Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
 
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "extent_io.h"
  17#include "extent-io-tree.h"
  18#include "extent_map.h"
  19#include "ctree.h"
  20#include "btrfs_inode.h"
  21#include "volumes.h"
  22#include "check-integrity.h"
  23#include "locking.h"
  24#include "rcu-string.h"
  25#include "backref.h"
  26#include "disk-io.h"
 
 
 
 
 
 
 
 
 
 
 
  27
  28static struct kmem_cache *extent_state_cache;
  29static struct kmem_cache *extent_buffer_cache;
  30static struct bio_set btrfs_bioset;
  31
  32static inline bool extent_state_in_tree(const struct extent_state *state)
  33{
  34	return !RB_EMPTY_NODE(&state->rb_node);
  35}
  36
  37#ifdef CONFIG_BTRFS_DEBUG
  38static LIST_HEAD(states);
  39static DEFINE_SPINLOCK(leak_lock);
  40
  41static inline void btrfs_leak_debug_add(spinlock_t *lock,
  42					struct list_head *new,
  43					struct list_head *head)
  44{
 
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(lock, flags);
  50}
  51
  52static inline void btrfs_leak_debug_del(spinlock_t *lock,
  53					struct list_head *entry)
  54{
 
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(lock, flags);
  60}
  61
  62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  63{
  64	struct extent_buffer *eb;
  65	unsigned long flags;
  66
  67	/*
  68	 * If we didn't get into open_ctree our allocated_ebs will not be
  69	 * initialized, so just skip this.
  70	 */
  71	if (!fs_info->allocated_ebs.next)
  72		return;
  73
 
  74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  75	while (!list_empty(&fs_info->allocated_ebs)) {
  76		eb = list_first_entry(&fs_info->allocated_ebs,
  77				      struct extent_buffer, leak_list);
  78		pr_err(
  79	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  81		       btrfs_header_owner(eb));
  82		list_del(&eb->leak_list);
 
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  86}
  87
  88static inline void btrfs_extent_state_leak_debug_check(void)
  89{
  90	struct extent_state *state;
  91
  92	while (!list_empty(&states)) {
  93		state = list_entry(states.next, struct extent_state, leak_list);
  94		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  95		       state->start, state->end, state->state,
  96		       extent_state_in_tree(state),
  97		       refcount_read(&state->refs));
  98		list_del(&state->leak_list);
  99		kmem_cache_free(extent_state_cache, state);
 100	}
 101}
 102
 103#define btrfs_debug_check_extent_io_range(tree, start, end)		\
 104	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 106		struct extent_io_tree *tree, u64 start, u64 end)
 107{
 108	struct inode *inode = tree->private_data;
 109	u64 isize;
 110
 111	if (!inode || !is_data_inode(inode))
 112		return;
 113
 114	isize = i_size_read(inode);
 115	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 116		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 117		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 118			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 119	}
 120}
 121#else
 122#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
 123#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
 124#define btrfs_extent_state_leak_debug_check()	do {} while (0)
 125#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 126#endif
 127
 128struct tree_entry {
 129	u64 start;
 130	u64 end;
 131	struct rb_node rb_node;
 132};
 133
 134struct extent_page_data {
 135	struct bio *bio;
 136	/* tells writepage not to lock the state bits for this range
 137	 * it still does the unlocking
 
 
 
 
 
 
 138	 */
 139	unsigned int extent_locked:1;
 140
 141	/* tells the submit_bio code to use REQ_SYNC */
 142	unsigned int sync_io:1;
 143};
 144
 145static int add_extent_changeset(struct extent_state *state, unsigned bits,
 146				 struct extent_changeset *changeset,
 147				 int set)
 148{
 149	int ret;
 150
 151	if (!changeset)
 152		return 0;
 153	if (set && (state->state & bits) == bits)
 154		return 0;
 155	if (!set && (state->state & bits) == 0)
 156		return 0;
 157	changeset->bytes_changed += state->end - state->start + 1;
 158	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 159			GFP_ATOMIC);
 160	return ret;
 161}
 162
 163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 164				       unsigned long bio_flags)
 165{
 166	blk_status_t ret = 0;
 167	struct extent_io_tree *tree = bio->bi_private;
 168
 169	bio->bi_private = NULL;
 
 170
 171	if (tree->ops)
 172		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
 173						 mirror_num, bio_flags);
 174	else
 175		btrfsic_submit_bio(bio);
 176
 177	return blk_status_to_errno(ret);
 178}
 179
 180/* Cleanup unsubmitted bios */
 181static void end_write_bio(struct extent_page_data *epd, int ret)
 182{
 183	if (epd->bio) {
 184		epd->bio->bi_status = errno_to_blk_status(ret);
 185		bio_endio(epd->bio);
 186		epd->bio = NULL;
 187	}
 188}
 189
 190/*
 191 * Submit bio from extent page data via submit_one_bio
 192 *
 193 * Return 0 if everything is OK.
 194 * Return <0 for error.
 195 */
 196static int __must_check flush_write_bio(struct extent_page_data *epd)
 197{
 198	int ret = 0;
 199
 200	if (epd->bio) {
 201		ret = submit_one_bio(epd->bio, 0, 0);
 202		/*
 203		 * Clean up of epd->bio is handled by its endio function.
 204		 * And endio is either triggered by successful bio execution
 205		 * or the error handler of submit bio hook.
 206		 * So at this point, no matter what happened, we don't need
 207		 * to clean up epd->bio.
 208		 */
 209		epd->bio = NULL;
 210	}
 211	return ret;
 212}
 213
 214int __init extent_state_cache_init(void)
 215{
 216	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 217			sizeof(struct extent_state), 0,
 218			SLAB_MEM_SPREAD, NULL);
 219	if (!extent_state_cache)
 220		return -ENOMEM;
 221	return 0;
 222}
 223
 224int __init extent_io_init(void)
 225{
 226	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 227			sizeof(struct extent_buffer), 0,
 228			SLAB_MEM_SPREAD, NULL);
 229	if (!extent_buffer_cache)
 230		return -ENOMEM;
 231
 232	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 233			offsetof(struct btrfs_io_bio, bio),
 234			BIOSET_NEED_BVECS))
 235		goto free_buffer_cache;
 236
 237	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 238		goto free_bioset;
 239
 240	return 0;
 241
 242free_bioset:
 243	bioset_exit(&btrfs_bioset);
 244
 245free_buffer_cache:
 246	kmem_cache_destroy(extent_buffer_cache);
 247	extent_buffer_cache = NULL;
 248	return -ENOMEM;
 249}
 250
 251void __cold extent_state_cache_exit(void)
 252{
 253	btrfs_extent_state_leak_debug_check();
 254	kmem_cache_destroy(extent_state_cache);
 255}
 256
 257void __cold extent_io_exit(void)
 258{
 259	/*
 260	 * Make sure all delayed rcu free are flushed before we
 261	 * destroy caches.
 262	 */
 263	rcu_barrier();
 264	kmem_cache_destroy(extent_buffer_cache);
 265	bioset_exit(&btrfs_bioset);
 266}
 267
 268/*
 269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 271 * the tree lock and get the inode lock when setting delalloc.  These two things
 272 * are unrelated, so make a class for the file_extent_tree so we don't get the
 273 * two locking patterns mixed up.
 274 */
 275static struct lock_class_key file_extent_tree_class;
 276
 277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 278			 struct extent_io_tree *tree, unsigned int owner,
 279			 void *private_data)
 280{
 281	tree->fs_info = fs_info;
 282	tree->state = RB_ROOT;
 283	tree->ops = NULL;
 284	tree->dirty_bytes = 0;
 285	spin_lock_init(&tree->lock);
 286	tree->private_data = private_data;
 287	tree->owner = owner;
 288	if (owner == IO_TREE_INODE_FILE_EXTENT)
 289		lockdep_set_class(&tree->lock, &file_extent_tree_class);
 290}
 291
 292void extent_io_tree_release(struct extent_io_tree *tree)
 293{
 294	spin_lock(&tree->lock);
 295	/*
 296	 * Do a single barrier for the waitqueue_active check here, the state
 297	 * of the waitqueue should not change once extent_io_tree_release is
 298	 * called.
 299	 */
 300	smp_mb();
 301	while (!RB_EMPTY_ROOT(&tree->state)) {
 302		struct rb_node *node;
 303		struct extent_state *state;
 304
 305		node = rb_first(&tree->state);
 306		state = rb_entry(node, struct extent_state, rb_node);
 307		rb_erase(&state->rb_node, &tree->state);
 308		RB_CLEAR_NODE(&state->rb_node);
 309		/*
 310		 * btree io trees aren't supposed to have tasks waiting for
 311		 * changes in the flags of extent states ever.
 312		 */
 313		ASSERT(!waitqueue_active(&state->wq));
 314		free_extent_state(state);
 315
 316		cond_resched_lock(&tree->lock);
 317	}
 318	spin_unlock(&tree->lock);
 319}
 320
 321static struct extent_state *alloc_extent_state(gfp_t mask)
 
 
 322{
 323	struct extent_state *state;
 324
 325	/*
 326	 * The given mask might be not appropriate for the slab allocator,
 327	 * drop the unsupported bits
 328	 */
 329	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 330	state = kmem_cache_alloc(extent_state_cache, mask);
 331	if (!state)
 332		return state;
 333	state->state = 0;
 334	state->failrec = NULL;
 335	RB_CLEAR_NODE(&state->rb_node);
 336	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 337	refcount_set(&state->refs, 1);
 338	init_waitqueue_head(&state->wq);
 339	trace_alloc_extent_state(state, mask, _RET_IP_);
 340	return state;
 341}
 342
 343void free_extent_state(struct extent_state *state)
 344{
 345	if (!state)
 346		return;
 347	if (refcount_dec_and_test(&state->refs)) {
 348		WARN_ON(extent_state_in_tree(state));
 349		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 350		trace_free_extent_state(state, _RET_IP_);
 351		kmem_cache_free(extent_state_cache, state);
 352	}
 353}
 354
 355static struct rb_node *tree_insert(struct rb_root *root,
 356				   struct rb_node *search_start,
 357				   u64 offset,
 358				   struct rb_node *node,
 359				   struct rb_node ***p_in,
 360				   struct rb_node **parent_in)
 361{
 362	struct rb_node **p;
 363	struct rb_node *parent = NULL;
 364	struct tree_entry *entry;
 365
 366	if (p_in && parent_in) {
 367		p = *p_in;
 368		parent = *parent_in;
 369		goto do_insert;
 370	}
 371
 372	p = search_start ? &search_start : &root->rb_node;
 373	while (*p) {
 374		parent = *p;
 375		entry = rb_entry(parent, struct tree_entry, rb_node);
 376
 377		if (offset < entry->start)
 378			p = &(*p)->rb_left;
 379		else if (offset > entry->end)
 380			p = &(*p)->rb_right;
 381		else
 382			return parent;
 383	}
 384
 385do_insert:
 386	rb_link_node(node, parent, p);
 387	rb_insert_color(node, root);
 388	return NULL;
 389}
 390
 391/**
 392 * __etree_search - searche @tree for an entry that contains @offset. Such
 393 * entry would have entry->start <= offset && entry->end >= offset.
 394 *
 395 * @tree - the tree to search
 396 * @offset - offset that should fall within an entry in @tree
 397 * @next_ret - pointer to the first entry whose range ends after @offset
 398 * @prev - pointer to the first entry whose range begins before @offset
 399 * @p_ret - pointer where new node should be anchored (used when inserting an
 400 *	    entry in the tree)
 401 * @parent_ret - points to entry which would have been the parent of the entry,
 402 *               containing @offset
 403 *
 404 * This function returns a pointer to the entry that contains @offset byte
 405 * address. If no such entry exists, then NULL is returned and the other
 406 * pointer arguments to the function are filled, otherwise the found entry is
 407 * returned and other pointers are left untouched.
 408 */
 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 410				      struct rb_node **next_ret,
 411				      struct rb_node **prev_ret,
 412				      struct rb_node ***p_ret,
 413				      struct rb_node **parent_ret)
 414{
 415	struct rb_root *root = &tree->state;
 416	struct rb_node **n = &root->rb_node;
 417	struct rb_node *prev = NULL;
 418	struct rb_node *orig_prev = NULL;
 419	struct tree_entry *entry;
 420	struct tree_entry *prev_entry = NULL;
 421
 422	while (*n) {
 423		prev = *n;
 424		entry = rb_entry(prev, struct tree_entry, rb_node);
 425		prev_entry = entry;
 426
 427		if (offset < entry->start)
 428			n = &(*n)->rb_left;
 429		else if (offset > entry->end)
 430			n = &(*n)->rb_right;
 431		else
 432			return *n;
 433	}
 434
 435	if (p_ret)
 436		*p_ret = n;
 437	if (parent_ret)
 438		*parent_ret = prev;
 439
 440	if (next_ret) {
 441		orig_prev = prev;
 442		while (prev && offset > prev_entry->end) {
 443			prev = rb_next(prev);
 444			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 445		}
 446		*next_ret = prev;
 447		prev = orig_prev;
 448	}
 449
 450	if (prev_ret) {
 451		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 452		while (prev && offset < prev_entry->start) {
 453			prev = rb_prev(prev);
 454			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 455		}
 456		*prev_ret = prev;
 457	}
 458	return NULL;
 459}
 460
 461static inline struct rb_node *
 462tree_search_for_insert(struct extent_io_tree *tree,
 463		       u64 offset,
 464		       struct rb_node ***p_ret,
 465		       struct rb_node **parent_ret)
 466{
 467	struct rb_node *next= NULL;
 468	struct rb_node *ret;
 469
 470	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 471	if (!ret)
 472		return next;
 473	return ret;
 474}
 475
 476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 477					  u64 offset)
 478{
 479	return tree_search_for_insert(tree, offset, NULL, NULL);
 480}
 481
 482/*
 483 * utility function to look for merge candidates inside a given range.
 484 * Any extents with matching state are merged together into a single
 485 * extent in the tree.  Extents with EXTENT_IO in their state field
 486 * are not merged because the end_io handlers need to be able to do
 487 * operations on them without sleeping (or doing allocations/splits).
 488 *
 489 * This should be called with the tree lock held.
 490 */
 491static void merge_state(struct extent_io_tree *tree,
 492		        struct extent_state *state)
 493{
 494	struct extent_state *other;
 495	struct rb_node *other_node;
 496
 497	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 498		return;
 499
 500	other_node = rb_prev(&state->rb_node);
 501	if (other_node) {
 502		other = rb_entry(other_node, struct extent_state, rb_node);
 503		if (other->end == state->start - 1 &&
 504		    other->state == state->state) {
 505			if (tree->private_data &&
 506			    is_data_inode(tree->private_data))
 507				btrfs_merge_delalloc_extent(tree->private_data,
 508							    state, other);
 509			state->start = other->start;
 510			rb_erase(&other->rb_node, &tree->state);
 511			RB_CLEAR_NODE(&other->rb_node);
 512			free_extent_state(other);
 513		}
 514	}
 515	other_node = rb_next(&state->rb_node);
 516	if (other_node) {
 517		other = rb_entry(other_node, struct extent_state, rb_node);
 518		if (other->start == state->end + 1 &&
 519		    other->state == state->state) {
 520			if (tree->private_data &&
 521			    is_data_inode(tree->private_data))
 522				btrfs_merge_delalloc_extent(tree->private_data,
 523							    state, other);
 524			state->end = other->end;
 525			rb_erase(&other->rb_node, &tree->state);
 526			RB_CLEAR_NODE(&other->rb_node);
 527			free_extent_state(other);
 528		}
 529	}
 530}
 531
 532static void set_state_bits(struct extent_io_tree *tree,
 533			   struct extent_state *state, unsigned *bits,
 534			   struct extent_changeset *changeset);
 535
 536/*
 537 * insert an extent_state struct into the tree.  'bits' are set on the
 538 * struct before it is inserted.
 539 *
 540 * This may return -EEXIST if the extent is already there, in which case the
 541 * state struct is freed.
 542 *
 543 * The tree lock is not taken internally.  This is a utility function and
 544 * probably isn't what you want to call (see set/clear_extent_bit).
 545 */
 546static int insert_state(struct extent_io_tree *tree,
 547			struct extent_state *state, u64 start, u64 end,
 548			struct rb_node ***p,
 549			struct rb_node **parent,
 550			unsigned *bits, struct extent_changeset *changeset)
 551{
 552	struct rb_node *node;
 553
 554	if (end < start) {
 555		btrfs_err(tree->fs_info,
 556			"insert state: end < start %llu %llu", end, start);
 557		WARN_ON(1);
 558	}
 559	state->start = start;
 560	state->end = end;
 561
 562	set_state_bits(tree, state, bits, changeset);
 563
 564	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 565	if (node) {
 566		struct extent_state *found;
 567		found = rb_entry(node, struct extent_state, rb_node);
 568		btrfs_err(tree->fs_info,
 569		       "found node %llu %llu on insert of %llu %llu",
 570		       found->start, found->end, start, end);
 571		return -EEXIST;
 572	}
 573	merge_state(tree, state);
 574	return 0;
 575}
 576
 577/*
 578 * split a given extent state struct in two, inserting the preallocated
 579 * struct 'prealloc' as the newly created second half.  'split' indicates an
 580 * offset inside 'orig' where it should be split.
 581 *
 582 * Before calling,
 583 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 584 * are two extent state structs in the tree:
 585 * prealloc: [orig->start, split - 1]
 586 * orig: [ split, orig->end ]
 587 *
 588 * The tree locks are not taken by this function. They need to be held
 589 * by the caller.
 590 */
 591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 592		       struct extent_state *prealloc, u64 split)
 593{
 594	struct rb_node *node;
 595
 596	if (tree->private_data && is_data_inode(tree->private_data))
 597		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 598
 599	prealloc->start = orig->start;
 600	prealloc->end = split - 1;
 601	prealloc->state = orig->state;
 602	orig->start = split;
 603
 604	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 605			   &prealloc->rb_node, NULL, NULL);
 606	if (node) {
 607		free_extent_state(prealloc);
 608		return -EEXIST;
 609	}
 610	return 0;
 611}
 612
 613static struct extent_state *next_state(struct extent_state *state)
 614{
 615	struct rb_node *next = rb_next(&state->rb_node);
 616	if (next)
 617		return rb_entry(next, struct extent_state, rb_node);
 618	else
 619		return NULL;
 620}
 621
 622/*
 623 * utility function to clear some bits in an extent state struct.
 624 * it will optionally wake up anyone waiting on this state (wake == 1).
 625 *
 626 * If no bits are set on the state struct after clearing things, the
 627 * struct is freed and removed from the tree
 628 */
 629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 630					    struct extent_state *state,
 631					    unsigned *bits, int wake,
 632					    struct extent_changeset *changeset)
 633{
 634	struct extent_state *next;
 635	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 636	int ret;
 637
 638	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 639		u64 range = state->end - state->start + 1;
 640		WARN_ON(range > tree->dirty_bytes);
 641		tree->dirty_bytes -= range;
 642	}
 643
 644	if (tree->private_data && is_data_inode(tree->private_data))
 645		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 646
 647	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 648	BUG_ON(ret < 0);
 649	state->state &= ~bits_to_clear;
 650	if (wake)
 651		wake_up(&state->wq);
 652	if (state->state == 0) {
 653		next = next_state(state);
 654		if (extent_state_in_tree(state)) {
 655			rb_erase(&state->rb_node, &tree->state);
 656			RB_CLEAR_NODE(&state->rb_node);
 657			free_extent_state(state);
 658		} else {
 659			WARN_ON(1);
 660		}
 661	} else {
 662		merge_state(tree, state);
 663		next = next_state(state);
 664	}
 665	return next;
 666}
 667
 668static struct extent_state *
 669alloc_extent_state_atomic(struct extent_state *prealloc)
 670{
 671	if (!prealloc)
 672		prealloc = alloc_extent_state(GFP_ATOMIC);
 673
 674	return prealloc;
 675}
 676
 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 678{
 679	struct inode *inode = tree->private_data;
 680
 681	btrfs_panic(btrfs_sb(inode->i_sb), err,
 682	"locking error: extent tree was modified by another thread while locked");
 683}
 684
 685/*
 686 * clear some bits on a range in the tree.  This may require splitting
 687 * or inserting elements in the tree, so the gfp mask is used to
 688 * indicate which allocations or sleeping are allowed.
 689 *
 690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 691 * the given range from the tree regardless of state (ie for truncate).
 692 *
 693 * the range [start, end] is inclusive.
 694 *
 695 * This takes the tree lock, and returns 0 on success and < 0 on error.
 696 */
 697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 698			      unsigned bits, int wake, int delete,
 699			      struct extent_state **cached_state,
 700			      gfp_t mask, struct extent_changeset *changeset)
 701{
 702	struct extent_state *state;
 703	struct extent_state *cached;
 704	struct extent_state *prealloc = NULL;
 705	struct rb_node *node;
 706	u64 last_end;
 707	int err;
 708	int clear = 0;
 709
 710	btrfs_debug_check_extent_io_range(tree, start, end);
 711	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 712
 713	if (bits & EXTENT_DELALLOC)
 714		bits |= EXTENT_NORESERVE;
 715
 716	if (delete)
 717		bits |= ~EXTENT_CTLBITS;
 718
 719	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 720		clear = 1;
 721again:
 722	if (!prealloc && gfpflags_allow_blocking(mask)) {
 723		/*
 724		 * Don't care for allocation failure here because we might end
 725		 * up not needing the pre-allocated extent state at all, which
 726		 * is the case if we only have in the tree extent states that
 727		 * cover our input range and don't cover too any other range.
 728		 * If we end up needing a new extent state we allocate it later.
 729		 */
 730		prealloc = alloc_extent_state(mask);
 731	}
 732
 733	spin_lock(&tree->lock);
 734	if (cached_state) {
 735		cached = *cached_state;
 736
 737		if (clear) {
 738			*cached_state = NULL;
 739			cached_state = NULL;
 740		}
 741
 742		if (cached && extent_state_in_tree(cached) &&
 743		    cached->start <= start && cached->end > start) {
 744			if (clear)
 745				refcount_dec(&cached->refs);
 746			state = cached;
 747			goto hit_next;
 748		}
 749		if (clear)
 750			free_extent_state(cached);
 751	}
 752	/*
 753	 * this search will find the extents that end after
 754	 * our range starts
 755	 */
 756	node = tree_search(tree, start);
 757	if (!node)
 758		goto out;
 759	state = rb_entry(node, struct extent_state, rb_node);
 760hit_next:
 761	if (state->start > end)
 762		goto out;
 763	WARN_ON(state->end < start);
 764	last_end = state->end;
 765
 766	/* the state doesn't have the wanted bits, go ahead */
 767	if (!(state->state & bits)) {
 768		state = next_state(state);
 769		goto next;
 770	}
 771
 772	/*
 773	 *     | ---- desired range ---- |
 774	 *  | state | or
 775	 *  | ------------- state -------------- |
 776	 *
 777	 * We need to split the extent we found, and may flip
 778	 * bits on second half.
 779	 *
 780	 * If the extent we found extends past our range, we
 781	 * just split and search again.  It'll get split again
 782	 * the next time though.
 783	 *
 784	 * If the extent we found is inside our range, we clear
 785	 * the desired bit on it.
 786	 */
 787
 788	if (state->start < start) {
 789		prealloc = alloc_extent_state_atomic(prealloc);
 790		BUG_ON(!prealloc);
 791		err = split_state(tree, state, prealloc, start);
 792		if (err)
 793			extent_io_tree_panic(tree, err);
 794
 795		prealloc = NULL;
 796		if (err)
 797			goto out;
 798		if (state->end <= end) {
 799			state = clear_state_bit(tree, state, &bits, wake,
 800						changeset);
 801			goto next;
 802		}
 803		goto search_again;
 804	}
 805	/*
 806	 * | ---- desired range ---- |
 807	 *                        | state |
 808	 * We need to split the extent, and clear the bit
 809	 * on the first half
 810	 */
 811	if (state->start <= end && state->end > end) {
 812		prealloc = alloc_extent_state_atomic(prealloc);
 813		BUG_ON(!prealloc);
 814		err = split_state(tree, state, prealloc, end + 1);
 815		if (err)
 816			extent_io_tree_panic(tree, err);
 817
 818		if (wake)
 819			wake_up(&state->wq);
 820
 821		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 822
 823		prealloc = NULL;
 824		goto out;
 825	}
 826
 827	state = clear_state_bit(tree, state, &bits, wake, changeset);
 828next:
 829	if (last_end == (u64)-1)
 830		goto out;
 831	start = last_end + 1;
 832	if (start <= end && state && !need_resched())
 833		goto hit_next;
 834
 835search_again:
 836	if (start > end)
 837		goto out;
 838	spin_unlock(&tree->lock);
 839	if (gfpflags_allow_blocking(mask))
 840		cond_resched();
 841	goto again;
 842
 843out:
 844	spin_unlock(&tree->lock);
 845	if (prealloc)
 846		free_extent_state(prealloc);
 847
 848	return 0;
 849
 850}
 851
 852static void wait_on_state(struct extent_io_tree *tree,
 853			  struct extent_state *state)
 854		__releases(tree->lock)
 855		__acquires(tree->lock)
 856{
 857	DEFINE_WAIT(wait);
 858	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 859	spin_unlock(&tree->lock);
 860	schedule();
 861	spin_lock(&tree->lock);
 862	finish_wait(&state->wq, &wait);
 863}
 864
 865/*
 866 * waits for one or more bits to clear on a range in the state tree.
 867 * The range [start, end] is inclusive.
 868 * The tree lock is taken by this function
 869 */
 870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 871			    unsigned long bits)
 872{
 873	struct extent_state *state;
 874	struct rb_node *node;
 875
 876	btrfs_debug_check_extent_io_range(tree, start, end);
 877
 878	spin_lock(&tree->lock);
 879again:
 880	while (1) {
 881		/*
 882		 * this search will find all the extents that end after
 883		 * our range starts
 884		 */
 885		node = tree_search(tree, start);
 886process_node:
 887		if (!node)
 888			break;
 889
 890		state = rb_entry(node, struct extent_state, rb_node);
 891
 892		if (state->start > end)
 893			goto out;
 894
 895		if (state->state & bits) {
 896			start = state->start;
 897			refcount_inc(&state->refs);
 898			wait_on_state(tree, state);
 899			free_extent_state(state);
 900			goto again;
 901		}
 902		start = state->end + 1;
 903
 904		if (start > end)
 905			break;
 906
 907		if (!cond_resched_lock(&tree->lock)) {
 908			node = rb_next(node);
 909			goto process_node;
 910		}
 911	}
 912out:
 913	spin_unlock(&tree->lock);
 914}
 915
 916static void set_state_bits(struct extent_io_tree *tree,
 917			   struct extent_state *state,
 918			   unsigned *bits, struct extent_changeset *changeset)
 919{
 920	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 921	int ret;
 922
 923	if (tree->private_data && is_data_inode(tree->private_data))
 924		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 925
 926	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 927		u64 range = state->end - state->start + 1;
 928		tree->dirty_bytes += range;
 929	}
 930	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 931	BUG_ON(ret < 0);
 932	state->state |= bits_to_set;
 933}
 934
 935static void cache_state_if_flags(struct extent_state *state,
 936				 struct extent_state **cached_ptr,
 937				 unsigned flags)
 938{
 939	if (cached_ptr && !(*cached_ptr)) {
 940		if (!flags || (state->state & flags)) {
 941			*cached_ptr = state;
 942			refcount_inc(&state->refs);
 943		}
 944	}
 945}
 946
 947static void cache_state(struct extent_state *state,
 948			struct extent_state **cached_ptr)
 949{
 950	return cache_state_if_flags(state, cached_ptr,
 951				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 952}
 953
 954/*
 955 * set some bits on a range in the tree.  This may require allocations or
 956 * sleeping, so the gfp mask is used to indicate what is allowed.
 957 *
 958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 959 * part of the range already has the desired bits set.  The start of the
 960 * existing range is returned in failed_start in this case.
 961 *
 962 * [start, end] is inclusive This takes the tree lock.
 963 */
 964
 965static int __must_check
 966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 967		 unsigned bits, unsigned exclusive_bits,
 968		 u64 *failed_start, struct extent_state **cached_state,
 969		 gfp_t mask, struct extent_changeset *changeset)
 970{
 971	struct extent_state *state;
 972	struct extent_state *prealloc = NULL;
 973	struct rb_node *node;
 974	struct rb_node **p;
 975	struct rb_node *parent;
 976	int err = 0;
 977	u64 last_start;
 978	u64 last_end;
 979
 980	btrfs_debug_check_extent_io_range(tree, start, end);
 981	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 982
 983again:
 984	if (!prealloc && gfpflags_allow_blocking(mask)) {
 985		/*
 986		 * Don't care for allocation failure here because we might end
 987		 * up not needing the pre-allocated extent state at all, which
 988		 * is the case if we only have in the tree extent states that
 989		 * cover our input range and don't cover too any other range.
 990		 * If we end up needing a new extent state we allocate it later.
 991		 */
 992		prealloc = alloc_extent_state(mask);
 993	}
 994
 995	spin_lock(&tree->lock);
 996	if (cached_state && *cached_state) {
 997		state = *cached_state;
 998		if (state->start <= start && state->end > start &&
 999		    extent_state_in_tree(state)) {
1000			node = &state->rb_node;
1001			goto hit_next;
1002		}
1003	}
1004	/*
1005	 * this search will find all the extents that end after
1006	 * our range starts.
1007	 */
1008	node = tree_search_for_insert(tree, start, &p, &parent);
1009	if (!node) {
1010		prealloc = alloc_extent_state_atomic(prealloc);
1011		BUG_ON(!prealloc);
1012		err = insert_state(tree, prealloc, start, end,
1013				   &p, &parent, &bits, changeset);
1014		if (err)
1015			extent_io_tree_panic(tree, err);
1016
1017		cache_state(prealloc, cached_state);
1018		prealloc = NULL;
1019		goto out;
1020	}
1021	state = rb_entry(node, struct extent_state, rb_node);
1022hit_next:
1023	last_start = state->start;
1024	last_end = state->end;
1025
1026	/*
1027	 * | ---- desired range ---- |
1028	 * | state |
1029	 *
1030	 * Just lock what we found and keep going
1031	 */
1032	if (state->start == start && state->end <= end) {
1033		if (state->state & exclusive_bits) {
1034			*failed_start = state->start;
1035			err = -EEXIST;
1036			goto out;
1037		}
1038
1039		set_state_bits(tree, state, &bits, changeset);
1040		cache_state(state, cached_state);
1041		merge_state(tree, state);
1042		if (last_end == (u64)-1)
1043			goto out;
1044		start = last_end + 1;
1045		state = next_state(state);
1046		if (start < end && state && state->start == start &&
1047		    !need_resched())
1048			goto hit_next;
1049		goto search_again;
1050	}
1051
1052	/*
1053	 *     | ---- desired range ---- |
1054	 * | state |
1055	 *   or
1056	 * | ------------- state -------------- |
1057	 *
1058	 * We need to split the extent we found, and may flip bits on
1059	 * second half.
1060	 *
1061	 * If the extent we found extends past our
1062	 * range, we just split and search again.  It'll get split
1063	 * again the next time though.
1064	 *
1065	 * If the extent we found is inside our range, we set the
1066	 * desired bit on it.
1067	 */
1068	if (state->start < start) {
1069		if (state->state & exclusive_bits) {
1070			*failed_start = start;
1071			err = -EEXIST;
1072			goto out;
1073		}
1074
1075		/*
1076		 * If this extent already has all the bits we want set, then
1077		 * skip it, not necessary to split it or do anything with it.
1078		 */
1079		if ((state->state & bits) == bits) {
1080			start = state->end + 1;
1081			cache_state(state, cached_state);
1082			goto search_again;
1083		}
1084
1085		prealloc = alloc_extent_state_atomic(prealloc);
1086		BUG_ON(!prealloc);
1087		err = split_state(tree, state, prealloc, start);
1088		if (err)
1089			extent_io_tree_panic(tree, err);
1090
1091		prealloc = NULL;
1092		if (err)
1093			goto out;
1094		if (state->end <= end) {
1095			set_state_bits(tree, state, &bits, changeset);
1096			cache_state(state, cached_state);
1097			merge_state(tree, state);
1098			if (last_end == (u64)-1)
1099				goto out;
1100			start = last_end + 1;
1101			state = next_state(state);
1102			if (start < end && state && state->start == start &&
1103			    !need_resched())
1104				goto hit_next;
1105		}
1106		goto search_again;
1107	}
1108	/*
1109	 * | ---- desired range ---- |
1110	 *     | state | or               | state |
1111	 *
1112	 * There's a hole, we need to insert something in it and
1113	 * ignore the extent we found.
1114	 */
1115	if (state->start > start) {
1116		u64 this_end;
1117		if (end < last_start)
1118			this_end = end;
1119		else
1120			this_end = last_start - 1;
1121
1122		prealloc = alloc_extent_state_atomic(prealloc);
1123		BUG_ON(!prealloc);
 
 
1124
1125		/*
1126		 * Avoid to free 'prealloc' if it can be merged with
1127		 * the later extent.
1128		 */
1129		err = insert_state(tree, prealloc, start, this_end,
1130				   NULL, NULL, &bits, changeset);
1131		if (err)
1132			extent_io_tree_panic(tree, err);
1133
1134		cache_state(prealloc, cached_state);
1135		prealloc = NULL;
1136		start = this_end + 1;
1137		goto search_again;
1138	}
1139	/*
1140	 * | ---- desired range ---- |
1141	 *                        | state |
1142	 * We need to split the extent, and set the bit
1143	 * on the first half
1144	 */
1145	if (state->start <= end && state->end > end) {
1146		if (state->state & exclusive_bits) {
1147			*failed_start = start;
1148			err = -EEXIST;
1149			goto out;
1150		}
1151
1152		prealloc = alloc_extent_state_atomic(prealloc);
1153		BUG_ON(!prealloc);
1154		err = split_state(tree, state, prealloc, end + 1);
1155		if (err)
1156			extent_io_tree_panic(tree, err);
1157
1158		set_state_bits(tree, prealloc, &bits, changeset);
1159		cache_state(prealloc, cached_state);
1160		merge_state(tree, prealloc);
1161		prealloc = NULL;
1162		goto out;
1163	}
1164
1165search_again:
1166	if (start > end)
1167		goto out;
1168	spin_unlock(&tree->lock);
1169	if (gfpflags_allow_blocking(mask))
1170		cond_resched();
1171	goto again;
1172
1173out:
1174	spin_unlock(&tree->lock);
1175	if (prealloc)
1176		free_extent_state(prealloc);
1177
1178	return err;
1179
1180}
1181
1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183		   unsigned bits, u64 * failed_start,
1184		   struct extent_state **cached_state, gfp_t mask)
1185{
1186	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187				cached_state, mask, NULL);
1188}
1189
1190
1191/**
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * 			another
1194 * @tree:	the io tree to search
1195 * @start:	the start offset in bytes
1196 * @end:	the end offset in bytes (inclusive)
1197 * @bits:	the bits to set in this range
1198 * @clear_bits:	the bits to clear in this range
1199 * @cached_state:	state that we're going to cache
1200 *
1201 * This will go through and set bits for the given range.  If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205 * boundary bits like LOCK.
1206 *
1207 * All allocations are done with GFP_NOFS.
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210		       unsigned bits, unsigned clear_bits,
1211		       struct extent_state **cached_state)
1212{
1213	struct extent_state *state;
1214	struct extent_state *prealloc = NULL;
1215	struct rb_node *node;
1216	struct rb_node **p;
1217	struct rb_node *parent;
1218	int err = 0;
1219	u64 last_start;
1220	u64 last_end;
1221	bool first_iteration = true;
1222
1223	btrfs_debug_check_extent_io_range(tree, start, end);
1224	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225				       clear_bits);
1226
1227again:
1228	if (!prealloc) {
1229		/*
1230		 * Best effort, don't worry if extent state allocation fails
1231		 * here for the first iteration. We might have a cached state
1232		 * that matches exactly the target range, in which case no
1233		 * extent state allocations are needed. We'll only know this
1234		 * after locking the tree.
1235		 */
1236		prealloc = alloc_extent_state(GFP_NOFS);
1237		if (!prealloc && !first_iteration)
1238			return -ENOMEM;
1239	}
1240
1241	spin_lock(&tree->lock);
1242	if (cached_state && *cached_state) {
1243		state = *cached_state;
1244		if (state->start <= start && state->end > start &&
1245		    extent_state_in_tree(state)) {
1246			node = &state->rb_node;
1247			goto hit_next;
1248		}
1249	}
1250
1251	/*
1252	 * this search will find all the extents that end after
1253	 * our range starts.
1254	 */
1255	node = tree_search_for_insert(tree, start, &p, &parent);
1256	if (!node) {
1257		prealloc = alloc_extent_state_atomic(prealloc);
1258		if (!prealloc) {
1259			err = -ENOMEM;
1260			goto out;
1261		}
1262		err = insert_state(tree, prealloc, start, end,
1263				   &p, &parent, &bits, NULL);
1264		if (err)
1265			extent_io_tree_panic(tree, err);
1266		cache_state(prealloc, cached_state);
1267		prealloc = NULL;
1268		goto out;
1269	}
1270	state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272	last_start = state->start;
1273	last_end = state->end;
1274
1275	/*
1276	 * | ---- desired range ---- |
1277	 * | state |
1278	 *
1279	 * Just lock what we found and keep going
1280	 */
1281	if (state->start == start && state->end <= end) {
1282		set_state_bits(tree, state, &bits, NULL);
1283		cache_state(state, cached_state);
1284		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285		if (last_end == (u64)-1)
1286			goto out;
1287		start = last_end + 1;
1288		if (start < end && state && state->start == start &&
1289		    !need_resched())
1290			goto hit_next;
1291		goto search_again;
1292	}
1293
1294	/*
1295	 *     | ---- desired range ---- |
1296	 * | state |
1297	 *   or
1298	 * | ------------- state -------------- |
1299	 *
1300	 * We need to split the extent we found, and may flip bits on
1301	 * second half.
1302	 *
1303	 * If the extent we found extends past our
1304	 * range, we just split and search again.  It'll get split
1305	 * again the next time though.
1306	 *
1307	 * If the extent we found is inside our range, we set the
1308	 * desired bit on it.
1309	 */
1310	if (state->start < start) {
1311		prealloc = alloc_extent_state_atomic(prealloc);
1312		if (!prealloc) {
1313			err = -ENOMEM;
1314			goto out;
1315		}
1316		err = split_state(tree, state, prealloc, start);
1317		if (err)
1318			extent_io_tree_panic(tree, err);
1319		prealloc = NULL;
1320		if (err)
1321			goto out;
1322		if (state->end <= end) {
1323			set_state_bits(tree, state, &bits, NULL);
1324			cache_state(state, cached_state);
1325			state = clear_state_bit(tree, state, &clear_bits, 0,
1326						NULL);
1327			if (last_end == (u64)-1)
1328				goto out;
1329			start = last_end + 1;
1330			if (start < end && state && state->start == start &&
1331			    !need_resched())
1332				goto hit_next;
1333		}
1334		goto search_again;
1335	}
1336	/*
1337	 * | ---- desired range ---- |
1338	 *     | state | or               | state |
1339	 *
1340	 * There's a hole, we need to insert something in it and
1341	 * ignore the extent we found.
1342	 */
1343	if (state->start > start) {
1344		u64 this_end;
1345		if (end < last_start)
1346			this_end = end;
1347		else
1348			this_end = last_start - 1;
1349
1350		prealloc = alloc_extent_state_atomic(prealloc);
1351		if (!prealloc) {
1352			err = -ENOMEM;
1353			goto out;
1354		}
1355
1356		/*
1357		 * Avoid to free 'prealloc' if it can be merged with
1358		 * the later extent.
1359		 */
1360		err = insert_state(tree, prealloc, start, this_end,
1361				   NULL, NULL, &bits, NULL);
1362		if (err)
1363			extent_io_tree_panic(tree, err);
1364		cache_state(prealloc, cached_state);
1365		prealloc = NULL;
1366		start = this_end + 1;
1367		goto search_again;
1368	}
1369	/*
1370	 * | ---- desired range ---- |
1371	 *                        | state |
1372	 * We need to split the extent, and set the bit
1373	 * on the first half
1374	 */
1375	if (state->start <= end && state->end > end) {
1376		prealloc = alloc_extent_state_atomic(prealloc);
1377		if (!prealloc) {
1378			err = -ENOMEM;
1379			goto out;
1380		}
1381
1382		err = split_state(tree, state, prealloc, end + 1);
1383		if (err)
1384			extent_io_tree_panic(tree, err);
1385
1386		set_state_bits(tree, prealloc, &bits, NULL);
1387		cache_state(prealloc, cached_state);
1388		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389		prealloc = NULL;
1390		goto out;
1391	}
1392
1393search_again:
1394	if (start > end)
1395		goto out;
1396	spin_unlock(&tree->lock);
1397	cond_resched();
1398	first_iteration = false;
1399	goto again;
1400
1401out:
1402	spin_unlock(&tree->lock);
1403	if (prealloc)
1404		free_extent_state(prealloc);
1405
1406	return err;
1407}
1408
1409/* wrappers around set/clear extent bit */
1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411			   unsigned bits, struct extent_changeset *changeset)
1412{
1413	/*
1414	 * We don't support EXTENT_LOCKED yet, as current changeset will
1415	 * record any bits changed, so for EXTENT_LOCKED case, it will
1416	 * either fail with -EEXIST or changeset will record the whole
1417	 * range.
1418	 */
1419	BUG_ON(bits & EXTENT_LOCKED);
1420
1421	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422				changeset);
1423}
1424
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426			   unsigned bits)
1427{
1428	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429				GFP_NOWAIT, NULL);
1430}
1431
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433		     unsigned bits, int wake, int delete,
1434		     struct extent_state **cached)
1435{
1436	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437				  cached, GFP_NOFS, NULL);
1438}
1439
1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441		unsigned bits, struct extent_changeset *changeset)
1442{
1443	/*
1444	 * Don't support EXTENT_LOCKED case, same reason as
1445	 * set_record_extent_bits().
1446	 */
1447	BUG_ON(bits & EXTENT_LOCKED);
1448
1449	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450				  changeset);
1451}
1452
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458		     struct extent_state **cached_state)
1459{
1460	int err;
1461	u64 failed_start;
1462
1463	while (1) {
1464		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465				       EXTENT_LOCKED, &failed_start,
1466				       cached_state, GFP_NOFS, NULL);
1467		if (err == -EEXIST) {
1468			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469			start = failed_start;
1470		} else
1471			break;
1472		WARN_ON(start > end);
1473	}
1474	return err;
1475}
1476
1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478{
1479	int err;
1480	u64 failed_start;
1481
1482	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483			       &failed_start, NULL, GFP_NOFS, NULL);
1484	if (err == -EEXIST) {
1485		if (failed_start > start)
1486			clear_extent_bit(tree, start, failed_start - 1,
1487					 EXTENT_LOCKED, 1, 0, NULL);
1488		return 0;
1489	}
1490	return 1;
1491}
1492
1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494{
1495	unsigned long index = start >> PAGE_SHIFT;
1496	unsigned long end_index = end >> PAGE_SHIFT;
1497	struct page *page;
1498
1499	while (index <= end_index) {
1500		page = find_get_page(inode->i_mapping, index);
1501		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502		clear_page_dirty_for_io(page);
1503		put_page(page);
1504		index++;
1505	}
1506}
1507
1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509{
1510	unsigned long index = start >> PAGE_SHIFT;
1511	unsigned long end_index = end >> PAGE_SHIFT;
1512	struct page *page;
1513
1514	while (index <= end_index) {
1515		page = find_get_page(inode->i_mapping, index);
1516		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517		__set_page_dirty_nobuffers(page);
1518		account_page_redirty(page);
1519		put_page(page);
1520		index++;
1521	}
1522}
1523
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it.  tree->lock must be held.  NULL will returned if
1526 * nothing was found after 'start'
1527 */
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
1530			    u64 start, unsigned bits)
1531{
1532	struct rb_node *node;
1533	struct extent_state *state;
1534
1535	/*
1536	 * this search will find all the extents that end after
1537	 * our range starts.
1538	 */
1539	node = tree_search(tree, start);
1540	if (!node)
1541		goto out;
1542
1543	while (1) {
1544		state = rb_entry(node, struct extent_state, rb_node);
1545		if (state->end >= start && (state->state & bits))
1546			return state;
1547
1548		node = rb_next(node);
1549		if (!node)
1550			break;
1551	}
1552out:
1553	return NULL;
1554}
1555
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
1561 * If nothing was found, 1 is returned. If found something, return 0.
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564			  u64 *start_ret, u64 *end_ret, unsigned bits,
1565			  struct extent_state **cached_state)
1566{
1567	struct extent_state *state;
1568	int ret = 1;
1569
1570	spin_lock(&tree->lock);
1571	if (cached_state && *cached_state) {
1572		state = *cached_state;
1573		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574			while ((state = next_state(state)) != NULL) {
1575				if (state->state & bits)
1576					goto got_it;
1577			}
1578			free_extent_state(*cached_state);
1579			*cached_state = NULL;
1580			goto out;
1581		}
1582		free_extent_state(*cached_state);
1583		*cached_state = NULL;
1584	}
1585
1586	state = find_first_extent_bit_state(tree, start, bits);
1587got_it:
1588	if (state) {
1589		cache_state_if_flags(state, cached_state, 0);
1590		*start_ret = state->start;
1591		*end_ret = state->end;
1592		ret = 0;
1593	}
1594out:
1595	spin_unlock(&tree->lock);
1596	return ret;
1597}
1598
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again.  During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits.  We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area.  The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615			       u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617	struct extent_state *state;
1618	int ret = 1;
1619
1620	spin_lock(&tree->lock);
1621	state = find_first_extent_bit_state(tree, start, bits);
1622	if (state) {
1623		*start_ret = state->start;
1624		*end_ret = state->end;
1625		while ((state = next_state(state)) != NULL) {
1626			if (state->start > (*end_ret + 1))
1627				break;
1628			*end_ret = state->end;
1629		}
1630		ret = 0;
1631	}
1632	spin_unlock(&tree->lock);
1633	return ret;
1634}
1635
1636/**
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652				 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654	struct extent_state *state;
1655	struct rb_node *node, *prev = NULL, *next;
1656
1657	spin_lock(&tree->lock);
1658
1659	/* Find first extent with bits cleared */
1660	while (1) {
1661		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662		if (!node && !next && !prev) {
1663			/*
1664			 * Tree is completely empty, send full range and let
1665			 * caller deal with it
1666			 */
1667			*start_ret = 0;
1668			*end_ret = -1;
1669			goto out;
1670		} else if (!node && !next) {
1671			/*
1672			 * We are past the last allocated chunk, set start at
1673			 * the end of the last extent.
1674			 */
1675			state = rb_entry(prev, struct extent_state, rb_node);
1676			*start_ret = state->end + 1;
1677			*end_ret = -1;
1678			goto out;
1679		} else if (!node) {
1680			node = next;
1681		}
1682		/*
1683		 * At this point 'node' either contains 'start' or start is
1684		 * before 'node'
1685		 */
1686		state = rb_entry(node, struct extent_state, rb_node);
1687
1688		if (in_range(start, state->start, state->end - state->start + 1)) {
1689			if (state->state & bits) {
1690				/*
1691				 * |--range with bits sets--|
1692				 *    |
1693				 *    start
1694				 */
1695				start = state->end + 1;
1696			} else {
1697				/*
1698				 * 'start' falls within a range that doesn't
1699				 * have the bits set, so take its start as
1700				 * the beginning of the desired range
1701				 *
1702				 * |--range with bits cleared----|
1703				 *      |
1704				 *      start
1705				 */
1706				*start_ret = state->start;
1707				break;
1708			}
1709		} else {
1710			/*
1711			 * |---prev range---|---hole/unset---|---node range---|
1712			 *                          |
1713			 *                        start
1714			 *
1715			 *                        or
1716			 *
1717			 * |---hole/unset--||--first node--|
1718			 * 0   |
1719			 *    start
1720			 */
1721			if (prev) {
1722				state = rb_entry(prev, struct extent_state,
1723						 rb_node);
1724				*start_ret = state->end + 1;
1725			} else {
1726				*start_ret = 0;
1727			}
1728			break;
1729		}
1730	}
 
1731
1732	/*
1733	 * Find the longest stretch from start until an entry which has the
1734	 * bits set
1735	 */
1736	while (1) {
1737		state = rb_entry(node, struct extent_state, rb_node);
1738		if (state->end >= start && !(state->state & bits)) {
1739			*end_ret = state->end;
1740		} else {
1741			*end_ret = state->start - 1;
1742			break;
1743		}
1744
1745		node = rb_next(node);
1746		if (!node)
1747			break;
1748	}
1749out:
1750	spin_unlock(&tree->lock);
1751}
1752
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'.  start and end are used to return the range,
1756 *
1757 * true is returned if we find something, false if nothing was in the tree
1758 */
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760			       u64 *end, u64 max_bytes,
1761			       struct extent_state **cached_state)
1762{
1763	struct rb_node *node;
1764	struct extent_state *state;
1765	u64 cur_start = *start;
1766	bool found = false;
1767	u64 total_bytes = 0;
1768
1769	spin_lock(&tree->lock);
1770
1771	/*
1772	 * this search will find all the extents that end after
1773	 * our range starts.
1774	 */
1775	node = tree_search(tree, cur_start);
1776	if (!node) {
1777		*end = (u64)-1;
1778		goto out;
1779	}
1780
1781	while (1) {
1782		state = rb_entry(node, struct extent_state, rb_node);
1783		if (found && (state->start != cur_start ||
1784			      (state->state & EXTENT_BOUNDARY))) {
1785			goto out;
1786		}
1787		if (!(state->state & EXTENT_DELALLOC)) {
1788			if (!found)
1789				*end = state->end;
1790			goto out;
1791		}
1792		if (!found) {
1793			*start = state->start;
1794			*cached_state = state;
1795			refcount_inc(&state->refs);
1796		}
1797		found = true;
1798		*end = state->end;
1799		cur_start = state->end + 1;
1800		node = rb_next(node);
1801		total_bytes += state->end - state->start + 1;
1802		if (total_bytes >= max_bytes)
1803			break;
1804		if (!node)
1805			break;
1806	}
1807out:
1808	spin_unlock(&tree->lock);
1809	return found;
1810}
1811
1812static int __process_pages_contig(struct address_space *mapping,
1813				  struct page *locked_page,
1814				  pgoff_t start_index, pgoff_t end_index,
1815				  unsigned long page_ops, pgoff_t *index_ret);
1816
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818					   struct page *locked_page,
1819					   u64 start, u64 end)
1820{
1821	unsigned long index = start >> PAGE_SHIFT;
1822	unsigned long end_index = end >> PAGE_SHIFT;
1823
1824	ASSERT(locked_page);
1825	if (index == locked_page->index && end_index == index)
1826		return;
1827
1828	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829			       PAGE_UNLOCK, NULL);
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833					struct page *locked_page,
1834					u64 delalloc_start,
1835					u64 delalloc_end)
1836{
1837	unsigned long index = delalloc_start >> PAGE_SHIFT;
1838	unsigned long index_ret = index;
1839	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840	int ret;
1841
1842	ASSERT(locked_page);
1843	if (index == locked_page->index && index == end_index)
1844		return 0;
1845
1846	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847				     end_index, PAGE_LOCK, &index_ret);
1848	if (ret == -EAGAIN)
1849		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1850				      (u64)index_ret << PAGE_SHIFT);
1851	return ret;
1852}
1853
1854/*
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes.  @Start and @end are used to return the range,
 
 
 
 
 
 
 
 
1857 *
1858 * Return: true if we find something
1859 *         false if nothing was in the tree
1860 */
1861EXPORT_FOR_TESTS
1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863				    struct page *locked_page, u64 *start,
1864				    u64 *end)
1865{
 
1866	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
 
 
 
1868	u64 delalloc_start;
1869	u64 delalloc_end;
1870	bool found;
1871	struct extent_state *cached_state = NULL;
1872	int ret;
1873	int loops = 0;
1874
 
 
 
 
 
 
1875again:
1876	/* step one, find a bunch of delalloc bytes starting at start */
1877	delalloc_start = *start;
1878	delalloc_end = 0;
1879	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880					  max_bytes, &cached_state);
1881	if (!found || delalloc_end <= *start) {
1882		*start = delalloc_start;
1883		*end = delalloc_end;
 
 
1884		free_extent_state(cached_state);
1885		return false;
1886	}
1887
1888	/*
1889	 * start comes from the offset of locked_page.  We have to lock
1890	 * pages in order, so we can't process delalloc bytes before
1891	 * locked_page
1892	 */
1893	if (delalloc_start < *start)
1894		delalloc_start = *start;
1895
1896	/*
1897	 * make sure to limit the number of pages we try to lock down
1898	 */
1899	if (delalloc_end + 1 - delalloc_start > max_bytes)
1900		delalloc_end = delalloc_start + max_bytes - 1;
1901
1902	/* step two, lock all the pages after the page that has start */
1903	ret = lock_delalloc_pages(inode, locked_page,
1904				  delalloc_start, delalloc_end);
1905	ASSERT(!ret || ret == -EAGAIN);
1906	if (ret == -EAGAIN) {
1907		/* some of the pages are gone, lets avoid looping by
1908		 * shortening the size of the delalloc range we're searching
1909		 */
1910		free_extent_state(cached_state);
1911		cached_state = NULL;
1912		if (!loops) {
1913			max_bytes = PAGE_SIZE;
1914			loops = 1;
1915			goto again;
1916		} else {
1917			found = false;
1918			goto out_failed;
1919		}
1920	}
1921
1922	/* step three, lock the state bits for the whole range */
1923	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925	/* then test to make sure it is all still delalloc */
1926	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927			     EXTENT_DELALLOC, 1, cached_state);
 
 
1928	if (!ret) {
1929		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930				     &cached_state);
1931		__unlock_for_delalloc(inode, locked_page,
1932			      delalloc_start, delalloc_end);
1933		cond_resched();
1934		goto again;
1935	}
1936	free_extent_state(cached_state);
1937	*start = delalloc_start;
1938	*end = delalloc_end;
1939out_failed:
1940	return found;
1941}
1942
1943static int __process_pages_contig(struct address_space *mapping,
1944				  struct page *locked_page,
1945				  pgoff_t start_index, pgoff_t end_index,
1946				  unsigned long page_ops, pgoff_t *index_ret)
1947{
1948	unsigned long nr_pages = end_index - start_index + 1;
1949	unsigned long pages_locked = 0;
1950	pgoff_t index = start_index;
1951	struct page *pages[16];
1952	unsigned ret;
1953	int err = 0;
1954	int i;
1955
1956	if (page_ops & PAGE_LOCK) {
1957		ASSERT(page_ops == PAGE_LOCK);
1958		ASSERT(index_ret && *index_ret == start_index);
1959	}
1960
1961	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962		mapping_set_error(mapping, -EIO);
1963
1964	while (nr_pages > 0) {
1965		ret = find_get_pages_contig(mapping, index,
1966				     min_t(unsigned long,
1967				     nr_pages, ARRAY_SIZE(pages)), pages);
1968		if (ret == 0) {
1969			/*
1970			 * Only if we're going to lock these pages,
1971			 * can we find nothing at @index.
1972			 */
1973			ASSERT(page_ops & PAGE_LOCK);
1974			err = -EAGAIN;
1975			goto out;
1976		}
1977
1978		for (i = 0; i < ret; i++) {
1979			if (page_ops & PAGE_SET_PRIVATE2)
1980				SetPagePrivate2(pages[i]);
1981
1982			if (locked_page && pages[i] == locked_page) {
1983				put_page(pages[i]);
1984				pages_locked++;
1985				continue;
1986			}
1987			if (page_ops & PAGE_CLEAR_DIRTY)
1988				clear_page_dirty_for_io(pages[i]);
1989			if (page_ops & PAGE_SET_WRITEBACK)
1990				set_page_writeback(pages[i]);
1991			if (page_ops & PAGE_SET_ERROR)
1992				SetPageError(pages[i]);
1993			if (page_ops & PAGE_END_WRITEBACK)
1994				end_page_writeback(pages[i]);
1995			if (page_ops & PAGE_UNLOCK)
1996				unlock_page(pages[i]);
1997			if (page_ops & PAGE_LOCK) {
1998				lock_page(pages[i]);
1999				if (!PageDirty(pages[i]) ||
2000				    pages[i]->mapping != mapping) {
2001					unlock_page(pages[i]);
2002					for (; i < ret; i++)
2003						put_page(pages[i]);
2004					err = -EAGAIN;
2005					goto out;
2006				}
2007			}
2008			put_page(pages[i]);
2009			pages_locked++;
2010		}
2011		nr_pages -= ret;
2012		index += ret;
2013		cond_resched();
2014	}
2015out:
2016	if (err && index_ret)
2017		*index_ret = start_index + pages_locked - 1;
2018	return err;
2019}
2020
2021void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022				  struct page *locked_page,
2023				  unsigned clear_bits,
2024				  unsigned long page_ops)
2025{
2026	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027
2028	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030			       page_ops, NULL);
2031}
2032
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached.  The total number found is returned.
2037 */
2038u64 count_range_bits(struct extent_io_tree *tree,
2039		     u64 *start, u64 search_end, u64 max_bytes,
2040		     unsigned bits, int contig)
2041{
2042	struct rb_node *node;
2043	struct extent_state *state;
2044	u64 cur_start = *start;
2045	u64 total_bytes = 0;
2046	u64 last = 0;
2047	int found = 0;
2048
2049	if (WARN_ON(search_end <= cur_start))
2050		return 0;
2051
2052	spin_lock(&tree->lock);
2053	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054		total_bytes = tree->dirty_bytes;
2055		goto out;
2056	}
2057	/*
2058	 * this search will find all the extents that end after
2059	 * our range starts.
2060	 */
2061	node = tree_search(tree, cur_start);
2062	if (!node)
2063		goto out;
2064
2065	while (1) {
2066		state = rb_entry(node, struct extent_state, rb_node);
2067		if (state->start > search_end)
2068			break;
2069		if (contig && found && state->start > last + 1)
2070			break;
2071		if (state->end >= cur_start && (state->state & bits) == bits) {
2072			total_bytes += min(search_end, state->end) + 1 -
2073				       max(cur_start, state->start);
2074			if (total_bytes >= max_bytes)
2075				break;
2076			if (!found) {
2077				*start = max(cur_start, state->start);
2078				found = 1;
2079			}
2080			last = state->end;
2081		} else if (contig && found) {
2082			break;
2083		}
2084		node = rb_next(node);
2085		if (!node)
2086			break;
2087	}
2088out:
2089	spin_unlock(&tree->lock);
2090	return total_bytes;
2091}
2092
2093/*
2094 * set the private field for a given byte offset in the tree.  If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098		      struct io_failure_record *failrec)
2099{
2100	struct rb_node *node;
2101	struct extent_state *state;
2102	int ret = 0;
2103
2104	spin_lock(&tree->lock);
2105	/*
2106	 * this search will find all the extents that end after
2107	 * our range starts.
2108	 */
2109	node = tree_search(tree, start);
2110	if (!node) {
2111		ret = -ENOENT;
2112		goto out;
2113	}
2114	state = rb_entry(node, struct extent_state, rb_node);
2115	if (state->start != start) {
2116		ret = -ENOENT;
2117		goto out;
2118	}
2119	state->failrec = failrec;
2120out:
2121	spin_unlock(&tree->lock);
2122	return ret;
2123}
2124
2125struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126{
2127	struct rb_node *node;
2128	struct extent_state *state;
2129	struct io_failure_record *failrec;
2130
2131	spin_lock(&tree->lock);
2132	/*
2133	 * this search will find all the extents that end after
2134	 * our range starts.
2135	 */
2136	node = tree_search(tree, start);
2137	if (!node) {
2138		failrec = ERR_PTR(-ENOENT);
2139		goto out;
2140	}
2141	state = rb_entry(node, struct extent_state, rb_node);
2142	if (state->start != start) {
2143		failrec = ERR_PTR(-ENOENT);
2144		goto out;
2145	}
2146
2147	failrec = state->failrec;
2148out:
2149	spin_unlock(&tree->lock);
2150	return failrec;
 
 
 
 
 
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set.  Otherwise, 1 is returned if any bit in the
2157 * range is found set.
 
 
 
 
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160		   unsigned bits, int filled, struct extent_state *cached)
2161{
2162	struct extent_state *state = NULL;
2163	struct rb_node *node;
2164	int bitset = 0;
2165
2166	spin_lock(&tree->lock);
2167	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168	    cached->end > start)
2169		node = &cached->rb_node;
2170	else
2171		node = tree_search(tree, start);
2172	while (node && start <= end) {
2173		state = rb_entry(node, struct extent_state, rb_node);
2174
2175		if (filled && state->start > start) {
2176			bitset = 0;
2177			break;
2178		}
2179
2180		if (state->start > end)
2181			break;
2182
2183		if (state->state & bits) {
2184			bitset = 1;
2185			if (!filled)
2186				break;
2187		} else if (filled) {
2188			bitset = 0;
2189			break;
2190		}
2191
2192		if (state->end == (u64)-1)
2193			break;
2194
2195		start = state->end + 1;
2196		if (start > end)
2197			break;
2198		node = rb_next(node);
2199		if (!node) {
2200			if (filled)
2201				bitset = 0;
2202			break;
2203		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204	}
2205	spin_unlock(&tree->lock);
2206	return bitset;
2207}
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214{
2215	u64 start = page_offset(page);
2216	u64 end = start + PAGE_SIZE - 1;
2217	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218		SetPageUptodate(page);
2219}
2220
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222		    struct extent_io_tree *io_tree,
2223		    struct io_failure_record *rec)
2224{
2225	int ret;
2226	int err = 0;
2227
2228	set_state_failrec(failure_tree, rec->start, NULL);
2229	ret = clear_extent_bits(failure_tree, rec->start,
2230				rec->start + rec->len - 1,
2231				EXTENT_LOCKED | EXTENT_DIRTY);
2232	if (ret)
2233		err = ret;
2234
2235	ret = clear_extent_bits(io_tree, rec->start,
2236				rec->start + rec->len - 1,
2237				EXTENT_DAMAGED);
2238	if (ret && !err)
2239		err = ret;
2240
2241	kfree(rec);
2242	return err;
2243}
2244
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
 
 
2254 */
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256		      u64 length, u64 logical, struct page *page,
2257		      unsigned int pg_offset, int mirror_num)
2258{
2259	struct bio *bio;
2260	struct btrfs_device *dev;
2261	u64 map_length = 0;
2262	u64 sector;
2263	struct btrfs_bio *bbio = NULL;
2264	int ret;
2265
2266	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267	BUG_ON(!mirror_num);
 
 
 
 
 
 
2268
2269	bio = btrfs_io_bio_alloc(1);
2270	bio->bi_iter.bi_size = 0;
2271	map_length = length;
 
 
 
2272
2273	/*
2274	 * Avoid races with device replace and make sure our bbio has devices
2275	 * associated to its stripes that don't go away while we are doing the
2276	 * read repair operation.
2277	 */
2278	btrfs_bio_counter_inc_blocked(fs_info);
2279	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280		/*
2281		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282		 * to update all raid stripes, but here we just want to correct
2283		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284		 * stripe's dev and sector.
 
2285		 */
2286		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287				      &map_length, &bbio, 0);
2288		if (ret) {
2289			btrfs_bio_counter_dec(fs_info);
2290			bio_put(bio);
2291			return -EIO;
2292		}
2293		ASSERT(bbio->mirror_num == 1);
2294	} else {
2295		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296				      &map_length, &bbio, mirror_num);
2297		if (ret) {
2298			btrfs_bio_counter_dec(fs_info);
2299			bio_put(bio);
2300			return -EIO;
2301		}
2302		BUG_ON(mirror_num != bbio->mirror_num);
2303	}
2304
2305	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306	bio->bi_iter.bi_sector = sector;
2307	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308	btrfs_put_bbio(bbio);
2309	if (!dev || !dev->bdev ||
2310	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311		btrfs_bio_counter_dec(fs_info);
2312		bio_put(bio);
2313		return -EIO;
2314	}
2315	bio_set_dev(bio, dev->bdev);
2316	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317	bio_add_page(bio, page, length, pg_offset);
2318
2319	if (btrfsic_submit_bio_wait(bio)) {
2320		/* try to remap that extent elsewhere? */
2321		btrfs_bio_counter_dec(fs_info);
2322		bio_put(bio);
2323		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324		return -EIO;
2325	}
2326
2327	btrfs_info_rl_in_rcu(fs_info,
2328		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329				  ino, start,
2330				  rcu_str_deref(dev->name), sector);
2331	btrfs_bio_counter_dec(fs_info);
2332	bio_put(bio);
2333	return 0;
2334}
2335
2336int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337{
2338	struct btrfs_fs_info *fs_info = eb->fs_info;
2339	u64 start = eb->start;
2340	int i, num_pages = num_extent_pages(eb);
2341	int ret = 0;
2342
2343	if (sb_rdonly(fs_info->sb))
2344		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
2345
2346	for (i = 0; i < num_pages; i++) {
2347		struct page *p = eb->pages[i];
 
2348
2349		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350					start - page_offset(p), mirror_num);
2351		if (ret)
2352			break;
2353		start += PAGE_SIZE;
2354	}
2355
2356	return ret;
2357}
2358
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
 
 
 
 
 
 
 
2362 */
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364		     struct extent_io_tree *failure_tree,
2365		     struct extent_io_tree *io_tree, u64 start,
2366		     struct page *page, u64 ino, unsigned int pg_offset)
2367{
2368	u64 private;
2369	struct io_failure_record *failrec;
2370	struct extent_state *state;
2371	int num_copies;
2372	int ret;
2373
2374	private = 0;
2375	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376			       EXTENT_DIRTY, 0);
2377	if (!ret)
2378		return 0;
2379
2380	failrec = get_state_failrec(failure_tree, start);
2381	if (IS_ERR(failrec))
2382		return 0;
2383
2384	BUG_ON(!failrec->this_mirror);
2385
2386	if (failrec->in_validation) {
2387		/* there was no real error, just free the record */
2388		btrfs_debug(fs_info,
2389			"clean_io_failure: freeing dummy error at %llu",
2390			failrec->start);
2391		goto out;
2392	}
2393	if (sb_rdonly(fs_info->sb))
2394		goto out;
 
 
 
 
 
 
2395
2396	spin_lock(&io_tree->lock);
2397	state = find_first_extent_bit_state(io_tree,
2398					    failrec->start,
2399					    EXTENT_LOCKED);
2400	spin_unlock(&io_tree->lock);
2401
2402	if (state && state->start <= failrec->start &&
2403	    state->end >= failrec->start + failrec->len - 1) {
2404		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405					      failrec->len);
2406		if (num_copies > 1)  {
2407			repair_io_failure(fs_info, ino, start, failrec->len,
2408					  failrec->logical, page, pg_offset,
2409					  failrec->failed_mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2410		}
2411	}
2412
2413out:
2414	free_io_failure(failure_tree, io_tree, failrec);
2415
2416	return 0;
2417}
2418
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426{
2427	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428	struct io_failure_record *failrec;
2429	struct extent_state *state, *next;
2430
2431	if (RB_EMPTY_ROOT(&failure_tree->state))
2432		return;
2433
2434	spin_lock(&failure_tree->lock);
2435	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436	while (state) {
2437		if (state->start > end)
2438			break;
2439
2440		ASSERT(state->end <= end);
2441
2442		next = next_state(state);
2443
2444		failrec = state->failrec;
2445		free_extent_state(state);
2446		kfree(failrec);
2447
2448		state = next;
2449	}
2450	spin_unlock(&failure_tree->lock);
2451}
2452
2453static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454							     u64 start, u64 end)
2455{
2456	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457	struct io_failure_record *failrec;
2458	struct extent_map *em;
2459	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462	int ret;
2463	u64 logical;
2464
2465	failrec = get_state_failrec(failure_tree, start);
2466	if (!IS_ERR(failrec)) {
2467		btrfs_debug(fs_info,
2468			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469			failrec->logical, failrec->start, failrec->len,
2470			failrec->in_validation);
2471		/*
2472		 * when data can be on disk more than twice, add to failrec here
2473		 * (e.g. with a list for failed_mirror) to make
2474		 * clean_io_failure() clean all those errors at once.
2475		 */
2476
2477		return failrec;
2478	}
2479
2480	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481	if (!failrec)
2482		return ERR_PTR(-ENOMEM);
2483
2484	failrec->start = start;
2485	failrec->len = end - start + 1;
2486	failrec->this_mirror = 0;
2487	failrec->bio_flags = 0;
2488	failrec->in_validation = 0;
2489
2490	read_lock(&em_tree->lock);
2491	em = lookup_extent_mapping(em_tree, start, failrec->len);
2492	if (!em) {
2493		read_unlock(&em_tree->lock);
2494		kfree(failrec);
2495		return ERR_PTR(-EIO);
2496	}
2497
2498	if (em->start > start || em->start + em->len <= start) {
2499		free_extent_map(em);
2500		em = NULL;
2501	}
2502	read_unlock(&em_tree->lock);
2503	if (!em) {
2504		kfree(failrec);
2505		return ERR_PTR(-EIO);
2506	}
2507
2508	logical = start - em->start;
2509	logical = em->block_start + logical;
2510	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511		logical = em->block_start;
2512		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514	}
2515
2516	btrfs_debug(fs_info,
2517		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518		    logical, start, failrec->len);
2519
2520	failrec->logical = logical;
2521	free_extent_map(em);
2522
2523	/* Set the bits in the private failure tree */
2524	ret = set_extent_bits(failure_tree, start, end,
2525			      EXTENT_LOCKED | EXTENT_DIRTY);
2526	if (ret >= 0) {
2527		ret = set_state_failrec(failure_tree, start, failrec);
2528		/* Set the bits in the inode's tree */
2529		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530	} else if (ret < 0) {
2531		kfree(failrec);
2532		return ERR_PTR(ret);
2533	}
2534
2535	return failrec;
 
 
 
 
2536}
2537
2538static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539				   struct io_failure_record *failrec,
2540				   int failed_mirror)
2541{
2542	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543	int num_copies;
 
 
2544
2545	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546	if (num_copies == 1) {
2547		/*
2548		 * we only have a single copy of the data, so don't bother with
2549		 * all the retry and error correction code that follows. no
2550		 * matter what the error is, it is very likely to persist.
2551		 */
2552		btrfs_debug(fs_info,
2553			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554			num_copies, failrec->this_mirror, failed_mirror);
2555		return false;
2556	}
2557
2558	/*
2559	 * there are two premises:
2560	 *	a) deliver good data to the caller
2561	 *	b) correct the bad sectors on disk
2562	 */
2563	if (needs_validation) {
2564		/*
2565		 * to fulfill b), we need to know the exact failing sectors, as
2566		 * we don't want to rewrite any more than the failed ones. thus,
2567		 * we need separate read requests for the failed bio
2568		 *
2569		 * if the following BUG_ON triggers, our validation request got
2570		 * merged. we need separate requests for our algorithm to work.
2571		 */
2572		BUG_ON(failrec->in_validation);
2573		failrec->in_validation = 1;
2574		failrec->this_mirror = failed_mirror;
2575	} else {
2576		/*
2577		 * we're ready to fulfill a) and b) alongside. get a good copy
2578		 * of the failed sector and if we succeed, we have setup
2579		 * everything for repair_io_failure to do the rest for us.
2580		 */
2581		if (failrec->in_validation) {
2582			BUG_ON(failrec->this_mirror != failed_mirror);
2583			failrec->in_validation = 0;
2584			failrec->this_mirror = 0;
2585		}
2586		failrec->failed_mirror = failed_mirror;
2587		failrec->this_mirror++;
2588		if (failrec->this_mirror == failed_mirror)
2589			failrec->this_mirror++;
2590	}
2591
2592	if (failrec->this_mirror > num_copies) {
2593		btrfs_debug(fs_info,
2594			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595			num_copies, failrec->this_mirror, failed_mirror);
2596		return false;
2597	}
2598
2599	return true;
2600}
2601
2602static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603{
2604	u64 len = 0;
2605	const u32 blocksize = inode->i_sb->s_blocksize;
2606
2607	/*
2608	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609	 * I/O error. In this case, we already know exactly which sector was
2610	 * bad, so we don't need to validate.
2611	 */
2612	if (bio->bi_status == BLK_STS_OK)
2613		return false;
2614
2615	/*
2616	 * We need to validate each sector individually if the failed I/O was
2617	 * for multiple sectors.
2618	 *
2619	 * There are a few possible bios that can end up here:
2620	 * 1. A buffered read bio, which is not cloned.
2621	 * 2. A direct I/O read bio, which is cloned.
2622	 * 3. A (buffered or direct) repair bio, which is not cloned.
2623	 *
2624	 * For cloned bios (case 2), we can get the size from
2625	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626	 * it from the bvecs.
 
2627	 */
2628	if (bio_flagged(bio, BIO_CLONED)) {
2629		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630			return true;
2631	} else {
2632		struct bio_vec *bvec;
2633		int i;
2634
2635		bio_for_each_bvec_all(bvec, bio, i) {
2636			len += bvec->bv_len;
2637			if (len > blocksize)
2638				return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639		}
2640	}
2641	return false;
2642}
2643
2644blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645				      struct bio *failed_bio, u64 phy_offset,
2646				      struct page *page, unsigned int pgoff,
2647				      u64 start, u64 end, int failed_mirror,
2648				      submit_bio_hook_t *submit_bio_hook)
2649{
2650	struct io_failure_record *failrec;
2651	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656	bool need_validation;
2657	struct bio *repair_bio;
2658	struct btrfs_io_bio *repair_io_bio;
2659	blk_status_t status;
2660
2661	btrfs_debug(fs_info,
2662		   "repair read error: read error at %llu", start);
2663
2664	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665
2666	failrec = btrfs_get_io_failure_record(inode, start, end);
2667	if (IS_ERR(failrec))
2668		return errno_to_blk_status(PTR_ERR(failrec));
2669
2670	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671
2672	if (!btrfs_check_repairable(inode, need_validation, failrec,
2673				    failed_mirror)) {
2674		free_io_failure(failure_tree, tree, failrec);
2675		return BLK_STS_IOERR;
2676	}
2677
2678	repair_bio = btrfs_io_bio_alloc(1);
2679	repair_io_bio = btrfs_io_bio(repair_bio);
2680	repair_bio->bi_opf = REQ_OP_READ;
2681	if (need_validation)
2682		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683	repair_bio->bi_end_io = failed_bio->bi_end_io;
2684	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685	repair_bio->bi_private = failed_bio->bi_private;
2686
2687	if (failed_io_bio->csum) {
2688		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690		repair_io_bio->csum = repair_io_bio->csum_inline;
2691		memcpy(repair_io_bio->csum,
2692		       failed_io_bio->csum + csum_size * icsum, csum_size);
2693	}
2694
2695	bio_add_page(repair_bio, page, failrec->len, pgoff);
2696	repair_io_bio->logical = failrec->start;
2697	repair_io_bio->iter = repair_bio->bi_iter;
2698
2699	btrfs_debug(btrfs_sb(inode->i_sb),
2700"repair read error: submitting new read to mirror %d, in_validation=%d",
2701		    failrec->this_mirror, failrec->in_validation);
2702
2703	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704				 failrec->bio_flags);
2705	if (status) {
2706		free_io_failure(failure_tree, tree, failrec);
2707		bio_put(repair_bio);
2708	}
2709	return status;
2710}
2711
2712/* lots and lots of room for performance fixes in the end_bio funcs */
2713
2714void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715{
2716	int uptodate = (err == 0);
2717	int ret = 0;
2718
2719	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720
2721	if (!uptodate) {
2722		ClearPageUptodate(page);
2723		SetPageError(page);
2724		ret = err < 0 ? err : -EIO;
2725		mapping_set_error(page->mapping, ret);
 
 
 
2726	}
2727}
2728
2729/*
2730 * after a writepage IO is done, we need to:
2731 * clear the uptodate bits on error
2732 * clear the writeback bits in the extent tree for this IO
2733 * end_page_writeback if the page has no more pending IO
 
2734 *
2735 * Scheduling is not allowed, so the extent state tree is expected
2736 * to have one and only one object corresponding to this IO.
 
 
2737 */
2738static void end_bio_extent_writepage(struct bio *bio)
 
 
2739{
2740	int error = blk_status_to_errno(bio->bi_status);
2741	struct bio_vec *bvec;
2742	u64 start;
2743	u64 end;
2744	struct bvec_iter_all iter_all;
2745
2746	ASSERT(!bio_flagged(bio, BIO_CLONED));
2747	bio_for_each_segment_all(bvec, bio, iter_all) {
2748		struct page *page = bvec->bv_page;
2749		struct inode *inode = page->mapping->host;
2750		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751
2752		/* We always issue full-page reads, but if some block
2753		 * in a page fails to read, blk_update_request() will
2754		 * advance bv_offset and adjust bv_len to compensate.
2755		 * Print a warning for nonzero offsets, and an error
2756		 * if they don't add up to a full page.  */
2757		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759				btrfs_err(fs_info,
2760				   "partial page write in btrfs with offset %u and length %u",
2761					bvec->bv_offset, bvec->bv_len);
2762			else
2763				btrfs_info(fs_info,
2764				   "incomplete page write in btrfs with offset %u and length %u",
2765					bvec->bv_offset, bvec->bv_len);
2766		}
2767
2768		start = page_offset(page);
2769		end = start + bvec->bv_offset + bvec->bv_len - 1;
2770
2771		end_extent_writepage(page, error, start, end);
2772		end_page_writeback(page);
2773	}
2774
2775	bio_put(bio);
2776}
2777
2778static void
2779endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780			      int uptodate)
2781{
2782	struct extent_state *cached = NULL;
2783	u64 end = start + len - 1;
2784
2785	if (uptodate && tree->track_uptodate)
2786		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787	unlock_extent_cached_atomic(tree, start, end, &cached);
2788}
2789
2790/*
2791 * after a readpage IO is done, we need to:
2792 * clear the uptodate bits on error
2793 * set the uptodate bits if things worked
2794 * set the page up to date if all extents in the tree are uptodate
2795 * clear the lock bit in the extent tree
2796 * unlock the page if there are no other extents locked for it
2797 *
2798 * Scheduling is not allowed, so the extent state tree is expected
2799 * to have one and only one object corresponding to this IO.
2800 */
2801static void end_bio_extent_readpage(struct bio *bio)
2802{
2803	struct bio_vec *bvec;
2804	int uptodate = !bio->bi_status;
2805	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806	struct extent_io_tree *tree, *failure_tree;
2807	u64 offset = 0;
2808	u64 start;
2809	u64 end;
2810	u64 len;
2811	u64 extent_start = 0;
2812	u64 extent_len = 0;
2813	int mirror;
2814	int ret;
2815	struct bvec_iter_all iter_all;
2816
2817	ASSERT(!bio_flagged(bio, BIO_CLONED));
2818	bio_for_each_segment_all(bvec, bio, iter_all) {
2819		struct page *page = bvec->bv_page;
2820		struct inode *inode = page->mapping->host;
2821		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822		bool data_inode = btrfs_ino(BTRFS_I(inode))
2823			!= BTRFS_BTREE_INODE_OBJECTID;
2824
2825		btrfs_debug(fs_info,
2826			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2827			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2828			io_bio->mirror_num);
2829		tree = &BTRFS_I(inode)->io_tree;
2830		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2831
2832		/* We always issue full-page reads, but if some block
2833		 * in a page fails to read, blk_update_request() will
2834		 * advance bv_offset and adjust bv_len to compensate.
2835		 * Print a warning for nonzero offsets, and an error
2836		 * if they don't add up to a full page.  */
2837		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2839				btrfs_err(fs_info,
2840					"partial page read in btrfs with offset %u and length %u",
2841					bvec->bv_offset, bvec->bv_len);
2842			else
2843				btrfs_info(fs_info,
2844					"incomplete page read in btrfs with offset %u and length %u",
2845					bvec->bv_offset, bvec->bv_len);
2846		}
2847
2848		start = page_offset(page);
2849		end = start + bvec->bv_offset + bvec->bv_len - 1;
2850		len = bvec->bv_len;
2851
2852		mirror = io_bio->mirror_num;
2853		if (likely(uptodate)) {
2854			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855							      page, start, end,
2856							      mirror);
2857			if (ret)
2858				uptodate = 0;
2859			else
2860				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861						 failure_tree, tree, start,
2862						 page,
2863						 btrfs_ino(BTRFS_I(inode)), 0);
2864		}
2865
2866		if (likely(uptodate))
2867			goto readpage_ok;
2868
2869		if (data_inode) {
2870
2871			/*
2872			 * The generic bio_readpage_error handles errors the
2873			 * following way: If possible, new read requests are
2874			 * created and submitted and will end up in
2875			 * end_bio_extent_readpage as well (if we're lucky,
2876			 * not in the !uptodate case). In that case it returns
2877			 * 0 and we just go on with the next page in our bio.
2878			 * If it can't handle the error it will return -EIO and
2879			 * we remain responsible for that page.
2880			 */
2881			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882						start - page_offset(page),
2883						start, end, mirror,
2884						tree->ops->submit_bio_hook)) {
2885				uptodate = !bio->bi_status;
2886				offset += len;
2887				continue;
2888			}
2889		} else {
2890			struct extent_buffer *eb;
2891
2892			eb = (struct extent_buffer *)page->private;
2893			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894			eb->read_mirror = mirror;
2895			atomic_dec(&eb->io_pages);
2896			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897					       &eb->bflags))
2898				btree_readahead_hook(eb, -EIO);
2899		}
2900readpage_ok:
2901		if (likely(uptodate)) {
2902			loff_t i_size = i_size_read(inode);
2903			pgoff_t end_index = i_size >> PAGE_SHIFT;
2904			unsigned off;
2905
2906			/* Zero out the end if this page straddles i_size */
2907			off = offset_in_page(i_size);
2908			if (page->index == end_index && off)
2909				zero_user_segment(page, off, PAGE_SIZE);
2910			SetPageUptodate(page);
2911		} else {
2912			ClearPageUptodate(page);
2913			SetPageError(page);
2914		}
2915		unlock_page(page);
2916		offset += len;
2917
2918		if (unlikely(!uptodate)) {
2919			if (extent_len) {
2920				endio_readpage_release_extent(tree,
2921							      extent_start,
2922							      extent_len, 1);
2923				extent_start = 0;
2924				extent_len = 0;
2925			}
2926			endio_readpage_release_extent(tree, start,
2927						      end - start + 1, 0);
2928		} else if (!extent_len) {
2929			extent_start = start;
2930			extent_len = end + 1 - start;
2931		} else if (extent_start + extent_len == start) {
2932			extent_len += end + 1 - start;
2933		} else {
2934			endio_readpage_release_extent(tree, extent_start,
2935						      extent_len, uptodate);
2936			extent_start = start;
2937			extent_len = end + 1 - start;
2938		}
2939	}
2940
2941	if (extent_len)
2942		endio_readpage_release_extent(tree, extent_start, extent_len,
2943					      uptodate);
2944	btrfs_io_bio_free_csum(io_bio);
2945	bio_put(bio);
2946}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947
2948/*
2949 * Initialize the members up to but not including 'bio'. Use after allocating a
2950 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951 * 'bio' because use of __GFP_ZERO is not supported.
2952 */
2953static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2954{
2955	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956}
2957
2958/*
2959 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2961 * for the appropriate container_of magic
2962 */
2963struct bio *btrfs_bio_alloc(u64 first_byte)
2964{
2965	struct bio *bio;
 
2966
2967	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2968	bio->bi_iter.bi_sector = first_byte >> 9;
2969	btrfs_io_bio_init(btrfs_io_bio(bio));
2970	return bio;
2971}
 
 
 
 
 
 
 
 
 
 
 
2972
2973struct bio *btrfs_bio_clone(struct bio *bio)
2974{
2975	struct btrfs_io_bio *btrfs_bio;
2976	struct bio *new;
 
2977
2978	/* Bio allocation backed by a bioset does not fail */
2979	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2980	btrfs_bio = btrfs_io_bio(new);
2981	btrfs_io_bio_init(btrfs_bio);
2982	btrfs_bio->iter = bio->bi_iter;
2983	return new;
 
2984}
2985
2986struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2987{
2988	struct bio *bio;
2989
2990	/* Bio allocation backed by a bioset does not fail */
2991	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2992	btrfs_io_bio_init(btrfs_io_bio(bio));
2993	return bio;
2994}
2995
2996struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2997{
2998	struct bio *bio;
2999	struct btrfs_io_bio *btrfs_bio;
3000
3001	/* this will never fail when it's backed by a bioset */
3002	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3003	ASSERT(bio);
3004
3005	btrfs_bio = btrfs_io_bio(bio);
3006	btrfs_io_bio_init(btrfs_bio);
3007
3008	bio_trim(bio, offset >> 9, size >> 9);
3009	btrfs_bio->iter = bio->bi_iter;
3010	return bio;
3011}
3012
3013/*
3014 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3015 * @wbc:	optional writeback control for io accounting
3016 * @page:	page to add to the bio
3017 * @pg_offset:	offset of the new bio or to check whether we are adding
3018 *              a contiguous page to the previous one
3019 * @size:	portion of page that we want to write
3020 * @offset:	starting offset in the page
3021 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3022 * @end_io_func:     end_io callback for new bio
3023 * @mirror_num:	     desired mirror to read/write
3024 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3025 * @bio_flags:	flags of the current bio to see if we can merge them
3026 */
3027static int submit_extent_page(unsigned int opf,
3028			      struct writeback_control *wbc,
3029			      struct page *page, u64 offset,
3030			      size_t size, unsigned long pg_offset,
3031			      struct bio **bio_ret,
3032			      bio_end_io_t end_io_func,
3033			      int mirror_num,
3034			      unsigned long prev_bio_flags,
3035			      unsigned long bio_flags,
3036			      bool force_bio_submit)
3037{
3038	int ret = 0;
3039	struct bio *bio;
3040	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3041	sector_t sector = offset >> 9;
3042	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3043
3044	ASSERT(bio_ret);
3045
3046	if (*bio_ret) {
3047		bool contig;
3048		bool can_merge = true;
3049
3050		bio = *bio_ret;
3051		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3052			contig = bio->bi_iter.bi_sector == sector;
3053		else
3054			contig = bio_end_sector(bio) == sector;
3055
3056		ASSERT(tree->ops);
3057		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058			can_merge = false;
3059
3060		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061		    force_bio_submit ||
3062		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064			if (ret < 0) {
3065				*bio_ret = NULL;
3066				return ret;
3067			}
3068			bio = NULL;
3069		} else {
3070			if (wbc)
3071				wbc_account_cgroup_owner(wbc, page, page_size);
3072			return 0;
3073		}
3074	}
3075
3076	bio = btrfs_bio_alloc(offset);
3077	bio_add_page(bio, page, page_size, pg_offset);
3078	bio->bi_end_io = end_io_func;
3079	bio->bi_private = tree;
3080	bio->bi_write_hint = page->mapping->host->i_write_hint;
3081	bio->bi_opf = opf;
3082	if (wbc) {
3083		struct block_device *bdev;
3084
3085		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086		bio_set_dev(bio, bdev);
3087		wbc_init_bio(wbc, bio);
3088		wbc_account_cgroup_owner(wbc, page, page_size);
3089	}
3090
3091	*bio_ret = bio;
3092
3093	return ret;
3094}
3095
3096static void attach_extent_buffer_page(struct extent_buffer *eb,
3097				      struct page *page)
3098{
3099	if (!PagePrivate(page))
3100		attach_page_private(page, eb);
3101	else
3102		WARN_ON(page->private != (unsigned long)eb);
3103}
3104
3105void set_page_extent_mapped(struct page *page)
3106{
3107	if (!PagePrivate(page))
3108		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109}
3110
3111static struct extent_map *
3112__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113		 u64 start, u64 len, get_extent_t *get_extent,
3114		 struct extent_map **em_cached)
3115{
3116	struct extent_map *em;
3117
3118	if (em_cached && *em_cached) {
 
 
3119		em = *em_cached;
3120		if (extent_map_in_tree(em) && start >= em->start &&
3121		    start < extent_map_end(em)) {
3122			refcount_inc(&em->refs);
3123			return em;
3124		}
3125
3126		free_extent_map(em);
3127		*em_cached = NULL;
3128	}
3129
3130	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3131	if (em_cached && !IS_ERR_OR_NULL(em)) {
3132		BUG_ON(*em_cached);
3133		refcount_inc(&em->refs);
3134		*em_cached = em;
3135	}
 
3136	return em;
3137}
3138/*
3139 * basic readpage implementation.  Locked extent state structs are inserted
3140 * into the tree that are removed when the IO is done (by the end_io
3141 * handlers)
3142 * XXX JDM: This needs looking at to ensure proper page locking
3143 * return 0 on success, otherwise return error
3144 */
3145static int __do_readpage(struct page *page,
3146			 get_extent_t *get_extent,
3147			 struct extent_map **em_cached,
3148			 struct bio **bio, int mirror_num,
3149			 unsigned long *bio_flags, unsigned int read_flags,
3150			 u64 *prev_em_start)
3151{
3152	struct inode *inode = page->mapping->host;
3153	u64 start = page_offset(page);
 
3154	const u64 end = start + PAGE_SIZE - 1;
3155	u64 cur = start;
3156	u64 extent_offset;
3157	u64 last_byte = i_size_read(inode);
3158	u64 block_start;
3159	u64 cur_end;
3160	struct extent_map *em;
3161	int ret = 0;
3162	int nr = 0;
3163	size_t pg_offset = 0;
3164	size_t iosize;
3165	size_t disk_io_size;
3166	size_t blocksize = inode->i_sb->s_blocksize;
3167	unsigned long this_bio_flag = 0;
3168	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3169
3170	set_page_extent_mapped(page);
3171
3172	if (!PageUptodate(page)) {
3173		if (cleancache_get_page(page) == 0) {
3174			BUG_ON(blocksize != PAGE_SIZE);
3175			unlock_extent(tree, start, end);
3176			goto out;
3177		}
3178	}
3179
3180	if (page->index == last_byte >> PAGE_SHIFT) {
3181		char *userpage;
3182		size_t zero_offset = offset_in_page(last_byte);
3183
3184		if (zero_offset) {
3185			iosize = PAGE_SIZE - zero_offset;
3186			userpage = kmap_atomic(page);
3187			memset(userpage + zero_offset, 0, iosize);
3188			flush_dcache_page(page);
3189			kunmap_atomic(userpage);
3190		}
3191	}
 
 
3192	while (cur <= end) {
 
3193		bool force_bio_submit = false;
3194		u64 offset;
3195
 
3196		if (cur >= last_byte) {
3197			char *userpage;
3198			struct extent_state *cached = NULL;
3199
3200			iosize = PAGE_SIZE - pg_offset;
3201			userpage = kmap_atomic(page);
3202			memset(userpage + pg_offset, 0, iosize);
3203			flush_dcache_page(page);
3204			kunmap_atomic(userpage);
3205			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206					    &cached, GFP_NOFS);
3207			unlock_extent_cached(tree, cur,
3208					     cur + iosize - 1, &cached);
3209			break;
3210		}
3211		em = __get_extent_map(inode, page, pg_offset, cur,
3212				      end - cur + 1, get_extent, em_cached);
3213		if (IS_ERR_OR_NULL(em)) {
3214			SetPageError(page);
3215			unlock_extent(tree, cur, end);
3216			break;
3217		}
3218		extent_offset = cur - em->start;
3219		BUG_ON(extent_map_end(em) <= cur);
3220		BUG_ON(end < cur);
3221
3222		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3223			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3224			extent_set_compress_type(&this_bio_flag,
3225						 em->compress_type);
3226		}
3227
3228		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229		cur_end = min(extent_map_end(em) - 1, end);
3230		iosize = ALIGN(iosize, blocksize);
3231		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232			disk_io_size = em->block_len;
3233			offset = em->block_start;
3234		} else {
3235			offset = em->block_start + extent_offset;
3236			disk_io_size = iosize;
3237		}
3238		block_start = em->block_start;
3239		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240			block_start = EXTENT_MAP_HOLE;
3241
3242		/*
3243		 * If we have a file range that points to a compressed extent
3244		 * and it's followed by a consecutive file range that points to
3245		 * to the same compressed extent (possibly with a different
3246		 * offset and/or length, so it either points to the whole extent
3247		 * or only part of it), we must make sure we do not submit a
3248		 * single bio to populate the pages for the 2 ranges because
3249		 * this makes the compressed extent read zero out the pages
3250		 * belonging to the 2nd range. Imagine the following scenario:
3251		 *
3252		 *  File layout
3253		 *  [0 - 8K]                     [8K - 24K]
3254		 *    |                               |
3255		 *    |                               |
3256		 * points to extent X,         points to extent X,
3257		 * offset 4K, length of 8K     offset 0, length 16K
3258		 *
3259		 * [extent X, compressed length = 4K uncompressed length = 16K]
3260		 *
3261		 * If the bio to read the compressed extent covers both ranges,
3262		 * it will decompress extent X into the pages belonging to the
3263		 * first range and then it will stop, zeroing out the remaining
3264		 * pages that belong to the other range that points to extent X.
3265		 * So here we make sure we submit 2 bios, one for the first
3266		 * range and another one for the third range. Both will target
3267		 * the same physical extent from disk, but we can't currently
3268		 * make the compressed bio endio callback populate the pages
3269		 * for both ranges because each compressed bio is tightly
3270		 * coupled with a single extent map, and each range can have
3271		 * an extent map with a different offset value relative to the
3272		 * uncompressed data of our extent and different lengths. This
3273		 * is a corner case so we prioritize correctness over
3274		 * non-optimal behavior (submitting 2 bios for the same extent).
3275		 */
3276		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277		    prev_em_start && *prev_em_start != (u64)-1 &&
3278		    *prev_em_start != em->start)
3279			force_bio_submit = true;
3280
3281		if (prev_em_start)
3282			*prev_em_start = em->start;
3283
3284		free_extent_map(em);
3285		em = NULL;
3286
3287		/* we've found a hole, just zero and go on */
3288		if (block_start == EXTENT_MAP_HOLE) {
3289			char *userpage;
3290			struct extent_state *cached = NULL;
3291
3292			userpage = kmap_atomic(page);
3293			memset(userpage + pg_offset, 0, iosize);
3294			flush_dcache_page(page);
3295			kunmap_atomic(userpage);
3296
3297			set_extent_uptodate(tree, cur, cur + iosize - 1,
3298					    &cached, GFP_NOFS);
3299			unlock_extent_cached(tree, cur,
3300					     cur + iosize - 1, &cached);
3301			cur = cur + iosize;
3302			pg_offset += iosize;
3303			continue;
3304		}
3305		/* the get_extent function already copied into the page */
3306		if (test_range_bit(tree, cur, cur_end,
3307				   EXTENT_UPTODATE, 1, NULL)) {
3308			check_page_uptodate(tree, page);
3309			unlock_extent(tree, cur, cur + iosize - 1);
3310			cur = cur + iosize;
3311			pg_offset += iosize;
3312			continue;
3313		}
3314		/* we have an inline extent but it didn't get marked up
3315		 * to date.  Error out
3316		 */
3317		if (block_start == EXTENT_MAP_INLINE) {
3318			SetPageError(page);
3319			unlock_extent(tree, cur, cur + iosize - 1);
3320			cur = cur + iosize;
3321			pg_offset += iosize;
3322			continue;
3323		}
3324
3325		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3326					 page, offset, disk_io_size,
3327					 pg_offset, bio,
3328					 end_bio_extent_readpage, mirror_num,
3329					 *bio_flags,
3330					 this_bio_flag,
3331					 force_bio_submit);
3332		if (!ret) {
3333			nr++;
3334			*bio_flags = this_bio_flag;
3335		} else {
3336			SetPageError(page);
3337			unlock_extent(tree, cur, cur + iosize - 1);
3338			goto out;
3339		}
 
 
 
 
 
3340		cur = cur + iosize;
3341		pg_offset += iosize;
3342	}
3343out:
3344	if (!nr) {
3345		if (!PageError(page))
3346			SetPageUptodate(page);
3347		unlock_page(page);
3348	}
3349	return ret;
3350}
3351
3352static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3353					     u64 start, u64 end,
3354					     struct extent_map **em_cached,
3355					     struct bio **bio,
3356					     unsigned long *bio_flags,
3357					     u64 *prev_em_start)
3358{
3359	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3360	int index;
3361
3362	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363
3364	for (index = 0; index < nr_pages; index++) {
3365		__do_readpage(pages[index], btrfs_get_extent, em_cached,
3366				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3367		put_page(pages[index]);
3368	}
3369}
3370
3371static int __extent_read_full_page(struct page *page,
3372				   get_extent_t *get_extent,
3373				   struct bio **bio, int mirror_num,
3374				   unsigned long *bio_flags,
3375				   unsigned int read_flags)
3376{
3377	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3378	u64 start = page_offset(page);
3379	u64 end = start + PAGE_SIZE - 1;
 
 
 
3380	int ret;
3381
3382	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3383
3384	ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3385			    bio_flags, read_flags, NULL);
3386	return ret;
3387}
3388
3389int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390			  int mirror_num)
3391{
3392	struct bio *bio = NULL;
3393	unsigned long bio_flags = 0;
3394	int ret;
3395
3396	ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3397				      &bio_flags, 0);
3398	if (bio)
3399		ret = submit_one_bio(bio, mirror_num, bio_flags);
 
3400	return ret;
3401}
3402
3403static void update_nr_written(struct writeback_control *wbc,
3404			      unsigned long nr_written)
3405{
3406	wbc->nr_to_write -= nr_written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3407}
3408
3409/*
3410 * helper for __extent_writepage, doing all of the delayed allocation setup.
3411 *
3412 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3413 * to write the page (copy into inline extent).  In this case the IO has
3414 * been started and the page is already unlocked.
3415 *
3416 * This returns 0 if all went well (page still locked)
3417 * This returns < 0 if there were errors (page still locked)
 
 
 
 
 
 
3418 */
3419static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3420		struct page *page, struct writeback_control *wbc,
3421		u64 delalloc_start, unsigned long *nr_written)
3422{
3423	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3424	bool found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425	u64 delalloc_to_write = 0;
3426	u64 delalloc_end = 0;
3427	int ret;
3428	int page_started = 0;
 
 
 
 
 
 
 
 
 
 
3429
 
 
3430
3431	while (delalloc_end < page_end) {
3432		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3433					       &delalloc_start,
3434					       &delalloc_end);
3435		if (!found) {
3436			delalloc_start = delalloc_end + 1;
3437			continue;
3438		}
3439		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3440				delalloc_end, &page_started, nr_written, wbc);
3441		if (ret) {
3442			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
3443			/*
3444			 * btrfs_run_delalloc_range should return < 0 for error
3445			 * but just in case, we use > 0 here meaning the IO is
3446			 * started, so we don't want to return > 0 unless
3447			 * things are going well.
3448			 */
3449			return ret < 0 ? ret : -EIO;
 
 
 
 
 
3450		}
 
 
3451		/*
3452		 * delalloc_end is already one less than the total length, so
3453		 * we don't subtract one from PAGE_SIZE
 
3454		 */
3455		delalloc_to_write += (delalloc_end - delalloc_start +
3456				      PAGE_SIZE) >> PAGE_SHIFT;
3457		delalloc_start = delalloc_end + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3458	}
 
3459	if (wbc->nr_to_write < delalloc_to_write) {
3460		int thresh = 8192;
3461
3462		if (delalloc_to_write < thresh * 2)
3463			thresh = delalloc_to_write;
3464		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465					 thresh);
3466	}
3467
3468	/* did the fill delalloc function already unlock and start
3469	 * the IO?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470	 */
3471	if (page_started) {
3472		/*
3473		 * we've unlocked the page, so we can't update
3474		 * the mapping's writeback index, just update
3475		 * nr_to_write.
3476		 */
3477		wbc->nr_to_write -= *nr_written;
3478		return 1;
3479	}
3480
 
 
3481	return 0;
3482}
3483
3484/*
3485 * helper for __extent_writepage.  This calls the writepage start hooks,
3486 * and does the loop to map the page into extents and bios.
3487 *
3488 * We return 1 if the IO is started and the page is unlocked,
3489 * 0 if all went well (page still locked)
3490 * < 0 if there were errors (page still locked)
3491 */
3492static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3493				 struct page *page,
3494				 struct writeback_control *wbc,
3495				 struct extent_page_data *epd,
3496				 loff_t i_size,
3497				 unsigned long nr_written,
3498				 int *nr_ret)
3499{
3500	struct extent_io_tree *tree = &inode->io_tree;
3501	u64 start = page_offset(page);
3502	u64 page_end = start + PAGE_SIZE - 1;
3503	u64 end;
3504	u64 cur = start;
3505	u64 extent_offset;
3506	u64 block_start;
3507	u64 iosize;
3508	struct extent_map *em;
3509	size_t pg_offset = 0;
3510	size_t blocksize;
3511	int ret = 0;
3512	int nr = 0;
3513	const unsigned int write_flags = wbc_to_write_flags(wbc);
3514	bool compressed;
3515
3516	ret = btrfs_writepage_cow_fixup(page, start, page_end);
 
 
 
3517	if (ret) {
3518		/* Fixup worker will requeue */
3519		redirty_page_for_writepage(wbc, page);
3520		update_nr_written(wbc, nr_written);
3521		unlock_page(page);
3522		return 1;
3523	}
3524
3525	/*
3526	 * we don't want to touch the inode after unlocking the page,
3527	 * so we update the mapping writeback index now
3528	 */
3529	update_nr_written(wbc, nr_written + 1);
3530
3531	end = page_end;
3532	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3533
3534	while (cur <= end) {
3535		u64 em_end;
3536		u64 offset;
3537
3538		if (cur >= i_size) {
3539			btrfs_writepage_endio_finish_ordered(page, cur,
3540							     page_end, 1);
3541			break;
3542		}
3543		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3544		if (IS_ERR_OR_NULL(em)) {
3545			SetPageError(page);
3546			ret = PTR_ERR_OR_ZERO(em);
 
 
 
 
3547			break;
3548		}
3549
3550		extent_offset = cur - em->start;
3551		em_end = extent_map_end(em);
3552		BUG_ON(em_end <= cur);
3553		BUG_ON(end < cur);
3554		iosize = min(em_end - cur, end - cur + 1);
3555		iosize = ALIGN(iosize, blocksize);
3556		offset = em->block_start + extent_offset;
3557		block_start = em->block_start;
3558		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3559		free_extent_map(em);
3560		em = NULL;
3561
3562		/*
3563		 * compressed and inline extents are written through other
3564		 * paths in the FS
3565		 */
3566		if (compressed || block_start == EXTENT_MAP_HOLE ||
3567		    block_start == EXTENT_MAP_INLINE) {
3568			if (compressed)
3569				nr++;
3570			else
3571				btrfs_writepage_endio_finish_ordered(page, cur,
3572							cur + iosize - 1, 1);
3573			cur += iosize;
3574			pg_offset += iosize;
3575			continue;
3576		}
 
 
3577
3578		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3579		if (!PageWriteback(page)) {
3580			btrfs_err(inode->root->fs_info,
3581				   "page %lu not writeback, cur %llu end %llu",
3582			       page->index, cur, end);
3583		}
3584
3585		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3586					 page, offset, iosize, pg_offset,
3587					 &epd->bio,
3588					 end_bio_extent_writepage,
3589					 0, 0, 0, false);
3590		if (ret) {
3591			SetPageError(page);
3592			if (PageWriteback(page))
3593				end_page_writeback(page);
3594		}
3595
3596		cur = cur + iosize;
3597		pg_offset += iosize;
3598		nr++;
3599	}
3600	*nr_ret = nr;
3601	return ret;
3602}
3603
3604/*
3605 * the writepage semantics are similar to regular writepage.  extent
3606 * records are inserted to lock ranges in the tree, and as dirty areas
3607 * are found, they are marked writeback.  Then the lock bits are removed
3608 * and the end_io handler clears the writeback ranges
3609 *
3610 * Return 0 if everything goes well.
3611 * Return <0 for error.
3612 */
3613static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3614			      struct extent_page_data *epd)
3615{
3616	struct inode *inode = page->mapping->host;
3617	u64 start = page_offset(page);
3618	u64 page_end = start + PAGE_SIZE - 1;
3619	int ret;
3620	int nr = 0;
3621	size_t pg_offset;
3622	loff_t i_size = i_size_read(inode);
3623	unsigned long end_index = i_size >> PAGE_SHIFT;
3624	unsigned long nr_written = 0;
3625
3626	trace___extent_writepage(page, inode, wbc);
3627
3628	WARN_ON(!PageLocked(page));
3629
3630	ClearPageError(page);
3631
3632	pg_offset = offset_in_page(i_size);
3633	if (page->index > end_index ||
3634	   (page->index == end_index && !pg_offset)) {
3635		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3636		unlock_page(page);
3637		return 0;
3638	}
3639
3640	if (page->index == end_index) {
3641		char *userpage;
3642
3643		userpage = kmap_atomic(page);
3644		memset(userpage + pg_offset, 0,
3645		       PAGE_SIZE - pg_offset);
3646		kunmap_atomic(userpage);
3647		flush_dcache_page(page);
3648	}
3649
3650	set_page_extent_mapped(page);
3651
3652	if (!epd->extent_locked) {
3653		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654					 &nr_written);
3655		if (ret == 1)
3656			return 0;
3657		if (ret)
3658			goto done;
3659	}
3660
3661	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662				    nr_written, &nr);
3663	if (ret == 1)
3664		return 0;
3665
 
 
3666done:
3667	if (nr == 0) {
3668		/* make sure the mapping tag for page dirty gets cleared */
3669		set_page_writeback(page);
3670		end_page_writeback(page);
3671	}
3672	if (PageError(page)) {
3673		ret = ret < 0 ? ret : -EIO;
3674		end_extent_writepage(page, ret, start, page_end);
3675	}
3676	unlock_page(page);
3677	ASSERT(ret <= 0);
3678	return ret;
3679}
3680
3681void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3682{
3683	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684		       TASK_UNINTERRUPTIBLE);
3685}
3686
3687static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688{
3689	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690	smp_mb__after_atomic();
3691	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692}
3693
3694/*
3695 * Lock eb pages and flush the bio if we can't the locks
3696 *
3697 * Return  0 if nothing went wrong
3698 * Return >0 is same as 0, except bio is not submitted
3699 * Return <0 if something went wrong, no page is locked
3700 */
3701static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3702			  struct extent_page_data *epd)
3703{
3704	struct btrfs_fs_info *fs_info = eb->fs_info;
3705	int i, num_pages, failed_page_nr;
3706	int flush = 0;
3707	int ret = 0;
3708
3709	if (!btrfs_try_tree_write_lock(eb)) {
3710		ret = flush_write_bio(epd);
3711		if (ret < 0)
3712			return ret;
3713		flush = 1;
3714		btrfs_tree_lock(eb);
3715	}
3716
3717	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
 
3718		btrfs_tree_unlock(eb);
3719		if (!epd->sync_io)
3720			return 0;
3721		if (!flush) {
3722			ret = flush_write_bio(epd);
3723			if (ret < 0)
3724				return ret;
3725			flush = 1;
3726		}
3727		while (1) {
3728			wait_on_extent_buffer_writeback(eb);
3729			btrfs_tree_lock(eb);
3730			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731				break;
3732			btrfs_tree_unlock(eb);
3733		}
3734	}
3735
3736	/*
3737	 * We need to do this to prevent races in people who check if the eb is
3738	 * under IO since we can end up having no IO bits set for a short period
3739	 * of time.
3740	 */
3741	spin_lock(&eb->refs_lock);
3742	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3744		spin_unlock(&eb->refs_lock);
3745		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3746		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747					 -eb->len,
3748					 fs_info->dirty_metadata_batch);
3749		ret = 1;
3750	} else {
3751		spin_unlock(&eb->refs_lock);
3752	}
3753
3754	btrfs_tree_unlock(eb);
3755
3756	if (!ret)
3757		return ret;
3758
3759	num_pages = num_extent_pages(eb);
3760	for (i = 0; i < num_pages; i++) {
3761		struct page *p = eb->pages[i];
3762
3763		if (!trylock_page(p)) {
3764			if (!flush) {
3765				int err;
3766
3767				err = flush_write_bio(epd);
3768				if (err < 0) {
3769					ret = err;
3770					failed_page_nr = i;
3771					goto err_unlock;
3772				}
3773				flush = 1;
3774			}
3775			lock_page(p);
3776		}
3777	}
3778
3779	return ret;
3780err_unlock:
3781	/* Unlock already locked pages */
3782	for (i = 0; i < failed_page_nr; i++)
3783		unlock_page(eb->pages[i]);
3784	/*
3785	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787	 * be made and undo everything done before.
3788	 */
3789	btrfs_tree_lock(eb);
3790	spin_lock(&eb->refs_lock);
3791	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792	end_extent_buffer_writeback(eb);
3793	spin_unlock(&eb->refs_lock);
3794	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795				 fs_info->dirty_metadata_batch);
3796	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797	btrfs_tree_unlock(eb);
3798	return ret;
3799}
3800
3801static void set_btree_ioerr(struct page *page)
3802{
3803	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3804	struct btrfs_fs_info *fs_info;
3805
3806	SetPageError(page);
3807	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808		return;
 
 
 
 
3809
3810	/*
3811	 * If we error out, we should add back the dirty_metadata_bytes
3812	 * to make it consistent.
 
 
3813	 */
3814	fs_info = eb->fs_info;
3815	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816				 eb->len, fs_info->dirty_metadata_batch);
3817
3818	/*
3819	 * If writeback for a btree extent that doesn't belong to a log tree
3820	 * failed, increment the counter transaction->eb_write_errors.
3821	 * We do this because while the transaction is running and before it's
3822	 * committing (when we call filemap_fdata[write|wait]_range against
3823	 * the btree inode), we might have
3824	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825	 * returns an error or an error happens during writeback, when we're
3826	 * committing the transaction we wouldn't know about it, since the pages
3827	 * can be no longer dirty nor marked anymore for writeback (if a
3828	 * subsequent modification to the extent buffer didn't happen before the
3829	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3830	 * able to find the pages tagged with SetPageError at transaction
3831	 * commit time. So if this happens we must abort the transaction,
3832	 * otherwise we commit a super block with btree roots that point to
3833	 * btree nodes/leafs whose content on disk is invalid - either garbage
3834	 * or the content of some node/leaf from a past generation that got
3835	 * cowed or deleted and is no longer valid.
3836	 *
3837	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838	 * not be enough - we need to distinguish between log tree extents vs
3839	 * non-log tree extents, and the next filemap_fdatawait_range() call
3840	 * will catch and clear such errors in the mapping - and that call might
3841	 * be from a log sync and not from a transaction commit. Also, checking
3842	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843	 * not done and would not be reliable - the eb might have been released
3844	 * from memory and reading it back again means that flag would not be
3845	 * set (since it's a runtime flag, not persisted on disk).
3846	 *
3847	 * Using the flags below in the btree inode also makes us achieve the
3848	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849	 * writeback for all dirty pages and before filemap_fdatawait_range()
3850	 * is called, the writeback for all dirty pages had already finished
3851	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852	 * filemap_fdatawait_range() would return success, as it could not know
3853	 * that writeback errors happened (the pages were no longer tagged for
3854	 * writeback).
3855	 */
3856	switch (eb->log_index) {
3857	case -1:
3858		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3859		break;
3860	case 0:
3861		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3862		break;
3863	case 1:
3864		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3865		break;
3866	default:
3867		BUG(); /* unexpected, logic error */
3868	}
3869}
3870
3871static void end_bio_extent_buffer_writepage(struct bio *bio)
 
 
 
 
 
3872{
3873	struct bio_vec *bvec;
3874	struct extent_buffer *eb;
3875	int done;
3876	struct bvec_iter_all iter_all;
3877
3878	ASSERT(!bio_flagged(bio, BIO_CLONED));
3879	bio_for_each_segment_all(bvec, bio, iter_all) {
3880		struct page *page = bvec->bv_page;
3881
3882		eb = (struct extent_buffer *)page->private;
3883		BUG_ON(!eb);
3884		done = atomic_dec_and_test(&eb->io_pages);
3885
3886		if (bio->bi_status ||
3887		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3888			ClearPageUptodate(page);
3889			set_btree_ioerr(page);
3890		}
3891
3892		end_page_writeback(page);
 
 
 
3893
3894		if (!done)
3895			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
3896
3897		end_extent_buffer_writeback(eb);
 
3898	}
3899
3900	bio_put(bio);
 
 
 
 
3901}
3902
3903static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3904			struct writeback_control *wbc,
3905			struct extent_page_data *epd)
3906{
3907	u64 offset = eb->start;
3908	u32 nritems;
3909	int i, num_pages;
3910	unsigned long start, end;
3911	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3912	int ret = 0;
3913
3914	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3915	num_pages = num_extent_pages(eb);
3916	atomic_set(&eb->io_pages, num_pages);
3917
3918	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3919	nritems = btrfs_header_nritems(eb);
3920	if (btrfs_header_level(eb) > 0) {
3921		end = btrfs_node_key_ptr_offset(nritems);
3922
3923		memzero_extent_buffer(eb, end, eb->len - end);
3924	} else {
3925		/*
3926		 * leaf:
3927		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928		 */
3929		start = btrfs_item_nr_offset(nritems);
3930		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
 
 
 
 
3931		memzero_extent_buffer(eb, start, end - start);
3932	}
 
3933
3934	for (i = 0; i < num_pages; i++) {
3935		struct page *p = eb->pages[i];
 
 
 
3936
3937		clear_page_dirty_for_io(p);
3938		set_page_writeback(p);
3939		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3940					 p, offset, PAGE_SIZE, 0,
3941					 &epd->bio,
3942					 end_bio_extent_buffer_writepage,
3943					 0, 0, 0, false);
3944		if (ret) {
3945			set_btree_ioerr(p);
3946			if (PageWriteback(p))
3947				end_page_writeback(p);
3948			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949				end_extent_buffer_writeback(eb);
3950			ret = -EIO;
3951			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3952		}
3953		offset += PAGE_SIZE;
3954		update_nr_written(wbc, 1);
3955		unlock_page(p);
3956	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3957
3958	if (unlikely(ret)) {
3959		for (; i < num_pages; i++) {
3960			struct page *p = eb->pages[i];
3961			clear_page_dirty_for_io(p);
3962			unlock_page(p);
3963		}
 
3964	}
 
 
3965
3966	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967}
3968
3969int btree_write_cache_pages(struct address_space *mapping,
3970				   struct writeback_control *wbc)
3971{
3972	struct extent_buffer *eb, *prev_eb = NULL;
3973	struct extent_page_data epd = {
3974		.bio = NULL,
3975		.extent_locked = 0,
3976		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977	};
3978	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3979	int ret = 0;
3980	int done = 0;
3981	int nr_to_write_done = 0;
3982	struct pagevec pvec;
3983	int nr_pages;
3984	pgoff_t index;
3985	pgoff_t end;		/* Inclusive */
3986	int scanned = 0;
3987	xa_mark_t tag;
3988
3989	pagevec_init(&pvec);
3990	if (wbc->range_cyclic) {
3991		index = mapping->writeback_index; /* Start from prev offset */
3992		end = -1;
3993		/*
3994		 * Start from the beginning does not need to cycle over the
3995		 * range, mark it as scanned.
3996		 */
3997		scanned = (index == 0);
3998	} else {
3999		index = wbc->range_start >> PAGE_SHIFT;
4000		end = wbc->range_end >> PAGE_SHIFT;
4001		scanned = 1;
4002	}
4003	if (wbc->sync_mode == WB_SYNC_ALL)
4004		tag = PAGECACHE_TAG_TOWRITE;
4005	else
4006		tag = PAGECACHE_TAG_DIRTY;
 
4007retry:
4008	if (wbc->sync_mode == WB_SYNC_ALL)
4009		tag_pages_for_writeback(mapping, index, end);
4010	while (!done && !nr_to_write_done && (index <= end) &&
4011	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4012			tag))) {
4013		unsigned i;
4014
4015		for (i = 0; i < nr_pages; i++) {
4016			struct page *page = pvec.pages[i];
4017
4018			if (!PagePrivate(page))
 
4019				continue;
4020
4021			spin_lock(&mapping->private_lock);
4022			if (!PagePrivate(page)) {
4023				spin_unlock(&mapping->private_lock);
4024				continue;
4025			}
4026
4027			eb = (struct extent_buffer *)page->private;
4028
4029			/*
4030			 * Shouldn't happen and normally this would be a BUG_ON
4031			 * but no sense in crashing the users box for something
4032			 * we can survive anyway.
4033			 */
4034			if (WARN_ON(!eb)) {
4035				spin_unlock(&mapping->private_lock);
4036				continue;
4037			}
4038
4039			if (eb == prev_eb) {
4040				spin_unlock(&mapping->private_lock);
4041				continue;
4042			}
4043
4044			ret = atomic_inc_not_zero(&eb->refs);
4045			spin_unlock(&mapping->private_lock);
4046			if (!ret)
4047				continue;
4048
4049			prev_eb = eb;
4050			ret = lock_extent_buffer_for_io(eb, &epd);
4051			if (!ret) {
4052				free_extent_buffer(eb);
4053				continue;
4054			} else if (ret < 0) {
4055				done = 1;
4056				free_extent_buffer(eb);
4057				break;
4058			}
4059
4060			ret = write_one_eb(eb, wbc, &epd);
4061			if (ret) {
4062				done = 1;
4063				free_extent_buffer(eb);
4064				break;
4065			}
4066			free_extent_buffer(eb);
4067
4068			/*
4069			 * the filesystem may choose to bump up nr_to_write.
4070			 * We have to make sure to honor the new nr_to_write
4071			 * at any time
4072			 */
4073			nr_to_write_done = wbc->nr_to_write <= 0;
4074		}
4075		pagevec_release(&pvec);
4076		cond_resched();
4077	}
4078	if (!scanned && !done) {
4079		/*
4080		 * We hit the last page and there is more work to be done: wrap
4081		 * back to the start of the file
4082		 */
4083		scanned = 1;
4084		index = 0;
4085		goto retry;
4086	}
4087	ASSERT(ret <= 0);
4088	if (ret < 0) {
4089		end_write_bio(&epd, ret);
4090		return ret;
4091	}
4092	/*
4093	 * If something went wrong, don't allow any metadata write bio to be
4094	 * submitted.
4095	 *
4096	 * This would prevent use-after-free if we had dirty pages not
4097	 * cleaned up, which can still happen by fuzzed images.
4098	 *
4099	 * - Bad extent tree
4100	 *   Allowing existing tree block to be allocated for other trees.
4101	 *
4102	 * - Log tree operations
4103	 *   Exiting tree blocks get allocated to log tree, bumps its
4104	 *   generation, then get cleaned in tree re-balance.
4105	 *   Such tree block will not be written back, since it's clean,
4106	 *   thus no WRITTEN flag set.
4107	 *   And after log writes back, this tree block is not traced by
4108	 *   any dirty extent_io_tree.
4109	 *
4110	 * - Offending tree block gets re-dirtied from its original owner
4111	 *   Since it has bumped generation, no WRITTEN flag, it can be
4112	 *   reused without COWing. This tree block will not be traced
4113	 *   by btrfs_transaction::dirty_pages.
4114	 *
4115	 *   Now such dirty tree block will not be cleaned by any dirty
4116	 *   extent io tree. Thus we don't want to submit such wild eb
4117	 *   if the fs already has error.
 
 
 
4118	 */
4119	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120		ret = flush_write_bio(&epd);
4121	} else {
4122		ret = -EROFS;
4123		end_write_bio(&epd, ret);
4124	}
 
 
4125	return ret;
4126}
4127
4128/**
4129 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4130 * @mapping: address space structure to write
4131 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4132 * @data: data passed to __extent_writepage function
 
4133 *
4134 * If a page is already under I/O, write_cache_pages() skips it, even
4135 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4136 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4137 * and msync() need to guarantee that all the data which was dirty at the time
4138 * the call was made get new I/O started against them.  If wbc->sync_mode is
4139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140 * existing IO to complete.
4141 */
4142static int extent_write_cache_pages(struct address_space *mapping,
4143			     struct writeback_control *wbc,
4144			     struct extent_page_data *epd)
4145{
 
4146	struct inode *inode = mapping->host;
4147	int ret = 0;
4148	int done = 0;
4149	int nr_to_write_done = 0;
4150	struct pagevec pvec;
4151	int nr_pages;
4152	pgoff_t index;
4153	pgoff_t end;		/* Inclusive */
4154	pgoff_t done_index;
4155	int range_whole = 0;
4156	int scanned = 0;
4157	xa_mark_t tag;
4158
4159	/*
4160	 * We have to hold onto the inode so that ordered extents can do their
4161	 * work when the IO finishes.  The alternative to this is failing to add
4162	 * an ordered extent if the igrab() fails there and that is a huge pain
4163	 * to deal with, so instead just hold onto the inode throughout the
4164	 * writepages operation.  If it fails here we are freeing up the inode
4165	 * anyway and we'd rather not waste our time writing out stuff that is
4166	 * going to be truncated anyway.
4167	 */
4168	if (!igrab(inode))
4169		return 0;
4170
4171	pagevec_init(&pvec);
4172	if (wbc->range_cyclic) {
4173		index = mapping->writeback_index; /* Start from prev offset */
4174		end = -1;
4175		/*
4176		 * Start from the beginning does not need to cycle over the
4177		 * range, mark it as scanned.
4178		 */
4179		scanned = (index == 0);
4180	} else {
4181		index = wbc->range_start >> PAGE_SHIFT;
4182		end = wbc->range_end >> PAGE_SHIFT;
4183		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184			range_whole = 1;
4185		scanned = 1;
4186	}
4187
4188	/*
4189	 * We do the tagged writepage as long as the snapshot flush bit is set
4190	 * and we are the first one who do the filemap_flush() on this inode.
4191	 *
4192	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193	 * not race in and drop the bit.
4194	 */
4195	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197			       &BTRFS_I(inode)->runtime_flags))
4198		wbc->tagged_writepages = 1;
4199
4200	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4201		tag = PAGECACHE_TAG_TOWRITE;
4202	else
4203		tag = PAGECACHE_TAG_DIRTY;
4204retry:
4205	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4206		tag_pages_for_writeback(mapping, index, end);
4207	done_index = index;
4208	while (!done && !nr_to_write_done && (index <= end) &&
4209			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210						&index, end, tag))) {
4211		unsigned i;
4212
4213		for (i = 0; i < nr_pages; i++) {
4214			struct page *page = pvec.pages[i];
4215
4216			done_index = page->index + 1;
4217			/*
4218			 * At this point we hold neither the i_pages lock nor
4219			 * the page lock: the page may be truncated or
4220			 * invalidated (changing page->mapping to NULL),
4221			 * or even swizzled back from swapper_space to
4222			 * tmpfs file mapping
4223			 */
4224			if (!trylock_page(page)) {
4225				ret = flush_write_bio(epd);
4226				BUG_ON(ret < 0);
4227				lock_page(page);
4228			}
4229
4230			if (unlikely(page->mapping != mapping)) {
4231				unlock_page(page);
4232				continue;
4233			}
4234
4235			if (wbc->sync_mode != WB_SYNC_NONE) {
4236				if (PageWriteback(page)) {
4237					ret = flush_write_bio(epd);
4238					BUG_ON(ret < 0);
4239				}
4240				wait_on_page_writeback(page);
4241			}
4242
4243			if (PageWriteback(page) ||
4244			    !clear_page_dirty_for_io(page)) {
4245				unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4246				continue;
4247			}
4248
4249			ret = __extent_writepage(page, wbc, epd);
4250			if (ret < 0) {
4251				done = 1;
4252				break;
4253			}
4254
4255			/*
4256			 * the filesystem may choose to bump up nr_to_write.
4257			 * We have to make sure to honor the new nr_to_write
4258			 * at any time
4259			 */
4260			nr_to_write_done = wbc->nr_to_write <= 0;
 
4261		}
4262		pagevec_release(&pvec);
4263		cond_resched();
4264	}
4265	if (!scanned && !done) {
4266		/*
4267		 * We hit the last page and there is more work to be done: wrap
4268		 * back to the start of the file
4269		 */
4270		scanned = 1;
4271		index = 0;
4272
4273		/*
4274		 * If we're looping we could run into a page that is locked by a
4275		 * writer and that writer could be waiting on writeback for a
4276		 * page in our current bio, and thus deadlock, so flush the
4277		 * write bio here.
4278		 */
4279		ret = flush_write_bio(epd);
4280		if (!ret)
4281			goto retry;
4282	}
4283
4284	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285		mapping->writeback_index = done_index;
4286
4287	btrfs_add_delayed_iput(inode);
4288	return ret;
4289}
4290
4291int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
4292{
4293	int ret;
4294	struct extent_page_data epd = {
4295		.bio = NULL,
4296		.extent_locked = 0,
4297		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
 
 
 
 
4298	};
4299
4300	ret = __extent_writepage(page, wbc, &epd);
4301	ASSERT(ret <= 0);
4302	if (ret < 0) {
4303		end_write_bio(&epd, ret);
4304		return ret;
4305	}
4306
4307	ret = flush_write_bio(&epd);
4308	ASSERT(ret <= 0);
4309	return ret;
4310}
4311
4312int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4313			      int mode)
4314{
4315	int ret = 0;
4316	struct address_space *mapping = inode->i_mapping;
4317	struct page *page;
4318	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319		PAGE_SHIFT;
4320
4321	struct extent_page_data epd = {
4322		.bio = NULL,
4323		.extent_locked = 1,
4324		.sync_io = mode == WB_SYNC_ALL,
4325	};
4326	struct writeback_control wbc_writepages = {
4327		.sync_mode	= mode,
4328		.nr_to_write	= nr_pages * 2,
4329		.range_start	= start,
4330		.range_end	= end + 1,
4331		/* We're called from an async helper function */
4332		.punt_to_cgroup	= 1,
4333		.no_cgroup_owner = 1,
4334	};
4335
4336	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4337	while (start <= end) {
4338		page = find_get_page(mapping, start >> PAGE_SHIFT);
4339		if (clear_page_dirty_for_io(page))
4340			ret = __extent_writepage(page, &wbc_writepages, &epd);
4341		else {
4342			btrfs_writepage_endio_finish_ordered(page, start,
4343						    start + PAGE_SIZE - 1, 1);
4344			unlock_page(page);
 
 
 
4345		}
4346		put_page(page);
4347		start += PAGE_SIZE;
4348	}
4349
4350	ASSERT(ret <= 0);
4351	if (ret == 0)
4352		ret = flush_write_bio(&epd);
4353	else
4354		end_write_bio(&epd, ret);
4355
4356	wbc_detach_inode(&wbc_writepages);
4357	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4358}
4359
4360int extent_writepages(struct address_space *mapping,
4361		      struct writeback_control *wbc)
4362{
 
4363	int ret = 0;
4364	struct extent_page_data epd = {
4365		.bio = NULL,
4366		.extent_locked = 0,
4367		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4368	};
4369
4370	ret = extent_write_cache_pages(mapping, wbc, &epd);
4371	ASSERT(ret <= 0);
4372	if (ret < 0) {
4373		end_write_bio(&epd, ret);
4374		return ret;
4375	}
4376	ret = flush_write_bio(&epd);
 
4377	return ret;
4378}
4379
4380void extent_readahead(struct readahead_control *rac)
4381{
4382	struct bio *bio = NULL;
4383	unsigned long bio_flags = 0;
4384	struct page *pagepool[16];
 
 
 
4385	struct extent_map *em_cached = NULL;
4386	u64 prev_em_start = (u64)-1;
4387	int nr;
4388
4389	while ((nr = readahead_page_batch(rac, pagepool))) {
4390		u64 contig_start = page_offset(pagepool[0]);
4391		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4392
4393		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
 
4394
4395		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396				&em_cached, &bio, &bio_flags, &prev_em_start);
4397	}
4398
4399	if (em_cached)
4400		free_extent_map(em_cached);
4401
4402	if (bio) {
4403		if (submit_one_bio(bio, 0, bio_flags))
4404			return;
4405	}
4406}
4407
4408/*
4409 * basic invalidatepage code, this waits on any locked or writeback
4410 * ranges corresponding to the page, and then deletes any extent state
4411 * records from the tree
4412 */
4413int extent_invalidatepage(struct extent_io_tree *tree,
4414			  struct page *page, unsigned long offset)
4415{
4416	struct extent_state *cached_state = NULL;
4417	u64 start = page_offset(page);
4418	u64 end = start + PAGE_SIZE - 1;
4419	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 
 
 
4420
4421	start += ALIGN(offset, blocksize);
4422	if (start > end)
4423		return 0;
4424
4425	lock_extent_bits(tree, start, end, &cached_state);
4426	wait_on_page_writeback(page);
4427	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
 
 
 
 
 
4429	return 0;
4430}
4431
4432/*
4433 * a helper for releasepage, this tests for areas of the page that
4434 * are locked or under IO and drops the related state bits if it is safe
4435 * to drop the page.
4436 */
4437static int try_release_extent_state(struct extent_io_tree *tree,
4438				    struct page *page, gfp_t mask)
4439{
4440	u64 start = page_offset(page);
4441	u64 end = start + PAGE_SIZE - 1;
4442	int ret = 1;
4443
4444	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4445		ret = 0;
4446	} else {
 
 
 
 
 
4447		/*
4448		 * at this point we can safely clear everything except the
4449		 * locked bit and the nodatasum bit
 
 
4450		 */
4451		ret = __clear_extent_bit(tree, start, end,
4452				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4453				 0, 0, NULL, mask, NULL);
4454
4455		/* if clear_extent_bit failed for enomem reasons,
4456		 * we can't allow the release to continue.
4457		 */
4458		if (ret < 0)
4459			ret = 0;
4460		else
4461			ret = 1;
4462	}
4463	return ret;
4464}
4465
4466/*
4467 * a helper for releasepage.  As long as there are no locked extents
4468 * in the range corresponding to the page, both state records and extent
4469 * map records are removed
4470 */
4471int try_release_extent_mapping(struct page *page, gfp_t mask)
4472{
4473	struct extent_map *em;
4474	u64 start = page_offset(page);
4475	u64 end = start + PAGE_SIZE - 1;
4476	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4479
4480	if (gfpflags_allow_blocking(mask) &&
4481	    page->mapping->host->i_size > SZ_16M) {
4482		u64 len;
4483		while (start <= end) {
4484			struct btrfs_fs_info *fs_info;
4485			u64 cur_gen;
4486
4487			len = end - start + 1;
4488			write_lock(&map->lock);
4489			em = lookup_extent_mapping(map, start, len);
4490			if (!em) {
4491				write_unlock(&map->lock);
4492				break;
4493			}
4494			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495			    em->start != start) {
4496				write_unlock(&map->lock);
4497				free_extent_map(em);
4498				break;
4499			}
4500			if (test_range_bit(tree, em->start,
4501					   extent_map_end(em) - 1,
4502					   EXTENT_LOCKED, 0, NULL))
4503				goto next;
4504			/*
4505			 * If it's not in the list of modified extents, used
4506			 * by a fast fsync, we can remove it. If it's being
4507			 * logged we can safely remove it since fsync took an
4508			 * extra reference on the em.
4509			 */
4510			if (list_empty(&em->list) ||
4511			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512				goto remove_em;
4513			/*
4514			 * If it's in the list of modified extents, remove it
4515			 * only if its generation is older then the current one,
4516			 * in which case we don't need it for a fast fsync.
4517			 * Otherwise don't remove it, we could be racing with an
4518			 * ongoing fast fsync that could miss the new extent.
4519			 */
4520			fs_info = btrfs_inode->root->fs_info;
4521			spin_lock(&fs_info->trans_lock);
4522			cur_gen = fs_info->generation;
4523			spin_unlock(&fs_info->trans_lock);
4524			if (em->generation >= cur_gen)
4525				goto next;
4526remove_em:
4527			/*
4528			 * We only remove extent maps that are not in the list of
4529			 * modified extents or that are in the list but with a
4530			 * generation lower then the current generation, so there
4531			 * is no need to set the full fsync flag on the inode (it
4532			 * hurts the fsync performance for workloads with a data
4533			 * size that exceeds or is close to the system's memory).
4534			 */
4535			remove_extent_mapping(map, em);
4536			/* once for the rb tree */
4537			free_extent_map(em);
4538next:
4539			start = extent_map_end(em);
4540			write_unlock(&map->lock);
4541
4542			/* once for us */
4543			free_extent_map(em);
4544
4545			cond_resched(); /* Allow large-extent preemption. */
4546		}
4547	}
4548	return try_release_extent_state(tree, page, mask);
4549}
4550
4551/*
4552 * helper function for fiemap, which doesn't want to see any holes.
4553 * This maps until we find something past 'last'
4554 */
4555static struct extent_map *get_extent_skip_holes(struct inode *inode,
4556						u64 offset, u64 last)
4557{
4558	u64 sectorsize = btrfs_inode_sectorsize(inode);
4559	struct extent_map *em;
4560	u64 len;
4561
4562	if (offset >= last)
4563		return NULL;
 
 
 
4564
4565	while (1) {
4566		len = last - offset;
4567		if (len == 0)
 
4568			break;
4569		len = ALIGN(len, sectorsize);
4570		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4571		if (IS_ERR_OR_NULL(em))
4572			return em;
4573
4574		/* if this isn't a hole return it */
4575		if (em->block_start != EXTENT_MAP_HOLE)
4576			return em;
4577
4578		/* this is a hole, advance to the next extent */
4579		offset = extent_map_end(em);
4580		free_extent_map(em);
4581		if (offset >= last)
4582			break;
4583	}
4584	return NULL;
4585}
4586
4587/*
4588 * To cache previous fiemap extent
4589 *
4590 * Will be used for merging fiemap extent
4591 */
4592struct fiemap_cache {
4593	u64 offset;
4594	u64 phys;
4595	u64 len;
4596	u32 flags;
4597	bool cached;
4598};
4599
4600/*
4601 * Helper to submit fiemap extent.
4602 *
4603 * Will try to merge current fiemap extent specified by @offset, @phys,
4604 * @len and @flags with cached one.
4605 * And only when we fails to merge, cached one will be submitted as
4606 * fiemap extent.
4607 *
4608 * Return value is the same as fiemap_fill_next_extent().
4609 */
4610static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4611				struct fiemap_cache *cache,
4612				u64 offset, u64 phys, u64 len, u32 flags)
4613{
4614	int ret = 0;
4615
4616	if (!cache->cached)
4617		goto assign;
4618
4619	/*
4620	 * Sanity check, extent_fiemap() should have ensured that new
4621	 * fiemap extent won't overlap with cached one.
4622	 * Not recoverable.
4623	 *
4624	 * NOTE: Physical address can overlap, due to compression
4625	 */
4626	if (cache->offset + cache->len > offset) {
4627		WARN_ON(1);
4628		return -EINVAL;
4629	}
4630
4631	/*
4632	 * Only merges fiemap extents if
4633	 * 1) Their logical addresses are continuous
4634	 *
4635	 * 2) Their physical addresses are continuous
4636	 *    So truly compressed (physical size smaller than logical size)
4637	 *    extents won't get merged with each other
4638	 *
4639	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4640	 *    So regular extent won't get merged with prealloc extent
4641	 */
4642	if (cache->offset + cache->len  == offset &&
4643	    cache->phys + cache->len == phys  &&
4644	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4645			(flags & ~FIEMAP_EXTENT_LAST)) {
4646		cache->len += len;
4647		cache->flags |= flags;
4648		goto try_submit_last;
4649	}
4650
4651	/* Not mergeable, need to submit cached one */
4652	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4653				      cache->len, cache->flags);
4654	cache->cached = false;
4655	if (ret)
4656		return ret;
4657assign:
4658	cache->cached = true;
4659	cache->offset = offset;
4660	cache->phys = phys;
4661	cache->len = len;
4662	cache->flags = flags;
4663try_submit_last:
4664	if (cache->flags & FIEMAP_EXTENT_LAST) {
4665		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4666				cache->phys, cache->len, cache->flags);
4667		cache->cached = false;
4668	}
4669	return ret;
4670}
4671
4672/*
4673 * Emit last fiemap cache
4674 *
4675 * The last fiemap cache may still be cached in the following case:
4676 * 0		      4k		    8k
4677 * |<- Fiemap range ->|
4678 * |<------------  First extent ----------->|
4679 *
4680 * In this case, the first extent range will be cached but not emitted.
4681 * So we must emit it before ending extent_fiemap().
4682 */
4683static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4684				  struct fiemap_cache *cache)
4685{
4686	int ret;
4687
4688	if (!cache->cached)
4689		return 0;
4690
4691	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4692				      cache->len, cache->flags);
4693	cache->cached = false;
4694	if (ret > 0)
4695		ret = 0;
4696	return ret;
4697}
4698
4699int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4700		  u64 start, u64 len)
4701{
4702	int ret = 0;
4703	u64 off = start;
4704	u64 max = start + len;
4705	u32 flags = 0;
4706	u32 found_type;
4707	u64 last;
4708	u64 last_for_get_extent = 0;
4709	u64 disko = 0;
4710	u64 isize = i_size_read(inode);
4711	struct btrfs_key found_key;
4712	struct extent_map *em = NULL;
4713	struct extent_state *cached_state = NULL;
4714	struct btrfs_path *path;
4715	struct btrfs_root *root = BTRFS_I(inode)->root;
4716	struct fiemap_cache cache = { 0 };
4717	struct ulist *roots;
4718	struct ulist *tmp_ulist;
4719	int end = 0;
4720	u64 em_start = 0;
4721	u64 em_len = 0;
4722	u64 em_end = 0;
4723
4724	if (len == 0)
4725		return -EINVAL;
4726
4727	path = btrfs_alloc_path();
4728	if (!path)
4729		return -ENOMEM;
4730	path->leave_spinning = 1;
4731
4732	roots = ulist_alloc(GFP_KERNEL);
4733	tmp_ulist = ulist_alloc(GFP_KERNEL);
4734	if (!roots || !tmp_ulist) {
4735		ret = -ENOMEM;
4736		goto out_free_ulist;
4737	}
4738
4739	start = round_down(start, btrfs_inode_sectorsize(inode));
4740	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4741
4742	/*
4743	 * lookup the last file extent.  We're not using i_size here
4744	 * because there might be preallocation past i_size
4745	 */
4746	ret = btrfs_lookup_file_extent(NULL, root, path,
4747			btrfs_ino(BTRFS_I(inode)), -1, 0);
4748	if (ret < 0) {
4749		goto out_free_ulist;
4750	} else {
4751		WARN_ON(!ret);
4752		if (ret == 1)
4753			ret = 0;
4754	}
4755
4756	path->slots[0]--;
4757	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4758	found_type = found_key.type;
4759
4760	/* No extents, but there might be delalloc bits */
4761	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4762	    found_type != BTRFS_EXTENT_DATA_KEY) {
4763		/* have to trust i_size as the end */
4764		last = (u64)-1;
4765		last_for_get_extent = isize;
4766	} else {
4767		/*
4768		 * remember the start of the last extent.  There are a
4769		 * bunch of different factors that go into the length of the
4770		 * extent, so its much less complex to remember where it started
4771		 */
4772		last = found_key.offset;
4773		last_for_get_extent = last + 1;
4774	}
4775	btrfs_release_path(path);
4776
4777	/*
4778	 * we might have some extents allocated but more delalloc past those
4779	 * extents.  so, we trust isize unless the start of the last extent is
4780	 * beyond isize
4781	 */
4782	if (last < isize) {
4783		last = (u64)-1;
4784		last_for_get_extent = isize;
4785	}
4786
4787	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788			 &cached_state);
4789
4790	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4791	if (!em)
4792		goto out;
4793	if (IS_ERR(em)) {
4794		ret = PTR_ERR(em);
4795		goto out;
4796	}
4797
4798	while (!end) {
4799		u64 offset_in_extent = 0;
4800
4801		/* break if the extent we found is outside the range */
4802		if (em->start >= max || extent_map_end(em) < off)
4803			break;
4804
4805		/*
4806		 * get_extent may return an extent that starts before our
4807		 * requested range.  We have to make sure the ranges
4808		 * we return to fiemap always move forward and don't
4809		 * overlap, so adjust the offsets here
 
4810		 */
4811		em_start = max(em->start, off);
4812
 
4813		/*
4814		 * record the offset from the start of the extent
4815		 * for adjusting the disk offset below.  Only do this if the
4816		 * extent isn't compressed since our in ram offset may be past
4817		 * what we have actually allocated on disk.
 
 
4818		 */
4819		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4820			offset_in_extent = em_start - em->start;
4821		em_end = extent_map_end(em);
4822		em_len = em_end - em_start;
4823		flags = 0;
4824		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4825			disko = em->block_start + offset_in_extent;
4826		else
4827			disko = 0;
4828
4829		/*
4830		 * bump off for our next call to get_extent
4831		 */
4832		off = extent_map_end(em);
4833		if (off >= max)
4834			end = 1;
4835
4836		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4837			end = 1;
4838			flags |= FIEMAP_EXTENT_LAST;
4839		} else if (em->block_start == EXTENT_MAP_INLINE) {
4840			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4841				  FIEMAP_EXTENT_NOT_ALIGNED);
4842		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4843			flags |= (FIEMAP_EXTENT_DELALLOC |
4844				  FIEMAP_EXTENT_UNKNOWN);
4845		} else if (fieinfo->fi_extents_max) {
4846			u64 bytenr = em->block_start -
4847				(em->start - em->orig_start);
4848
 
4849			/*
4850			 * As btrfs supports shared space, this information
4851			 * can be exported to userspace tools via
4852			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4853			 * then we're just getting a count and we can skip the
4854			 * lookup stuff.
4855			 */
4856			ret = btrfs_check_shared(root,
4857						 btrfs_ino(BTRFS_I(inode)),
4858						 bytenr, roots, tmp_ulist);
4859			if (ret < 0)
4860				goto out_free;
4861			if (ret)
4862				flags |= FIEMAP_EXTENT_SHARED;
4863			ret = 0;
4864		}
4865		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4866			flags |= FIEMAP_EXTENT_ENCODED;
4867		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4868			flags |= FIEMAP_EXTENT_UNWRITTEN;
4869
4870		free_extent_map(em);
4871		em = NULL;
4872		if ((em_start >= last) || em_len == (u64)-1 ||
4873		   (last == (u64)-1 && isize <= em_end)) {
4874			flags |= FIEMAP_EXTENT_LAST;
4875			end = 1;
4876		}
4877
4878		/* now scan forward to see if this is really the last extent. */
4879		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4880		if (IS_ERR(em)) {
4881			ret = PTR_ERR(em);
4882			goto out;
4883		}
4884		if (!em) {
4885			flags |= FIEMAP_EXTENT_LAST;
4886			end = 1;
4887		}
4888		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4889					   em_len, flags);
4890		if (ret) {
4891			if (ret == 1)
4892				ret = 0;
4893			goto out_free;
4894		}
4895	}
4896out_free:
4897	if (!ret)
4898		ret = emit_last_fiemap_cache(fieinfo, &cache);
4899	free_extent_map(em);
4900out:
4901	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4902			     &cached_state);
4903
4904out_free_ulist:
4905	btrfs_free_path(path);
4906	ulist_free(roots);
4907	ulist_free(tmp_ulist);
4908	return ret;
4909}
4910
4911static void __free_extent_buffer(struct extent_buffer *eb)
4912{
4913	kmem_cache_free(extent_buffer_cache, eb);
4914}
4915
4916int extent_buffer_under_io(const struct extent_buffer *eb)
4917{
4918	return (atomic_read(&eb->io_pages) ||
4919		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4920		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4921}
4922
4923/*
4924 * Release all pages attached to the extent buffer.
4925 */
4926static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4927{
4928	int i;
4929	int num_pages;
4930	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4931
4932	BUG_ON(extent_buffer_under_io(eb));
4933
4934	num_pages = num_extent_pages(eb);
4935	for (i = 0; i < num_pages; i++) {
4936		struct page *page = eb->pages[i];
 
 
 
 
4937
4938		if (!page)
4939			continue;
 
 
 
 
 
 
 
 
 
 
 
4940		if (mapped)
4941			spin_lock(&page->mapping->private_lock);
 
 
 
 
4942		/*
4943		 * We do this since we'll remove the pages after we've
4944		 * removed the eb from the radix tree, so we could race
4945		 * and have this page now attached to the new eb.  So
4946		 * only clear page_private if it's still connected to
4947		 * this eb.
4948		 */
4949		if (PagePrivate(page) &&
4950		    page->private == (unsigned long)eb) {
4951			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4952			BUG_ON(PageDirty(page));
4953			BUG_ON(PageWriteback(page));
4954			/*
4955			 * We need to make sure we haven't be attached
4956			 * to a new eb.
4957			 */
4958			detach_page_private(page);
4959		}
4960
4961		if (mapped)
4962			spin_unlock(&page->mapping->private_lock);
 
 
4963
4964		/* One for when we allocated the page */
4965		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4966	}
4967}
4968
4969/*
4970 * Helper for releasing the extent buffer.
4971 */
4972static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973{
4974	btrfs_release_extent_buffer_pages(eb);
4975	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4976	__free_extent_buffer(eb);
4977}
4978
4979static struct extent_buffer *
4980__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4981		      unsigned long len)
4982{
4983	struct extent_buffer *eb = NULL;
4984
4985	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4986	eb->start = start;
4987	eb->len = len;
4988	eb->fs_info = fs_info;
4989	eb->bflags = 0;
4990	rwlock_init(&eb->lock);
4991	atomic_set(&eb->blocking_readers, 0);
4992	eb->blocking_writers = 0;
4993	eb->lock_nested = false;
4994	init_waitqueue_head(&eb->write_lock_wq);
4995	init_waitqueue_head(&eb->read_lock_wq);
4996
4997	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998			     &fs_info->allocated_ebs);
4999
5000	spin_lock_init(&eb->refs_lock);
5001	atomic_set(&eb->refs, 1);
5002	atomic_set(&eb->io_pages, 0);
5003
5004	/*
5005	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006	 */
5007	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008		> MAX_INLINE_EXTENT_BUFFER_SIZE);
5009	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5010
5011#ifdef CONFIG_BTRFS_DEBUG
5012	eb->spinning_writers = 0;
5013	atomic_set(&eb->spinning_readers, 0);
5014	atomic_set(&eb->read_locks, 0);
5015	eb->write_locks = 0;
5016#endif
5017
5018	return eb;
5019}
5020
5021struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5022{
5023	int i;
5024	struct page *p;
5025	struct extent_buffer *new;
5026	int num_pages = num_extent_pages(src);
 
5027
5028	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5029	if (new == NULL)
5030		return NULL;
5031
5032	for (i = 0; i < num_pages; i++) {
5033		p = alloc_page(GFP_NOFS);
5034		if (!p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5035			btrfs_release_extent_buffer(new);
5036			return NULL;
5037		}
5038		attach_extent_buffer_page(new, p);
5039		WARN_ON(PageDirty(p));
5040		SetPageUptodate(p);
5041		new->pages[i] = p;
5042		copy_page(page_address(p), page_address(src->pages[i]));
5043	}
5044
5045	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5046	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5047
5048	return new;
5049}
5050
5051struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052						  u64 start, unsigned long len)
5053{
5054	struct extent_buffer *eb;
5055	int num_pages;
5056	int i;
5057
5058	eb = __alloc_extent_buffer(fs_info, start, len);
5059	if (!eb)
5060		return NULL;
5061
5062	num_pages = num_extent_pages(eb);
5063	for (i = 0; i < num_pages; i++) {
5064		eb->pages[i] = alloc_page(GFP_NOFS);
5065		if (!eb->pages[i])
 
 
 
 
5066			goto err;
5067	}
 
5068	set_extent_buffer_uptodate(eb);
5069	btrfs_set_header_nritems(eb, 0);
5070	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5071
5072	return eb;
5073err:
5074	for (; i > 0; i--)
5075		__free_page(eb->pages[i - 1]);
 
 
 
 
5076	__free_extent_buffer(eb);
5077	return NULL;
5078}
5079
5080struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5081						u64 start)
5082{
5083	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5084}
5085
5086static void check_buffer_tree_ref(struct extent_buffer *eb)
5087{
5088	int refs;
5089	/*
5090	 * The TREE_REF bit is first set when the extent_buffer is added
5091	 * to the radix tree. It is also reset, if unset, when a new reference
5092	 * is created by find_extent_buffer.
5093	 *
5094	 * It is only cleared in two cases: freeing the last non-tree
5095	 * reference to the extent_buffer when its STALE bit is set or
5096	 * calling releasepage when the tree reference is the only reference.
5097	 *
5098	 * In both cases, care is taken to ensure that the extent_buffer's
5099	 * pages are not under io. However, releasepage can be concurrently
5100	 * called with creating new references, which is prone to race
5101	 * conditions between the calls to check_buffer_tree_ref in those
5102	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5103	 *
5104	 * The actual lifetime of the extent_buffer in the radix tree is
5105	 * adequately protected by the refcount, but the TREE_REF bit and
5106	 * its corresponding reference are not. To protect against this
5107	 * class of races, we call check_buffer_tree_ref from the codepaths
5108	 * which trigger io after they set eb->io_pages. Note that once io is
5109	 * initiated, TREE_REF can no longer be cleared, so that is the
5110	 * moment at which any such race is best fixed.
5111	 */
5112	refs = atomic_read(&eb->refs);
5113	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5114		return;
5115
5116	spin_lock(&eb->refs_lock);
5117	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5118		atomic_inc(&eb->refs);
5119	spin_unlock(&eb->refs_lock);
5120}
5121
5122static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5123		struct page *accessed)
5124{
5125	int num_pages, i;
5126
5127	check_buffer_tree_ref(eb);
5128
5129	num_pages = num_extent_pages(eb);
5130	for (i = 0; i < num_pages; i++) {
5131		struct page *p = eb->pages[i];
5132
5133		if (p != accessed)
5134			mark_page_accessed(p);
5135	}
5136}
5137
5138struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5139					 u64 start)
5140{
5141	struct extent_buffer *eb;
5142
5143	rcu_read_lock();
5144	eb = radix_tree_lookup(&fs_info->buffer_radix,
5145			       start >> PAGE_SHIFT);
5146	if (eb && atomic_inc_not_zero(&eb->refs)) {
5147		rcu_read_unlock();
5148		/*
5149		 * Lock our eb's refs_lock to avoid races with
5150		 * free_extent_buffer. When we get our eb it might be flagged
5151		 * with EXTENT_BUFFER_STALE and another task running
5152		 * free_extent_buffer might have seen that flag set,
5153		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5154		 * writeback flags not set) and it's still in the tree (flag
5155		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5156		 * of decrementing the extent buffer's reference count twice.
5157		 * So here we could race and increment the eb's reference count,
5158		 * clear its stale flag, mark it as dirty and drop our reference
5159		 * before the other task finishes executing free_extent_buffer,
5160		 * which would later result in an attempt to free an extent
5161		 * buffer that is dirty.
5162		 */
5163		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5164			spin_lock(&eb->refs_lock);
5165			spin_unlock(&eb->refs_lock);
5166		}
5167		mark_extent_buffer_accessed(eb, NULL);
5168		return eb;
5169	}
5170	rcu_read_unlock();
5171
5172	return NULL;
5173}
5174
5175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5176struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5177					u64 start)
5178{
5179	struct extent_buffer *eb, *exists = NULL;
5180	int ret;
5181
5182	eb = find_extent_buffer(fs_info, start);
5183	if (eb)
5184		return eb;
5185	eb = alloc_dummy_extent_buffer(fs_info, start);
5186	if (!eb)
5187		return ERR_PTR(-ENOMEM);
5188	eb->fs_info = fs_info;
5189again:
5190	ret = radix_tree_preload(GFP_NOFS);
5191	if (ret) {
5192		exists = ERR_PTR(ret);
5193		goto free_eb;
5194	}
5195	spin_lock(&fs_info->buffer_lock);
5196	ret = radix_tree_insert(&fs_info->buffer_radix,
5197				start >> PAGE_SHIFT, eb);
5198	spin_unlock(&fs_info->buffer_lock);
5199	radix_tree_preload_end();
5200	if (ret == -EEXIST) {
5201		exists = find_extent_buffer(fs_info, start);
5202		if (exists)
5203			goto free_eb;
5204		else
5205			goto again;
5206	}
5207	check_buffer_tree_ref(eb);
5208	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5209
5210	return eb;
5211free_eb:
5212	btrfs_release_extent_buffer(eb);
5213	return exists;
5214}
5215#endif
5216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5217struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5218					  u64 start)
5219{
5220	unsigned long len = fs_info->nodesize;
5221	int num_pages;
5222	int i;
5223	unsigned long index = start >> PAGE_SHIFT;
5224	struct extent_buffer *eb;
5225	struct extent_buffer *exists = NULL;
5226	struct page *p;
5227	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
5228	int uptodate = 1;
5229	int ret;
5230
5231	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5232		btrfs_err(fs_info, "bad tree block start %llu", start);
5233		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
5234	}
 
 
 
5235
5236	eb = find_extent_buffer(fs_info, start);
5237	if (eb)
5238		return eb;
5239
5240	eb = __alloc_extent_buffer(fs_info, start, len);
5241	if (!eb)
5242		return ERR_PTR(-ENOMEM);
5243
5244	num_pages = num_extent_pages(eb);
5245	for (i = 0; i < num_pages; i++, index++) {
5246		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5247		if (!p) {
5248			exists = ERR_PTR(-ENOMEM);
5249			goto free_eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5250		}
 
5251
5252		spin_lock(&mapping->private_lock);
5253		if (PagePrivate(p)) {
5254			/*
5255			 * We could have already allocated an eb for this page
5256			 * and attached one so lets see if we can get a ref on
5257			 * the existing eb, and if we can we know it's good and
5258			 * we can just return that one, else we know we can just
5259			 * overwrite page->private.
5260			 */
5261			exists = (struct extent_buffer *)p->private;
5262			if (atomic_inc_not_zero(&exists->refs)) {
5263				spin_unlock(&mapping->private_lock);
5264				unlock_page(p);
5265				put_page(p);
5266				mark_extent_buffer_accessed(exists, p);
5267				goto free_eb;
5268			}
5269			exists = NULL;
5270
5271			/*
5272			 * Do this so attach doesn't complain and we need to
5273			 * drop the ref the old guy had.
5274			 */
5275			ClearPagePrivate(p);
5276			WARN_ON(PageDirty(p));
5277			put_page(p);
5278		}
5279		attach_extent_buffer_page(eb, p);
5280		spin_unlock(&mapping->private_lock);
5281		WARN_ON(PageDirty(p));
5282		eb->pages[i] = p;
5283		if (!PageUptodate(p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5284			uptodate = 0;
5285
5286		/*
5287		 * We can't unlock the pages just yet since the extent buffer
5288		 * hasn't been properly inserted in the radix tree, this
5289		 * opens a race with btree_releasepage which can free a page
5290		 * while we are still filling in all pages for the buffer and
5291		 * we could crash.
5292		 */
5293	}
5294	if (uptodate)
5295		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
5296again:
5297	ret = radix_tree_preload(GFP_NOFS);
5298	if (ret) {
5299		exists = ERR_PTR(ret);
5300		goto free_eb;
5301	}
5302
5303	spin_lock(&fs_info->buffer_lock);
5304	ret = radix_tree_insert(&fs_info->buffer_radix,
5305				start >> PAGE_SHIFT, eb);
5306	spin_unlock(&fs_info->buffer_lock);
5307	radix_tree_preload_end();
5308	if (ret == -EEXIST) {
5309		exists = find_extent_buffer(fs_info, start);
5310		if (exists)
5311			goto free_eb;
 
5312		else
5313			goto again;
5314	}
5315	/* add one reference for the tree */
5316	check_buffer_tree_ref(eb);
5317	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5318
5319	/*
5320	 * Now it's safe to unlock the pages because any calls to
5321	 * btree_releasepage will correctly detect that a page belongs to a
5322	 * live buffer and won't free them prematurely.
5323	 */
5324	for (i = 0; i < num_pages; i++)
5325		unlock_page(eb->pages[i]);
5326	return eb;
5327
5328free_eb:
5329	WARN_ON(!atomic_dec_and_test(&eb->refs));
5330	for (i = 0; i < num_pages; i++) {
5331		if (eb->pages[i])
5332			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5333	}
 
 
 
 
 
5334
5335	btrfs_release_extent_buffer(eb);
5336	return exists;
 
 
 
5337}
5338
5339static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5340{
5341	struct extent_buffer *eb =
5342			container_of(head, struct extent_buffer, rcu_head);
5343
5344	__free_extent_buffer(eb);
5345}
5346
5347static int release_extent_buffer(struct extent_buffer *eb)
5348	__releases(&eb->refs_lock)
5349{
5350	lockdep_assert_held(&eb->refs_lock);
5351
5352	WARN_ON(atomic_read(&eb->refs) == 0);
5353	if (atomic_dec_and_test(&eb->refs)) {
5354		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5355			struct btrfs_fs_info *fs_info = eb->fs_info;
5356
5357			spin_unlock(&eb->refs_lock);
5358
5359			spin_lock(&fs_info->buffer_lock);
5360			radix_tree_delete(&fs_info->buffer_radix,
5361					  eb->start >> PAGE_SHIFT);
5362			spin_unlock(&fs_info->buffer_lock);
5363		} else {
5364			spin_unlock(&eb->refs_lock);
5365		}
5366
5367		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5368		/* Should be safe to release our pages at this point */
5369		btrfs_release_extent_buffer_pages(eb);
5370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5371		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5372			__free_extent_buffer(eb);
5373			return 1;
5374		}
5375#endif
5376		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5377		return 1;
5378	}
5379	spin_unlock(&eb->refs_lock);
5380
5381	return 0;
5382}
5383
5384void free_extent_buffer(struct extent_buffer *eb)
5385{
5386	int refs;
5387	int old;
5388	if (!eb)
5389		return;
5390
 
5391	while (1) {
5392		refs = atomic_read(&eb->refs);
5393		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5394		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5395			refs == 1))
5396			break;
5397		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5398		if (old == refs)
5399			return;
5400	}
5401
5402	spin_lock(&eb->refs_lock);
5403	if (atomic_read(&eb->refs) == 2 &&
5404	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5405	    !extent_buffer_under_io(eb) &&
5406	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407		atomic_dec(&eb->refs);
5408
5409	/*
5410	 * I know this is terrible, but it's temporary until we stop tracking
5411	 * the uptodate bits and such for the extent buffers.
5412	 */
5413	release_extent_buffer(eb);
5414}
5415
5416void free_extent_buffer_stale(struct extent_buffer *eb)
5417{
5418	if (!eb)
5419		return;
5420
5421	spin_lock(&eb->refs_lock);
5422	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5423
5424	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5425	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5426		atomic_dec(&eb->refs);
5427	release_extent_buffer(eb);
5428}
5429
5430void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5431{
5432	int i;
5433	int num_pages;
5434	struct page *page;
 
 
 
 
 
 
5435
5436	num_pages = num_extent_pages(eb);
 
 
 
 
5437
5438	for (i = 0; i < num_pages; i++) {
5439		page = eb->pages[i];
5440		if (!PageDirty(page))
5441			continue;
 
 
 
 
 
 
 
 
 
 
 
 
5442
5443		lock_page(page);
5444		WARN_ON(!PagePrivate(page));
5445
5446		clear_page_dirty_for_io(page);
5447		xa_lock_irq(&page->mapping->i_pages);
5448		if (!PageDirty(page))
5449			__xa_clear_mark(&page->mapping->i_pages,
5450					page_index(page), PAGECACHE_TAG_DIRTY);
5451		xa_unlock_irq(&page->mapping->i_pages);
5452		ClearPageError(page);
5453		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5454	}
5455	WARN_ON(atomic_read(&eb->refs) == 0);
5456}
5457
5458bool set_extent_buffer_dirty(struct extent_buffer *eb)
5459{
5460	int i;
5461	int num_pages;
5462	bool was_dirty;
5463
5464	check_buffer_tree_ref(eb);
5465
5466	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5467
5468	num_pages = num_extent_pages(eb);
5469	WARN_ON(atomic_read(&eb->refs) == 0);
5470	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
 
5471
5472	if (!was_dirty)
5473		for (i = 0; i < num_pages; i++)
5474			set_page_dirty(eb->pages[i]);
5475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5476#ifdef CONFIG_BTRFS_DEBUG
5477	for (i = 0; i < num_pages; i++)
5478		ASSERT(PageDirty(eb->pages[i]));
5479#endif
5480
5481	return was_dirty;
5482}
5483
5484void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5485{
5486	int i;
5487	struct page *page;
5488	int num_pages;
5489
5490	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5491	num_pages = num_extent_pages(eb);
5492	for (i = 0; i < num_pages; i++) {
5493		page = eb->pages[i];
5494		if (page)
5495			ClearPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
5496	}
5497}
5498
5499void set_extent_buffer_uptodate(struct extent_buffer *eb)
5500{
5501	int i;
5502	struct page *page;
5503	int num_pages;
5504
5505	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5506	num_pages = num_extent_pages(eb);
5507	for (i = 0; i < num_pages; i++) {
5508		page = eb->pages[i];
5509		SetPageUptodate(page);
 
 
 
 
 
 
 
 
5510	}
5511}
5512
5513int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5514{
5515	int i;
5516	struct page *page;
5517	int err;
5518	int ret = 0;
5519	int locked_pages = 0;
5520	int all_uptodate = 1;
5521	int num_pages;
5522	unsigned long num_reads = 0;
5523	struct bio *bio = NULL;
5524	unsigned long bio_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5525
5526	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5527		return 0;
5528
5529	num_pages = num_extent_pages(eb);
5530	for (i = 0; i < num_pages; i++) {
5531		page = eb->pages[i];
5532		if (wait == WAIT_NONE) {
5533			if (!trylock_page(page))
5534				goto unlock_exit;
5535		} else {
5536			lock_page(page);
5537		}
5538		locked_pages++;
5539	}
5540	/*
5541	 * We need to firstly lock all pages to make sure that
5542	 * the uptodate bit of our pages won't be affected by
5543	 * clear_extent_buffer_uptodate().
5544	 */
5545	for (i = 0; i < num_pages; i++) {
5546		page = eb->pages[i];
5547		if (!PageUptodate(page)) {
5548			num_reads++;
5549			all_uptodate = 0;
5550		}
5551	}
5552
5553	if (all_uptodate) {
5554		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5555		goto unlock_exit;
 
 
 
 
 
 
 
 
 
 
5556	}
5557
5558	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5559	eb->read_mirror = 0;
5560	atomic_set(&eb->io_pages, num_reads);
5561	/*
5562	 * It is possible for releasepage to clear the TREE_REF bit before we
5563	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5564	 */
5565	check_buffer_tree_ref(eb);
5566	for (i = 0; i < num_pages; i++) {
5567		page = eb->pages[i];
5568
5569		if (!PageUptodate(page)) {
5570			if (ret) {
5571				atomic_dec(&eb->io_pages);
5572				unlock_page(page);
5573				continue;
5574			}
 
 
 
 
 
 
 
5575
5576			ClearPageError(page);
5577			err = __extent_read_full_page(page,
5578						      btree_get_extent, &bio,
5579						      mirror_num, &bio_flags,
5580						      REQ_META);
5581			if (err) {
5582				ret = err;
5583				/*
5584				 * We use &bio in above __extent_read_full_page,
5585				 * so we ensure that if it returns error, the
5586				 * current page fails to add itself to bio and
5587				 * it's been unlocked.
5588				 *
5589				 * We must dec io_pages by ourselves.
5590				 */
5591				atomic_dec(&eb->io_pages);
5592			}
5593		} else {
5594			unlock_page(page);
5595		}
5596	}
 
5597
5598	if (bio) {
5599		err = submit_one_bio(bio, mirror_num, bio_flags);
5600		if (err)
5601			return err;
 
5602	}
5603
5604	if (ret || wait != WAIT_COMPLETE)
5605		return ret;
5606
5607	for (i = 0; i < num_pages; i++) {
5608		page = eb->pages[i];
5609		wait_on_page_locked(page);
5610		if (!PageUptodate(page))
5611			ret = -EIO;
5612	}
 
5613
5614	return ret;
 
5615
5616unlock_exit:
5617	while (locked_pages > 0) {
5618		locked_pages--;
5619		page = eb->pages[locked_pages];
5620		unlock_page(page);
5621	}
5622	return ret;
 
 
 
 
 
 
 
 
 
 
5623}
5624
5625void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626			unsigned long start, unsigned long len)
5627{
 
5628	size_t cur;
5629	size_t offset;
5630	struct page *page;
5631	char *kaddr;
5632	char *dst = (char *)dstv;
5633	unsigned long i = start >> PAGE_SHIFT;
5634
5635	if (start + len > eb->len) {
5636		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5637		     eb->start, eb->len, start, len);
5638		memset(dst, 0, len);
 
 
 
 
 
 
 
5639		return;
5640	}
5641
5642	offset = offset_in_page(start);
5643
5644	while (len > 0) {
5645		page = eb->pages[i];
5646
5647		cur = min(len, (PAGE_SIZE - offset));
5648		kaddr = page_address(page);
5649		memcpy(dst, kaddr + offset, cur);
5650
5651		dst += cur;
5652		len -= cur;
5653		offset = 0;
5654		i++;
5655	}
5656}
5657
5658int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5659				       void __user *dstv,
5660				       unsigned long start, unsigned long len)
5661{
 
5662	size_t cur;
5663	size_t offset;
5664	struct page *page;
5665	char *kaddr;
5666	char __user *dst = (char __user *)dstv;
5667	unsigned long i = start >> PAGE_SHIFT;
5668	int ret = 0;
5669
5670	WARN_ON(start > eb->len);
5671	WARN_ON(start + len > eb->start + eb->len);
5672
5673	offset = offset_in_page(start);
 
 
 
 
 
 
5674
5675	while (len > 0) {
5676		page = eb->pages[i];
5677
5678		cur = min(len, (PAGE_SIZE - offset));
5679		kaddr = page_address(page);
5680		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5681			ret = -EFAULT;
5682			break;
5683		}
5684
5685		dst += cur;
5686		len -= cur;
5687		offset = 0;
5688		i++;
5689	}
5690
5691	return ret;
5692}
5693
5694int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5695			 unsigned long start, unsigned long len)
5696{
 
5697	size_t cur;
5698	size_t offset;
5699	struct page *page;
5700	char *kaddr;
5701	char *ptr = (char *)ptrv;
5702	unsigned long i = start >> PAGE_SHIFT;
5703	int ret = 0;
5704
5705	WARN_ON(start > eb->len);
5706	WARN_ON(start + len > eb->start + eb->len);
5707
5708	offset = offset_in_page(start);
5709
5710	while (len > 0) {
5711		page = eb->pages[i];
5712
5713		cur = min(len, (PAGE_SIZE - offset));
5714
5715		kaddr = page_address(page);
 
 
5716		ret = memcmp(ptr, kaddr + offset, cur);
5717		if (ret)
5718			break;
5719
5720		ptr += cur;
5721		len -= cur;
5722		offset = 0;
5723		i++;
5724	}
5725	return ret;
5726}
5727
5728void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5729		const void *srcv)
 
 
 
 
 
5730{
5731	char *kaddr;
 
5732
5733	WARN_ON(!PageUptodate(eb->pages[0]));
5734	kaddr = page_address(eb->pages[0]);
5735	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5736			BTRFS_FSID_SIZE);
5737}
5738
5739void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5740{
5741	char *kaddr;
 
 
 
 
 
 
 
5742
5743	WARN_ON(!PageUptodate(eb->pages[0]));
5744	kaddr = page_address(eb->pages[0]);
5745	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5746			BTRFS_FSID_SIZE);
 
 
 
 
 
5747}
5748
5749void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5750			 unsigned long start, unsigned long len)
 
5751{
 
5752	size_t cur;
5753	size_t offset;
5754	struct page *page;
5755	char *kaddr;
5756	char *src = (char *)srcv;
5757	unsigned long i = start >> PAGE_SHIFT;
 
 
5758
5759	WARN_ON(start > eb->len);
5760	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
5761
5762	offset = offset_in_page(start);
5763
5764	while (len > 0) {
5765		page = eb->pages[i];
5766		WARN_ON(!PageUptodate(page));
5767
5768		cur = min(len, PAGE_SIZE - offset);
5769		kaddr = page_address(page);
5770		memcpy(kaddr + offset, src, cur);
 
 
 
5771
5772		src += cur;
5773		len -= cur;
5774		offset = 0;
5775		i++;
5776	}
5777}
5778
5779void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5780		unsigned long len)
5781{
5782	size_t cur;
5783	size_t offset;
5784	struct page *page;
5785	char *kaddr;
5786	unsigned long i = start >> PAGE_SHIFT;
5787
5788	WARN_ON(start > eb->len);
5789	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5790
5791	offset = offset_in_page(start);
 
 
 
5792
5793	while (len > 0) {
5794		page = eb->pages[i];
5795		WARN_ON(!PageUptodate(page));
 
5796
5797		cur = min(len, PAGE_SIZE - offset);
5798		kaddr = page_address(page);
5799		memset(kaddr + offset, 0, cur);
5800
5801		len -= cur;
5802		offset = 0;
5803		i++;
5804	}
5805}
5806
 
 
 
 
 
 
 
 
5807void copy_extent_buffer_full(const struct extent_buffer *dst,
5808			     const struct extent_buffer *src)
5809{
5810	int i;
5811	int num_pages;
5812
5813	ASSERT(dst->len == src->len);
5814
5815	num_pages = num_extent_pages(dst);
5816	for (i = 0; i < num_pages; i++)
5817		copy_page(page_address(dst->pages[i]),
5818				page_address(src->pages[i]));
 
 
 
 
 
 
5819}
5820
5821void copy_extent_buffer(const struct extent_buffer *dst,
5822			const struct extent_buffer *src,
5823			unsigned long dst_offset, unsigned long src_offset,
5824			unsigned long len)
5825{
 
5826	u64 dst_len = dst->len;
5827	size_t cur;
5828	size_t offset;
5829	struct page *page;
5830	char *kaddr;
5831	unsigned long i = dst_offset >> PAGE_SHIFT;
 
 
 
 
5832
5833	WARN_ON(src->len != dst_len);
5834
5835	offset = offset_in_page(dst_offset);
5836
5837	while (len > 0) {
5838		page = dst->pages[i];
5839		WARN_ON(!PageUptodate(page));
5840
5841		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5842
5843		kaddr = page_address(page);
5844		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5845
5846		src_offset += cur;
5847		len -= cur;
5848		offset = 0;
5849		i++;
5850	}
5851}
5852
5853/*
5854 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5855 * given bit number
5856 * @eb: the extent buffer
5857 * @start: offset of the bitmap item in the extent buffer
5858 * @nr: bit number
5859 * @page_index: return index of the page in the extent buffer that contains the
5860 * given bit number
5861 * @page_offset: return offset into the page given by page_index
5862 *
5863 * This helper hides the ugliness of finding the byte in an extent buffer which
5864 * contains a given bit.
5865 */
5866static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5867				    unsigned long start, unsigned long nr,
5868				    unsigned long *page_index,
5869				    size_t *page_offset)
5870{
5871	size_t byte_offset = BIT_BYTE(nr);
5872	size_t offset;
5873
5874	/*
5875	 * The byte we want is the offset of the extent buffer + the offset of
5876	 * the bitmap item in the extent buffer + the offset of the byte in the
5877	 * bitmap item.
5878	 */
5879	offset = start + byte_offset;
5880
5881	*page_index = offset >> PAGE_SHIFT;
5882	*page_offset = offset_in_page(offset);
5883}
5884
5885/**
5886 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5887 * @eb: the extent buffer
5888 * @start: offset of the bitmap item in the extent buffer
5889 * @nr: bit number to test
 
5890 */
5891int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5892			   unsigned long nr)
5893{
5894	u8 *kaddr;
5895	struct page *page;
5896	unsigned long i;
5897	size_t offset;
 
5898
5899	eb_bitmap_offset(eb, start, nr, &i, &offset);
5900	page = eb->pages[i];
5901	WARN_ON(!PageUptodate(page));
5902	kaddr = page_address(page);
5903	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5904}
5905
5906/**
5907 * extent_buffer_bitmap_set - set an area of a bitmap
5908 * @eb: the extent buffer
5909 * @start: offset of the bitmap item in the extent buffer
5910 * @pos: bit number of the first bit
5911 * @len: number of bits to set
 
 
 
 
 
 
 
 
 
 
5912 */
5913void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5914			      unsigned long pos, unsigned long len)
5915{
 
 
 
 
5916	u8 *kaddr;
5917	struct page *page;
5918	unsigned long i;
5919	size_t offset;
5920	const unsigned int size = pos + len;
5921	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5922	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5923
5924	eb_bitmap_offset(eb, start, pos, &i, &offset);
5925	page = eb->pages[i];
5926	WARN_ON(!PageUptodate(page));
5927	kaddr = page_address(page);
5928
5929	while (len >= bits_to_set) {
5930		kaddr[offset] |= mask_to_set;
5931		len -= bits_to_set;
5932		bits_to_set = BITS_PER_BYTE;
5933		mask_to_set = ~0;
5934		if (++offset >= PAGE_SIZE && len > 0) {
5935			offset = 0;
5936			page = eb->pages[++i];
5937			WARN_ON(!PageUptodate(page));
5938			kaddr = page_address(page);
5939		}
5940	}
5941	if (len) {
5942		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5943		kaddr[offset] |= mask_to_set;
5944	}
5945}
5946
5947
5948/**
5949 * extent_buffer_bitmap_clear - clear an area of a bitmap
5950 * @eb: the extent buffer
5951 * @start: offset of the bitmap item in the extent buffer
5952 * @pos: bit number of the first bit
5953 * @len: number of bits to clear
 
5954 */
5955void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5956				unsigned long start, unsigned long pos,
5957				unsigned long len)
5958{
 
 
 
 
5959	u8 *kaddr;
5960	struct page *page;
5961	unsigned long i;
5962	size_t offset;
5963	const unsigned int size = pos + len;
5964	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5965	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5966
5967	eb_bitmap_offset(eb, start, pos, &i, &offset);
5968	page = eb->pages[i];
5969	WARN_ON(!PageUptodate(page));
5970	kaddr = page_address(page);
5971
5972	while (len >= bits_to_clear) {
5973		kaddr[offset] &= ~mask_to_clear;
5974		len -= bits_to_clear;
5975		bits_to_clear = BITS_PER_BYTE;
5976		mask_to_clear = ~0;
5977		if (++offset >= PAGE_SIZE && len > 0) {
5978			offset = 0;
5979			page = eb->pages[++i];
5980			WARN_ON(!PageUptodate(page));
5981			kaddr = page_address(page);
5982		}
5983	}
5984	if (len) {
5985		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5986		kaddr[offset] &= ~mask_to_clear;
5987	}
5988}
5989
5990static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5991{
5992	unsigned long distance = (src > dst) ? src - dst : dst - src;
5993	return distance < len;
5994}
5995
5996static void copy_pages(struct page *dst_page, struct page *src_page,
5997		       unsigned long dst_off, unsigned long src_off,
5998		       unsigned long len)
5999{
6000	char *dst_kaddr = page_address(dst_page);
6001	char *src_kaddr;
6002	int must_memmove = 0;
6003
6004	if (dst_page != src_page) {
6005		src_kaddr = page_address(src_page);
6006	} else {
6007		src_kaddr = dst_kaddr;
6008		if (areas_overlap(src_off, dst_off, len))
6009			must_memmove = 1;
6010	}
6011
6012	if (must_memmove)
6013		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014	else
6015		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6016}
6017
6018void memcpy_extent_buffer(const struct extent_buffer *dst,
6019			  unsigned long dst_offset, unsigned long src_offset,
6020			  unsigned long len)
6021{
6022	struct btrfs_fs_info *fs_info = dst->fs_info;
6023	size_t cur;
6024	size_t dst_off_in_page;
6025	size_t src_off_in_page;
6026	unsigned long dst_i;
6027	unsigned long src_i;
6028
6029	if (src_offset + len > dst->len) {
6030		btrfs_err(fs_info,
6031			"memmove bogus src_offset %lu move len %lu dst len %lu",
6032			 src_offset, len, dst->len);
6033		BUG();
6034	}
6035	if (dst_offset + len > dst->len) {
6036		btrfs_err(fs_info,
6037			"memmove bogus dst_offset %lu move len %lu dst len %lu",
6038			 dst_offset, len, dst->len);
6039		BUG();
6040	}
6041
6042	while (len > 0) {
6043		dst_off_in_page = offset_in_page(dst_offset);
6044		src_off_in_page = offset_in_page(src_offset);
6045
6046		dst_i = dst_offset >> PAGE_SHIFT;
6047		src_i = src_offset >> PAGE_SHIFT;
 
6048
6049		cur = min(len, (unsigned long)(PAGE_SIZE -
6050					       src_off_in_page));
6051		cur = min_t(unsigned long, cur,
6052			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6053
6054		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6055			   dst_off_in_page, src_off_in_page, cur);
 
 
 
 
6056
6057		src_offset += cur;
6058		dst_offset += cur;
6059		len -= cur;
 
 
 
 
 
 
 
 
 
 
6060	}
6061}
6062
6063void memmove_extent_buffer(const struct extent_buffer *dst,
6064			   unsigned long dst_offset, unsigned long src_offset,
6065			   unsigned long len)
6066{
6067	struct btrfs_fs_info *fs_info = dst->fs_info;
6068	size_t cur;
6069	size_t dst_off_in_page;
6070	size_t src_off_in_page;
6071	unsigned long dst_end = dst_offset + len - 1;
6072	unsigned long src_end = src_offset + len - 1;
6073	unsigned long dst_i;
6074	unsigned long src_i;
6075
6076	if (src_offset + len > dst->len) {
6077		btrfs_err(fs_info,
6078			  "memmove bogus src_offset %lu move len %lu len %lu",
6079			  src_offset, len, dst->len);
6080		BUG();
6081	}
6082	if (dst_offset + len > dst->len) {
6083		btrfs_err(fs_info,
6084			  "memmove bogus dst_offset %lu move len %lu len %lu",
6085			  dst_offset, len, dst->len);
6086		BUG();
6087	}
6088	if (dst_offset < src_offset) {
6089		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6090		return;
6091	}
6092	while (len > 0) {
6093		dst_i = dst_end >> PAGE_SHIFT;
6094		src_i = src_end >> PAGE_SHIFT;
6095
6096		dst_off_in_page = offset_in_page(dst_end);
6097		src_off_in_page = offset_in_page(src_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6098
6099		cur = min_t(unsigned long, len, src_off_in_page + 1);
6100		cur = min(cur, dst_off_in_page + 1);
6101		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6102			   dst_off_in_page - cur + 1,
6103			   src_off_in_page - cur + 1, cur);
6104
6105		dst_end -= cur;
6106		src_end -= cur;
6107		len -= cur;
6108	}
6109}
6110
6111int try_release_extent_buffer(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6112{
6113	struct extent_buffer *eb;
6114
 
 
 
6115	/*
6116	 * We need to make sure nobody is attaching this page to an eb right
6117	 * now.
6118	 */
6119	spin_lock(&page->mapping->private_lock);
6120	if (!PagePrivate(page)) {
6121		spin_unlock(&page->mapping->private_lock);
6122		return 1;
6123	}
6124
6125	eb = (struct extent_buffer *)page->private;
6126	BUG_ON(!eb);
6127
6128	/*
6129	 * This is a little awful but should be ok, we need to make sure that
6130	 * the eb doesn't disappear out from under us while we're looking at
6131	 * this page.
6132	 */
6133	spin_lock(&eb->refs_lock);
6134	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6135		spin_unlock(&eb->refs_lock);
6136		spin_unlock(&page->mapping->private_lock);
6137		return 0;
6138	}
6139	spin_unlock(&page->mapping->private_lock);
6140
6141	/*
6142	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6143	 * so just return, this page will likely be freed soon anyway.
6144	 */
6145	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6146		spin_unlock(&eb->refs_lock);
6147		return 0;
6148	}
6149
6150	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6151}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "bio.h"
 
  23#include "locking.h"
 
  24#include "backref.h"
  25#include "disk-io.h"
  26#include "subpage.h"
  27#include "zoned.h"
  28#include "block-group.h"
  29#include "compression.h"
  30#include "fs.h"
  31#include "accessors.h"
  32#include "file-item.h"
  33#include "file.h"
  34#include "dev-replace.h"
  35#include "super.h"
  36#include "transaction.h"
  37
 
  38static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  39
  40#ifdef CONFIG_BTRFS_DEBUG
  41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
  42{
  43	struct btrfs_fs_info *fs_info = eb->fs_info;
  44	unsigned long flags;
  45
  46	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  47	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  48	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  49}
  50
  51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  52{
  53	struct btrfs_fs_info *fs_info = eb->fs_info;
  54	unsigned long flags;
  55
  56	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  57	list_del(&eb->leak_list);
  58	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  59}
  60
  61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  62{
  63	struct extent_buffer *eb;
  64	unsigned long flags;
  65
  66	/*
  67	 * If we didn't get into open_ctree our allocated_ebs will not be
  68	 * initialized, so just skip this.
  69	 */
  70	if (!fs_info->allocated_ebs.next)
  71		return;
  72
  73	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  75	while (!list_empty(&fs_info->allocated_ebs)) {
  76		eb = list_first_entry(&fs_info->allocated_ebs,
  77				      struct extent_buffer, leak_list);
  78		pr_err(
  79	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
  80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  81		       btrfs_header_owner(eb));
  82		list_del(&eb->leak_list);
  83		WARN_ON_ONCE(1);
  84		kmem_cache_free(extent_buffer_cache, eb);
  85	}
  86	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  87}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88#else
  89#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  90#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  91#endif
  92
  93/*
  94 * Structure to record info about the bio being assembled, and other info like
  95 * how many bytes are there before stripe/ordered extent boundary.
  96 */
  97struct btrfs_bio_ctrl {
  98	struct btrfs_bio *bbio;
  99	enum btrfs_compression_type compress_type;
 100	u32 len_to_oe_boundary;
 101	blk_opf_t opf;
 102	btrfs_bio_end_io_t end_io_func;
 103	struct writeback_control *wbc;
 104
 105	/*
 106	 * The sectors of the page which are going to be submitted by
 107	 * extent_writepage_io().
 108	 * This is to avoid touching ranges covered by compression/inline.
 109	 */
 110	unsigned long submit_bitmap;
 
 
 
 111};
 112
 113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 114{
 115	struct btrfs_bio *bbio = bio_ctrl->bbio;
 116
 117	if (!bbio)
 118		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	/* Caller should ensure the bio has at least some range added */
 121	ASSERT(bbio->bio.bi_iter.bi_size);
 122
 123	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 124	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 125		btrfs_submit_compressed_read(bbio);
 126	else
 127		btrfs_submit_bbio(bbio, 0);
 128
 129	/* The bbio is owned by the end_io handler now */
 130	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 131}
 132
 133/*
 134 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 135 */
 136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 137{
 138	struct btrfs_bio *bbio = bio_ctrl->bbio;
 139
 140	if (!bbio)
 141		return;
 
 
 
 
 
 
 
 
 
 
 
 142
 143	if (ret) {
 144		ASSERT(ret < 0);
 145		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 146		/* The bio is owned by the end_io handler now */
 147		bio_ctrl->bbio = NULL;
 148	} else {
 149		submit_one_bio(bio_ctrl);
 150	}
 151}
 152
 153int __init extent_buffer_init_cachep(void)
 154{
 155	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 156						sizeof(struct extent_buffer), 0, 0,
 157						NULL);
 158	if (!extent_buffer_cache)
 159		return -ENOMEM;
 160
 
 
 
 
 
 
 
 
 161	return 0;
 
 
 
 
 
 
 
 
 162}
 163
 164void __cold extent_buffer_free_cachep(void)
 
 
 
 
 
 
 165{
 166	/*
 167	 * Make sure all delayed rcu free are flushed before we
 168	 * destroy caches.
 169	 */
 170	rcu_barrier();
 171	kmem_cache_destroy(extent_buffer_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172}
 173
 174static void process_one_folio(struct btrfs_fs_info *fs_info,
 175			      struct folio *folio, const struct folio *locked_folio,
 176			      unsigned long page_ops, u64 start, u64 end)
 177{
 178	u32 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 181	len = end + 1 - start;
 
 
 
 
 
 
 
 182
 183	if (page_ops & PAGE_SET_ORDERED)
 184		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 185	if (page_ops & PAGE_START_WRITEBACK) {
 186		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 187		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 
 
 188	}
 189	if (page_ops & PAGE_END_WRITEBACK)
 190		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
 193		btrfs_folio_end_lock(fs_info, folio, start, len);
 
 
 194}
 195
 196static void __process_folios_contig(struct address_space *mapping,
 197				    const struct folio *locked_folio, u64 start,
 198				    u64 end, unsigned long page_ops)
 
 
 
 
 
 
 
 
 199{
 200	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 201	pgoff_t start_index = start >> PAGE_SHIFT;
 202	pgoff_t end_index = end >> PAGE_SHIFT;
 203	pgoff_t index = start_index;
 204	struct folio_batch fbatch;
 205	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206
 207	folio_batch_init(&fbatch);
 208	while (index <= end_index) {
 209		int found_folios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210
 211		found_folios = filemap_get_folios_contig(mapping, &index,
 212				end_index, &fbatch);
 213		for (i = 0; i < found_folios; i++) {
 214			struct folio *folio = fbatch.folios[i];
 215
 216			process_one_folio(fs_info, folio, locked_folio,
 217					  page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218		}
 219		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221	}
 
 222}
 223
 224static noinline void __unlock_for_delalloc(const struct inode *inode,
 225					   const struct folio *locked_folio,
 226					   u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227{
 228	unsigned long index = start >> PAGE_SHIFT;
 229	unsigned long end_index = end >> PAGE_SHIFT;
 
 230
 231	ASSERT(locked_folio);
 232	if (index == locked_folio->index && end_index == index)
 233		return;
 
 
 
 
 
 
 
 
 
 
 
 234
 235	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
 236				PAGE_UNLOCK);
 
 
 
 
 
 
 237}
 238
 239static noinline int lock_delalloc_folios(struct inode *inode,
 240					 const struct folio *locked_folio,
 241					 u64 start, u64 end)
 
 
 
 
 242{
 243	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 244	struct address_space *mapping = inode->i_mapping;
 245	pgoff_t start_index = start >> PAGE_SHIFT;
 246	pgoff_t end_index = end >> PAGE_SHIFT;
 247	pgoff_t index = start_index;
 248	u64 processed_end = start;
 249	struct folio_batch fbatch;
 
 
 
 250
 251	if (index == locked_folio->index && index == end_index)
 252		return 0;
 
 
 253
 254	folio_batch_init(&fbatch);
 255	while (index <= end_index) {
 256		unsigned int found_folios, i;
 
 
 
 
 257
 258		found_folios = filemap_get_folios_contig(mapping, &index,
 259				end_index, &fbatch);
 260		if (found_folios == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263		for (i = 0; i < found_folios; i++) {
 264			struct folio *folio = fbatch.folios[i];
 265			u64 range_start;
 266			u32 range_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268			if (folio == locked_folio)
 269				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270
 271			folio_lock(folio);
 272			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
 273				folio_unlock(folio);
 274				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275			}
 276			range_start = max_t(u64, folio_pos(folio), start);
 277			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 278					  end + 1) - range_start;
 279			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
 280
 281			processed_end = range_start + range_len - 1;
 
 
 
 
 
 
 
 
 
 
 282		}
 283		folio_batch_release(&fbatch);
 284		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	}
 286
 287	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288out:
 289	folio_batch_release(&fbatch);
 290	if (processed_end > start)
 291		__unlock_for_delalloc(inode, locked_folio, start,
 292				      processed_end);
 293	return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 296/*
 297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 298 * more than @max_bytes.
 299 *
 300 * @start:	The original start bytenr to search.
 301 *		Will store the extent range start bytenr.
 302 * @end:	The original end bytenr of the search range
 303 *		Will store the extent range end bytenr.
 304 *
 305 * Return true if we find a delalloc range which starts inside the original
 306 * range, and @start/@end will store the delalloc range start/end.
 307 *
 308 * Return false if we can't find any delalloc range which starts inside the
 309 * original range, and @start/@end will be the non-delalloc range start/end.
 310 */
 311EXPORT_FOR_TESTS
 312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 313						 struct folio *locked_folio,
 314						 u64 *start, u64 *end)
 315{
 316	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 317	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 318	const u64 orig_start = *start;
 319	const u64 orig_end = *end;
 320	/* The sanity tests may not set a valid fs_info. */
 321	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 322	u64 delalloc_start;
 323	u64 delalloc_end;
 324	bool found;
 325	struct extent_state *cached_state = NULL;
 326	int ret;
 327	int loops = 0;
 328
 329	/* Caller should pass a valid @end to indicate the search range end */
 330	ASSERT(orig_end > orig_start);
 331
 332	/* The range should at least cover part of the folio */
 333	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
 334		 orig_end <= folio_pos(locked_folio)));
 335again:
 336	/* step one, find a bunch of delalloc bytes starting at start */
 337	delalloc_start = *start;
 338	delalloc_end = 0;
 339	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 340					  max_bytes, &cached_state);
 341	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 342		*start = delalloc_start;
 343
 344		/* @delalloc_end can be -1, never go beyond @orig_end */
 345		*end = min(delalloc_end, orig_end);
 346		free_extent_state(cached_state);
 347		return false;
 348	}
 349
 350	/*
 351	 * start comes from the offset of locked_folio.  We have to lock
 352	 * folios in order, so we can't process delalloc bytes before
 353	 * locked_folio
 354	 */
 355	if (delalloc_start < *start)
 356		delalloc_start = *start;
 357
 358	/*
 359	 * make sure to limit the number of folios we try to lock down
 360	 */
 361	if (delalloc_end + 1 - delalloc_start > max_bytes)
 362		delalloc_end = delalloc_start + max_bytes - 1;
 363
 364	/* step two, lock all the folioss after the folios that has start */
 365	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
 366				   delalloc_end);
 367	ASSERT(!ret || ret == -EAGAIN);
 368	if (ret == -EAGAIN) {
 369		/* some of the folios are gone, lets avoid looping by
 370		 * shortening the size of the delalloc range we're searching
 371		 */
 372		free_extent_state(cached_state);
 373		cached_state = NULL;
 374		if (!loops) {
 375			max_bytes = PAGE_SIZE;
 376			loops = 1;
 377			goto again;
 378		} else {
 379			found = false;
 380			goto out_failed;
 381		}
 382	}
 383
 384	/* step three, lock the state bits for the whole range */
 385	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 386
 387	/* then test to make sure it is all still delalloc */
 388	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 389			     EXTENT_DELALLOC, cached_state);
 390
 391	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 392	if (!ret) {
 393		__unlock_for_delalloc(inode, locked_folio, delalloc_start,
 394				      delalloc_end);
 
 
 395		cond_resched();
 396		goto again;
 397	}
 
 398	*start = delalloc_start;
 399	*end = delalloc_end;
 400out_failed:
 401	return found;
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 405				  const struct folio *locked_folio,
 406				  struct extent_state **cached,
 407				  u32 clear_bits, unsigned long page_ops)
 408{
 409	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
 412				end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413}
 414
 415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
 
 
 
 
 
 416{
 417	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 
 
 418
 419	if (!fsverity_active(folio->mapping->host) ||
 420	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
 421	    start >= i_size_read(folio->mapping->host))
 422		return true;
 423	return fsverity_verify_folio(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424}
 425
 426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
 427{
 428	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 
 
 429
 430	ASSERT(folio_pos(folio) <= start &&
 431	       start + len <= folio_pos(folio) + PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	if (uptodate && btrfs_verify_folio(folio, start, len))
 434		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 435	else
 436		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 437
 438	if (!btrfs_is_subpage(fs_info, folio->mapping))
 439		folio_unlock(folio);
 440	else
 441		btrfs_folio_end_lock(fs_info, folio, start, len);
 442}
 443
 444/*
 445 * After a write IO is done, we need to:
 446 *
 447 * - clear the uptodate bits on error
 448 * - clear the writeback bits in the extent tree for the range
 449 * - filio_end_writeback()  if there is no more pending io for the folio
 450 *
 451 * Scheduling is not allowed, so the extent state tree is expected
 452 * to have one and only one object corresponding to this IO.
 453 */
 454static void end_bbio_data_write(struct btrfs_bio *bbio)
 
 455{
 456	struct btrfs_fs_info *fs_info = bbio->fs_info;
 457	struct bio *bio = &bbio->bio;
 458	int error = blk_status_to_errno(bio->bi_status);
 459	struct folio_iter fi;
 460	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462	ASSERT(!bio_flagged(bio, BIO_CLONED));
 463	bio_for_each_folio_all(fi, bio) {
 464		struct folio *folio = fi.folio;
 465		u64 start = folio_pos(folio) + fi.offset;
 466		u32 len = fi.length;
 467
 468		/* Only order 0 (single page) folios are allowed for data. */
 469		ASSERT(folio_order(folio) == 0);
 470
 471		/* Our read/write should always be sector aligned. */
 472		if (!IS_ALIGNED(fi.offset, sectorsize))
 473			btrfs_err(fs_info,
 474		"partial page write in btrfs with offset %zu and length %zu",
 475				  fi.offset, fi.length);
 476		else if (!IS_ALIGNED(fi.length, sectorsize))
 477			btrfs_info(fs_info,
 478		"incomplete page write with offset %zu and length %zu",
 479				   fi.offset, fi.length);
 480
 481		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
 482					    !error);
 483		if (error)
 484			mapping_set_error(folio->mapping, error);
 485		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 486	}
 
 
 
 487
 488	bio_put(bio);
 
 
 
 
 
 
 
 
 
 489}
 490
 491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
 
 
 492{
 493	ASSERT(folio_test_locked(folio));
 494	if (!btrfs_is_subpage(fs_info, folio->mapping))
 495		return;
 
 
 
 
 
 
 
 
 
 
 
 
 496
 497	ASSERT(folio_test_private(folio));
 498	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
 499}
 500
 501/*
 502 * After a data read IO is done, we need to:
 503 *
 504 * - clear the uptodate bits on error
 505 * - set the uptodate bits if things worked
 506 * - set the folio up to date if all extents in the tree are uptodate
 507 * - clear the lock bit in the extent tree
 508 * - unlock the folio if there are no other extents locked for it
 509 *
 510 * Scheduling is not allowed, so the extent state tree is expected
 511 * to have one and only one object corresponding to this IO.
 512 */
 513static void end_bbio_data_read(struct btrfs_bio *bbio)
 514{
 515	struct btrfs_fs_info *fs_info = bbio->fs_info;
 516	struct bio *bio = &bbio->bio;
 517	struct folio_iter fi;
 518	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 
 519
 520	ASSERT(!bio_flagged(bio, BIO_CLONED));
 521	bio_for_each_folio_all(fi, &bbio->bio) {
 522		bool uptodate = !bio->bi_status;
 523		struct folio *folio = fi.folio;
 524		struct inode *inode = folio->mapping->host;
 525		u64 start;
 526		u64 end;
 527		u32 len;
 528
 529		/* For now only order 0 folios are supported for data. */
 530		ASSERT(folio_order(folio) == 0);
 531		btrfs_debug(fs_info,
 532			"%s: bi_sector=%llu, err=%d, mirror=%u",
 533			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 534			bbio->mirror_num);
 535
 
 
 
 
 
 
 
 536		/*
 537		 * We always issue full-sector reads, but if some block in a
 538		 * folio fails to read, blk_update_request() will advance
 539		 * bv_offset and adjust bv_len to compensate.  Print a warning
 540		 * for unaligned offsets, and an error if they don't add up to
 541		 * a full sector.
 542		 */
 543		if (!IS_ALIGNED(fi.offset, sectorsize))
 544			btrfs_err(fs_info,
 545		"partial page read in btrfs with offset %zu and length %zu",
 546				  fi.offset, fi.length);
 547		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 548			btrfs_info(fs_info,
 549		"incomplete page read with offset %zu and length %zu",
 550				   fi.offset, fi.length);
 551
 552		start = folio_pos(folio) + fi.offset;
 553		end = start + fi.length - 1;
 554		len = fi.length;
 
 
 
 
 
 
 555
 556		if (likely(uptodate)) {
 557			loff_t i_size = i_size_read(inode);
 558			pgoff_t end_index = i_size >> folio_shift(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559
 560			/*
 561			 * Zero out the remaining part if this range straddles
 562			 * i_size.
 563			 *
 564			 * Here we should only zero the range inside the folio,
 565			 * not touch anything else.
 566			 *
 567			 * NOTE: i_size is exclusive while end is inclusive.
 568			 */
 569			if (folio_index(folio) == end_index && i_size <= end) {
 570				u32 zero_start = max(offset_in_folio(folio, i_size),
 571						     offset_in_folio(folio, start));
 572				u32 zero_len = offset_in_folio(folio, end) + 1 -
 573					       zero_start;
 574
 575				folio_zero_range(folio, zero_start, zero_len);
 576			}
 577		}
 578
 579		/* Update page status and unlock. */
 580		end_folio_read(folio, uptodate, start, len);
 
 
 
 581	}
 582	bio_put(bio);
 
 583}
 584
 585/*
 586 * Populate every free slot in a provided array with folios using GFP_NOFS.
 587 *
 588 * @nr_folios:   number of folios to allocate
 589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
 590 *		 the array will be skipped
 591 *
 592 * Return: 0        if all folios were able to be allocated;
 593 *         -ENOMEM  otherwise, the partially allocated folios would be freed and
 594 *                  the array slots zeroed
 595 */
 596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
 597{
 598	for (int i = 0; i < nr_folios; i++) {
 599		if (folio_array[i])
 600			continue;
 601		folio_array[i] = folio_alloc(GFP_NOFS, 0);
 602		if (!folio_array[i])
 603			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604	}
 605	return 0;
 606error:
 607	for (int i = 0; i < nr_folios; i++) {
 608		if (folio_array[i])
 609			folio_put(folio_array[i]);
 610	}
 611	return -ENOMEM;
 612}
 613
 614/*
 615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
 616 *
 617 * @nr_pages:   number of pages to allocate
 618 * @page_array: the array to fill with pages; any existing non-null entries in
 619 *		the array will be skipped
 620 * @nofail:	whether using __GFP_NOFAIL flag
 621 *
 622 * Return: 0        if all pages were able to be allocated;
 623 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 624 *                  the array slots zeroed
 625 */
 626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 627			   bool nofail)
 628{
 629	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
 630	unsigned int allocated;
 631
 632	for (allocated = 0; allocated < nr_pages;) {
 633		unsigned int last = allocated;
 634
 635		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
 636		if (unlikely(allocated == last)) {
 637			/* No progress, fail and do cleanup. */
 638			for (int i = 0; i < allocated; i++) {
 639				__free_page(page_array[i]);
 640				page_array[i] = NULL;
 641			}
 642			return -ENOMEM;
 643		}
 644	}
 
 
 
 
 645	return 0;
 646}
 647
 648/*
 649 * Populate needed folios for the extent buffer.
 650 *
 651 * For now, the folios populated are always in order 0 (aka, single page).
 
 652 */
 653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654{
 655	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 656	int num_pages = num_extent_pages(eb);
 
 
 
 
 657	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
 660	if (ret < 0)
 661		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	for (int i = 0; i < num_pages; i++)
 664		eb->folios[i] = page_folio(page_array[i]);
 665	eb->folio_size = PAGE_SIZE;
 666	eb->folio_shift = PAGE_SHIFT;
 667	return 0;
 668}
 669
 670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 671				struct folio *folio, u64 disk_bytenr,
 672				unsigned int pg_offset)
 673{
 674	struct bio *bio = &bio_ctrl->bbio->bio;
 675	struct bio_vec *bvec = bio_last_bvec_all(bio);
 676	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 677	struct folio *bv_folio = page_folio(bvec->bv_page);
 678
 679	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 
 680		/*
 681		 * For compression, all IO should have its logical bytenr set
 682		 * to the starting bytenr of the compressed extent.
 
 683		 */
 684		return bio->bi_iter.bi_sector == sector;
 
 
 
 685	}
 686
 687	/*
 688	 * The contig check requires the following conditions to be met:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689	 *
 690	 * 1) The folios are belonging to the same inode
 691	 *    This is implied by the call chain.
 
 
 692	 *
 693	 * 2) The range has adjacent logical bytenr
 694	 *
 695	 * 3) The range has adjacent file offset
 696	 *    This is required for the usage of btrfs_bio->file_offset.
 697	 */
 698	return bio_end_sector(bio) == sector &&
 699		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
 700		folio_pos(folio) + pg_offset;
 701}
 702
 703static void alloc_new_bio(struct btrfs_inode *inode,
 704			  struct btrfs_bio_ctrl *bio_ctrl,
 705			  u64 disk_bytenr, u64 file_offset)
 706{
 707	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 708	struct btrfs_bio *bbio;
 709
 710	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 711			       bio_ctrl->end_io_func, NULL);
 712	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 713	bbio->inode = inode;
 714	bbio->file_offset = file_offset;
 715	bio_ctrl->bbio = bbio;
 716	bio_ctrl->len_to_oe_boundary = U32_MAX;
 717
 718	/* Limit data write bios to the ordered boundary. */
 719	if (bio_ctrl->wbc) {
 720		struct btrfs_ordered_extent *ordered;
 721
 722		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 723		if (ordered) {
 724			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 725					ordered->file_offset +
 726					ordered->disk_num_bytes - file_offset);
 727			bbio->ordered = ordered;
 728		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729
 730		/*
 731		 * Pick the last added device to support cgroup writeback.  For
 732		 * multi-device file systems this means blk-cgroup policies have
 733		 * to always be set on the last added/replaced device.
 734		 * This is a bit odd but has been like that for a long time.
 735		 */
 736		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 737		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 738	}
 739}
 740
 741/*
 742 * @disk_bytenr: logical bytenr where the write will be
 743 * @page:	page to add to the bio
 744 * @size:	portion of page that we want to write to
 745 * @pg_offset:	offset of the new bio or to check whether we are adding
 746 *              a contiguous page to the previous one
 747 *
 748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 749 * new one in @bio_ctrl->bbio.
 750 * The mirror number for this IO should already be initizlied in
 751 * @bio_ctrl->mirror_num.
 752 */
 753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
 754			       u64 disk_bytenr, struct folio *folio,
 755			       size_t size, unsigned long pg_offset)
 756{
 757	struct btrfs_inode *inode = folio_to_inode(folio);
 
 
 
 
 758
 759	ASSERT(pg_offset + size <= PAGE_SIZE);
 760	ASSERT(bio_ctrl->end_io_func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761
 762	if (bio_ctrl->bbio &&
 763	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
 764		submit_one_bio(bio_ctrl);
 
 
 
 
 765
 766	do {
 767		u32 len = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769		/* Allocate new bio if needed */
 770		if (!bio_ctrl->bbio) {
 771			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 772				      folio_pos(folio) + pg_offset);
 
 
 
 
 
 
 
 
 773		}
 774
 775		/* Cap to the current ordered extent boundary if there is one. */
 776		if (len > bio_ctrl->len_to_oe_boundary) {
 777			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 778			ASSERT(is_data_inode(inode));
 779			len = bio_ctrl->len_to_oe_boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780		}
 
 
 
 
 
 781
 782		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
 783			/* bio full: move on to a new one */
 784			submit_one_bio(bio_ctrl);
 785			continue;
 
 
 
 
 786		}
 
 
 787
 788		if (bio_ctrl->wbc)
 789			wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
 790						 len);
 791
 792		size -= len;
 793		pg_offset += len;
 794		disk_bytenr += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795
 796		/*
 797		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
 798		 * sector aligned.  alloc_new_bio() then sets it to the end of
 799		 * our ordered extent for writes into zoned devices.
 800		 *
 801		 * When len_to_oe_boundary is tracking an ordered extent, we
 802		 * trust the ordered extent code to align things properly, and
 803		 * the check above to cap our write to the ordered extent
 804		 * boundary is correct.
 805		 *
 806		 * When len_to_oe_boundary is U32_MAX, the cap above would
 807		 * result in a 4095 byte IO for the last folio right before
 808		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
 809		 * the checks required to make sure we don't overflow the bio,
 810		 * and we should just ignore len_to_oe_boundary completely
 811		 * unless we're using it to track an ordered extent.
 812		 *
 813		 * It's pretty hard to make a bio sized U32_MAX, but it can
 814		 * happen when the page cache is able to feed us contiguous
 815		 * folios for large extents.
 816		 */
 817		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 818			bio_ctrl->len_to_oe_boundary -= len;
 819
 820		/* Ordered extent boundary: move on to a new bio. */
 821		if (bio_ctrl->len_to_oe_boundary == 0)
 822			submit_one_bio(bio_ctrl);
 823	} while (size);
 
 
 
 
 824}
 825
 826static int attach_extent_buffer_folio(struct extent_buffer *eb,
 827				      struct folio *folio,
 828				      struct btrfs_subpage *prealloc)
 
 
 
 829{
 830	struct btrfs_fs_info *fs_info = eb->fs_info;
 831	int ret = 0;
 832
 833	/*
 834	 * If the page is mapped to btree inode, we should hold the private
 835	 * lock to prevent race.
 836	 * For cloned or dummy extent buffers, their pages are not mapped and
 837	 * will not race with any other ebs.
 838	 */
 839	if (folio->mapping)
 840		lockdep_assert_held(&folio->mapping->i_private_lock);
 841
 842	if (fs_info->nodesize >= PAGE_SIZE) {
 843		if (!folio_test_private(folio))
 844			folio_attach_private(folio, eb);
 845		else
 846			WARN_ON(folio_get_private(folio) != eb);
 847		return 0;
 848	}
 849
 850	/* Already mapped, just free prealloc */
 851	if (folio_test_private(folio)) {
 852		btrfs_free_subpage(prealloc);
 853		return 0;
 854	}
 855
 856	if (prealloc)
 857		/* Has preallocated memory for subpage */
 858		folio_attach_private(folio, prealloc);
 859	else
 860		/* Do new allocation to attach subpage */
 861		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 862	return ret;
 863}
 864
 865int set_page_extent_mapped(struct page *page)
 866{
 867	return set_folio_extent_mapped(page_folio(page));
 
 
 
 
 
 868}
 869
 870int set_folio_extent_mapped(struct folio *folio)
 871{
 872	struct btrfs_fs_info *fs_info;
 
 873
 874	ASSERT(folio->mapping);
 
 
 875
 876	if (folio_test_private(folio))
 877		return 0;
 878
 879	fs_info = folio_to_fs_info(folio);
 
 
 
 880
 881	if (btrfs_is_subpage(fs_info, folio->mapping))
 882		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883
 884	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 885	return 0;
 886}
 
 
 
 
 
 887
 888void clear_folio_extent_mapped(struct folio *folio)
 889{
 890	struct btrfs_fs_info *fs_info;
 
 
 891
 892	ASSERT(folio->mapping);
 893
 894	if (!folio_test_private(folio))
 895		return;
 896
 897	fs_info = folio_to_fs_info(folio);
 898	if (btrfs_is_subpage(fs_info, folio->mapping))
 899		return btrfs_detach_subpage(fs_info, folio);
 
 
 
 
 
 900
 901	folio_detach_private(folio);
 
 
 
 902}
 903
 904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
 905					 struct folio *folio, u64 start,
 906					 u64 len, struct extent_map **em_cached)
 
 907{
 908	struct extent_map *em;
 909
 910	ASSERT(em_cached);
 911
 912	if (*em_cached) {
 913		em = *em_cached;
 914		if (extent_map_in_tree(em) && start >= em->start &&
 915		    start < extent_map_end(em)) {
 916			refcount_inc(&em->refs);
 917			return em;
 918		}
 919
 920		free_extent_map(em);
 921		*em_cached = NULL;
 922	}
 923
 924	em = btrfs_get_extent(inode, folio, start, len);
 925	if (!IS_ERR(em)) {
 926		BUG_ON(*em_cached);
 927		refcount_inc(&em->refs);
 928		*em_cached = em;
 929	}
 930
 931	return em;
 932}
 933/*
 934 * basic readpage implementation.  Locked extent state structs are inserted
 935 * into the tree that are removed when the IO is done (by the end_io
 936 * handlers)
 937 * XXX JDM: This needs looking at to ensure proper page locking
 938 * return 0 on success, otherwise return error
 939 */
 940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
 941		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 
 
 
 942{
 943	struct inode *inode = folio->mapping->host;
 944	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 945	u64 start = folio_pos(folio);
 946	const u64 end = start + PAGE_SIZE - 1;
 947	u64 cur = start;
 948	u64 extent_offset;
 949	u64 last_byte = i_size_read(inode);
 950	u64 block_start;
 
 951	struct extent_map *em;
 952	int ret = 0;
 
 953	size_t pg_offset = 0;
 954	size_t iosize;
 955	size_t blocksize = fs_info->sectorsize;
 
 
 
 
 
 956
 957	ret = set_folio_extent_mapped(folio);
 958	if (ret < 0) {
 959		folio_unlock(folio);
 960		return ret;
 
 
 961	}
 962
 963	if (folio->index == last_byte >> folio_shift(folio)) {
 964		size_t zero_offset = offset_in_folio(folio, last_byte);
 
 965
 966		if (zero_offset) {
 967			iosize = folio_size(folio) - zero_offset;
 968			folio_zero_range(folio, zero_offset, iosize);
 
 
 
 969		}
 970	}
 971	bio_ctrl->end_io_func = end_bbio_data_read;
 972	begin_folio_read(fs_info, folio);
 973	while (cur <= end) {
 974		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
 975		bool force_bio_submit = false;
 976		u64 disk_bytenr;
 977
 978		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
 979		if (cur >= last_byte) {
 980			iosize = folio_size(folio) - pg_offset;
 981			folio_zero_range(folio, pg_offset, iosize);
 982			end_folio_read(folio, true, cur, iosize);
 
 
 
 
 
 
 
 
 
 983			break;
 984		}
 985		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
 986		if (IS_ERR(em)) {
 987			end_folio_read(folio, false, cur, end + 1 - cur);
 988			return PTR_ERR(em);
 
 
 989		}
 990		extent_offset = cur - em->start;
 991		BUG_ON(extent_map_end(em) <= cur);
 992		BUG_ON(end < cur);
 993
 994		compress_type = extent_map_compression(em);
 
 
 
 
 995
 996		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
 997		iosize = ALIGN(iosize, blocksize);
 998		if (compress_type != BTRFS_COMPRESS_NONE)
 999			disk_bytenr = em->disk_bytenr;
1000		else
1001			disk_bytenr = extent_map_block_start(em) + extent_offset;
1002		block_start = extent_map_block_start(em);
1003		if (em->flags & EXTENT_FLAG_PREALLOC)
 
 
 
1004			block_start = EXTENT_MAP_HOLE;
1005
1006		/*
1007		 * If we have a file range that points to a compressed extent
1008		 * and it's followed by a consecutive file range that points
1009		 * to the same compressed extent (possibly with a different
1010		 * offset and/or length, so it either points to the whole extent
1011		 * or only part of it), we must make sure we do not submit a
1012		 * single bio to populate the folios for the 2 ranges because
1013		 * this makes the compressed extent read zero out the folios
1014		 * belonging to the 2nd range. Imagine the following scenario:
1015		 *
1016		 *  File layout
1017		 *  [0 - 8K]                     [8K - 24K]
1018		 *    |                               |
1019		 *    |                               |
1020		 * points to extent X,         points to extent X,
1021		 * offset 4K, length of 8K     offset 0, length 16K
1022		 *
1023		 * [extent X, compressed length = 4K uncompressed length = 16K]
1024		 *
1025		 * If the bio to read the compressed extent covers both ranges,
1026		 * it will decompress extent X into the folios belonging to the
1027		 * first range and then it will stop, zeroing out the remaining
1028		 * folios that belong to the other range that points to extent X.
1029		 * So here we make sure we submit 2 bios, one for the first
1030		 * range and another one for the third range. Both will target
1031		 * the same physical extent from disk, but we can't currently
1032		 * make the compressed bio endio callback populate the folios
1033		 * for both ranges because each compressed bio is tightly
1034		 * coupled with a single extent map, and each range can have
1035		 * an extent map with a different offset value relative to the
1036		 * uncompressed data of our extent and different lengths. This
1037		 * is a corner case so we prioritize correctness over
1038		 * non-optimal behavior (submitting 2 bios for the same extent).
1039		 */
1040		if (compress_type != BTRFS_COMPRESS_NONE &&
1041		    prev_em_start && *prev_em_start != (u64)-1 &&
1042		    *prev_em_start != em->start)
1043			force_bio_submit = true;
1044
1045		if (prev_em_start)
1046			*prev_em_start = em->start;
1047
1048		free_extent_map(em);
1049		em = NULL;
1050
1051		/* we've found a hole, just zero and go on */
1052		if (block_start == EXTENT_MAP_HOLE) {
1053			folio_zero_range(folio, pg_offset, iosize);
 
1054
1055			end_folio_read(folio, true, cur, iosize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056			cur = cur + iosize;
1057			pg_offset += iosize;
1058			continue;
1059		}
1060		/* the get_extent function already copied into the folio */
 
 
1061		if (block_start == EXTENT_MAP_INLINE) {
1062			end_folio_read(folio, true, cur, iosize);
 
1063			cur = cur + iosize;
1064			pg_offset += iosize;
1065			continue;
1066		}
1067
1068		if (bio_ctrl->compress_type != compress_type) {
1069			submit_one_bio(bio_ctrl);
1070			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
 
 
1071		}
1072
1073		if (force_bio_submit)
1074			submit_one_bio(bio_ctrl);
1075		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076				    pg_offset);
1077		cur = cur + iosize;
1078		pg_offset += iosize;
1079	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	return 0;
 
 
 
 
 
 
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
 
 
 
 
1085{
1086	struct btrfs_inode *inode = folio_to_inode(folio);
1087	const u64 start = folio_pos(folio);
1088	const u64 end = start + folio_size(folio) - 1;
1089	struct extent_state *cached_state = NULL;
1090	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091	struct extent_map *em_cached = NULL;
1092	int ret;
1093
1094	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096	unlock_extent(&inode->io_tree, start, end, &cached_state);
 
 
 
1097
1098	free_extent_map(em_cached);
 
 
 
 
 
1099
1100	/*
1101	 * If btrfs_do_readpage() failed we will want to submit the assembled
1102	 * bio to do the cleanup.
1103	 */
1104	submit_one_bio(&bio_ctrl);
1105	return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109				u64 start, u32 len)
1110{
1111	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112	const u64 folio_start = folio_pos(folio);
1113	unsigned int start_bit;
1114	unsigned int nbits;
1115
1116	ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118	nbits = len >> fs_info->sectorsize_bits;
1119	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120	bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124				      unsigned long *delalloc_bitmap, u64 start,
1125				      u64 *found_start, u32 *found_len)
1126{
1127	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128	const u64 folio_start = folio_pos(folio);
1129	const unsigned int bitmap_size = fs_info->sectors_per_page;
1130	unsigned int start_bit;
1131	unsigned int first_zero;
1132	unsigned int first_set;
1133
1134	ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138	if (first_set >= bitmap_size)
1139		return false;
1140
1141	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144	return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
 
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163						 struct folio *folio,
1164						 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167	struct writeback_control *wbc = bio_ctrl->wbc;
1168	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169	const u64 page_start = folio_pos(folio);
1170	const u64 page_end = page_start + folio_size(folio) - 1;
1171	unsigned long delalloc_bitmap = 0;
1172	/*
1173	 * Save the last found delalloc end. As the delalloc end can go beyond
1174	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175	 * last delalloc end.
1176	 */
1177	u64 last_delalloc_end = 0;
1178	/*
1179	 * The range end (exclusive) of the last successfully finished delalloc
1180	 * range.
1181	 * Any range covered by ordered extent must either be manually marked
1182	 * finished (error handling), or has IO submitted (and finish the
1183	 * ordered extent normally).
1184	 *
1185	 * This records the end of ordered extent cleanup if we hit an error.
1186	 */
1187	u64 last_finished_delalloc_end = page_start;
1188	u64 delalloc_start = page_start;
1189	u64 delalloc_end = page_end;
1190	u64 delalloc_to_write = 0;
1191	int ret = 0;
1192	int bit;
1193
1194	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196		ASSERT(fs_info->sectors_per_page > 1);
1197		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198	} else {
1199		bio_ctrl->submit_bitmap = 1;
1200	}
1201
1202	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1204
1205		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1206	}
1207
1208	/* Lock all (subpage) delalloc ranges inside the folio first. */
1209	while (delalloc_start < page_end) {
1210		delalloc_end = page_end;
1211		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212					      &delalloc_start, &delalloc_end)) {
1213			delalloc_start = delalloc_end + 1;
1214			continue;
1215		}
1216		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217				    min(delalloc_end, page_end) + 1 - delalloc_start);
1218		last_delalloc_end = delalloc_end;
1219		delalloc_start = delalloc_end + 1;
1220	}
1221	delalloc_start = page_start;
1222
1223	if (!last_delalloc_end)
1224		goto out;
1225
1226	/* Run the delalloc ranges for the above locked ranges. */
1227	while (delalloc_start < page_end) {
1228		u64 found_start;
1229		u32 found_len;
1230		bool found;
1231
1232		if (!is_subpage) {
1233			/*
1234			 * For non-subpage case, the found delalloc range must
1235			 * cover this folio and there must be only one locked
1236			 * delalloc range.
 
1237			 */
1238			found_start = page_start;
1239			found_len = last_delalloc_end + 1 - found_start;
1240			found = true;
1241		} else {
1242			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243					delalloc_start, &found_start, &found_len);
1244		}
1245		if (!found)
1246			break;
1247		/*
1248		 * The subpage range covers the last sector, the delalloc range may
1249		 * end beyond the folio boundary, use the saved delalloc_end
1250		 * instead.
1251		 */
1252		if (found_start + found_len >= page_end)
1253			found_len = last_delalloc_end + 1 - found_start;
1254
1255		if (ret >= 0) {
1256			/*
1257			 * Some delalloc range may be created by previous folios.
1258			 * Thus we still need to clean up this range during error
1259			 * handling.
1260			 */
1261			last_finished_delalloc_end = found_start;
1262			/* No errors hit so far, run the current delalloc range. */
1263			ret = btrfs_run_delalloc_range(inode, folio,
1264						       found_start,
1265						       found_start + found_len - 1,
1266						       wbc);
1267			if (ret >= 0)
1268				last_finished_delalloc_end = found_start + found_len;
1269		} else {
1270			/*
1271			 * We've hit an error during previous delalloc range,
1272			 * have to cleanup the remaining locked ranges.
1273			 */
1274			unlock_extent(&inode->io_tree, found_start,
1275				      found_start + found_len - 1, NULL);
1276			__unlock_for_delalloc(&inode->vfs_inode, folio,
1277					      found_start,
1278					      found_start + found_len - 1);
1279		}
1280
1281		/*
1282		 * We have some ranges that's going to be submitted asynchronously
1283		 * (compression or inline).  These range have their own control
1284		 * on when to unlock the pages.  We should not touch them
1285		 * anymore, so clear the range from the submission bitmap.
1286		 */
1287		if (ret > 0) {
1288			unsigned int start_bit = (found_start - page_start) >>
1289						 fs_info->sectorsize_bits;
1290			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291						page_start) >> fs_info->sectorsize_bits;
1292			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293		}
1294		/*
1295		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296		 * thus for the last range, we cannot touch the folio anymore.
1297		 */
1298		if (found_start + found_len >= last_delalloc_end + 1)
1299			break;
1300
1301		delalloc_start = found_start + found_len;
1302	}
1303	/*
1304	 * It's possible we had some ordered extents created before we hit
1305	 * an error, cleanup non-async successfully created delalloc ranges.
1306	 */
1307	if (unlikely(ret < 0)) {
1308		unsigned int bitmap_size = min(
1309				(last_finished_delalloc_end - page_start) >>
1310				fs_info->sectorsize_bits,
1311				fs_info->sectors_per_page);
1312
1313		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314			btrfs_mark_ordered_io_finished(inode, folio,
1315				page_start + (bit << fs_info->sectorsize_bits),
1316				fs_info->sectorsize, false);
1317		return ret;
1318	}
1319out:
1320	if (last_delalloc_end)
1321		delalloc_end = last_delalloc_end;
1322	else
1323		delalloc_end = page_end;
1324	/*
1325	 * delalloc_end is already one less than the total length, so
1326	 * we don't subtract one from PAGE_SIZE
1327	 */
1328	delalloc_to_write +=
1329		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1330
1331	/*
1332	 * If all ranges are submitted asynchronously, we just need to account
1333	 * for them here.
1334	 */
1335	if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336		wbc->nr_to_write -= delalloc_to_write;
1337		return 1;
1338	}
1339
1340	if (wbc->nr_to_write < delalloc_to_write) {
1341		int thresh = 8192;
1342
1343		if (delalloc_to_write < thresh * 2)
1344			thresh = delalloc_to_write;
1345		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346					 thresh);
1347	}
1348
1349	return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359			     struct folio *folio,
1360			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361			     loff_t i_size)
1362{
1363	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364	struct extent_map *em;
1365	u64 block_start;
1366	u64 disk_bytenr;
1367	u64 extent_offset;
1368	u64 em_end;
1369	const u32 sectorsize = fs_info->sectorsize;
1370
1371	ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373	/* @filepos >= i_size case should be handled by the caller. */
1374	ASSERT(filepos < i_size);
1375
1376	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377	if (IS_ERR(em))
1378		return PTR_ERR_OR_ZERO(em);
1379
1380	extent_offset = filepos - em->start;
1381	em_end = extent_map_end(em);
1382	ASSERT(filepos <= em_end);
1383	ASSERT(IS_ALIGNED(em->start, sectorsize));
1384	ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386	block_start = extent_map_block_start(em);
1387	disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389	ASSERT(!extent_map_is_compressed(em));
1390	ASSERT(block_start != EXTENT_MAP_HOLE);
1391	ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393	free_extent_map(em);
1394	em = NULL;
1395
1396	/*
1397	 * Although the PageDirty bit is cleared before entering this
1398	 * function, subpage dirty bit is not cleared.
1399	 * So clear subpage dirty bit here so next time we won't submit
1400	 * a folio for a range already written to disk.
1401	 */
1402	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404	/*
1405	 * Above call should set the whole folio with writeback flag, even
1406	 * just for a single subpage sector.
1407	 * As long as the folio is properly locked and the range is correct,
1408	 * we should always get the folio with writeback flag.
1409	 */
1410	ASSERT(folio_test_writeback(folio));
1411
1412	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413			    sectorsize, filepos - folio_pos(folio));
1414	return 0;
1415}
1416
1417/*
1418 * Helper for extent_writepage().  This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426						  struct folio *folio,
1427						  u64 start, u32 len,
1428						  struct btrfs_bio_ctrl *bio_ctrl,
1429						  loff_t i_size)
1430{
1431	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432	unsigned long range_bitmap = 0;
1433	bool submitted_io = false;
1434	bool error = false;
1435	const u64 folio_start = folio_pos(folio);
1436	u64 cur;
1437	int bit;
 
 
 
 
 
 
1438	int ret = 0;
 
 
 
1439
1440	ASSERT(start >= folio_start &&
1441	       start + len <= folio_start + folio_size(folio));
1442
1443	ret = btrfs_writepage_cow_fixup(folio);
1444	if (ret) {
1445		/* Fixup worker will requeue */
1446		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447		folio_unlock(folio);
 
1448		return 1;
1449	}
1450
1451	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454		   fs_info->sectors_per_page);
 
1455
1456	bio_ctrl->end_io_func = end_bbio_data_write;
 
1457
1458	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
 
1460
1461		if (cur >= i_size) {
1462			btrfs_mark_ordered_io_finished(inode, folio, cur,
1463						       start + len - cur, true);
1464			/*
1465			 * This range is beyond i_size, thus we don't need to
1466			 * bother writing back.
1467			 * But we still need to clear the dirty subpage bit, or
1468			 * the next time the folio gets dirtied, we will try to
1469			 * writeback the sectors with subpage dirty bits,
1470			 * causing writeback without ordered extent.
1471			 */
1472			btrfs_folio_clear_dirty(fs_info, folio, cur,
1473						start + len - cur);
1474			break;
1475		}
1476		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477		if (unlikely(ret < 0)) {
1478			/*
1479			 * bio_ctrl may contain a bio crossing several folios.
1480			 * Submit it immediately so that the bio has a chance
1481			 * to finish normally, other than marked as error.
1482			 */
1483			submit_one_bio(bio_ctrl);
1484			/*
1485			 * Failed to grab the extent map which should be very rare.
1486			 * Since there is no bio submitted to finish the ordered
1487			 * extent, we have to manually finish this sector.
1488			 */
1489			btrfs_mark_ordered_io_finished(inode, folio, cur,
1490						       fs_info->sectorsize, false);
1491			error = true;
 
 
 
 
 
 
 
 
 
 
1492			continue;
1493		}
1494		submitted_io = true;
1495	}
1496
1497	/*
1498	 * If we didn't submitted any sector (>= i_size), folio dirty get
1499	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500	 * by folio_start_writeback() if the folio is not dirty).
1501	 *
1502	 * Here we set writeback and clear for the range. If the full folio
1503	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504	 *
1505	 * If we hit any error, the corresponding sector will still be dirty
1506	 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507	 */
1508	if (!submitted_io && !error) {
1509		btrfs_folio_set_writeback(fs_info, folio, start, len);
1510		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
1511	}
 
1512	return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage.  extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback.  Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
 
1525{
1526	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
1528	int ret;
 
1529	size_t pg_offset;
1530	loff_t i_size = i_size_read(&inode->vfs_inode);
1531	unsigned long end_index = i_size >> PAGE_SHIFT;
 
 
 
1532
1533	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535	WARN_ON(!folio_test_locked(folio));
1536
1537	pg_offset = offset_in_folio(folio, i_size);
1538	if (folio->index > end_index ||
1539	   (folio->index == end_index && !pg_offset)) {
1540		folio_invalidate(folio, 0, folio_size(folio));
1541		folio_unlock(folio);
1542		return 0;
1543	}
1544
1545	if (folio->index == end_index)
1546		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1547
1548	/*
1549	 * Default to unlock the whole folio.
1550	 * The proper bitmap can only be initialized until writepage_delalloc().
1551	 */
1552	bio_ctrl->submit_bitmap = (unsigned long)-1;
1553	ret = set_folio_extent_mapped(folio);
1554	if (ret < 0)
1555		goto done;
1556
1557	ret = writepage_delalloc(inode, folio, bio_ctrl);
1558	if (ret == 1)
1559		return 0;
1560	if (ret)
1561		goto done;
 
 
 
1562
1563	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564				  PAGE_SIZE, bio_ctrl, i_size);
1565	if (ret == 1)
1566		return 0;
1567
1568	bio_ctrl->wbc->nr_to_write--;
1569
1570done:
1571	if (ret < 0)
1572		mapping_set_error(folio->mapping, ret);
1573	/*
1574	 * Only unlock ranges that are submitted. As there can be some async
1575	 * submitted ranges inside the folio.
1576	 */
1577	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
 
 
 
1578	ASSERT(ret <= 0);
1579	return ret;
1580}
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585		       TASK_UNINTERRUPTIBLE);
1586}
1587
 
 
 
 
 
 
 
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596			  struct writeback_control *wbc)
1597{
1598	struct btrfs_fs_info *fs_info = eb->fs_info;
1599	bool ret = false;
 
 
 
 
 
 
 
 
 
 
1600
1601	btrfs_tree_lock(eb);
1602	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603		btrfs_tree_unlock(eb);
1604		if (wbc->sync_mode != WB_SYNC_ALL)
1605			return false;
1606		wait_on_extent_buffer_writeback(eb);
1607		btrfs_tree_lock(eb);
 
 
 
 
 
 
 
 
 
 
 
1608	}
1609
1610	/*
1611	 * We need to do this to prevent races in people who check if the eb is
1612	 * under IO since we can end up having no IO bits set for a short period
1613	 * of time.
1614	 */
1615	spin_lock(&eb->refs_lock);
1616	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618		spin_unlock(&eb->refs_lock);
1619		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621					 -eb->len,
1622					 fs_info->dirty_metadata_batch);
1623		ret = true;
1624	} else {
1625		spin_unlock(&eb->refs_lock);
1626	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627	btrfs_tree_unlock(eb);
1628	return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
1632{
1633	struct btrfs_fs_info *fs_info = eb->fs_info;
 
1634
1635	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637	/*
1638	 * A read may stumble upon this buffer later, make sure that it gets an
1639	 * error and knows there was an error.
1640	 */
1641	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643	/*
1644	 * We need to set the mapping with the io error as well because a write
1645	 * error will flip the file system readonly, and then syncfs() will
1646	 * return a 0 because we are readonly if we don't modify the err seq for
1647	 * the superblock.
1648	 */
1649	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
 
 
1650
1651	/*
1652	 * If writeback for a btree extent that doesn't belong to a log tree
1653	 * failed, increment the counter transaction->eb_write_errors.
1654	 * We do this because while the transaction is running and before it's
1655	 * committing (when we call filemap_fdata[write|wait]_range against
1656	 * the btree inode), we might have
1657	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658	 * returns an error or an error happens during writeback, when we're
1659	 * committing the transaction we wouldn't know about it, since the pages
1660	 * can be no longer dirty nor marked anymore for writeback (if a
1661	 * subsequent modification to the extent buffer didn't happen before the
1662	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663	 * able to find the pages which contain errors at transaction
1664	 * commit time. So if this happens we must abort the transaction,
1665	 * otherwise we commit a super block with btree roots that point to
1666	 * btree nodes/leafs whose content on disk is invalid - either garbage
1667	 * or the content of some node/leaf from a past generation that got
1668	 * cowed or deleted and is no longer valid.
1669	 *
1670	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671	 * not be enough - we need to distinguish between log tree extents vs
1672	 * non-log tree extents, and the next filemap_fdatawait_range() call
1673	 * will catch and clear such errors in the mapping - and that call might
1674	 * be from a log sync and not from a transaction commit. Also, checking
1675	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676	 * not done and would not be reliable - the eb might have been released
1677	 * from memory and reading it back again means that flag would not be
1678	 * set (since it's a runtime flag, not persisted on disk).
1679	 *
1680	 * Using the flags below in the btree inode also makes us achieve the
1681	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682	 * writeback for all dirty pages and before filemap_fdatawait_range()
1683	 * is called, the writeback for all dirty pages had already finished
1684	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685	 * filemap_fdatawait_range() would return success, as it could not know
1686	 * that writeback errors happened (the pages were no longer tagged for
1687	 * writeback).
1688	 */
1689	switch (eb->log_index) {
1690	case -1:
1691		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692		break;
1693	case 0:
1694		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695		break;
1696	case 1:
1697		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698		break;
1699	default:
1700		BUG(); /* unexpected, logic error */
1701	}
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709		const struct btrfs_fs_info *fs_info, u64 start)
1710{
 
1711	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
1712
1713	rcu_read_lock();
1714	eb = radix_tree_lookup(&fs_info->buffer_radix,
1715			       start >> fs_info->sectorsize_bits);
1716	if (eb && atomic_inc_not_zero(&eb->refs)) {
1717		rcu_read_unlock();
1718		return eb;
1719	}
1720	rcu_read_unlock();
1721	return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
1725{
1726	struct extent_buffer *eb = bbio->private;
1727	struct btrfs_fs_info *fs_info = eb->fs_info;
1728	bool uptodate = !bbio->bio.bi_status;
1729	struct folio_iter fi;
1730	u32 bio_offset = 0;
1731
1732	if (!uptodate)
1733		set_btree_ioerr(eb);
1734
1735	bio_for_each_folio_all(fi, &bbio->bio) {
1736		u64 start = eb->start + bio_offset;
1737		struct folio *folio = fi.folio;
1738		u32 len = fi.length;
1739
1740		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741		bio_offset += len;
1742	}
1743
1744	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745	smp_mb__after_atomic();
1746	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1747
1748	bio_put(&bbio->bio);
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
 
 
1752{
 
1753	u32 nritems;
1754	unsigned long start;
1755	unsigned long end;
 
 
1756
1757	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
 
1758
1759	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1760	nritems = btrfs_header_nritems(eb);
1761	if (btrfs_header_level(eb) > 0) {
1762		end = btrfs_node_key_ptr_offset(eb, nritems);
 
1763		memzero_extent_buffer(eb, end, eb->len - end);
1764	} else {
1765		/*
1766		 * Leaf:
1767		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768		 */
1769		start = btrfs_item_nr_offset(eb, nritems);
1770		end = btrfs_item_nr_offset(eb, 0);
1771		if (nritems == 0)
1772			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773		else
1774			end += btrfs_item_offset(eb, nritems - 1);
1775		memzero_extent_buffer(eb, start, end - start);
1776	}
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780					    struct writeback_control *wbc)
1781{
1782	struct btrfs_fs_info *fs_info = eb->fs_info;
1783	struct btrfs_bio *bbio;
1784
1785	prepare_eb_write(eb);
1786
1787	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789			       eb->fs_info, end_bbio_meta_write, eb);
1790	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792	wbc_init_bio(wbc, &bbio->bio);
1793	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794	bbio->file_offset = eb->start;
1795	if (fs_info->nodesize < PAGE_SIZE) {
1796		struct folio *folio = eb->folios[0];
1797		bool ret;
1798
1799		folio_lock(folio);
1800		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802						       eb->len)) {
1803			folio_clear_dirty_for_io(folio);
1804			wbc->nr_to_write--;
1805		}
1806		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807				    eb->start - folio_pos(folio));
1808		ASSERT(ret);
1809		wbc_account_cgroup_owner(wbc, folio, eb->len);
1810		folio_unlock(folio);
1811	} else {
1812		int num_folios = num_extent_folios(eb);
1813
1814		for (int i = 0; i < num_folios; i++) {
1815			struct folio *folio = eb->folios[i];
1816			bool ret;
1817
1818			folio_lock(folio);
1819			folio_clear_dirty_for_io(folio);
1820			folio_start_writeback(folio);
1821			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822			ASSERT(ret);
1823			wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824			wbc->nr_to_write -= folio_nr_pages(folio);
1825			folio_unlock(folio);
1826		}
 
 
 
1827	}
1828	btrfs_submit_bbio(bbio, 0);
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 *   For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 *   We only flush bio if we may be unable to fit current extent buffers into
1840 *   current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1846{
1847	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848	int submitted = 0;
1849	u64 folio_start = folio_pos(folio);
1850	int bit_start = 0;
1851	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1852
1853	/* Lock and write each dirty extent buffers in the range */
1854	while (bit_start < fs_info->sectors_per_page) {
1855		struct btrfs_subpage *subpage = folio_get_private(folio);
1856		struct extent_buffer *eb;
1857		unsigned long flags;
1858		u64 start;
1859
1860		/*
1861		 * Take private lock to ensure the subpage won't be detached
1862		 * in the meantime.
1863		 */
1864		spin_lock(&folio->mapping->i_private_lock);
1865		if (!folio_test_private(folio)) {
1866			spin_unlock(&folio->mapping->i_private_lock);
1867			break;
1868		}
1869		spin_lock_irqsave(&subpage->lock, flags);
1870		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871			      subpage->bitmaps)) {
1872			spin_unlock_irqrestore(&subpage->lock, flags);
1873			spin_unlock(&folio->mapping->i_private_lock);
1874			bit_start++;
1875			continue;
1876		}
1877
1878		start = folio_start + bit_start * fs_info->sectorsize;
1879		bit_start += sectors_per_node;
1880
1881		/*
1882		 * Here we just want to grab the eb without touching extra
1883		 * spin locks, so call find_extent_buffer_nolock().
1884		 */
1885		eb = find_extent_buffer_nolock(fs_info, start);
1886		spin_unlock_irqrestore(&subpage->lock, flags);
1887		spin_unlock(&folio->mapping->i_private_lock);
1888
1889		/*
1890		 * The eb has already reached 0 refs thus find_extent_buffer()
1891		 * doesn't return it. We don't need to write back such eb
1892		 * anyway.
1893		 */
1894		if (!eb)
1895			continue;
1896
1897		if (lock_extent_buffer_for_io(eb, wbc)) {
1898			write_one_eb(eb, wbc);
1899			submitted++;
 
 
1900		}
1901		free_extent_buffer(eb);
1902	}
1903	return submitted;
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page:	the page of one extent buffer
1910 * @eb_context:	to determine if we need to submit this page, if current page
1911 *		belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1927{
1928	struct writeback_control *wbc = ctx->wbc;
1929	struct address_space *mapping = folio->mapping;
1930	struct extent_buffer *eb;
1931	int ret;
1932
1933	if (!folio_test_private(folio))
1934		return 0;
1935
1936	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937		return submit_eb_subpage(folio, wbc);
1938
1939	spin_lock(&mapping->i_private_lock);
1940	if (!folio_test_private(folio)) {
1941		spin_unlock(&mapping->i_private_lock);
1942		return 0;
1943	}
1944
1945	eb = folio_get_private(folio);
1946
1947	/*
1948	 * Shouldn't happen and normally this would be a BUG_ON but no point
1949	 * crashing the machine for something we can survive anyway.
1950	 */
1951	if (WARN_ON(!eb)) {
1952		spin_unlock(&mapping->i_private_lock);
1953		return 0;
1954	}
1955
1956	if (eb == ctx->eb) {
1957		spin_unlock(&mapping->i_private_lock);
1958		return 0;
1959	}
1960	ret = atomic_inc_not_zero(&eb->refs);
1961	spin_unlock(&mapping->i_private_lock);
1962	if (!ret)
1963		return 0;
1964
1965	ctx->eb = eb;
1966
1967	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968	if (ret) {
1969		if (ret == -EBUSY)
1970			ret = 0;
1971		free_extent_buffer(eb);
1972		return ret;
1973	}
1974
1975	if (!lock_extent_buffer_for_io(eb, wbc)) {
1976		free_extent_buffer(eb);
1977		return 0;
1978	}
1979	/* Implies write in zoned mode. */
1980	if (ctx->zoned_bg) {
1981		/* Mark the last eb in the block group. */
1982		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983		ctx->zoned_bg->meta_write_pointer += eb->len;
1984	}
1985	write_one_eb(eb, wbc);
1986	free_extent_buffer(eb);
1987	return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991				   struct writeback_control *wbc)
1992{
1993	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 
 
 
 
 
1995	int ret = 0;
1996	int done = 0;
1997	int nr_to_write_done = 0;
1998	struct folio_batch fbatch;
1999	unsigned int nr_folios;
2000	pgoff_t index;
2001	pgoff_t end;		/* Inclusive */
2002	int scanned = 0;
2003	xa_mark_t tag;
2004
2005	folio_batch_init(&fbatch);
2006	if (wbc->range_cyclic) {
2007		index = mapping->writeback_index; /* Start from prev offset */
2008		end = -1;
2009		/*
2010		 * Start from the beginning does not need to cycle over the
2011		 * range, mark it as scanned.
2012		 */
2013		scanned = (index == 0);
2014	} else {
2015		index = wbc->range_start >> PAGE_SHIFT;
2016		end = wbc->range_end >> PAGE_SHIFT;
2017		scanned = 1;
2018	}
2019	if (wbc->sync_mode == WB_SYNC_ALL)
2020		tag = PAGECACHE_TAG_TOWRITE;
2021	else
2022		tag = PAGECACHE_TAG_DIRTY;
2023	btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025	if (wbc->sync_mode == WB_SYNC_ALL)
2026		tag_pages_for_writeback(mapping, index, end);
2027	while (!done && !nr_to_write_done && (index <= end) &&
2028	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029					    tag, &fbatch))) {
2030		unsigned i;
2031
2032		for (i = 0; i < nr_folios; i++) {
2033			struct folio *folio = fbatch.folios[i];
2034
2035			ret = submit_eb_page(folio, &ctx);
2036			if (ret == 0)
2037				continue;
2038			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039				done = 1;
 
2040				break;
2041			}
 
2042
2043			/*
2044			 * the filesystem may choose to bump up nr_to_write.
2045			 * We have to make sure to honor the new nr_to_write
2046			 * at any time
2047			 */
2048			nr_to_write_done = wbc->nr_to_write <= 0;
2049		}
2050		folio_batch_release(&fbatch);
2051		cond_resched();
2052	}
2053	if (!scanned && !done) {
2054		/*
2055		 * We hit the last page and there is more work to be done: wrap
2056		 * back to the start of the file
2057		 */
2058		scanned = 1;
2059		index = 0;
2060		goto retry;
2061	}
 
 
 
 
 
2062	/*
2063	 * If something went wrong, don't allow any metadata write bio to be
2064	 * submitted.
2065	 *
2066	 * This would prevent use-after-free if we had dirty pages not
2067	 * cleaned up, which can still happen by fuzzed images.
2068	 *
2069	 * - Bad extent tree
2070	 *   Allowing existing tree block to be allocated for other trees.
2071	 *
2072	 * - Log tree operations
2073	 *   Exiting tree blocks get allocated to log tree, bumps its
2074	 *   generation, then get cleaned in tree re-balance.
2075	 *   Such tree block will not be written back, since it's clean,
2076	 *   thus no WRITTEN flag set.
2077	 *   And after log writes back, this tree block is not traced by
2078	 *   any dirty extent_io_tree.
2079	 *
2080	 * - Offending tree block gets re-dirtied from its original owner
2081	 *   Since it has bumped generation, no WRITTEN flag, it can be
2082	 *   reused without COWing. This tree block will not be traced
2083	 *   by btrfs_transaction::dirty_pages.
2084	 *
2085	 *   Now such dirty tree block will not be cleaned by any dirty
2086	 *   extent io tree. Thus we don't want to submit such wild eb
2087	 *   if the fs already has error.
2088	 *
2089	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091	 */
2092	if (ret > 0)
2093		ret = 0;
2094	if (!ret && BTRFS_FS_ERROR(fs_info))
2095		ret = -EROFS;
2096
2097	if (ctx.zoned_bg)
2098		btrfs_put_block_group(ctx.zoned_bg);
2099	btrfs_zoned_meta_io_unlock(fs_info);
2100	return ret;
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping:   address space structure to write
2107 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl:  holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them.  If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119			     struct btrfs_bio_ctrl *bio_ctrl)
 
2120{
2121	struct writeback_control *wbc = bio_ctrl->wbc;
2122	struct inode *inode = mapping->host;
2123	int ret = 0;
2124	int done = 0;
2125	int nr_to_write_done = 0;
2126	struct folio_batch fbatch;
2127	unsigned int nr_folios;
2128	pgoff_t index;
2129	pgoff_t end;		/* Inclusive */
2130	pgoff_t done_index;
2131	int range_whole = 0;
2132	int scanned = 0;
2133	xa_mark_t tag;
2134
2135	/*
2136	 * We have to hold onto the inode so that ordered extents can do their
2137	 * work when the IO finishes.  The alternative to this is failing to add
2138	 * an ordered extent if the igrab() fails there and that is a huge pain
2139	 * to deal with, so instead just hold onto the inode throughout the
2140	 * writepages operation.  If it fails here we are freeing up the inode
2141	 * anyway and we'd rather not waste our time writing out stuff that is
2142	 * going to be truncated anyway.
2143	 */
2144	if (!igrab(inode))
2145		return 0;
2146
2147	folio_batch_init(&fbatch);
2148	if (wbc->range_cyclic) {
2149		index = mapping->writeback_index; /* Start from prev offset */
2150		end = -1;
2151		/*
2152		 * Start from the beginning does not need to cycle over the
2153		 * range, mark it as scanned.
2154		 */
2155		scanned = (index == 0);
2156	} else {
2157		index = wbc->range_start >> PAGE_SHIFT;
2158		end = wbc->range_end >> PAGE_SHIFT;
2159		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160			range_whole = 1;
2161		scanned = 1;
2162	}
2163
2164	/*
2165	 * We do the tagged writepage as long as the snapshot flush bit is set
2166	 * and we are the first one who do the filemap_flush() on this inode.
2167	 *
2168	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169	 * not race in and drop the bit.
2170	 */
2171	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173			       &BTRFS_I(inode)->runtime_flags))
2174		wbc->tagged_writepages = 1;
2175
2176	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177		tag = PAGECACHE_TAG_TOWRITE;
2178	else
2179		tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182		tag_pages_for_writeback(mapping, index, end);
2183	done_index = index;
2184	while (!done && !nr_to_write_done && (index <= end) &&
2185			(nr_folios = filemap_get_folios_tag(mapping, &index,
2186							end, tag, &fbatch))) {
2187		unsigned i;
2188
2189		for (i = 0; i < nr_folios; i++) {
2190			struct folio *folio = fbatch.folios[i];
2191
2192			done_index = folio_next_index(folio);
2193			/*
2194			 * At this point we hold neither the i_pages lock nor
2195			 * the page lock: the page may be truncated or
2196			 * invalidated (changing page->mapping to NULL),
2197			 * or even swizzled back from swapper_space to
2198			 * tmpfs file mapping
2199			 */
2200			if (!folio_trylock(folio)) {
2201				submit_write_bio(bio_ctrl, 0);
2202				folio_lock(folio);
 
2203			}
2204
2205			if (unlikely(folio->mapping != mapping)) {
2206				folio_unlock(folio);
2207				continue;
2208			}
2209
2210			if (!folio_test_dirty(folio)) {
2211				/* Someone wrote it for us. */
2212				folio_unlock(folio);
2213				continue;
 
 
2214			}
2215
2216			/*
2217			 * For subpage case, compression can lead to mixed
2218			 * writeback and dirty flags, e.g:
2219			 * 0     32K    64K    96K    128K
2220			 * |     |//////||/////|   |//|
2221			 *
2222			 * In above case, [32K, 96K) is asynchronously submitted
2223			 * for compression, and [124K, 128K) needs to be written back.
2224			 *
2225			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226			 * won't be submitted as the page still has writeback flag
2227			 * and will be skipped in the next check.
2228			 *
2229			 * This mixed writeback and dirty case is only possible for
2230			 * subpage case.
2231			 *
2232			 * TODO: Remove this check after migrating compression to
2233			 * regular submission.
2234			 */
2235			if (wbc->sync_mode != WB_SYNC_NONE ||
2236			    btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237				if (folio_test_writeback(folio))
2238					submit_write_bio(bio_ctrl, 0);
2239				folio_wait_writeback(folio);
2240			}
2241
2242			if (folio_test_writeback(folio) ||
2243			    !folio_clear_dirty_for_io(folio)) {
2244				folio_unlock(folio);
2245				continue;
2246			}
2247
2248			ret = extent_writepage(folio, bio_ctrl);
2249			if (ret < 0) {
2250				done = 1;
2251				break;
2252			}
2253
2254			/*
2255			 * The filesystem may choose to bump up nr_to_write.
2256			 * We have to make sure to honor the new nr_to_write
2257			 * at any time.
2258			 */
2259			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260					    wbc->nr_to_write <= 0);
2261		}
2262		folio_batch_release(&fbatch);
2263		cond_resched();
2264	}
2265	if (!scanned && !done) {
2266		/*
2267		 * We hit the last page and there is more work to be done: wrap
2268		 * back to the start of the file
2269		 */
2270		scanned = 1;
2271		index = 0;
2272
2273		/*
2274		 * If we're looping we could run into a page that is locked by a
2275		 * writer and that writer could be waiting on writeback for a
2276		 * page in our current bio, and thus deadlock, so flush the
2277		 * write bio here.
2278		 */
2279		submit_write_bio(bio_ctrl, 0);
2280		goto retry;
 
2281	}
2282
2283	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284		mapping->writeback_index = done_index;
2285
2286	btrfs_add_delayed_iput(BTRFS_I(inode));
2287	return ret;
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296			       u64 start, u64 end, struct writeback_control *wbc,
2297			       bool pages_dirty)
2298{
2299	bool found_error = false;
2300	int ret = 0;
2301	struct address_space *mapping = inode->i_mapping;
2302	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303	const u32 sectorsize = fs_info->sectorsize;
2304	loff_t i_size = i_size_read(inode);
2305	u64 cur = start;
2306	struct btrfs_bio_ctrl bio_ctrl = {
2307		.wbc = wbc,
2308		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309	};
2310
2311	if (wbc->no_cgroup_owner)
2312		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
 
 
 
 
2313
2314	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
 
2315
2316	while (cur <= end) {
2317		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318		u32 cur_len = cur_end + 1 - cur;
2319		struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320
2321		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2322
2323		/*
2324		 * This shouldn't happen, the pages are pinned and locked, this
2325		 * code is just in case, but shouldn't actually be run.
2326		 */
2327		if (IS_ERR(folio)) {
2328			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329						       cur, cur_len, false);
2330			mapping_set_error(mapping, PTR_ERR(folio));
2331			cur = cur_end + 1;
2332			continue;
2333		}
 
 
 
2334
2335		ASSERT(folio_test_locked(folio));
2336		if (pages_dirty && folio != locked_folio)
2337			ASSERT(folio_test_dirty(folio));
 
 
2338
2339		/*
2340		 * Set the submission bitmap to submit all sectors.
2341		 * extent_writepage_io() will do the truncation correctly.
2342		 */
2343		bio_ctrl.submit_bitmap = (unsigned long)-1;
2344		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345					  &bio_ctrl, i_size);
2346		if (ret == 1)
2347			goto next_page;
2348
2349		if (ret)
2350			mapping_set_error(mapping, ret);
2351		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352		if (ret < 0)
2353			found_error = true;
2354next_page:
2355		folio_put(folio);
2356		cur = cur_end + 1;
2357	}
2358
2359	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 
2363{
2364	struct inode *inode = mapping->host;
2365	int ret = 0;
2366	struct btrfs_bio_ctrl bio_ctrl = {
2367		.wbc = wbc,
2368		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
2369	};
2370
2371	/*
2372	 * Allow only a single thread to do the reloc work in zoned mode to
2373	 * protect the write pointer updates.
2374	 */
2375	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377	submit_write_bio(&bio_ctrl, ret);
2378	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379	return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385	struct folio *folio;
2386	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387	const u64 start = readahead_pos(rac);
2388	const u64 end = start + readahead_length(rac) - 1;
2389	struct extent_state *cached_state = NULL;
2390	struct extent_map *em_cached = NULL;
2391	u64 prev_em_start = (u64)-1;
 
2392
2393	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
 
 
2394
2395	while ((folio = readahead_folio(rac)) != NULL)
2396		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398	unlock_extent(&inode->io_tree, start, end, &cached_state);
 
 
2399
2400	if (em_cached)
2401		free_extent_map(em_cached);
2402	submit_one_bio(&bio_ctrl);
 
 
 
 
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411			  struct folio *folio, size_t offset)
2412{
2413	struct extent_state *cached_state = NULL;
2414	u64 start = folio_pos(folio);
2415	u64 end = start + folio_size(folio) - 1;
2416	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418	/* This function is only called for the btree inode */
2419	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421	start += ALIGN(offset, blocksize);
2422	if (start > end)
2423		return 0;
2424
2425	lock_extent(tree, start, end, &cached_state);
2426	folio_wait_writeback(folio);
2427
2428	/*
2429	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430	 * so here we only need to unlock the extent range to free any
2431	 * existing extent state.
2432	 */
2433	unlock_extent(tree, start, end, &cached_state);
2434	return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443				     struct folio *folio)
2444{
2445	u64 start = folio_pos(folio);
2446	u64 end = start + PAGE_SIZE - 1;
2447	bool ret;
2448
2449	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450		ret = false;
2451	} else {
2452		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454				   EXTENT_QGROUP_RESERVED);
2455		int ret2;
2456
2457		/*
2458		 * At this point we can safely clear everything except the
2459		 * locked bit, the nodatasum bit and the delalloc new bit.
2460		 * The delalloc new bit will be cleared by ordered extent
2461		 * completion.
2462		 */
2463		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2464
2465		/* if clear_extent_bit failed for enomem reasons,
2466		 * we can't allow the release to continue.
2467		 */
2468		if (ret2 < 0)
2469			ret = false;
2470		else
2471			ret = true;
2472	}
2473	return ret;
2474}
2475
2476/*
2477 * a helper for release_folio.  As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2482{
2483	u64 start = folio_pos(folio);
 
2484	u64 end = start + PAGE_SIZE - 1;
2485	struct btrfs_inode *inode = folio_to_inode(folio);
2486	struct extent_io_tree *io_tree = &inode->io_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	while (start <= end) {
2489		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490		const u64 len = end - start + 1;
2491		struct extent_map_tree *extent_tree = &inode->extent_tree;
2492		struct extent_map *em;
2493
2494		write_lock(&extent_tree->lock);
2495		em = lookup_extent_mapping(extent_tree, start, len);
2496		if (!em) {
2497			write_unlock(&extent_tree->lock);
2498			break;
2499		}
2500		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501			write_unlock(&extent_tree->lock);
2502			free_extent_map(em);
 
 
 
 
 
 
 
 
 
2503			break;
2504		}
2505		if (test_range_bit_exists(io_tree, em->start,
2506					  extent_map_end(em) - 1, EXTENT_LOCKED))
2507			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508		/*
2509		 * If it's not in the list of modified extents, used by a fast
2510		 * fsync, we can remove it. If it's being logged we can safely
2511		 * remove it since fsync took an extra reference on the em.
2512		 */
2513		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514			goto remove_em;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515		/*
2516		 * If it's in the list of modified extents, remove it only if
2517		 * its generation is older then the current one, in which case
2518		 * we don't need it for a fast fsync. Otherwise don't remove it,
2519		 * we could be racing with an ongoing fast fsync that could miss
2520		 * the new extent.
2521		 */
2522		if (em->generation >= cur_gen)
2523			goto next;
2524remove_em:
2525		/*
2526		 * We only remove extent maps that are not in the list of
2527		 * modified extents or that are in the list but with a
2528		 * generation lower then the current generation, so there is no
2529		 * need to set the full fsync flag on the inode (it hurts the
2530		 * fsync performance for workloads with a data size that exceeds
2531		 * or is close to the system's memory).
2532		 */
2533		remove_extent_mapping(inode, em);
2534		/* Once for the inode's extent map tree. */
2535		free_extent_map(em);
2536next:
2537		start = extent_map_end(em);
2538		write_unlock(&extent_tree->lock);
 
 
 
2539
2540		/* Once for us, for the lookup_extent_mapping() reference. */
2541		free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542
2543		if (need_resched()) {
2544			/*
2545			 * If we need to resched but we can't block just exit
2546			 * and leave any remaining extent maps.
 
 
 
2547			 */
2548			if (!gfpflags_allow_blocking(mask))
2549				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550
2551			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552		}
2553	}
2554	return try_release_extent_state(io_tree, folio);
 
 
 
 
 
 
 
 
 
 
 
 
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
2558{
2559	kmem_cache_free(extent_buffer_cache, eb);
2560}
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
2565		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
 
 
 
2569{
2570	struct btrfs_subpage *subpage;
 
 
2571
2572	lockdep_assert_held(&folio->mapping->i_private_lock);
2573
2574	if (folio_test_private(folio)) {
2575		subpage = folio_get_private(folio);
2576		if (atomic_read(&subpage->eb_refs))
2577			return true;
2578	}
2579	return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2583{
2584	struct btrfs_fs_info *fs_info = eb->fs_info;
2585	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2586
2587	/*
2588	 * For mapped eb, we're going to change the folio private, which should
2589	 * be done under the i_private_lock.
2590	 */
2591	if (mapped)
2592		spin_lock(&folio->mapping->i_private_lock);
2593
2594	if (!folio_test_private(folio)) {
2595		if (mapped)
2596			spin_unlock(&folio->mapping->i_private_lock);
2597		return;
2598	}
2599
2600	if (fs_info->nodesize >= PAGE_SIZE) {
2601		/*
2602		 * We do this since we'll remove the pages after we've
2603		 * removed the eb from the radix tree, so we could race
2604		 * and have this page now attached to the new eb.  So
2605		 * only clear folio if it's still connected to
2606		 * this eb.
2607		 */
2608		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 
2609			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610			BUG_ON(folio_test_dirty(folio));
2611			BUG_ON(folio_test_writeback(folio));
2612			/* We need to make sure we haven't be attached to a new eb. */
2613			folio_detach_private(folio);
 
 
 
2614		}
 
2615		if (mapped)
2616			spin_unlock(&folio->mapping->i_private_lock);
2617		return;
2618	}
2619
2620	/*
2621	 * For subpage, we can have dummy eb with folio private attached.  In
2622	 * this case, we can directly detach the private as such folio is only
2623	 * attached to one dummy eb, no sharing.
2624	 */
2625	if (!mapped) {
2626		btrfs_detach_subpage(fs_info, folio);
2627		return;
2628	}
2629
2630	btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632	/*
2633	 * We can only detach the folio private if there are no other ebs in the
2634	 * page range and no unfinished IO.
2635	 */
2636	if (!folio_range_has_eb(folio))
2637		btrfs_detach_subpage(fs_info, folio);
2638
2639	spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
2645	ASSERT(!extent_buffer_under_io(eb));
2646
2647	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648		struct folio *folio = eb->folios[i];
2649
2650		if (!folio)
2651			continue;
2652
2653		detach_extent_buffer_folio(eb, folio);
2654
2655		/* One for when we allocated the folio. */
2656		folio_put(folio);
2657	}
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665	btrfs_release_extent_buffer_pages(eb);
2666	btrfs_leak_debug_del_eb(eb);
2667	__free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672		      unsigned long len)
2673{
2674	struct extent_buffer *eb = NULL;
2675
2676	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677	eb->start = start;
2678	eb->len = len;
2679	eb->fs_info = fs_info;
2680	init_rwsem(&eb->lock);
 
 
 
 
 
 
2681
2682	btrfs_leak_debug_add_eb(eb);
 
2683
2684	spin_lock_init(&eb->refs_lock);
2685	atomic_set(&eb->refs, 1);
 
2686
2687	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
 
 
 
 
 
 
 
2688
2689	return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
 
 
2694	struct extent_buffer *new;
2695	int num_folios = num_extent_folios(src);
2696	int ret;
2697
2698	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699	if (new == NULL)
2700		return NULL;
2701
2702	/*
2703	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704	 * btrfs_release_extent_buffer() have different behavior for
2705	 * UNMAPPED subpage extent buffer.
2706	 */
2707	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709	ret = alloc_eb_folio_array(new, false);
2710	if (ret) {
2711		btrfs_release_extent_buffer(new);
2712		return NULL;
2713	}
2714
2715	for (int i = 0; i < num_folios; i++) {
2716		struct folio *folio = new->folios[i];
2717
2718		ret = attach_extent_buffer_folio(new, folio, NULL);
2719		if (ret < 0) {
2720			btrfs_release_extent_buffer(new);
2721			return NULL;
2722		}
2723		WARN_ON(folio_test_dirty(folio));
 
 
 
 
2724	}
2725	copy_extent_buffer_full(new, src);
2726	set_extent_buffer_uptodate(new);
 
2727
2728	return new;
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732						  u64 start, unsigned long len)
2733{
2734	struct extent_buffer *eb;
2735	int num_folios = 0;
2736	int ret;
2737
2738	eb = __alloc_extent_buffer(fs_info, start, len);
2739	if (!eb)
2740		return NULL;
2741
2742	ret = alloc_eb_folio_array(eb, false);
2743	if (ret)
2744		goto err;
2745
2746	num_folios = num_extent_folios(eb);
2747	for (int i = 0; i < num_folios; i++) {
2748		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2749		if (ret < 0)
2750			goto err;
2751	}
2752
2753	set_extent_buffer_uptodate(eb);
2754	btrfs_set_header_nritems(eb, 0);
2755	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757	return eb;
2758err:
2759	for (int i = 0; i < num_folios; i++) {
2760		if (eb->folios[i]) {
2761			detach_extent_buffer_folio(eb, eb->folios[i]);
2762			folio_put(eb->folios[i]);
2763		}
2764	}
2765	__free_extent_buffer(eb);
2766	return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770						u64 start)
2771{
2772	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777	int refs;
2778	/*
2779	 * The TREE_REF bit is first set when the extent_buffer is added
2780	 * to the radix tree. It is also reset, if unset, when a new reference
2781	 * is created by find_extent_buffer.
2782	 *
2783	 * It is only cleared in two cases: freeing the last non-tree
2784	 * reference to the extent_buffer when its STALE bit is set or
2785	 * calling release_folio when the tree reference is the only reference.
2786	 *
2787	 * In both cases, care is taken to ensure that the extent_buffer's
2788	 * pages are not under io. However, release_folio can be concurrently
2789	 * called with creating new references, which is prone to race
2790	 * conditions between the calls to check_buffer_tree_ref in those
2791	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792	 *
2793	 * The actual lifetime of the extent_buffer in the radix tree is
2794	 * adequately protected by the refcount, but the TREE_REF bit and
2795	 * its corresponding reference are not. To protect against this
2796	 * class of races, we call check_buffer_tree_ref from the codepaths
2797	 * which trigger io. Note that once io is initiated, TREE_REF can no
2798	 * longer be cleared, so that is the moment at which any such race is
2799	 * best fixed.
2800	 */
2801	refs = atomic_read(&eb->refs);
2802	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803		return;
2804
2805	spin_lock(&eb->refs_lock);
2806	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807		atomic_inc(&eb->refs);
2808	spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
2812{
2813	int num_folios= num_extent_folios(eb);
2814
2815	check_buffer_tree_ref(eb);
2816
2817	for (int i = 0; i < num_folios; i++)
2818		folio_mark_accessed(eb->folios[i]);
 
 
 
 
 
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822					 u64 start)
2823{
2824	struct extent_buffer *eb;
2825
2826	eb = find_extent_buffer_nolock(fs_info, start);
2827	if (!eb)
2828		return NULL;
2829	/*
2830	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832	 * another task running free_extent_buffer() might have seen that flag
2833	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834	 * writeback flags not set) and it's still in the tree (flag
2835	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836	 * decrementing the extent buffer's reference count twice.  So here we
2837	 * could race and increment the eb's reference count, clear its stale
2838	 * flag, mark it as dirty and drop our reference before the other task
2839	 * finishes executing free_extent_buffer, which would later result in
2840	 * an attempt to free an extent buffer that is dirty.
2841	 */
2842	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843		spin_lock(&eb->refs_lock);
2844		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
2845	}
2846	mark_extent_buffer_accessed(eb);
2847	return eb;
 
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852					u64 start)
2853{
2854	struct extent_buffer *eb, *exists = NULL;
2855	int ret;
2856
2857	eb = find_extent_buffer(fs_info, start);
2858	if (eb)
2859		return eb;
2860	eb = alloc_dummy_extent_buffer(fs_info, start);
2861	if (!eb)
2862		return ERR_PTR(-ENOMEM);
2863	eb->fs_info = fs_info;
2864again:
2865	ret = radix_tree_preload(GFP_NOFS);
2866	if (ret) {
2867		exists = ERR_PTR(ret);
2868		goto free_eb;
2869	}
2870	spin_lock(&fs_info->buffer_lock);
2871	ret = radix_tree_insert(&fs_info->buffer_radix,
2872				start >> fs_info->sectorsize_bits, eb);
2873	spin_unlock(&fs_info->buffer_lock);
2874	radix_tree_preload_end();
2875	if (ret == -EEXIST) {
2876		exists = find_extent_buffer(fs_info, start);
2877		if (exists)
2878			goto free_eb;
2879		else
2880			goto again;
2881	}
2882	check_buffer_tree_ref(eb);
2883	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885	return eb;
2886free_eb:
2887	btrfs_release_extent_buffer(eb);
2888	return exists;
2889}
2890#endif
2891
2892static struct extent_buffer *grab_extent_buffer(
2893		struct btrfs_fs_info *fs_info, struct page *page)
2894{
2895	struct folio *folio = page_folio(page);
2896	struct extent_buffer *exists;
2897
2898	lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900	/*
2901	 * For subpage case, we completely rely on radix tree to ensure we
2902	 * don't try to insert two ebs for the same bytenr.  So here we always
2903	 * return NULL and just continue.
2904	 */
2905	if (fs_info->nodesize < PAGE_SIZE)
2906		return NULL;
2907
2908	/* Page not yet attached to an extent buffer */
2909	if (!folio_test_private(folio))
2910		return NULL;
2911
2912	/*
2913	 * We could have already allocated an eb for this page and attached one
2914	 * so lets see if we can get a ref on the existing eb, and if we can we
2915	 * know it's good and we can just return that one, else we know we can
2916	 * just overwrite folio private.
2917	 */
2918	exists = folio_get_private(folio);
2919	if (atomic_inc_not_zero(&exists->refs))
2920		return exists;
2921
2922	WARN_ON(PageDirty(page));
2923	folio_detach_private(folio);
2924	return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930		btrfs_err(fs_info, "bad tree block start %llu", start);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->nodesize < PAGE_SIZE &&
2935	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936		btrfs_err(fs_info,
2937		"tree block crosses page boundary, start %llu nodesize %u",
2938			  start, fs_info->nodesize);
2939		return -EINVAL;
2940	}
2941	if (fs_info->nodesize >= PAGE_SIZE &&
2942	    !PAGE_ALIGNED(start)) {
2943		btrfs_err(fs_info,
2944		"tree block is not page aligned, start %llu nodesize %u",
2945			  start, fs_info->nodesize);
2946		return -EINVAL;
2947	}
2948	if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950		btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952			      start, fs_info->nodesize);
2953	}
2954	return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967				      struct btrfs_subpage *prealloc,
2968				      struct extent_buffer **found_eb_ret)
2969{
2970
2971	struct btrfs_fs_info *fs_info = eb->fs_info;
2972	struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973	const unsigned long index = eb->start >> PAGE_SHIFT;
2974	struct folio *existing_folio = NULL;
2975	int ret;
2976
2977	ASSERT(found_eb_ret);
2978
2979	/* Caller should ensure the folio exists. */
2980	ASSERT(eb->folios[i]);
2981
2982retry:
2983	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984				GFP_NOFS | __GFP_NOFAIL);
2985	if (!ret)
2986		goto finish;
2987
2988	existing_folio = filemap_lock_folio(mapping, index + i);
2989	/* The page cache only exists for a very short time, just retry. */
2990	if (IS_ERR(existing_folio)) {
2991		existing_folio = NULL;
2992		goto retry;
2993	}
2994
2995	/* For now, we should only have single-page folios for btree inode. */
2996	ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998	if (folio_size(existing_folio) != eb->folio_size) {
2999		folio_unlock(existing_folio);
3000		folio_put(existing_folio);
3001		return -EAGAIN;
3002	}
3003
3004finish:
3005	spin_lock(&mapping->i_private_lock);
3006	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007		/* We're going to reuse the existing page, can drop our folio now. */
3008		__free_page(folio_page(eb->folios[i], 0));
3009		eb->folios[i] = existing_folio;
3010	} else if (existing_folio) {
3011		struct extent_buffer *existing_eb;
3012
3013		existing_eb = grab_extent_buffer(fs_info,
3014						 folio_page(existing_folio, 0));
3015		if (existing_eb) {
3016			/* The extent buffer still exists, we can use it directly. */
3017			*found_eb_ret = existing_eb;
3018			spin_unlock(&mapping->i_private_lock);
3019			folio_unlock(existing_folio);
3020			folio_put(existing_folio);
3021			return 1;
3022		}
3023		/* The extent buffer no longer exists, we can reuse the folio. */
3024		__free_page(folio_page(eb->folios[i], 0));
3025		eb->folios[i] = existing_folio;
3026	}
3027	eb->folio_size = folio_size(eb->folios[i]);
3028	eb->folio_shift = folio_shift(eb->folios[i]);
3029	/* Should not fail, as we have preallocated the memory. */
3030	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031	ASSERT(!ret);
3032	/*
3033	 * To inform we have an extra eb under allocation, so that
3034	 * detach_extent_buffer_page() won't release the folio private when the
3035	 * eb hasn't been inserted into radix tree yet.
3036	 *
3037	 * The ref will be decreased when the eb releases the page, in
3038	 * detach_extent_buffer_page().  Thus needs no special handling in the
3039	 * error path.
3040	 */
3041	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042	spin_unlock(&mapping->i_private_lock);
3043	return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047					  u64 start, u64 owner_root, int level)
3048{
3049	unsigned long len = fs_info->nodesize;
3050	int num_folios;
3051	int attached = 0;
 
3052	struct extent_buffer *eb;
3053	struct extent_buffer *existing_eb = NULL;
3054	struct btrfs_subpage *prealloc = NULL;
3055	u64 lockdep_owner = owner_root;
3056	bool page_contig = true;
3057	int uptodate = 1;
3058	int ret;
3059
3060	if (check_eb_alignment(fs_info, start))
 
3061		return ERR_PTR(-EINVAL);
3062
3063#if BITS_PER_LONG == 32
3064	if (start >= MAX_LFS_FILESIZE) {
3065		btrfs_err_rl(fs_info,
3066		"extent buffer %llu is beyond 32bit page cache limit", start);
3067		btrfs_err_32bit_limit(fs_info);
3068		return ERR_PTR(-EOVERFLOW);
3069	}
3070	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071		btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
3074	eb = find_extent_buffer(fs_info, start);
3075	if (eb)
3076		return eb;
3077
3078	eb = __alloc_extent_buffer(fs_info, start, len);
3079	if (!eb)
3080		return ERR_PTR(-ENOMEM);
3081
3082	/*
3083	 * The reloc trees are just snapshots, so we need them to appear to be
3084	 * just like any other fs tree WRT lockdep.
3085	 */
3086	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091	/*
3092	 * Preallocate folio private for subpage case, so that we won't
3093	 * allocate memory with i_private_lock nor page lock hold.
3094	 *
3095	 * The memory will be freed by attach_extent_buffer_page() or freed
3096	 * manually if we exit earlier.
3097	 */
3098	if (fs_info->nodesize < PAGE_SIZE) {
3099		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100		if (IS_ERR(prealloc)) {
3101			ret = PTR_ERR(prealloc);
3102			goto out;
3103		}
3104	}
3105
3106reallocate:
3107	/* Allocate all pages first. */
3108	ret = alloc_eb_folio_array(eb, true);
3109	if (ret < 0) {
3110		btrfs_free_subpage(prealloc);
3111		goto out;
3112	}
 
 
 
 
 
 
 
 
 
 
 
3113
3114	num_folios = num_extent_folios(eb);
3115	/* Attach all pages to the filemap. */
3116	for (int i = 0; i < num_folios; i++) {
3117		struct folio *folio;
3118
3119		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120		if (ret > 0) {
3121			ASSERT(existing_eb);
3122			goto out;
3123		}
3124
3125		/*
3126		 * TODO: Special handling for a corner case where the order of
3127		 * folios mismatch between the new eb and filemap.
3128		 *
3129		 * This happens when:
3130		 *
3131		 * - the new eb is using higher order folio
3132		 *
3133		 * - the filemap is still using 0-order folios for the range
3134		 *   This can happen at the previous eb allocation, and we don't
3135		 *   have higher order folio for the call.
3136		 *
3137		 * - the existing eb has already been freed
3138		 *
3139		 * In this case, we have to free the existing folios first, and
3140		 * re-allocate using the same order.
3141		 * Thankfully this is not going to happen yet, as we're still
3142		 * using 0-order folios.
3143		 */
3144		if (unlikely(ret == -EAGAIN)) {
3145			ASSERT(0);
3146			goto reallocate;
3147		}
3148		attached++;
3149
3150		/*
3151		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152		 * reliable, as we may choose to reuse the existing page cache
3153		 * and free the allocated page.
3154		 */
3155		folio = eb->folios[i];
3156		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
3158		/*
3159		 * Check if the current page is physically contiguous with previous eb
3160		 * page.
3161		 * At this stage, either we allocated a large folio, thus @i
3162		 * would only be 0, or we fall back to per-page allocation.
3163		 */
3164		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165			page_contig = false;
3166
3167		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3168			uptodate = 0;
3169
3170		/*
3171		 * We can't unlock the pages just yet since the extent buffer
3172		 * hasn't been properly inserted in the radix tree, this
3173		 * opens a race with btree_release_folio which can free a page
3174		 * while we are still filling in all pages for the buffer and
3175		 * we could crash.
3176		 */
3177	}
3178	if (uptodate)
3179		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180	/* All pages are physically contiguous, can skip cross page handling. */
3181	if (page_contig)
3182		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184	ret = radix_tree_preload(GFP_NOFS);
3185	if (ret)
3186		goto out;
 
 
3187
3188	spin_lock(&fs_info->buffer_lock);
3189	ret = radix_tree_insert(&fs_info->buffer_radix,
3190				start >> fs_info->sectorsize_bits, eb);
3191	spin_unlock(&fs_info->buffer_lock);
3192	radix_tree_preload_end();
3193	if (ret == -EEXIST) {
3194		ret = 0;
3195		existing_eb = find_extent_buffer(fs_info, start);
3196		if (existing_eb)
3197			goto out;
3198		else
3199			goto again;
3200	}
3201	/* add one reference for the tree */
3202	check_buffer_tree_ref(eb);
3203	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3204
3205	/*
3206	 * Now it's safe to unlock the pages because any calls to
3207	 * btree_release_folio will correctly detect that a page belongs to a
3208	 * live buffer and won't free them prematurely.
3209	 */
3210	for (int i = 0; i < num_folios; i++)
3211		unlock_page(folio_page(eb->folios[i], 0));
3212	return eb;
3213
3214out:
3215	WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217	/*
3218	 * Any attached folios need to be detached before we unlock them.  This
3219	 * is because when we're inserting our new folios into the mapping, and
3220	 * then attaching our eb to that folio.  If we fail to insert our folio
3221	 * we'll lookup the folio for that index, and grab that EB.  We do not
3222	 * want that to grab this eb, as we're getting ready to free it.  So we
3223	 * have to detach it first and then unlock it.
3224	 *
3225	 * We have to drop our reference and NULL it out here because in the
3226	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227	 * Below when we call btrfs_release_extent_buffer() we will call
3228	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3230	 * double put our reference and be super sad.
3231	 */
3232	for (int i = 0; i < attached; i++) {
3233		ASSERT(eb->folios[i]);
3234		detach_extent_buffer_folio(eb, eb->folios[i]);
3235		unlock_page(folio_page(eb->folios[i], 0));
3236		folio_put(eb->folios[i]);
3237		eb->folios[i] = NULL;
3238	}
3239	/*
3240	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241	 * so it can be cleaned up without utilizing page->mapping.
3242	 */
3243	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
3245	btrfs_release_extent_buffer(eb);
3246	if (ret < 0)
3247		return ERR_PTR(ret);
3248	ASSERT(existing_eb);
3249	return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254	struct extent_buffer *eb =
3255			container_of(head, struct extent_buffer, rcu_head);
3256
3257	__free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261	__releases(&eb->refs_lock)
3262{
3263	lockdep_assert_held(&eb->refs_lock);
3264
3265	WARN_ON(atomic_read(&eb->refs) == 0);
3266	if (atomic_dec_and_test(&eb->refs)) {
3267		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268			struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270			spin_unlock(&eb->refs_lock);
3271
3272			spin_lock(&fs_info->buffer_lock);
3273			radix_tree_delete(&fs_info->buffer_radix,
3274					  eb->start >> fs_info->sectorsize_bits);
3275			spin_unlock(&fs_info->buffer_lock);
3276		} else {
3277			spin_unlock(&eb->refs_lock);
3278		}
3279
3280		btrfs_leak_debug_del_eb(eb);
3281		/* Should be safe to release our pages at this point */
3282		btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285			__free_extent_buffer(eb);
3286			return 1;
3287		}
3288#endif
3289		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290		return 1;
3291	}
3292	spin_unlock(&eb->refs_lock);
3293
3294	return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299	int refs;
 
3300	if (!eb)
3301		return;
3302
3303	refs = atomic_read(&eb->refs);
3304	while (1) {
 
3305		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307			refs == 1))
3308			break;
3309		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
3310			return;
3311	}
3312
3313	spin_lock(&eb->refs_lock);
3314	if (atomic_read(&eb->refs) == 2 &&
3315	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316	    !extent_buffer_under_io(eb) &&
3317	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318		atomic_dec(&eb->refs);
3319
3320	/*
3321	 * I know this is terrible, but it's temporary until we stop tracking
3322	 * the uptodate bits and such for the extent buffers.
3323	 */
3324	release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329	if (!eb)
3330		return;
3331
3332	spin_lock(&eb->refs_lock);
3333	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337		atomic_dec(&eb->refs);
3338	release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343	ASSERT(folio_test_dirty(folio));
3344	ASSERT(folio_test_locked(folio));
3345	folio_clear_dirty_for_io(folio);
3346	xa_lock_irq(&folio->mapping->i_pages);
3347	if (!folio_test_dirty(folio))
3348		__xa_clear_mark(&folio->mapping->i_pages,
3349				folio_index(folio), PAGECACHE_TAG_DIRTY);
3350	xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355	struct btrfs_fs_info *fs_info = eb->fs_info;
3356	struct folio *folio = eb->folios[0];
3357	bool last;
3358
3359	/* btree_clear_folio_dirty() needs page locked. */
3360	folio_lock(folio);
3361	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3362	if (last)
3363		btree_clear_folio_dirty(folio);
3364	folio_unlock(folio);
3365	WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369			      struct extent_buffer *eb)
3370{
3371	struct btrfs_fs_info *fs_info = eb->fs_info;
3372	int num_folios;
3373
3374	btrfs_assert_tree_write_locked(eb);
3375
3376	if (trans && btrfs_header_generation(eb) != trans->transid)
3377		return;
3378
3379	/*
3380	 * Instead of clearing the dirty flag off of the buffer, mark it as
3381	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382	 * write-ordering in zoned mode, without the need to later re-dirty
3383	 * the extent_buffer.
3384	 *
3385	 * The actual zeroout of the buffer will happen later in
3386	 * btree_csum_one_bio.
3387	 */
3388	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390		return;
3391	}
3392
3393	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394		return;
3395
3396	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397				 fs_info->dirty_metadata_batch);
3398
3399	if (eb->fs_info->nodesize < PAGE_SIZE)
3400		return clear_subpage_extent_buffer_dirty(eb);
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		struct folio *folio = eb->folios[i];
3405
3406		if (!folio_test_dirty(folio))
3407			continue;
3408		folio_lock(folio);
3409		btree_clear_folio_dirty(folio);
3410		folio_unlock(folio);
3411	}
3412	WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
3416{
3417	int num_folios;
 
3418	bool was_dirty;
3419
3420	check_buffer_tree_ref(eb);
3421
3422	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3423
3424	num_folios = num_extent_folios(eb);
3425	WARN_ON(atomic_read(&eb->refs) == 0);
3426	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429	if (!was_dirty) {
3430		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
 
3431
3432		/*
3433		 * For subpage case, we can have other extent buffers in the
3434		 * same page, and in clear_subpage_extent_buffer_dirty() we
3435		 * have to clear page dirty without subpage lock held.
3436		 * This can cause race where our page gets dirty cleared after
3437		 * we just set it.
3438		 *
3439		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440		 * its page for other reasons, we can use page lock to prevent
3441		 * the above race.
3442		 */
3443		if (subpage)
3444			lock_page(folio_page(eb->folios[0], 0));
3445		for (int i = 0; i < num_folios; i++)
3446			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447					      eb->start, eb->len);
3448		if (subpage)
3449			unlock_page(folio_page(eb->folios[0], 0));
3450		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451					 eb->len,
3452					 eb->fs_info->dirty_metadata_batch);
3453	}
3454#ifdef CONFIG_BTRFS_DEBUG
3455	for (int i = 0; i < num_folios; i++)
3456		ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
 
 
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3461{
3462	struct btrfs_fs_info *fs_info = eb->fs_info;
3463	int num_folios = num_extent_folios(eb);
 
3464
3465	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466	for (int i = 0; i < num_folios; i++) {
3467		struct folio *folio = eb->folios[i];
3468
3469		if (!folio)
3470			continue;
3471
3472		/*
3473		 * This is special handling for metadata subpage, as regular
3474		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475		 */
3476		if (fs_info->nodesize >= PAGE_SIZE)
3477			folio_clear_uptodate(folio);
3478		else
3479			btrfs_subpage_clear_uptodate(fs_info, folio,
3480						     eb->start, eb->len);
3481	}
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
3485{
3486	struct btrfs_fs_info *fs_info = eb->fs_info;
3487	int num_folios = num_extent_folios(eb);
 
3488
3489	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490	for (int i = 0; i < num_folios; i++) {
3491		struct folio *folio = eb->folios[i];
3492
3493		/*
3494		 * This is special handling for metadata subpage, as regular
3495		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496		 */
3497		if (fs_info->nodesize >= PAGE_SIZE)
3498			folio_mark_uptodate(folio);
3499		else
3500			btrfs_subpage_set_uptodate(fs_info, folio,
3501						   eb->start, eb->len);
3502	}
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
3506{
3507	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508	smp_mb__after_atomic();
3509	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
3513{
3514	struct extent_buffer *eb = bbio->private;
3515	struct btrfs_fs_info *fs_info = eb->fs_info;
3516	bool uptodate = !bbio->bio.bi_status;
3517	struct folio_iter fi;
3518	u32 bio_offset = 0;
3519
3520	/*
3521	 * If the extent buffer is marked UPTODATE before the read operation
3522	 * completes, other calls to read_extent_buffer_pages() will return
3523	 * early without waiting for the read to finish, causing data races.
3524	 */
3525	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527	eb->read_mirror = bbio->mirror_num;
3528
3529	if (uptodate &&
3530	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531		uptodate = false;
3532
3533	if (uptodate) {
3534		set_extent_buffer_uptodate(eb);
3535	} else {
3536		clear_extent_buffer_uptodate(eb);
3537		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3538	}
3539
3540	bio_for_each_folio_all(fi, &bbio->bio) {
3541		struct folio *folio = fi.folio;
3542		u64 start = eb->start + bio_offset;
3543		u32 len = fi.length;
3544
3545		if (uptodate)
3546			btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547		else
3548			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3549
3550		bio_offset += len;
3551	}
3552
3553	clear_extent_buffer_reading(eb);
3554	free_extent_buffer(eb);
3555
3556	bio_put(&bbio->bio);
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560			     const struct btrfs_tree_parent_check *check)
3561{
3562	struct btrfs_bio *bbio;
3563	bool ret;
3564
3565	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566		return 0;
3567
 
 
 
 
 
 
 
 
 
 
 
3568	/*
3569	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570	 * operation, which could potentially still be in flight.  In this case
3571	 * we simply want to return an error.
3572	 */
3573	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574		return -EIO;
 
 
 
 
 
3575
3576	/* Someone else is already reading the buffer, just wait for it. */
3577	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578		goto done;
3579
3580	/*
3581	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583	 * started and finished reading the same eb.  In this case, UPTODATE
3584	 * will now be set, and we shouldn't read it in again.
3585	 */
3586	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587		clear_extent_buffer_reading(eb);
3588		return 0;
3589	}
3590
3591	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592	eb->read_mirror = 0;
 
 
 
 
 
3593	check_buffer_tree_ref(eb);
3594	atomic_inc(&eb->refs);
 
3595
3596	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597			       REQ_OP_READ | REQ_META, eb->fs_info,
3598			       end_bbio_meta_read, eb);
3599	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601	bbio->file_offset = eb->start;
3602	memcpy(&bbio->parent_check, check, sizeof(*check));
3603	if (eb->fs_info->nodesize < PAGE_SIZE) {
3604		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605				    eb->start - folio_pos(eb->folios[0]));
3606		ASSERT(ret);
3607	} else {
3608		int num_folios = num_extent_folios(eb);
3609
3610		for (int i = 0; i < num_folios; i++) {
3611			struct folio *folio = eb->folios[i];
3612
3613			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614			ASSERT(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615		}
3616	}
3617	btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620	if (wait == WAIT_COMPLETE) {
3621		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623			return -EIO;
3624	}
3625
3626	return 0;
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630			    unsigned long len)
3631{
3632	btrfs_warn(eb->fs_info,
3633		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3634		eb->start, eb->len, start, len);
3635	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637	return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648				 unsigned long start, unsigned long len)
3649{
3650	unsigned long offset;
3651
3652	/* start, start + len should not go beyond eb->len nor overflow */
3653	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654		return report_eb_range(eb, start, len);
3655
3656	return false;
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660			unsigned long start, unsigned long len)
3661{
3662	const int unit_size = eb->folio_size;
3663	size_t cur;
3664	size_t offset;
 
 
3665	char *dst = (char *)dstv;
3666	unsigned long i = get_eb_folio_index(eb, start);
3667
3668	if (check_eb_range(eb, start, len)) {
3669		/*
3670		 * Invalid range hit, reset the memory, so callers won't get
3671		 * some random garbage for their uninitialized memory.
3672		 */
3673		memset(dstv, 0, len);
3674		return;
3675	}
3676
3677	if (eb->addr) {
3678		memcpy(dstv, eb->addr + start, len);
3679		return;
3680	}
3681
3682	offset = get_eb_offset_in_folio(eb, start);
3683
3684	while (len > 0) {
3685		char *kaddr;
3686
3687		cur = min(len, unit_size - offset);
3688		kaddr = folio_address(eb->folios[i]);
3689		memcpy(dst, kaddr + offset, cur);
3690
3691		dst += cur;
3692		len -= cur;
3693		offset = 0;
3694		i++;
3695	}
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699				       void __user *dstv,
3700				       unsigned long start, unsigned long len)
3701{
3702	const int unit_size = eb->folio_size;
3703	size_t cur;
3704	size_t offset;
 
 
3705	char __user *dst = (char __user *)dstv;
3706	unsigned long i = get_eb_folio_index(eb, start);
3707	int ret = 0;
3708
3709	WARN_ON(start > eb->len);
3710	WARN_ON(start + len > eb->start + eb->len);
3711
3712	if (eb->addr) {
3713		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714			ret = -EFAULT;
3715		return ret;
3716	}
3717
3718	offset = get_eb_offset_in_folio(eb, start);
3719
3720	while (len > 0) {
3721		char *kaddr;
3722
3723		cur = min(len, unit_size - offset);
3724		kaddr = folio_address(eb->folios[i]);
3725		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726			ret = -EFAULT;
3727			break;
3728		}
3729
3730		dst += cur;
3731		len -= cur;
3732		offset = 0;
3733		i++;
3734	}
3735
3736	return ret;
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740			 unsigned long start, unsigned long len)
3741{
3742	const int unit_size = eb->folio_size;
3743	size_t cur;
3744	size_t offset;
 
3745	char *kaddr;
3746	char *ptr = (char *)ptrv;
3747	unsigned long i = get_eb_folio_index(eb, start);
3748	int ret = 0;
3749
3750	if (check_eb_range(eb, start, len))
3751		return -EINVAL;
 
 
3752
3753	if (eb->addr)
3754		return memcmp(ptrv, eb->addr + start, len);
3755
3756	offset = get_eb_offset_in_folio(eb, start);
3757
3758	while (len > 0) {
3759		cur = min(len, unit_size - offset);
3760		kaddr = folio_address(eb->folios[i]);
3761		ret = memcmp(ptr, kaddr + offset, cur);
3762		if (ret)
3763			break;
3764
3765		ptr += cur;
3766		len -= cur;
3767		offset = 0;
3768		i++;
3769	}
3770	return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3780{
3781	struct btrfs_fs_info *fs_info = eb->fs_info;
3782	struct folio *folio = eb->folios[i];
3783
3784	ASSERT(folio);
 
 
 
 
3785
3786	/*
3787	 * If we are using the commit root we could potentially clear a page
3788	 * Uptodate while we're using the extent buffer that we've previously
3789	 * looked up.  We don't want to complain in this case, as the page was
3790	 * valid before, we just didn't write it out.  Instead we want to catch
3791	 * the case where we didn't actually read the block properly, which
3792	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793	 */
3794	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795		return;
3796
3797	if (fs_info->nodesize < PAGE_SIZE) {
3798		folio = eb->folios[0];
3799		ASSERT(i == 0);
3800		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801							 eb->start, eb->len)))
3802			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803	} else {
3804		WARN_ON(!folio_test_uptodate(folio));
3805	}
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809				  const void *srcv, unsigned long start,
3810				  unsigned long len, bool use_memmove)
3811{
3812	const int unit_size = eb->folio_size;
3813	size_t cur;
3814	size_t offset;
 
3815	char *kaddr;
3816	const char *src = (const char *)srcv;
3817	unsigned long i = get_eb_folio_index(eb, start);
3818	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821	if (check_eb_range(eb, start, len))
3822		return;
3823
3824	if (eb->addr) {
3825		if (use_memmove)
3826			memmove(eb->addr + start, srcv, len);
3827		else
3828			memcpy(eb->addr + start, srcv, len);
3829		return;
3830	}
3831
3832	offset = get_eb_offset_in_folio(eb, start);
3833
3834	while (len > 0) {
3835		if (check_uptodate)
3836			assert_eb_folio_uptodate(eb, i);
3837
3838		cur = min(len, unit_size - offset);
3839		kaddr = folio_address(eb->folios[i]);
3840		if (use_memmove)
3841			memmove(kaddr + offset, src, cur);
3842		else
3843			memcpy(kaddr + offset, src, cur);
3844
3845		src += cur;
3846		len -= cur;
3847		offset = 0;
3848		i++;
3849	}
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853			 unsigned long start, unsigned long len)
3854{
3855	return __write_extent_buffer(eb, srcv, start, len, false);
3856}
 
 
 
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859				 unsigned long start, unsigned long len)
3860{
3861	const int unit_size = eb->folio_size;
3862	unsigned long cur = start;
3863
3864	if (eb->addr) {
3865		memset(eb->addr + start, c, len);
3866		return;
3867	}
3868
3869	while (cur < start + len) {
3870		unsigned long index = get_eb_folio_index(eb, cur);
3871		unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872		unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874		assert_eb_folio_uptodate(eb, index);
3875		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 
3876
3877		cur += cur_len;
 
 
3878	}
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882			   unsigned long len)
3883{
3884	if (check_eb_range(eb, start, len))
3885		return;
3886	return memset_extent_buffer(eb, 0, start, len);
3887}
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890			     const struct extent_buffer *src)
3891{
3892	const int unit_size = src->folio_size;
3893	unsigned long cur = 0;
3894
3895	ASSERT(dst->len == src->len);
3896
3897	while (cur < src->len) {
3898		unsigned long index = get_eb_folio_index(src, cur);
3899		unsigned long offset = get_eb_offset_in_folio(src, cur);
3900		unsigned long cur_len = min(src->len, unit_size - offset);
3901		void *addr = folio_address(src->folios[index]) + offset;
3902
3903		write_extent_buffer(dst, addr, cur, cur_len);
3904
3905		cur += cur_len;
3906	}
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910			const struct extent_buffer *src,
3911			unsigned long dst_offset, unsigned long src_offset,
3912			unsigned long len)
3913{
3914	const int unit_size = dst->folio_size;
3915	u64 dst_len = dst->len;
3916	size_t cur;
3917	size_t offset;
 
3918	char *kaddr;
3919	unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921	if (check_eb_range(dst, dst_offset, len) ||
3922	    check_eb_range(src, src_offset, len))
3923		return;
3924
3925	WARN_ON(src->len != dst_len);
3926
3927	offset = get_eb_offset_in_folio(dst, dst_offset);
3928
3929	while (len > 0) {
3930		assert_eb_folio_uptodate(dst, i);
 
3931
3932		cur = min(len, (unsigned long)(unit_size - offset));
3933
3934		kaddr = folio_address(dst->folios[i]);
3935		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937		src_offset += cur;
3938		len -= cur;
3939		offset = 0;
3940		i++;
3941	}
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb:           the extent buffer
3948 * @start:        offset of the bitmap item in the extent buffer
3949 * @nr:           bit number
3950 * @folio_index:  return index of the folio in the extent buffer that contains
3951 *                the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958				    unsigned long start, unsigned long nr,
3959				    unsigned long *folio_index,
3960				    size_t *folio_offset)
3961{
3962	size_t byte_offset = BIT_BYTE(nr);
3963	size_t offset;
3964
3965	/*
3966	 * The byte we want is the offset of the extent buffer + the offset of
3967	 * the bitmap item in the extent buffer + the offset of the byte in the
3968	 * bitmap item.
3969	 */
3970	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972	*folio_index = offset >> eb->folio_shift;
3973	*folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb:     the extent buffer
3980 * @start:  offset of the bitmap item in the extent buffer
3981 * @nr:     bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984			   unsigned long nr)
3985{
 
 
3986	unsigned long i;
3987	size_t offset;
3988	u8 *kaddr;
3989
3990	eb_bitmap_offset(eb, start, nr, &i, &offset);
3991	assert_eb_folio_uptodate(eb, i);
3992	kaddr = folio_address(eb->folios[i]);
 
3993	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998	unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000	if (check_eb_range(eb, bytenr, 1))
4001		return NULL;
4002	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb:     the extent buffer
4009 * @start:  offset of the bitmap item in the extent buffer
4010 * @pos:    bit number of the first bit
4011 * @len:    number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014			      unsigned long pos, unsigned long len)
4015{
4016	unsigned int first_byte = start + BIT_BYTE(pos);
4017	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018	const bool same_byte = (first_byte == last_byte);
4019	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020	u8 *kaddr;
4021
4022	if (same_byte)
4023		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025	/* Handle the first byte. */
4026	kaddr = extent_buffer_get_byte(eb, first_byte);
4027	*kaddr |= mask;
4028	if (same_byte)
4029		return;
4030
4031	/* Handle the byte aligned part. */
4032	ASSERT(first_byte + 1 <= last_byte);
4033	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035	/* Handle the last byte. */
4036	kaddr = extent_buffer_get_byte(eb, last_byte);
4037	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb:     the extent buffer
4045 * @start:  offset of the bitmap item in the extent buffer
4046 * @pos:    bit number of the first bit
4047 * @len:    number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050				unsigned long start, unsigned long pos,
4051				unsigned long len)
4052{
4053	unsigned int first_byte = start + BIT_BYTE(pos);
4054	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055	const bool same_byte = (first_byte == last_byte);
4056	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057	u8 *kaddr;
4058
4059	if (same_byte)
4060		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062	/* Handle the first byte. */
4063	kaddr = extent_buffer_get_byte(eb, first_byte);
4064	*kaddr &= ~mask;
4065	if (same_byte)
4066		return;
4067
4068	/* Handle the byte aligned part. */
4069	ASSERT(first_byte + 1 <= last_byte);
4070	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072	/* Handle the last byte. */
4073	kaddr = extent_buffer_get_byte(eb, last_byte);
4074	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079	unsigned long distance = (src > dst) ? src - dst : dst - src;
4080	return distance < len;
4081}
4082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084			  unsigned long dst_offset, unsigned long src_offset,
4085			  unsigned long len)
4086{
4087	const int unit_size = dst->folio_size;
4088	unsigned long cur_off = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089
4090	if (check_eb_range(dst, dst_offset, len) ||
4091	    check_eb_range(dst, src_offset, len))
4092		return;
4093
4094	if (dst->addr) {
4095		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
 
4096
4097		if (use_memmove)
4098			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099		else
4100			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101		return;
4102	}
4103
4104	while (cur_off < len) {
4105		unsigned long cur_src = cur_off + src_offset;
4106		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108		unsigned long cur_len = min(src_offset + len - cur_src,
4109					    unit_size - folio_off);
4110		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111		const bool use_memmove = areas_overlap(src_offset + cur_off,
4112						       dst_offset + cur_off, cur_len);
4113
4114		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115				      use_memmove);
4116		cur_off += cur_len;
4117	}
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121			   unsigned long dst_offset, unsigned long src_offset,
4122			   unsigned long len)
4123{
 
 
 
 
4124	unsigned long dst_end = dst_offset + len - 1;
4125	unsigned long src_end = src_offset + len - 1;
 
 
4126
4127	if (check_eb_range(dst, dst_offset, len) ||
4128	    check_eb_range(dst, src_offset, len))
4129		return;
4130
 
 
 
 
 
 
 
 
4131	if (dst_offset < src_offset) {
4132		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133		return;
4134	}
 
 
 
4135
4136	if (dst->addr) {
4137		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138		return;
4139	}
4140
4141	while (len > 0) {
4142		unsigned long src_i;
4143		size_t cur;
4144		size_t dst_off_in_folio;
4145		size_t src_off_in_folio;
4146		void *src_addr;
4147		bool use_memmove;
4148
4149		src_i = get_eb_folio_index(dst, src_end);
4150
4151		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155		cur = min(cur, dst_off_in_folio + 1);
4156
4157		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158					 cur + 1;
4159		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160					    cur);
4161
4162		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163				      use_memmove);
 
 
 
4164
4165		dst_end -= cur;
4166		src_end -= cur;
4167		len -= cur;
4168	}
4169}
4170
4171#define GANG_LOOKUP_SIZE	16
4172static struct extent_buffer *get_next_extent_buffer(
4173		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176	struct extent_buffer *found = NULL;
4177	u64 folio_start = folio_pos(folio);
4178	u64 cur = folio_start;
4179
4180	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4181	lockdep_assert_held(&fs_info->buffer_lock);
4182
4183	while (cur < folio_start + PAGE_SIZE) {
4184		int ret;
4185		int i;
4186
4187		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188				(void **)gang, cur >> fs_info->sectorsize_bits,
4189				min_t(unsigned int, GANG_LOOKUP_SIZE,
4190				      PAGE_SIZE / fs_info->nodesize));
4191		if (ret == 0)
4192			goto out;
4193		for (i = 0; i < ret; i++) {
4194			/* Already beyond page end */
4195			if (gang[i]->start >= folio_start + PAGE_SIZE)
4196				goto out;
4197			/* Found one */
4198			if (gang[i]->start >= bytenr) {
4199				found = gang[i];
4200				goto out;
4201			}
4202		}
4203		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204	}
4205out:
4206	return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212	u64 cur = folio_pos(folio);
4213	const u64 end = cur + PAGE_SIZE;
4214	int ret;
4215
4216	while (cur < end) {
4217		struct extent_buffer *eb = NULL;
4218
4219		/*
4220		 * Unlike try_release_extent_buffer() which uses folio private
4221		 * to grab buffer, for subpage case we rely on radix tree, thus
4222		 * we need to ensure radix tree consistency.
4223		 *
4224		 * We also want an atomic snapshot of the radix tree, thus go
4225		 * with spinlock rather than RCU.
4226		 */
4227		spin_lock(&fs_info->buffer_lock);
4228		eb = get_next_extent_buffer(fs_info, folio, cur);
4229		if (!eb) {
4230			/* No more eb in the page range after or at cur */
4231			spin_unlock(&fs_info->buffer_lock);
4232			break;
4233		}
4234		cur = eb->start + eb->len;
4235
4236		/*
4237		 * The same as try_release_extent_buffer(), to ensure the eb
4238		 * won't disappear out from under us.
4239		 */
4240		spin_lock(&eb->refs_lock);
4241		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242			spin_unlock(&eb->refs_lock);
4243			spin_unlock(&fs_info->buffer_lock);
4244			break;
4245		}
4246		spin_unlock(&fs_info->buffer_lock);
4247
4248		/*
4249		 * If tree ref isn't set then we know the ref on this eb is a
4250		 * real ref, so just return, this eb will likely be freed soon
4251		 * anyway.
4252		 */
4253		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254			spin_unlock(&eb->refs_lock);
4255			break;
4256		}
4257
4258		/*
4259		 * Here we don't care about the return value, we will always
4260		 * check the folio private at the end.  And
4261		 * release_extent_buffer() will release the refs_lock.
4262		 */
4263		release_extent_buffer(eb);
4264	}
4265	/*
4266	 * Finally to check if we have cleared folio private, as if we have
4267	 * released all ebs in the page, the folio private should be cleared now.
4268	 */
4269	spin_lock(&folio->mapping->i_private_lock);
4270	if (!folio_test_private(folio))
4271		ret = 1;
4272	else
4273		ret = 0;
4274	spin_unlock(&folio->mapping->i_private_lock);
4275	return ret;
4276
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
4281	struct extent_buffer *eb;
4282
4283	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284		return try_release_subpage_extent_buffer(folio);
4285
4286	/*
4287	 * We need to make sure nobody is changing folio private, as we rely on
4288	 * folio private as the pointer to extent buffer.
4289	 */
4290	spin_lock(&folio->mapping->i_private_lock);
4291	if (!folio_test_private(folio)) {
4292		spin_unlock(&folio->mapping->i_private_lock);
4293		return 1;
4294	}
4295
4296	eb = folio_get_private(folio);
4297	BUG_ON(!eb);
4298
4299	/*
4300	 * This is a little awful but should be ok, we need to make sure that
4301	 * the eb doesn't disappear out from under us while we're looking at
4302	 * this page.
4303	 */
4304	spin_lock(&eb->refs_lock);
4305	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306		spin_unlock(&eb->refs_lock);
4307		spin_unlock(&folio->mapping->i_private_lock);
4308		return 0;
4309	}
4310	spin_unlock(&folio->mapping->i_private_lock);
4311
4312	/*
4313	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314	 * so just return, this page will likely be freed soon anyway.
4315	 */
4316	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317		spin_unlock(&eb->refs_lock);
4318		return 0;
4319	}
4320
4321	return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info:	the fs_info
4328 * @bytenr:	bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen:	generation for the uptodate check, can be 0
4331 * @level:	level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation.  If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338				u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340	struct btrfs_tree_parent_check check = {
4341		.level = level,
4342		.transid = gen
4343	};
4344	struct extent_buffer *eb;
4345	int ret;
4346
4347	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348	if (IS_ERR(eb))
4349		return;
4350
4351	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352		free_extent_buffer(eb);
4353		return;
4354	}
4355
4356	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357	if (ret < 0)
4358		free_extent_buffer_stale(eb);
4359	else
4360		free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node:	parent node we're reading from
4367 * @slot:	slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374	btrfs_readahead_tree_block(node->fs_info,
4375				   btrfs_node_blockptr(node, slot),
4376				   btrfs_header_owner(node),
4377				   btrfs_node_ptr_generation(node, slot),
4378				   btrfs_header_level(node) - 1);
4379}