):
 198	case SHA_REG_DIN(2):
 199	case SHA_REG_DIN(3):
 200	case SHA_REG_DIN(4):
 201	case SHA_REG_DIN(5):
 202	case SHA_REG_DIN(6):
 203	case SHA_REG_DIN(7):
 204	case SHA_REG_DIN(8):
 205	case SHA_REG_DIN(9):
 206	case SHA_REG_DIN(10):
 207	case SHA_REG_DIN(11):
 208	case SHA_REG_DIN(12):
 209	case SHA_REG_DIN(13):
 210	case SHA_REG_DIN(14):
 211	case SHA_REG_DIN(15):
 212		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 213		break;
 214
 215	case SHA_REG_DIGEST(0):
 216	case SHA_REG_DIGEST(1):
 217	case SHA_REG_DIGEST(2):
 218	case SHA_REG_DIGEST(3):
 219	case SHA_REG_DIGEST(4):
 220	case SHA_REG_DIGEST(5):
 221	case SHA_REG_DIGEST(6):
 222	case SHA_REG_DIGEST(7):
 223	case SHA_REG_DIGEST(8):
 224	case SHA_REG_DIGEST(9):
 225	case SHA_REG_DIGEST(10):
 226	case SHA_REG_DIGEST(11):
 227	case SHA_REG_DIGEST(12):
 228	case SHA_REG_DIGEST(13):
 229	case SHA_REG_DIGEST(14):
 230	case SHA_REG_DIGEST(15):
 231		if (wr)
 232			snprintf(tmp, sz, "IDATAR[%u]",
 233				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 234		else
 235			snprintf(tmp, sz, "ODATAR[%u]",
 236				 (offset - SHA_REG_DIGEST(0)) >> 2);
 237		break;
 238
 239	case SHA_HW_VERSION:
 240		return "HWVER";
 241
 242	default:
 243		snprintf(tmp, sz, "0x%02x", offset);
 244		break;
 245	}
 246
 247	return tmp;
 248}
 249
 250#endif /* VERBOSE_DEBUG */
 251
 252static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 253{
 254	u32 value = readl_relaxed(dd->io_base + offset);
 255
 256#ifdef VERBOSE_DEBUG
 257	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 258		char tmp[16];
 259
 260		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 261			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 262	}
 263#endif /* VERBOSE_DEBUG */
 264
 265	return value;
 266}
 267
 268static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 269					u32 offset, u32 value)
 270{
 271#ifdef VERBOSE_DEBUG
 272	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 273		char tmp[16];
 274
 275		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 276			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 277	}
 278#endif /* VERBOSE_DEBUG */
 279
 280	writel_relaxed(value, dd->io_base + offset);
 281}
 282
 283static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 284{
 285	struct ahash_request *req = dd->req;
 286
 287	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 288		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 289		       SHA_FLAGS_DUMP_REG);
 290
 291	clk_disable(dd->iclk);
 292
 293	if ((dd->is_async || dd->force_complete) && req->base.complete)
 294		req->base.complete(&req->base, err);
 295
 296	/* handle new request */
 297	tasklet_schedule(&dd->queue_task);
 298
 299	return err;
 300}
 301
 302static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 303{
 304	size_t count;
 305
 306	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 307		count = min(ctx->sg->length - ctx->offset, ctx->total);
 308		count = min(count, ctx->buflen - ctx->bufcnt);
 309
 310		if (count <= 0) {
 311			/*
 312			* Check if count <= 0 because the buffer is full or
 313			* because the sg length is 0. In the latest case,
 314			* check if there is another sg in the list, a 0 length
 315			* sg doesn't necessarily mean the end of the sg list.
 316			*/
 317			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 318				ctx->sg = sg_next(ctx->sg);
 319				continue;
 320			} else {
 321				break;
 322			}
 323		}
 324
 325		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 326			ctx->offset, count, 0);
 327
 328		ctx->bufcnt += count;
 329		ctx->offset += count;
 330		ctx->total -= count;
 331
 332		if (ctx->offset == ctx->sg->length) {
 333			ctx->sg = sg_next(ctx->sg);
 334			if (ctx->sg)
 335				ctx->offset = 0;
 336			else
 337				ctx->total = 0;
 338		}
 339	}
 340
 341	return 0;
 342}
 343
 344/*
 345 * The purpose of this padding is to ensure that the padded message is a
 346 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 347 * The bit "1" is appended at the end of the message followed by
 348 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 349 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 350 * is appended.
 351 *
 352 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 353 *  - if message length < 56 bytes then padlen = 56 - message length
 354 *  - else padlen = 64 + 56 - message length
 355 *
 356 * For SHA384/SHA512, padlen is calculated as followed:
 357 *  - if message length < 112 bytes then padlen = 112 - message length
 358 *  - else padlen = 128 + 112 - message length
 359 */
 360static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 361{
 362	unsigned int index, padlen;
 363	__be64 bits[2];
 364	u64 size[2];
 365
 366	size[0] = ctx->digcnt[0];
 367	size[1] = ctx->digcnt[1];
 368
 369	size[0] += ctx->bufcnt;
 370	if (size[0] < ctx->bufcnt)
 371		size[1]++;
 372
 373	size[0] += length;
 374	if (size[0]  < length)
 375		size[1]++;
 376
 377	bits[1] = cpu_to_be64(size[0] << 3);
 378	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 379
 380	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 381	case SHA_FLAGS_SHA384:
 382	case SHA_FLAGS_SHA512:
 383		index = ctx->bufcnt & 0x7f;
 384		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 385		*(ctx->buffer + ctx->bufcnt) = 0x80;
 386		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 387		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 388		ctx->bufcnt += padlen + 16;
 389		ctx->flags |= SHA_FLAGS_PAD;
 390		break;
 391
 392	default:
 393		index = ctx->bufcnt & 0x3f;
 394		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 395		*(ctx->buffer + ctx->bufcnt) = 0x80;
 396		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 397		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 398		ctx->bufcnt += padlen + 8;
 399		ctx->flags |= SHA_FLAGS_PAD;
 400		break;
 401	}
 402}
 403
 404static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 405{
 406	struct atmel_sha_dev *dd = NULL;
 407	struct atmel_sha_dev *tmp;
 408
 409	spin_lock_bh(&atmel_sha.lock);
 410	if (!tctx->dd) {
 411		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 412			dd = tmp;
 413			break;
 414		}
 415		tctx->dd = dd;
 416	} else {
 417		dd = tctx->dd;
 418	}
 419
 420	spin_unlock_bh(&atmel_sha.lock);
 421
 422	return dd;
 423}
 424
 425static int atmel_sha_init(struct ahash_request *req)
 426{
 427	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 428	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 429	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 430	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 431
 432	ctx->dd = dd;
 433
 434	ctx->flags = 0;
 435
 436	dev_dbg(dd->dev, "init: digest size: %d\n",
 437		crypto_ahash_digestsize(tfm));
 438
 439	switch (crypto_ahash_digestsize(tfm)) {
 440	case SHA1_DIGEST_SIZE:
 441		ctx->flags |= SHA_FLAGS_SHA1;
 442		ctx->block_size = SHA1_BLOCK_SIZE;
 443		break;
 444	case SHA224_DIGEST_SIZE:
 445		ctx->flags |= SHA_FLAGS_SHA224;
 446		ctx->block_size = SHA224_BLOCK_SIZE;
 447		break;
 448	case SHA256_DIGEST_SIZE:
 449		ctx->flags |= SHA_FLAGS_SHA256;
 450		ctx->block_size = SHA256_BLOCK_SIZE;
 451		break;
 452	case SHA384_DIGEST_SIZE:
 453		ctx->flags |= SHA_FLAGS_SHA384;
 454		ctx->block_size = SHA384_BLOCK_SIZE;
 455		break;
 456	case SHA512_DIGEST_SIZE:
 457		ctx->flags |= SHA_FLAGS_SHA512;
 458		ctx->block_size = SHA512_BLOCK_SIZE;
 459		break;
 460	default:
 461		return -EINVAL;
 462		break;
 463	}
 464
 465	ctx->bufcnt = 0;
 466	ctx->digcnt[0] = 0;
 467	ctx->digcnt[1] = 0;
 468	ctx->buflen = SHA_BUFFER_LEN;
 469
 470	return 0;
 471}
 472
 473static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 474{
 475	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 476	u32 valmr = SHA_MR_MODE_AUTO;
 477	unsigned int i, hashsize = 0;
 478
 479	if (likely(dma)) {
 480		if (!dd->caps.has_dma)
 481			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 482		valmr = SHA_MR_MODE_PDC;
 483		if (dd->caps.has_dualbuff)
 484			valmr |= SHA_MR_DUALBUFF;
 485	} else {
 486		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 487	}
 488
 489	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 490	case SHA_FLAGS_SHA1:
 491		valmr |= SHA_MR_ALGO_SHA1;
 492		hashsize = SHA1_DIGEST_SIZE;
 493		break;
 494
 495	case SHA_FLAGS_SHA224:
 496		valmr |= SHA_MR_ALGO_SHA224;
 497		hashsize = SHA256_DIGEST_SIZE;
 498		break;
 499
 500	case SHA_FLAGS_SHA256:
 501		valmr |= SHA_MR_ALGO_SHA256;
 502		hashsize = SHA256_DIGEST_SIZE;
 503		break;
 504
 505	case SHA_FLAGS_SHA384:
 506		valmr |= SHA_MR_ALGO_SHA384;
 507		hashsize = SHA512_DIGEST_SIZE;
 508		break;
 509
 510	case SHA_FLAGS_SHA512:
 511		valmr |= SHA_MR_ALGO_SHA512;
 512		hashsize = SHA512_DIGEST_SIZE;
 513		break;
 514
 515	default:
 516		break;
 517	}
 518
 519	/* Setting CR_FIRST only for the first iteration */
 520	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 521		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 522	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 523		const u32 *hash = (const u32 *)ctx->digest;
 524
 525		/*
 526		 * Restore the hardware context: update the User Initialize
 527		 * Hash Value (UIHV) with the value saved when the latest
 528		 * 'update' operation completed on this very same crypto
 529		 * request.
 530		 */
 531		ctx->flags &= ~SHA_FLAGS_RESTORE;
 532		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 533		for (i = 0; i < hashsize / sizeof(u32); ++i)
 534			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 535		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 536		valmr |= SHA_MR_UIHV;
 537	}
 538	/*
 539	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 540	 * process concurrent requests: the internal registers used to store
 541	 * the hash/digest are still set to the partial digest output values
 542	 * computed during the latest round.
 543	 */
 544
 545	atmel_sha_write(dd, SHA_MR, valmr);
 546}
 547
 548static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 549						atmel_sha_fn_t resume)
 550{
 551	u32 isr = atmel_sha_read(dd, SHA_ISR);
 552
 553	if (unlikely(isr & SHA_INT_DATARDY))
 554		return resume(dd);
 555
 556	dd->resume = resume;
 557	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 558	return -EINPROGRESS;
 559}
 560
 561static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 562			      size_t length, int final)
 563{
 564	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 565	int count, len32;
 566	const u32 *buffer = (const u32 *)buf;
 567
 568	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 569		ctx->digcnt[1], ctx->digcnt[0], length, final);
 570
 571	atmel_sha_write_ctrl(dd, 0);
 572
 573	/* should be non-zero before next lines to disable clocks later */
 574	ctx->digcnt[0] += length;
 575	if (ctx->digcnt[0] < length)
 576		ctx->digcnt[1]++;
 577
 578	if (final)
 579		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 580
 581	len32 = DIV_ROUND_UP(length, sizeof(u32));
 582
 583	dd->flags |= SHA_FLAGS_CPU;
 584
 585	for (count = 0; count < len32; count++)
 586		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 587
 588	return -EINPROGRESS;
 589}
 590
 591static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 592		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 593{
 594	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 595	int len32;
 596
 597	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 598		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 599
 600	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 601	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 602	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 603	atmel_sha_write(dd, SHA_TCR, len32);
 604
 605	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 606	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 607	atmel_sha_write(dd, SHA_TNCR, len32);
 608
 609	atmel_sha_write_ctrl(dd, 1);
 610
 611	/* should be non-zero before next lines to disable clocks later */
 612	ctx->digcnt[0] += length1;
 613	if (ctx->digcnt[0] < length1)
 614		ctx->digcnt[1]++;
 615
 616	if (final)
 617		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 618
 619	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 620
 621	/* Start DMA transfer */
 622	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 623
 624	return -EINPROGRESS;
 625}
 626
 627static void atmel_sha_dma_callback(void *data)
 628{
 629	struct atmel_sha_dev *dd = data;
 630
 631	dd->is_async = true;
 632
 633	/* dma_lch_in - completed - wait DATRDY */
 634	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 635}
 636
 637static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 638		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 639{
 640	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 641	struct dma_async_tx_descriptor	*in_desc;
 642	struct scatterlist sg[2];
 643
 644	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 645		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 646
 647	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 648	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 649
 650	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 651
 652	if (length2) {
 653		sg_init_table(sg, 2);
 654		sg_dma_address(&sg[0]) = dma_addr1;
 655		sg_dma_len(&sg[0]) = length1;
 656		sg_dma_address(&sg[1]) = dma_addr2;
 657		sg_dma_len(&sg[1]) = length2;
 658		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 659			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 660	} else {
 661		sg_init_table(sg, 1);
 662		sg_dma_address(&sg[0]) = dma_addr1;
 663		sg_dma_len(&sg[0]) = length1;
 664		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 665			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 666	}
 667	if (!in_desc)
 668		return atmel_sha_complete(dd, -EINVAL);
 669
 670	in_desc->callback = atmel_sha_dma_callback;
 671	in_desc->callback_param = dd;
 672
 673	atmel_sha_write_ctrl(dd, 1);
 674
 675	/* should be non-zero before next lines to disable clocks later */
 676	ctx->digcnt[0] += length1;
 677	if (ctx->digcnt[0] < length1)
 678		ctx->digcnt[1]++;
 679
 680	if (final)
 681		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 682
 683	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 684
 685	/* Start DMA transfer */
 686	dmaengine_submit(in_desc);
 687	dma_async_issue_pending(dd->dma_lch_in.chan);
 688
 689	return -EINPROGRESS;
 690}
 691
 692static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 693		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 694{
 695	if (dd->caps.has_dma)
 696		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 697				dma_addr2, length2, final);
 698	else
 699		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 700				dma_addr2, length2, final);
 701}
 702
 703static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 704{
 705	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 706	int bufcnt;
 707
 708	atmel_sha_append_sg(ctx);
 709	atmel_sha_fill_padding(ctx, 0);
 710	bufcnt = ctx->bufcnt;
 711	ctx->bufcnt = 0;
 712
 713	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 714}
 715
 716static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 717					struct atmel_sha_reqctx *ctx,
 718					size_t length, int final)
 719{
 720	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 721				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 722	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 723		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 724				ctx->block_size);
 725		return atmel_sha_complete(dd, -EINVAL);
 726	}
 727
 728	ctx->flags &= ~SHA_FLAGS_SG;
 729
 730	/* next call does not fail... so no unmap in the case of error */
 731	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 732}
 733
 734static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 735{
 736	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 737	unsigned int final;
 738	size_t count;
 739
 740	atmel_sha_append_sg(ctx);
 741
 742	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 743
 744	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 745		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 746
 747	if (final)
 748		atmel_sha_fill_padding(ctx, 0);
 749
 750	if (final || (ctx->bufcnt == ctx->buflen)) {
 751		count = ctx->bufcnt;
 752		ctx->bufcnt = 0;
 753		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 754	}
 755
 756	return 0;
 757}
 758
 759static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 760{
 761	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 762	unsigned int length, final, tail;
 763	struct scatterlist *sg;
 764	unsigned int count;
 765
 766	if (!ctx->total)
 767		return 0;
 768
 769	if (ctx->bufcnt || ctx->offset)
 770		return atmel_sha_update_dma_slow(dd);
 771
 772	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 773		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 774
 775	sg = ctx->sg;
 776
 777	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 778		return atmel_sha_update_dma_slow(dd);
 779
 780	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 781		/* size is not ctx->block_size aligned */
 782		return atmel_sha_update_dma_slow(dd);
 783
 784	length = min(ctx->total, sg->length);
 785
 786	if (sg_is_last(sg)) {
 787		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 788			/* not last sg must be ctx->block_size aligned */
 789			tail = length & (ctx->block_size - 1);
 790			length -= tail;
 791		}
 792	}
 793
 794	ctx->total -= length;
 795	ctx->offset = length; /* offset where to start slow */
 796
 797	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 798
 799	/* Add padding */
 800	if (final) {
 801		tail = length & (ctx->block_size - 1);
 802		length -= tail;
 803		ctx->total += tail;
 804		ctx->offset = length; /* offset where to start slow */
 805
 806		sg = ctx->sg;
 807		atmel_sha_append_sg(ctx);
 808
 809		atmel_sha_fill_padding(ctx, length);
 810
 811		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 812			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 813		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 814			dev_err(dd->dev, "dma %zu bytes error\n",
 815				ctx->buflen + ctx->block_size);
 816			return atmel_sha_complete(dd, -EINVAL);
 817		}
 818
 819		if (length == 0) {
 820			ctx->flags &= ~SHA_FLAGS_SG;
 821			count = ctx->bufcnt;
 822			ctx->bufcnt = 0;
 823			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 824					0, final);
 825		} else {
 826			ctx->sg = sg;
 827			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 828				DMA_TO_DEVICE)) {
 829					dev_err(dd->dev, "dma_map_sg  error\n");
 830					return atmel_sha_complete(dd, -EINVAL);
 831			}
 832
 833			ctx->flags |= SHA_FLAGS_SG;
 834
 835			count = ctx->bufcnt;
 836			ctx->bufcnt = 0;
 837			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 838					length, ctx->dma_addr, count, final);
 839		}
 840	}
 841
 842	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 843		dev_err(dd->dev, "dma_map_sg  error\n");
 844		return atmel_sha_complete(dd, -EINVAL);
 845	}
 846
 847	ctx->flags |= SHA_FLAGS_SG;
 848
 849	/* next call does not fail... so no unmap in the case of error */
 850	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 851								0, final);
 852}
 853
 854static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 855{
 856	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 857
 858	if (ctx->flags & SHA_FLAGS_SG) {
 859		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 860		if (ctx->sg->length == ctx->offset) {
 861			ctx->sg = sg_next(ctx->sg);
 862			if (ctx->sg)
 863				ctx->offset = 0;
 864		}
 865		if (ctx->flags & SHA_FLAGS_PAD) {
 866			dma_unmap_single(dd->dev, ctx->dma_addr,
 867				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 868		}
 869	} else {
 870		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 871						ctx->block_size, DMA_TO_DEVICE);
 872	}
 873}
 874
 875static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 876{
 877	struct ahash_request *req = dd->req;
 878	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 879	int err;
 880
 881	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 882		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 883
 884	if (ctx->flags & SHA_FLAGS_CPU)
 885		err = atmel_sha_update_cpu(dd);
 886	else
 887		err = atmel_sha_update_dma_start(dd);
 888
 889	/* wait for dma completion before can take more data */
 890	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 891			err, ctx->digcnt[1], ctx->digcnt[0]);
 892
 893	return err;
 894}
 895
 896static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 897{
 898	struct ahash_request *req = dd->req;
 899	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 900	int err = 0;
 901	int count;
 902
 903	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 904		atmel_sha_fill_padding(ctx, 0);
 905		count = ctx->bufcnt;
 906		ctx->bufcnt = 0;
 907		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 908	}
 909	/* faster to handle last block with cpu */
 910	else {
 911		atmel_sha_fill_padding(ctx, 0);
 912		count = ctx->bufcnt;
 913		ctx->bufcnt = 0;
 914		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 915	}
 916
 917	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 918
 919	return err;
 920}
 921
 922static void atmel_sha_copy_hash(struct ahash_request *req)
 923{
 924	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 925	u32 *hash = (u32 *)ctx->digest;
 926	unsigned int i, hashsize;
 927
 928	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 929	case SHA_FLAGS_SHA1:
 930		hashsize = SHA1_DIGEST_SIZE;
 931		break;
 932
 933	case SHA_FLAGS_SHA224:
 934	case SHA_FLAGS_SHA256:
 935		hashsize = SHA256_DIGEST_SIZE;
 936		break;
 937
 938	case SHA_FLAGS_SHA384:
 939	case SHA_FLAGS_SHA512:
 940		hashsize = SHA512_DIGEST_SIZE;
 941		break;
 942
 943	default:
 944		/* Should not happen... */
 945		return;
 946	}
 947
 948	for (i = 0; i < hashsize / sizeof(u32); ++i)
 949		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 950	ctx->flags |= SHA_FLAGS_RESTORE;
 951}
 952
 953static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 954{
 955	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 956
 957	if (!req->result)
 958		return;
 959
 960	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 961	default:
 962	case SHA_FLAGS_SHA1:
 963		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 964		break;
 965
 966	case SHA_FLAGS_SHA224:
 967		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 968		break;
 969
 970	case SHA_FLAGS_SHA256:
 971		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 972		break;
 973
 974	case SHA_FLAGS_SHA384:
 975		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 976		break;
 977
 978	case SHA_FLAGS_SHA512:
 979		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 980		break;
 981	}
 982}
 983
 984static int atmel_sha_finish(struct ahash_request *req)
 985{
 986	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 987	struct atmel_sha_dev *dd = ctx->dd;
 988
 989	if (ctx->digcnt[0] || ctx->digcnt[1])
 990		atmel_sha_copy_ready_hash(req);
 991
 992	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 993		ctx->digcnt[0], ctx->bufcnt);
 994
 995	return 0;
 996}
 997
 998static void atmel_sha_finish_req(struct ahash_request *req, int err)
 999{
1000	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001	struct atmel_sha_dev *dd = ctx->dd;
1002
1003	if (!err) {
1004		atmel_sha_copy_hash(req);
1005		if (SHA_FLAGS_FINAL & dd->flags)
1006			err = atmel_sha_finish(req);
1007	} else {
1008		ctx->flags |= SHA_FLAGS_ERROR;
1009	}
1010
1011	/* atomic operation is not needed here */
1012	(void)atmel_sha_complete(dd, err);
1013}
1014
1015static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016{
1017	int err;
1018
1019	err = clk_enable(dd->iclk);
1020	if (err)
1021		return err;
1022
1023	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025		dd->flags |= SHA_FLAGS_INIT;
1026	}
1027
1028	return 0;
1029}
1030
1031static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032{
1033	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034}
1035
1036static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037{
1038	int err;
1039
1040	err = atmel_sha_hw_init(dd);
1041	if (err)
1042		return err;
1043
1044	dd->hw_version = atmel_sha_get_version(dd);
1045
1046	dev_info(dd->dev,
1047			"version: 0x%x\n", dd->hw_version);
1048
1049	clk_disable(dd->iclk);
1050
1051	return 0;
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		backlog->complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static void atmel_sha_alg_init(struct ahash_alg *alg)
1255{
1256	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259	alg->halg.base.cra_module = THIS_MODULE;
1260	alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264	alg->init = atmel_sha_init;
1265	alg->update = atmel_sha_update;
1266	alg->final = atmel_sha_final;
1267	alg->finup = atmel_sha_finup;
1268	alg->digest = atmel_sha_digest;
1269	alg->export = atmel_sha_export;
1270	alg->import = atmel_sha_import;
1271}
1272
1273static struct ahash_alg sha_1_256_algs[] = {
1274{
1275	.halg.base.cra_name		= "sha1",
1276	.halg.base.cra_driver_name	= "atmel-sha1",
1277	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278
1279	.halg.digestsize = SHA1_DIGEST_SIZE,
1280},
1281{
1282	.halg.base.cra_name		= "sha256",
1283	.halg.base.cra_driver_name	= "atmel-sha256",
1284	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285
1286	.halg.digestsize = SHA256_DIGEST_SIZE,
1287},
1288};
1289
1290static struct ahash_alg sha_224_alg = {
1291	.halg.base.cra_name		= "sha224",
1292	.halg.base.cra_driver_name	= "atmel-sha224",
1293	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294
1295	.halg.digestsize = SHA224_DIGEST_SIZE,
1296};
1297
1298static struct ahash_alg sha_384_512_algs[] = {
1299{
1300	.halg.base.cra_name		= "sha384",
1301	.halg.base.cra_driver_name	= "atmel-sha384",
1302	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303	.halg.base.cra_alignmask	= 0x3,
1304
1305	.halg.digestsize = SHA384_DIGEST_SIZE,
1306},
1307{
1308	.halg.base.cra_name		= "sha512",
1309	.halg.base.cra_driver_name	= "atmel-sha512",
1310	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1311	.halg.base.cra_alignmask	= 0x3,
1312
1313	.halg.digestsize = SHA512_DIGEST_SIZE,
1314},
1315};
1316
1317static void atmel_sha_queue_task(unsigned long data)
1318{
1319	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320
1321	atmel_sha_handle_queue(dd, NULL);
1322}
1323
1324static int atmel_sha_done(struct atmel_sha_dev *dd)
1325{
1326	int err = 0;
1327
1328	if (SHA_FLAGS_CPU & dd->flags) {
1329		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331			goto finish;
1332		}
1333	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336			atmel_sha_update_dma_stop(dd);
1337		}
1338		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339			/* hash or semi-hash ready */
1340			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341						SHA_FLAGS_OUTPUT_READY);
1342			err = atmel_sha_update_dma_start(dd);
1343			if (err != -EINPROGRESS)
1344				goto finish;
1345		}
1346	}
1347	return err;
1348
1349finish:
1350	/* finish curent request */
1351	atmel_sha_finish_req(dd->req, err);
1352
1353	return err;
1354}
1355
1356static void atmel_sha_done_task(unsigned long data)
1357{
1358	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359
1360	dd->is_async = true;
1361	(void)dd->resume(dd);
1362}
1363
1364static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365{
1366	struct atmel_sha_dev *sha_dd = dev_id;
1367	u32 reg;
1368
1369	reg = atmel_sha_read(sha_dd, SHA_ISR);
1370	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371		atmel_sha_write(sha_dd, SHA_IDR, reg);
1372		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376			tasklet_schedule(&sha_dd->done_task);
1377		} else {
1378			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379		}
1380		return IRQ_HANDLED;
1381	}
1382
1383	return IRQ_NONE;
1384}
1385
1386
1387/* DMA transfer functions */
1388
1389static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390					struct scatterlist *sg,
1391					size_t len)
1392{
1393	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394	struct ahash_request *req = dd->req;
1395	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396	size_t bs = ctx->block_size;
1397	int nents;
1398
1399	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401			return false;
1402
1403		/*
1404		 * This is the last sg, the only one that is allowed to
1405		 * have an unaligned length.
1406		 */
1407		if (len <= sg->length) {
1408			dma->nents = nents + 1;
1409			dma->last_sg_length = sg->length;
1410			sg->length = ALIGN(len, sizeof(u32));
1411			return true;
1412		}
1413
1414		/* All other sg lengths MUST be aligned to the block size. */
1415		if (!IS_ALIGNED(sg->length, bs))
1416			return false;
1417
1418		len -= sg->length;
1419	}
1420
1421	return false;
1422}
1423
1424static void atmel_sha_dma_callback2(void *data)
1425{
1426	struct atmel_sha_dev *dd = data;
1427	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428	struct scatterlist *sg;
1429	int nents;
1430
1431	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432
1433	sg = dma->sg;
1434	for (nents = 0; nents < dma->nents - 1; ++nents)
1435		sg = sg_next(sg);
1436	sg->length = dma->last_sg_length;
1437
1438	dd->is_async = true;
1439	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440}
1441
1442static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443			       struct scatterlist *src,
1444			       size_t len,
1445			       atmel_sha_fn_t resume)
1446{
1447	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448	struct dma_slave_config *config = &dma->dma_conf;
1449	struct dma_chan *chan = dma->chan;
1450	struct dma_async_tx_descriptor *desc;
1451	dma_cookie_t cookie;
1452	unsigned int sg_len;
1453	int err;
1454
1455	dd->resume = resume;
1456
1457	/*
1458	 * dma->nents has already been initialized by
1459	 * atmel_sha_dma_check_aligned().
1460	 */
1461	dma->sg = src;
1462	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463	if (!sg_len) {
1464		err = -ENOMEM;
1465		goto exit;
1466	}
1467
1468	config->src_maxburst = 16;
1469	config->dst_maxburst = 16;
1470	err = dmaengine_slave_config(chan, config);
1471	if (err)
1472		goto unmap_sg;
1473
1474	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476	if (!desc) {
1477		err = -ENOMEM;
1478		goto unmap_sg;
1479	}
1480
1481	desc->callback = atmel_sha_dma_callback2;
1482	desc->callback_param = dd;
1483	cookie = dmaengine_submit(desc);
1484	err = dma_submit_error(cookie);
1485	if (err)
1486		goto unmap_sg;
1487
1488	dma_async_issue_pending(chan);
1489
1490	return -EINPROGRESS;
1491
1492unmap_sg:
1493	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494exit:
1495	return atmel_sha_complete(dd, err);
1496}
1497
1498
1499/* CPU transfer functions */
1500
1501static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502{
1503	struct ahash_request *req = dd->req;
1504	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505	const u32 *words = (const u32 *)ctx->buffer;
1506	size_t i, num_words;
1507	u32 isr, din, din_inc;
1508
1509	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510	for (;;) {
1511		/* Write data into the Input Data Registers. */
1512		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515
1516		ctx->offset += ctx->bufcnt;
1517		ctx->total -= ctx->bufcnt;
1518
1519		if (!ctx->total)
1520			break;
1521
1522		/*
1523		 * Prepare next block:
1524		 * Fill ctx->buffer now with the next data to be written into
1525		 * IDATARx: it gives time for the SHA hardware to process
1526		 * the current data so the SHA_INT_DATARDY flag might be set
1527		 * in SHA_ISR when polling this register at the beginning of
1528		 * the next loop.
1529		 */
1530		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532					 ctx->offset, ctx->bufcnt, 0);
1533
1534		/* Wait for hardware to be ready again. */
1535		isr = atmel_sha_read(dd, SHA_ISR);
1536		if (!(isr & SHA_INT_DATARDY)) {
1537			/* Not ready yet. */
1538			dd->resume = atmel_sha_cpu_transfer;
1539			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540			return -EINPROGRESS;
1541		}
1542	}
1543
1544	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545		return dd->cpu_transfer_complete(dd);
1546
1547	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548}
1549
1550static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551			       struct scatterlist *sg,
1552			       unsigned int len,
1553			       bool idatar0_only,
1554			       bool wait_data_ready,
1555			       atmel_sha_fn_t resume)
1556{
1557	struct ahash_request *req = dd->req;
1558	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559
1560	if (!len)
1561		return resume(dd);
1562
1563	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564
1565	if (idatar0_only)
1566		ctx->flags |= SHA_FLAGS_IDATAR0;
1567
1568	if (wait_data_ready)
1569		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570
1571	ctx->sg = sg;
1572	ctx->total = len;
1573	ctx->offset = 0;
1574
1575	/* Prepare the first block to be written. */
1576	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578				 ctx->offset, ctx->bufcnt, 0);
1579
1580	dd->cpu_transfer_complete = resume;
1581	return atmel_sha_cpu_transfer(dd);
1582}
1583
1584static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585			      const void *data, unsigned int datalen,
1586			      bool auto_padding,
1587			      atmel_sha_fn_t resume)
1588{
1589	struct ahash_request *req = dd->req;
1590	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591	u32 msglen = (auto_padding) ? datalen : 0;
1592	u32 mr = SHA_MR_MODE_AUTO;
1593
1594	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595		return atmel_sha_complete(dd, -EINVAL);
1596
1597	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598	atmel_sha_write(dd, SHA_MR, mr);
1599	atmel_sha_write(dd, SHA_MSR, msglen);
1600	atmel_sha_write(dd, SHA_BCR, msglen);
1601	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602
1603	sg_init_one(&dd->tmp, data, datalen);
1604	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605}
1606
1607
1608/* hmac functions */
1609
1610struct atmel_sha_hmac_key {
1611	bool			valid;
1612	unsigned int		keylen;
1613	u8			buffer[SHA512_BLOCK_SIZE];
1614	u8			*keydup;
1615};
1616
1617static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618{
1619	memset(hkey, 0, sizeof(*hkey));
1620}
1621
1622static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623{
1624	kfree(hkey->keydup);
1625	memset(hkey, 0, sizeof(*hkey));
1626}
1627
1628static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629					 const u8 *key,
1630					 unsigned int keylen)
1631{
1632	atmel_sha_hmac_key_release(hkey);
1633
1634	if (keylen > sizeof(hkey->buffer)) {
1635		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636		if (!hkey->keydup)
1637			return -ENOMEM;
1638
1639	} else {
1640		memcpy(hkey->buffer, key, keylen);
1641	}
1642
1643	hkey->valid = true;
1644	hkey->keylen = keylen;
1645	return 0;
1646}
1647
1648static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649					  const u8 **key,
1650					  unsigned int *keylen)
1651{
1652	if (!hkey->valid)
1653		return false;
1654
1655	*keylen = hkey->keylen;
1656	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657	return true;
1658}
1659
1660
1661struct atmel_sha_hmac_ctx {
1662	struct atmel_sha_ctx	base;
1663
1664	struct atmel_sha_hmac_key	hkey;
1665	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667	atmel_sha_fn_t		resume;
1668};
1669
1670static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671				atmel_sha_fn_t resume);
1672static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673				      const u8 *key, unsigned int keylen);
1674static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678
1679static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683
1684static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685				atmel_sha_fn_t resume)
1686{
1687	struct ahash_request *req = dd->req;
1688	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691	unsigned int keylen;
1692	const u8 *key;
1693	size_t bs;
1694
1695	hmac->resume = resume;
1696	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697	case SHA_FLAGS_SHA1:
1698		ctx->block_size = SHA1_BLOCK_SIZE;
1699		ctx->hash_size = SHA1_DIGEST_SIZE;
1700		break;
1701
1702	case SHA_FLAGS_SHA224:
1703		ctx->block_size = SHA224_BLOCK_SIZE;
1704		ctx->hash_size = SHA256_DIGEST_SIZE;
1705		break;
1706
1707	case SHA_FLAGS_SHA256:
1708		ctx->block_size = SHA256_BLOCK_SIZE;
1709		ctx->hash_size = SHA256_DIGEST_SIZE;
1710		break;
1711
1712	case SHA_FLAGS_SHA384:
1713		ctx->block_size = SHA384_BLOCK_SIZE;
1714		ctx->hash_size = SHA512_DIGEST_SIZE;
1715		break;
1716
1717	case SHA_FLAGS_SHA512:
1718		ctx->block_size = SHA512_BLOCK_SIZE;
1719		ctx->hash_size = SHA512_DIGEST_SIZE;
1720		break;
1721
1722	default:
1723		return atmel_sha_complete(dd, -EINVAL);
1724	}
1725	bs = ctx->block_size;
1726
1727	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728		return resume(dd);
1729
1730	/* Compute K' from K. */
1731	if (unlikely(keylen > bs))
1732		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733
1734	/* Prepare ipad. */
1735	memcpy((u8 *)hmac->ipad, key, keylen);
1736	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737	return atmel_sha_hmac_compute_ipad_hash(dd);
1738}
1739
1740static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741				      const u8 *key, unsigned int keylen)
1742{
1743	return atmel_sha_cpu_hash(dd, key, keylen, true,
1744				  atmel_sha_hmac_prehash_key_done);
1745}
1746
1747static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748{
1749	struct ahash_request *req = dd->req;
1750	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753	size_t ds = crypto_ahash_digestsize(tfm);
1754	size_t bs = ctx->block_size;
1755	size_t i, num_words = ds / sizeof(u32);
1756
1757	/* Prepare ipad. */
1758	for (i = 0; i < num_words; ++i)
1759		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761	return atmel_sha_hmac_compute_ipad_hash(dd);
1762}
1763
1764static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765{
1766	struct ahash_request *req = dd->req;
1767	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770	size_t bs = ctx->block_size;
1771	size_t i, num_words = bs / sizeof(u32);
1772
1773	memcpy(hmac->opad, hmac->ipad, bs);
1774	for (i = 0; i < num_words; ++i) {
1775		hmac->ipad[i] ^= 0x36363636;
1776		hmac->opad[i] ^= 0x5c5c5c5c;
1777	}
1778
1779	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780				  atmel_sha_hmac_compute_opad_hash);
1781}
1782
1783static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784{
1785	struct ahash_request *req = dd->req;
1786	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789	size_t bs = ctx->block_size;
1790	size_t hs = ctx->hash_size;
1791	size_t i, num_words = hs / sizeof(u32);
1792
1793	for (i = 0; i < num_words; ++i)
1794		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796				  atmel_sha_hmac_setup_done);
1797}
1798
1799static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800{
1801	struct ahash_request *req = dd->req;
1802	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805	size_t hs = ctx->hash_size;
1806	size_t i, num_words = hs / sizeof(u32);
1807
1808	for (i = 0; i < num_words; ++i)
1809		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810	atmel_sha_hmac_key_release(&hmac->hkey);
1811	return hmac->resume(dd);
1812}
1813
1814static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815{
1816	struct ahash_request *req = dd->req;
1817	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818	int err;
1819
1820	err = atmel_sha_hw_init(dd);
1821	if (err)
1822		return atmel_sha_complete(dd, err);
1823
1824	switch (ctx->op) {
1825	case SHA_OP_INIT:
1826		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827		break;
1828
1829	case SHA_OP_UPDATE:
1830		dd->resume = atmel_sha_done;
1831		err = atmel_sha_update_req(dd);
1832		break;
1833
1834	case SHA_OP_FINAL:
1835		dd->resume = atmel_sha_hmac_final;
1836		err = atmel_sha_final_req(dd);
1837		break;
1838
1839	case SHA_OP_DIGEST:
1840		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841		break;
1842
1843	default:
1844		return atmel_sha_complete(dd, -EINVAL);
1845	}
1846
1847	return err;
1848}
1849
1850static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851				 unsigned int keylen)
1852{
1853	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854
1855	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856}
1857
1858static int atmel_sha_hmac_init(struct ahash_request *req)
1859{
1860	int err;
1861
1862	err = atmel_sha_init(req);
1863	if (err)
1864		return err;
1865
1866	return atmel_sha_enqueue(req, SHA_OP_INIT);
1867}
1868
1869static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870{
1871	struct ahash_request *req = dd->req;
1872	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875	size_t bs = ctx->block_size;
1876	size_t hs = ctx->hash_size;
1877
1878	ctx->bufcnt = 0;
1879	ctx->digcnt[0] = bs;
1880	ctx->digcnt[1] = 0;
1881	ctx->flags |= SHA_FLAGS_RESTORE;
1882	memcpy(ctx->digest, hmac->ipad, hs);
1883	return atmel_sha_complete(dd, 0);
1884}
1885
1886static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887{
1888	struct ahash_request *req = dd->req;
1889	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892	u32 *digest = (u32 *)ctx->digest;
1893	size_t ds = crypto_ahash_digestsize(tfm);
1894	size_t bs = ctx->block_size;
1895	size_t hs = ctx->hash_size;
1896	size_t i, num_words;
1897	u32 mr;
1898
1899	/* Save d = SHA((K' + ipad) | msg). */
1900	num_words = ds / sizeof(u32);
1901	for (i = 0; i < num_words; ++i)
1902		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903
1904	/* Restore context to finish computing SHA((K' + opad) | d). */
1905	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906	num_words = hs / sizeof(u32);
1907	for (i = 0; i < num_words; ++i)
1908		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909
1910	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912	atmel_sha_write(dd, SHA_MR, mr);
1913	atmel_sha_write(dd, SHA_MSR, bs + ds);
1914	atmel_sha_write(dd, SHA_BCR, ds);
1915	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916
1917	sg_init_one(&dd->tmp, digest, ds);
1918	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919				   atmel_sha_hmac_final_done);
1920}
1921
1922static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923{
1924	/*
1925	 * req->result might not be sizeof(u32) aligned, so copy the
1926	 * digest into ctx->digest[] before memcpy() the data into
1927	 * req->result.
1928	 */
1929	atmel_sha_copy_hash(dd->req);
1930	atmel_sha_copy_ready_hash(dd->req);
1931	return atmel_sha_complete(dd, 0);
1932}
1933
1934static int atmel_sha_hmac_digest(struct ahash_request *req)
1935{
1936	int err;
1937
1938	err = atmel_sha_init(req);
1939	if (err)
1940		return err;
1941
1942	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943}
1944
1945static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946{
1947	struct ahash_request *req = dd->req;
1948	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951	size_t hs = ctx->hash_size;
1952	size_t i, num_words = hs / sizeof(u32);
1953	bool use_dma = false;
1954	u32 mr;
1955
1956	/* Special case for empty message. */
1957	if (!req->nbytes)
1958		return atmel_sha_complete(dd, -EINVAL); // TODO:
1959
1960	/* Check DMA threshold and alignment. */
1961	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1962	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1963		use_dma = true;
1964
1965	/* Write both initial hash values to compute a HMAC. */
1966	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1967	for (i = 0; i < num_words; ++i)
1968		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1969
1970	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1971	for (i = 0; i < num_words; ++i)
1972		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1973
1974	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1976	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1977	if (use_dma)
1978		mr |= SHA_MR_MODE_IDATAR0;
1979	else
1980		mr |= SHA_MR_MODE_AUTO;
1981	atmel_sha_write(dd, SHA_MR, mr);
1982
1983	atmel_sha_write(dd, SHA_MSR, req->nbytes);
1984	atmel_sha_write(dd, SHA_BCR, req->nbytes);
1985
1986	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987
1988	/* Process data. */
1989	if (use_dma)
1990		return atmel_sha_dma_start(dd, req->src, req->nbytes,
1991					   atmel_sha_hmac_final_done);
1992
1993	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1994				   atmel_sha_hmac_final_done);
1995}
1996
1997static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1998{
1999	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2000
2001	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2002				 sizeof(struct atmel_sha_reqctx));
2003	hmac->base.start = atmel_sha_hmac_start;
2004	atmel_sha_hmac_key_init(&hmac->hkey);
2005
2006	return 0;
2007}
2008
2009static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2010{
2011	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2012
2013	atmel_sha_hmac_key_release(&hmac->hkey);
2014}
2015
2016static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2017{
2018	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2019	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2020	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2021	alg->halg.base.cra_module = THIS_MODULE;
2022	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2023	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2024
2025	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2026
2027	alg->init = atmel_sha_hmac_init;
2028	alg->update = atmel_sha_update;
2029	alg->final = atmel_sha_final;
2030	alg->digest = atmel_sha_hmac_digest;
2031	alg->setkey = atmel_sha_hmac_setkey;
2032	alg->export = atmel_sha_export;
2033	alg->import = atmel_sha_import;
2034}
2035
2036static struct ahash_alg sha_hmac_algs[] = {
2037{
2038	.halg.base.cra_name		= "hmac(sha1)",
2039	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2040	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2041
2042	.halg.digestsize = SHA1_DIGEST_SIZE,
2043},
2044{
2045	.halg.base.cra_name		= "hmac(sha224)",
2046	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2047	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2048
2049	.halg.digestsize = SHA224_DIGEST_SIZE,
2050},
2051{
2052	.halg.base.cra_name		= "hmac(sha256)",
2053	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2054	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2055
2056	.halg.digestsize = SHA256_DIGEST_SIZE,
2057},
2058{
2059	.halg.base.cra_name		= "hmac(sha384)",
2060	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2061	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2062
2063	.halg.digestsize = SHA384_DIGEST_SIZE,
2064},
2065{
2066	.halg.base.cra_name		= "hmac(sha512)",
2067	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2068	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2069
2070	.halg.digestsize = SHA512_DIGEST_SIZE,
2071},
2072};
2073
2074#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075/* authenc functions */
2076
2077static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2078static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2079static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2080
2081
2082struct atmel_sha_authenc_ctx {
2083	struct crypto_ahash	*tfm;
2084};
2085
2086struct atmel_sha_authenc_reqctx {
2087	struct atmel_sha_reqctx	base;
2088
2089	atmel_aes_authenc_fn_t	cb;
2090	struct atmel_aes_dev	*aes_dev;
2091
2092	/* _init() parameters. */
2093	struct scatterlist	*assoc;
2094	u32			assoclen;
2095	u32			textlen;
2096
2097	/* _final() parameters. */
2098	u32			*digest;
2099	unsigned int		digestlen;
2100};
2101
2102static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2103				       int err)
2104{
2105	struct ahash_request *req = areq->data;
2106	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2107
2108	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2109}
2110
2111static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2112{
2113	struct ahash_request *req = dd->req;
2114	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2115	int err;
2116
2117	/*
2118	 * Force atmel_sha_complete() to call req->base.complete(), ie
2119	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2120	 */
2121	dd->force_complete = true;
2122
2123	err = atmel_sha_hw_init(dd);
2124	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2125}
2126
2127bool atmel_sha_authenc_is_ready(void)
2128{
2129	struct atmel_sha_ctx dummy;
2130
2131	dummy.dd = NULL;
2132	return (atmel_sha_find_dev(&dummy) != NULL);
2133}
2134EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2135
2136unsigned int atmel_sha_authenc_get_reqsize(void)
2137{
2138	return sizeof(struct atmel_sha_authenc_reqctx);
2139}
2140EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2141
2142struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2143{
2144	struct atmel_sha_authenc_ctx *auth;
2145	struct crypto_ahash *tfm;
2146	struct atmel_sha_ctx *tctx;
2147	const char *name;
2148	int err = -EINVAL;
2149
2150	switch (mode & SHA_FLAGS_MODE_MASK) {
2151	case SHA_FLAGS_HMAC_SHA1:
2152		name = "atmel-hmac-sha1";
2153		break;
2154
2155	case SHA_FLAGS_HMAC_SHA224:
2156		name = "atmel-hmac-sha224";
2157		break;
2158
2159	case SHA_FLAGS_HMAC_SHA256:
2160		name = "atmel-hmac-sha256";
2161		break;
2162
2163	case SHA_FLAGS_HMAC_SHA384:
2164		name = "atmel-hmac-sha384";
2165		break;
2166
2167	case SHA_FLAGS_HMAC_SHA512:
2168		name = "atmel-hmac-sha512";
2169		break;
2170
2171	default:
2172		goto error;
2173	}
2174
2175	tfm = crypto_alloc_ahash(name, 0, 0);
2176	if (IS_ERR(tfm)) {
2177		err = PTR_ERR(tfm);
2178		goto error;
2179	}
2180	tctx = crypto_ahash_ctx(tfm);
2181	tctx->start = atmel_sha_authenc_start;
2182	tctx->flags = mode;
2183
2184	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2185	if (!auth) {
2186		err = -ENOMEM;
2187		goto err_free_ahash;
2188	}
2189	auth->tfm = tfm;
2190
2191	return auth;
2192
2193err_free_ahash:
2194	crypto_free_ahash(tfm);
2195error:
2196	return ERR_PTR(err);
2197}
2198EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2199
2200void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2201{
2202	if (auth)
2203		crypto_free_ahash(auth->tfm);
2204	kfree(auth);
2205}
2206EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2207
2208int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2209			     const u8 *key, unsigned int keylen, u32 flags)
2210{
2211	struct crypto_ahash *tfm = auth->tfm;
2212
2213	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2214	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2215	return crypto_ahash_setkey(tfm, key, keylen);
2216}
2217EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2218
2219int atmel_sha_authenc_schedule(struct ahash_request *req,
2220			       struct atmel_sha_authenc_ctx *auth,
2221			       atmel_aes_authenc_fn_t cb,
2222			       struct atmel_aes_dev *aes_dev)
2223{
2224	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2225	struct atmel_sha_reqctx *ctx = &authctx->base;
2226	struct crypto_ahash *tfm = auth->tfm;
2227	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2228	struct atmel_sha_dev *dd;
2229
2230	/* Reset request context (MUST be done first). */
2231	memset(authctx, 0, sizeof(*authctx));
2232
2233	/* Get SHA device. */
2234	dd = atmel_sha_find_dev(tctx);
2235	if (!dd)
2236		return cb(aes_dev, -ENODEV, false);
2237
2238	/* Init request context. */
2239	ctx->dd = dd;
2240	ctx->buflen = SHA_BUFFER_LEN;
2241	authctx->cb = cb;
2242	authctx->aes_dev = aes_dev;
2243	ahash_request_set_tfm(req, tfm);
2244	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2245
2246	return atmel_sha_handle_queue(dd, req);
2247}
2248EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2249
2250int atmel_sha_authenc_init(struct ahash_request *req,
2251			   struct scatterlist *assoc, unsigned int assoclen,
2252			   unsigned int textlen,
2253			   atmel_aes_authenc_fn_t cb,
2254			   struct atmel_aes_dev *aes_dev)
2255{
2256	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2257	struct atmel_sha_reqctx *ctx = &authctx->base;
2258	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2259	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2260	struct atmel_sha_dev *dd = ctx->dd;
2261
2262	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2263		return atmel_sha_complete(dd, -EINVAL);
2264
2265	authctx->cb = cb;
2266	authctx->aes_dev = aes_dev;
2267	authctx->assoc = assoc;
2268	authctx->assoclen = assoclen;
2269	authctx->textlen = textlen;
2270
2271	ctx->flags = hmac->base.flags;
2272	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2273}
2274EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2275
2276static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2277{
2278	struct ahash_request *req = dd->req;
2279	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2280	struct atmel_sha_reqctx *ctx = &authctx->base;
2281	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2283	size_t hs = ctx->hash_size;
2284	size_t i, num_words = hs / sizeof(u32);
2285	u32 mr, msg_size;
2286
2287	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2288	for (i = 0; i < num_words; ++i)
2289		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2290
2291	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2292	for (i = 0; i < num_words; ++i)
2293		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2294
2295	mr = (SHA_MR_MODE_IDATAR0 |
2296	      SHA_MR_HMAC |
2297	      SHA_MR_DUALBUFF);
2298	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2299	atmel_sha_write(dd, SHA_MR, mr);
2300
2301	msg_size = authctx->assoclen + authctx->textlen;
2302	atmel_sha_write(dd, SHA_MSR, msg_size);
2303	atmel_sha_write(dd, SHA_BCR, msg_size);
2304
2305	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2306
2307	/* Process assoc data. */
2308	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2309				   true, false,
2310				   atmel_sha_authenc_init_done);
2311}
2312
2313static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2314{
2315	struct ahash_request *req = dd->req;
2316	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2317
2318	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2319}
2320
2321int atmel_sha_authenc_final(struct ahash_request *req,
2322			    u32 *digest, unsigned int digestlen,
2323			    atmel_aes_authenc_fn_t cb,
2324			    struct atmel_aes_dev *aes_dev)
2325{
2326	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2327	struct atmel_sha_reqctx *ctx = &authctx->base;
2328	struct atmel_sha_dev *dd = ctx->dd;
2329
2330	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2331	case SHA_FLAGS_SHA1:
2332		authctx->digestlen = SHA1_DIGEST_SIZE;
2333		break;
2334
2335	case SHA_FLAGS_SHA224:
2336		authctx->digestlen = SHA224_DIGEST_SIZE;
2337		break;
2338
2339	case SHA_FLAGS_SHA256:
2340		authctx->digestlen = SHA256_DIGEST_SIZE;
2341		break;
2342
2343	case SHA_FLAGS_SHA384:
2344		authctx->digestlen = SHA384_DIGEST_SIZE;
2345		break;
2346
2347	case SHA_FLAGS_SHA512:
2348		authctx->digestlen = SHA512_DIGEST_SIZE;
2349		break;
2350
2351	default:
2352		return atmel_sha_complete(dd, -EINVAL);
2353	}
2354	if (authctx->digestlen > digestlen)
2355		authctx->digestlen = digestlen;
2356
2357	authctx->cb = cb;
2358	authctx->aes_dev = aes_dev;
2359	authctx->digest = digest;
2360	return atmel_sha_wait_for_data_ready(dd,
2361					     atmel_sha_authenc_final_done);
2362}
2363EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2364
2365static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2366{
2367	struct ahash_request *req = dd->req;
2368	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2369	size_t i, num_words = authctx->digestlen / sizeof(u32);
2370
2371	for (i = 0; i < num_words; ++i)
2372		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2373
2374	return atmel_sha_complete(dd, 0);
2375}
2376
2377void atmel_sha_authenc_abort(struct ahash_request *req)
2378{
2379	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2380	struct atmel_sha_reqctx *ctx = &authctx->base;
2381	struct atmel_sha_dev *dd = ctx->dd;
2382
2383	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2384	dd->is_async = false;
2385	dd->force_complete = false;
2386	(void)atmel_sha_complete(dd, 0);
2387}
2388EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2389
2390#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2391
2392
2393static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2394{
2395	int i;
2396
2397	if (dd->caps.has_hmac)
2398		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2399			crypto_unregister_ahash(&sha_hmac_algs[i]);
2400
2401	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2402		crypto_unregister_ahash(&sha_1_256_algs[i]);
2403
2404	if (dd->caps.has_sha224)
2405		crypto_unregister_ahash(&sha_224_alg);
2406
2407	if (dd->caps.has_sha_384_512) {
2408		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2409			crypto_unregister_ahash(&sha_384_512_algs[i]);
2410	}
2411}
2412
2413static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2414{
2415	int err, i, j;
2416
2417	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2418		atmel_sha_alg_init(&sha_1_256_algs[i]);
2419
2420		err = crypto_register_ahash(&sha_1_256_algs[i]);
2421		if (err)
2422			goto err_sha_1_256_algs;
2423	}
2424
2425	if (dd->caps.has_sha224) {
2426		atmel_sha_alg_init(&sha_224_alg);
2427
2428		err = crypto_register_ahash(&sha_224_alg);
2429		if (err)
2430			goto err_sha_224_algs;
2431	}
2432
2433	if (dd->caps.has_sha_384_512) {
2434		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2435			atmel_sha_alg_init(&sha_384_512_algs[i]);
2436
2437			err = crypto_register_ahash(&sha_384_512_algs[i]);
2438			if (err)
2439				goto err_sha_384_512_algs;
2440		}
2441	}
2442
2443	if (dd->caps.has_hmac) {
2444		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2445			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2446
2447			err = crypto_register_ahash(&sha_hmac_algs[i]);
2448			if (err)
2449				goto err_sha_hmac_algs;
2450		}
2451	}
2452
2453	return 0;
2454
2455	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2456err_sha_hmac_algs:
2457	for (j = 0; j < i; j++)
2458		crypto_unregister_ahash(&sha_hmac_algs[j]);
2459	i = ARRAY_SIZE(sha_384_512_algs);
2460err_sha_384_512_algs:
2461	for (j = 0; j < i; j++)
2462		crypto_unregister_ahash(&sha_384_512_algs[j]);
2463	crypto_unregister_ahash(&sha_224_alg);
2464err_sha_224_algs:
2465	i = ARRAY_SIZE(sha_1_256_algs);
2466err_sha_1_256_algs:
2467	for (j = 0; j < i; j++)
2468		crypto_unregister_ahash(&sha_1_256_algs[j]);
2469
2470	return err;
2471}
2472
2473static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2474{
2475	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2476	if (IS_ERR(dd->dma_lch_in.chan)) {
2477		dev_err(dd->dev, "DMA channel is not available\n");
2478		return PTR_ERR(dd->dma_lch_in.chan);
2479	}
2480
2481	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2482		SHA_REG_DIN(0);
2483	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2484	dd->dma_lch_in.dma_conf.src_addr_width =
2485		DMA_SLAVE_BUSWIDTH_4_BYTES;
2486	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2487	dd->dma_lch_in.dma_conf.dst_addr_width =
2488		DMA_SLAVE_BUSWIDTH_4_BYTES;
2489	dd->dma_lch_in.dma_conf.device_fc = false;
2490
2491	return 0;
2492}
2493
2494static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2495{
2496	dma_release_channel(dd->dma_lch_in.chan);
2497}
2498
2499static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2500{
2501
2502	dd->caps.has_dma = 0;
2503	dd->caps.has_dualbuff = 0;
2504	dd->caps.has_sha224 = 0;
2505	dd->caps.has_sha_384_512 = 0;
2506	dd->caps.has_uihv = 0;
2507	dd->caps.has_hmac = 0;
2508
2509	/* keep only major version number */
2510	switch (dd->hw_version & 0xff0) {
 
2511	case 0x510:
2512		dd->caps.has_dma = 1;
2513		dd->caps.has_dualbuff = 1;
2514		dd->caps.has_sha224 = 1;
2515		dd->caps.has_sha_384_512 = 1;
2516		dd->caps.has_uihv = 1;
2517		dd->caps.has_hmac = 1;
2518		break;
2519	case 0x420:
2520		dd->caps.has_dma = 1;
2521		dd->caps.has_dualbuff = 1;
2522		dd->caps.has_sha224 = 1;
2523		dd->caps.has_sha_384_512 = 1;
2524		dd->caps.has_uihv = 1;
2525		break;
2526	case 0x410:
2527		dd->caps.has_dma = 1;
2528		dd->caps.has_dualbuff = 1;
2529		dd->caps.has_sha224 = 1;
2530		dd->caps.has_sha_384_512 = 1;
2531		break;
2532	case 0x400:
2533		dd->caps.has_dma = 1;
2534		dd->caps.has_dualbuff = 1;
2535		dd->caps.has_sha224 = 1;
2536		break;
2537	case 0x320:
2538		break;
2539	default:
2540		dev_warn(dd->dev,
2541				"Unmanaged sha version, set minimum capabilities\n");
2542		break;
2543	}
2544}
2545
2546#if defined(CONFIG_OF)
2547static const struct of_device_id atmel_sha_dt_ids[] = {
2548	{ .compatible = "atmel,at91sam9g46-sha" },
2549	{ /* sentinel */ }
2550};
2551
2552MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2553#endif
2554
2555static int atmel_sha_probe(struct platform_device *pdev)
2556{
2557	struct atmel_sha_dev *sha_dd;
2558	struct device *dev = &pdev->dev;
2559	struct resource *sha_res;
2560	int err;
2561
2562	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2563	if (!sha_dd)
2564		return -ENOMEM;
2565
2566	sha_dd->dev = dev;
2567
2568	platform_set_drvdata(pdev, sha_dd);
2569
2570	INIT_LIST_HEAD(&sha_dd->list);
2571	spin_lock_init(&sha_dd->lock);
2572
2573	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2574					(unsigned long)sha_dd);
2575	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2576					(unsigned long)sha_dd);
2577
2578	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2579
2580	/* Get the base address */
2581	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2582	if (!sha_res) {
2583		dev_err(dev, "no MEM resource info\n");
2584		err = -ENODEV;
2585		goto err_tasklet_kill;
2586	}
2587	sha_dd->phys_base = sha_res->start;
2588
2589	/* Get the IRQ */
2590	sha_dd->irq = platform_get_irq(pdev,  0);
2591	if (sha_dd->irq < 0) {
2592		err = sha_dd->irq;
2593		goto err_tasklet_kill;
2594	}
2595
2596	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2597			       IRQF_SHARED, "atmel-sha", sha_dd);
2598	if (err) {
2599		dev_err(dev, "unable to request sha irq.\n");
2600		goto err_tasklet_kill;
2601	}
2602
2603	/* Initializing the clock */
2604	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2605	if (IS_ERR(sha_dd->iclk)) {
2606		dev_err(dev, "clock initialization failed.\n");
2607		err = PTR_ERR(sha_dd->iclk);
2608		goto err_tasklet_kill;
2609	}
2610
2611	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2612	if (IS_ERR(sha_dd->io_base)) {
2613		dev_err(dev, "can't ioremap\n");
2614		err = PTR_ERR(sha_dd->io_base);
2615		goto err_tasklet_kill;
2616	}
2617
2618	err = clk_prepare(sha_dd->iclk);
2619	if (err)
2620		goto err_tasklet_kill;
2621
2622	err = atmel_sha_hw_version_init(sha_dd);
2623	if (err)
2624		goto err_iclk_unprepare;
2625
2626	atmel_sha_get_cap(sha_dd);
2627
2628	if (sha_dd->caps.has_dma) {
2629		err = atmel_sha_dma_init(sha_dd);
2630		if (err)
2631			goto err_iclk_unprepare;
2632
2633		dev_info(dev, "using %s for DMA transfers\n",
2634				dma_chan_name(sha_dd->dma_lch_in.chan));
2635	}
2636
2637	spin_lock(&atmel_sha.lock);
2638	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2639	spin_unlock(&atmel_sha.lock);
2640
2641	err = atmel_sha_register_algs(sha_dd);
2642	if (err)
2643		goto err_algs;
2644
2645	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2646			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2647			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2648
2649	return 0;
2650
2651err_algs:
2652	spin_lock(&atmel_sha.lock);
2653	list_del(&sha_dd->list);
2654	spin_unlock(&atmel_sha.lock);
2655	if (sha_dd->caps.has_dma)
2656		atmel_sha_dma_cleanup(sha_dd);
2657err_iclk_unprepare:
2658	clk_unprepare(sha_dd->iclk);
2659err_tasklet_kill:
2660	tasklet_kill(&sha_dd->queue_task);
2661	tasklet_kill(&sha_dd->done_task);
2662
2663	return err;
2664}
2665
2666static int atmel_sha_remove(struct platform_device *pdev)
2667{
2668	struct atmel_sha_dev *sha_dd;
2669
2670	sha_dd = platform_get_drvdata(pdev);
2671	if (!sha_dd)
2672		return -ENODEV;
2673	spin_lock(&atmel_sha.lock);
2674	list_del(&sha_dd->list);
2675	spin_unlock(&atmel_sha.lock);
2676
2677	atmel_sha_unregister_algs(sha_dd);
2678
2679	tasklet_kill(&sha_dd->queue_task);
2680	tasklet_kill(&sha_dd->done_task);
2681
2682	if (sha_dd->caps.has_dma)
2683		atmel_sha_dma_cleanup(sha_dd);
2684
2685	clk_unprepare(sha_dd->iclk);
2686
2687	return 0;
2688}
2689
2690static struct platform_driver atmel_sha_driver = {
2691	.probe		= atmel_sha_probe,
2692	.remove		= atmel_sha_remove,
2693	.driver		= {
2694		.name	= "atmel_sha",
2695		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2696	},
2697};
2698
2699module_platform_driver(atmel_sha_driver);
2700
2701MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2702MODULE_LICENSE("GPL v2");
2703MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL SHA1/SHA256 HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-sham.c drivers.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/sha1.h>
  37#include <crypto/sha2.h>
  38#include <crypto/hash.h>
  39#include <crypto/internal/hash.h>
  40#include "atmel-sha-regs.h"
  41#include "atmel-authenc.h"
  42
  43#define ATMEL_SHA_PRIORITY	300
  44
  45/* SHA flags */
  46#define SHA_FLAGS_BUSY			BIT(0)
  47#define	SHA_FLAGS_FINAL			BIT(1)
  48#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  49#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  50#define SHA_FLAGS_INIT			BIT(4)
  51#define SHA_FLAGS_CPU			BIT(5)
  52#define SHA_FLAGS_DMA_READY		BIT(6)
  53#define SHA_FLAGS_DUMP_REG	BIT(7)
  54
  55/* bits[11:8] are reserved. */
  56
  57#define SHA_FLAGS_FINUP		BIT(16)
  58#define SHA_FLAGS_SG		BIT(17)
  59#define SHA_FLAGS_ERROR		BIT(23)
  60#define SHA_FLAGS_PAD		BIT(24)
  61#define SHA_FLAGS_RESTORE	BIT(25)
  62#define SHA_FLAGS_IDATAR0	BIT(26)
  63#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
  64
  65#define SHA_OP_INIT	0
  66#define SHA_OP_UPDATE	1
  67#define SHA_OP_FINAL	2
  68#define SHA_OP_DIGEST	3
  69
  70#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  71
  72#define ATMEL_SHA_DMA_THRESHOLD		56
  73
  74struct atmel_sha_caps {
  75	bool	has_dma;
  76	bool	has_dualbuff;
  77	bool	has_sha224;
  78	bool	has_sha_384_512;
  79	bool	has_uihv;
  80	bool	has_hmac;
  81};
  82
  83struct atmel_sha_dev;
  84
  85/*
  86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  87 * tested by the ahash_prepare_alg() function.
  88 */
  89struct atmel_sha_reqctx {
  90	struct atmel_sha_dev	*dd;
  91	unsigned long	flags;
  92	unsigned long	op;
  93
  94	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  95	u64	digcnt[2];
  96	size_t	bufcnt;
  97	size_t	buflen;
  98	dma_addr_t	dma_addr;
  99
 100	/* walk state */
 101	struct scatterlist	*sg;
 102	unsigned int	offset;	/* offset in current sg */
 103	unsigned int	total;	/* total request */
 104
 105	size_t block_size;
 106	size_t hash_size;
 107
 108	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 109};
 110
 111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 112
 113struct atmel_sha_ctx {
 114	struct atmel_sha_dev	*dd;
 115	atmel_sha_fn_t		start;
 116
 117	unsigned long		flags;
 118};
 119
 120#define ATMEL_SHA_QUEUE_LENGTH	50
 121
 122struct atmel_sha_dma {
 123	struct dma_chan			*chan;
 124	struct dma_slave_config dma_conf;
 125	struct scatterlist	*sg;
 126	int			nents;
 127	unsigned int		last_sg_length;
 128};
 129
 130struct atmel_sha_dev {
 131	struct list_head	list;
 132	unsigned long		phys_base;
 133	struct device		*dev;
 134	struct clk			*iclk;
 135	int					irq;
 136	void __iomem		*io_base;
 137
 138	spinlock_t		lock;
 139	struct tasklet_struct	done_task;
 140	struct tasklet_struct	queue_task;
 141
 142	unsigned long		flags;
 143	struct crypto_queue	queue;
 144	struct ahash_request	*req;
 145	bool			is_async;
 146	bool			force_complete;
 147	atmel_sha_fn_t		resume;
 148	atmel_sha_fn_t		cpu_transfer_complete;
 149
 150	struct atmel_sha_dma	dma_lch_in;
 151
 152	struct atmel_sha_caps	caps;
 153
 154	struct scatterlist	tmp;
 155
 156	u32	hw_version;
 157};
 158
 159struct atmel_sha_drv {
 160	struct list_head	dev_list;
 161	spinlock_t		lock;
 162};
 163
 164static struct atmel_sha_drv atmel_sha = {
 165	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 166	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 167};
 168
 169#ifdef VERBOSE_DEBUG
 170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 171{
 172	switch (offset) {
 173	case SHA_CR:
 174		return "CR";
 175
 176	case SHA_MR:
 177		return "MR";
 178
 179	case SHA_IER:
 180		return "IER";
 181
 182	case SHA_IDR:
 183		return "IDR";
 184
 185	case SHA_IMR:
 186		return "IMR";
 187
 188	case SHA_ISR:
 189		return "ISR";
 190
 191	case SHA_MSR:
 192		return "MSR";
 193
 194	case SHA_BCR:
 195		return "BCR";
 196
 197	case SHA_REG_DIN(0):
 198	case SHA_REG_DIN(1):
 199	case SHA_REG_DIN(2):
 200	case SHA_REG_DIN(3):
 201	case SHA_REG_DIN(4):
 202	case SHA_REG_DIN(5):
 203	case SHA_REG_DIN(6):
 204	case SHA_REG_DIN(7):
 205	case SHA_REG_DIN(8):
 206	case SHA_REG_DIN(9):
 207	case SHA_REG_DIN(10):
 208	case SHA_REG_DIN(11):
 209	case SHA_REG_DIN(12):
 210	case SHA_REG_DIN(13):
 211	case SHA_REG_DIN(14):
 212	case SHA_REG_DIN(15):
 213		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 214		break;
 215
 216	case SHA_REG_DIGEST(0):
 217	case SHA_REG_DIGEST(1):
 218	case SHA_REG_DIGEST(2):
 219	case SHA_REG_DIGEST(3):
 220	case SHA_REG_DIGEST(4):
 221	case SHA_REG_DIGEST(5):
 222	case SHA_REG_DIGEST(6):
 223	case SHA_REG_DIGEST(7):
 224	case SHA_REG_DIGEST(8):
 225	case SHA_REG_DIGEST(9):
 226	case SHA_REG_DIGEST(10):
 227	case SHA_REG_DIGEST(11):
 228	case SHA_REG_DIGEST(12):
 229	case SHA_REG_DIGEST(13):
 230	case SHA_REG_DIGEST(14):
 231	case SHA_REG_DIGEST(15):
 232		if (wr)
 233			snprintf(tmp, sz, "IDATAR[%u]",
 234				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 235		else
 236			snprintf(tmp, sz, "ODATAR[%u]",
 237				 (offset - SHA_REG_DIGEST(0)) >> 2);
 238		break;
 239
 240	case SHA_HW_VERSION:
 241		return "HWVER";
 242
 243	default:
 244		snprintf(tmp, sz, "0x%02x", offset);
 245		break;
 246	}
 247
 248	return tmp;
 249}
 250
 251#endif /* VERBOSE_DEBUG */
 252
 253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 254{
 255	u32 value = readl_relaxed(dd->io_base + offset);
 256
 257#ifdef VERBOSE_DEBUG
 258	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 259		char tmp[16];
 260
 261		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 262			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 263	}
 264#endif /* VERBOSE_DEBUG */
 265
 266	return value;
 267}
 268
 269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 270					u32 offset, u32 value)
 271{
 272#ifdef VERBOSE_DEBUG
 273	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 274		char tmp[16];
 275
 276		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 277			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 278	}
 279#endif /* VERBOSE_DEBUG */
 280
 281	writel_relaxed(value, dd->io_base + offset);
 282}
 283
 284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 285{
 286	struct ahash_request *req = dd->req;
 287
 288	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 289		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 290		       SHA_FLAGS_DUMP_REG);
 291
 292	clk_disable(dd->iclk);
 293
 294	if ((dd->is_async || dd->force_complete) && req->base.complete)
 295		req->base.complete(&req->base, err);
 296
 297	/* handle new request */
 298	tasklet_schedule(&dd->queue_task);
 299
 300	return err;
 301}
 302
 303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 304{
 305	size_t count;
 306
 307	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 308		count = min(ctx->sg->length - ctx->offset, ctx->total);
 309		count = min(count, ctx->buflen - ctx->bufcnt);
 310
 311		if (count <= 0) {
 312			/*
 313			* Check if count <= 0 because the buffer is full or
 314			* because the sg length is 0. In the latest case,
 315			* check if there is another sg in the list, a 0 length
 316			* sg doesn't necessarily mean the end of the sg list.
 317			*/
 318			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 319				ctx->sg = sg_next(ctx->sg);
 320				continue;
 321			} else {
 322				break;
 323			}
 324		}
 325
 326		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 327			ctx->offset, count, 0);
 328
 329		ctx->bufcnt += count;
 330		ctx->offset += count;
 331		ctx->total -= count;
 332
 333		if (ctx->offset == ctx->sg->length) {
 334			ctx->sg = sg_next(ctx->sg);
 335			if (ctx->sg)
 336				ctx->offset = 0;
 337			else
 338				ctx->total = 0;
 339		}
 340	}
 341
 342	return 0;
 343}
 344
 345/*
 346 * The purpose of this padding is to ensure that the padded message is a
 347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 348 * The bit "1" is appended at the end of the message followed by
 349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 351 * is appended.
 352 *
 353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 354 *  - if message length < 56 bytes then padlen = 56 - message length
 355 *  - else padlen = 64 + 56 - message length
 356 *
 357 * For SHA384/SHA512, padlen is calculated as followed:
 358 *  - if message length < 112 bytes then padlen = 112 - message length
 359 *  - else padlen = 128 + 112 - message length
 360 */
 361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 362{
 363	unsigned int index, padlen;
 364	__be64 bits[2];
 365	u64 size[2];
 366
 367	size[0] = ctx->digcnt[0];
 368	size[1] = ctx->digcnt[1];
 369
 370	size[0] += ctx->bufcnt;
 371	if (size[0] < ctx->bufcnt)
 372		size[1]++;
 373
 374	size[0] += length;
 375	if (size[0]  < length)
 376		size[1]++;
 377
 378	bits[1] = cpu_to_be64(size[0] << 3);
 379	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 380
 381	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 382	case SHA_FLAGS_SHA384:
 383	case SHA_FLAGS_SHA512:
 384		index = ctx->bufcnt & 0x7f;
 385		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 386		*(ctx->buffer + ctx->bufcnt) = 0x80;
 387		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 388		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 389		ctx->bufcnt += padlen + 16;
 390		ctx->flags |= SHA_FLAGS_PAD;
 391		break;
 392
 393	default:
 394		index = ctx->bufcnt & 0x3f;
 395		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 396		*(ctx->buffer + ctx->bufcnt) = 0x80;
 397		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 398		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 399		ctx->bufcnt += padlen + 8;
 400		ctx->flags |= SHA_FLAGS_PAD;
 401		break;
 402	}
 403}
 404
 405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 406{
 407	struct atmel_sha_dev *dd = NULL;
 408	struct atmel_sha_dev *tmp;
 409
 410	spin_lock_bh(&atmel_sha.lock);
 411	if (!tctx->dd) {
 412		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 413			dd = tmp;
 414			break;
 415		}
 416		tctx->dd = dd;
 417	} else {
 418		dd = tctx->dd;
 419	}
 420
 421	spin_unlock_bh(&atmel_sha.lock);
 422
 423	return dd;
 424}
 425
 426static int atmel_sha_init(struct ahash_request *req)
 427{
 428	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 429	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 430	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 431	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 432
 433	ctx->dd = dd;
 434
 435	ctx->flags = 0;
 436
 437	dev_dbg(dd->dev, "init: digest size: %u\n",
 438		crypto_ahash_digestsize(tfm));
 439
 440	switch (crypto_ahash_digestsize(tfm)) {
 441	case SHA1_DIGEST_SIZE:
 442		ctx->flags |= SHA_FLAGS_SHA1;
 443		ctx->block_size = SHA1_BLOCK_SIZE;
 444		break;
 445	case SHA224_DIGEST_SIZE:
 446		ctx->flags |= SHA_FLAGS_SHA224;
 447		ctx->block_size = SHA224_BLOCK_SIZE;
 448		break;
 449	case SHA256_DIGEST_SIZE:
 450		ctx->flags |= SHA_FLAGS_SHA256;
 451		ctx->block_size = SHA256_BLOCK_SIZE;
 452		break;
 453	case SHA384_DIGEST_SIZE:
 454		ctx->flags |= SHA_FLAGS_SHA384;
 455		ctx->block_size = SHA384_BLOCK_SIZE;
 456		break;
 457	case SHA512_DIGEST_SIZE:
 458		ctx->flags |= SHA_FLAGS_SHA512;
 459		ctx->block_size = SHA512_BLOCK_SIZE;
 460		break;
 461	default:
 462		return -EINVAL;
 
 463	}
 464
 465	ctx->bufcnt = 0;
 466	ctx->digcnt[0] = 0;
 467	ctx->digcnt[1] = 0;
 468	ctx->buflen = SHA_BUFFER_LEN;
 469
 470	return 0;
 471}
 472
 473static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 474{
 475	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 476	u32 valmr = SHA_MR_MODE_AUTO;
 477	unsigned int i, hashsize = 0;
 478
 479	if (likely(dma)) {
 480		if (!dd->caps.has_dma)
 481			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 482		valmr = SHA_MR_MODE_PDC;
 483		if (dd->caps.has_dualbuff)
 484			valmr |= SHA_MR_DUALBUFF;
 485	} else {
 486		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 487	}
 488
 489	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 490	case SHA_FLAGS_SHA1:
 491		valmr |= SHA_MR_ALGO_SHA1;
 492		hashsize = SHA1_DIGEST_SIZE;
 493		break;
 494
 495	case SHA_FLAGS_SHA224:
 496		valmr |= SHA_MR_ALGO_SHA224;
 497		hashsize = SHA256_DIGEST_SIZE;
 498		break;
 499
 500	case SHA_FLAGS_SHA256:
 501		valmr |= SHA_MR_ALGO_SHA256;
 502		hashsize = SHA256_DIGEST_SIZE;
 503		break;
 504
 505	case SHA_FLAGS_SHA384:
 506		valmr |= SHA_MR_ALGO_SHA384;
 507		hashsize = SHA512_DIGEST_SIZE;
 508		break;
 509
 510	case SHA_FLAGS_SHA512:
 511		valmr |= SHA_MR_ALGO_SHA512;
 512		hashsize = SHA512_DIGEST_SIZE;
 513		break;
 514
 515	default:
 516		break;
 517	}
 518
 519	/* Setting CR_FIRST only for the first iteration */
 520	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 521		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 522	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 523		const u32 *hash = (const u32 *)ctx->digest;
 524
 525		/*
 526		 * Restore the hardware context: update the User Initialize
 527		 * Hash Value (UIHV) with the value saved when the latest
 528		 * 'update' operation completed on this very same crypto
 529		 * request.
 530		 */
 531		ctx->flags &= ~SHA_FLAGS_RESTORE;
 532		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 533		for (i = 0; i < hashsize / sizeof(u32); ++i)
 534			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 535		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 536		valmr |= SHA_MR_UIHV;
 537	}
 538	/*
 539	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 540	 * process concurrent requests: the internal registers used to store
 541	 * the hash/digest are still set to the partial digest output values
 542	 * computed during the latest round.
 543	 */
 544
 545	atmel_sha_write(dd, SHA_MR, valmr);
 546}
 547
 548static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 549						atmel_sha_fn_t resume)
 550{
 551	u32 isr = atmel_sha_read(dd, SHA_ISR);
 552
 553	if (unlikely(isr & SHA_INT_DATARDY))
 554		return resume(dd);
 555
 556	dd->resume = resume;
 557	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 558	return -EINPROGRESS;
 559}
 560
 561static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 562			      size_t length, int final)
 563{
 564	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 565	int count, len32;
 566	const u32 *buffer = (const u32 *)buf;
 567
 568	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 569		ctx->digcnt[1], ctx->digcnt[0], length, final);
 570
 571	atmel_sha_write_ctrl(dd, 0);
 572
 573	/* should be non-zero before next lines to disable clocks later */
 574	ctx->digcnt[0] += length;
 575	if (ctx->digcnt[0] < length)
 576		ctx->digcnt[1]++;
 577
 578	if (final)
 579		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 580
 581	len32 = DIV_ROUND_UP(length, sizeof(u32));
 582
 583	dd->flags |= SHA_FLAGS_CPU;
 584
 585	for (count = 0; count < len32; count++)
 586		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 587
 588	return -EINPROGRESS;
 589}
 590
 591static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 592		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 593{
 594	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 595	int len32;
 596
 597	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 598		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 599
 600	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 601	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 602	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 603	atmel_sha_write(dd, SHA_TCR, len32);
 604
 605	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 606	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 607	atmel_sha_write(dd, SHA_TNCR, len32);
 608
 609	atmel_sha_write_ctrl(dd, 1);
 610
 611	/* should be non-zero before next lines to disable clocks later */
 612	ctx->digcnt[0] += length1;
 613	if (ctx->digcnt[0] < length1)
 614		ctx->digcnt[1]++;
 615
 616	if (final)
 617		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 618
 619	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 620
 621	/* Start DMA transfer */
 622	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 623
 624	return -EINPROGRESS;
 625}
 626
 627static void atmel_sha_dma_callback(void *data)
 628{
 629	struct atmel_sha_dev *dd = data;
 630
 631	dd->is_async = true;
 632
 633	/* dma_lch_in - completed - wait DATRDY */
 634	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 635}
 636
 637static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 638		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 639{
 640	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 641	struct dma_async_tx_descriptor	*in_desc;
 642	struct scatterlist sg[2];
 643
 644	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 645		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 646
 647	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 648	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 649
 650	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 651
 652	if (length2) {
 653		sg_init_table(sg, 2);
 654		sg_dma_address(&sg[0]) = dma_addr1;
 655		sg_dma_len(&sg[0]) = length1;
 656		sg_dma_address(&sg[1]) = dma_addr2;
 657		sg_dma_len(&sg[1]) = length2;
 658		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 659			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 660	} else {
 661		sg_init_table(sg, 1);
 662		sg_dma_address(&sg[0]) = dma_addr1;
 663		sg_dma_len(&sg[0]) = length1;
 664		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 665			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 666	}
 667	if (!in_desc)
 668		return atmel_sha_complete(dd, -EINVAL);
 669
 670	in_desc->callback = atmel_sha_dma_callback;
 671	in_desc->callback_param = dd;
 672
 673	atmel_sha_write_ctrl(dd, 1);
 674
 675	/* should be non-zero before next lines to disable clocks later */
 676	ctx->digcnt[0] += length1;
 677	if (ctx->digcnt[0] < length1)
 678		ctx->digcnt[1]++;
 679
 680	if (final)
 681		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 682
 683	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 684
 685	/* Start DMA transfer */
 686	dmaengine_submit(in_desc);
 687	dma_async_issue_pending(dd->dma_lch_in.chan);
 688
 689	return -EINPROGRESS;
 690}
 691
 692static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 693		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 694{
 695	if (dd->caps.has_dma)
 696		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 697				dma_addr2, length2, final);
 698	else
 699		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 700				dma_addr2, length2, final);
 701}
 702
 703static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 704{
 705	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 706	int bufcnt;
 707
 708	atmel_sha_append_sg(ctx);
 709	atmel_sha_fill_padding(ctx, 0);
 710	bufcnt = ctx->bufcnt;
 711	ctx->bufcnt = 0;
 712
 713	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 714}
 715
 716static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 717					struct atmel_sha_reqctx *ctx,
 718					size_t length, int final)
 719{
 720	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 721				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 722	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 723		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 724				ctx->block_size);
 725		return atmel_sha_complete(dd, -EINVAL);
 726	}
 727
 728	ctx->flags &= ~SHA_FLAGS_SG;
 729
 730	/* next call does not fail... so no unmap in the case of error */
 731	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 732}
 733
 734static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 735{
 736	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 737	unsigned int final;
 738	size_t count;
 739
 740	atmel_sha_append_sg(ctx);
 741
 742	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 743
 744	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 745		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 746
 747	if (final)
 748		atmel_sha_fill_padding(ctx, 0);
 749
 750	if (final || (ctx->bufcnt == ctx->buflen)) {
 751		count = ctx->bufcnt;
 752		ctx->bufcnt = 0;
 753		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 754	}
 755
 756	return 0;
 757}
 758
 759static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 760{
 761	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 762	unsigned int length, final, tail;
 763	struct scatterlist *sg;
 764	unsigned int count;
 765
 766	if (!ctx->total)
 767		return 0;
 768
 769	if (ctx->bufcnt || ctx->offset)
 770		return atmel_sha_update_dma_slow(dd);
 771
 772	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 773		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 774
 775	sg = ctx->sg;
 776
 777	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 778		return atmel_sha_update_dma_slow(dd);
 779
 780	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 781		/* size is not ctx->block_size aligned */
 782		return atmel_sha_update_dma_slow(dd);
 783
 784	length = min(ctx->total, sg->length);
 785
 786	if (sg_is_last(sg)) {
 787		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 788			/* not last sg must be ctx->block_size aligned */
 789			tail = length & (ctx->block_size - 1);
 790			length -= tail;
 791		}
 792	}
 793
 794	ctx->total -= length;
 795	ctx->offset = length; /* offset where to start slow */
 796
 797	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 798
 799	/* Add padding */
 800	if (final) {
 801		tail = length & (ctx->block_size - 1);
 802		length -= tail;
 803		ctx->total += tail;
 804		ctx->offset = length; /* offset where to start slow */
 805
 806		sg = ctx->sg;
 807		atmel_sha_append_sg(ctx);
 808
 809		atmel_sha_fill_padding(ctx, length);
 810
 811		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 812			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 813		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 814			dev_err(dd->dev, "dma %zu bytes error\n",
 815				ctx->buflen + ctx->block_size);
 816			return atmel_sha_complete(dd, -EINVAL);
 817		}
 818
 819		if (length == 0) {
 820			ctx->flags &= ~SHA_FLAGS_SG;
 821			count = ctx->bufcnt;
 822			ctx->bufcnt = 0;
 823			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 824					0, final);
 825		} else {
 826			ctx->sg = sg;
 827			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 828				DMA_TO_DEVICE)) {
 829					dev_err(dd->dev, "dma_map_sg  error\n");
 830					return atmel_sha_complete(dd, -EINVAL);
 831			}
 832
 833			ctx->flags |= SHA_FLAGS_SG;
 834
 835			count = ctx->bufcnt;
 836			ctx->bufcnt = 0;
 837			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 838					length, ctx->dma_addr, count, final);
 839		}
 840	}
 841
 842	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 843		dev_err(dd->dev, "dma_map_sg  error\n");
 844		return atmel_sha_complete(dd, -EINVAL);
 845	}
 846
 847	ctx->flags |= SHA_FLAGS_SG;
 848
 849	/* next call does not fail... so no unmap in the case of error */
 850	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 851								0, final);
 852}
 853
 854static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 855{
 856	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 857
 858	if (ctx->flags & SHA_FLAGS_SG) {
 859		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 860		if (ctx->sg->length == ctx->offset) {
 861			ctx->sg = sg_next(ctx->sg);
 862			if (ctx->sg)
 863				ctx->offset = 0;
 864		}
 865		if (ctx->flags & SHA_FLAGS_PAD) {
 866			dma_unmap_single(dd->dev, ctx->dma_addr,
 867				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 868		}
 869	} else {
 870		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 871						ctx->block_size, DMA_TO_DEVICE);
 872	}
 873}
 874
 875static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 876{
 877	struct ahash_request *req = dd->req;
 878	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 879	int err;
 880
 881	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 882		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 883
 884	if (ctx->flags & SHA_FLAGS_CPU)
 885		err = atmel_sha_update_cpu(dd);
 886	else
 887		err = atmel_sha_update_dma_start(dd);
 888
 889	/* wait for dma completion before can take more data */
 890	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 891			err, ctx->digcnt[1], ctx->digcnt[0]);
 892
 893	return err;
 894}
 895
 896static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 897{
 898	struct ahash_request *req = dd->req;
 899	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 900	int err = 0;
 901	int count;
 902
 903	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 904		atmel_sha_fill_padding(ctx, 0);
 905		count = ctx->bufcnt;
 906		ctx->bufcnt = 0;
 907		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 908	}
 909	/* faster to handle last block with cpu */
 910	else {
 911		atmel_sha_fill_padding(ctx, 0);
 912		count = ctx->bufcnt;
 913		ctx->bufcnt = 0;
 914		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 915	}
 916
 917	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 918
 919	return err;
 920}
 921
 922static void atmel_sha_copy_hash(struct ahash_request *req)
 923{
 924	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 925	u32 *hash = (u32 *)ctx->digest;
 926	unsigned int i, hashsize;
 927
 928	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 929	case SHA_FLAGS_SHA1:
 930		hashsize = SHA1_DIGEST_SIZE;
 931		break;
 932
 933	case SHA_FLAGS_SHA224:
 934	case SHA_FLAGS_SHA256:
 935		hashsize = SHA256_DIGEST_SIZE;
 936		break;
 937
 938	case SHA_FLAGS_SHA384:
 939	case SHA_FLAGS_SHA512:
 940		hashsize = SHA512_DIGEST_SIZE;
 941		break;
 942
 943	default:
 944		/* Should not happen... */
 945		return;
 946	}
 947
 948	for (i = 0; i < hashsize / sizeof(u32); ++i)
 949		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 950	ctx->flags |= SHA_FLAGS_RESTORE;
 951}
 952
 953static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 954{
 955	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 956
 957	if (!req->result)
 958		return;
 959
 960	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 961	default:
 962	case SHA_FLAGS_SHA1:
 963		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 964		break;
 965
 966	case SHA_FLAGS_SHA224:
 967		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 968		break;
 969
 970	case SHA_FLAGS_SHA256:
 971		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 972		break;
 973
 974	case SHA_FLAGS_SHA384:
 975		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 976		break;
 977
 978	case SHA_FLAGS_SHA512:
 979		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 980		break;
 981	}
 982}
 983
 984static int atmel_sha_finish(struct ahash_request *req)
 985{
 986	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 987	struct atmel_sha_dev *dd = ctx->dd;
 988
 989	if (ctx->digcnt[0] || ctx->digcnt[1])
 990		atmel_sha_copy_ready_hash(req);
 991
 992	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 993		ctx->digcnt[0], ctx->bufcnt);
 994
 995	return 0;
 996}
 997
 998static void atmel_sha_finish_req(struct ahash_request *req, int err)
 999{
1000	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001	struct atmel_sha_dev *dd = ctx->dd;
1002
1003	if (!err) {
1004		atmel_sha_copy_hash(req);
1005		if (SHA_FLAGS_FINAL & dd->flags)
1006			err = atmel_sha_finish(req);
1007	} else {
1008		ctx->flags |= SHA_FLAGS_ERROR;
1009	}
1010
1011	/* atomic operation is not needed here */
1012	(void)atmel_sha_complete(dd, err);
1013}
1014
1015static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016{
1017	int err;
1018
1019	err = clk_enable(dd->iclk);
1020	if (err)
1021		return err;
1022
1023	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025		dd->flags |= SHA_FLAGS_INIT;
1026	}
1027
1028	return 0;
1029}
1030
1031static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032{
1033	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034}
1035
1036static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037{
1038	int err;
1039
1040	err = atmel_sha_hw_init(dd);
1041	if (err)
1042		return err;
1043
1044	dd->hw_version = atmel_sha_get_version(dd);
1045
1046	dev_info(dd->dev,
1047			"version: 0x%x\n", dd->hw_version);
1048
1049	clk_disable(dd->iclk);
1050
1051	return 0;
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		backlog->complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static void atmel_sha_alg_init(struct ahash_alg *alg)
1255{
1256	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259	alg->halg.base.cra_module = THIS_MODULE;
1260	alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264	alg->init = atmel_sha_init;
1265	alg->update = atmel_sha_update;
1266	alg->final = atmel_sha_final;
1267	alg->finup = atmel_sha_finup;
1268	alg->digest = atmel_sha_digest;
1269	alg->export = atmel_sha_export;
1270	alg->import = atmel_sha_import;
1271}
1272
1273static struct ahash_alg sha_1_256_algs[] = {
1274{
1275	.halg.base.cra_name		= "sha1",
1276	.halg.base.cra_driver_name	= "atmel-sha1",
1277	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278
1279	.halg.digestsize = SHA1_DIGEST_SIZE,
1280},
1281{
1282	.halg.base.cra_name		= "sha256",
1283	.halg.base.cra_driver_name	= "atmel-sha256",
1284	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285
1286	.halg.digestsize = SHA256_DIGEST_SIZE,
1287},
1288};
1289
1290static struct ahash_alg sha_224_alg = {
1291	.halg.base.cra_name		= "sha224",
1292	.halg.base.cra_driver_name	= "atmel-sha224",
1293	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294
1295	.halg.digestsize = SHA224_DIGEST_SIZE,
1296};
1297
1298static struct ahash_alg sha_384_512_algs[] = {
1299{
1300	.halg.base.cra_name		= "sha384",
1301	.halg.base.cra_driver_name	= "atmel-sha384",
1302	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303	.halg.base.cra_alignmask	= 0x3,
1304
1305	.halg.digestsize = SHA384_DIGEST_SIZE,
1306},
1307{
1308	.halg.base.cra_name		= "sha512",
1309	.halg.base.cra_driver_name	= "atmel-sha512",
1310	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1311	.halg.base.cra_alignmask	= 0x3,
1312
1313	.halg.digestsize = SHA512_DIGEST_SIZE,
1314},
1315};
1316
1317static void atmel_sha_queue_task(unsigned long data)
1318{
1319	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1320
1321	atmel_sha_handle_queue(dd, NULL);
1322}
1323
1324static int atmel_sha_done(struct atmel_sha_dev *dd)
1325{
1326	int err = 0;
1327
1328	if (SHA_FLAGS_CPU & dd->flags) {
1329		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1330			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1331			goto finish;
1332		}
1333	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1334		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1335			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1336			atmel_sha_update_dma_stop(dd);
1337		}
1338		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1339			/* hash or semi-hash ready */
1340			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1341						SHA_FLAGS_OUTPUT_READY);
1342			err = atmel_sha_update_dma_start(dd);
1343			if (err != -EINPROGRESS)
1344				goto finish;
1345		}
1346	}
1347	return err;
1348
1349finish:
1350	/* finish curent request */
1351	atmel_sha_finish_req(dd->req, err);
1352
1353	return err;
1354}
1355
1356static void atmel_sha_done_task(unsigned long data)
1357{
1358	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1359
1360	dd->is_async = true;
1361	(void)dd->resume(dd);
1362}
1363
1364static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1365{
1366	struct atmel_sha_dev *sha_dd = dev_id;
1367	u32 reg;
1368
1369	reg = atmel_sha_read(sha_dd, SHA_ISR);
1370	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1371		atmel_sha_write(sha_dd, SHA_IDR, reg);
1372		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1373			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1374			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1375				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1376			tasklet_schedule(&sha_dd->done_task);
1377		} else {
1378			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1379		}
1380		return IRQ_HANDLED;
1381	}
1382
1383	return IRQ_NONE;
1384}
1385
1386
1387/* DMA transfer functions */
1388
1389static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1390					struct scatterlist *sg,
1391					size_t len)
1392{
1393	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1394	struct ahash_request *req = dd->req;
1395	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1396	size_t bs = ctx->block_size;
1397	int nents;
1398
1399	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1400		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1401			return false;
1402
1403		/*
1404		 * This is the last sg, the only one that is allowed to
1405		 * have an unaligned length.
1406		 */
1407		if (len <= sg->length) {
1408			dma->nents = nents + 1;
1409			dma->last_sg_length = sg->length;
1410			sg->length = ALIGN(len, sizeof(u32));
1411			return true;
1412		}
1413
1414		/* All other sg lengths MUST be aligned to the block size. */
1415		if (!IS_ALIGNED(sg->length, bs))
1416			return false;
1417
1418		len -= sg->length;
1419	}
1420
1421	return false;
1422}
1423
1424static void atmel_sha_dma_callback2(void *data)
1425{
1426	struct atmel_sha_dev *dd = data;
1427	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1428	struct scatterlist *sg;
1429	int nents;
1430
1431	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1432
1433	sg = dma->sg;
1434	for (nents = 0; nents < dma->nents - 1; ++nents)
1435		sg = sg_next(sg);
1436	sg->length = dma->last_sg_length;
1437
1438	dd->is_async = true;
1439	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1440}
1441
1442static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1443			       struct scatterlist *src,
1444			       size_t len,
1445			       atmel_sha_fn_t resume)
1446{
1447	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1448	struct dma_slave_config *config = &dma->dma_conf;
1449	struct dma_chan *chan = dma->chan;
1450	struct dma_async_tx_descriptor *desc;
1451	dma_cookie_t cookie;
1452	unsigned int sg_len;
1453	int err;
1454
1455	dd->resume = resume;
1456
1457	/*
1458	 * dma->nents has already been initialized by
1459	 * atmel_sha_dma_check_aligned().
1460	 */
1461	dma->sg = src;
1462	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1463	if (!sg_len) {
1464		err = -ENOMEM;
1465		goto exit;
1466	}
1467
1468	config->src_maxburst = 16;
1469	config->dst_maxburst = 16;
1470	err = dmaengine_slave_config(chan, config);
1471	if (err)
1472		goto unmap_sg;
1473
1474	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1475				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476	if (!desc) {
1477		err = -ENOMEM;
1478		goto unmap_sg;
1479	}
1480
1481	desc->callback = atmel_sha_dma_callback2;
1482	desc->callback_param = dd;
1483	cookie = dmaengine_submit(desc);
1484	err = dma_submit_error(cookie);
1485	if (err)
1486		goto unmap_sg;
1487
1488	dma_async_issue_pending(chan);
1489
1490	return -EINPROGRESS;
1491
1492unmap_sg:
1493	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1494exit:
1495	return atmel_sha_complete(dd, err);
1496}
1497
1498
1499/* CPU transfer functions */
1500
1501static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1502{
1503	struct ahash_request *req = dd->req;
1504	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1505	const u32 *words = (const u32 *)ctx->buffer;
1506	size_t i, num_words;
1507	u32 isr, din, din_inc;
1508
1509	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1510	for (;;) {
1511		/* Write data into the Input Data Registers. */
1512		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1513		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1514			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1515
1516		ctx->offset += ctx->bufcnt;
1517		ctx->total -= ctx->bufcnt;
1518
1519		if (!ctx->total)
1520			break;
1521
1522		/*
1523		 * Prepare next block:
1524		 * Fill ctx->buffer now with the next data to be written into
1525		 * IDATARx: it gives time for the SHA hardware to process
1526		 * the current data so the SHA_INT_DATARDY flag might be set
1527		 * in SHA_ISR when polling this register at the beginning of
1528		 * the next loop.
1529		 */
1530		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1531		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1532					 ctx->offset, ctx->bufcnt, 0);
1533
1534		/* Wait for hardware to be ready again. */
1535		isr = atmel_sha_read(dd, SHA_ISR);
1536		if (!(isr & SHA_INT_DATARDY)) {
1537			/* Not ready yet. */
1538			dd->resume = atmel_sha_cpu_transfer;
1539			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1540			return -EINPROGRESS;
1541		}
1542	}
1543
1544	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1545		return dd->cpu_transfer_complete(dd);
1546
1547	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1548}
1549
1550static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1551			       struct scatterlist *sg,
1552			       unsigned int len,
1553			       bool idatar0_only,
1554			       bool wait_data_ready,
1555			       atmel_sha_fn_t resume)
1556{
1557	struct ahash_request *req = dd->req;
1558	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1559
1560	if (!len)
1561		return resume(dd);
1562
1563	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1564
1565	if (idatar0_only)
1566		ctx->flags |= SHA_FLAGS_IDATAR0;
1567
1568	if (wait_data_ready)
1569		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1570
1571	ctx->sg = sg;
1572	ctx->total = len;
1573	ctx->offset = 0;
1574
1575	/* Prepare the first block to be written. */
1576	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1577	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1578				 ctx->offset, ctx->bufcnt, 0);
1579
1580	dd->cpu_transfer_complete = resume;
1581	return atmel_sha_cpu_transfer(dd);
1582}
1583
1584static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1585			      const void *data, unsigned int datalen,
1586			      bool auto_padding,
1587			      atmel_sha_fn_t resume)
1588{
1589	struct ahash_request *req = dd->req;
1590	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1591	u32 msglen = (auto_padding) ? datalen : 0;
1592	u32 mr = SHA_MR_MODE_AUTO;
1593
1594	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1595		return atmel_sha_complete(dd, -EINVAL);
1596
1597	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1598	atmel_sha_write(dd, SHA_MR, mr);
1599	atmel_sha_write(dd, SHA_MSR, msglen);
1600	atmel_sha_write(dd, SHA_BCR, msglen);
1601	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1602
1603	sg_init_one(&dd->tmp, data, datalen);
1604	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1605}
1606
1607
1608/* hmac functions */
1609
1610struct atmel_sha_hmac_key {
1611	bool			valid;
1612	unsigned int		keylen;
1613	u8			buffer[SHA512_BLOCK_SIZE];
1614	u8			*keydup;
1615};
1616
1617static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1618{
1619	memset(hkey, 0, sizeof(*hkey));
1620}
1621
1622static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1623{
1624	kfree(hkey->keydup);
1625	memset(hkey, 0, sizeof(*hkey));
1626}
1627
1628static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1629					 const u8 *key,
1630					 unsigned int keylen)
1631{
1632	atmel_sha_hmac_key_release(hkey);
1633
1634	if (keylen > sizeof(hkey->buffer)) {
1635		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1636		if (!hkey->keydup)
1637			return -ENOMEM;
1638
1639	} else {
1640		memcpy(hkey->buffer, key, keylen);
1641	}
1642
1643	hkey->valid = true;
1644	hkey->keylen = keylen;
1645	return 0;
1646}
1647
1648static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1649					  const u8 **key,
1650					  unsigned int *keylen)
1651{
1652	if (!hkey->valid)
1653		return false;
1654
1655	*keylen = hkey->keylen;
1656	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1657	return true;
1658}
1659
1660
1661struct atmel_sha_hmac_ctx {
1662	struct atmel_sha_ctx	base;
1663
1664	struct atmel_sha_hmac_key	hkey;
1665	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667	atmel_sha_fn_t		resume;
1668};
1669
1670static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1671				atmel_sha_fn_t resume);
1672static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1673				      const u8 *key, unsigned int keylen);
1674static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1675static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1676static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1677static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1678
1679static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1680static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1681static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1682static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1683
1684static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1685				atmel_sha_fn_t resume)
1686{
1687	struct ahash_request *req = dd->req;
1688	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1689	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1690	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1691	unsigned int keylen;
1692	const u8 *key;
1693	size_t bs;
1694
1695	hmac->resume = resume;
1696	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1697	case SHA_FLAGS_SHA1:
1698		ctx->block_size = SHA1_BLOCK_SIZE;
1699		ctx->hash_size = SHA1_DIGEST_SIZE;
1700		break;
1701
1702	case SHA_FLAGS_SHA224:
1703		ctx->block_size = SHA224_BLOCK_SIZE;
1704		ctx->hash_size = SHA256_DIGEST_SIZE;
1705		break;
1706
1707	case SHA_FLAGS_SHA256:
1708		ctx->block_size = SHA256_BLOCK_SIZE;
1709		ctx->hash_size = SHA256_DIGEST_SIZE;
1710		break;
1711
1712	case SHA_FLAGS_SHA384:
1713		ctx->block_size = SHA384_BLOCK_SIZE;
1714		ctx->hash_size = SHA512_DIGEST_SIZE;
1715		break;
1716
1717	case SHA_FLAGS_SHA512:
1718		ctx->block_size = SHA512_BLOCK_SIZE;
1719		ctx->hash_size = SHA512_DIGEST_SIZE;
1720		break;
1721
1722	default:
1723		return atmel_sha_complete(dd, -EINVAL);
1724	}
1725	bs = ctx->block_size;
1726
1727	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1728		return resume(dd);
1729
1730	/* Compute K' from K. */
1731	if (unlikely(keylen > bs))
1732		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1733
1734	/* Prepare ipad. */
1735	memcpy((u8 *)hmac->ipad, key, keylen);
1736	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1737	return atmel_sha_hmac_compute_ipad_hash(dd);
1738}
1739
1740static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1741				      const u8 *key, unsigned int keylen)
1742{
1743	return atmel_sha_cpu_hash(dd, key, keylen, true,
1744				  atmel_sha_hmac_prehash_key_done);
1745}
1746
1747static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1748{
1749	struct ahash_request *req = dd->req;
1750	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1752	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1753	size_t ds = crypto_ahash_digestsize(tfm);
1754	size_t bs = ctx->block_size;
1755	size_t i, num_words = ds / sizeof(u32);
1756
1757	/* Prepare ipad. */
1758	for (i = 0; i < num_words; ++i)
1759		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1760	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1761	return atmel_sha_hmac_compute_ipad_hash(dd);
1762}
1763
1764static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1765{
1766	struct ahash_request *req = dd->req;
1767	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1768	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1769	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1770	size_t bs = ctx->block_size;
1771	size_t i, num_words = bs / sizeof(u32);
1772
1773	memcpy(hmac->opad, hmac->ipad, bs);
1774	for (i = 0; i < num_words; ++i) {
1775		hmac->ipad[i] ^= 0x36363636;
1776		hmac->opad[i] ^= 0x5c5c5c5c;
1777	}
1778
1779	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780				  atmel_sha_hmac_compute_opad_hash);
1781}
1782
1783static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784{
1785	struct ahash_request *req = dd->req;
1786	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789	size_t bs = ctx->block_size;
1790	size_t hs = ctx->hash_size;
1791	size_t i, num_words = hs / sizeof(u32);
1792
1793	for (i = 0; i < num_words; ++i)
1794		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796				  atmel_sha_hmac_setup_done);
1797}
1798
1799static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800{
1801	struct ahash_request *req = dd->req;
1802	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805	size_t hs = ctx->hash_size;
1806	size_t i, num_words = hs / sizeof(u32);
1807
1808	for (i = 0; i < num_words; ++i)
1809		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810	atmel_sha_hmac_key_release(&hmac->hkey);
1811	return hmac->resume(dd);
1812}
1813
1814static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815{
1816	struct ahash_request *req = dd->req;
1817	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818	int err;
1819
1820	err = atmel_sha_hw_init(dd);
1821	if (err)
1822		return atmel_sha_complete(dd, err);
1823
1824	switch (ctx->op) {
1825	case SHA_OP_INIT:
1826		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827		break;
1828
1829	case SHA_OP_UPDATE:
1830		dd->resume = atmel_sha_done;
1831		err = atmel_sha_update_req(dd);
1832		break;
1833
1834	case SHA_OP_FINAL:
1835		dd->resume = atmel_sha_hmac_final;
1836		err = atmel_sha_final_req(dd);
1837		break;
1838
1839	case SHA_OP_DIGEST:
1840		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841		break;
1842
1843	default:
1844		return atmel_sha_complete(dd, -EINVAL);
1845	}
1846
1847	return err;
1848}
1849
1850static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851				 unsigned int keylen)
1852{
1853	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854
1855	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856}
1857
1858static int atmel_sha_hmac_init(struct ahash_request *req)
1859{
1860	int err;
1861
1862	err = atmel_sha_init(req);
1863	if (err)
1864		return err;
1865
1866	return atmel_sha_enqueue(req, SHA_OP_INIT);
1867}
1868
1869static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870{
1871	struct ahash_request *req = dd->req;
1872	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875	size_t bs = ctx->block_size;
1876	size_t hs = ctx->hash_size;
1877
1878	ctx->bufcnt = 0;
1879	ctx->digcnt[0] = bs;
1880	ctx->digcnt[1] = 0;
1881	ctx->flags |= SHA_FLAGS_RESTORE;
1882	memcpy(ctx->digest, hmac->ipad, hs);
1883	return atmel_sha_complete(dd, 0);
1884}
1885
1886static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887{
1888	struct ahash_request *req = dd->req;
1889	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892	u32 *digest = (u32 *)ctx->digest;
1893	size_t ds = crypto_ahash_digestsize(tfm);
1894	size_t bs = ctx->block_size;
1895	size_t hs = ctx->hash_size;
1896	size_t i, num_words;
1897	u32 mr;
1898
1899	/* Save d = SHA((K' + ipad) | msg). */
1900	num_words = ds / sizeof(u32);
1901	for (i = 0; i < num_words; ++i)
1902		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903
1904	/* Restore context to finish computing SHA((K' + opad) | d). */
1905	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906	num_words = hs / sizeof(u32);
1907	for (i = 0; i < num_words; ++i)
1908		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909
1910	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912	atmel_sha_write(dd, SHA_MR, mr);
1913	atmel_sha_write(dd, SHA_MSR, bs + ds);
1914	atmel_sha_write(dd, SHA_BCR, ds);
1915	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916
1917	sg_init_one(&dd->tmp, digest, ds);
1918	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919				   atmel_sha_hmac_final_done);
1920}
1921
1922static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923{
1924	/*
1925	 * req->result might not be sizeof(u32) aligned, so copy the
1926	 * digest into ctx->digest[] before memcpy() the data into
1927	 * req->result.
1928	 */
1929	atmel_sha_copy_hash(dd->req);
1930	atmel_sha_copy_ready_hash(dd->req);
1931	return atmel_sha_complete(dd, 0);
1932}
1933
1934static int atmel_sha_hmac_digest(struct ahash_request *req)
1935{
1936	int err;
1937
1938	err = atmel_sha_init(req);
1939	if (err)
1940		return err;
1941
1942	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943}
1944
1945static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946{
1947	struct ahash_request *req = dd->req;
1948	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951	size_t hs = ctx->hash_size;
1952	size_t i, num_words = hs / sizeof(u32);
1953	bool use_dma = false;
1954	u32 mr;
1955
1956	/* Special case for empty message. */
1957	if (!req->nbytes)
1958		return atmel_sha_complete(dd, -EINVAL); // TODO:
1959
1960	/* Check DMA threshold and alignment. */
1961	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1962	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1963		use_dma = true;
1964
1965	/* Write both initial hash values to compute a HMAC. */
1966	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1967	for (i = 0; i < num_words; ++i)
1968		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1969
1970	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1971	for (i = 0; i < num_words; ++i)
1972		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1973
1974	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1975	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1976	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1977	if (use_dma)
1978		mr |= SHA_MR_MODE_IDATAR0;
1979	else
1980		mr |= SHA_MR_MODE_AUTO;
1981	atmel_sha_write(dd, SHA_MR, mr);
1982
1983	atmel_sha_write(dd, SHA_MSR, req->nbytes);
1984	atmel_sha_write(dd, SHA_BCR, req->nbytes);
1985
1986	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987
1988	/* Process data. */
1989	if (use_dma)
1990		return atmel_sha_dma_start(dd, req->src, req->nbytes,
1991					   atmel_sha_hmac_final_done);
1992
1993	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1994				   atmel_sha_hmac_final_done);
1995}
1996
1997static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1998{
1999	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2000
2001	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2002				 sizeof(struct atmel_sha_reqctx));
2003	hmac->base.start = atmel_sha_hmac_start;
2004	atmel_sha_hmac_key_init(&hmac->hkey);
2005
2006	return 0;
2007}
2008
2009static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2010{
2011	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2012
2013	atmel_sha_hmac_key_release(&hmac->hkey);
2014}
2015
2016static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2017{
2018	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2019	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2020	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2021	alg->halg.base.cra_module = THIS_MODULE;
2022	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2023	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2024
2025	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2026
2027	alg->init = atmel_sha_hmac_init;
2028	alg->update = atmel_sha_update;
2029	alg->final = atmel_sha_final;
2030	alg->digest = atmel_sha_hmac_digest;
2031	alg->setkey = atmel_sha_hmac_setkey;
2032	alg->export = atmel_sha_export;
2033	alg->import = atmel_sha_import;
2034}
2035
2036static struct ahash_alg sha_hmac_algs[] = {
2037{
2038	.halg.base.cra_name		= "hmac(sha1)",
2039	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2040	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2041
2042	.halg.digestsize = SHA1_DIGEST_SIZE,
2043},
2044{
2045	.halg.base.cra_name		= "hmac(sha224)",
2046	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2047	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2048
2049	.halg.digestsize = SHA224_DIGEST_SIZE,
2050},
2051{
2052	.halg.base.cra_name		= "hmac(sha256)",
2053	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2054	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2055
2056	.halg.digestsize = SHA256_DIGEST_SIZE,
2057},
2058{
2059	.halg.base.cra_name		= "hmac(sha384)",
2060	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2061	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2062
2063	.halg.digestsize = SHA384_DIGEST_SIZE,
2064},
2065{
2066	.halg.base.cra_name		= "hmac(sha512)",
2067	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2068	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2069
2070	.halg.digestsize = SHA512_DIGEST_SIZE,
2071},
2072};
2073
2074#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2075/* authenc functions */
2076
2077static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2078static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2079static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2080
2081
2082struct atmel_sha_authenc_ctx {
2083	struct crypto_ahash	*tfm;
2084};
2085
2086struct atmel_sha_authenc_reqctx {
2087	struct atmel_sha_reqctx	base;
2088
2089	atmel_aes_authenc_fn_t	cb;
2090	struct atmel_aes_dev	*aes_dev;
2091
2092	/* _init() parameters. */
2093	struct scatterlist	*assoc;
2094	u32			assoclen;
2095	u32			textlen;
2096
2097	/* _final() parameters. */
2098	u32			*digest;
2099	unsigned int		digestlen;
2100};
2101
2102static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2103				       int err)
2104{
2105	struct ahash_request *req = areq->data;
2106	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2107
2108	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2109}
2110
2111static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2112{
2113	struct ahash_request *req = dd->req;
2114	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2115	int err;
2116
2117	/*
2118	 * Force atmel_sha_complete() to call req->base.complete(), ie
2119	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2120	 */
2121	dd->force_complete = true;
2122
2123	err = atmel_sha_hw_init(dd);
2124	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2125}
2126
2127bool atmel_sha_authenc_is_ready(void)
2128{
2129	struct atmel_sha_ctx dummy;
2130
2131	dummy.dd = NULL;
2132	return (atmel_sha_find_dev(&dummy) != NULL);
2133}
2134EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2135
2136unsigned int atmel_sha_authenc_get_reqsize(void)
2137{
2138	return sizeof(struct atmel_sha_authenc_reqctx);
2139}
2140EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2141
2142struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2143{
2144	struct atmel_sha_authenc_ctx *auth;
2145	struct crypto_ahash *tfm;
2146	struct atmel_sha_ctx *tctx;
2147	const char *name;
2148	int err = -EINVAL;
2149
2150	switch (mode & SHA_FLAGS_MODE_MASK) {
2151	case SHA_FLAGS_HMAC_SHA1:
2152		name = "atmel-hmac-sha1";
2153		break;
2154
2155	case SHA_FLAGS_HMAC_SHA224:
2156		name = "atmel-hmac-sha224";
2157		break;
2158
2159	case SHA_FLAGS_HMAC_SHA256:
2160		name = "atmel-hmac-sha256";
2161		break;
2162
2163	case SHA_FLAGS_HMAC_SHA384:
2164		name = "atmel-hmac-sha384";
2165		break;
2166
2167	case SHA_FLAGS_HMAC_SHA512:
2168		name = "atmel-hmac-sha512";
2169		break;
2170
2171	default:
2172		goto error;
2173	}
2174
2175	tfm = crypto_alloc_ahash(name, 0, 0);
2176	if (IS_ERR(tfm)) {
2177		err = PTR_ERR(tfm);
2178		goto error;
2179	}
2180	tctx = crypto_ahash_ctx(tfm);
2181	tctx->start = atmel_sha_authenc_start;
2182	tctx->flags = mode;
2183
2184	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2185	if (!auth) {
2186		err = -ENOMEM;
2187		goto err_free_ahash;
2188	}
2189	auth->tfm = tfm;
2190
2191	return auth;
2192
2193err_free_ahash:
2194	crypto_free_ahash(tfm);
2195error:
2196	return ERR_PTR(err);
2197}
2198EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2199
2200void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2201{
2202	if (auth)
2203		crypto_free_ahash(auth->tfm);
2204	kfree(auth);
2205}
2206EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2207
2208int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2209			     const u8 *key, unsigned int keylen, u32 flags)
2210{
2211	struct crypto_ahash *tfm = auth->tfm;
2212
2213	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2214	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2215	return crypto_ahash_setkey(tfm, key, keylen);
2216}
2217EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2218
2219int atmel_sha_authenc_schedule(struct ahash_request *req,
2220			       struct atmel_sha_authenc_ctx *auth,
2221			       atmel_aes_authenc_fn_t cb,
2222			       struct atmel_aes_dev *aes_dev)
2223{
2224	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2225	struct atmel_sha_reqctx *ctx = &authctx->base;
2226	struct crypto_ahash *tfm = auth->tfm;
2227	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2228	struct atmel_sha_dev *dd;
2229
2230	/* Reset request context (MUST be done first). */
2231	memset(authctx, 0, sizeof(*authctx));
2232
2233	/* Get SHA device. */
2234	dd = atmel_sha_find_dev(tctx);
2235	if (!dd)
2236		return cb(aes_dev, -ENODEV, false);
2237
2238	/* Init request context. */
2239	ctx->dd = dd;
2240	ctx->buflen = SHA_BUFFER_LEN;
2241	authctx->cb = cb;
2242	authctx->aes_dev = aes_dev;
2243	ahash_request_set_tfm(req, tfm);
2244	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2245
2246	return atmel_sha_handle_queue(dd, req);
2247}
2248EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2249
2250int atmel_sha_authenc_init(struct ahash_request *req,
2251			   struct scatterlist *assoc, unsigned int assoclen,
2252			   unsigned int textlen,
2253			   atmel_aes_authenc_fn_t cb,
2254			   struct atmel_aes_dev *aes_dev)
2255{
2256	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2257	struct atmel_sha_reqctx *ctx = &authctx->base;
2258	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2259	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2260	struct atmel_sha_dev *dd = ctx->dd;
2261
2262	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2263		return atmel_sha_complete(dd, -EINVAL);
2264
2265	authctx->cb = cb;
2266	authctx->aes_dev = aes_dev;
2267	authctx->assoc = assoc;
2268	authctx->assoclen = assoclen;
2269	authctx->textlen = textlen;
2270
2271	ctx->flags = hmac->base.flags;
2272	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2273}
2274EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2275
2276static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2277{
2278	struct ahash_request *req = dd->req;
2279	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2280	struct atmel_sha_reqctx *ctx = &authctx->base;
2281	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2283	size_t hs = ctx->hash_size;
2284	size_t i, num_words = hs / sizeof(u32);
2285	u32 mr, msg_size;
2286
2287	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2288	for (i = 0; i < num_words; ++i)
2289		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2290
2291	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2292	for (i = 0; i < num_words; ++i)
2293		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2294
2295	mr = (SHA_MR_MODE_IDATAR0 |
2296	      SHA_MR_HMAC |
2297	      SHA_MR_DUALBUFF);
2298	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2299	atmel_sha_write(dd, SHA_MR, mr);
2300
2301	msg_size = authctx->assoclen + authctx->textlen;
2302	atmel_sha_write(dd, SHA_MSR, msg_size);
2303	atmel_sha_write(dd, SHA_BCR, msg_size);
2304
2305	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2306
2307	/* Process assoc data. */
2308	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2309				   true, false,
2310				   atmel_sha_authenc_init_done);
2311}
2312
2313static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2314{
2315	struct ahash_request *req = dd->req;
2316	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2317
2318	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2319}
2320
2321int atmel_sha_authenc_final(struct ahash_request *req,
2322			    u32 *digest, unsigned int digestlen,
2323			    atmel_aes_authenc_fn_t cb,
2324			    struct atmel_aes_dev *aes_dev)
2325{
2326	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2327	struct atmel_sha_reqctx *ctx = &authctx->base;
2328	struct atmel_sha_dev *dd = ctx->dd;
2329
2330	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2331	case SHA_FLAGS_SHA1:
2332		authctx->digestlen = SHA1_DIGEST_SIZE;
2333		break;
2334
2335	case SHA_FLAGS_SHA224:
2336		authctx->digestlen = SHA224_DIGEST_SIZE;
2337		break;
2338
2339	case SHA_FLAGS_SHA256:
2340		authctx->digestlen = SHA256_DIGEST_SIZE;
2341		break;
2342
2343	case SHA_FLAGS_SHA384:
2344		authctx->digestlen = SHA384_DIGEST_SIZE;
2345		break;
2346
2347	case SHA_FLAGS_SHA512:
2348		authctx->digestlen = SHA512_DIGEST_SIZE;
2349		break;
2350
2351	default:
2352		return atmel_sha_complete(dd, -EINVAL);
2353	}
2354	if (authctx->digestlen > digestlen)
2355		authctx->digestlen = digestlen;
2356
2357	authctx->cb = cb;
2358	authctx->aes_dev = aes_dev;
2359	authctx->digest = digest;
2360	return atmel_sha_wait_for_data_ready(dd,
2361					     atmel_sha_authenc_final_done);
2362}
2363EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2364
2365static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2366{
2367	struct ahash_request *req = dd->req;
2368	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2369	size_t i, num_words = authctx->digestlen / sizeof(u32);
2370
2371	for (i = 0; i < num_words; ++i)
2372		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2373
2374	return atmel_sha_complete(dd, 0);
2375}
2376
2377void atmel_sha_authenc_abort(struct ahash_request *req)
2378{
2379	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2380	struct atmel_sha_reqctx *ctx = &authctx->base;
2381	struct atmel_sha_dev *dd = ctx->dd;
2382
2383	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2384	dd->is_async = false;
2385	dd->force_complete = false;
2386	(void)atmel_sha_complete(dd, 0);
2387}
2388EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2389
2390#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2391
2392
2393static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2394{
2395	int i;
2396
2397	if (dd->caps.has_hmac)
2398		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2399			crypto_unregister_ahash(&sha_hmac_algs[i]);
2400
2401	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2402		crypto_unregister_ahash(&sha_1_256_algs[i]);
2403
2404	if (dd->caps.has_sha224)
2405		crypto_unregister_ahash(&sha_224_alg);
2406
2407	if (dd->caps.has_sha_384_512) {
2408		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2409			crypto_unregister_ahash(&sha_384_512_algs[i]);
2410	}
2411}
2412
2413static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2414{
2415	int err, i, j;
2416
2417	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2418		atmel_sha_alg_init(&sha_1_256_algs[i]);
2419
2420		err = crypto_register_ahash(&sha_1_256_algs[i]);
2421		if (err)
2422			goto err_sha_1_256_algs;
2423	}
2424
2425	if (dd->caps.has_sha224) {
2426		atmel_sha_alg_init(&sha_224_alg);
2427
2428		err = crypto_register_ahash(&sha_224_alg);
2429		if (err)
2430			goto err_sha_224_algs;
2431	}
2432
2433	if (dd->caps.has_sha_384_512) {
2434		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2435			atmel_sha_alg_init(&sha_384_512_algs[i]);
2436
2437			err = crypto_register_ahash(&sha_384_512_algs[i]);
2438			if (err)
2439				goto err_sha_384_512_algs;
2440		}
2441	}
2442
2443	if (dd->caps.has_hmac) {
2444		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2445			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2446
2447			err = crypto_register_ahash(&sha_hmac_algs[i]);
2448			if (err)
2449				goto err_sha_hmac_algs;
2450		}
2451	}
2452
2453	return 0;
2454
2455	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2456err_sha_hmac_algs:
2457	for (j = 0; j < i; j++)
2458		crypto_unregister_ahash(&sha_hmac_algs[j]);
2459	i = ARRAY_SIZE(sha_384_512_algs);
2460err_sha_384_512_algs:
2461	for (j = 0; j < i; j++)
2462		crypto_unregister_ahash(&sha_384_512_algs[j]);
2463	crypto_unregister_ahash(&sha_224_alg);
2464err_sha_224_algs:
2465	i = ARRAY_SIZE(sha_1_256_algs);
2466err_sha_1_256_algs:
2467	for (j = 0; j < i; j++)
2468		crypto_unregister_ahash(&sha_1_256_algs[j]);
2469
2470	return err;
2471}
2472
2473static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2474{
2475	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2476	if (IS_ERR(dd->dma_lch_in.chan)) {
2477		dev_err(dd->dev, "DMA channel is not available\n");
2478		return PTR_ERR(dd->dma_lch_in.chan);
2479	}
2480
2481	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2482		SHA_REG_DIN(0);
2483	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2484	dd->dma_lch_in.dma_conf.src_addr_width =
2485		DMA_SLAVE_BUSWIDTH_4_BYTES;
2486	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2487	dd->dma_lch_in.dma_conf.dst_addr_width =
2488		DMA_SLAVE_BUSWIDTH_4_BYTES;
2489	dd->dma_lch_in.dma_conf.device_fc = false;
2490
2491	return 0;
2492}
2493
2494static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2495{
2496	dma_release_channel(dd->dma_lch_in.chan);
2497}
2498
2499static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2500{
2501
2502	dd->caps.has_dma = 0;
2503	dd->caps.has_dualbuff = 0;
2504	dd->caps.has_sha224 = 0;
2505	dd->caps.has_sha_384_512 = 0;
2506	dd->caps.has_uihv = 0;
2507	dd->caps.has_hmac = 0;
2508
2509	/* keep only major version number */
2510	switch (dd->hw_version & 0xff0) {
2511	case 0x700:
2512	case 0x510:
2513		dd->caps.has_dma = 1;
2514		dd->caps.has_dualbuff = 1;
2515		dd->caps.has_sha224 = 1;
2516		dd->caps.has_sha_384_512 = 1;
2517		dd->caps.has_uihv = 1;
2518		dd->caps.has_hmac = 1;
2519		break;
2520	case 0x420:
2521		dd->caps.has_dma = 1;
2522		dd->caps.has_dualbuff = 1;
2523		dd->caps.has_sha224 = 1;
2524		dd->caps.has_sha_384_512 = 1;
2525		dd->caps.has_uihv = 1;
2526		break;
2527	case 0x410:
2528		dd->caps.has_dma = 1;
2529		dd->caps.has_dualbuff = 1;
2530		dd->caps.has_sha224 = 1;
2531		dd->caps.has_sha_384_512 = 1;
2532		break;
2533	case 0x400:
2534		dd->caps.has_dma = 1;
2535		dd->caps.has_dualbuff = 1;
2536		dd->caps.has_sha224 = 1;
2537		break;
2538	case 0x320:
2539		break;
2540	default:
2541		dev_warn(dd->dev,
2542				"Unmanaged sha version, set minimum capabilities\n");
2543		break;
2544	}
2545}
2546
2547#if defined(CONFIG_OF)
2548static const struct of_device_id atmel_sha_dt_ids[] = {
2549	{ .compatible = "atmel,at91sam9g46-sha" },
2550	{ /* sentinel */ }
2551};
2552
2553MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554#endif
2555
2556static int atmel_sha_probe(struct platform_device *pdev)
2557{
2558	struct atmel_sha_dev *sha_dd;
2559	struct device *dev = &pdev->dev;
2560	struct resource *sha_res;
2561	int err;
2562
2563	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564	if (!sha_dd)
2565		return -ENOMEM;
2566
2567	sha_dd->dev = dev;
2568
2569	platform_set_drvdata(pdev, sha_dd);
2570
2571	INIT_LIST_HEAD(&sha_dd->list);
2572	spin_lock_init(&sha_dd->lock);
2573
2574	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575					(unsigned long)sha_dd);
2576	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577					(unsigned long)sha_dd);
2578
2579	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580
2581	/* Get the base address */
2582	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583	if (!sha_res) {
2584		dev_err(dev, "no MEM resource info\n");
2585		err = -ENODEV;
2586		goto err_tasklet_kill;
2587	}
2588	sha_dd->phys_base = sha_res->start;
2589
2590	/* Get the IRQ */
2591	sha_dd->irq = platform_get_irq(pdev,  0);
2592	if (sha_dd->irq < 0) {
2593		err = sha_dd->irq;
2594		goto err_tasklet_kill;
2595	}
2596
2597	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598			       IRQF_SHARED, "atmel-sha", sha_dd);
2599	if (err) {
2600		dev_err(dev, "unable to request sha irq.\n");
2601		goto err_tasklet_kill;
2602	}
2603
2604	/* Initializing the clock */
2605	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606	if (IS_ERR(sha_dd->iclk)) {
2607		dev_err(dev, "clock initialization failed.\n");
2608		err = PTR_ERR(sha_dd->iclk);
2609		goto err_tasklet_kill;
2610	}
2611
2612	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613	if (IS_ERR(sha_dd->io_base)) {
2614		dev_err(dev, "can't ioremap\n");
2615		err = PTR_ERR(sha_dd->io_base);
2616		goto err_tasklet_kill;
2617	}
2618
2619	err = clk_prepare(sha_dd->iclk);
2620	if (err)
2621		goto err_tasklet_kill;
2622
2623	err = atmel_sha_hw_version_init(sha_dd);
2624	if (err)
2625		goto err_iclk_unprepare;
2626
2627	atmel_sha_get_cap(sha_dd);
2628
2629	if (sha_dd->caps.has_dma) {
2630		err = atmel_sha_dma_init(sha_dd);
2631		if (err)
2632			goto err_iclk_unprepare;
2633
2634		dev_info(dev, "using %s for DMA transfers\n",
2635				dma_chan_name(sha_dd->dma_lch_in.chan));
2636	}
2637
2638	spin_lock(&atmel_sha.lock);
2639	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640	spin_unlock(&atmel_sha.lock);
2641
2642	err = atmel_sha_register_algs(sha_dd);
2643	if (err)
2644		goto err_algs;
2645
2646	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649
2650	return 0;
2651
2652err_algs:
2653	spin_lock(&atmel_sha.lock);
2654	list_del(&sha_dd->list);
2655	spin_unlock(&atmel_sha.lock);
2656	if (sha_dd->caps.has_dma)
2657		atmel_sha_dma_cleanup(sha_dd);
2658err_iclk_unprepare:
2659	clk_unprepare(sha_dd->iclk);
2660err_tasklet_kill:
2661	tasklet_kill(&sha_dd->queue_task);
2662	tasklet_kill(&sha_dd->done_task);
2663
2664	return err;
2665}
2666
2667static int atmel_sha_remove(struct platform_device *pdev)
2668{
2669	struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2670
 
 
 
2671	spin_lock(&atmel_sha.lock);
2672	list_del(&sha_dd->list);
2673	spin_unlock(&atmel_sha.lock);
2674
2675	atmel_sha_unregister_algs(sha_dd);
2676
2677	tasklet_kill(&sha_dd->queue_task);
2678	tasklet_kill(&sha_dd->done_task);
2679
2680	if (sha_dd->caps.has_dma)
2681		atmel_sha_dma_cleanup(sha_dd);
2682
2683	clk_unprepare(sha_dd->iclk);
2684
2685	return 0;
2686}
2687
2688static struct platform_driver atmel_sha_driver = {
2689	.probe		= atmel_sha_probe,
2690	.remove		= atmel_sha_remove,
2691	.driver		= {
2692		.name	= "atmel_sha",
2693		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2694	},
2695};
2696
2697module_platform_driver(atmel_sha_driver);
2698
2699MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2700MODULE_LICENSE("GPL v2");
2701MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");