Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file implements functions that manage the running of the commit process.
 13 * Each affected module has its own functions to accomplish their part in the
 14 * commit and those functions are called here.
 15 *
 16 * The commit is the process whereby all updates to the index and LEB properties
 17 * are written out together and the journal becomes empty. This keeps the
 18 * file system consistent - at all times the state can be recreated by reading
 19 * the index and LEB properties and then replaying the journal.
 20 *
 21 * The commit is split into two parts named "commit start" and "commit end".
 22 * During commit start, the commit process has exclusive access to the journal
 23 * by holding the commit semaphore down for writing. As few I/O operations as
 24 * possible are performed during commit start, instead the nodes that are to be
 25 * written are merely identified. During commit end, the commit semaphore is no
 26 * longer held and the journal is again in operation, allowing users to continue
 27 * to use the file system while the bulk of the commit I/O is performed. The
 28 * purpose of this two-step approach is to prevent the commit from causing any
 29 * latency blips. Note that in any case, the commit does not prevent lookups
 30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 31 * cache.
 32 */
 33
 34#include <linux/freezer.h>
 35#include <linux/kthread.h>
 36#include <linux/slab.h>
 37#include "ubifs.h"
 38
 39/*
 40 * nothing_to_commit - check if there is nothing to commit.
 41 * @c: UBIFS file-system description object
 42 *
 43 * This is a helper function which checks if there is anything to commit. It is
 44 * used as an optimization to avoid starting the commit if it is not really
 45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
 46 * writing the commit start node to the log), and it is better to avoid doing
 47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
 48 * nothing to commit, it is more optimal to avoid any flash I/O.
 49 *
 50 * This function has to be called with @c->commit_sem locked for writing -
 51 * this function does not take LPT/TNC locks because the @c->commit_sem
 52 * guarantees that we have exclusive access to the TNC and LPT data structures.
 53 *
 54 * This function returns %1 if there is nothing to commit and %0 otherwise.
 55 */
 56static int nothing_to_commit(struct ubifs_info *c)
 57{
 58	/*
 59	 * During mounting or remounting from R/O mode to R/W mode we may
 60	 * commit for various recovery-related reasons.
 61	 */
 62	if (c->mounting || c->remounting_rw)
 63		return 0;
 64
 65	/*
 66	 * If the root TNC node is dirty, we definitely have something to
 67	 * commit.
 68	 */
 69	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
 70		return 0;
 71
 72	/*
 
 
 
 
 
 
 
 
 73	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
 74	 * example, this may happen if the budgeting subsystem invoked GC to
 75	 * make some free space, and the GC found an LEB with only dirty and
 76	 * free space. In this case GC would just change the lprops of this
 77	 * LEB (by turning all space into free space) and unmap it.
 78	 */
 79	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
 
 80		return 0;
 
 81
 82	ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 83	ubifs_assert(c, c->dirty_pn_cnt == 0);
 84	ubifs_assert(c, c->dirty_nn_cnt == 0);
 
 85
 86	return 1;
 87}
 88
 89/**
 90 * do_commit - commit the journal.
 91 * @c: UBIFS file-system description object
 92 *
 93 * This function implements UBIFS commit. It has to be called with commit lock
 94 * locked. Returns zero in case of success and a negative error code in case of
 95 * failure.
 96 */
 97static int do_commit(struct ubifs_info *c)
 98{
 99	int err, new_ltail_lnum, old_ltail_lnum, i;
100	struct ubifs_zbranch zroot;
101	struct ubifs_lp_stats lst;
102
103	dbg_cmt("start");
104	ubifs_assert(c, !c->ro_media && !c->ro_mount);
105
106	if (c->ro_error) {
107		err = -EROFS;
108		goto out_up;
109	}
110
111	if (nothing_to_commit(c)) {
112		up_write(&c->commit_sem);
113		err = 0;
114		goto out_cancel;
115	}
116
117	/* Sync all write buffers (necessary for recovery) */
118	for (i = 0; i < c->jhead_cnt; i++) {
119		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
120		if (err)
121			goto out_up;
122	}
123
124	c->cmt_no += 1;
125	err = ubifs_gc_start_commit(c);
126	if (err)
127		goto out_up;
128	err = dbg_check_lprops(c);
129	if (err)
130		goto out_up;
131	err = ubifs_log_start_commit(c, &new_ltail_lnum);
132	if (err)
133		goto out_up;
134	err = ubifs_tnc_start_commit(c, &zroot);
135	if (err)
136		goto out_up;
137	err = ubifs_lpt_start_commit(c);
138	if (err)
139		goto out_up;
140	err = ubifs_orphan_start_commit(c);
141	if (err)
142		goto out_up;
143
144	ubifs_get_lp_stats(c, &lst);
145
146	up_write(&c->commit_sem);
147
148	err = ubifs_tnc_end_commit(c);
149	if (err)
150		goto out;
151	err = ubifs_lpt_end_commit(c);
152	if (err)
153		goto out;
154	err = ubifs_orphan_end_commit(c);
155	if (err)
156		goto out;
157	err = dbg_check_old_index(c, &zroot);
158	if (err)
159		goto out;
160
161	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
162	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
163	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
164	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
165	c->mst_node->root_len    = cpu_to_le32(zroot.len);
166	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
167	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
168	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
169	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
170	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
171	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
172	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
173	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
174	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
175	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
176	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
177	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
178	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
179	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
180	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
181	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
182	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
183	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
184	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
185	if (c->no_orphs)
186		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
187	else
188		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
189
190	old_ltail_lnum = c->ltail_lnum;
191	err = ubifs_log_end_commit(c, new_ltail_lnum);
192	if (err)
193		goto out;
194
195	err = ubifs_log_post_commit(c, old_ltail_lnum);
196	if (err)
197		goto out;
198	err = ubifs_gc_end_commit(c);
199	if (err)
200		goto out;
201	err = ubifs_lpt_post_commit(c);
202	if (err)
203		goto out;
204
205out_cancel:
206	spin_lock(&c->cs_lock);
207	c->cmt_state = COMMIT_RESTING;
208	wake_up(&c->cmt_wq);
209	dbg_cmt("commit end");
210	spin_unlock(&c->cs_lock);
211	return 0;
212
213out_up:
214	up_write(&c->commit_sem);
215out:
216	ubifs_err(c, "commit failed, error %d", err);
217	spin_lock(&c->cs_lock);
218	c->cmt_state = COMMIT_BROKEN;
219	wake_up(&c->cmt_wq);
220	spin_unlock(&c->cs_lock);
221	ubifs_ro_mode(c, err);
222	return err;
223}
224
225/**
226 * run_bg_commit - run background commit if it is needed.
227 * @c: UBIFS file-system description object
228 *
229 * This function runs background commit if it is needed. Returns zero in case
230 * of success and a negative error code in case of failure.
231 */
232static int run_bg_commit(struct ubifs_info *c)
233{
234	spin_lock(&c->cs_lock);
235	/*
236	 * Run background commit only if background commit was requested or if
237	 * commit is required.
238	 */
239	if (c->cmt_state != COMMIT_BACKGROUND &&
240	    c->cmt_state != COMMIT_REQUIRED)
241		goto out;
242	spin_unlock(&c->cs_lock);
243
244	down_write(&c->commit_sem);
245	spin_lock(&c->cs_lock);
246	if (c->cmt_state == COMMIT_REQUIRED)
247		c->cmt_state = COMMIT_RUNNING_REQUIRED;
248	else if (c->cmt_state == COMMIT_BACKGROUND)
249		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
250	else
251		goto out_cmt_unlock;
252	spin_unlock(&c->cs_lock);
253
254	return do_commit(c);
255
256out_cmt_unlock:
257	up_write(&c->commit_sem);
258out:
259	spin_unlock(&c->cs_lock);
260	return 0;
261}
262
263/**
264 * ubifs_bg_thread - UBIFS background thread function.
265 * @info: points to the file-system description object
266 *
267 * This function implements various file-system background activities:
268 * o when a write-buffer timer expires it synchronizes the appropriate
269 *   write-buffer;
270 * o when the journal is about to be full, it starts in-advance commit.
271 *
272 * Note, other stuff like background garbage collection may be added here in
273 * future.
274 */
275int ubifs_bg_thread(void *info)
276{
277	int err;
278	struct ubifs_info *c = info;
279
280	ubifs_msg(c, "background thread \"%s\" started, PID %d",
281		  c->bgt_name, current->pid);
282	set_freezable();
283
284	while (1) {
285		if (kthread_should_stop())
286			break;
287
288		if (try_to_freeze())
289			continue;
290
291		set_current_state(TASK_INTERRUPTIBLE);
292		/* Check if there is something to do */
293		if (!c->need_bgt) {
294			/*
295			 * Nothing prevents us from going sleep now and
296			 * be never woken up and block the task which
297			 * could wait in 'kthread_stop()' forever.
298			 */
299			if (kthread_should_stop())
300				break;
301			schedule();
302			continue;
303		} else
304			__set_current_state(TASK_RUNNING);
305
306		c->need_bgt = 0;
307		err = ubifs_bg_wbufs_sync(c);
308		if (err)
309			ubifs_ro_mode(c, err);
310
311		run_bg_commit(c);
312		cond_resched();
313	}
314
315	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
316	return 0;
317}
318
319/**
320 * ubifs_commit_required - set commit state to "required".
321 * @c: UBIFS file-system description object
322 *
323 * This function is called if a commit is required but cannot be done from the
324 * calling function, so it is just flagged instead.
325 */
326void ubifs_commit_required(struct ubifs_info *c)
327{
328	spin_lock(&c->cs_lock);
329	switch (c->cmt_state) {
330	case COMMIT_RESTING:
331	case COMMIT_BACKGROUND:
332		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
333			dbg_cstate(COMMIT_REQUIRED));
334		c->cmt_state = COMMIT_REQUIRED;
335		break;
336	case COMMIT_RUNNING_BACKGROUND:
337		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
338			dbg_cstate(COMMIT_RUNNING_REQUIRED));
339		c->cmt_state = COMMIT_RUNNING_REQUIRED;
340		break;
341	case COMMIT_REQUIRED:
342	case COMMIT_RUNNING_REQUIRED:
343	case COMMIT_BROKEN:
344		break;
345	}
346	spin_unlock(&c->cs_lock);
347}
348
349/**
350 * ubifs_request_bg_commit - notify the background thread to do a commit.
351 * @c: UBIFS file-system description object
352 *
353 * This function is called if the journal is full enough to make a commit
354 * worthwhile, so background thread is kicked to start it.
355 */
356void ubifs_request_bg_commit(struct ubifs_info *c)
357{
358	spin_lock(&c->cs_lock);
359	if (c->cmt_state == COMMIT_RESTING) {
360		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
361			dbg_cstate(COMMIT_BACKGROUND));
362		c->cmt_state = COMMIT_BACKGROUND;
363		spin_unlock(&c->cs_lock);
364		ubifs_wake_up_bgt(c);
365	} else
366		spin_unlock(&c->cs_lock);
367}
368
369/**
370 * wait_for_commit - wait for commit.
371 * @c: UBIFS file-system description object
372 *
373 * This function sleeps until the commit operation is no longer running.
374 */
375static int wait_for_commit(struct ubifs_info *c)
376{
377	dbg_cmt("pid %d goes sleep", current->pid);
378
379	/*
380	 * The following sleeps if the condition is false, and will be woken
381	 * when the commit ends. It is possible, although very unlikely, that we
382	 * will wake up and see the subsequent commit running, rather than the
383	 * one we were waiting for, and go back to sleep.  However, we will be
384	 * woken again, so there is no danger of sleeping forever.
385	 */
386	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
387			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
388	dbg_cmt("commit finished, pid %d woke up", current->pid);
389	return 0;
390}
391
392/**
393 * ubifs_run_commit - run or wait for commit.
394 * @c: UBIFS file-system description object
395 *
396 * This function runs commit and returns zero in case of success and a negative
397 * error code in case of failure.
398 */
399int ubifs_run_commit(struct ubifs_info *c)
400{
401	int err = 0;
402
403	spin_lock(&c->cs_lock);
404	if (c->cmt_state == COMMIT_BROKEN) {
405		err = -EROFS;
406		goto out;
407	}
408
409	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
410		/*
411		 * We set the commit state to 'running required' to indicate
412		 * that we want it to complete as quickly as possible.
413		 */
414		c->cmt_state = COMMIT_RUNNING_REQUIRED;
415
416	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
417		spin_unlock(&c->cs_lock);
418		return wait_for_commit(c);
419	}
420	spin_unlock(&c->cs_lock);
421
422	/* Ok, the commit is indeed needed */
423
424	down_write(&c->commit_sem);
425	spin_lock(&c->cs_lock);
426	/*
427	 * Since we unlocked 'c->cs_lock', the state may have changed, so
428	 * re-check it.
429	 */
430	if (c->cmt_state == COMMIT_BROKEN) {
431		err = -EROFS;
432		goto out_cmt_unlock;
433	}
434
435	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
436		c->cmt_state = COMMIT_RUNNING_REQUIRED;
437
438	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
439		up_write(&c->commit_sem);
440		spin_unlock(&c->cs_lock);
441		return wait_for_commit(c);
442	}
443	c->cmt_state = COMMIT_RUNNING_REQUIRED;
444	spin_unlock(&c->cs_lock);
445
446	err = do_commit(c);
447	return err;
448
449out_cmt_unlock:
450	up_write(&c->commit_sem);
451out:
452	spin_unlock(&c->cs_lock);
453	return err;
454}
455
456/**
457 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
458 * @c: UBIFS file-system description object
459 *
460 * This function is called by garbage collection to determine if commit should
461 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
462 * is full enough to start commit, this function returns true. It is not
463 * absolutely necessary to commit yet, but it feels like this should be better
464 * then to keep doing GC. This function returns %1 if GC has to initiate commit
465 * and %0 if not.
466 */
467int ubifs_gc_should_commit(struct ubifs_info *c)
468{
469	int ret = 0;
470
471	spin_lock(&c->cs_lock);
472	if (c->cmt_state == COMMIT_BACKGROUND) {
473		dbg_cmt("commit required now");
474		c->cmt_state = COMMIT_REQUIRED;
475	} else
476		dbg_cmt("commit not requested");
477	if (c->cmt_state == COMMIT_REQUIRED)
478		ret = 1;
479	spin_unlock(&c->cs_lock);
480	return ret;
481}
482
483/*
484 * Everything below is related to debugging.
485 */
486
487/**
488 * struct idx_node - hold index nodes during index tree traversal.
489 * @list: list
490 * @iip: index in parent (slot number of this indexing node in the parent
491 *       indexing node)
492 * @upper_key: all keys in this indexing node have to be less or equivalent to
493 *             this key
494 * @idx: index node (8-byte aligned because all node structures must be 8-byte
495 *       aligned)
496 */
497struct idx_node {
498	struct list_head list;
499	int iip;
500	union ubifs_key upper_key;
501	struct ubifs_idx_node idx __aligned(8);
502};
503
504/**
505 * dbg_old_index_check_init - get information for the next old index check.
506 * @c: UBIFS file-system description object
507 * @zroot: root of the index
508 *
509 * This function records information about the index that will be needed for the
510 * next old index check i.e. 'dbg_check_old_index()'.
511 *
512 * This function returns %0 on success and a negative error code on failure.
513 */
514int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
515{
516	struct ubifs_idx_node *idx;
517	int lnum, offs, len, err = 0;
518	struct ubifs_debug_info *d = c->dbg;
519
520	d->old_zroot = *zroot;
521	lnum = d->old_zroot.lnum;
522	offs = d->old_zroot.offs;
523	len = d->old_zroot.len;
524
525	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
526	if (!idx)
527		return -ENOMEM;
528
529	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
530	if (err)
531		goto out;
532
533	d->old_zroot_level = le16_to_cpu(idx->level);
534	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
535out:
536	kfree(idx);
537	return err;
538}
539
540/**
541 * dbg_check_old_index - check the old copy of the index.
542 * @c: UBIFS file-system description object
543 * @zroot: root of the new index
544 *
545 * In order to be able to recover from an unclean unmount, a complete copy of
546 * the index must exist on flash. This is the "old" index. The commit process
547 * must write the "new" index to flash without overwriting or destroying any
548 * part of the old index. This function is run at commit end in order to check
549 * that the old index does indeed exist completely intact.
550 *
551 * This function returns %0 on success and a negative error code on failure.
552 */
553int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
554{
555	int lnum, offs, len, err = 0, last_level, child_cnt;
556	int first = 1, iip;
557	struct ubifs_debug_info *d = c->dbg;
558	union ubifs_key lower_key, upper_key, l_key, u_key;
559	unsigned long long last_sqnum;
560	struct ubifs_idx_node *idx;
561	struct list_head list;
562	struct idx_node *i;
563	size_t sz;
564
565	if (!dbg_is_chk_index(c))
566		return 0;
567
568	INIT_LIST_HEAD(&list);
569
570	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
571	     UBIFS_IDX_NODE_SZ;
572
573	/* Start at the old zroot */
574	lnum = d->old_zroot.lnum;
575	offs = d->old_zroot.offs;
576	len = d->old_zroot.len;
577	iip = 0;
578
579	/*
580	 * Traverse the index tree preorder depth-first i.e. do a node and then
581	 * its subtrees from left to right.
582	 */
583	while (1) {
584		struct ubifs_branch *br;
585
586		/* Get the next index node */
587		i = kmalloc(sz, GFP_NOFS);
588		if (!i) {
589			err = -ENOMEM;
590			goto out_free;
591		}
592		i->iip = iip;
593		/* Keep the index nodes on our path in a linked list */
594		list_add_tail(&i->list, &list);
595		/* Read the index node */
596		idx = &i->idx;
597		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
598		if (err)
599			goto out_free;
600		/* Validate index node */
601		child_cnt = le16_to_cpu(idx->child_cnt);
602		if (child_cnt < 1 || child_cnt > c->fanout) {
603			err = 1;
604			goto out_dump;
605		}
606		if (first) {
607			first = 0;
608			/* Check root level and sqnum */
609			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
610				err = 2;
611				goto out_dump;
612			}
613			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
614				err = 3;
615				goto out_dump;
616			}
617			/* Set last values as though root had a parent */
618			last_level = le16_to_cpu(idx->level) + 1;
619			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
620			key_read(c, ubifs_idx_key(c, idx), &lower_key);
621			highest_ino_key(c, &upper_key, INUM_WATERMARK);
622		}
623		key_copy(c, &upper_key, &i->upper_key);
624		if (le16_to_cpu(idx->level) != last_level - 1) {
625			err = 3;
626			goto out_dump;
627		}
628		/*
629		 * The index is always written bottom up hence a child's sqnum
630		 * is always less than the parents.
631		 */
632		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
633			err = 4;
634			goto out_dump;
635		}
636		/* Check key range */
637		key_read(c, ubifs_idx_key(c, idx), &l_key);
638		br = ubifs_idx_branch(c, idx, child_cnt - 1);
639		key_read(c, &br->key, &u_key);
640		if (keys_cmp(c, &lower_key, &l_key) > 0) {
641			err = 5;
642			goto out_dump;
643		}
644		if (keys_cmp(c, &upper_key, &u_key) < 0) {
645			err = 6;
646			goto out_dump;
647		}
648		if (keys_cmp(c, &upper_key, &u_key) == 0)
649			if (!is_hash_key(c, &u_key)) {
650				err = 7;
651				goto out_dump;
652			}
653		/* Go to next index node */
654		if (le16_to_cpu(idx->level) == 0) {
655			/* At the bottom, so go up until can go right */
656			while (1) {
657				/* Drop the bottom of the list */
658				list_del(&i->list);
659				kfree(i);
660				/* No more list means we are done */
661				if (list_empty(&list))
662					goto out;
663				/* Look at the new bottom */
664				i = list_entry(list.prev, struct idx_node,
665					       list);
666				idx = &i->idx;
667				/* Can we go right */
668				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
669					iip = iip + 1;
670					break;
671				} else
672					/* Nope, so go up again */
673					iip = i->iip;
674			}
675		} else
676			/* Go down left */
677			iip = 0;
678		/*
679		 * We have the parent in 'idx' and now we set up for reading the
680		 * child pointed to by slot 'iip'.
681		 */
682		last_level = le16_to_cpu(idx->level);
683		last_sqnum = le64_to_cpu(idx->ch.sqnum);
684		br = ubifs_idx_branch(c, idx, iip);
685		lnum = le32_to_cpu(br->lnum);
686		offs = le32_to_cpu(br->offs);
687		len = le32_to_cpu(br->len);
688		key_read(c, &br->key, &lower_key);
689		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
690			br = ubifs_idx_branch(c, idx, iip + 1);
691			key_read(c, &br->key, &upper_key);
692		} else
693			key_copy(c, &i->upper_key, &upper_key);
694	}
695out:
696	err = dbg_old_index_check_init(c, zroot);
697	if (err)
698		goto out_free;
699
700	return 0;
701
702out_dump:
703	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
704	ubifs_dump_node(c, idx);
705	list_del(&i->list);
706	kfree(i);
707	if (!list_empty(&list)) {
708		i = list_entry(list.prev, struct idx_node, list);
709		ubifs_err(c, "dumping parent index node");
710		ubifs_dump_node(c, &i->idx);
711	}
712out_free:
713	while (!list_empty(&list)) {
714		i = list_entry(list.next, struct idx_node, list);
715		list_del(&i->list);
716		kfree(i);
717	}
718	ubifs_err(c, "failed, error %d", err);
719	if (err > 0)
720		err = -EINVAL;
721	return err;
722}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file implements functions that manage the running of the commit process.
 13 * Each affected module has its own functions to accomplish their part in the
 14 * commit and those functions are called here.
 15 *
 16 * The commit is the process whereby all updates to the index and LEB properties
 17 * are written out together and the journal becomes empty. This keeps the
 18 * file system consistent - at all times the state can be recreated by reading
 19 * the index and LEB properties and then replaying the journal.
 20 *
 21 * The commit is split into two parts named "commit start" and "commit end".
 22 * During commit start, the commit process has exclusive access to the journal
 23 * by holding the commit semaphore down for writing. As few I/O operations as
 24 * possible are performed during commit start, instead the nodes that are to be
 25 * written are merely identified. During commit end, the commit semaphore is no
 26 * longer held and the journal is again in operation, allowing users to continue
 27 * to use the file system while the bulk of the commit I/O is performed. The
 28 * purpose of this two-step approach is to prevent the commit from causing any
 29 * latency blips. Note that in any case, the commit does not prevent lookups
 30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 31 * cache.
 32 */
 33
 34#include <linux/freezer.h>
 35#include <linux/kthread.h>
 36#include <linux/slab.h>
 37#include "ubifs.h"
 38
 39/*
 40 * nothing_to_commit - check if there is nothing to commit.
 41 * @c: UBIFS file-system description object
 42 *
 43 * This is a helper function which checks if there is anything to commit. It is
 44 * used as an optimization to avoid starting the commit if it is not really
 45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
 46 * writing the commit start node to the log), and it is better to avoid doing
 47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
 48 * nothing to commit, it is more optimal to avoid any flash I/O.
 49 *
 50 * This function has to be called with @c->commit_sem locked for writing -
 51 * this function does not take LPT/TNC locks because the @c->commit_sem
 52 * guarantees that we have exclusive access to the TNC and LPT data structures.
 53 *
 54 * This function returns %1 if there is nothing to commit and %0 otherwise.
 55 */
 56static int nothing_to_commit(struct ubifs_info *c)
 57{
 58	/*
 59	 * During mounting or remounting from R/O mode to R/W mode we may
 60	 * commit for various recovery-related reasons.
 61	 */
 62	if (c->mounting || c->remounting_rw)
 63		return 0;
 64
 65	/*
 66	 * If the root TNC node is dirty, we definitely have something to
 67	 * commit.
 68	 */
 69	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
 70		return 0;
 71
 72	/*
 73	 * Increasing @c->dirty_pn_cnt/@c->dirty_nn_cnt and marking
 74	 * nnodes/pnodes as dirty in run_gc() could race with following
 75	 * checking, which leads inconsistent states between @c->nroot
 76	 * and @c->dirty_pn_cnt/@c->dirty_nn_cnt, holding @c->lp_mutex
 77	 * to avoid that.
 78	 */
 79	mutex_lock(&c->lp_mutex);
 80	/*
 81	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
 82	 * example, this may happen if the budgeting subsystem invoked GC to
 83	 * make some free space, and the GC found an LEB with only dirty and
 84	 * free space. In this case GC would just change the lprops of this
 85	 * LEB (by turning all space into free space) and unmap it.
 86	 */
 87	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) {
 88		mutex_unlock(&c->lp_mutex);
 89		return 0;
 90	}
 91
 92	ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 93	ubifs_assert(c, c->dirty_pn_cnt == 0);
 94	ubifs_assert(c, c->dirty_nn_cnt == 0);
 95	mutex_unlock(&c->lp_mutex);
 96
 97	return 1;
 98}
 99
100/**
101 * do_commit - commit the journal.
102 * @c: UBIFS file-system description object
103 *
104 * This function implements UBIFS commit. It has to be called with commit lock
105 * locked. Returns zero in case of success and a negative error code in case of
106 * failure.
107 */
108static int do_commit(struct ubifs_info *c)
109{
110	int err, new_ltail_lnum, old_ltail_lnum, i;
111	struct ubifs_zbranch zroot;
112	struct ubifs_lp_stats lst;
113
114	dbg_cmt("start");
115	ubifs_assert(c, !c->ro_media && !c->ro_mount);
116
117	if (c->ro_error) {
118		err = -EROFS;
119		goto out_up;
120	}
121
122	if (nothing_to_commit(c)) {
123		up_write(&c->commit_sem);
124		err = 0;
125		goto out_cancel;
126	}
127
128	/* Sync all write buffers (necessary for recovery) */
129	for (i = 0; i < c->jhead_cnt; i++) {
130		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
131		if (err)
132			goto out_up;
133	}
134
135	c->cmt_no += 1;
136	err = ubifs_gc_start_commit(c);
137	if (err)
138		goto out_up;
139	err = dbg_check_lprops(c);
140	if (err)
141		goto out_up;
142	err = ubifs_log_start_commit(c, &new_ltail_lnum);
143	if (err)
144		goto out_up;
145	err = ubifs_tnc_start_commit(c, &zroot);
146	if (err)
147		goto out_up;
148	err = ubifs_lpt_start_commit(c);
149	if (err)
150		goto out_up;
151	err = ubifs_orphan_start_commit(c);
152	if (err)
153		goto out_up;
154
155	ubifs_get_lp_stats(c, &lst);
156
157	up_write(&c->commit_sem);
158
159	err = ubifs_tnc_end_commit(c);
160	if (err)
161		goto out;
162	err = ubifs_lpt_end_commit(c);
163	if (err)
164		goto out;
165	err = ubifs_orphan_end_commit(c);
166	if (err)
167		goto out;
168	err = dbg_check_old_index(c, &zroot);
169	if (err)
170		goto out;
171
172	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
173	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
174	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
175	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
176	c->mst_node->root_len    = cpu_to_le32(zroot.len);
177	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
178	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
179	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
180	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
181	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
182	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
183	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
184	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
185	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
186	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
187	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
188	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
189	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
190	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
191	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
192	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
193	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
194	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
195	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
196	if (c->no_orphs)
197		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
198	else
199		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
200
201	old_ltail_lnum = c->ltail_lnum;
202	err = ubifs_log_end_commit(c, new_ltail_lnum);
203	if (err)
204		goto out;
205
206	err = ubifs_log_post_commit(c, old_ltail_lnum);
207	if (err)
208		goto out;
209	err = ubifs_gc_end_commit(c);
210	if (err)
211		goto out;
212	err = ubifs_lpt_post_commit(c);
213	if (err)
214		goto out;
215
216out_cancel:
217	spin_lock(&c->cs_lock);
218	c->cmt_state = COMMIT_RESTING;
219	wake_up(&c->cmt_wq);
220	dbg_cmt("commit end");
221	spin_unlock(&c->cs_lock);
222	return 0;
223
224out_up:
225	up_write(&c->commit_sem);
226out:
227	ubifs_err(c, "commit failed, error %d", err);
228	spin_lock(&c->cs_lock);
229	c->cmt_state = COMMIT_BROKEN;
230	wake_up(&c->cmt_wq);
231	spin_unlock(&c->cs_lock);
232	ubifs_ro_mode(c, err);
233	return err;
234}
235
236/**
237 * run_bg_commit - run background commit if it is needed.
238 * @c: UBIFS file-system description object
239 *
240 * This function runs background commit if it is needed. Returns zero in case
241 * of success and a negative error code in case of failure.
242 */
243static int run_bg_commit(struct ubifs_info *c)
244{
245	spin_lock(&c->cs_lock);
246	/*
247	 * Run background commit only if background commit was requested or if
248	 * commit is required.
249	 */
250	if (c->cmt_state != COMMIT_BACKGROUND &&
251	    c->cmt_state != COMMIT_REQUIRED)
252		goto out;
253	spin_unlock(&c->cs_lock);
254
255	down_write(&c->commit_sem);
256	spin_lock(&c->cs_lock);
257	if (c->cmt_state == COMMIT_REQUIRED)
258		c->cmt_state = COMMIT_RUNNING_REQUIRED;
259	else if (c->cmt_state == COMMIT_BACKGROUND)
260		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
261	else
262		goto out_cmt_unlock;
263	spin_unlock(&c->cs_lock);
264
265	return do_commit(c);
266
267out_cmt_unlock:
268	up_write(&c->commit_sem);
269out:
270	spin_unlock(&c->cs_lock);
271	return 0;
272}
273
274/**
275 * ubifs_bg_thread - UBIFS background thread function.
276 * @info: points to the file-system description object
277 *
278 * This function implements various file-system background activities:
279 * o when a write-buffer timer expires it synchronizes the appropriate
280 *   write-buffer;
281 * o when the journal is about to be full, it starts in-advance commit.
282 *
283 * Note, other stuff like background garbage collection may be added here in
284 * future.
285 */
286int ubifs_bg_thread(void *info)
287{
288	int err;
289	struct ubifs_info *c = info;
290
291	ubifs_msg(c, "background thread \"%s\" started, PID %d",
292		  c->bgt_name, current->pid);
293	set_freezable();
294
295	while (1) {
296		if (kthread_should_stop())
297			break;
298
299		if (try_to_freeze())
300			continue;
301
302		set_current_state(TASK_INTERRUPTIBLE);
303		/* Check if there is something to do */
304		if (!c->need_bgt) {
305			/*
306			 * Nothing prevents us from going sleep now and
307			 * be never woken up and block the task which
308			 * could wait in 'kthread_stop()' forever.
309			 */
310			if (kthread_should_stop())
311				break;
312			schedule();
313			continue;
314		} else
315			__set_current_state(TASK_RUNNING);
316
317		c->need_bgt = 0;
318		err = ubifs_bg_wbufs_sync(c);
319		if (err)
320			ubifs_ro_mode(c, err);
321
322		run_bg_commit(c);
323		cond_resched();
324	}
325
326	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
327	return 0;
328}
329
330/**
331 * ubifs_commit_required - set commit state to "required".
332 * @c: UBIFS file-system description object
333 *
334 * This function is called if a commit is required but cannot be done from the
335 * calling function, so it is just flagged instead.
336 */
337void ubifs_commit_required(struct ubifs_info *c)
338{
339	spin_lock(&c->cs_lock);
340	switch (c->cmt_state) {
341	case COMMIT_RESTING:
342	case COMMIT_BACKGROUND:
343		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
344			dbg_cstate(COMMIT_REQUIRED));
345		c->cmt_state = COMMIT_REQUIRED;
346		break;
347	case COMMIT_RUNNING_BACKGROUND:
348		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
349			dbg_cstate(COMMIT_RUNNING_REQUIRED));
350		c->cmt_state = COMMIT_RUNNING_REQUIRED;
351		break;
352	case COMMIT_REQUIRED:
353	case COMMIT_RUNNING_REQUIRED:
354	case COMMIT_BROKEN:
355		break;
356	}
357	spin_unlock(&c->cs_lock);
358}
359
360/**
361 * ubifs_request_bg_commit - notify the background thread to do a commit.
362 * @c: UBIFS file-system description object
363 *
364 * This function is called if the journal is full enough to make a commit
365 * worthwhile, so background thread is kicked to start it.
366 */
367void ubifs_request_bg_commit(struct ubifs_info *c)
368{
369	spin_lock(&c->cs_lock);
370	if (c->cmt_state == COMMIT_RESTING) {
371		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
372			dbg_cstate(COMMIT_BACKGROUND));
373		c->cmt_state = COMMIT_BACKGROUND;
374		spin_unlock(&c->cs_lock);
375		ubifs_wake_up_bgt(c);
376	} else
377		spin_unlock(&c->cs_lock);
378}
379
380/**
381 * wait_for_commit - wait for commit.
382 * @c: UBIFS file-system description object
383 *
384 * This function sleeps until the commit operation is no longer running.
385 */
386static int wait_for_commit(struct ubifs_info *c)
387{
388	dbg_cmt("pid %d goes sleep", current->pid);
389
390	/*
391	 * The following sleeps if the condition is false, and will be woken
392	 * when the commit ends. It is possible, although very unlikely, that we
393	 * will wake up and see the subsequent commit running, rather than the
394	 * one we were waiting for, and go back to sleep.  However, we will be
395	 * woken again, so there is no danger of sleeping forever.
396	 */
397	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
398			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
399	dbg_cmt("commit finished, pid %d woke up", current->pid);
400	return 0;
401}
402
403/**
404 * ubifs_run_commit - run or wait for commit.
405 * @c: UBIFS file-system description object
406 *
407 * This function runs commit and returns zero in case of success and a negative
408 * error code in case of failure.
409 */
410int ubifs_run_commit(struct ubifs_info *c)
411{
412	int err = 0;
413
414	spin_lock(&c->cs_lock);
415	if (c->cmt_state == COMMIT_BROKEN) {
416		err = -EROFS;
417		goto out;
418	}
419
420	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
421		/*
422		 * We set the commit state to 'running required' to indicate
423		 * that we want it to complete as quickly as possible.
424		 */
425		c->cmt_state = COMMIT_RUNNING_REQUIRED;
426
427	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
428		spin_unlock(&c->cs_lock);
429		return wait_for_commit(c);
430	}
431	spin_unlock(&c->cs_lock);
432
433	/* Ok, the commit is indeed needed */
434
435	down_write(&c->commit_sem);
436	spin_lock(&c->cs_lock);
437	/*
438	 * Since we unlocked 'c->cs_lock', the state may have changed, so
439	 * re-check it.
440	 */
441	if (c->cmt_state == COMMIT_BROKEN) {
442		err = -EROFS;
443		goto out_cmt_unlock;
444	}
445
446	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
447		c->cmt_state = COMMIT_RUNNING_REQUIRED;
448
449	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
450		up_write(&c->commit_sem);
451		spin_unlock(&c->cs_lock);
452		return wait_for_commit(c);
453	}
454	c->cmt_state = COMMIT_RUNNING_REQUIRED;
455	spin_unlock(&c->cs_lock);
456
457	err = do_commit(c);
458	return err;
459
460out_cmt_unlock:
461	up_write(&c->commit_sem);
462out:
463	spin_unlock(&c->cs_lock);
464	return err;
465}
466
467/**
468 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
469 * @c: UBIFS file-system description object
470 *
471 * This function is called by garbage collection to determine if commit should
472 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
473 * is full enough to start commit, this function returns true. It is not
474 * absolutely necessary to commit yet, but it feels like this should be better
475 * then to keep doing GC. This function returns %1 if GC has to initiate commit
476 * and %0 if not.
477 */
478int ubifs_gc_should_commit(struct ubifs_info *c)
479{
480	int ret = 0;
481
482	spin_lock(&c->cs_lock);
483	if (c->cmt_state == COMMIT_BACKGROUND) {
484		dbg_cmt("commit required now");
485		c->cmt_state = COMMIT_REQUIRED;
486	} else
487		dbg_cmt("commit not requested");
488	if (c->cmt_state == COMMIT_REQUIRED)
489		ret = 1;
490	spin_unlock(&c->cs_lock);
491	return ret;
492}
493
494/*
495 * Everything below is related to debugging.
496 */
497
498/**
499 * struct idx_node - hold index nodes during index tree traversal.
500 * @list: list
501 * @iip: index in parent (slot number of this indexing node in the parent
502 *       indexing node)
503 * @upper_key: all keys in this indexing node have to be less or equivalent to
504 *             this key
505 * @idx: index node (8-byte aligned because all node structures must be 8-byte
506 *       aligned)
507 */
508struct idx_node {
509	struct list_head list;
510	int iip;
511	union ubifs_key upper_key;
512	struct ubifs_idx_node idx __aligned(8);
513};
514
515/**
516 * dbg_old_index_check_init - get information for the next old index check.
517 * @c: UBIFS file-system description object
518 * @zroot: root of the index
519 *
520 * This function records information about the index that will be needed for the
521 * next old index check i.e. 'dbg_check_old_index()'.
522 *
523 * This function returns %0 on success and a negative error code on failure.
524 */
525int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
526{
527	struct ubifs_idx_node *idx;
528	int lnum, offs, len, err = 0;
529	struct ubifs_debug_info *d = c->dbg;
530
531	d->old_zroot = *zroot;
532	lnum = d->old_zroot.lnum;
533	offs = d->old_zroot.offs;
534	len = d->old_zroot.len;
535
536	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
537	if (!idx)
538		return -ENOMEM;
539
540	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
541	if (err)
542		goto out;
543
544	d->old_zroot_level = le16_to_cpu(idx->level);
545	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
546out:
547	kfree(idx);
548	return err;
549}
550
551/**
552 * dbg_check_old_index - check the old copy of the index.
553 * @c: UBIFS file-system description object
554 * @zroot: root of the new index
555 *
556 * In order to be able to recover from an unclean unmount, a complete copy of
557 * the index must exist on flash. This is the "old" index. The commit process
558 * must write the "new" index to flash without overwriting or destroying any
559 * part of the old index. This function is run at commit end in order to check
560 * that the old index does indeed exist completely intact.
561 *
562 * This function returns %0 on success and a negative error code on failure.
563 */
564int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
565{
566	int lnum, offs, len, err = 0, last_level, child_cnt;
567	int first = 1, iip;
568	struct ubifs_debug_info *d = c->dbg;
569	union ubifs_key lower_key, upper_key, l_key, u_key;
570	unsigned long long last_sqnum;
571	struct ubifs_idx_node *idx;
572	struct list_head list;
573	struct idx_node *i;
574	size_t sz;
575
576	if (!dbg_is_chk_index(c))
577		return 0;
578
579	INIT_LIST_HEAD(&list);
580
581	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
582	     UBIFS_IDX_NODE_SZ;
583
584	/* Start at the old zroot */
585	lnum = d->old_zroot.lnum;
586	offs = d->old_zroot.offs;
587	len = d->old_zroot.len;
588	iip = 0;
589
590	/*
591	 * Traverse the index tree preorder depth-first i.e. do a node and then
592	 * its subtrees from left to right.
593	 */
594	while (1) {
595		struct ubifs_branch *br;
596
597		/* Get the next index node */
598		i = kmalloc(sz, GFP_NOFS);
599		if (!i) {
600			err = -ENOMEM;
601			goto out_free;
602		}
603		i->iip = iip;
604		/* Keep the index nodes on our path in a linked list */
605		list_add_tail(&i->list, &list);
606		/* Read the index node */
607		idx = &i->idx;
608		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
609		if (err)
610			goto out_free;
611		/* Validate index node */
612		child_cnt = le16_to_cpu(idx->child_cnt);
613		if (child_cnt < 1 || child_cnt > c->fanout) {
614			err = 1;
615			goto out_dump;
616		}
617		if (first) {
618			first = 0;
619			/* Check root level and sqnum */
620			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
621				err = 2;
622				goto out_dump;
623			}
624			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
625				err = 3;
626				goto out_dump;
627			}
628			/* Set last values as though root had a parent */
629			last_level = le16_to_cpu(idx->level) + 1;
630			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
631			key_read(c, ubifs_idx_key(c, idx), &lower_key);
632			highest_ino_key(c, &upper_key, INUM_WATERMARK);
633		}
634		key_copy(c, &upper_key, &i->upper_key);
635		if (le16_to_cpu(idx->level) != last_level - 1) {
636			err = 3;
637			goto out_dump;
638		}
639		/*
640		 * The index is always written bottom up hence a child's sqnum
641		 * is always less than the parents.
642		 */
643		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
644			err = 4;
645			goto out_dump;
646		}
647		/* Check key range */
648		key_read(c, ubifs_idx_key(c, idx), &l_key);
649		br = ubifs_idx_branch(c, idx, child_cnt - 1);
650		key_read(c, &br->key, &u_key);
651		if (keys_cmp(c, &lower_key, &l_key) > 0) {
652			err = 5;
653			goto out_dump;
654		}
655		if (keys_cmp(c, &upper_key, &u_key) < 0) {
656			err = 6;
657			goto out_dump;
658		}
659		if (keys_cmp(c, &upper_key, &u_key) == 0)
660			if (!is_hash_key(c, &u_key)) {
661				err = 7;
662				goto out_dump;
663			}
664		/* Go to next index node */
665		if (le16_to_cpu(idx->level) == 0) {
666			/* At the bottom, so go up until can go right */
667			while (1) {
668				/* Drop the bottom of the list */
669				list_del(&i->list);
670				kfree(i);
671				/* No more list means we are done */
672				if (list_empty(&list))
673					goto out;
674				/* Look at the new bottom */
675				i = list_entry(list.prev, struct idx_node,
676					       list);
677				idx = &i->idx;
678				/* Can we go right */
679				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
680					iip = iip + 1;
681					break;
682				} else
683					/* Nope, so go up again */
684					iip = i->iip;
685			}
686		} else
687			/* Go down left */
688			iip = 0;
689		/*
690		 * We have the parent in 'idx' and now we set up for reading the
691		 * child pointed to by slot 'iip'.
692		 */
693		last_level = le16_to_cpu(idx->level);
694		last_sqnum = le64_to_cpu(idx->ch.sqnum);
695		br = ubifs_idx_branch(c, idx, iip);
696		lnum = le32_to_cpu(br->lnum);
697		offs = le32_to_cpu(br->offs);
698		len = le32_to_cpu(br->len);
699		key_read(c, &br->key, &lower_key);
700		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
701			br = ubifs_idx_branch(c, idx, iip + 1);
702			key_read(c, &br->key, &upper_key);
703		} else
704			key_copy(c, &i->upper_key, &upper_key);
705	}
706out:
707	err = dbg_old_index_check_init(c, zroot);
708	if (err)
709		goto out_free;
710
711	return 0;
712
713out_dump:
714	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
715	ubifs_dump_node(c, idx, ubifs_idx_node_sz(c, c->fanout));
716	list_del(&i->list);
717	kfree(i);
718	if (!list_empty(&list)) {
719		i = list_entry(list.prev, struct idx_node, list);
720		ubifs_err(c, "dumping parent index node");
721		ubifs_dump_node(c, &i->idx, ubifs_idx_node_sz(c, c->fanout));
722	}
723out_free:
724	while (!list_empty(&list)) {
725		i = list_entry(list.next, struct idx_node, list);
726		list_del(&i->list);
727		kfree(i);
728	}
729	ubifs_err(c, "failed, error %d", err);
730	if (err > 0)
731		err = -EINVAL;
732	return err;
733}