Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/init.h>
  3#include <linux/clocksource.h>
  4#include <linux/clockchips.h>
  5#include <linux/interrupt.h>
  6#include <linux/irq.h>
  7
  8#include <linux/clk.h>
  9#include <linux/delay.h>
 10#include <linux/err.h>
 11#include <linux/ioport.h>
 12#include <linux/io.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/sched_clock.h>
 16#include <linux/syscore_ops.h>
 17#include <soc/at91/atmel_tcb.h>
 18
 19
 20/*
 21 * We're configured to use a specific TC block, one that's not hooked
 22 * up to external hardware, to provide a time solution:
 23 *
 24 *   - Two channels combine to create a free-running 32 bit counter
 25 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 26 *     resolution better than 200 nsec).
 27 *   - Some chips support 32 bit counter. A single channel is used for
 28 *     this 32 bit free-running counter. the second channel is not used.
 29 *
 30 *   - The third channel may be used to provide a clockevent source, used in
 31 *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
 32 *   and can handle delays of up to two seconds. For 32-bit counters, it runs at
 33 *   the same rate as the clocksource
 34 *
 35 * REVISIT behavior during system suspend states... we should disable
 36 * all clocks and save the power.  Easily done for clockevent devices,
 37 * but clocksources won't necessarily get the needed notifications.
 38 * For deeper system sleep states, this will be mandatory...
 39 */
 40
 41static void __iomem *tcaddr;
 42static struct
 43{
 44	u32 cmr;
 45	u32 imr;
 46	u32 rc;
 47	bool clken;
 48} tcb_cache[3];
 49static u32 bmr_cache;
 50
 51static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
 52
 53static u64 tc_get_cycles(struct clocksource *cs)
 54{
 55	unsigned long	flags;
 56	u32		lower, upper;
 57
 58	raw_local_irq_save(flags);
 59	do {
 60		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
 61		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 62	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
 63
 64	raw_local_irq_restore(flags);
 65	return (upper << 16) | lower;
 66}
 67
 68static u64 tc_get_cycles32(struct clocksource *cs)
 69{
 70	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 71}
 72
 73static void tc_clksrc_suspend(struct clocksource *cs)
 74{
 75	int i;
 76
 77	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 78		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
 79		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
 80		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
 81		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
 82					ATMEL_TC_CLKSTA);
 83	}
 84
 85	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
 86}
 87
 88static void tc_clksrc_resume(struct clocksource *cs)
 89{
 90	int i;
 91
 92	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 93		/* Restore registers for the channel, RA and RB are not used  */
 94		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
 95		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
 96		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
 97		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
 98		/* Disable all the interrupts */
 99		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
100		/* Reenable interrupts that were enabled before suspending */
101		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
102		/* Start the clock if it was used */
103		if (tcb_cache[i].clken)
104			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
105	}
106
107	/* Dual channel, chain channels */
108	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
109	/* Finally, trigger all the channels*/
110	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
111}
112
113static struct clocksource clksrc = {
114	.rating         = 200,
115	.read           = tc_get_cycles,
116	.mask           = CLOCKSOURCE_MASK(32),
117	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
118	.suspend	= tc_clksrc_suspend,
119	.resume		= tc_clksrc_resume,
120};
121
122static u64 notrace tc_sched_clock_read(void)
123{
124	return tc_get_cycles(&clksrc);
125}
126
127static u64 notrace tc_sched_clock_read32(void)
128{
129	return tc_get_cycles32(&clksrc);
130}
131
132static struct delay_timer tc_delay_timer;
133
134static unsigned long tc_delay_timer_read(void)
135{
136	return tc_get_cycles(&clksrc);
137}
138
139static unsigned long notrace tc_delay_timer_read32(void)
140{
141	return tc_get_cycles32(&clksrc);
142}
143
144#ifdef CONFIG_GENERIC_CLOCKEVENTS
145
146struct tc_clkevt_device {
147	struct clock_event_device	clkevt;
148	struct clk			*clk;
149	u32				rate;
150	void __iomem			*regs;
151};
152
153static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
154{
155	return container_of(clkevt, struct tc_clkevt_device, clkevt);
156}
157
158static u32 timer_clock;
159
160static int tc_shutdown(struct clock_event_device *d)
161{
162	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
163	void __iomem		*regs = tcd->regs;
164
165	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
166	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
167	if (!clockevent_state_detached(d))
168		clk_disable(tcd->clk);
169
170	return 0;
171}
172
173static int tc_set_oneshot(struct clock_event_device *d)
174{
175	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
176	void __iomem		*regs = tcd->regs;
177
178	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
179		tc_shutdown(d);
180
181	clk_enable(tcd->clk);
182
183	/* count up to RC, then irq and stop */
184	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
185		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
186	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
187
188	/* set_next_event() configures and starts the timer */
189	return 0;
190}
191
192static int tc_set_periodic(struct clock_event_device *d)
193{
194	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
195	void __iomem		*regs = tcd->regs;
196
197	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
198		tc_shutdown(d);
199
200	/* By not making the gentime core emulate periodic mode on top
201	 * of oneshot, we get lower overhead and improved accuracy.
202	 */
203	clk_enable(tcd->clk);
204
205	/* count up to RC, then irq and restart */
206	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
207		     regs + ATMEL_TC_REG(2, CMR));
208	writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
209
210	/* Enable clock and interrupts on RC compare */
211	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
212
213	/* go go gadget! */
214	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
215		     ATMEL_TC_REG(2, CCR));
216	return 0;
217}
218
219static int tc_next_event(unsigned long delta, struct clock_event_device *d)
220{
221	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
222
223	/* go go gadget! */
224	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
225			tcaddr + ATMEL_TC_REG(2, CCR));
226	return 0;
227}
228
229static struct tc_clkevt_device clkevt = {
230	.clkevt	= {
231		.features		= CLOCK_EVT_FEAT_PERIODIC |
232					  CLOCK_EVT_FEAT_ONESHOT,
233		/* Should be lower than at91rm9200's system timer */
234		.rating			= 125,
235		.set_next_event		= tc_next_event,
236		.set_state_shutdown	= tc_shutdown,
237		.set_state_periodic	= tc_set_periodic,
238		.set_state_oneshot	= tc_set_oneshot,
239	},
240};
241
242static irqreturn_t ch2_irq(int irq, void *handle)
243{
244	struct tc_clkevt_device	*dev = handle;
245	unsigned int		sr;
246
247	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
248	if (sr & ATMEL_TC_CPCS) {
249		dev->clkevt.event_handler(&dev->clkevt);
250		return IRQ_HANDLED;
251	}
252
253	return IRQ_NONE;
254}
255
256static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
257{
258	int ret;
259	struct clk *t2_clk = tc->clk[2];
260	int irq = tc->irq[2];
261	int bits = tc->tcb_config->counter_width;
262
263	/* try to enable t2 clk to avoid future errors in mode change */
264	ret = clk_prepare_enable(t2_clk);
265	if (ret)
266		return ret;
267
268	clkevt.regs = tc->regs;
269	clkevt.clk = t2_clk;
270
271	if (bits == 32) {
272		timer_clock = divisor_idx;
273		clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
274	} else {
275		ret = clk_prepare_enable(tc->slow_clk);
276		if (ret) {
277			clk_disable_unprepare(t2_clk);
278			return ret;
279		}
280
281		clkevt.rate = clk_get_rate(tc->slow_clk);
282		timer_clock = ATMEL_TC_TIMER_CLOCK5;
283	}
284
285	clk_disable(t2_clk);
286
287	clkevt.clkevt.cpumask = cpumask_of(0);
288
289	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
290	if (ret) {
291		clk_unprepare(t2_clk);
292		if (bits != 32)
293			clk_disable_unprepare(tc->slow_clk);
294		return ret;
295	}
296
297	clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
298
299	return ret;
300}
301
302#else /* !CONFIG_GENERIC_CLOCKEVENTS */
303
304static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
305{
306	/* NOTHING */
307	return 0;
308}
309
310#endif
311
312static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
313{
314	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
315	writel(mck_divisor_idx			/* likely divide-by-8 */
316			| ATMEL_TC_WAVE
317			| ATMEL_TC_WAVESEL_UP		/* free-run */
318			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
319			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
320			tcaddr + ATMEL_TC_REG(0, CMR));
321	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
322	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
323	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
324	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
325
326	/* channel 1:  waveform mode, input TIOA0 */
327	writel(ATMEL_TC_XC1			/* input: TIOA0 */
328			| ATMEL_TC_WAVE
329			| ATMEL_TC_WAVESEL_UP,		/* free-run */
330			tcaddr + ATMEL_TC_REG(1, CMR));
331	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
332	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
333
334	/* chain channel 0 to channel 1*/
335	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
336	/* then reset all the timers */
337	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
338}
339
340static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
341{
342	/* channel 0:  waveform mode, input mclk/8 */
343	writel(mck_divisor_idx			/* likely divide-by-8 */
344			| ATMEL_TC_WAVE
345			| ATMEL_TC_WAVESEL_UP,		/* free-run */
346			tcaddr + ATMEL_TC_REG(0, CMR));
347	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
348	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
349
350	/* then reset all the timers */
351	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
352}
353
354static struct atmel_tcb_config tcb_rm9200_config = {
355	.counter_width = 16,
356};
357
358static struct atmel_tcb_config tcb_sam9x5_config = {
359	.counter_width = 32,
360};
361
362static struct atmel_tcb_config tcb_sama5d2_config = {
363	.counter_width = 32,
364	.has_gclk = 1,
365};
366
367static const struct of_device_id atmel_tcb_of_match[] = {
368	{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
369	{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
370	{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
371	{ /* sentinel */ }
372};
373
374static int __init tcb_clksrc_init(struct device_node *node)
375{
376	struct atmel_tc tc;
377	struct clk *t0_clk;
378	const struct of_device_id *match;
379	u64 (*tc_sched_clock)(void);
380	u32 rate, divided_rate = 0;
381	int best_divisor_idx = -1;
382	int bits;
383	int i;
384	int ret;
385
386	/* Protect against multiple calls */
387	if (tcaddr)
388		return 0;
389
390	tc.regs = of_iomap(node->parent, 0);
391	if (!tc.regs)
392		return -ENXIO;
393
394	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
395	if (IS_ERR(t0_clk))
396		return PTR_ERR(t0_clk);
397
398	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
399	if (IS_ERR(tc.slow_clk))
400		return PTR_ERR(tc.slow_clk);
401
402	tc.clk[0] = t0_clk;
403	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
404	if (IS_ERR(tc.clk[1]))
405		tc.clk[1] = t0_clk;
406	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
407	if (IS_ERR(tc.clk[2]))
408		tc.clk[2] = t0_clk;
409
410	tc.irq[2] = of_irq_get(node->parent, 2);
411	if (tc.irq[2] <= 0) {
412		tc.irq[2] = of_irq_get(node->parent, 0);
413		if (tc.irq[2] <= 0)
414			return -EINVAL;
415	}
416
417	match = of_match_node(atmel_tcb_of_match, node->parent);
418	if (!match)
419		return -ENODEV;
420
421	tc.tcb_config = match->data;
422	bits = tc.tcb_config->counter_width;
423
424	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
425		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
426
427	ret = clk_prepare_enable(t0_clk);
428	if (ret) {
429		pr_debug("can't enable T0 clk\n");
430		return ret;
431	}
432
433	/* How fast will we be counting?  Pick something over 5 MHz.  */
434	rate = (u32) clk_get_rate(t0_clk);
435	i = 0;
436	if (tc.tcb_config->has_gclk)
437		i = 1;
438	for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
439		unsigned divisor = atmel_tcb_divisors[i];
440		unsigned tmp;
441
442		tmp = rate / divisor;
443		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
444		if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
445			break;
446		divided_rate = tmp;
447		best_divisor_idx = i;
448	}
449
450	clksrc.name = kbasename(node->parent->full_name);
451	clkevt.clkevt.name = kbasename(node->parent->full_name);
452	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
453			((divided_rate % 1000000) + 500) / 1000);
454
455	tcaddr = tc.regs;
456
457	if (bits == 32) {
458		/* use apropriate function to read 32 bit counter */
459		clksrc.read = tc_get_cycles32;
460		/* setup ony channel 0 */
461		tcb_setup_single_chan(&tc, best_divisor_idx);
462		tc_sched_clock = tc_sched_clock_read32;
463		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
464	} else {
465		/* we have three clocks no matter what the
466		 * underlying platform supports.
467		 */
468		ret = clk_prepare_enable(tc.clk[1]);
469		if (ret) {
470			pr_debug("can't enable T1 clk\n");
471			goto err_disable_t0;
472		}
473		/* setup both channel 0 & 1 */
474		tcb_setup_dual_chan(&tc, best_divisor_idx);
475		tc_sched_clock = tc_sched_clock_read;
476		tc_delay_timer.read_current_timer = tc_delay_timer_read;
477	}
478
479	/* and away we go! */
480	ret = clocksource_register_hz(&clksrc, divided_rate);
481	if (ret)
482		goto err_disable_t1;
483
484	/* channel 2:  periodic and oneshot timer support */
485	ret = setup_clkevents(&tc, best_divisor_idx);
486	if (ret)
487		goto err_unregister_clksrc;
488
489	sched_clock_register(tc_sched_clock, 32, divided_rate);
490
491	tc_delay_timer.freq = divided_rate;
492	register_current_timer_delay(&tc_delay_timer);
493
494	return 0;
495
496err_unregister_clksrc:
497	clocksource_unregister(&clksrc);
498
499err_disable_t1:
500	if (bits != 32)
501		clk_disable_unprepare(tc.clk[1]);
502
503err_disable_t0:
504	clk_disable_unprepare(t0_clk);
505
506	tcaddr = NULL;
507
508	return ret;
509}
510TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/init.h>
  3#include <linux/clocksource.h>
  4#include <linux/clockchips.h>
  5#include <linux/interrupt.h>
  6#include <linux/irq.h>
  7
  8#include <linux/clk.h>
  9#include <linux/delay.h>
 10#include <linux/err.h>
 11#include <linux/ioport.h>
 12#include <linux/io.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/sched_clock.h>
 16#include <linux/syscore_ops.h>
 17#include <soc/at91/atmel_tcb.h>
 18
 19
 20/*
 21 * We're configured to use a specific TC block, one that's not hooked
 22 * up to external hardware, to provide a time solution:
 23 *
 24 *   - Two channels combine to create a free-running 32 bit counter
 25 *     with a base rate of 5+ MHz, packaged as a clocksource (with
 26 *     resolution better than 200 nsec).
 27 *   - Some chips support 32 bit counter. A single channel is used for
 28 *     this 32 bit free-running counter. the second channel is not used.
 29 *
 30 *   - The third channel may be used to provide a clockevent source, used in
 31 *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
 32 *   and can handle delays of up to two seconds. For 32-bit counters, it runs at
 33 *   the same rate as the clocksource
 34 *
 35 * REVISIT behavior during system suspend states... we should disable
 36 * all clocks and save the power.  Easily done for clockevent devices,
 37 * but clocksources won't necessarily get the needed notifications.
 38 * For deeper system sleep states, this will be mandatory...
 39 */
 40
 41static void __iomem *tcaddr;
 42static struct
 43{
 44	u32 cmr;
 45	u32 imr;
 46	u32 rc;
 47	bool clken;
 48} tcb_cache[3];
 49static u32 bmr_cache;
 50
 51static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
 52
 53static u64 tc_get_cycles(struct clocksource *cs)
 54{
 55	unsigned long	flags;
 56	u32		lower, upper;
 57
 58	raw_local_irq_save(flags);
 59	do {
 60		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
 61		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 62	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
 63
 64	raw_local_irq_restore(flags);
 65	return (upper << 16) | lower;
 66}
 67
 68static u64 tc_get_cycles32(struct clocksource *cs)
 69{
 70	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
 71}
 72
 73static void tc_clksrc_suspend(struct clocksource *cs)
 74{
 75	int i;
 76
 77	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 78		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
 79		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
 80		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
 81		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
 82					ATMEL_TC_CLKSTA);
 83	}
 84
 85	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
 86}
 87
 88static void tc_clksrc_resume(struct clocksource *cs)
 89{
 90	int i;
 91
 92	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
 93		/* Restore registers for the channel, RA and RB are not used  */
 94		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
 95		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
 96		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
 97		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
 98		/* Disable all the interrupts */
 99		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
100		/* Reenable interrupts that were enabled before suspending */
101		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
102		/* Start the clock if it was used */
103		if (tcb_cache[i].clken)
104			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
105	}
106
107	/* Dual channel, chain channels */
108	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
109	/* Finally, trigger all the channels*/
110	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
111}
112
113static struct clocksource clksrc = {
114	.rating         = 200,
115	.read           = tc_get_cycles,
116	.mask           = CLOCKSOURCE_MASK(32),
117	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
118	.suspend	= tc_clksrc_suspend,
119	.resume		= tc_clksrc_resume,
120};
121
122static u64 notrace tc_sched_clock_read(void)
123{
124	return tc_get_cycles(&clksrc);
125}
126
127static u64 notrace tc_sched_clock_read32(void)
128{
129	return tc_get_cycles32(&clksrc);
130}
131
132static struct delay_timer tc_delay_timer;
133
134static unsigned long tc_delay_timer_read(void)
135{
136	return tc_get_cycles(&clksrc);
137}
138
139static unsigned long notrace tc_delay_timer_read32(void)
140{
141	return tc_get_cycles32(&clksrc);
142}
143
144#ifdef CONFIG_GENERIC_CLOCKEVENTS
145
146struct tc_clkevt_device {
147	struct clock_event_device	clkevt;
148	struct clk			*clk;
149	u32				rate;
150	void __iomem			*regs;
151};
152
153static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
154{
155	return container_of(clkevt, struct tc_clkevt_device, clkevt);
156}
157
158static u32 timer_clock;
159
160static int tc_shutdown(struct clock_event_device *d)
161{
162	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
163	void __iomem		*regs = tcd->regs;
164
165	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
166	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
167	if (!clockevent_state_detached(d))
168		clk_disable(tcd->clk);
169
170	return 0;
171}
172
173static int tc_set_oneshot(struct clock_event_device *d)
174{
175	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
176	void __iomem		*regs = tcd->regs;
177
178	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
179		tc_shutdown(d);
180
181	clk_enable(tcd->clk);
182
183	/* count up to RC, then irq and stop */
184	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
185		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
186	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
187
188	/* set_next_event() configures and starts the timer */
189	return 0;
190}
191
192static int tc_set_periodic(struct clock_event_device *d)
193{
194	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
195	void __iomem		*regs = tcd->regs;
196
197	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
198		tc_shutdown(d);
199
200	/* By not making the gentime core emulate periodic mode on top
201	 * of oneshot, we get lower overhead and improved accuracy.
202	 */
203	clk_enable(tcd->clk);
204
205	/* count up to RC, then irq and restart */
206	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
207		     regs + ATMEL_TC_REG(2, CMR));
208	writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
209
210	/* Enable clock and interrupts on RC compare */
211	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
212
213	/* go go gadget! */
214	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
215		     ATMEL_TC_REG(2, CCR));
216	return 0;
217}
218
219static int tc_next_event(unsigned long delta, struct clock_event_device *d)
220{
221	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
222
223	/* go go gadget! */
224	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
225			tcaddr + ATMEL_TC_REG(2, CCR));
226	return 0;
227}
228
229static struct tc_clkevt_device clkevt = {
230	.clkevt	= {
231		.features		= CLOCK_EVT_FEAT_PERIODIC |
232					  CLOCK_EVT_FEAT_ONESHOT,
233		/* Should be lower than at91rm9200's system timer */
234		.rating			= 125,
235		.set_next_event		= tc_next_event,
236		.set_state_shutdown	= tc_shutdown,
237		.set_state_periodic	= tc_set_periodic,
238		.set_state_oneshot	= tc_set_oneshot,
239	},
240};
241
242static irqreturn_t ch2_irq(int irq, void *handle)
243{
244	struct tc_clkevt_device	*dev = handle;
245	unsigned int		sr;
246
247	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
248	if (sr & ATMEL_TC_CPCS) {
249		dev->clkevt.event_handler(&dev->clkevt);
250		return IRQ_HANDLED;
251	}
252
253	return IRQ_NONE;
254}
255
256static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
257{
258	int ret;
259	struct clk *t2_clk = tc->clk[2];
260	int irq = tc->irq[2];
261	int bits = tc->tcb_config->counter_width;
262
263	/* try to enable t2 clk to avoid future errors in mode change */
264	ret = clk_prepare_enable(t2_clk);
265	if (ret)
266		return ret;
267
268	clkevt.regs = tc->regs;
269	clkevt.clk = t2_clk;
270
271	if (bits == 32) {
272		timer_clock = divisor_idx;
273		clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
274	} else {
275		ret = clk_prepare_enable(tc->slow_clk);
276		if (ret) {
277			clk_disable_unprepare(t2_clk);
278			return ret;
279		}
280
281		clkevt.rate = clk_get_rate(tc->slow_clk);
282		timer_clock = ATMEL_TC_TIMER_CLOCK5;
283	}
284
285	clk_disable(t2_clk);
286
287	clkevt.clkevt.cpumask = cpumask_of(0);
288
289	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
290	if (ret) {
291		clk_unprepare(t2_clk);
292		if (bits != 32)
293			clk_disable_unprepare(tc->slow_clk);
294		return ret;
295	}
296
297	clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
298
299	return ret;
300}
301
302#else /* !CONFIG_GENERIC_CLOCKEVENTS */
303
304static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
305{
306	/* NOTHING */
307	return 0;
308}
309
310#endif
311
312static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
313{
314	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
315	writel(mck_divisor_idx			/* likely divide-by-8 */
316			| ATMEL_TC_WAVE
317			| ATMEL_TC_WAVESEL_UP		/* free-run */
318			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
319			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
320			tcaddr + ATMEL_TC_REG(0, CMR));
321	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
322	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
323	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
324	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
325
326	/* channel 1:  waveform mode, input TIOA0 */
327	writel(ATMEL_TC_XC1			/* input: TIOA0 */
328			| ATMEL_TC_WAVE
329			| ATMEL_TC_WAVESEL_UP,		/* free-run */
330			tcaddr + ATMEL_TC_REG(1, CMR));
331	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
332	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
333
334	/* chain channel 0 to channel 1*/
335	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
336	/* then reset all the timers */
337	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
338}
339
340static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
341{
342	/* channel 0:  waveform mode, input mclk/8 */
343	writel(mck_divisor_idx			/* likely divide-by-8 */
344			| ATMEL_TC_WAVE
345			| ATMEL_TC_WAVESEL_UP,		/* free-run */
346			tcaddr + ATMEL_TC_REG(0, CMR));
347	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
348	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
349
350	/* then reset all the timers */
351	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
352}
353
354static struct atmel_tcb_config tcb_rm9200_config = {
355	.counter_width = 16,
356};
357
358static struct atmel_tcb_config tcb_sam9x5_config = {
359	.counter_width = 32,
360};
361
362static struct atmel_tcb_config tcb_sama5d2_config = {
363	.counter_width = 32,
364	.has_gclk = 1,
365};
366
367static const struct of_device_id atmel_tcb_of_match[] = {
368	{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
369	{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
370	{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
371	{ /* sentinel */ }
372};
373
374static int __init tcb_clksrc_init(struct device_node *node)
375{
376	struct atmel_tc tc;
377	struct clk *t0_clk;
378	const struct of_device_id *match;
379	u64 (*tc_sched_clock)(void);
380	u32 rate, divided_rate = 0;
381	int best_divisor_idx = -1;
382	int bits;
383	int i;
384	int ret;
385
386	/* Protect against multiple calls */
387	if (tcaddr)
388		return 0;
389
390	tc.regs = of_iomap(node->parent, 0);
391	if (!tc.regs)
392		return -ENXIO;
393
394	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
395	if (IS_ERR(t0_clk))
396		return PTR_ERR(t0_clk);
397
398	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
399	if (IS_ERR(tc.slow_clk))
400		return PTR_ERR(tc.slow_clk);
401
402	tc.clk[0] = t0_clk;
403	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
404	if (IS_ERR(tc.clk[1]))
405		tc.clk[1] = t0_clk;
406	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
407	if (IS_ERR(tc.clk[2]))
408		tc.clk[2] = t0_clk;
409
410	tc.irq[2] = of_irq_get(node->parent, 2);
411	if (tc.irq[2] <= 0) {
412		tc.irq[2] = of_irq_get(node->parent, 0);
413		if (tc.irq[2] <= 0)
414			return -EINVAL;
415	}
416
417	match = of_match_node(atmel_tcb_of_match, node->parent);
418	if (!match)
419		return -ENODEV;
420
421	tc.tcb_config = match->data;
422	bits = tc.tcb_config->counter_width;
423
424	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
425		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
426
427	ret = clk_prepare_enable(t0_clk);
428	if (ret) {
429		pr_debug("can't enable T0 clk\n");
430		return ret;
431	}
432
433	/* How fast will we be counting?  Pick something over 5 MHz.  */
434	rate = (u32) clk_get_rate(t0_clk);
435	i = 0;
436	if (tc.tcb_config->has_gclk)
437		i = 1;
438	for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
439		unsigned divisor = atmel_tcb_divisors[i];
440		unsigned tmp;
441
442		tmp = rate / divisor;
443		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
444		if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
445			break;
446		divided_rate = tmp;
447		best_divisor_idx = i;
448	}
449
450	clksrc.name = kbasename(node->parent->full_name);
451	clkevt.clkevt.name = kbasename(node->parent->full_name);
452	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
453			((divided_rate % 1000000) + 500) / 1000);
454
455	tcaddr = tc.regs;
456
457	if (bits == 32) {
458		/* use appropriate function to read 32 bit counter */
459		clksrc.read = tc_get_cycles32;
460		/* setup only channel 0 */
461		tcb_setup_single_chan(&tc, best_divisor_idx);
462		tc_sched_clock = tc_sched_clock_read32;
463		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
464	} else {
465		/* we have three clocks no matter what the
466		 * underlying platform supports.
467		 */
468		ret = clk_prepare_enable(tc.clk[1]);
469		if (ret) {
470			pr_debug("can't enable T1 clk\n");
471			goto err_disable_t0;
472		}
473		/* setup both channel 0 & 1 */
474		tcb_setup_dual_chan(&tc, best_divisor_idx);
475		tc_sched_clock = tc_sched_clock_read;
476		tc_delay_timer.read_current_timer = tc_delay_timer_read;
477	}
478
479	/* and away we go! */
480	ret = clocksource_register_hz(&clksrc, divided_rate);
481	if (ret)
482		goto err_disable_t1;
483
484	/* channel 2:  periodic and oneshot timer support */
485	ret = setup_clkevents(&tc, best_divisor_idx);
486	if (ret)
487		goto err_unregister_clksrc;
488
489	sched_clock_register(tc_sched_clock, 32, divided_rate);
490
491	tc_delay_timer.freq = divided_rate;
492	register_current_timer_delay(&tc_delay_timer);
493
494	return 0;
495
496err_unregister_clksrc:
497	clocksource_unregister(&clksrc);
498
499err_disable_t1:
500	if (bits != 32)
501		clk_disable_unprepare(tc.clk[1]);
502
503err_disable_t0:
504	clk_disable_unprepare(t0_clk);
505
506	tcaddr = NULL;
507
508	return ret;
509}
510TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);