Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
 
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
 
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "locking.h"
  18#include "tree-log.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "dev-replace.h"
  22#include "qgroup.h"
  23#include "block-group.h"
  24#include "space-info.h"
 
 
 
 
 
 
 
 
 
  25
  26#define BTRFS_ROOT_TRANS_TAG 0
  27
  28/*
  29 * Transaction states and transitions
  30 *
  31 * No running transaction (fs tree blocks are not modified)
  32 * |
  33 * | To next stage:
  34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  35 * V
  36 * Transaction N [[TRANS_STATE_RUNNING]]
  37 * |
  38 * | New trans handles can be attached to transaction N by calling all
  39 * | start_transaction() variants.
  40 * |
  41 * | To next stage:
  42 * |  Call btrfs_commit_transaction() on any trans handle attached to
  43 * |  transaction N
  44 * V
  45 * Transaction N [[TRANS_STATE_COMMIT_START]]
 
 
 
  46 * |
  47 * | Will wait for previous running transaction to completely finish if there
  48 * | is one
 
 
  49 * |
  50 * | Then one of the following happes:
  51 * | - Wait for all other trans handle holders to release.
  52 * |   The btrfs_commit_transaction() caller will do the commit work.
  53 * | - Wait for current transaction to be committed by others.
  54 * |   Other btrfs_commit_transaction() caller will do the commit work.
  55 * |
  56 * | At this stage, only btrfs_join_transaction*() variants can attach
  57 * | to this running transaction.
  58 * | All other variants will wait for current one to finish and attach to
  59 * | transaction N+1.
  60 * |
  61 * | To next stage:
  62 * |  Caller is chosen to commit transaction N, and all other trans handle
  63 * |  haven been released.
  64 * V
  65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  66 * |
  67 * | The heavy lifting transaction work is started.
  68 * | From running delayed refs (modifying extent tree) to creating pending
  69 * | snapshots, running qgroups.
  70 * | In short, modify supporting trees to reflect modifications of subvolume
  71 * | trees.
  72 * |
  73 * | At this stage, all start_transaction() calls will wait for this
  74 * | transaction to finish and attach to transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Until all supporting trees are updated.
  78 * V
  79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  80 * |						    Transaction N+1
  81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  82 * | need to write them back to disk and update	    |
  83 * | super blocks.				    |
  84 * |						    |
  85 * | At this stage, new transaction is allowed to   |
  86 * | start.					    |
  87 * | All new start_transaction() calls will be	    |
  88 * | attached to transid N+1.			    |
  89 * |						    |
  90 * | To next stage:				    |
  91 * |  Until all tree blocks are super blocks are    |
  92 * |  written to block devices			    |
  93 * V						    |
  94 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
  95 *   All tree blocks and super blocks are written.  Transaction N+1
  96 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
  97 *   data structures will be cleaned up.	    | Life goes on
  98 */
  99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 100	[TRANS_STATE_RUNNING]		= 0U,
 
 101	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 102	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 103					   __TRANS_ATTACH |
 104					   __TRANS_JOIN |
 105					   __TRANS_JOIN_NOSTART),
 106	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 107					   __TRANS_ATTACH |
 108					   __TRANS_JOIN |
 109					   __TRANS_JOIN_NOLOCK |
 110					   __TRANS_JOIN_NOSTART),
 
 
 
 
 
 111	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 112					   __TRANS_ATTACH |
 113					   __TRANS_JOIN |
 114					   __TRANS_JOIN_NOLOCK |
 115					   __TRANS_JOIN_NOSTART),
 116};
 117
 118void btrfs_put_transaction(struct btrfs_transaction *transaction)
 119{
 120	WARN_ON(refcount_read(&transaction->use_count) == 0);
 121	if (refcount_dec_and_test(&transaction->use_count)) {
 122		BUG_ON(!list_empty(&transaction->list));
 123		WARN_ON(!RB_EMPTY_ROOT(
 124				&transaction->delayed_refs.href_root.rb_root));
 125		WARN_ON(!RB_EMPTY_ROOT(
 126				&transaction->delayed_refs.dirty_extent_root));
 127		if (transaction->delayed_refs.pending_csums)
 128			btrfs_err(transaction->fs_info,
 129				  "pending csums is %llu",
 130				  transaction->delayed_refs.pending_csums);
 131		/*
 132		 * If any block groups are found in ->deleted_bgs then it's
 133		 * because the transaction was aborted and a commit did not
 134		 * happen (things failed before writing the new superblock
 135		 * and calling btrfs_finish_extent_commit()), so we can not
 136		 * discard the physical locations of the block groups.
 137		 */
 138		while (!list_empty(&transaction->deleted_bgs)) {
 139			struct btrfs_block_group *cache;
 140
 141			cache = list_first_entry(&transaction->deleted_bgs,
 142						 struct btrfs_block_group,
 143						 bg_list);
 144			list_del_init(&cache->bg_list);
 145			btrfs_unfreeze_block_group(cache);
 146			btrfs_put_block_group(cache);
 147		}
 148		WARN_ON(!list_empty(&transaction->dev_update_list));
 149		kfree(transaction);
 150	}
 151}
 152
 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 154{
 155	struct btrfs_transaction *cur_trans = trans->transaction;
 156	struct btrfs_fs_info *fs_info = trans->fs_info;
 157	struct btrfs_root *root, *tmp;
 158
 
 
 
 
 
 
 159	down_write(&fs_info->commit_root_sem);
 
 
 
 
 160	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 161				 dirty_list) {
 162		list_del_init(&root->dirty_list);
 163		free_extent_buffer(root->commit_root);
 164		root->commit_root = btrfs_root_node(root);
 165		if (is_fstree(root->root_key.objectid))
 166			btrfs_unpin_free_ino(root);
 167		extent_io_tree_release(&root->dirty_log_pages);
 168		btrfs_qgroup_clean_swapped_blocks(root);
 169	}
 170
 171	/* We can free old roots now. */
 172	spin_lock(&cur_trans->dropped_roots_lock);
 173	while (!list_empty(&cur_trans->dropped_roots)) {
 174		root = list_first_entry(&cur_trans->dropped_roots,
 175					struct btrfs_root, root_list);
 176		list_del_init(&root->root_list);
 177		spin_unlock(&cur_trans->dropped_roots_lock);
 178		btrfs_free_log(trans, root);
 179		btrfs_drop_and_free_fs_root(fs_info, root);
 180		spin_lock(&cur_trans->dropped_roots_lock);
 181	}
 182	spin_unlock(&cur_trans->dropped_roots_lock);
 
 183	up_write(&fs_info->commit_root_sem);
 184}
 185
 186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 187					 unsigned int type)
 188{
 189	if (type & TRANS_EXTWRITERS)
 190		atomic_inc(&trans->num_extwriters);
 191}
 192
 193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 194					 unsigned int type)
 195{
 196	if (type & TRANS_EXTWRITERS)
 197		atomic_dec(&trans->num_extwriters);
 198}
 199
 200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 201					  unsigned int type)
 202{
 203	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 204}
 205
 206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 207{
 208	return atomic_read(&trans->num_extwriters);
 209}
 210
 211/*
 212 * To be called after all the new block groups attached to the transaction
 213 * handle have been created (btrfs_create_pending_block_groups()).
 
 
 
 214 */
 215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 216{
 217	struct btrfs_fs_info *fs_info = trans->fs_info;
 218
 219	if (!trans->chunk_bytes_reserved)
 220		return;
 221
 222	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 223
 224	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 225				trans->chunk_bytes_reserved, NULL);
 226	trans->chunk_bytes_reserved = 0;
 227}
 228
 229/*
 230 * either allocate a new transaction or hop into the existing one
 231 */
 232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 233				     unsigned int type)
 234{
 235	struct btrfs_transaction *cur_trans;
 236
 237	spin_lock(&fs_info->trans_lock);
 238loop:
 239	/* The file system has been taken offline. No new transactions. */
 240	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 241		spin_unlock(&fs_info->trans_lock);
 242		return -EROFS;
 243	}
 244
 245	cur_trans = fs_info->running_transaction;
 246	if (cur_trans) {
 247		if (TRANS_ABORTED(cur_trans)) {
 
 
 248			spin_unlock(&fs_info->trans_lock);
 249			return cur_trans->aborted;
 250		}
 251		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 252			spin_unlock(&fs_info->trans_lock);
 253			return -EBUSY;
 254		}
 255		refcount_inc(&cur_trans->use_count);
 256		atomic_inc(&cur_trans->num_writers);
 257		extwriter_counter_inc(cur_trans, type);
 258		spin_unlock(&fs_info->trans_lock);
 
 
 259		return 0;
 260	}
 261	spin_unlock(&fs_info->trans_lock);
 262
 263	/*
 264	 * If we are ATTACH, we just want to catch the current transaction,
 265	 * and commit it. If there is no transaction, just return ENOENT.
 
 266	 */
 267	if (type == TRANS_ATTACH)
 268		return -ENOENT;
 269
 270	/*
 271	 * JOIN_NOLOCK only happens during the transaction commit, so
 272	 * it is impossible that ->running_transaction is NULL
 273	 */
 274	BUG_ON(type == TRANS_JOIN_NOLOCK);
 275
 276	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 277	if (!cur_trans)
 278		return -ENOMEM;
 279
 
 
 
 280	spin_lock(&fs_info->trans_lock);
 281	if (fs_info->running_transaction) {
 282		/*
 283		 * someone started a transaction after we unlocked.  Make sure
 284		 * to redo the checks above
 285		 */
 
 
 286		kfree(cur_trans);
 287		goto loop;
 288	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 289		spin_unlock(&fs_info->trans_lock);
 
 
 290		kfree(cur_trans);
 291		return -EROFS;
 292	}
 293
 294	cur_trans->fs_info = fs_info;
 
 
 295	atomic_set(&cur_trans->num_writers, 1);
 296	extwriter_counter_init(cur_trans, type);
 297	init_waitqueue_head(&cur_trans->writer_wait);
 298	init_waitqueue_head(&cur_trans->commit_wait);
 299	cur_trans->state = TRANS_STATE_RUNNING;
 300	/*
 301	 * One for this trans handle, one so it will live on until we
 302	 * commit the transaction.
 303	 */
 304	refcount_set(&cur_trans->use_count, 2);
 305	cur_trans->flags = 0;
 306	cur_trans->start_time = ktime_get_seconds();
 307
 308	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 309
 310	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 311	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 312	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 313
 314	/*
 315	 * although the tree mod log is per file system and not per transaction,
 316	 * the log must never go across transaction boundaries.
 317	 */
 318	smp_mb();
 319	if (!list_empty(&fs_info->tree_mod_seq_list))
 320		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 321	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 322		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 323	atomic64_set(&fs_info->tree_mod_seq, 0);
 324
 325	spin_lock_init(&cur_trans->delayed_refs.lock);
 326
 327	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 328	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 329	INIT_LIST_HEAD(&cur_trans->switch_commits);
 330	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 331	INIT_LIST_HEAD(&cur_trans->io_bgs);
 332	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 333	mutex_init(&cur_trans->cache_write_mutex);
 334	spin_lock_init(&cur_trans->dirty_bgs_lock);
 335	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 336	spin_lock_init(&cur_trans->dropped_roots_lock);
 337	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 338	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 339			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 340	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 341			IO_TREE_FS_PINNED_EXTENTS, NULL);
 342	fs_info->generation++;
 343	cur_trans->transid = fs_info->generation;
 344	fs_info->running_transaction = cur_trans;
 345	cur_trans->aborted = 0;
 346	spin_unlock(&fs_info->trans_lock);
 347
 348	return 0;
 349}
 350
 351/*
 352 * This does all the record keeping required to make sure that a shareable root
 353 * is properly recorded in a given transaction.  This is required to make sure
 354 * the old root from before we joined the transaction is deleted when the
 355 * transaction commits.
 356 */
 357static int record_root_in_trans(struct btrfs_trans_handle *trans,
 358			       struct btrfs_root *root,
 359			       int force)
 360{
 361	struct btrfs_fs_info *fs_info = root->fs_info;
 
 362
 363	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 364	    root->last_trans < trans->transid) || force) {
 365		WARN_ON(root == fs_info->extent_root);
 366		WARN_ON(!force && root->commit_root != root->node);
 367
 368		/*
 369		 * see below for IN_TRANS_SETUP usage rules
 370		 * we have the reloc mutex held now, so there
 371		 * is only one writer in this function
 372		 */
 373		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 374
 375		/* make sure readers find IN_TRANS_SETUP before
 376		 * they find our root->last_trans update
 377		 */
 378		smp_wmb();
 379
 380		spin_lock(&fs_info->fs_roots_radix_lock);
 381		if (root->last_trans == trans->transid && !force) {
 382			spin_unlock(&fs_info->fs_roots_radix_lock);
 383			return 0;
 384		}
 385		radix_tree_tag_set(&fs_info->fs_roots_radix,
 386				   (unsigned long)root->root_key.objectid,
 387				   BTRFS_ROOT_TRANS_TAG);
 388		spin_unlock(&fs_info->fs_roots_radix_lock);
 389		root->last_trans = trans->transid;
 390
 391		/* this is pretty tricky.  We don't want to
 392		 * take the relocation lock in btrfs_record_root_in_trans
 393		 * unless we're really doing the first setup for this root in
 394		 * this transaction.
 395		 *
 396		 * Normally we'd use root->last_trans as a flag to decide
 397		 * if we want to take the expensive mutex.
 398		 *
 399		 * But, we have to set root->last_trans before we
 400		 * init the relocation root, otherwise, we trip over warnings
 401		 * in ctree.c.  The solution used here is to flag ourselves
 402		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 403		 * fixing up the reloc trees and everyone must wait.
 404		 *
 405		 * When this is zero, they can trust root->last_trans and fly
 406		 * through btrfs_record_root_in_trans without having to take the
 407		 * lock.  smp_wmb() makes sure that all the writes above are
 408		 * done before we pop in the zero below
 409		 */
 410		btrfs_init_reloc_root(trans, root);
 411		smp_mb__before_atomic();
 412		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 413	}
 414	return 0;
 415}
 416
 417
 418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 419			    struct btrfs_root *root)
 420{
 421	struct btrfs_fs_info *fs_info = root->fs_info;
 422	struct btrfs_transaction *cur_trans = trans->transaction;
 423
 424	/* Add ourselves to the transaction dropped list */
 425	spin_lock(&cur_trans->dropped_roots_lock);
 426	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 427	spin_unlock(&cur_trans->dropped_roots_lock);
 428
 429	/* Make sure we don't try to update the root at commit time */
 430	spin_lock(&fs_info->fs_roots_radix_lock);
 431	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 432			     (unsigned long)root->root_key.objectid,
 433			     BTRFS_ROOT_TRANS_TAG);
 434	spin_unlock(&fs_info->fs_roots_radix_lock);
 435}
 436
 437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 438			       struct btrfs_root *root)
 439{
 440	struct btrfs_fs_info *fs_info = root->fs_info;
 
 441
 442	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 443		return 0;
 444
 445	/*
 446	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 447	 * and barriers
 448	 */
 449	smp_rmb();
 450	if (root->last_trans == trans->transid &&
 451	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 452		return 0;
 453
 454	mutex_lock(&fs_info->reloc_mutex);
 455	record_root_in_trans(trans, root, 0);
 456	mutex_unlock(&fs_info->reloc_mutex);
 457
 458	return 0;
 459}
 460
 461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 462{
 463	return (trans->state >= TRANS_STATE_COMMIT_START &&
 464		trans->state < TRANS_STATE_UNBLOCKED &&
 465		!TRANS_ABORTED(trans));
 466}
 467
 468/* wait for commit against the current transaction to become unblocked
 469 * when this is done, it is safe to start a new transaction, but the current
 470 * transaction might not be fully on disk.
 471 */
 472static void wait_current_trans(struct btrfs_fs_info *fs_info)
 473{
 474	struct btrfs_transaction *cur_trans;
 475
 476	spin_lock(&fs_info->trans_lock);
 477	cur_trans = fs_info->running_transaction;
 478	if (cur_trans && is_transaction_blocked(cur_trans)) {
 479		refcount_inc(&cur_trans->use_count);
 480		spin_unlock(&fs_info->trans_lock);
 481
 
 482		wait_event(fs_info->transaction_wait,
 483			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 484			   TRANS_ABORTED(cur_trans));
 485		btrfs_put_transaction(cur_trans);
 486	} else {
 487		spin_unlock(&fs_info->trans_lock);
 488	}
 489}
 490
 491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 492{
 493	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 494		return 0;
 495
 496	if (type == TRANS_START)
 497		return 1;
 498
 499	return 0;
 500}
 501
 502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 503{
 504	struct btrfs_fs_info *fs_info = root->fs_info;
 505
 506	if (!fs_info->reloc_ctl ||
 507	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 508	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 509	    root->reloc_root)
 510		return false;
 511
 512	return true;
 513}
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515static struct btrfs_trans_handle *
 516start_transaction(struct btrfs_root *root, unsigned int num_items,
 517		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 518		  bool enforce_qgroups)
 519{
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 
 522	struct btrfs_trans_handle *h;
 523	struct btrfs_transaction *cur_trans;
 524	u64 num_bytes = 0;
 525	u64 qgroup_reserved = 0;
 
 526	bool reloc_reserved = false;
 527	bool do_chunk_alloc = false;
 528	int ret;
 529
 530	/* Send isn't supposed to start transactions. */
 531	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 532
 533	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 534		return ERR_PTR(-EROFS);
 535
 536	if (current->journal_info) {
 537		WARN_ON(type & TRANS_EXTWRITERS);
 538		h = current->journal_info;
 539		refcount_inc(&h->use_count);
 540		WARN_ON(refcount_read(&h->use_count) > 2);
 541		h->orig_rsv = h->block_rsv;
 542		h->block_rsv = NULL;
 543		goto got_it;
 544	}
 545
 546	/*
 547	 * Do the reservation before we join the transaction so we can do all
 548	 * the appropriate flushing if need be.
 549	 */
 550	if (num_items && root != fs_info->chunk_root) {
 551		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 552		u64 delayed_refs_bytes = 0;
 553
 554		qgroup_reserved = num_items * fs_info->nodesize;
 555		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 556				enforce_qgroups);
 
 
 
 
 
 557		if (ret)
 558			return ERR_PTR(ret);
 559
 
 560		/*
 561		 * We want to reserve all the bytes we may need all at once, so
 562		 * we only do 1 enospc flushing cycle per transaction start.  We
 563		 * accomplish this by simply assuming we'll do 2 x num_items
 564		 * worth of delayed refs updates in this trans handle, and
 565		 * refill that amount for whatever is missing in the reserve.
 
 566		 */
 567		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 568		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 569		    delayed_refs_rsv->full == 0) {
 570			delayed_refs_bytes = num_bytes;
 571			num_bytes <<= 1;
 572		}
 573
 574		/*
 575		 * Do the reservation for the relocation root creation
 576		 */
 577		if (need_reserve_reloc_root(root)) {
 578			num_bytes += fs_info->nodesize;
 579			reloc_reserved = true;
 580		}
 581
 582		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 
 583		if (ret)
 584			goto reserve_fail;
 585		if (delayed_refs_bytes) {
 586			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 587							  delayed_refs_bytes);
 588			num_bytes -= delayed_refs_bytes;
 589		}
 590
 591		if (rsv->space_info->force_alloc)
 
 
 592			do_chunk_alloc = true;
 593	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 594		   !delayed_refs_rsv->full) {
 595		/*
 596		 * Some people call with btrfs_start_transaction(root, 0)
 597		 * because they can be throttled, but have some other mechanism
 598		 * for reserving space.  We still want these guys to refill the
 599		 * delayed block_rsv so just add 1 items worth of reservation
 600		 * here.
 601		 */
 602		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 603		if (ret)
 604			goto reserve_fail;
 605	}
 606again:
 607	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 608	if (!h) {
 609		ret = -ENOMEM;
 610		goto alloc_fail;
 611	}
 612
 613	/*
 614	 * If we are JOIN_NOLOCK we're already committing a transaction and
 615	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 616	 * because we're already holding a ref.  We need this because we could
 617	 * have raced in and did an fsync() on a file which can kick a commit
 618	 * and then we deadlock with somebody doing a freeze.
 619	 *
 620	 * If we are ATTACH, it means we just want to catch the current
 621	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 622	 */
 623	if (type & __TRANS_FREEZABLE)
 624		sb_start_intwrite(fs_info->sb);
 625
 626	if (may_wait_transaction(fs_info, type))
 627		wait_current_trans(fs_info);
 628
 629	do {
 630		ret = join_transaction(fs_info, type);
 631		if (ret == -EBUSY) {
 632			wait_current_trans(fs_info);
 633			if (unlikely(type == TRANS_ATTACH ||
 634				     type == TRANS_JOIN_NOSTART))
 635				ret = -ENOENT;
 636		}
 637	} while (ret == -EBUSY);
 638
 639	if (ret < 0)
 640		goto join_fail;
 641
 642	cur_trans = fs_info->running_transaction;
 643
 644	h->transid = cur_trans->transid;
 645	h->transaction = cur_trans;
 646	h->root = root;
 647	refcount_set(&h->use_count, 1);
 648	h->fs_info = root->fs_info;
 649
 650	h->type = type;
 651	h->can_flush_pending_bgs = true;
 652	INIT_LIST_HEAD(&h->new_bgs);
 
 653
 654	smp_mb();
 655	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 656	    may_wait_transaction(fs_info, type)) {
 657		current->journal_info = h;
 658		btrfs_commit_transaction(h);
 659		goto again;
 660	}
 661
 662	if (num_bytes) {
 663		trace_btrfs_space_reservation(fs_info, "transaction",
 664					      h->transid, num_bytes, 1);
 665		h->block_rsv = &fs_info->trans_block_rsv;
 666		h->bytes_reserved = num_bytes;
 
 
 
 
 
 
 
 
 
 667		h->reloc_reserved = reloc_reserved;
 668	}
 669
 670got_it:
 671	if (!current->journal_info)
 672		current->journal_info = h;
 673
 674	/*
 675	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 676	 * ALLOC_FORCE the first run through, and then we won't allocate for
 677	 * anybody else who races in later.  We don't care about the return
 678	 * value here.
 679	 */
 680	if (do_chunk_alloc && num_bytes) {
 681		u64 flags = h->block_rsv->space_info->flags;
 682
 683		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 684				  CHUNK_ALLOC_NO_FORCE);
 685	}
 686
 687	/*
 688	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 689	 * call btrfs_join_transaction() while we're also starting a
 690	 * transaction.
 691	 *
 692	 * Thus it need to be called after current->journal_info initialized,
 693	 * or we can deadlock.
 694	 */
 695	btrfs_record_root_in_trans(h, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	return h;
 698
 699join_fail:
 700	if (type & __TRANS_FREEZABLE)
 701		sb_end_intwrite(fs_info->sb);
 702	kmem_cache_free(btrfs_trans_handle_cachep, h);
 703alloc_fail:
 704	if (num_bytes)
 705		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 706					num_bytes, NULL);
 
 
 707reserve_fail:
 708	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 709	return ERR_PTR(ret);
 710}
 711
 712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 713						   unsigned int num_items)
 714{
 715	return start_transaction(root, num_items, TRANS_START,
 716				 BTRFS_RESERVE_FLUSH_ALL, true);
 717}
 718
 719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 720					struct btrfs_root *root,
 721					unsigned int num_items)
 722{
 723	return start_transaction(root, num_items, TRANS_START,
 724				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 725}
 726
 727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 728{
 729	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 730				 true);
 731}
 732
 733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 734{
 735	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 736				 BTRFS_RESERVE_NO_FLUSH, true);
 737}
 738
 739/*
 740 * Similar to regular join but it never starts a transaction when none is
 741 * running or after waiting for the current one to finish.
 
 
 
 742 */
 743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 744{
 745	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 746				 BTRFS_RESERVE_NO_FLUSH, true);
 747}
 748
 749/*
 750 * btrfs_attach_transaction() - catch the running transaction
 751 *
 752 * It is used when we want to commit the current the transaction, but
 753 * don't want to start a new one.
 754 *
 755 * Note: If this function return -ENOENT, it just means there is no
 756 * running transaction. But it is possible that the inactive transaction
 757 * is still in the memory, not fully on disk. If you hope there is no
 758 * inactive transaction in the fs when -ENOENT is returned, you should
 759 * invoke
 760 *     btrfs_attach_transaction_barrier()
 761 */
 762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 763{
 764	return start_transaction(root, 0, TRANS_ATTACH,
 765				 BTRFS_RESERVE_NO_FLUSH, true);
 766}
 767
 768/*
 769 * btrfs_attach_transaction_barrier() - catch the running transaction
 770 *
 771 * It is similar to the above function, the difference is this one
 772 * will wait for all the inactive transactions until they fully
 773 * complete.
 774 */
 775struct btrfs_trans_handle *
 776btrfs_attach_transaction_barrier(struct btrfs_root *root)
 777{
 778	struct btrfs_trans_handle *trans;
 779
 780	trans = start_transaction(root, 0, TRANS_ATTACH,
 781				  BTRFS_RESERVE_NO_FLUSH, true);
 782	if (trans == ERR_PTR(-ENOENT))
 783		btrfs_wait_for_commit(root->fs_info, 0);
 
 
 
 
 
 784
 785	return trans;
 786}
 787
 788/* wait for a transaction commit to be fully complete */
 789static noinline void wait_for_commit(struct btrfs_transaction *commit)
 
 790{
 791	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792}
 793
 794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 795{
 796	struct btrfs_transaction *cur_trans = NULL, *t;
 797	int ret = 0;
 798
 799	if (transid) {
 800		if (transid <= fs_info->last_trans_committed)
 801			goto out;
 802
 803		/* find specified transaction */
 804		spin_lock(&fs_info->trans_lock);
 805		list_for_each_entry(t, &fs_info->trans_list, list) {
 806			if (t->transid == transid) {
 807				cur_trans = t;
 808				refcount_inc(&cur_trans->use_count);
 809				ret = 0;
 810				break;
 811			}
 812			if (t->transid > transid) {
 813				ret = 0;
 814				break;
 815			}
 816		}
 817		spin_unlock(&fs_info->trans_lock);
 818
 819		/*
 820		 * The specified transaction doesn't exist, or we
 821		 * raced with btrfs_commit_transaction
 822		 */
 823		if (!cur_trans) {
 824			if (transid > fs_info->last_trans_committed)
 825				ret = -EINVAL;
 826			goto out;
 827		}
 828	} else {
 829		/* find newest transaction that is committing | committed */
 830		spin_lock(&fs_info->trans_lock);
 831		list_for_each_entry_reverse(t, &fs_info->trans_list,
 832					    list) {
 833			if (t->state >= TRANS_STATE_COMMIT_START) {
 834				if (t->state == TRANS_STATE_COMPLETED)
 835					break;
 836				cur_trans = t;
 837				refcount_inc(&cur_trans->use_count);
 838				break;
 839			}
 840		}
 841		spin_unlock(&fs_info->trans_lock);
 842		if (!cur_trans)
 843			goto out;  /* nothing committing|committed */
 844	}
 845
 846	wait_for_commit(cur_trans);
 
 847	btrfs_put_transaction(cur_trans);
 848out:
 849	return ret;
 850}
 851
 852void btrfs_throttle(struct btrfs_fs_info *fs_info)
 853{
 854	wait_current_trans(fs_info);
 855}
 856
 857static int should_end_transaction(struct btrfs_trans_handle *trans)
 858{
 859	struct btrfs_fs_info *fs_info = trans->fs_info;
 860
 861	if (btrfs_check_space_for_delayed_refs(fs_info))
 862		return 1;
 863
 864	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 865}
 866
 867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 868{
 869	struct btrfs_transaction *cur_trans = trans->transaction;
 870
 871	smp_mb();
 872	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 873	    cur_trans->delayed_refs.flushing)
 874		return 1;
 
 
 
 875
 876	return should_end_transaction(trans);
 877}
 878
 879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 880
 881{
 882	struct btrfs_fs_info *fs_info = trans->fs_info;
 883
 884	if (!trans->block_rsv) {
 885		ASSERT(!trans->bytes_reserved);
 
 886		return;
 887	}
 888
 889	if (!trans->bytes_reserved)
 
 890		return;
 
 891
 892	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 893	trace_btrfs_space_reservation(fs_info, "transaction",
 894				      trans->transid, trans->bytes_reserved, 0);
 895	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 896				trans->bytes_reserved, NULL);
 897	trans->bytes_reserved = 0;
 
 
 
 
 
 
 
 
 
 
 898}
 899
 900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 901				   int throttle)
 902{
 903	struct btrfs_fs_info *info = trans->fs_info;
 904	struct btrfs_transaction *cur_trans = trans->transaction;
 905	int err = 0;
 906
 907	if (refcount_read(&trans->use_count) > 1) {
 908		refcount_dec(&trans->use_count);
 909		trans->block_rsv = trans->orig_rsv;
 910		return 0;
 911	}
 912
 913	btrfs_trans_release_metadata(trans);
 914	trans->block_rsv = NULL;
 915
 916	btrfs_create_pending_block_groups(trans);
 917
 918	btrfs_trans_release_chunk_metadata(trans);
 919
 920	if (trans->type & __TRANS_FREEZABLE)
 921		sb_end_intwrite(info->sb);
 922
 923	WARN_ON(cur_trans != info->running_transaction);
 924	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 925	atomic_dec(&cur_trans->num_writers);
 926	extwriter_counter_dec(cur_trans, trans->type);
 927
 928	cond_wake_up(&cur_trans->writer_wait);
 
 
 
 
 929	btrfs_put_transaction(cur_trans);
 930
 931	if (current->journal_info == trans)
 932		current->journal_info = NULL;
 933
 934	if (throttle)
 935		btrfs_run_delayed_iputs(info);
 936
 937	if (TRANS_ABORTED(trans) ||
 938	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 939		wake_up_process(info->transaction_kthread);
 940		if (TRANS_ABORTED(trans))
 941			err = trans->aborted;
 942		else
 943			err = -EROFS;
 944	}
 945
 946	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 947	return err;
 948}
 949
 950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 951{
 952	return __btrfs_end_transaction(trans, 0);
 953}
 954
 955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 956{
 957	return __btrfs_end_transaction(trans, 1);
 958}
 959
 960/*
 961 * when btree blocks are allocated, they have some corresponding bits set for
 962 * them in one of two extent_io trees.  This is used to make sure all of
 963 * those extents are sent to disk but does not wait on them
 964 */
 965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 966			       struct extent_io_tree *dirty_pages, int mark)
 967{
 968	int err = 0;
 969	int werr = 0;
 970	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 971	struct extent_state *cached_state = NULL;
 972	u64 start = 0;
 973	u64 end;
 974
 975	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 976	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 977				      mark, &cached_state)) {
 978		bool wait_writeback = false;
 979
 980		err = convert_extent_bit(dirty_pages, start, end,
 981					 EXTENT_NEED_WAIT,
 982					 mark, &cached_state);
 983		/*
 984		 * convert_extent_bit can return -ENOMEM, which is most of the
 985		 * time a temporary error. So when it happens, ignore the error
 986		 * and wait for writeback of this range to finish - because we
 987		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 988		 * to __btrfs_wait_marked_extents() would not know that
 989		 * writeback for this range started and therefore wouldn't
 990		 * wait for it to finish - we don't want to commit a
 991		 * superblock that points to btree nodes/leafs for which
 992		 * writeback hasn't finished yet (and without errors).
 993		 * We cleanup any entries left in the io tree when committing
 994		 * the transaction (through extent_io_tree_release()).
 995		 */
 996		if (err == -ENOMEM) {
 997			err = 0;
 998			wait_writeback = true;
 999		}
1000		if (!err)
1001			err = filemap_fdatawrite_range(mapping, start, end);
1002		if (err)
1003			werr = err;
1004		else if (wait_writeback)
1005			werr = filemap_fdatawait_range(mapping, start, end);
1006		free_extent_state(cached_state);
 
 
1007		cached_state = NULL;
1008		cond_resched();
1009		start = end + 1;
1010	}
1011	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012	return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees.  This is used to make sure all of
1018 * those extents are on disk for transaction or log commit.  We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022				       struct extent_io_tree *dirty_pages)
1023{
1024	int err = 0;
1025	int werr = 0;
1026	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027	struct extent_state *cached_state = NULL;
1028	u64 start = 0;
1029	u64 end;
 
1030
1031	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032				      EXTENT_NEED_WAIT, &cached_state)) {
1033		/*
1034		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035		 * When committing the transaction, we'll remove any entries
1036		 * left in the io tree. For a log commit, we don't remove them
1037		 * after committing the log because the tree can be accessed
1038		 * concurrently - we do it only at transaction commit time when
1039		 * it's safe to do it (through extent_io_tree_release()).
1040		 */
1041		err = clear_extent_bit(dirty_pages, start, end,
1042				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043		if (err == -ENOMEM)
1044			err = 0;
1045		if (!err)
1046			err = filemap_fdatawait_range(mapping, start, end);
1047		if (err)
1048			werr = err;
1049		free_extent_state(cached_state);
 
 
1050		cached_state = NULL;
1051		cond_resched();
1052		start = end + 1;
1053	}
1054	if (err)
1055		werr = err;
1056	return werr;
1057}
1058
1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060		       struct extent_io_tree *dirty_pages)
1061{
1062	bool errors = false;
1063	int err;
1064
1065	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067		errors = true;
1068
1069	if (errors && !err)
1070		err = -EIO;
1071	return err;
1072}
1073
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076	struct btrfs_fs_info *fs_info = log_root->fs_info;
1077	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078	bool errors = false;
1079	int err;
1080
1081	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084	if ((mark & EXTENT_DIRTY) &&
1085	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086		errors = true;
1087
1088	if ((mark & EXTENT_NEW) &&
1089	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090		errors = true;
1091
1092	if (errors && !err)
1093		err = -EIO;
1094	return err;
1095}
1096
1097/*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105{
1106	int ret;
1107	int ret2;
1108	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109	struct btrfs_fs_info *fs_info = trans->fs_info;
1110	struct blk_plug plug;
1111
1112	blk_start_plug(&plug);
1113	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114	blk_finish_plug(&plug);
1115	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117	extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119	if (ret)
1120		return ret;
1121	else if (ret2)
1122		return ret2;
1123	else
1124		return 0;
1125}
1126
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138			       struct btrfs_root *root)
1139{
1140	int ret;
1141	u64 old_root_bytenr;
1142	u64 old_root_used;
1143	struct btrfs_fs_info *fs_info = root->fs_info;
1144	struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146	old_root_used = btrfs_root_used(&root->root_item);
1147
1148	while (1) {
1149		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150		if (old_root_bytenr == root->node->start &&
1151		    old_root_used == btrfs_root_used(&root->root_item))
1152			break;
1153
1154		btrfs_set_root_node(&root->root_item, root->node);
1155		ret = btrfs_update_root(trans, tree_root,
1156					&root->root_key,
1157					&root->root_item);
1158		if (ret)
1159			return ret;
1160
1161		old_root_used = btrfs_root_used(&root->root_item);
1162	}
1163
1164	return 0;
1165}
1166
1167/*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175{
1176	struct btrfs_fs_info *fs_info = trans->fs_info;
1177	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178	struct list_head *io_bgs = &trans->transaction->io_bgs;
1179	struct list_head *next;
1180	struct extent_buffer *eb;
1181	int ret;
1182
 
 
 
 
 
 
1183	eb = btrfs_lock_root_node(fs_info->tree_root);
1184	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185			      0, &eb);
1186	btrfs_tree_unlock(eb);
1187	free_extent_buffer(eb);
1188
1189	if (ret)
1190		return ret;
1191
1192	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193	if (ret)
1194		return ret;
1195
1196	ret = btrfs_run_dev_stats(trans);
1197	if (ret)
1198		return ret;
1199	ret = btrfs_run_dev_replace(trans);
1200	if (ret)
1201		return ret;
1202	ret = btrfs_run_qgroups(trans);
1203	if (ret)
1204		return ret;
1205
1206	ret = btrfs_setup_space_cache(trans);
1207	if (ret)
1208		return ret;
1209
1210	/* run_qgroups might have added some more refs */
1211	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212	if (ret)
1213		return ret;
1214again:
1215	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216		struct btrfs_root *root;
1217		next = fs_info->dirty_cowonly_roots.next;
1218		list_del_init(next);
1219		root = list_entry(next, struct btrfs_root, dirty_list);
1220		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222		if (root != fs_info->extent_root)
1223			list_add_tail(&root->dirty_list,
1224				      &trans->transaction->switch_commits);
1225		ret = update_cowonly_root(trans, root);
1226		if (ret)
1227			return ret;
1228		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229		if (ret)
1230			return ret;
1231	}
1232
 
 
 
 
 
1233	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234		ret = btrfs_write_dirty_block_groups(trans);
1235		if (ret)
1236			return ret;
1237		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
 
 
 
 
 
 
 
1238		if (ret)
1239			return ret;
1240	}
1241
1242	if (!list_empty(&fs_info->dirty_cowonly_roots))
1243		goto again;
1244
1245	list_add_tail(&fs_info->extent_root->dirty_list,
1246		      &trans->transaction->switch_commits);
1247
1248	/* Update dev-replace pointer once everything is committed */
1249	fs_info->dev_replace.committed_cursor_left =
1250		fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252	return 0;
1253}
1254
1255/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256 * dead roots are old snapshots that need to be deleted.  This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260void btrfs_add_dead_root(struct btrfs_root *root)
1261{
1262	struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264	spin_lock(&fs_info->trans_lock);
1265	if (list_empty(&root->root_list)) {
1266		btrfs_grab_root(root);
1267		list_add_tail(&root->root_list, &fs_info->dead_roots);
 
 
 
 
 
1268	}
1269	spin_unlock(&fs_info->trans_lock);
1270}
1271
1272/*
1273 * update all the cowonly tree roots on disk
 
1274 */
1275static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276{
1277	struct btrfs_fs_info *fs_info = trans->fs_info;
1278	struct btrfs_root *gang[8];
1279	int i;
1280	int ret;
1281	int err = 0;
 
 
 
 
 
1282
1283	spin_lock(&fs_info->fs_roots_radix_lock);
1284	while (1) {
1285		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286						 (void **)gang, 0,
1287						 ARRAY_SIZE(gang),
1288						 BTRFS_ROOT_TRANS_TAG);
1289		if (ret == 0)
1290			break;
1291		for (i = 0; i < ret; i++) {
1292			struct btrfs_root *root = gang[i];
 
 
 
 
 
 
 
 
 
 
1293			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294					(unsigned long)root->root_key.objectid,
1295					BTRFS_ROOT_TRANS_TAG);
 
1296			spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298			btrfs_free_log(trans, root);
1299			btrfs_update_reloc_root(trans, root);
1300
1301			btrfs_save_ino_cache(root, trans);
1302
1303			/* see comments in should_cow_block() */
1304			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305			smp_mb__after_atomic();
1306
1307			if (root->commit_root != root->node) {
1308				list_add_tail(&root->dirty_list,
1309					&trans->transaction->switch_commits);
1310				btrfs_set_root_node(&root->root_item,
1311						    root->node);
1312			}
1313
1314			err = btrfs_update_root(trans, fs_info->tree_root,
1315						&root->root_key,
1316						&root->root_item);
 
 
1317			spin_lock(&fs_info->fs_roots_radix_lock);
1318			if (err)
1319				break;
1320			btrfs_qgroup_free_meta_all_pertrans(root);
1321		}
1322	}
1323	spin_unlock(&fs_info->fs_roots_radix_lock);
1324	return err;
1325}
1326
1327/*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331int btrfs_defrag_root(struct btrfs_root *root)
1332{
1333	struct btrfs_fs_info *info = root->fs_info;
1334	struct btrfs_trans_handle *trans;
1335	int ret;
1336
1337	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338		return 0;
1339
1340	while (1) {
1341		trans = btrfs_start_transaction(root, 0);
1342		if (IS_ERR(trans))
1343			return PTR_ERR(trans);
1344
1345		ret = btrfs_defrag_leaves(trans, root);
1346
1347		btrfs_end_transaction(trans);
1348		btrfs_btree_balance_dirty(info);
1349		cond_resched();
1350
1351		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352			break;
1353
1354		if (btrfs_defrag_cancelled(info)) {
1355			btrfs_debug(info, "defrag_root cancelled");
1356			ret = -EAGAIN;
1357			break;
1358		}
1359	}
1360	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361	return ret;
1362}
1363
1364/*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372				   struct btrfs_root *src,
1373				   struct btrfs_root *parent,
1374				   struct btrfs_qgroup_inherit *inherit,
1375				   u64 dst_objectid)
1376{
1377	struct btrfs_fs_info *fs_info = src->fs_info;
1378	int ret;
1379
1380	/*
1381	 * Save some performance in the case that qgroups are not
1382	 * enabled. If this check races with the ioctl, rescan will
1383	 * kick in anyway.
1384	 */
1385	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386		return 0;
1387
1388	/*
1389	 * Ensure dirty @src will be committed.  Or, after coming
1390	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391	 * recorded root will never be updated again, causing an outdated root
1392	 * item.
1393	 */
1394	record_root_in_trans(trans, src, 1);
 
 
1395
1396	/*
1397	 * We are going to commit transaction, see btrfs_commit_transaction()
1398	 * comment for reason locking tree_log_mutex
 
 
 
 
 
 
 
1399	 */
1400	mutex_lock(&fs_info->tree_log_mutex);
 
 
 
 
1401
1402	ret = commit_fs_roots(trans);
1403	if (ret)
1404		goto out;
1405	ret = btrfs_qgroup_account_extents(trans);
1406	if (ret < 0)
1407		goto out;
1408
1409	/* Now qgroup are all updated, we can inherit it to new qgroups */
1410	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411				   inherit);
1412	if (ret < 0)
1413		goto out;
1414
1415	/*
1416	 * Now we do a simplified commit transaction, which will:
1417	 * 1) commit all subvolume and extent tree
1418	 *    To ensure all subvolume and extent tree have a valid
1419	 *    commit_root to accounting later insert_dir_item()
1420	 * 2) write all btree blocks onto disk
1421	 *    This is to make sure later btree modification will be cowed
1422	 *    Or commit_root can be populated and cause wrong qgroup numbers
1423	 * In this simplified commit, we don't really care about other trees
1424	 * like chunk and root tree, as they won't affect qgroup.
1425	 * And we don't write super to avoid half committed status.
1426	 */
1427	ret = commit_cowonly_roots(trans);
1428	if (ret)
1429		goto out;
1430	switch_commit_roots(trans);
1431	ret = btrfs_write_and_wait_transaction(trans);
1432	if (ret)
1433		btrfs_handle_fs_error(fs_info, ret,
1434			"Error while writing out transaction for qgroup");
1435
1436out:
1437	mutex_unlock(&fs_info->tree_log_mutex);
1438
1439	/*
1440	 * Force parent root to be updated, as we recorded it before so its
1441	 * last_trans == cur_transid.
1442	 * Or it won't be committed again onto disk after later
1443	 * insert_dir_item()
1444	 */
1445	if (!ret)
1446		record_root_in_trans(trans, parent, 1);
1447	return ret;
1448}
1449
1450/*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit.  This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460				   struct btrfs_pending_snapshot *pending)
1461{
1462
1463	struct btrfs_fs_info *fs_info = trans->fs_info;
1464	struct btrfs_key key;
1465	struct btrfs_root_item *new_root_item;
1466	struct btrfs_root *tree_root = fs_info->tree_root;
1467	struct btrfs_root *root = pending->root;
1468	struct btrfs_root *parent_root;
1469	struct btrfs_block_rsv *rsv;
1470	struct inode *parent_inode;
1471	struct btrfs_path *path;
1472	struct btrfs_dir_item *dir_item;
1473	struct dentry *dentry;
1474	struct extent_buffer *tmp;
1475	struct extent_buffer *old;
1476	struct timespec64 cur_time;
1477	int ret = 0;
1478	u64 to_reserve = 0;
1479	u64 index = 0;
1480	u64 objectid;
1481	u64 root_flags;
 
 
1482
1483	ASSERT(pending->path);
1484	path = pending->path;
1485
1486	ASSERT(pending->root_item);
1487	new_root_item = pending->root_item;
1488
1489	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	if (pending->error)
1491		goto no_free_objectid;
1492
1493	/*
1494	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495	 * accounted by later btrfs_qgroup_inherit().
1496	 */
1497	btrfs_set_skip_qgroup(trans, objectid);
1498
1499	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501	if (to_reserve > 0) {
1502		pending->error = btrfs_block_rsv_add(root,
1503						     &pending->block_rsv,
1504						     to_reserve,
1505						     BTRFS_RESERVE_NO_FLUSH);
1506		if (pending->error)
1507			goto clear_skip_qgroup;
1508	}
1509
1510	key.objectid = objectid;
1511	key.offset = (u64)-1;
1512	key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514	rsv = trans->block_rsv;
1515	trans->block_rsv = &pending->block_rsv;
1516	trans->bytes_reserved = trans->block_rsv->reserved;
1517	trace_btrfs_space_reservation(fs_info, "transaction",
1518				      trans->transid,
1519				      trans->bytes_reserved, 1);
1520	dentry = pending->dentry;
1521	parent_inode = pending->dir;
1522	parent_root = BTRFS_I(parent_inode)->root;
1523	record_root_in_trans(trans, parent_root, 0);
1524
 
1525	cur_time = current_time(parent_inode);
1526
1527	/*
1528	 * insert the directory item
1529	 */
1530	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531	BUG_ON(ret); /* -ENOMEM */
 
 
 
1532
1533	/* check if there is a file/dir which has the same name. */
1534	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535					 btrfs_ino(BTRFS_I(parent_inode)),
1536					 dentry->d_name.name,
1537					 dentry->d_name.len, 0);
1538	if (dir_item != NULL && !IS_ERR(dir_item)) {
1539		pending->error = -EEXIST;
1540		goto dir_item_existed;
1541	} else if (IS_ERR(dir_item)) {
1542		ret = PTR_ERR(dir_item);
1543		btrfs_abort_transaction(trans, ret);
1544		goto fail;
1545	}
1546	btrfs_release_path(path);
1547
 
 
 
 
 
 
1548	/*
1549	 * pull in the delayed directory update
1550	 * and the delayed inode item
1551	 * otherwise we corrupt the FS during
1552	 * snapshot
1553	 */
1554	ret = btrfs_run_delayed_items(trans);
1555	if (ret) {	/* Transaction aborted */
1556		btrfs_abort_transaction(trans, ret);
1557		goto fail;
1558	}
1559
1560	record_root_in_trans(trans, root, 0);
 
 
 
 
1561	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563	btrfs_check_and_init_root_item(new_root_item);
1564
1565	root_flags = btrfs_root_flags(new_root_item);
1566	if (pending->readonly)
1567		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568	else
1569		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570	btrfs_set_root_flags(new_root_item, root_flags);
1571
1572	btrfs_set_root_generation_v2(new_root_item,
1573			trans->transid);
1574	generate_random_guid(new_root_item->uuid);
1575	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576			BTRFS_UUID_SIZE);
1577	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578		memset(new_root_item->received_uuid, 0,
1579		       sizeof(new_root_item->received_uuid));
1580		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582		btrfs_set_root_stransid(new_root_item, 0);
1583		btrfs_set_root_rtransid(new_root_item, 0);
1584	}
1585	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587	btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589	old = btrfs_lock_root_node(root);
1590	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
 
1591	if (ret) {
1592		btrfs_tree_unlock(old);
1593		free_extent_buffer(old);
1594		btrfs_abort_transaction(trans, ret);
1595		goto fail;
1596	}
1597
1598	btrfs_set_lock_blocking_write(old);
1599
1600	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601	/* clean up in any case */
1602	btrfs_tree_unlock(old);
1603	free_extent_buffer(old);
1604	if (ret) {
1605		btrfs_abort_transaction(trans, ret);
1606		goto fail;
1607	}
1608	/* see comments in should_cow_block() */
1609	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610	smp_wmb();
1611
1612	btrfs_set_root_node(new_root_item, tmp);
1613	/* record when the snapshot was created in key.offset */
1614	key.offset = trans->transid;
1615	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616	btrfs_tree_unlock(tmp);
1617	free_extent_buffer(tmp);
1618	if (ret) {
1619		btrfs_abort_transaction(trans, ret);
1620		goto fail;
1621	}
1622
1623	/*
1624	 * insert root back/forward references
1625	 */
1626	ret = btrfs_add_root_ref(trans, objectid,
1627				 parent_root->root_key.objectid,
1628				 btrfs_ino(BTRFS_I(parent_inode)), index,
1629				 dentry->d_name.name, dentry->d_name.len);
1630	if (ret) {
1631		btrfs_abort_transaction(trans, ret);
1632		goto fail;
1633	}
1634
1635	key.offset = (u64)-1;
1636	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637	if (IS_ERR(pending->snap)) {
1638		ret = PTR_ERR(pending->snap);
1639		pending->snap = NULL;
1640		btrfs_abort_transaction(trans, ret);
1641		goto fail;
1642	}
1643
1644	ret = btrfs_reloc_post_snapshot(trans, pending);
1645	if (ret) {
1646		btrfs_abort_transaction(trans, ret);
1647		goto fail;
1648	}
1649
1650	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651	if (ret) {
1652		btrfs_abort_transaction(trans, ret);
1653		goto fail;
1654	}
1655
1656	/*
1657	 * Do special qgroup accounting for snapshot, as we do some qgroup
1658	 * snapshot hack to do fast snapshot.
1659	 * To co-operate with that hack, we do hack again.
1660	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661	 */
1662	ret = qgroup_account_snapshot(trans, root, parent_root,
1663				      pending->inherit, objectid);
 
 
 
 
1664	if (ret < 0)
1665		goto fail;
1666
1667	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668				    dentry->d_name.len, BTRFS_I(parent_inode),
1669				    &key, BTRFS_FT_DIR, index);
1670	/* We have check then name at the beginning, so it is impossible. */
1671	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672	if (ret) {
1673		btrfs_abort_transaction(trans, ret);
1674		goto fail;
1675	}
1676
1677	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678					 dentry->d_name.len * 2);
1679	parent_inode->i_mtime = parent_inode->i_ctime =
1680		current_time(parent_inode);
1681	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682	if (ret) {
1683		btrfs_abort_transaction(trans, ret);
1684		goto fail;
1685	}
1686	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687				  BTRFS_UUID_KEY_SUBVOL,
1688				  objectid);
1689	if (ret) {
1690		btrfs_abort_transaction(trans, ret);
1691		goto fail;
1692	}
1693	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696					  objectid);
1697		if (ret && ret != -EEXIST) {
1698			btrfs_abort_transaction(trans, ret);
1699			goto fail;
1700		}
1701	}
1702
1703	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704	if (ret) {
1705		btrfs_abort_transaction(trans, ret);
1706		goto fail;
1707	}
1708
1709fail:
1710	pending->error = ret;
1711dir_item_existed:
1712	trans->block_rsv = rsv;
1713	trans->bytes_reserved = 0;
1714clear_skip_qgroup:
1715	btrfs_clear_skip_qgroup(trans);
1716no_free_objectid:
 
 
1717	kfree(new_root_item);
1718	pending->root_item = NULL;
1719	btrfs_free_path(path);
1720	pending->path = NULL;
1721
1722	return ret;
1723}
1724
1725/*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729{
1730	struct btrfs_pending_snapshot *pending, *next;
1731	struct list_head *head = &trans->transaction->pending_snapshots;
1732	int ret = 0;
1733
1734	list_for_each_entry_safe(pending, next, head, list) {
1735		list_del(&pending->list);
1736		ret = create_pending_snapshot(trans, pending);
1737		if (ret)
1738			break;
1739	}
1740	return ret;
1741}
1742
1743static void update_super_roots(struct btrfs_fs_info *fs_info)
1744{
1745	struct btrfs_root_item *root_item;
1746	struct btrfs_super_block *super;
1747
1748	super = fs_info->super_copy;
1749
1750	root_item = &fs_info->chunk_root->root_item;
1751	super->chunk_root = root_item->bytenr;
1752	super->chunk_root_generation = root_item->generation;
1753	super->chunk_root_level = root_item->level;
1754
1755	root_item = &fs_info->tree_root->root_item;
1756	super->root = root_item->bytenr;
1757	super->generation = root_item->generation;
1758	super->root_level = root_item->level;
1759	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760		super->cache_generation = root_item->generation;
 
 
1761	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762		super->uuid_tree_generation = root_item->generation;
1763}
1764
1765int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766{
1767	struct btrfs_transaction *trans;
1768	int ret = 0;
1769
1770	spin_lock(&info->trans_lock);
1771	trans = info->running_transaction;
1772	if (trans)
1773		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774	spin_unlock(&info->trans_lock);
1775	return ret;
1776}
1777
1778int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779{
1780	struct btrfs_transaction *trans;
1781	int ret = 0;
1782
1783	spin_lock(&info->trans_lock);
1784	trans = info->running_transaction;
1785	if (trans)
1786		ret = is_transaction_blocked(trans);
1787	spin_unlock(&info->trans_lock);
1788	return ret;
1789}
1790
1791/*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796					    struct btrfs_transaction *trans)
1797{
1798	wait_event(fs_info->transaction_blocked_wait,
1799		   trans->state >= TRANS_STATE_COMMIT_START ||
1800		   TRANS_ABORTED(trans));
1801}
1802
1803/*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807static void wait_current_trans_commit_start_and_unblock(
1808					struct btrfs_fs_info *fs_info,
1809					struct btrfs_transaction *trans)
1810{
1811	wait_event(fs_info->transaction_wait,
1812		   trans->state >= TRANS_STATE_UNBLOCKED ||
1813		   TRANS_ABORTED(trans));
1814}
1815
1816/*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820struct btrfs_async_commit {
1821	struct btrfs_trans_handle *newtrans;
1822	struct work_struct work;
1823};
1824
1825static void do_async_commit(struct work_struct *work)
1826{
1827	struct btrfs_async_commit *ac =
1828		container_of(work, struct btrfs_async_commit, work);
1829
1830	/*
1831	 * We've got freeze protection passed with the transaction.
1832	 * Tell lockdep about it.
1833	 */
1834	if (ac->newtrans->type & __TRANS_FREEZABLE)
1835		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837	current->journal_info = ac->newtrans;
1838
1839	btrfs_commit_transaction(ac->newtrans);
1840	kfree(ac);
1841}
1842
1843int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844				   int wait_for_unblock)
1845{
1846	struct btrfs_fs_info *fs_info = trans->fs_info;
1847	struct btrfs_async_commit *ac;
1848	struct btrfs_transaction *cur_trans;
1849
1850	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851	if (!ac)
1852		return -ENOMEM;
1853
1854	INIT_WORK(&ac->work, do_async_commit);
1855	ac->newtrans = btrfs_join_transaction(trans->root);
1856	if (IS_ERR(ac->newtrans)) {
1857		int err = PTR_ERR(ac->newtrans);
1858		kfree(ac);
1859		return err;
1860	}
1861
1862	/* take transaction reference */
1863	cur_trans = trans->transaction;
1864	refcount_inc(&cur_trans->use_count);
1865
1866	btrfs_end_transaction(trans);
1867
1868	/*
1869	 * Tell lockdep we've released the freeze rwsem, since the
1870	 * async commit thread will be the one to unlock it.
1871	 */
1872	if (ac->newtrans->type & __TRANS_FREEZABLE)
1873		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
 
 
 
 
1874
1875	schedule_work(&ac->work);
 
 
 
 
 
 
 
1876
1877	/* wait for transaction to start and unblock */
1878	if (wait_for_unblock)
1879		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880	else
1881		wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883	if (current->journal_info == trans)
1884		current->journal_info = NULL;
1885
1886	btrfs_put_transaction(cur_trans);
1887	return 0;
1888}
1889
1890
1891static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892{
1893	struct btrfs_fs_info *fs_info = trans->fs_info;
1894	struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896	WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898	btrfs_abort_transaction(trans, err);
1899
1900	spin_lock(&fs_info->trans_lock);
1901
1902	/*
1903	 * If the transaction is removed from the list, it means this
1904	 * transaction has been committed successfully, so it is impossible
1905	 * to call the cleanup function.
1906	 */
1907	BUG_ON(list_empty(&cur_trans->list));
1908
1909	list_del_init(&cur_trans->list);
1910	if (cur_trans == fs_info->running_transaction) {
1911		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912		spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
1913		wait_event(cur_trans->writer_wait,
1914			   atomic_read(&cur_trans->num_writers) == 1);
1915
1916		spin_lock(&fs_info->trans_lock);
1917	}
 
 
 
 
 
 
 
 
 
 
 
1918	spin_unlock(&fs_info->trans_lock);
1919
1920	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922	spin_lock(&fs_info->trans_lock);
1923	if (cur_trans == fs_info->running_transaction)
1924		fs_info->running_transaction = NULL;
1925	spin_unlock(&fs_info->trans_lock);
1926
1927	if (trans->type & __TRANS_FREEZABLE)
1928		sb_end_intwrite(fs_info->sb);
1929	btrfs_put_transaction(cur_trans);
1930	btrfs_put_transaction(cur_trans);
1931
1932	trace_btrfs_transaction_commit(trans->root);
1933
1934	if (current->journal_info == trans)
1935		current->journal_info = NULL;
1936	btrfs_scrub_cancel(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
1937
1938	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939}
1940
1941/*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946{
1947       struct btrfs_fs_info *fs_info = trans->fs_info;
1948       struct btrfs_block_group *block_group, *tmp;
1949
1950       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951               btrfs_delayed_refs_rsv_release(fs_info, 1);
1952               list_del_init(&block_group->bg_list);
1953       }
1954}
1955
1956static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957{
1958	struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960	/*
1961	 * We use writeback_inodes_sb here because if we used
1962	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963	 * Currently are holding the fs freeze lock, if we do an async flush
1964	 * we'll do btrfs_join_transaction() and deadlock because we need to
1965	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1966	 * from already being in a transaction and our join_transaction doesn't
1967	 * have to re-take the fs freeze lock.
 
 
 
 
 
 
 
 
1968	 */
1969	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971	} else {
1972		struct btrfs_pending_snapshot *pending;
1973		struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975		/*
1976		 * Flush dellaloc for any root that is going to be snapshotted.
1977		 * This is done to avoid a corrupted version of files, in the
1978		 * snapshots, that had both buffered and direct IO writes (even
1979		 * if they were done sequentially) due to an unordered update of
1980		 * the inode's size on disk.
1981		 */
1982		list_for_each_entry(pending, head, list) {
1983			int ret;
1984
1985			ret = btrfs_start_delalloc_snapshot(pending->root);
1986			if (ret)
1987				return ret;
1988		}
1989	}
1990	return 0;
1991}
1992
1993static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1994{
1995	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
1996
1997	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999	} else {
2000		struct btrfs_pending_snapshot *pending;
2001		struct list_head *head = &trans->transaction->pending_snapshots;
 
 
 
 
 
 
2002
2003		/*
2004		 * Wait for any dellaloc that we started previously for the roots
2005		 * that are going to be snapshotted. This is to avoid a corrupted
2006		 * version of files in the snapshots that had both buffered and
2007		 * direct IO writes (even if they were done sequentially).
2008		 */
2009		list_for_each_entry(pending, head, list)
2010			btrfs_wait_ordered_extents(pending->root,
2011						   U64_MAX, 0, U64_MAX);
2012	}
 
 
 
 
 
 
2013}
2014
2015int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016{
2017	struct btrfs_fs_info *fs_info = trans->fs_info;
2018	struct btrfs_transaction *cur_trans = trans->transaction;
2019	struct btrfs_transaction *prev_trans = NULL;
2020	int ret;
 
 
2021
2022	ASSERT(refcount_read(&trans->use_count) == 1);
 
2023
2024	/*
2025	 * Some places just start a transaction to commit it.  We need to make
2026	 * sure that if this commit fails that the abort code actually marks the
2027	 * transaction as failed, so set trans->dirty to make the abort code do
2028	 * the right thing.
2029	 */
2030	trans->dirty = true;
2031
2032	/* Stop the commit early if ->aborted is set */
2033	if (TRANS_ABORTED(cur_trans)) {
2034		ret = cur_trans->aborted;
2035		btrfs_end_transaction(trans);
2036		return ret;
2037	}
2038
2039	btrfs_trans_release_metadata(trans);
2040	trans->block_rsv = NULL;
2041
2042	/* make a pass through all the delayed refs we have so far
2043	 * any runnings procs may add more while we are here
2044	 */
2045	ret = btrfs_run_delayed_refs(trans, 0);
2046	if (ret) {
2047		btrfs_end_transaction(trans);
2048		return ret;
2049	}
2050
2051	cur_trans = trans->transaction;
2052
2053	/*
2054	 * set the flushing flag so procs in this transaction have to
2055	 * start sending their work down.
2056	 */
2057	cur_trans->delayed_refs.flushing = 1;
2058	smp_wmb();
 
 
 
 
 
 
 
 
2059
2060	btrfs_create_pending_block_groups(trans);
2061
2062	ret = btrfs_run_delayed_refs(trans, 0);
2063	if (ret) {
2064		btrfs_end_transaction(trans);
2065		return ret;
2066	}
2067
2068	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069		int run_it = 0;
2070
2071		/* this mutex is also taken before trying to set
2072		 * block groups readonly.  We need to make sure
2073		 * that nobody has set a block group readonly
2074		 * after a extents from that block group have been
2075		 * allocated for cache files.  btrfs_set_block_group_ro
2076		 * will wait for the transaction to commit if it
2077		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078		 *
2079		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080		 * only one process starts all the block group IO.  It wouldn't
2081		 * hurt to have more than one go through, but there's no
2082		 * real advantage to it either.
2083		 */
2084		mutex_lock(&fs_info->ro_block_group_mutex);
2085		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086				      &cur_trans->flags))
2087			run_it = 1;
2088		mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090		if (run_it) {
2091			ret = btrfs_start_dirty_block_groups(trans);
2092			if (ret) {
2093				btrfs_end_transaction(trans);
2094				return ret;
2095			}
2096		}
2097	}
2098
2099	spin_lock(&fs_info->trans_lock);
2100	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
 
 
 
 
2101		spin_unlock(&fs_info->trans_lock);
2102		refcount_inc(&cur_trans->use_count);
2103		ret = btrfs_end_transaction(trans);
2104
2105		wait_for_commit(cur_trans);
 
 
 
 
 
 
2106
2107		if (TRANS_ABORTED(cur_trans))
2108			ret = cur_trans->aborted;
2109
2110		btrfs_put_transaction(cur_trans);
2111
2112		return ret;
2113	}
2114
2115	cur_trans->state = TRANS_STATE_COMMIT_START;
2116	wake_up(&fs_info->transaction_blocked_wait);
 
2117
2118	if (cur_trans->list.prev != &fs_info->trans_list) {
 
 
 
 
 
2119		prev_trans = list_entry(cur_trans->list.prev,
2120					struct btrfs_transaction, list);
2121		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122			refcount_inc(&prev_trans->use_count);
2123			spin_unlock(&fs_info->trans_lock);
2124
2125			wait_for_commit(prev_trans);
 
2126			ret = READ_ONCE(prev_trans->aborted);
2127
2128			btrfs_put_transaction(prev_trans);
2129			if (ret)
2130				goto cleanup_transaction;
2131		} else {
2132			spin_unlock(&fs_info->trans_lock);
2133		}
2134	} else {
2135		spin_unlock(&fs_info->trans_lock);
2136		/*
2137		 * The previous transaction was aborted and was already removed
2138		 * from the list of transactions at fs_info->trans_list. So we
2139		 * abort to prevent writing a new superblock that reflects a
2140		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141		 */
2142		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
 
2143			ret = -EROFS;
2144			goto cleanup_transaction;
2145		}
2146	}
2147
 
 
 
 
 
 
 
 
 
 
2148	extwriter_counter_dec(cur_trans, trans->type);
2149
2150	ret = btrfs_start_delalloc_flush(trans);
2151	if (ret)
2152		goto cleanup_transaction;
2153
2154	ret = btrfs_run_delayed_items(trans);
2155	if (ret)
2156		goto cleanup_transaction;
2157
 
 
 
 
 
 
 
2158	wait_event(cur_trans->writer_wait,
2159		   extwriter_counter_read(cur_trans) == 0);
2160
2161	/* some pending stuffs might be added after the previous flush. */
2162	ret = btrfs_run_delayed_items(trans);
2163	if (ret)
 
2164		goto cleanup_transaction;
 
 
 
2165
2166	btrfs_wait_delalloc_flush(trans);
 
 
 
 
 
 
 
2167
2168	btrfs_scrub_pause(fs_info);
2169	/*
2170	 * Ok now we need to make sure to block out any other joins while we
2171	 * commit the transaction.  We could have started a join before setting
2172	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173	 */
2174	spin_lock(&fs_info->trans_lock);
 
2175	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176	spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
 
 
2177	wait_event(cur_trans->writer_wait,
2178		   atomic_read(&cur_trans->num_writers) == 1);
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	if (TRANS_ABORTED(cur_trans)) {
2181		ret = cur_trans->aborted;
 
2182		goto scrub_continue;
2183	}
2184	/*
2185	 * the reloc mutex makes sure that we stop
2186	 * the balancing code from coming in and moving
2187	 * extents around in the middle of the commit
2188	 */
2189	mutex_lock(&fs_info->reloc_mutex);
2190
2191	/*
2192	 * We needn't worry about the delayed items because we will
2193	 * deal with them in create_pending_snapshot(), which is the
2194	 * core function of the snapshot creation.
2195	 */
2196	ret = create_pending_snapshots(trans);
2197	if (ret)
2198		goto unlock_reloc;
2199
2200	/*
2201	 * We insert the dir indexes of the snapshots and update the inode
2202	 * of the snapshots' parents after the snapshot creation, so there
2203	 * are some delayed items which are not dealt with. Now deal with
2204	 * them.
2205	 *
2206	 * We needn't worry that this operation will corrupt the snapshots,
2207	 * because all the tree which are snapshoted will be forced to COW
2208	 * the nodes and leaves.
2209	 */
2210	ret = btrfs_run_delayed_items(trans);
2211	if (ret)
2212		goto unlock_reloc;
2213
2214	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215	if (ret)
2216		goto unlock_reloc;
2217
2218	/*
2219	 * make sure none of the code above managed to slip in a
2220	 * delayed item
2221	 */
2222	btrfs_assert_delayed_root_empty(fs_info);
2223
2224	WARN_ON(cur_trans != trans->transaction);
2225
2226	/* btrfs_commit_tree_roots is responsible for getting the
2227	 * various roots consistent with each other.  Every pointer
2228	 * in the tree of tree roots has to point to the most up to date
2229	 * root for every subvolume and other tree.  So, we have to keep
2230	 * the tree logging code from jumping in and changing any
2231	 * of the trees.
2232	 *
2233	 * At this point in the commit, there can't be any tree-log
2234	 * writers, but a little lower down we drop the trans mutex
2235	 * and let new people in.  By holding the tree_log_mutex
2236	 * from now until after the super is written, we avoid races
2237	 * with the tree-log code.
2238	 */
2239	mutex_lock(&fs_info->tree_log_mutex);
2240
2241	ret = commit_fs_roots(trans);
2242	if (ret)
2243		goto unlock_tree_log;
2244
2245	/*
2246	 * Since the transaction is done, we can apply the pending changes
2247	 * before the next transaction.
2248	 */
2249	btrfs_apply_pending_changes(fs_info);
2250
2251	/* commit_fs_roots gets rid of all the tree log roots, it is now
2252	 * safe to free the root of tree log roots
2253	 */
2254	btrfs_free_log_root_tree(trans, fs_info);
2255
2256	/*
2257	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258	 * new delayed refs. Must handle them or qgroup can be wrong.
2259	 */
2260	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261	if (ret)
2262		goto unlock_tree_log;
2263
2264	/*
2265	 * Since fs roots are all committed, we can get a quite accurate
2266	 * new_roots. So let's do quota accounting.
2267	 */
2268	ret = btrfs_qgroup_account_extents(trans);
2269	if (ret < 0)
2270		goto unlock_tree_log;
2271
2272	ret = commit_cowonly_roots(trans);
2273	if (ret)
2274		goto unlock_tree_log;
2275
2276	/*
2277	 * The tasks which save the space cache and inode cache may also
2278	 * update ->aborted, check it.
2279	 */
2280	if (TRANS_ABORTED(cur_trans)) {
2281		ret = cur_trans->aborted;
2282		goto unlock_tree_log;
2283	}
2284
2285	btrfs_prepare_extent_commit(fs_info);
2286
2287	cur_trans = fs_info->running_transaction;
2288
2289	btrfs_set_root_node(&fs_info->tree_root->root_item,
2290			    fs_info->tree_root->node);
2291	list_add_tail(&fs_info->tree_root->dirty_list,
2292		      &cur_trans->switch_commits);
2293
2294	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295			    fs_info->chunk_root->node);
2296	list_add_tail(&fs_info->chunk_root->dirty_list,
2297		      &cur_trans->switch_commits);
2298
 
 
 
 
 
 
 
2299	switch_commit_roots(trans);
2300
2301	ASSERT(list_empty(&cur_trans->dirty_bgs));
2302	ASSERT(list_empty(&cur_trans->io_bgs));
2303	update_super_roots(fs_info);
2304
2305	btrfs_set_super_log_root(fs_info->super_copy, 0);
2306	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308	       sizeof(*fs_info->super_copy));
2309
2310	btrfs_commit_device_sizes(cur_trans);
2311
2312	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315	btrfs_trans_release_chunk_metadata(trans);
2316
 
 
 
 
 
 
 
 
 
 
2317	spin_lock(&fs_info->trans_lock);
2318	cur_trans->state = TRANS_STATE_UNBLOCKED;
2319	fs_info->running_transaction = NULL;
2320	spin_unlock(&fs_info->trans_lock);
2321	mutex_unlock(&fs_info->reloc_mutex);
2322
2323	wake_up(&fs_info->transaction_wait);
 
 
 
 
 
 
2324
2325	ret = btrfs_write_and_wait_transaction(trans);
2326	if (ret) {
2327		btrfs_handle_fs_error(fs_info, ret,
2328				      "Error while writing out transaction");
2329		/*
2330		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331		 * but we can't jump to unlock_tree_log causing double unlock
2332		 */
2333		mutex_unlock(&fs_info->tree_log_mutex);
2334		goto scrub_continue;
2335	}
2336
2337	ret = write_all_supers(fs_info, 0);
2338	/*
2339	 * the super is written, we can safely allow the tree-loggers
2340	 * to go about their business
2341	 */
2342	mutex_unlock(&fs_info->tree_log_mutex);
2343	if (ret)
2344		goto scrub_continue;
2345
 
 
 
 
 
 
 
 
2346	btrfs_finish_extent_commit(trans);
2347
2348	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349		btrfs_clear_space_info_full(fs_info);
2350
2351	fs_info->last_trans_committed = cur_trans->transid;
2352	/*
2353	 * We needn't acquire the lock here because there is no other task
2354	 * which can change it.
2355	 */
2356	cur_trans->state = TRANS_STATE_COMPLETED;
2357	wake_up(&cur_trans->commit_wait);
 
2358
2359	spin_lock(&fs_info->trans_lock);
2360	list_del_init(&cur_trans->list);
2361	spin_unlock(&fs_info->trans_lock);
2362
2363	btrfs_put_transaction(cur_trans);
2364	btrfs_put_transaction(cur_trans);
2365
2366	if (trans->type & __TRANS_FREEZABLE)
2367		sb_end_intwrite(fs_info->sb);
2368
2369	trace_btrfs_transaction_commit(trans->root);
 
 
2370
2371	btrfs_scrub_continue(fs_info);
2372
2373	if (current->journal_info == trans)
2374		current->journal_info = NULL;
2375
2376	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
 
 
2378	return ret;
2379
2380unlock_tree_log:
2381	mutex_unlock(&fs_info->tree_log_mutex);
2382unlock_reloc:
2383	mutex_unlock(&fs_info->reloc_mutex);
 
2384scrub_continue:
 
 
2385	btrfs_scrub_continue(fs_info);
2386cleanup_transaction:
2387	btrfs_trans_release_metadata(trans);
2388	btrfs_cleanup_pending_block_groups(trans);
2389	btrfs_trans_release_chunk_metadata(trans);
2390	trans->block_rsv = NULL;
2391	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392	if (current->journal_info == trans)
2393		current->journal_info = NULL;
2394	cleanup_transaction(trans, ret);
2395
2396	return ret;
 
 
 
 
 
 
 
 
 
 
2397}
2398
2399/*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410{
 
2411	int ret;
2412	struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414	spin_lock(&fs_info->trans_lock);
2415	if (list_empty(&fs_info->dead_roots)) {
2416		spin_unlock(&fs_info->trans_lock);
2417		return 0;
2418	}
2419	root = list_first_entry(&fs_info->dead_roots,
2420			struct btrfs_root, root_list);
2421	list_del_init(&root->root_list);
2422	spin_unlock(&fs_info->trans_lock);
2423
2424	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426	btrfs_kill_all_delayed_nodes(root);
2427	if (root->ino_cache_inode) {
2428		iput(root->ino_cache_inode);
2429		root->ino_cache_inode = NULL;
2430	}
2431
2432	if (btrfs_header_backref_rev(root->node) <
2433			BTRFS_MIXED_BACKREF_REV)
2434		ret = btrfs_drop_snapshot(root, 0, 0);
2435	else
2436		ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438	btrfs_put_root(root);
2439	return (ret < 0) ? 0 : 1;
2440}
2441
2442void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443{
2444	unsigned long prev;
2445	unsigned long bit;
2446
2447	prev = xchg(&fs_info->pending_changes, 0);
2448	if (!prev)
2449		return;
 
 
 
 
 
 
2450
2451	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452	if (prev & bit)
2453		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454	prev &= ~bit;
2455
2456	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457	if (prev & bit)
2458		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459	prev &= ~bit;
2460
2461	bit = 1 << BTRFS_PENDING_COMMIT;
2462	if (prev & bit)
2463		btrfs_debug(fs_info, "pending commit done");
2464	prev &= ~bit;
2465
2466	if (prev)
2467		btrfs_warn(fs_info,
2468			"unknown pending changes left 0x%lx, ignoring", prev);
2469}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/writeback.h>
  11#include <linux/pagemap.h>
  12#include <linux/blkdev.h>
  13#include <linux/uuid.h>
  14#include <linux/timekeeping.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "disk-io.h"
  18#include "transaction.h"
  19#include "locking.h"
  20#include "tree-log.h"
 
  21#include "volumes.h"
  22#include "dev-replace.h"
  23#include "qgroup.h"
  24#include "block-group.h"
  25#include "space-info.h"
  26#include "fs.h"
  27#include "accessors.h"
  28#include "extent-tree.h"
  29#include "root-tree.h"
  30#include "dir-item.h"
  31#include "uuid-tree.h"
  32#include "ioctl.h"
  33#include "relocation.h"
  34#include "scrub.h"
  35
  36static struct kmem_cache *btrfs_trans_handle_cachep;
  37
  38/*
  39 * Transaction states and transitions
  40 *
  41 * No running transaction (fs tree blocks are not modified)
  42 * |
  43 * | To next stage:
  44 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  45 * V
  46 * Transaction N [[TRANS_STATE_RUNNING]]
  47 * |
  48 * | New trans handles can be attached to transaction N by calling all
  49 * | start_transaction() variants.
  50 * |
  51 * | To next stage:
  52 * |  Call btrfs_commit_transaction() on any trans handle attached to
  53 * |  transaction N
  54 * V
  55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
  56 * |
  57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
  58 * | the race and the rest will wait for the winner to commit the transaction.
  59 * |
  60 * | The winner will wait for previous running transaction to completely finish
  61 * | if there is one.
  62 * |
  63 * Transaction N [[TRANS_STATE_COMMIT_START]]
  64 * |
  65 * | Then one of the following happens:
  66 * | - Wait for all other trans handle holders to release.
  67 * |   The btrfs_commit_transaction() caller will do the commit work.
  68 * | - Wait for current transaction to be committed by others.
  69 * |   Other btrfs_commit_transaction() caller will do the commit work.
  70 * |
  71 * | At this stage, only btrfs_join_transaction*() variants can attach
  72 * | to this running transaction.
  73 * | All other variants will wait for current one to finish and attach to
  74 * | transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Caller is chosen to commit transaction N, and all other trans handle
  78 * |  haven been released.
  79 * V
  80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  81 * |
  82 * | The heavy lifting transaction work is started.
  83 * | From running delayed refs (modifying extent tree) to creating pending
  84 * | snapshots, running qgroups.
  85 * | In short, modify supporting trees to reflect modifications of subvolume
  86 * | trees.
  87 * |
  88 * | At this stage, all start_transaction() calls will wait for this
  89 * | transaction to finish and attach to transaction N+1.
  90 * |
  91 * | To next stage:
  92 * |  Until all supporting trees are updated.
  93 * V
  94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  95 * |						    Transaction N+1
  96 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  97 * | need to write them back to disk and update	    |
  98 * | super blocks.				    |
  99 * |						    |
 100 * | At this stage, new transaction is allowed to   |
 101 * | start.					    |
 102 * | All new start_transaction() calls will be	    |
 103 * | attached to transid N+1.			    |
 104 * |						    |
 105 * | To next stage:				    |
 106 * |  Until all tree blocks are super blocks are    |
 107 * |  written to block devices			    |
 108 * V						    |
 109 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
 110 *   All tree blocks and super blocks are written.  Transaction N+1
 111 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
 112 *   data structures will be cleaned up.	    | Life goes on
 113 */
 114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 115	[TRANS_STATE_RUNNING]		= 0U,
 116	[TRANS_STATE_COMMIT_PREP]	= 0U,
 117	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 118	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 119					   __TRANS_ATTACH |
 120					   __TRANS_JOIN |
 121					   __TRANS_JOIN_NOSTART),
 122	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 123					   __TRANS_ATTACH |
 124					   __TRANS_JOIN |
 125					   __TRANS_JOIN_NOLOCK |
 126					   __TRANS_JOIN_NOSTART),
 127	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
 128					   __TRANS_ATTACH |
 129					   __TRANS_JOIN |
 130					   __TRANS_JOIN_NOLOCK |
 131					   __TRANS_JOIN_NOSTART),
 132	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 133					   __TRANS_ATTACH |
 134					   __TRANS_JOIN |
 135					   __TRANS_JOIN_NOLOCK |
 136					   __TRANS_JOIN_NOSTART),
 137};
 138
 139void btrfs_put_transaction(struct btrfs_transaction *transaction)
 140{
 141	WARN_ON(refcount_read(&transaction->use_count) == 0);
 142	if (refcount_dec_and_test(&transaction->use_count)) {
 143		BUG_ON(!list_empty(&transaction->list));
 144		WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
 145		WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
 
 
 146		if (transaction->delayed_refs.pending_csums)
 147			btrfs_err(transaction->fs_info,
 148				  "pending csums is %llu",
 149				  transaction->delayed_refs.pending_csums);
 150		/*
 151		 * If any block groups are found in ->deleted_bgs then it's
 152		 * because the transaction was aborted and a commit did not
 153		 * happen (things failed before writing the new superblock
 154		 * and calling btrfs_finish_extent_commit()), so we can not
 155		 * discard the physical locations of the block groups.
 156		 */
 157		while (!list_empty(&transaction->deleted_bgs)) {
 158			struct btrfs_block_group *cache;
 159
 160			cache = list_first_entry(&transaction->deleted_bgs,
 161						 struct btrfs_block_group,
 162						 bg_list);
 163			list_del_init(&cache->bg_list);
 164			btrfs_unfreeze_block_group(cache);
 165			btrfs_put_block_group(cache);
 166		}
 167		WARN_ON(!list_empty(&transaction->dev_update_list));
 168		kfree(transaction);
 169	}
 170}
 171
 172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 173{
 174	struct btrfs_transaction *cur_trans = trans->transaction;
 175	struct btrfs_fs_info *fs_info = trans->fs_info;
 176	struct btrfs_root *root, *tmp;
 177
 178	/*
 179	 * At this point no one can be using this transaction to modify any tree
 180	 * and no one can start another transaction to modify any tree either.
 181	 */
 182	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
 183
 184	down_write(&fs_info->commit_root_sem);
 185
 186	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
 187		fs_info->last_reloc_trans = trans->transid;
 188
 189	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 190				 dirty_list) {
 191		list_del_init(&root->dirty_list);
 192		free_extent_buffer(root->commit_root);
 193		root->commit_root = btrfs_root_node(root);
 
 
 194		extent_io_tree_release(&root->dirty_log_pages);
 195		btrfs_qgroup_clean_swapped_blocks(root);
 196	}
 197
 198	/* We can free old roots now. */
 199	spin_lock(&cur_trans->dropped_roots_lock);
 200	while (!list_empty(&cur_trans->dropped_roots)) {
 201		root = list_first_entry(&cur_trans->dropped_roots,
 202					struct btrfs_root, root_list);
 203		list_del_init(&root->root_list);
 204		spin_unlock(&cur_trans->dropped_roots_lock);
 205		btrfs_free_log(trans, root);
 206		btrfs_drop_and_free_fs_root(fs_info, root);
 207		spin_lock(&cur_trans->dropped_roots_lock);
 208	}
 209	spin_unlock(&cur_trans->dropped_roots_lock);
 210
 211	up_write(&fs_info->commit_root_sem);
 212}
 213
 214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 215					 unsigned int type)
 216{
 217	if (type & TRANS_EXTWRITERS)
 218		atomic_inc(&trans->num_extwriters);
 219}
 220
 221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 222					 unsigned int type)
 223{
 224	if (type & TRANS_EXTWRITERS)
 225		atomic_dec(&trans->num_extwriters);
 226}
 227
 228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 229					  unsigned int type)
 230{
 231	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 232}
 233
 234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 235{
 236	return atomic_read(&trans->num_extwriters);
 237}
 238
 239/*
 240 * To be called after doing the chunk btree updates right after allocating a new
 241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
 242 * chunk after all chunk btree updates and after finishing the second phase of
 243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
 244 * group had its chunk item insertion delayed to the second phase.
 245 */
 246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 247{
 248	struct btrfs_fs_info *fs_info = trans->fs_info;
 249
 250	if (!trans->chunk_bytes_reserved)
 251		return;
 252
 
 
 253	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 254				trans->chunk_bytes_reserved, NULL);
 255	trans->chunk_bytes_reserved = 0;
 256}
 257
 258/*
 259 * either allocate a new transaction or hop into the existing one
 260 */
 261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 262				     unsigned int type)
 263{
 264	struct btrfs_transaction *cur_trans;
 265
 266	spin_lock(&fs_info->trans_lock);
 267loop:
 268	/* The file system has been taken offline. No new transactions. */
 269	if (BTRFS_FS_ERROR(fs_info)) {
 270		spin_unlock(&fs_info->trans_lock);
 271		return -EROFS;
 272	}
 273
 274	cur_trans = fs_info->running_transaction;
 275	if (cur_trans) {
 276		if (TRANS_ABORTED(cur_trans)) {
 277			const int abort_error = cur_trans->aborted;
 278
 279			spin_unlock(&fs_info->trans_lock);
 280			return abort_error;
 281		}
 282		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 283			spin_unlock(&fs_info->trans_lock);
 284			return -EBUSY;
 285		}
 286		refcount_inc(&cur_trans->use_count);
 287		atomic_inc(&cur_trans->num_writers);
 288		extwriter_counter_inc(cur_trans, type);
 289		spin_unlock(&fs_info->trans_lock);
 290		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 291		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 292		return 0;
 293	}
 294	spin_unlock(&fs_info->trans_lock);
 295
 296	/*
 297	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
 298	 * current transaction, and commit it. If there is no transaction, just
 299	 * return ENOENT.
 300	 */
 301	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
 302		return -ENOENT;
 303
 304	/*
 305	 * JOIN_NOLOCK only happens during the transaction commit, so
 306	 * it is impossible that ->running_transaction is NULL
 307	 */
 308	BUG_ON(type == TRANS_JOIN_NOLOCK);
 309
 310	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 311	if (!cur_trans)
 312		return -ENOMEM;
 313
 314	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 315	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 316
 317	spin_lock(&fs_info->trans_lock);
 318	if (fs_info->running_transaction) {
 319		/*
 320		 * someone started a transaction after we unlocked.  Make sure
 321		 * to redo the checks above
 322		 */
 323		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 324		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 325		kfree(cur_trans);
 326		goto loop;
 327	} else if (BTRFS_FS_ERROR(fs_info)) {
 328		spin_unlock(&fs_info->trans_lock);
 329		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 330		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 331		kfree(cur_trans);
 332		return -EROFS;
 333	}
 334
 335	cur_trans->fs_info = fs_info;
 336	atomic_set(&cur_trans->pending_ordered, 0);
 337	init_waitqueue_head(&cur_trans->pending_wait);
 338	atomic_set(&cur_trans->num_writers, 1);
 339	extwriter_counter_init(cur_trans, type);
 340	init_waitqueue_head(&cur_trans->writer_wait);
 341	init_waitqueue_head(&cur_trans->commit_wait);
 342	cur_trans->state = TRANS_STATE_RUNNING;
 343	/*
 344	 * One for this trans handle, one so it will live on until we
 345	 * commit the transaction.
 346	 */
 347	refcount_set(&cur_trans->use_count, 2);
 348	cur_trans->flags = 0;
 349	cur_trans->start_time = ktime_get_seconds();
 350
 351	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 352
 353	xa_init(&cur_trans->delayed_refs.head_refs);
 354	xa_init(&cur_trans->delayed_refs.dirty_extents);
 
 355
 356	/*
 357	 * although the tree mod log is per file system and not per transaction,
 358	 * the log must never go across transaction boundaries.
 359	 */
 360	smp_mb();
 361	if (!list_empty(&fs_info->tree_mod_seq_list))
 362		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 363	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 364		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 365	atomic64_set(&fs_info->tree_mod_seq, 0);
 366
 367	spin_lock_init(&cur_trans->delayed_refs.lock);
 368
 369	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 370	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 371	INIT_LIST_HEAD(&cur_trans->switch_commits);
 372	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 373	INIT_LIST_HEAD(&cur_trans->io_bgs);
 374	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 375	mutex_init(&cur_trans->cache_write_mutex);
 376	spin_lock_init(&cur_trans->dirty_bgs_lock);
 377	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 378	spin_lock_init(&cur_trans->dropped_roots_lock);
 379	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 380	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 381			IO_TREE_TRANS_DIRTY_PAGES);
 382	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 383			IO_TREE_FS_PINNED_EXTENTS);
 384	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
 385	cur_trans->transid = fs_info->generation;
 386	fs_info->running_transaction = cur_trans;
 387	cur_trans->aborted = 0;
 388	spin_unlock(&fs_info->trans_lock);
 389
 390	return 0;
 391}
 392
 393/*
 394 * This does all the record keeping required to make sure that a shareable root
 395 * is properly recorded in a given transaction.  This is required to make sure
 396 * the old root from before we joined the transaction is deleted when the
 397 * transaction commits.
 398 */
 399static int record_root_in_trans(struct btrfs_trans_handle *trans,
 400			       struct btrfs_root *root,
 401			       int force)
 402{
 403	struct btrfs_fs_info *fs_info = root->fs_info;
 404	int ret = 0;
 405
 406	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 407	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
 
 408		WARN_ON(!force && root->commit_root != root->node);
 409
 410		/*
 411		 * see below for IN_TRANS_SETUP usage rules
 412		 * we have the reloc mutex held now, so there
 413		 * is only one writer in this function
 414		 */
 415		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 416
 417		/* make sure readers find IN_TRANS_SETUP before
 418		 * they find our root->last_trans update
 419		 */
 420		smp_wmb();
 421
 422		spin_lock(&fs_info->fs_roots_radix_lock);
 423		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
 424			spin_unlock(&fs_info->fs_roots_radix_lock);
 425			return 0;
 426		}
 427		radix_tree_tag_set(&fs_info->fs_roots_radix,
 428				   (unsigned long)btrfs_root_id(root),
 429				   BTRFS_ROOT_TRANS_TAG);
 430		spin_unlock(&fs_info->fs_roots_radix_lock);
 431		btrfs_set_root_last_trans(root, trans->transid);
 432
 433		/* this is pretty tricky.  We don't want to
 434		 * take the relocation lock in btrfs_record_root_in_trans
 435		 * unless we're really doing the first setup for this root in
 436		 * this transaction.
 437		 *
 438		 * Normally we'd use root->last_trans as a flag to decide
 439		 * if we want to take the expensive mutex.
 440		 *
 441		 * But, we have to set root->last_trans before we
 442		 * init the relocation root, otherwise, we trip over warnings
 443		 * in ctree.c.  The solution used here is to flag ourselves
 444		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 445		 * fixing up the reloc trees and everyone must wait.
 446		 *
 447		 * When this is zero, they can trust root->last_trans and fly
 448		 * through btrfs_record_root_in_trans without having to take the
 449		 * lock.  smp_wmb() makes sure that all the writes above are
 450		 * done before we pop in the zero below
 451		 */
 452		ret = btrfs_init_reloc_root(trans, root);
 453		smp_mb__before_atomic();
 454		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 455	}
 456	return ret;
 457}
 458
 459
 460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 461			    struct btrfs_root *root)
 462{
 463	struct btrfs_fs_info *fs_info = root->fs_info;
 464	struct btrfs_transaction *cur_trans = trans->transaction;
 465
 466	/* Add ourselves to the transaction dropped list */
 467	spin_lock(&cur_trans->dropped_roots_lock);
 468	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 469	spin_unlock(&cur_trans->dropped_roots_lock);
 470
 471	/* Make sure we don't try to update the root at commit time */
 472	spin_lock(&fs_info->fs_roots_radix_lock);
 473	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 474			     (unsigned long)btrfs_root_id(root),
 475			     BTRFS_ROOT_TRANS_TAG);
 476	spin_unlock(&fs_info->fs_roots_radix_lock);
 477}
 478
 479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 480			       struct btrfs_root *root)
 481{
 482	struct btrfs_fs_info *fs_info = root->fs_info;
 483	int ret;
 484
 485	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 486		return 0;
 487
 488	/*
 489	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 490	 * and barriers
 491	 */
 492	smp_rmb();
 493	if (btrfs_get_root_last_trans(root) == trans->transid &&
 494	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 495		return 0;
 496
 497	mutex_lock(&fs_info->reloc_mutex);
 498	ret = record_root_in_trans(trans, root, 0);
 499	mutex_unlock(&fs_info->reloc_mutex);
 500
 501	return ret;
 502}
 503
 504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 505{
 506	return (trans->state >= TRANS_STATE_COMMIT_START &&
 507		trans->state < TRANS_STATE_UNBLOCKED &&
 508		!TRANS_ABORTED(trans));
 509}
 510
 511/* wait for commit against the current transaction to become unblocked
 512 * when this is done, it is safe to start a new transaction, but the current
 513 * transaction might not be fully on disk.
 514 */
 515static void wait_current_trans(struct btrfs_fs_info *fs_info)
 516{
 517	struct btrfs_transaction *cur_trans;
 518
 519	spin_lock(&fs_info->trans_lock);
 520	cur_trans = fs_info->running_transaction;
 521	if (cur_trans && is_transaction_blocked(cur_trans)) {
 522		refcount_inc(&cur_trans->use_count);
 523		spin_unlock(&fs_info->trans_lock);
 524
 525		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
 526		wait_event(fs_info->transaction_wait,
 527			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 528			   TRANS_ABORTED(cur_trans));
 529		btrfs_put_transaction(cur_trans);
 530	} else {
 531		spin_unlock(&fs_info->trans_lock);
 532	}
 533}
 534
 535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 536{
 537	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 538		return 0;
 539
 540	if (type == TRANS_START)
 541		return 1;
 542
 543	return 0;
 544}
 545
 546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 547{
 548	struct btrfs_fs_info *fs_info = root->fs_info;
 549
 550	if (!fs_info->reloc_ctl ||
 551	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 552	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 553	    root->reloc_root)
 554		return false;
 555
 556	return true;
 557}
 558
 559static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
 560					enum btrfs_reserve_flush_enum flush,
 561					u64 num_bytes,
 562					u64 *delayed_refs_bytes)
 563{
 564	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
 565	u64 bytes = num_bytes + *delayed_refs_bytes;
 566	int ret;
 567
 568	/*
 569	 * We want to reserve all the bytes we may need all at once, so we only
 570	 * do 1 enospc flushing cycle per transaction start.
 571	 */
 572	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 573
 574	/*
 575	 * If we are an emergency flush, which can steal from the global block
 576	 * reserve, then attempt to not reserve space for the delayed refs, as
 577	 * we will consume space for them from the global block reserve.
 578	 */
 579	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
 580		bytes -= *delayed_refs_bytes;
 581		*delayed_refs_bytes = 0;
 582		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
 583	}
 584
 585	return ret;
 586}
 587
 588static struct btrfs_trans_handle *
 589start_transaction(struct btrfs_root *root, unsigned int num_items,
 590		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 591		  bool enforce_qgroups)
 592{
 593	struct btrfs_fs_info *fs_info = root->fs_info;
 594	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 595	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
 596	struct btrfs_trans_handle *h;
 597	struct btrfs_transaction *cur_trans;
 598	u64 num_bytes = 0;
 599	u64 qgroup_reserved = 0;
 600	u64 delayed_refs_bytes = 0;
 601	bool reloc_reserved = false;
 602	bool do_chunk_alloc = false;
 603	int ret;
 604
 605	if (BTRFS_FS_ERROR(fs_info))
 
 
 
 606		return ERR_PTR(-EROFS);
 607
 608	if (current->journal_info) {
 609		WARN_ON(type & TRANS_EXTWRITERS);
 610		h = current->journal_info;
 611		refcount_inc(&h->use_count);
 612		WARN_ON(refcount_read(&h->use_count) > 2);
 613		h->orig_rsv = h->block_rsv;
 614		h->block_rsv = NULL;
 615		goto got_it;
 616	}
 617
 618	/*
 619	 * Do the reservation before we join the transaction so we can do all
 620	 * the appropriate flushing if need be.
 621	 */
 622	if (num_items && root != fs_info->chunk_root) {
 
 
 
 623		qgroup_reserved = num_items * fs_info->nodesize;
 624		/*
 625		 * Use prealloc for now, as there might be a currently running
 626		 * transaction that could free this reserved space prematurely
 627		 * by committing.
 628		 */
 629		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
 630							 enforce_qgroups, false);
 631		if (ret)
 632			return ERR_PTR(ret);
 633
 634		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 635		/*
 636		 * If we plan to insert/update/delete "num_items" from a btree,
 637		 * we will also generate delayed refs for extent buffers in the
 638		 * respective btree paths, so reserve space for the delayed refs
 639		 * that will be generated by the caller as it modifies btrees.
 640		 * Try to reserve them to avoid excessive use of the global
 641		 * block reserve.
 642		 */
 643		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
 
 
 
 
 
 644
 645		/*
 646		 * Do the reservation for the relocation root creation
 647		 */
 648		if (need_reserve_reloc_root(root)) {
 649			num_bytes += fs_info->nodesize;
 650			reloc_reserved = true;
 651		}
 652
 653		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
 654						   &delayed_refs_bytes);
 655		if (ret)
 656			goto reserve_fail;
 
 
 
 
 
 657
 658		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
 659
 660		if (trans_rsv->space_info->force_alloc)
 661			do_chunk_alloc = true;
 662	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 663		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
 664		/*
 665		 * Some people call with btrfs_start_transaction(root, 0)
 666		 * because they can be throttled, but have some other mechanism
 667		 * for reserving space.  We still want these guys to refill the
 668		 * delayed block_rsv so just add 1 items worth of reservation
 669		 * here.
 670		 */
 671		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 672		if (ret)
 673			goto reserve_fail;
 674	}
 675again:
 676	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 677	if (!h) {
 678		ret = -ENOMEM;
 679		goto alloc_fail;
 680	}
 681
 682	/*
 683	 * If we are JOIN_NOLOCK we're already committing a transaction and
 684	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 685	 * because we're already holding a ref.  We need this because we could
 686	 * have raced in and did an fsync() on a file which can kick a commit
 687	 * and then we deadlock with somebody doing a freeze.
 688	 *
 689	 * If we are ATTACH, it means we just want to catch the current
 690	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 691	 */
 692	if (type & __TRANS_FREEZABLE)
 693		sb_start_intwrite(fs_info->sb);
 694
 695	if (may_wait_transaction(fs_info, type))
 696		wait_current_trans(fs_info);
 697
 698	do {
 699		ret = join_transaction(fs_info, type);
 700		if (ret == -EBUSY) {
 701			wait_current_trans(fs_info);
 702			if (unlikely(type == TRANS_ATTACH ||
 703				     type == TRANS_JOIN_NOSTART))
 704				ret = -ENOENT;
 705		}
 706	} while (ret == -EBUSY);
 707
 708	if (ret < 0)
 709		goto join_fail;
 710
 711	cur_trans = fs_info->running_transaction;
 712
 713	h->transid = cur_trans->transid;
 714	h->transaction = cur_trans;
 
 715	refcount_set(&h->use_count, 1);
 716	h->fs_info = root->fs_info;
 717
 718	h->type = type;
 
 719	INIT_LIST_HEAD(&h->new_bgs);
 720	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
 721
 722	smp_mb();
 723	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 724	    may_wait_transaction(fs_info, type)) {
 725		current->journal_info = h;
 726		btrfs_commit_transaction(h);
 727		goto again;
 728	}
 729
 730	if (num_bytes) {
 731		trace_btrfs_space_reservation(fs_info, "transaction",
 732					      h->transid, num_bytes, 1);
 733		h->block_rsv = trans_rsv;
 734		h->bytes_reserved = num_bytes;
 735		if (delayed_refs_bytes > 0) {
 736			trace_btrfs_space_reservation(fs_info,
 737						      "local_delayed_refs_rsv",
 738						      h->transid,
 739						      delayed_refs_bytes, 1);
 740			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
 741			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
 742			delayed_refs_bytes = 0;
 743		}
 744		h->reloc_reserved = reloc_reserved;
 745	}
 746
 747got_it:
 748	if (!current->journal_info)
 749		current->journal_info = h;
 750
 751	/*
 752	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 753	 * ALLOC_FORCE the first run through, and then we won't allocate for
 754	 * anybody else who races in later.  We don't care about the return
 755	 * value here.
 756	 */
 757	if (do_chunk_alloc && num_bytes) {
 758		u64 flags = h->block_rsv->space_info->flags;
 759
 760		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 761				  CHUNK_ALLOC_NO_FORCE);
 762	}
 763
 764	/*
 765	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 766	 * call btrfs_join_transaction() while we're also starting a
 767	 * transaction.
 768	 *
 769	 * Thus it need to be called after current->journal_info initialized,
 770	 * or we can deadlock.
 771	 */
 772	ret = btrfs_record_root_in_trans(h, root);
 773	if (ret) {
 774		/*
 775		 * The transaction handle is fully initialized and linked with
 776		 * other structures so it needs to be ended in case of errors,
 777		 * not just freed.
 778		 */
 779		btrfs_end_transaction(h);
 780		goto reserve_fail;
 781	}
 782	/*
 783	 * Now that we have found a transaction to be a part of, convert the
 784	 * qgroup reservation from prealloc to pertrans. A different transaction
 785	 * can't race in and free our pertrans out from under us.
 786	 */
 787	if (qgroup_reserved)
 788		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 789
 790	return h;
 791
 792join_fail:
 793	if (type & __TRANS_FREEZABLE)
 794		sb_end_intwrite(fs_info->sb);
 795	kmem_cache_free(btrfs_trans_handle_cachep, h);
 796alloc_fail:
 797	if (num_bytes)
 798		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
 799	if (delayed_refs_bytes)
 800		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
 801						    delayed_refs_bytes);
 802reserve_fail:
 803	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 804	return ERR_PTR(ret);
 805}
 806
 807struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 808						   unsigned int num_items)
 809{
 810	return start_transaction(root, num_items, TRANS_START,
 811				 BTRFS_RESERVE_FLUSH_ALL, true);
 812}
 813
 814struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 815					struct btrfs_root *root,
 816					unsigned int num_items)
 817{
 818	return start_transaction(root, num_items, TRANS_START,
 819				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 820}
 821
 822struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 823{
 824	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 825				 true);
 826}
 827
 828struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 829{
 830	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 831				 BTRFS_RESERVE_NO_FLUSH, true);
 832}
 833
 834/*
 835 * Similar to regular join but it never starts a transaction when none is
 836 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
 837 * This is similar to btrfs_attach_transaction() but it allows the join to
 838 * happen if the transaction commit already started but it's not yet in the
 839 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
 840 */
 841struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 842{
 843	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 844				 BTRFS_RESERVE_NO_FLUSH, true);
 845}
 846
 847/*
 848 * Catch the running transaction.
 849 *
 850 * It is used when we want to commit the current the transaction, but
 851 * don't want to start a new one.
 852 *
 853 * Note: If this function return -ENOENT, it just means there is no
 854 * running transaction. But it is possible that the inactive transaction
 855 * is still in the memory, not fully on disk. If you hope there is no
 856 * inactive transaction in the fs when -ENOENT is returned, you should
 857 * invoke
 858 *     btrfs_attach_transaction_barrier()
 859 */
 860struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 861{
 862	return start_transaction(root, 0, TRANS_ATTACH,
 863				 BTRFS_RESERVE_NO_FLUSH, true);
 864}
 865
 866/*
 867 * Catch the running transaction.
 868 *
 869 * It is similar to the above function, the difference is this one
 870 * will wait for all the inactive transactions until they fully
 871 * complete.
 872 */
 873struct btrfs_trans_handle *
 874btrfs_attach_transaction_barrier(struct btrfs_root *root)
 875{
 876	struct btrfs_trans_handle *trans;
 877
 878	trans = start_transaction(root, 0, TRANS_ATTACH,
 879				  BTRFS_RESERVE_NO_FLUSH, true);
 880	if (trans == ERR_PTR(-ENOENT)) {
 881		int ret;
 882
 883		ret = btrfs_wait_for_commit(root->fs_info, 0);
 884		if (ret)
 885			return ERR_PTR(ret);
 886	}
 887
 888	return trans;
 889}
 890
 891/* Wait for a transaction commit to reach at least the given state. */
 892static noinline void wait_for_commit(struct btrfs_transaction *commit,
 893				     const enum btrfs_trans_state min_state)
 894{
 895	struct btrfs_fs_info *fs_info = commit->fs_info;
 896	u64 transid = commit->transid;
 897	bool put = false;
 898
 899	/*
 900	 * At the moment this function is called with min_state either being
 901	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
 902	 */
 903	if (min_state == TRANS_STATE_COMPLETED)
 904		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
 905	else
 906		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
 907
 908	while (1) {
 909		wait_event(commit->commit_wait, commit->state >= min_state);
 910		if (put)
 911			btrfs_put_transaction(commit);
 912
 913		if (min_state < TRANS_STATE_COMPLETED)
 914			break;
 915
 916		/*
 917		 * A transaction isn't really completed until all of the
 918		 * previous transactions are completed, but with fsync we can
 919		 * end up with SUPER_COMMITTED transactions before a COMPLETED
 920		 * transaction. Wait for those.
 921		 */
 922
 923		spin_lock(&fs_info->trans_lock);
 924		commit = list_first_entry_or_null(&fs_info->trans_list,
 925						  struct btrfs_transaction,
 926						  list);
 927		if (!commit || commit->transid > transid) {
 928			spin_unlock(&fs_info->trans_lock);
 929			break;
 930		}
 931		refcount_inc(&commit->use_count);
 932		put = true;
 933		spin_unlock(&fs_info->trans_lock);
 934	}
 935}
 936
 937int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 938{
 939	struct btrfs_transaction *cur_trans = NULL, *t;
 940	int ret = 0;
 941
 942	if (transid) {
 943		if (transid <= btrfs_get_last_trans_committed(fs_info))
 944			goto out;
 945
 946		/* find specified transaction */
 947		spin_lock(&fs_info->trans_lock);
 948		list_for_each_entry(t, &fs_info->trans_list, list) {
 949			if (t->transid == transid) {
 950				cur_trans = t;
 951				refcount_inc(&cur_trans->use_count);
 952				ret = 0;
 953				break;
 954			}
 955			if (t->transid > transid) {
 956				ret = 0;
 957				break;
 958			}
 959		}
 960		spin_unlock(&fs_info->trans_lock);
 961
 962		/*
 963		 * The specified transaction doesn't exist, or we
 964		 * raced with btrfs_commit_transaction
 965		 */
 966		if (!cur_trans) {
 967			if (transid > btrfs_get_last_trans_committed(fs_info))
 968				ret = -EINVAL;
 969			goto out;
 970		}
 971	} else {
 972		/* find newest transaction that is committing | committed */
 973		spin_lock(&fs_info->trans_lock);
 974		list_for_each_entry_reverse(t, &fs_info->trans_list,
 975					    list) {
 976			if (t->state >= TRANS_STATE_COMMIT_START) {
 977				if (t->state == TRANS_STATE_COMPLETED)
 978					break;
 979				cur_trans = t;
 980				refcount_inc(&cur_trans->use_count);
 981				break;
 982			}
 983		}
 984		spin_unlock(&fs_info->trans_lock);
 985		if (!cur_trans)
 986			goto out;  /* nothing committing|committed */
 987	}
 988
 989	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
 990	ret = cur_trans->aborted;
 991	btrfs_put_transaction(cur_trans);
 992out:
 993	return ret;
 994}
 995
 996void btrfs_throttle(struct btrfs_fs_info *fs_info)
 997{
 998	wait_current_trans(fs_info);
 999}
1000
1001bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
1002{
1003	struct btrfs_transaction *cur_trans = trans->transaction;
1004
 
1005	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1006	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1007		return true;
1008
1009	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1010		return true;
1011
1012	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1013}
1014
1015static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1016
1017{
1018	struct btrfs_fs_info *fs_info = trans->fs_info;
1019
1020	if (!trans->block_rsv) {
1021		ASSERT(!trans->bytes_reserved);
1022		ASSERT(!trans->delayed_refs_bytes_reserved);
1023		return;
1024	}
1025
1026	if (!trans->bytes_reserved) {
1027		ASSERT(!trans->delayed_refs_bytes_reserved);
1028		return;
1029	}
1030
1031	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1032	trace_btrfs_space_reservation(fs_info, "transaction",
1033				      trans->transid, trans->bytes_reserved, 0);
1034	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1035				trans->bytes_reserved, NULL);
1036	trans->bytes_reserved = 0;
1037
1038	if (!trans->delayed_refs_bytes_reserved)
1039		return;
1040
1041	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1042				      trans->transid,
1043				      trans->delayed_refs_bytes_reserved, 0);
1044	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1045				trans->delayed_refs_bytes_reserved, NULL);
1046	trans->delayed_refs_bytes_reserved = 0;
1047}
1048
1049static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1050				   int throttle)
1051{
1052	struct btrfs_fs_info *info = trans->fs_info;
1053	struct btrfs_transaction *cur_trans = trans->transaction;
1054	int ret = 0;
1055
1056	if (refcount_read(&trans->use_count) > 1) {
1057		refcount_dec(&trans->use_count);
1058		trans->block_rsv = trans->orig_rsv;
1059		return 0;
1060	}
1061
1062	btrfs_trans_release_metadata(trans);
1063	trans->block_rsv = NULL;
1064
1065	btrfs_create_pending_block_groups(trans);
1066
1067	btrfs_trans_release_chunk_metadata(trans);
1068
1069	if (trans->type & __TRANS_FREEZABLE)
1070		sb_end_intwrite(info->sb);
1071
1072	WARN_ON(cur_trans != info->running_transaction);
1073	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1074	atomic_dec(&cur_trans->num_writers);
1075	extwriter_counter_dec(cur_trans, trans->type);
1076
1077	cond_wake_up(&cur_trans->writer_wait);
1078
1079	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1080	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1081
1082	btrfs_put_transaction(cur_trans);
1083
1084	if (current->journal_info == trans)
1085		current->journal_info = NULL;
1086
1087	if (throttle)
1088		btrfs_run_delayed_iputs(info);
1089
1090	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
 
1091		wake_up_process(info->transaction_kthread);
1092		if (TRANS_ABORTED(trans))
1093			ret = trans->aborted;
1094		else
1095			ret = -EROFS;
1096	}
1097
1098	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1099	return ret;
1100}
1101
1102int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1103{
1104	return __btrfs_end_transaction(trans, 0);
1105}
1106
1107int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1108{
1109	return __btrfs_end_transaction(trans, 1);
1110}
1111
1112/*
1113 * when btree blocks are allocated, they have some corresponding bits set for
1114 * them in one of two extent_io trees.  This is used to make sure all of
1115 * those extents are sent to disk but does not wait on them
1116 */
1117int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1118			       struct extent_io_tree *dirty_pages, int mark)
1119{
1120	int ret = 0;
 
1121	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122	struct extent_state *cached_state = NULL;
1123	u64 start = 0;
1124	u64 end;
1125
1126	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1127				     mark, &cached_state)) {
 
1128		bool wait_writeback = false;
1129
1130		ret = convert_extent_bit(dirty_pages, start, end,
1131					 EXTENT_NEED_WAIT,
1132					 mark, &cached_state);
1133		/*
1134		 * convert_extent_bit can return -ENOMEM, which is most of the
1135		 * time a temporary error. So when it happens, ignore the error
1136		 * and wait for writeback of this range to finish - because we
1137		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1138		 * to __btrfs_wait_marked_extents() would not know that
1139		 * writeback for this range started and therefore wouldn't
1140		 * wait for it to finish - we don't want to commit a
1141		 * superblock that points to btree nodes/leafs for which
1142		 * writeback hasn't finished yet (and without errors).
1143		 * We cleanup any entries left in the io tree when committing
1144		 * the transaction (through extent_io_tree_release()).
1145		 */
1146		if (ret == -ENOMEM) {
1147			ret = 0;
1148			wait_writeback = true;
1149		}
1150		if (!ret)
1151			ret = filemap_fdatawrite_range(mapping, start, end);
1152		if (!ret && wait_writeback)
1153			ret = filemap_fdatawait_range(mapping, start, end);
 
 
1154		free_extent_state(cached_state);
1155		if (ret)
1156			break;
1157		cached_state = NULL;
1158		cond_resched();
1159		start = end + 1;
1160	}
1161	return ret;
 
1162}
1163
1164/*
1165 * when btree blocks are allocated, they have some corresponding bits set for
1166 * them in one of two extent_io trees.  This is used to make sure all of
1167 * those extents are on disk for transaction or log commit.  We wait
1168 * on all the pages and clear them from the dirty pages state tree
1169 */
1170static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1171				       struct extent_io_tree *dirty_pages)
1172{
 
 
1173	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1174	struct extent_state *cached_state = NULL;
1175	u64 start = 0;
1176	u64 end;
1177	int ret = 0;
1178
1179	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1180				     EXTENT_NEED_WAIT, &cached_state)) {
1181		/*
1182		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1183		 * When committing the transaction, we'll remove any entries
1184		 * left in the io tree. For a log commit, we don't remove them
1185		 * after committing the log because the tree can be accessed
1186		 * concurrently - we do it only at transaction commit time when
1187		 * it's safe to do it (through extent_io_tree_release()).
1188		 */
1189		ret = clear_extent_bit(dirty_pages, start, end,
1190				       EXTENT_NEED_WAIT, &cached_state);
1191		if (ret == -ENOMEM)
1192			ret = 0;
1193		if (!ret)
1194			ret = filemap_fdatawait_range(mapping, start, end);
 
 
1195		free_extent_state(cached_state);
1196		if (ret)
1197			break;
1198		cached_state = NULL;
1199		cond_resched();
1200		start = end + 1;
1201	}
1202	return ret;
 
 
1203}
1204
1205static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1206		       struct extent_io_tree *dirty_pages)
1207{
1208	bool errors = false;
1209	int err;
1210
1211	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1212	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1213		errors = true;
1214
1215	if (errors && !err)
1216		err = -EIO;
1217	return err;
1218}
1219
1220int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1221{
1222	struct btrfs_fs_info *fs_info = log_root->fs_info;
1223	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1224	bool errors = false;
1225	int err;
1226
1227	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1228
1229	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1230	if ((mark & EXTENT_DIRTY) &&
1231	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1232		errors = true;
1233
1234	if ((mark & EXTENT_NEW) &&
1235	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1236		errors = true;
1237
1238	if (errors && !err)
1239		err = -EIO;
1240	return err;
1241}
1242
1243/*
1244 * When btree blocks are allocated the corresponding extents are marked dirty.
1245 * This function ensures such extents are persisted on disk for transaction or
1246 * log commit.
1247 *
1248 * @trans: transaction whose dirty pages we'd like to write
1249 */
1250static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1251{
1252	int ret;
1253	int ret2;
1254	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1255	struct btrfs_fs_info *fs_info = trans->fs_info;
1256	struct blk_plug plug;
1257
1258	blk_start_plug(&plug);
1259	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1260	blk_finish_plug(&plug);
1261	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1262
1263	extent_io_tree_release(&trans->transaction->dirty_pages);
1264
1265	if (ret)
1266		return ret;
1267	else if (ret2)
1268		return ret2;
1269	else
1270		return 0;
1271}
1272
1273/*
1274 * this is used to update the root pointer in the tree of tree roots.
1275 *
1276 * But, in the case of the extent allocation tree, updating the root
1277 * pointer may allocate blocks which may change the root of the extent
1278 * allocation tree.
1279 *
1280 * So, this loops and repeats and makes sure the cowonly root didn't
1281 * change while the root pointer was being updated in the metadata.
1282 */
1283static int update_cowonly_root(struct btrfs_trans_handle *trans,
1284			       struct btrfs_root *root)
1285{
1286	int ret;
1287	u64 old_root_bytenr;
1288	u64 old_root_used;
1289	struct btrfs_fs_info *fs_info = root->fs_info;
1290	struct btrfs_root *tree_root = fs_info->tree_root;
1291
1292	old_root_used = btrfs_root_used(&root->root_item);
1293
1294	while (1) {
1295		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1296		if (old_root_bytenr == root->node->start &&
1297		    old_root_used == btrfs_root_used(&root->root_item))
1298			break;
1299
1300		btrfs_set_root_node(&root->root_item, root->node);
1301		ret = btrfs_update_root(trans, tree_root,
1302					&root->root_key,
1303					&root->root_item);
1304		if (ret)
1305			return ret;
1306
1307		old_root_used = btrfs_root_used(&root->root_item);
1308	}
1309
1310	return 0;
1311}
1312
1313/*
1314 * update all the cowonly tree roots on disk
1315 *
1316 * The error handling in this function may not be obvious. Any of the
1317 * failures will cause the file system to go offline. We still need
1318 * to clean up the delayed refs.
1319 */
1320static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1321{
1322	struct btrfs_fs_info *fs_info = trans->fs_info;
1323	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1324	struct list_head *io_bgs = &trans->transaction->io_bgs;
1325	struct list_head *next;
1326	struct extent_buffer *eb;
1327	int ret;
1328
1329	/*
1330	 * At this point no one can be using this transaction to modify any tree
1331	 * and no one can start another transaction to modify any tree either.
1332	 */
1333	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1334
1335	eb = btrfs_lock_root_node(fs_info->tree_root);
1336	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1337			      0, &eb, BTRFS_NESTING_COW);
1338	btrfs_tree_unlock(eb);
1339	free_extent_buffer(eb);
1340
1341	if (ret)
1342		return ret;
1343
 
 
 
 
1344	ret = btrfs_run_dev_stats(trans);
1345	if (ret)
1346		return ret;
1347	ret = btrfs_run_dev_replace(trans);
1348	if (ret)
1349		return ret;
1350	ret = btrfs_run_qgroups(trans);
1351	if (ret)
1352		return ret;
1353
1354	ret = btrfs_setup_space_cache(trans);
1355	if (ret)
1356		return ret;
1357
 
 
 
 
1358again:
1359	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1360		struct btrfs_root *root;
1361		next = fs_info->dirty_cowonly_roots.next;
1362		list_del_init(next);
1363		root = list_entry(next, struct btrfs_root, dirty_list);
1364		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1365
1366		list_add_tail(&root->dirty_list,
1367			      &trans->transaction->switch_commits);
 
1368		ret = update_cowonly_root(trans, root);
1369		if (ret)
1370			return ret;
 
 
 
1371	}
1372
1373	/* Now flush any delayed refs generated by updating all of the roots */
1374	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1375	if (ret)
1376		return ret;
1377
1378	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1379		ret = btrfs_write_dirty_block_groups(trans);
1380		if (ret)
1381			return ret;
1382
1383		/*
1384		 * We're writing the dirty block groups, which could generate
1385		 * delayed refs, which could generate more dirty block groups,
1386		 * so we want to keep this flushing in this loop to make sure
1387		 * everything gets run.
1388		 */
1389		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390		if (ret)
1391			return ret;
1392	}
1393
1394	if (!list_empty(&fs_info->dirty_cowonly_roots))
1395		goto again;
1396
 
 
 
1397	/* Update dev-replace pointer once everything is committed */
1398	fs_info->dev_replace.committed_cursor_left =
1399		fs_info->dev_replace.cursor_left_last_write_of_item;
1400
1401	return 0;
1402}
1403
1404/*
1405 * If we had a pending drop we need to see if there are any others left in our
1406 * dead roots list, and if not clear our bit and wake any waiters.
1407 */
1408void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1409{
1410	/*
1411	 * We put the drop in progress roots at the front of the list, so if the
1412	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1413	 * up.
1414	 */
1415	spin_lock(&fs_info->trans_lock);
1416	if (!list_empty(&fs_info->dead_roots)) {
1417		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1418							   struct btrfs_root,
1419							   root_list);
1420		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1421			spin_unlock(&fs_info->trans_lock);
1422			return;
1423		}
1424	}
1425	spin_unlock(&fs_info->trans_lock);
1426
1427	btrfs_wake_unfinished_drop(fs_info);
1428}
1429
1430/*
1431 * dead roots are old snapshots that need to be deleted.  This allocates
1432 * a dirty root struct and adds it into the list of dead roots that need to
1433 * be deleted
1434 */
1435void btrfs_add_dead_root(struct btrfs_root *root)
1436{
1437	struct btrfs_fs_info *fs_info = root->fs_info;
1438
1439	spin_lock(&fs_info->trans_lock);
1440	if (list_empty(&root->root_list)) {
1441		btrfs_grab_root(root);
1442
1443		/* We want to process the partially complete drops first. */
1444		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1445			list_add(&root->root_list, &fs_info->dead_roots);
1446		else
1447			list_add_tail(&root->root_list, &fs_info->dead_roots);
1448	}
1449	spin_unlock(&fs_info->trans_lock);
1450}
1451
1452/*
1453 * Update each subvolume root and its relocation root, if it exists, in the tree
1454 * of tree roots. Also free log roots if they exist.
1455 */
1456static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1457{
1458	struct btrfs_fs_info *fs_info = trans->fs_info;
1459	struct btrfs_root *gang[8];
1460	int i;
1461	int ret;
1462
1463	/*
1464	 * At this point no one can be using this transaction to modify any tree
1465	 * and no one can start another transaction to modify any tree either.
1466	 */
1467	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1468
1469	spin_lock(&fs_info->fs_roots_radix_lock);
1470	while (1) {
1471		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1472						 (void **)gang, 0,
1473						 ARRAY_SIZE(gang),
1474						 BTRFS_ROOT_TRANS_TAG);
1475		if (ret == 0)
1476			break;
1477		for (i = 0; i < ret; i++) {
1478			struct btrfs_root *root = gang[i];
1479			int ret2;
1480
1481			/*
1482			 * At this point we can neither have tasks logging inodes
1483			 * from a root nor trying to commit a log tree.
1484			 */
1485			ASSERT(atomic_read(&root->log_writers) == 0);
1486			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1487			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1488
1489			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1490					(unsigned long)btrfs_root_id(root),
1491					BTRFS_ROOT_TRANS_TAG);
1492			btrfs_qgroup_free_meta_all_pertrans(root);
1493			spin_unlock(&fs_info->fs_roots_radix_lock);
1494
1495			btrfs_free_log(trans, root);
1496			ret2 = btrfs_update_reloc_root(trans, root);
1497			if (ret2)
1498				return ret2;
1499
1500			/* see comments in should_cow_block() */
1501			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1502			smp_mb__after_atomic();
1503
1504			if (root->commit_root != root->node) {
1505				list_add_tail(&root->dirty_list,
1506					&trans->transaction->switch_commits);
1507				btrfs_set_root_node(&root->root_item,
1508						    root->node);
1509			}
1510
1511			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1512						&root->root_key,
1513						&root->root_item);
1514			if (ret2)
1515				return ret2;
1516			spin_lock(&fs_info->fs_roots_radix_lock);
 
 
 
1517		}
1518	}
1519	spin_unlock(&fs_info->fs_roots_radix_lock);
1520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521}
1522
1523/*
1524 * Do all special snapshot related qgroup dirty hack.
1525 *
1526 * Will do all needed qgroup inherit and dirty hack like switch commit
1527 * roots inside one transaction and write all btree into disk, to make
1528 * qgroup works.
1529 */
1530static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531				   struct btrfs_root *src,
1532				   struct btrfs_root *parent,
1533				   struct btrfs_qgroup_inherit *inherit,
1534				   u64 dst_objectid)
1535{
1536	struct btrfs_fs_info *fs_info = src->fs_info;
1537	int ret;
1538
1539	/*
1540	 * Save some performance in the case that qgroups are not enabled. If
1541	 * this check races with the ioctl, rescan will kick in anyway.
 
1542	 */
1543	if (!btrfs_qgroup_full_accounting(fs_info))
1544		return 0;
1545
1546	/*
1547	 * Ensure dirty @src will be committed.  Or, after coming
1548	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549	 * recorded root will never be updated again, causing an outdated root
1550	 * item.
1551	 */
1552	ret = record_root_in_trans(trans, src, 1);
1553	if (ret)
1554		return ret;
1555
1556	/*
1557	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558	 * src root, so we must run the delayed refs here.
1559	 *
1560	 * However this isn't particularly fool proof, because there's no
1561	 * synchronization keeping us from changing the tree after this point
1562	 * before we do the qgroup_inherit, or even from making changes while
1563	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1564	 * for now flush the delayed refs to narrow the race window where the
1565	 * qgroup counters could end up wrong.
1566	 */
1567	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1568	if (ret) {
1569		btrfs_abort_transaction(trans, ret);
1570		return ret;
1571	}
1572
1573	ret = commit_fs_roots(trans);
1574	if (ret)
1575		goto out;
1576	ret = btrfs_qgroup_account_extents(trans);
1577	if (ret < 0)
1578		goto out;
1579
1580	/* Now qgroup are all updated, we can inherit it to new qgroups */
1581	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1582				   btrfs_root_id(parent), inherit);
1583	if (ret < 0)
1584		goto out;
1585
1586	/*
1587	 * Now we do a simplified commit transaction, which will:
1588	 * 1) commit all subvolume and extent tree
1589	 *    To ensure all subvolume and extent tree have a valid
1590	 *    commit_root to accounting later insert_dir_item()
1591	 * 2) write all btree blocks onto disk
1592	 *    This is to make sure later btree modification will be cowed
1593	 *    Or commit_root can be populated and cause wrong qgroup numbers
1594	 * In this simplified commit, we don't really care about other trees
1595	 * like chunk and root tree, as they won't affect qgroup.
1596	 * And we don't write super to avoid half committed status.
1597	 */
1598	ret = commit_cowonly_roots(trans);
1599	if (ret)
1600		goto out;
1601	switch_commit_roots(trans);
1602	ret = btrfs_write_and_wait_transaction(trans);
1603	if (ret)
1604		btrfs_handle_fs_error(fs_info, ret,
1605			"Error while writing out transaction for qgroup");
1606
1607out:
 
 
1608	/*
1609	 * Force parent root to be updated, as we recorded it before so its
1610	 * last_trans == cur_transid.
1611	 * Or it won't be committed again onto disk after later
1612	 * insert_dir_item()
1613	 */
1614	if (!ret)
1615		ret = record_root_in_trans(trans, parent, 1);
1616	return ret;
1617}
1618
1619/*
1620 * new snapshots need to be created at a very specific time in the
1621 * transaction commit.  This does the actual creation.
1622 *
1623 * Note:
1624 * If the error which may affect the commitment of the current transaction
1625 * happens, we should return the error number. If the error which just affect
1626 * the creation of the pending snapshots, just return 0.
1627 */
1628static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629				   struct btrfs_pending_snapshot *pending)
1630{
1631
1632	struct btrfs_fs_info *fs_info = trans->fs_info;
1633	struct btrfs_key key;
1634	struct btrfs_root_item *new_root_item;
1635	struct btrfs_root *tree_root = fs_info->tree_root;
1636	struct btrfs_root *root = pending->root;
1637	struct btrfs_root *parent_root;
1638	struct btrfs_block_rsv *rsv;
1639	struct inode *parent_inode = &pending->dir->vfs_inode;
1640	struct btrfs_path *path;
1641	struct btrfs_dir_item *dir_item;
 
1642	struct extent_buffer *tmp;
1643	struct extent_buffer *old;
1644	struct timespec64 cur_time;
1645	int ret = 0;
1646	u64 to_reserve = 0;
1647	u64 index = 0;
1648	u64 objectid;
1649	u64 root_flags;
1650	unsigned int nofs_flags;
1651	struct fscrypt_name fname;
1652
1653	ASSERT(pending->path);
1654	path = pending->path;
1655
1656	ASSERT(pending->root_item);
1657	new_root_item = pending->root_item;
1658
1659	/*
1660	 * We're inside a transaction and must make sure that any potential
1661	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662	 * filesystem.
1663	 */
1664	nofs_flags = memalloc_nofs_save();
1665	pending->error = fscrypt_setup_filename(parent_inode,
1666						&pending->dentry->d_name, 0,
1667						&fname);
1668	memalloc_nofs_restore(nofs_flags);
1669	if (pending->error)
1670		goto free_pending;
1671
1672	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673	if (pending->error)
1674		goto free_fname;
1675
1676	/*
1677	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1678	 * accounted by later btrfs_qgroup_inherit().
1679	 */
1680	btrfs_set_skip_qgroup(trans, objectid);
1681
1682	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683
1684	if (to_reserve > 0) {
1685		pending->error = btrfs_block_rsv_add(fs_info,
1686						     &pending->block_rsv,
1687						     to_reserve,
1688						     BTRFS_RESERVE_NO_FLUSH);
1689		if (pending->error)
1690			goto clear_skip_qgroup;
1691	}
1692
1693	key.objectid = objectid;
1694	key.offset = (u64)-1;
1695	key.type = BTRFS_ROOT_ITEM_KEY;
1696
1697	rsv = trans->block_rsv;
1698	trans->block_rsv = &pending->block_rsv;
1699	trans->bytes_reserved = trans->block_rsv->reserved;
1700	trace_btrfs_space_reservation(fs_info, "transaction",
1701				      trans->transid,
1702				      trans->bytes_reserved, 1);
 
 
1703	parent_root = BTRFS_I(parent_inode)->root;
1704	ret = record_root_in_trans(trans, parent_root, 0);
1705	if (ret)
1706		goto fail;
1707	cur_time = current_time(parent_inode);
1708
1709	/*
1710	 * insert the directory item
1711	 */
1712	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713	if (ret) {
1714		btrfs_abort_transaction(trans, ret);
1715		goto fail;
1716	}
1717
1718	/* check if there is a file/dir which has the same name. */
1719	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720					 btrfs_ino(BTRFS_I(parent_inode)),
1721					 &fname.disk_name, 0);
 
1722	if (dir_item != NULL && !IS_ERR(dir_item)) {
1723		pending->error = -EEXIST;
1724		goto dir_item_existed;
1725	} else if (IS_ERR(dir_item)) {
1726		ret = PTR_ERR(dir_item);
1727		btrfs_abort_transaction(trans, ret);
1728		goto fail;
1729	}
1730	btrfs_release_path(path);
1731
1732	ret = btrfs_create_qgroup(trans, objectid);
1733	if (ret && ret != -EEXIST) {
1734		btrfs_abort_transaction(trans, ret);
1735		goto fail;
1736	}
1737
1738	/*
1739	 * pull in the delayed directory update
1740	 * and the delayed inode item
1741	 * otherwise we corrupt the FS during
1742	 * snapshot
1743	 */
1744	ret = btrfs_run_delayed_items(trans);
1745	if (ret) {	/* Transaction aborted */
1746		btrfs_abort_transaction(trans, ret);
1747		goto fail;
1748	}
1749
1750	ret = record_root_in_trans(trans, root, 0);
1751	if (ret) {
1752		btrfs_abort_transaction(trans, ret);
1753		goto fail;
1754	}
1755	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1756	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1757	btrfs_check_and_init_root_item(new_root_item);
1758
1759	root_flags = btrfs_root_flags(new_root_item);
1760	if (pending->readonly)
1761		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1762	else
1763		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1764	btrfs_set_root_flags(new_root_item, root_flags);
1765
1766	btrfs_set_root_generation_v2(new_root_item,
1767			trans->transid);
1768	generate_random_guid(new_root_item->uuid);
1769	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1770			BTRFS_UUID_SIZE);
1771	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1772		memset(new_root_item->received_uuid, 0,
1773		       sizeof(new_root_item->received_uuid));
1774		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1775		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1776		btrfs_set_root_stransid(new_root_item, 0);
1777		btrfs_set_root_rtransid(new_root_item, 0);
1778	}
1779	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1780	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1781	btrfs_set_root_otransid(new_root_item, trans->transid);
1782
1783	old = btrfs_lock_root_node(root);
1784	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1785			      BTRFS_NESTING_COW);
1786	if (ret) {
1787		btrfs_tree_unlock(old);
1788		free_extent_buffer(old);
1789		btrfs_abort_transaction(trans, ret);
1790		goto fail;
1791	}
1792
 
 
1793	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1794	/* clean up in any case */
1795	btrfs_tree_unlock(old);
1796	free_extent_buffer(old);
1797	if (ret) {
1798		btrfs_abort_transaction(trans, ret);
1799		goto fail;
1800	}
1801	/* see comments in should_cow_block() */
1802	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1803	smp_wmb();
1804
1805	btrfs_set_root_node(new_root_item, tmp);
1806	/* record when the snapshot was created in key.offset */
1807	key.offset = trans->transid;
1808	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1809	btrfs_tree_unlock(tmp);
1810	free_extent_buffer(tmp);
1811	if (ret) {
1812		btrfs_abort_transaction(trans, ret);
1813		goto fail;
1814	}
1815
1816	/*
1817	 * insert root back/forward references
1818	 */
1819	ret = btrfs_add_root_ref(trans, objectid,
1820				 btrfs_root_id(parent_root),
1821				 btrfs_ino(BTRFS_I(parent_inode)), index,
1822				 &fname.disk_name);
1823	if (ret) {
1824		btrfs_abort_transaction(trans, ret);
1825		goto fail;
1826	}
1827
1828	key.offset = (u64)-1;
1829	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1830	if (IS_ERR(pending->snap)) {
1831		ret = PTR_ERR(pending->snap);
1832		pending->snap = NULL;
1833		btrfs_abort_transaction(trans, ret);
1834		goto fail;
1835	}
1836
1837	ret = btrfs_reloc_post_snapshot(trans, pending);
1838	if (ret) {
1839		btrfs_abort_transaction(trans, ret);
1840		goto fail;
1841	}
1842
 
 
 
 
 
 
1843	/*
1844	 * Do special qgroup accounting for snapshot, as we do some qgroup
1845	 * snapshot hack to do fast snapshot.
1846	 * To co-operate with that hack, we do hack again.
1847	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1848	 */
1849	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1850		ret = qgroup_account_snapshot(trans, root, parent_root,
1851					      pending->inherit, objectid);
1852	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1853		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1854					   btrfs_root_id(parent_root), pending->inherit);
1855	if (ret < 0)
1856		goto fail;
1857
1858	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1859				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1860				    index);
 
 
1861	if (ret) {
1862		btrfs_abort_transaction(trans, ret);
1863		goto fail;
1864	}
1865
1866	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1867						  fname.disk_name.len * 2);
1868	inode_set_mtime_to_ts(parent_inode,
1869			      inode_set_ctime_current(parent_inode));
1870	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1871	if (ret) {
1872		btrfs_abort_transaction(trans, ret);
1873		goto fail;
1874	}
1875	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1876				  BTRFS_UUID_KEY_SUBVOL,
1877				  objectid);
1878	if (ret) {
1879		btrfs_abort_transaction(trans, ret);
1880		goto fail;
1881	}
1882	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1883		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1884					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1885					  objectid);
1886		if (ret && ret != -EEXIST) {
1887			btrfs_abort_transaction(trans, ret);
1888			goto fail;
1889		}
1890	}
1891
 
 
 
 
 
 
1892fail:
1893	pending->error = ret;
1894dir_item_existed:
1895	trans->block_rsv = rsv;
1896	trans->bytes_reserved = 0;
1897clear_skip_qgroup:
1898	btrfs_clear_skip_qgroup(trans);
1899free_fname:
1900	fscrypt_free_filename(&fname);
1901free_pending:
1902	kfree(new_root_item);
1903	pending->root_item = NULL;
1904	btrfs_free_path(path);
1905	pending->path = NULL;
1906
1907	return ret;
1908}
1909
1910/*
1911 * create all the snapshots we've scheduled for creation
1912 */
1913static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1914{
1915	struct btrfs_pending_snapshot *pending, *next;
1916	struct list_head *head = &trans->transaction->pending_snapshots;
1917	int ret = 0;
1918
1919	list_for_each_entry_safe(pending, next, head, list) {
1920		list_del(&pending->list);
1921		ret = create_pending_snapshot(trans, pending);
1922		if (ret)
1923			break;
1924	}
1925	return ret;
1926}
1927
1928static void update_super_roots(struct btrfs_fs_info *fs_info)
1929{
1930	struct btrfs_root_item *root_item;
1931	struct btrfs_super_block *super;
1932
1933	super = fs_info->super_copy;
1934
1935	root_item = &fs_info->chunk_root->root_item;
1936	super->chunk_root = root_item->bytenr;
1937	super->chunk_root_generation = root_item->generation;
1938	super->chunk_root_level = root_item->level;
1939
1940	root_item = &fs_info->tree_root->root_item;
1941	super->root = root_item->bytenr;
1942	super->generation = root_item->generation;
1943	super->root_level = root_item->level;
1944	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1945		super->cache_generation = root_item->generation;
1946	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1947		super->cache_generation = 0;
1948	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1949		super->uuid_tree_generation = root_item->generation;
1950}
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
1952int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1953{
1954	struct btrfs_transaction *trans;
1955	int ret = 0;
1956
1957	spin_lock(&info->trans_lock);
1958	trans = info->running_transaction;
1959	if (trans)
1960		ret = is_transaction_blocked(trans);
1961	spin_unlock(&info->trans_lock);
1962	return ret;
1963}
1964
1965void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966{
1967	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1968	struct btrfs_transaction *cur_trans;
1969
1970	/* Kick the transaction kthread. */
1971	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1972	wake_up_process(fs_info->transaction_kthread);
 
 
 
 
 
 
 
 
1973
1974	/* take transaction reference */
1975	cur_trans = trans->transaction;
1976	refcount_inc(&cur_trans->use_count);
1977
1978	btrfs_end_transaction(trans);
1979
1980	/*
1981	 * Wait for the current transaction commit to start and block
1982	 * subsequent transaction joins
1983	 */
1984	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1985	wait_event(fs_info->transaction_blocked_wait,
1986		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1987		   TRANS_ABORTED(cur_trans));
1988	btrfs_put_transaction(cur_trans);
1989}
1990
1991/*
1992 * If there is a running transaction commit it or if it's already committing,
1993 * wait for its commit to complete. Does not start and commit a new transaction
1994 * if there isn't any running.
1995 */
1996int btrfs_commit_current_transaction(struct btrfs_root *root)
1997{
1998	struct btrfs_trans_handle *trans;
1999
2000	trans = btrfs_attach_transaction_barrier(root);
2001	if (IS_ERR(trans)) {
2002		int ret = PTR_ERR(trans);
 
 
2003
2004		return (ret == -ENOENT) ? 0 : ret;
2005	}
2006
2007	return btrfs_commit_transaction(trans);
 
2008}
2009
 
2010static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2011{
2012	struct btrfs_fs_info *fs_info = trans->fs_info;
2013	struct btrfs_transaction *cur_trans = trans->transaction;
2014
2015	WARN_ON(refcount_read(&trans->use_count) > 1);
2016
2017	btrfs_abort_transaction(trans, err);
2018
2019	spin_lock(&fs_info->trans_lock);
2020
2021	/*
2022	 * If the transaction is removed from the list, it means this
2023	 * transaction has been committed successfully, so it is impossible
2024	 * to call the cleanup function.
2025	 */
2026	BUG_ON(list_empty(&cur_trans->list));
2027
 
2028	if (cur_trans == fs_info->running_transaction) {
2029		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2030		spin_unlock(&fs_info->trans_lock);
2031
2032		/*
2033		 * The thread has already released the lockdep map as reader
2034		 * already in btrfs_commit_transaction().
2035		 */
2036		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2037		wait_event(cur_trans->writer_wait,
2038			   atomic_read(&cur_trans->num_writers) == 1);
2039
2040		spin_lock(&fs_info->trans_lock);
2041	}
2042
2043	/*
2044	 * Now that we know no one else is still using the transaction we can
2045	 * remove the transaction from the list of transactions. This avoids
2046	 * the transaction kthread from cleaning up the transaction while some
2047	 * other task is still using it, which could result in a use-after-free
2048	 * on things like log trees, as it forces the transaction kthread to
2049	 * wait for this transaction to be cleaned up by us.
2050	 */
2051	list_del_init(&cur_trans->list);
2052
2053	spin_unlock(&fs_info->trans_lock);
2054
2055	btrfs_cleanup_one_transaction(trans->transaction);
2056
2057	spin_lock(&fs_info->trans_lock);
2058	if (cur_trans == fs_info->running_transaction)
2059		fs_info->running_transaction = NULL;
2060	spin_unlock(&fs_info->trans_lock);
2061
2062	if (trans->type & __TRANS_FREEZABLE)
2063		sb_end_intwrite(fs_info->sb);
2064	btrfs_put_transaction(cur_trans);
2065	btrfs_put_transaction(cur_trans);
2066
2067	trace_btrfs_transaction_commit(fs_info);
2068
2069	if (current->journal_info == trans)
2070		current->journal_info = NULL;
2071
2072	/*
2073	 * If relocation is running, we can't cancel scrub because that will
2074	 * result in a deadlock. Before relocating a block group, relocation
2075	 * pauses scrub, then starts and commits a transaction before unpausing
2076	 * scrub. If the transaction commit is being done by the relocation
2077	 * task or triggered by another task and the relocation task is waiting
2078	 * for the commit, and we end up here due to an error in the commit
2079	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2080	 * asking for scrub to stop while having it asked to be paused higher
2081	 * above in relocation code.
2082	 */
2083	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2084		btrfs_scrub_cancel(fs_info);
2085
2086	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2087}
2088
2089/*
2090 * Release reserved delayed ref space of all pending block groups of the
2091 * transaction and remove them from the list
2092 */
2093static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2094{
2095       struct btrfs_fs_info *fs_info = trans->fs_info;
2096       struct btrfs_block_group *block_group, *tmp;
2097
2098       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2099               btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2100               list_del_init(&block_group->bg_list);
2101       }
2102}
2103
2104static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2105{
 
 
2106	/*
2107	 * We use try_to_writeback_inodes_sb() here because if we used
2108	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2109	 * Currently are holding the fs freeze lock, if we do an async flush
2110	 * we'll do btrfs_join_transaction() and deadlock because we need to
2111	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2112	 * from already being in a transaction and our join_transaction doesn't
2113	 * have to re-take the fs freeze lock.
2114	 *
2115	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2116	 * if it can read lock sb->s_umount. It will always be able to lock it,
2117	 * except when the filesystem is being unmounted or being frozen, but in
2118	 * those cases sync_filesystem() is called, which results in calling
2119	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2120	 * Note that we don't call writeback_inodes_sb() directly, because it
2121	 * will emit a warning if sb->s_umount is not locked.
2122	 */
2123	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2124		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125	return 0;
2126}
2127
2128static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2129{
2130	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2131		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2132}
2133
2134/*
2135 * Add a pending snapshot associated with the given transaction handle to the
2136 * respective handle. This must be called after the transaction commit started
2137 * and while holding fs_info->trans_lock.
2138 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2139 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2140 * returns an error.
2141 */
2142static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2143{
2144	struct btrfs_transaction *cur_trans = trans->transaction;
2145
2146	if (!trans->pending_snapshot)
2147		return;
2148
2149	lockdep_assert_held(&trans->fs_info->trans_lock);
2150	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2151
2152	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2153}
2154
2155static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2156{
2157	fs_info->commit_stats.commit_count++;
2158	fs_info->commit_stats.last_commit_dur = interval;
2159	fs_info->commit_stats.max_commit_dur =
2160			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2161	fs_info->commit_stats.total_commit_dur += interval;
2162}
2163
2164int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2165{
2166	struct btrfs_fs_info *fs_info = trans->fs_info;
2167	struct btrfs_transaction *cur_trans = trans->transaction;
2168	struct btrfs_transaction *prev_trans = NULL;
2169	int ret;
2170	ktime_t start_time;
2171	ktime_t interval;
2172
2173	ASSERT(refcount_read(&trans->use_count) == 1);
2174	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2175
2176	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
 
 
 
 
 
 
2177
2178	/* Stop the commit early if ->aborted is set */
2179	if (TRANS_ABORTED(cur_trans)) {
2180		ret = cur_trans->aborted;
2181		goto lockdep_trans_commit_start_release;
 
2182	}
2183
2184	btrfs_trans_release_metadata(trans);
2185	trans->block_rsv = NULL;
2186
 
 
 
 
 
 
 
 
 
 
 
2187	/*
2188	 * We only want one transaction commit doing the flushing so we do not
2189	 * waste a bunch of time on lock contention on the extent root node.
2190	 */
2191	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2192			      &cur_trans->delayed_refs.flags)) {
2193		/*
2194		 * Make a pass through all the delayed refs we have so far.
2195		 * Any running threads may add more while we are here.
2196		 */
2197		ret = btrfs_run_delayed_refs(trans, 0);
2198		if (ret)
2199			goto lockdep_trans_commit_start_release;
2200	}
2201
2202	btrfs_create_pending_block_groups(trans);
2203
 
 
 
 
 
 
2204	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2205		int run_it = 0;
2206
2207		/* this mutex is also taken before trying to set
2208		 * block groups readonly.  We need to make sure
2209		 * that nobody has set a block group readonly
2210		 * after a extents from that block group have been
2211		 * allocated for cache files.  btrfs_set_block_group_ro
2212		 * will wait for the transaction to commit if it
2213		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2214		 *
2215		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2216		 * only one process starts all the block group IO.  It wouldn't
2217		 * hurt to have more than one go through, but there's no
2218		 * real advantage to it either.
2219		 */
2220		mutex_lock(&fs_info->ro_block_group_mutex);
2221		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2222				      &cur_trans->flags))
2223			run_it = 1;
2224		mutex_unlock(&fs_info->ro_block_group_mutex);
2225
2226		if (run_it) {
2227			ret = btrfs_start_dirty_block_groups(trans);
2228			if (ret)
2229				goto lockdep_trans_commit_start_release;
 
 
2230		}
2231	}
2232
2233	spin_lock(&fs_info->trans_lock);
2234	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2235		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2236
2237		add_pending_snapshot(trans);
2238
2239		spin_unlock(&fs_info->trans_lock);
2240		refcount_inc(&cur_trans->use_count);
 
2241
2242		if (trans->in_fsync)
2243			want_state = TRANS_STATE_SUPER_COMMITTED;
2244
2245		btrfs_trans_state_lockdep_release(fs_info,
2246						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247		ret = btrfs_end_transaction(trans);
2248		wait_for_commit(cur_trans, want_state);
2249
2250		if (TRANS_ABORTED(cur_trans))
2251			ret = cur_trans->aborted;
2252
2253		btrfs_put_transaction(cur_trans);
2254
2255		return ret;
2256	}
2257
2258	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2259	wake_up(&fs_info->transaction_blocked_wait);
2260	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2261
2262	if (cur_trans->list.prev != &fs_info->trans_list) {
2263		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2264
2265		if (trans->in_fsync)
2266			want_state = TRANS_STATE_SUPER_COMMITTED;
2267
2268		prev_trans = list_entry(cur_trans->list.prev,
2269					struct btrfs_transaction, list);
2270		if (prev_trans->state < want_state) {
2271			refcount_inc(&prev_trans->use_count);
2272			spin_unlock(&fs_info->trans_lock);
2273
2274			wait_for_commit(prev_trans, want_state);
2275
2276			ret = READ_ONCE(prev_trans->aborted);
2277
2278			btrfs_put_transaction(prev_trans);
2279			if (ret)
2280				goto lockdep_release;
2281			spin_lock(&fs_info->trans_lock);
 
2282		}
2283	} else {
 
2284		/*
2285		 * The previous transaction was aborted and was already removed
2286		 * from the list of transactions at fs_info->trans_list. So we
2287		 * abort to prevent writing a new superblock that reflects a
2288		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2289		 */
2290		if (BTRFS_FS_ERROR(fs_info)) {
2291			spin_unlock(&fs_info->trans_lock);
2292			ret = -EROFS;
2293			goto lockdep_release;
2294		}
2295	}
2296
2297	cur_trans->state = TRANS_STATE_COMMIT_START;
2298	wake_up(&fs_info->transaction_blocked_wait);
2299	spin_unlock(&fs_info->trans_lock);
2300
2301	/*
2302	 * Get the time spent on the work done by the commit thread and not
2303	 * the time spent waiting on a previous commit
2304	 */
2305	start_time = ktime_get_ns();
2306
2307	extwriter_counter_dec(cur_trans, trans->type);
2308
2309	ret = btrfs_start_delalloc_flush(fs_info);
2310	if (ret)
2311		goto lockdep_release;
2312
2313	ret = btrfs_run_delayed_items(trans);
2314	if (ret)
2315		goto lockdep_release;
2316
2317	/*
2318	 * The thread has started/joined the transaction thus it holds the
2319	 * lockdep map as a reader. It has to release it before acquiring the
2320	 * lockdep map as a writer.
2321	 */
2322	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2323	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2324	wait_event(cur_trans->writer_wait,
2325		   extwriter_counter_read(cur_trans) == 0);
2326
2327	/* some pending stuffs might be added after the previous flush. */
2328	ret = btrfs_run_delayed_items(trans);
2329	if (ret) {
2330		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2331		goto cleanup_transaction;
2332	}
2333
2334	btrfs_wait_delalloc_flush(fs_info);
2335
2336	/*
2337	 * Wait for all ordered extents started by a fast fsync that joined this
2338	 * transaction. Otherwise if this transaction commits before the ordered
2339	 * extents complete we lose logged data after a power failure.
2340	 */
2341	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2342	wait_event(cur_trans->pending_wait,
2343		   atomic_read(&cur_trans->pending_ordered) == 0);
2344
2345	btrfs_scrub_pause(fs_info);
2346	/*
2347	 * Ok now we need to make sure to block out any other joins while we
2348	 * commit the transaction.  We could have started a join before setting
2349	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2350	 */
2351	spin_lock(&fs_info->trans_lock);
2352	add_pending_snapshot(trans);
2353	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2354	spin_unlock(&fs_info->trans_lock);
2355
2356	/*
2357	 * The thread has started/joined the transaction thus it holds the
2358	 * lockdep map as a reader. It has to release it before acquiring the
2359	 * lockdep map as a writer.
2360	 */
2361	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2363	wait_event(cur_trans->writer_wait,
2364		   atomic_read(&cur_trans->num_writers) == 1);
2365
2366	/*
2367	 * Make lockdep happy by acquiring the state locks after
2368	 * btrfs_trans_num_writers is released. If we acquired the state locks
2369	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2370	 * complain because we did not follow the reverse order unlocking rule.
2371	 */
2372	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2373	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2374	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375
2376	/*
2377	 * We've started the commit, clear the flag in case we were triggered to
2378	 * do an async commit but somebody else started before the transaction
2379	 * kthread could do the work.
2380	 */
2381	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2382
2383	if (TRANS_ABORTED(cur_trans)) {
2384		ret = cur_trans->aborted;
2385		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2386		goto scrub_continue;
2387	}
2388	/*
2389	 * the reloc mutex makes sure that we stop
2390	 * the balancing code from coming in and moving
2391	 * extents around in the middle of the commit
2392	 */
2393	mutex_lock(&fs_info->reloc_mutex);
2394
2395	/*
2396	 * We needn't worry about the delayed items because we will
2397	 * deal with them in create_pending_snapshot(), which is the
2398	 * core function of the snapshot creation.
2399	 */
2400	ret = create_pending_snapshots(trans);
2401	if (ret)
2402		goto unlock_reloc;
2403
2404	/*
2405	 * We insert the dir indexes of the snapshots and update the inode
2406	 * of the snapshots' parents after the snapshot creation, so there
2407	 * are some delayed items which are not dealt with. Now deal with
2408	 * them.
2409	 *
2410	 * We needn't worry that this operation will corrupt the snapshots,
2411	 * because all the tree which are snapshoted will be forced to COW
2412	 * the nodes and leaves.
2413	 */
2414	ret = btrfs_run_delayed_items(trans);
2415	if (ret)
2416		goto unlock_reloc;
2417
2418	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2419	if (ret)
2420		goto unlock_reloc;
2421
2422	/*
2423	 * make sure none of the code above managed to slip in a
2424	 * delayed item
2425	 */
2426	btrfs_assert_delayed_root_empty(fs_info);
2427
2428	WARN_ON(cur_trans != trans->transaction);
2429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430	ret = commit_fs_roots(trans);
2431	if (ret)
2432		goto unlock_reloc;
 
 
 
 
 
 
2433
2434	/* commit_fs_roots gets rid of all the tree log roots, it is now
2435	 * safe to free the root of tree log roots
2436	 */
2437	btrfs_free_log_root_tree(trans, fs_info);
2438
2439	/*
 
 
 
 
 
 
 
 
2440	 * Since fs roots are all committed, we can get a quite accurate
2441	 * new_roots. So let's do quota accounting.
2442	 */
2443	ret = btrfs_qgroup_account_extents(trans);
2444	if (ret < 0)
2445		goto unlock_reloc;
2446
2447	ret = commit_cowonly_roots(trans);
2448	if (ret)
2449		goto unlock_reloc;
2450
2451	/*
2452	 * The tasks which save the space cache and inode cache may also
2453	 * update ->aborted, check it.
2454	 */
2455	if (TRANS_ABORTED(cur_trans)) {
2456		ret = cur_trans->aborted;
2457		goto unlock_reloc;
2458	}
2459
 
 
2460	cur_trans = fs_info->running_transaction;
2461
2462	btrfs_set_root_node(&fs_info->tree_root->root_item,
2463			    fs_info->tree_root->node);
2464	list_add_tail(&fs_info->tree_root->dirty_list,
2465		      &cur_trans->switch_commits);
2466
2467	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2468			    fs_info->chunk_root->node);
2469	list_add_tail(&fs_info->chunk_root->dirty_list,
2470		      &cur_trans->switch_commits);
2471
2472	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2473		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2474				    fs_info->block_group_root->node);
2475		list_add_tail(&fs_info->block_group_root->dirty_list,
2476			      &cur_trans->switch_commits);
2477	}
2478
2479	switch_commit_roots(trans);
2480
2481	ASSERT(list_empty(&cur_trans->dirty_bgs));
2482	ASSERT(list_empty(&cur_trans->io_bgs));
2483	update_super_roots(fs_info);
2484
2485	btrfs_set_super_log_root(fs_info->super_copy, 0);
2486	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2487	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2488	       sizeof(*fs_info->super_copy));
2489
2490	btrfs_commit_device_sizes(cur_trans);
2491
2492	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2493	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2494
2495	btrfs_trans_release_chunk_metadata(trans);
2496
2497	/*
2498	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2499	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2500	 * make sure that before we commit our superblock, no other task can
2501	 * start a new transaction and commit a log tree before we commit our
2502	 * superblock. Anyone trying to commit a log tree locks this mutex before
2503	 * writing its superblock.
2504	 */
2505	mutex_lock(&fs_info->tree_log_mutex);
2506
2507	spin_lock(&fs_info->trans_lock);
2508	cur_trans->state = TRANS_STATE_UNBLOCKED;
2509	fs_info->running_transaction = NULL;
2510	spin_unlock(&fs_info->trans_lock);
2511	mutex_unlock(&fs_info->reloc_mutex);
2512
2513	wake_up(&fs_info->transaction_wait);
2514	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2515
2516	/* If we have features changed, wake up the cleaner to update sysfs. */
2517	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2518	    fs_info->cleaner_kthread)
2519		wake_up_process(fs_info->cleaner_kthread);
2520
2521	ret = btrfs_write_and_wait_transaction(trans);
2522	if (ret) {
2523		btrfs_handle_fs_error(fs_info, ret,
2524				      "Error while writing out transaction");
 
 
 
 
2525		mutex_unlock(&fs_info->tree_log_mutex);
2526		goto scrub_continue;
2527	}
2528
2529	ret = write_all_supers(fs_info, 0);
2530	/*
2531	 * the super is written, we can safely allow the tree-loggers
2532	 * to go about their business
2533	 */
2534	mutex_unlock(&fs_info->tree_log_mutex);
2535	if (ret)
2536		goto scrub_continue;
2537
2538	/*
2539	 * We needn't acquire the lock here because there is no other task
2540	 * which can change it.
2541	 */
2542	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2543	wake_up(&cur_trans->commit_wait);
2544	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2545
2546	btrfs_finish_extent_commit(trans);
2547
2548	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2549		btrfs_clear_space_info_full(fs_info);
2550
2551	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2552	/*
2553	 * We needn't acquire the lock here because there is no other task
2554	 * which can change it.
2555	 */
2556	cur_trans->state = TRANS_STATE_COMPLETED;
2557	wake_up(&cur_trans->commit_wait);
2558	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2559
2560	spin_lock(&fs_info->trans_lock);
2561	list_del_init(&cur_trans->list);
2562	spin_unlock(&fs_info->trans_lock);
2563
2564	btrfs_put_transaction(cur_trans);
2565	btrfs_put_transaction(cur_trans);
2566
2567	if (trans->type & __TRANS_FREEZABLE)
2568		sb_end_intwrite(fs_info->sb);
2569
2570	trace_btrfs_transaction_commit(fs_info);
2571
2572	interval = ktime_get_ns() - start_time;
2573
2574	btrfs_scrub_continue(fs_info);
2575
2576	if (current->journal_info == trans)
2577		current->journal_info = NULL;
2578
2579	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2580
2581	update_commit_stats(fs_info, interval);
2582
2583	return ret;
2584
 
 
2585unlock_reloc:
2586	mutex_unlock(&fs_info->reloc_mutex);
2587	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2588scrub_continue:
2589	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2590	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2591	btrfs_scrub_continue(fs_info);
2592cleanup_transaction:
2593	btrfs_trans_release_metadata(trans);
2594	btrfs_cleanup_pending_block_groups(trans);
2595	btrfs_trans_release_chunk_metadata(trans);
2596	trans->block_rsv = NULL;
2597	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2598	if (current->journal_info == trans)
2599		current->journal_info = NULL;
2600	cleanup_transaction(trans, ret);
2601
2602	return ret;
2603
2604lockdep_release:
2605	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2606	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2607	goto cleanup_transaction;
2608
2609lockdep_trans_commit_start_release:
2610	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2611	btrfs_end_transaction(trans);
2612	return ret;
2613}
2614
2615/*
2616 * return < 0 if error
2617 * 0 if there are no more dead_roots at the time of call
2618 * 1 there are more to be processed, call me again
2619 *
2620 * The return value indicates there are certainly more snapshots to delete, but
2621 * if there comes a new one during processing, it may return 0. We don't mind,
2622 * because btrfs_commit_super will poke cleaner thread and it will process it a
2623 * few seconds later.
2624 */
2625int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2626{
2627	struct btrfs_root *root;
2628	int ret;
 
2629
2630	spin_lock(&fs_info->trans_lock);
2631	if (list_empty(&fs_info->dead_roots)) {
2632		spin_unlock(&fs_info->trans_lock);
2633		return 0;
2634	}
2635	root = list_first_entry(&fs_info->dead_roots,
2636			struct btrfs_root, root_list);
2637	list_del_init(&root->root_list);
2638	spin_unlock(&fs_info->trans_lock);
2639
2640	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2641
2642	btrfs_kill_all_delayed_nodes(root);
 
 
 
 
2643
2644	if (btrfs_header_backref_rev(root->node) <
2645			BTRFS_MIXED_BACKREF_REV)
2646		ret = btrfs_drop_snapshot(root, 0, 0);
2647	else
2648		ret = btrfs_drop_snapshot(root, 1, 0);
2649
2650	btrfs_put_root(root);
2651	return (ret < 0) ? 0 : 1;
2652}
2653
2654/*
2655 * We only mark the transaction aborted and then set the file system read-only.
2656 * This will prevent new transactions from starting or trying to join this
2657 * one.
2658 *
2659 * This means that error recovery at the call site is limited to freeing
2660 * any local memory allocations and passing the error code up without
2661 * further cleanup. The transaction should complete as it normally would
2662 * in the call path but will return -EIO.
2663 *
2664 * We'll complete the cleanup in btrfs_end_transaction and
2665 * btrfs_commit_transaction.
2666 */
2667void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2668				      const char *function,
2669				      unsigned int line, int error, bool first_hit)
2670{
2671	struct btrfs_fs_info *fs_info = trans->fs_info;
 
2672
2673	WRITE_ONCE(trans->aborted, error);
2674	WRITE_ONCE(trans->transaction->aborted, error);
2675	if (first_hit && error == -ENOSPC)
2676		btrfs_dump_space_info_for_trans_abort(fs_info);
2677	/* Wake up anybody who may be waiting on this transaction */
2678	wake_up(&fs_info->transaction_wait);
2679	wake_up(&fs_info->transaction_blocked_wait);
2680	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2681}
2682
2683int __init btrfs_transaction_init(void)
2684{
2685	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2686	if (!btrfs_trans_handle_cachep)
2687		return -ENOMEM;
2688	return 0;
2689}
2690
2691void __cold btrfs_transaction_exit(void)
2692{
2693	kmem_cache_destroy(btrfs_trans_handle_cachep);
 
 
 
 
 
 
 
2694}