Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
12#include <linux/pm_runtime.h>
13#include <linux/sched/signal.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16
17#include "tb.h"
18
19/* Switch NVM support */
20
21#define NVM_CSS 0x10
22
23struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27};
28
29enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
32};
33
34/*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39static LIST_HEAD(nvm_auth_status_cache);
40static DEFINE_MUTEX(nvm_auth_status_lock);
41
42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43{
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 if (uuid_equal(&st->uuid, sw->uuid))
48 return st;
49 }
50
51 return NULL;
52}
53
54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55{
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63}
64
65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66{
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88}
89
90static void nvm_clear_auth_status(const struct tb_switch *sw)
91{
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101}
102
103static int nvm_validate_and_write(struct tb_switch *sw)
104{
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
162 if (tb_switch_is_usb4(sw))
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
169}
170
171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172{
173 int ret = 0;
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
179 */
180 if (!sw->safe_mode) {
181 u32 status;
182
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
209}
210
211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
225 }
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 int ret;
334
335 pm_runtime_get_sync(&sw->dev);
336
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
340 }
341
342 ret = nvm_read(sw, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345out:
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
348
349 return ret;
350}
351
352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
354{
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
358
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
361
362 /*
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
367 */
368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 mutex_unlock(&sw->tb->lock);
370
371 return ret;
372}
373
374static int tb_switch_nvm_add(struct tb_switch *sw)
375{
376 struct tb_nvm *nvm;
377 u32 val;
378 int ret;
379
380 if (!nvm_readable(sw))
381 return 0;
382
383 /*
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
387 */
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
394 }
395
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
399
400 /*
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
404 */
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
407
408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 if (ret)
410 goto err_nvm;
411
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
415
416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 if (ret)
418 goto err_nvm;
419
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
422
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
426 }
427
428 if (!sw->no_nvm_upgrade) {
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
433 }
434
435 sw->nvm = nvm;
436 return 0;
437
438err_nvm:
439 tb_nvm_free(nvm);
440 return ret;
441}
442
443static void tb_switch_nvm_remove(struct tb_switch *sw)
444{
445 struct tb_nvm *nvm;
446
447 nvm = sw->nvm;
448 sw->nvm = NULL;
449
450 if (!nvm)
451 return;
452
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
456
457 tb_nvm_free(nvm);
458}
459
460/* port utility functions */
461
462static const char *tb_port_type(struct tb_regs_port_header *port)
463{
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
475 }
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
488 }
489}
490
491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492{
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
502}
503
504/**
505 * tb_port_state() - get connectedness state of a port
506 *
507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508 *
509 * Return: Returns an enum tb_port_state on success or an error code on failure.
510 */
511static int tb_port_state(struct tb_port *port)
512{
513 struct tb_cap_phy phy;
514 int res;
515 if (port->cap_phy == 0) {
516 tb_port_WARN(port, "does not have a PHY\n");
517 return -EINVAL;
518 }
519 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 if (res)
521 return res;
522 return phy.state;
523}
524
525/**
526 * tb_wait_for_port() - wait for a port to become ready
527 *
528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529 * wait_if_unplugged is set then we also wait if the port is in state
530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531 * switch resume). Otherwise we only wait if a device is registered but the link
532 * has not yet been established.
533 *
534 * Return: Returns an error code on failure. Returns 0 if the port is not
535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536 * if the port is connected and in state TB_PORT_UP.
537 */
538int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539{
540 int retries = 10;
541 int state;
542 if (!port->cap_phy) {
543 tb_port_WARN(port, "does not have PHY\n");
544 return -EINVAL;
545 }
546 if (tb_is_upstream_port(port)) {
547 tb_port_WARN(port, "is the upstream port\n");
548 return -EINVAL;
549 }
550
551 while (retries--) {
552 state = tb_port_state(port);
553 if (state < 0)
554 return state;
555 if (state == TB_PORT_DISABLED) {
556 tb_port_dbg(port, "is disabled (state: 0)\n");
557 return 0;
558 }
559 if (state == TB_PORT_UNPLUGGED) {
560 if (wait_if_unplugged) {
561 /* used during resume */
562 tb_port_dbg(port,
563 "is unplugged (state: 7), retrying...\n");
564 msleep(100);
565 continue;
566 }
567 tb_port_dbg(port, "is unplugged (state: 7)\n");
568 return 0;
569 }
570 if (state == TB_PORT_UP) {
571 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 return 1;
573 }
574
575 /*
576 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 * time.
578 */
579 tb_port_dbg(port,
580 "is connected, link is not up (state: %d), retrying...\n",
581 state);
582 msleep(100);
583 }
584 tb_port_warn(port,
585 "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 return 0;
587}
588
589/**
590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591 *
592 * Change the number of NFC credits allocated to @port by @credits. To remove
593 * NFC credits pass a negative amount of credits.
594 *
595 * Return: Returns 0 on success or an error code on failure.
596 */
597int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598{
599 u32 nfc_credits;
600
601 if (credits == 0 || port->sw->is_unplugged)
602 return 0;
603
604 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
605 nfc_credits += credits;
606
607 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
608 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
609
610 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
611 port->config.nfc_credits |= nfc_credits;
612
613 return tb_port_write(port, &port->config.nfc_credits,
614 TB_CFG_PORT, ADP_CS_4, 1);
615}
616
617/**
618 * tb_port_set_initial_credits() - Set initial port link credits allocated
619 * @port: Port to set the initial credits
620 * @credits: Number of credits to to allocate
621 *
622 * Set initial credits value to be used for ingress shared buffering.
623 */
624int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
625{
626 u32 data;
627 int ret;
628
629 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
630 if (ret)
631 return ret;
632
633 data &= ~ADP_CS_5_LCA_MASK;
634 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
635
636 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637}
638
639/**
640 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
641 *
642 * Return: Returns 0 on success or an error code on failure.
643 */
644int tb_port_clear_counter(struct tb_port *port, int counter)
645{
646 u32 zero[3] = { 0, 0, 0 };
647 tb_port_dbg(port, "clearing counter %d\n", counter);
648 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
649}
650
651/**
652 * tb_port_unlock() - Unlock downstream port
653 * @port: Port to unlock
654 *
655 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
656 * downstream router accessible for CM.
657 */
658int tb_port_unlock(struct tb_port *port)
659{
660 if (tb_switch_is_icm(port->sw))
661 return 0;
662 if (!tb_port_is_null(port))
663 return -EINVAL;
664 if (tb_switch_is_usb4(port->sw))
665 return usb4_port_unlock(port);
666 return 0;
667}
668
669/**
670 * tb_init_port() - initialize a port
671 *
672 * This is a helper method for tb_switch_alloc. Does not check or initialize
673 * any downstream switches.
674 *
675 * Return: Returns 0 on success or an error code on failure.
676 */
677static int tb_init_port(struct tb_port *port)
678{
679 int res;
680 int cap;
681
682 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
683 if (res) {
684 if (res == -ENODEV) {
685 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
686 port->port);
687 port->disabled = true;
688 return 0;
689 }
690 return res;
691 }
692
693 /* Port 0 is the switch itself and has no PHY. */
694 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
695 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
696
697 if (cap > 0)
698 port->cap_phy = cap;
699 else
700 tb_port_WARN(port, "non switch port without a PHY\n");
701
702 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
703 if (cap > 0)
704 port->cap_usb4 = cap;
705 } else if (port->port != 0) {
706 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
707 if (cap > 0)
708 port->cap_adap = cap;
709 }
710
711 tb_dump_port(port->sw->tb, &port->config);
712
713 /* Control port does not need HopID allocation */
714 if (port->port) {
715 ida_init(&port->in_hopids);
716 ida_init(&port->out_hopids);
717 }
718
719 INIT_LIST_HEAD(&port->list);
720 return 0;
721
722}
723
724static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
725 int max_hopid)
726{
727 int port_max_hopid;
728 struct ida *ida;
729
730 if (in) {
731 port_max_hopid = port->config.max_in_hop_id;
732 ida = &port->in_hopids;
733 } else {
734 port_max_hopid = port->config.max_out_hop_id;
735 ida = &port->out_hopids;
736 }
737
738 /*
739 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
740 * reserved.
741 */
742 if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
743 min_hopid = TB_PATH_MIN_HOPID;
744
745 if (max_hopid < 0 || max_hopid > port_max_hopid)
746 max_hopid = port_max_hopid;
747
748 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
749}
750
751/**
752 * tb_port_alloc_in_hopid() - Allocate input HopID from port
753 * @port: Port to allocate HopID for
754 * @min_hopid: Minimum acceptable input HopID
755 * @max_hopid: Maximum acceptable input HopID
756 *
757 * Return: HopID between @min_hopid and @max_hopid or negative errno in
758 * case of error.
759 */
760int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
761{
762 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
763}
764
765/**
766 * tb_port_alloc_out_hopid() - Allocate output HopID from port
767 * @port: Port to allocate HopID for
768 * @min_hopid: Minimum acceptable output HopID
769 * @max_hopid: Maximum acceptable output HopID
770 *
771 * Return: HopID between @min_hopid and @max_hopid or negative errno in
772 * case of error.
773 */
774int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
775{
776 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
777}
778
779/**
780 * tb_port_release_in_hopid() - Release allocated input HopID from port
781 * @port: Port whose HopID to release
782 * @hopid: HopID to release
783 */
784void tb_port_release_in_hopid(struct tb_port *port, int hopid)
785{
786 ida_simple_remove(&port->in_hopids, hopid);
787}
788
789/**
790 * tb_port_release_out_hopid() - Release allocated output HopID from port
791 * @port: Port whose HopID to release
792 * @hopid: HopID to release
793 */
794void tb_port_release_out_hopid(struct tb_port *port, int hopid)
795{
796 ida_simple_remove(&port->out_hopids, hopid);
797}
798
799static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
800 const struct tb_switch *sw)
801{
802 u64 mask = (1ULL << parent->config.depth * 8) - 1;
803 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
804}
805
806/**
807 * tb_next_port_on_path() - Return next port for given port on a path
808 * @start: Start port of the walk
809 * @end: End port of the walk
810 * @prev: Previous port (%NULL if this is the first)
811 *
812 * This function can be used to walk from one port to another if they
813 * are connected through zero or more switches. If the @prev is dual
814 * link port, the function follows that link and returns another end on
815 * that same link.
816 *
817 * If the @end port has been reached, return %NULL.
818 *
819 * Domain tb->lock must be held when this function is called.
820 */
821struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
822 struct tb_port *prev)
823{
824 struct tb_port *next;
825
826 if (!prev)
827 return start;
828
829 if (prev->sw == end->sw) {
830 if (prev == end)
831 return NULL;
832 return end;
833 }
834
835 if (tb_switch_is_reachable(prev->sw, end->sw)) {
836 next = tb_port_at(tb_route(end->sw), prev->sw);
837 /* Walk down the topology if next == prev */
838 if (prev->remote &&
839 (next == prev || next->dual_link_port == prev))
840 next = prev->remote;
841 } else {
842 if (tb_is_upstream_port(prev)) {
843 next = prev->remote;
844 } else {
845 next = tb_upstream_port(prev->sw);
846 /*
847 * Keep the same link if prev and next are both
848 * dual link ports.
849 */
850 if (next->dual_link_port &&
851 next->link_nr != prev->link_nr) {
852 next = next->dual_link_port;
853 }
854 }
855 }
856
857 return next != prev ? next : NULL;
858}
859
860/**
861 * tb_port_get_link_speed() - Get current link speed
862 * @port: Port to check (USB4 or CIO)
863 *
864 * Returns link speed in Gb/s or negative errno in case of failure.
865 */
866int tb_port_get_link_speed(struct tb_port *port)
867{
868 u32 val, speed;
869 int ret;
870
871 if (!port->cap_phy)
872 return -EINVAL;
873
874 ret = tb_port_read(port, &val, TB_CFG_PORT,
875 port->cap_phy + LANE_ADP_CS_1, 1);
876 if (ret)
877 return ret;
878
879 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
880 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
881 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
882}
883
884static int tb_port_get_link_width(struct tb_port *port)
885{
886 u32 val;
887 int ret;
888
889 if (!port->cap_phy)
890 return -EINVAL;
891
892 ret = tb_port_read(port, &val, TB_CFG_PORT,
893 port->cap_phy + LANE_ADP_CS_1, 1);
894 if (ret)
895 return ret;
896
897 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
898 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
899}
900
901static bool tb_port_is_width_supported(struct tb_port *port, int width)
902{
903 u32 phy, widths;
904 int ret;
905
906 if (!port->cap_phy)
907 return false;
908
909 ret = tb_port_read(port, &phy, TB_CFG_PORT,
910 port->cap_phy + LANE_ADP_CS_0, 1);
911 if (ret)
912 return false;
913
914 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
915 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
916
917 return !!(widths & width);
918}
919
920static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
921{
922 u32 val;
923 int ret;
924
925 if (!port->cap_phy)
926 return -EINVAL;
927
928 ret = tb_port_read(port, &val, TB_CFG_PORT,
929 port->cap_phy + LANE_ADP_CS_1, 1);
930 if (ret)
931 return ret;
932
933 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
934 switch (width) {
935 case 1:
936 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
937 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
938 break;
939 case 2:
940 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
941 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
942 break;
943 default:
944 return -EINVAL;
945 }
946
947 val |= LANE_ADP_CS_1_LB;
948
949 return tb_port_write(port, &val, TB_CFG_PORT,
950 port->cap_phy + LANE_ADP_CS_1, 1);
951}
952
953static int tb_port_lane_bonding_enable(struct tb_port *port)
954{
955 int ret;
956
957 /*
958 * Enable lane bonding for both links if not already enabled by
959 * for example the boot firmware.
960 */
961 ret = tb_port_get_link_width(port);
962 if (ret == 1) {
963 ret = tb_port_set_link_width(port, 2);
964 if (ret)
965 return ret;
966 }
967
968 ret = tb_port_get_link_width(port->dual_link_port);
969 if (ret == 1) {
970 ret = tb_port_set_link_width(port->dual_link_port, 2);
971 if (ret) {
972 tb_port_set_link_width(port, 1);
973 return ret;
974 }
975 }
976
977 port->bonded = true;
978 port->dual_link_port->bonded = true;
979
980 return 0;
981}
982
983static void tb_port_lane_bonding_disable(struct tb_port *port)
984{
985 port->dual_link_port->bonded = false;
986 port->bonded = false;
987
988 tb_port_set_link_width(port->dual_link_port, 1);
989 tb_port_set_link_width(port, 1);
990}
991
992/**
993 * tb_port_is_enabled() - Is the adapter port enabled
994 * @port: Port to check
995 */
996bool tb_port_is_enabled(struct tb_port *port)
997{
998 switch (port->config.type) {
999 case TB_TYPE_PCIE_UP:
1000 case TB_TYPE_PCIE_DOWN:
1001 return tb_pci_port_is_enabled(port);
1002
1003 case TB_TYPE_DP_HDMI_IN:
1004 case TB_TYPE_DP_HDMI_OUT:
1005 return tb_dp_port_is_enabled(port);
1006
1007 case TB_TYPE_USB3_UP:
1008 case TB_TYPE_USB3_DOWN:
1009 return tb_usb3_port_is_enabled(port);
1010
1011 default:
1012 return false;
1013 }
1014}
1015
1016/**
1017 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1018 * @port: USB3 adapter port to check
1019 */
1020bool tb_usb3_port_is_enabled(struct tb_port *port)
1021{
1022 u32 data;
1023
1024 if (tb_port_read(port, &data, TB_CFG_PORT,
1025 port->cap_adap + ADP_USB3_CS_0, 1))
1026 return false;
1027
1028 return !!(data & ADP_USB3_CS_0_PE);
1029}
1030
1031/**
1032 * tb_usb3_port_enable() - Enable USB3 adapter port
1033 * @port: USB3 adapter port to enable
1034 * @enable: Enable/disable the USB3 adapter
1035 */
1036int tb_usb3_port_enable(struct tb_port *port, bool enable)
1037{
1038 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1039 : ADP_USB3_CS_0_V;
1040
1041 if (!port->cap_adap)
1042 return -ENXIO;
1043 return tb_port_write(port, &word, TB_CFG_PORT,
1044 port->cap_adap + ADP_USB3_CS_0, 1);
1045}
1046
1047/**
1048 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1049 * @port: PCIe port to check
1050 */
1051bool tb_pci_port_is_enabled(struct tb_port *port)
1052{
1053 u32 data;
1054
1055 if (tb_port_read(port, &data, TB_CFG_PORT,
1056 port->cap_adap + ADP_PCIE_CS_0, 1))
1057 return false;
1058
1059 return !!(data & ADP_PCIE_CS_0_PE);
1060}
1061
1062/**
1063 * tb_pci_port_enable() - Enable PCIe adapter port
1064 * @port: PCIe port to enable
1065 * @enable: Enable/disable the PCIe adapter
1066 */
1067int tb_pci_port_enable(struct tb_port *port, bool enable)
1068{
1069 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1070 if (!port->cap_adap)
1071 return -ENXIO;
1072 return tb_port_write(port, &word, TB_CFG_PORT,
1073 port->cap_adap + ADP_PCIE_CS_0, 1);
1074}
1075
1076/**
1077 * tb_dp_port_hpd_is_active() - Is HPD already active
1078 * @port: DP out port to check
1079 *
1080 * Checks if the DP OUT adapter port has HDP bit already set.
1081 */
1082int tb_dp_port_hpd_is_active(struct tb_port *port)
1083{
1084 u32 data;
1085 int ret;
1086
1087 ret = tb_port_read(port, &data, TB_CFG_PORT,
1088 port->cap_adap + ADP_DP_CS_2, 1);
1089 if (ret)
1090 return ret;
1091
1092 return !!(data & ADP_DP_CS_2_HDP);
1093}
1094
1095/**
1096 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1097 * @port: Port to clear HPD
1098 *
1099 * If the DP IN port has HDP set, this function can be used to clear it.
1100 */
1101int tb_dp_port_hpd_clear(struct tb_port *port)
1102{
1103 u32 data;
1104 int ret;
1105
1106 ret = tb_port_read(port, &data, TB_CFG_PORT,
1107 port->cap_adap + ADP_DP_CS_3, 1);
1108 if (ret)
1109 return ret;
1110
1111 data |= ADP_DP_CS_3_HDPC;
1112 return tb_port_write(port, &data, TB_CFG_PORT,
1113 port->cap_adap + ADP_DP_CS_3, 1);
1114}
1115
1116/**
1117 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1118 * @port: DP IN/OUT port to set hops
1119 * @video: Video Hop ID
1120 * @aux_tx: AUX TX Hop ID
1121 * @aux_rx: AUX RX Hop ID
1122 *
1123 * Programs specified Hop IDs for DP IN/OUT port.
1124 */
1125int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1126 unsigned int aux_tx, unsigned int aux_rx)
1127{
1128 u32 data[2];
1129 int ret;
1130
1131 ret = tb_port_read(port, data, TB_CFG_PORT,
1132 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1133 if (ret)
1134 return ret;
1135
1136 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1137 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1138 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1139
1140 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1141 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1142 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1143 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1144 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1145
1146 return tb_port_write(port, data, TB_CFG_PORT,
1147 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1148}
1149
1150/**
1151 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1152 * @port: DP adapter port to check
1153 */
1154bool tb_dp_port_is_enabled(struct tb_port *port)
1155{
1156 u32 data[2];
1157
1158 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1159 ARRAY_SIZE(data)))
1160 return false;
1161
1162 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1163}
1164
1165/**
1166 * tb_dp_port_enable() - Enables/disables DP paths of a port
1167 * @port: DP IN/OUT port
1168 * @enable: Enable/disable DP path
1169 *
1170 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1171 * calling this function.
1172 */
1173int tb_dp_port_enable(struct tb_port *port, bool enable)
1174{
1175 u32 data[2];
1176 int ret;
1177
1178 ret = tb_port_read(port, data, TB_CFG_PORT,
1179 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1180 if (ret)
1181 return ret;
1182
1183 if (enable)
1184 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1185 else
1186 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1187
1188 return tb_port_write(port, data, TB_CFG_PORT,
1189 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1190}
1191
1192/* switch utility functions */
1193
1194static const char *tb_switch_generation_name(const struct tb_switch *sw)
1195{
1196 switch (sw->generation) {
1197 case 1:
1198 return "Thunderbolt 1";
1199 case 2:
1200 return "Thunderbolt 2";
1201 case 3:
1202 return "Thunderbolt 3";
1203 case 4:
1204 return "USB4";
1205 default:
1206 return "Unknown";
1207 }
1208}
1209
1210static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1211{
1212 const struct tb_regs_switch_header *regs = &sw->config;
1213
1214 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1215 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1216 regs->revision, regs->thunderbolt_version);
1217 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1218 tb_dbg(tb, " Config:\n");
1219 tb_dbg(tb,
1220 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1221 regs->upstream_port_number, regs->depth,
1222 (((u64) regs->route_hi) << 32) | regs->route_lo,
1223 regs->enabled, regs->plug_events_delay);
1224 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1225 regs->__unknown1, regs->__unknown4);
1226}
1227
1228/**
1229 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1230 *
1231 * Return: Returns 0 on success or an error code on failure.
1232 */
1233int tb_switch_reset(struct tb *tb, u64 route)
1234{
1235 struct tb_cfg_result res;
1236 struct tb_regs_switch_header header = {
1237 header.route_hi = route >> 32,
1238 header.route_lo = route,
1239 header.enabled = true,
1240 };
1241 tb_dbg(tb, "resetting switch at %llx\n", route);
1242 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1243 0, 2, 2, 2);
1244 if (res.err)
1245 return res.err;
1246 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1247 if (res.err > 0)
1248 return -EIO;
1249 return res.err;
1250}
1251
1252/**
1253 * tb_plug_events_active() - enable/disable plug events on a switch
1254 *
1255 * Also configures a sane plug_events_delay of 255ms.
1256 *
1257 * Return: Returns 0 on success or an error code on failure.
1258 */
1259static int tb_plug_events_active(struct tb_switch *sw, bool active)
1260{
1261 u32 data;
1262 int res;
1263
1264 if (tb_switch_is_icm(sw))
1265 return 0;
1266
1267 sw->config.plug_events_delay = 0xff;
1268 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1269 if (res)
1270 return res;
1271
1272 /* Plug events are always enabled in USB4 */
1273 if (tb_switch_is_usb4(sw))
1274 return 0;
1275
1276 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1277 if (res)
1278 return res;
1279
1280 if (active) {
1281 data = data & 0xFFFFFF83;
1282 switch (sw->config.device_id) {
1283 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1284 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1285 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1286 break;
1287 default:
1288 data |= 4;
1289 }
1290 } else {
1291 data = data | 0x7c;
1292 }
1293 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1294 sw->cap_plug_events + 1, 1);
1295}
1296
1297static ssize_t authorized_show(struct device *dev,
1298 struct device_attribute *attr,
1299 char *buf)
1300{
1301 struct tb_switch *sw = tb_to_switch(dev);
1302
1303 return sprintf(buf, "%u\n", sw->authorized);
1304}
1305
1306static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1307{
1308 int ret = -EINVAL;
1309
1310 if (!mutex_trylock(&sw->tb->lock))
1311 return restart_syscall();
1312
1313 if (sw->authorized)
1314 goto unlock;
1315
1316 switch (val) {
1317 /* Approve switch */
1318 case 1:
1319 if (sw->key)
1320 ret = tb_domain_approve_switch_key(sw->tb, sw);
1321 else
1322 ret = tb_domain_approve_switch(sw->tb, sw);
1323 break;
1324
1325 /* Challenge switch */
1326 case 2:
1327 if (sw->key)
1328 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1329 break;
1330
1331 default:
1332 break;
1333 }
1334
1335 if (!ret) {
1336 sw->authorized = val;
1337 /* Notify status change to the userspace */
1338 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1339 }
1340
1341unlock:
1342 mutex_unlock(&sw->tb->lock);
1343 return ret;
1344}
1345
1346static ssize_t authorized_store(struct device *dev,
1347 struct device_attribute *attr,
1348 const char *buf, size_t count)
1349{
1350 struct tb_switch *sw = tb_to_switch(dev);
1351 unsigned int val;
1352 ssize_t ret;
1353
1354 ret = kstrtouint(buf, 0, &val);
1355 if (ret)
1356 return ret;
1357 if (val > 2)
1358 return -EINVAL;
1359
1360 pm_runtime_get_sync(&sw->dev);
1361 ret = tb_switch_set_authorized(sw, val);
1362 pm_runtime_mark_last_busy(&sw->dev);
1363 pm_runtime_put_autosuspend(&sw->dev);
1364
1365 return ret ? ret : count;
1366}
1367static DEVICE_ATTR_RW(authorized);
1368
1369static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1370 char *buf)
1371{
1372 struct tb_switch *sw = tb_to_switch(dev);
1373
1374 return sprintf(buf, "%u\n", sw->boot);
1375}
1376static DEVICE_ATTR_RO(boot);
1377
1378static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1379 char *buf)
1380{
1381 struct tb_switch *sw = tb_to_switch(dev);
1382
1383 return sprintf(buf, "%#x\n", sw->device);
1384}
1385static DEVICE_ATTR_RO(device);
1386
1387static ssize_t
1388device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1389{
1390 struct tb_switch *sw = tb_to_switch(dev);
1391
1392 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1393}
1394static DEVICE_ATTR_RO(device_name);
1395
1396static ssize_t
1397generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1398{
1399 struct tb_switch *sw = tb_to_switch(dev);
1400
1401 return sprintf(buf, "%u\n", sw->generation);
1402}
1403static DEVICE_ATTR_RO(generation);
1404
1405static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1406 char *buf)
1407{
1408 struct tb_switch *sw = tb_to_switch(dev);
1409 ssize_t ret;
1410
1411 if (!mutex_trylock(&sw->tb->lock))
1412 return restart_syscall();
1413
1414 if (sw->key)
1415 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1416 else
1417 ret = sprintf(buf, "\n");
1418
1419 mutex_unlock(&sw->tb->lock);
1420 return ret;
1421}
1422
1423static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1424 const char *buf, size_t count)
1425{
1426 struct tb_switch *sw = tb_to_switch(dev);
1427 u8 key[TB_SWITCH_KEY_SIZE];
1428 ssize_t ret = count;
1429 bool clear = false;
1430
1431 if (!strcmp(buf, "\n"))
1432 clear = true;
1433 else if (hex2bin(key, buf, sizeof(key)))
1434 return -EINVAL;
1435
1436 if (!mutex_trylock(&sw->tb->lock))
1437 return restart_syscall();
1438
1439 if (sw->authorized) {
1440 ret = -EBUSY;
1441 } else {
1442 kfree(sw->key);
1443 if (clear) {
1444 sw->key = NULL;
1445 } else {
1446 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1447 if (!sw->key)
1448 ret = -ENOMEM;
1449 }
1450 }
1451
1452 mutex_unlock(&sw->tb->lock);
1453 return ret;
1454}
1455static DEVICE_ATTR(key, 0600, key_show, key_store);
1456
1457static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1458 char *buf)
1459{
1460 struct tb_switch *sw = tb_to_switch(dev);
1461
1462 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1463}
1464
1465/*
1466 * Currently all lanes must run at the same speed but we expose here
1467 * both directions to allow possible asymmetric links in the future.
1468 */
1469static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1470static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1471
1472static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1473 char *buf)
1474{
1475 struct tb_switch *sw = tb_to_switch(dev);
1476
1477 return sprintf(buf, "%u\n", sw->link_width);
1478}
1479
1480/*
1481 * Currently link has same amount of lanes both directions (1 or 2) but
1482 * expose them separately to allow possible asymmetric links in the future.
1483 */
1484static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1485static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1486
1487static ssize_t nvm_authenticate_show(struct device *dev,
1488 struct device_attribute *attr, char *buf)
1489{
1490 struct tb_switch *sw = tb_to_switch(dev);
1491 u32 status;
1492
1493 nvm_get_auth_status(sw, &status);
1494 return sprintf(buf, "%#x\n", status);
1495}
1496
1497static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1498 bool disconnect)
1499{
1500 struct tb_switch *sw = tb_to_switch(dev);
1501 int val;
1502 int ret;
1503
1504 pm_runtime_get_sync(&sw->dev);
1505
1506 if (!mutex_trylock(&sw->tb->lock)) {
1507 ret = restart_syscall();
1508 goto exit_rpm;
1509 }
1510
1511 /* If NVMem devices are not yet added */
1512 if (!sw->nvm) {
1513 ret = -EAGAIN;
1514 goto exit_unlock;
1515 }
1516
1517 ret = kstrtoint(buf, 10, &val);
1518 if (ret)
1519 goto exit_unlock;
1520
1521 /* Always clear the authentication status */
1522 nvm_clear_auth_status(sw);
1523
1524 if (val > 0) {
1525 if (!sw->nvm->flushed) {
1526 if (!sw->nvm->buf) {
1527 ret = -EINVAL;
1528 goto exit_unlock;
1529 }
1530
1531 ret = nvm_validate_and_write(sw);
1532 if (ret || val == WRITE_ONLY)
1533 goto exit_unlock;
1534 }
1535 if (val == WRITE_AND_AUTHENTICATE) {
1536 if (disconnect) {
1537 ret = tb_lc_force_power(sw);
1538 } else {
1539 sw->nvm->authenticating = true;
1540 ret = nvm_authenticate(sw);
1541 }
1542 }
1543 }
1544
1545exit_unlock:
1546 mutex_unlock(&sw->tb->lock);
1547exit_rpm:
1548 pm_runtime_mark_last_busy(&sw->dev);
1549 pm_runtime_put_autosuspend(&sw->dev);
1550
1551 return ret;
1552}
1553
1554static ssize_t nvm_authenticate_store(struct device *dev,
1555 struct device_attribute *attr, const char *buf, size_t count)
1556{
1557 int ret = nvm_authenticate_sysfs(dev, buf, false);
1558 if (ret)
1559 return ret;
1560 return count;
1561}
1562static DEVICE_ATTR_RW(nvm_authenticate);
1563
1564static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1565 struct device_attribute *attr, char *buf)
1566{
1567 return nvm_authenticate_show(dev, attr, buf);
1568}
1569
1570static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1571 struct device_attribute *attr, const char *buf, size_t count)
1572{
1573 int ret;
1574
1575 ret = nvm_authenticate_sysfs(dev, buf, true);
1576 return ret ? ret : count;
1577}
1578static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1579
1580static ssize_t nvm_version_show(struct device *dev,
1581 struct device_attribute *attr, char *buf)
1582{
1583 struct tb_switch *sw = tb_to_switch(dev);
1584 int ret;
1585
1586 if (!mutex_trylock(&sw->tb->lock))
1587 return restart_syscall();
1588
1589 if (sw->safe_mode)
1590 ret = -ENODATA;
1591 else if (!sw->nvm)
1592 ret = -EAGAIN;
1593 else
1594 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1595
1596 mutex_unlock(&sw->tb->lock);
1597
1598 return ret;
1599}
1600static DEVICE_ATTR_RO(nvm_version);
1601
1602static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1603 char *buf)
1604{
1605 struct tb_switch *sw = tb_to_switch(dev);
1606
1607 return sprintf(buf, "%#x\n", sw->vendor);
1608}
1609static DEVICE_ATTR_RO(vendor);
1610
1611static ssize_t
1612vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1613{
1614 struct tb_switch *sw = tb_to_switch(dev);
1615
1616 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1617}
1618static DEVICE_ATTR_RO(vendor_name);
1619
1620static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1621 char *buf)
1622{
1623 struct tb_switch *sw = tb_to_switch(dev);
1624
1625 return sprintf(buf, "%pUb\n", sw->uuid);
1626}
1627static DEVICE_ATTR_RO(unique_id);
1628
1629static struct attribute *switch_attrs[] = {
1630 &dev_attr_authorized.attr,
1631 &dev_attr_boot.attr,
1632 &dev_attr_device.attr,
1633 &dev_attr_device_name.attr,
1634 &dev_attr_generation.attr,
1635 &dev_attr_key.attr,
1636 &dev_attr_nvm_authenticate.attr,
1637 &dev_attr_nvm_authenticate_on_disconnect.attr,
1638 &dev_attr_nvm_version.attr,
1639 &dev_attr_rx_speed.attr,
1640 &dev_attr_rx_lanes.attr,
1641 &dev_attr_tx_speed.attr,
1642 &dev_attr_tx_lanes.attr,
1643 &dev_attr_vendor.attr,
1644 &dev_attr_vendor_name.attr,
1645 &dev_attr_unique_id.attr,
1646 NULL,
1647};
1648
1649static umode_t switch_attr_is_visible(struct kobject *kobj,
1650 struct attribute *attr, int n)
1651{
1652 struct device *dev = container_of(kobj, struct device, kobj);
1653 struct tb_switch *sw = tb_to_switch(dev);
1654
1655 if (attr == &dev_attr_device.attr) {
1656 if (!sw->device)
1657 return 0;
1658 } else if (attr == &dev_attr_device_name.attr) {
1659 if (!sw->device_name)
1660 return 0;
1661 } else if (attr == &dev_attr_vendor.attr) {
1662 if (!sw->vendor)
1663 return 0;
1664 } else if (attr == &dev_attr_vendor_name.attr) {
1665 if (!sw->vendor_name)
1666 return 0;
1667 } else if (attr == &dev_attr_key.attr) {
1668 if (tb_route(sw) &&
1669 sw->tb->security_level == TB_SECURITY_SECURE &&
1670 sw->security_level == TB_SECURITY_SECURE)
1671 return attr->mode;
1672 return 0;
1673 } else if (attr == &dev_attr_rx_speed.attr ||
1674 attr == &dev_attr_rx_lanes.attr ||
1675 attr == &dev_attr_tx_speed.attr ||
1676 attr == &dev_attr_tx_lanes.attr) {
1677 if (tb_route(sw))
1678 return attr->mode;
1679 return 0;
1680 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1681 if (nvm_upgradeable(sw))
1682 return attr->mode;
1683 return 0;
1684 } else if (attr == &dev_attr_nvm_version.attr) {
1685 if (nvm_readable(sw))
1686 return attr->mode;
1687 return 0;
1688 } else if (attr == &dev_attr_boot.attr) {
1689 if (tb_route(sw))
1690 return attr->mode;
1691 return 0;
1692 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1693 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1694 return attr->mode;
1695 return 0;
1696 }
1697
1698 return sw->safe_mode ? 0 : attr->mode;
1699}
1700
1701static struct attribute_group switch_group = {
1702 .is_visible = switch_attr_is_visible,
1703 .attrs = switch_attrs,
1704};
1705
1706static const struct attribute_group *switch_groups[] = {
1707 &switch_group,
1708 NULL,
1709};
1710
1711static void tb_switch_release(struct device *dev)
1712{
1713 struct tb_switch *sw = tb_to_switch(dev);
1714 struct tb_port *port;
1715
1716 dma_port_free(sw->dma_port);
1717
1718 tb_switch_for_each_port(sw, port) {
1719 if (!port->disabled) {
1720 ida_destroy(&port->in_hopids);
1721 ida_destroy(&port->out_hopids);
1722 }
1723 }
1724
1725 kfree(sw->uuid);
1726 kfree(sw->device_name);
1727 kfree(sw->vendor_name);
1728 kfree(sw->ports);
1729 kfree(sw->drom);
1730 kfree(sw->key);
1731 kfree(sw);
1732}
1733
1734/*
1735 * Currently only need to provide the callbacks. Everything else is handled
1736 * in the connection manager.
1737 */
1738static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1739{
1740 struct tb_switch *sw = tb_to_switch(dev);
1741 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1742
1743 if (cm_ops->runtime_suspend_switch)
1744 return cm_ops->runtime_suspend_switch(sw);
1745
1746 return 0;
1747}
1748
1749static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1750{
1751 struct tb_switch *sw = tb_to_switch(dev);
1752 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1753
1754 if (cm_ops->runtime_resume_switch)
1755 return cm_ops->runtime_resume_switch(sw);
1756 return 0;
1757}
1758
1759static const struct dev_pm_ops tb_switch_pm_ops = {
1760 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1761 NULL)
1762};
1763
1764struct device_type tb_switch_type = {
1765 .name = "thunderbolt_device",
1766 .release = tb_switch_release,
1767 .pm = &tb_switch_pm_ops,
1768};
1769
1770static int tb_switch_get_generation(struct tb_switch *sw)
1771{
1772 switch (sw->config.device_id) {
1773 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1774 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1775 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1776 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1777 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1778 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1779 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1780 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1781 return 1;
1782
1783 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1784 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1785 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1786 return 2;
1787
1788 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1789 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1790 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1793 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1794 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1795 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1796 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1797 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1798 return 3;
1799
1800 default:
1801 if (tb_switch_is_usb4(sw))
1802 return 4;
1803
1804 /*
1805 * For unknown switches assume generation to be 1 to be
1806 * on the safe side.
1807 */
1808 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1809 sw->config.device_id);
1810 return 1;
1811 }
1812}
1813
1814static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1815{
1816 int max_depth;
1817
1818 if (tb_switch_is_usb4(sw) ||
1819 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1820 max_depth = USB4_SWITCH_MAX_DEPTH;
1821 else
1822 max_depth = TB_SWITCH_MAX_DEPTH;
1823
1824 return depth > max_depth;
1825}
1826
1827/**
1828 * tb_switch_alloc() - allocate a switch
1829 * @tb: Pointer to the owning domain
1830 * @parent: Parent device for this switch
1831 * @route: Route string for this switch
1832 *
1833 * Allocates and initializes a switch. Will not upload configuration to
1834 * the switch. For that you need to call tb_switch_configure()
1835 * separately. The returned switch should be released by calling
1836 * tb_switch_put().
1837 *
1838 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1839 * failure.
1840 */
1841struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1842 u64 route)
1843{
1844 struct tb_switch *sw;
1845 int upstream_port;
1846 int i, ret, depth;
1847
1848 /* Unlock the downstream port so we can access the switch below */
1849 if (route) {
1850 struct tb_switch *parent_sw = tb_to_switch(parent);
1851 struct tb_port *down;
1852
1853 down = tb_port_at(route, parent_sw);
1854 tb_port_unlock(down);
1855 }
1856
1857 depth = tb_route_length(route);
1858
1859 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1860 if (upstream_port < 0)
1861 return ERR_PTR(upstream_port);
1862
1863 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1864 if (!sw)
1865 return ERR_PTR(-ENOMEM);
1866
1867 sw->tb = tb;
1868 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1869 if (ret)
1870 goto err_free_sw_ports;
1871
1872 sw->generation = tb_switch_get_generation(sw);
1873
1874 tb_dbg(tb, "current switch config:\n");
1875 tb_dump_switch(tb, sw);
1876
1877 /* configure switch */
1878 sw->config.upstream_port_number = upstream_port;
1879 sw->config.depth = depth;
1880 sw->config.route_hi = upper_32_bits(route);
1881 sw->config.route_lo = lower_32_bits(route);
1882 sw->config.enabled = 0;
1883
1884 /* Make sure we do not exceed maximum topology limit */
1885 if (tb_switch_exceeds_max_depth(sw, depth)) {
1886 ret = -EADDRNOTAVAIL;
1887 goto err_free_sw_ports;
1888 }
1889
1890 /* initialize ports */
1891 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1892 GFP_KERNEL);
1893 if (!sw->ports) {
1894 ret = -ENOMEM;
1895 goto err_free_sw_ports;
1896 }
1897
1898 for (i = 0; i <= sw->config.max_port_number; i++) {
1899 /* minimum setup for tb_find_cap and tb_drom_read to work */
1900 sw->ports[i].sw = sw;
1901 sw->ports[i].port = i;
1902 }
1903
1904 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1905 if (ret > 0)
1906 sw->cap_plug_events = ret;
1907
1908 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1909 if (ret > 0)
1910 sw->cap_lc = ret;
1911
1912 /* Root switch is always authorized */
1913 if (!route)
1914 sw->authorized = true;
1915
1916 device_initialize(&sw->dev);
1917 sw->dev.parent = parent;
1918 sw->dev.bus = &tb_bus_type;
1919 sw->dev.type = &tb_switch_type;
1920 sw->dev.groups = switch_groups;
1921 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1922
1923 return sw;
1924
1925err_free_sw_ports:
1926 kfree(sw->ports);
1927 kfree(sw);
1928
1929 return ERR_PTR(ret);
1930}
1931
1932/**
1933 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1934 * @tb: Pointer to the owning domain
1935 * @parent: Parent device for this switch
1936 * @route: Route string for this switch
1937 *
1938 * This creates a switch in safe mode. This means the switch pretty much
1939 * lacks all capabilities except DMA configuration port before it is
1940 * flashed with a valid NVM firmware.
1941 *
1942 * The returned switch must be released by calling tb_switch_put().
1943 *
1944 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1945 */
1946struct tb_switch *
1947tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1948{
1949 struct tb_switch *sw;
1950
1951 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1952 if (!sw)
1953 return ERR_PTR(-ENOMEM);
1954
1955 sw->tb = tb;
1956 sw->config.depth = tb_route_length(route);
1957 sw->config.route_hi = upper_32_bits(route);
1958 sw->config.route_lo = lower_32_bits(route);
1959 sw->safe_mode = true;
1960
1961 device_initialize(&sw->dev);
1962 sw->dev.parent = parent;
1963 sw->dev.bus = &tb_bus_type;
1964 sw->dev.type = &tb_switch_type;
1965 sw->dev.groups = switch_groups;
1966 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1967
1968 return sw;
1969}
1970
1971/**
1972 * tb_switch_configure() - Uploads configuration to the switch
1973 * @sw: Switch to configure
1974 *
1975 * Call this function before the switch is added to the system. It will
1976 * upload configuration to the switch and makes it available for the
1977 * connection manager to use. Can be called to the switch again after
1978 * resume from low power states to re-initialize it.
1979 *
1980 * Return: %0 in case of success and negative errno in case of failure
1981 */
1982int tb_switch_configure(struct tb_switch *sw)
1983{
1984 struct tb *tb = sw->tb;
1985 u64 route;
1986 int ret;
1987
1988 route = tb_route(sw);
1989
1990 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1991 sw->config.enabled ? "restoring " : "initializing", route,
1992 tb_route_length(route), sw->config.upstream_port_number);
1993
1994 sw->config.enabled = 1;
1995
1996 if (tb_switch_is_usb4(sw)) {
1997 /*
1998 * For USB4 devices, we need to program the CM version
1999 * accordingly so that it knows to expose all the
2000 * additional capabilities.
2001 */
2002 sw->config.cmuv = USB4_VERSION_1_0;
2003
2004 /* Enumerate the switch */
2005 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2006 ROUTER_CS_1, 4);
2007 if (ret)
2008 return ret;
2009
2010 ret = usb4_switch_setup(sw);
2011 if (ret)
2012 return ret;
2013
2014 ret = usb4_switch_configure_link(sw);
2015 } else {
2016 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2017 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2018 sw->config.vendor_id);
2019
2020 if (!sw->cap_plug_events) {
2021 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2022 return -ENODEV;
2023 }
2024
2025 /* Enumerate the switch */
2026 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2027 ROUTER_CS_1, 3);
2028 if (ret)
2029 return ret;
2030
2031 ret = tb_lc_configure_link(sw);
2032 }
2033 if (ret)
2034 return ret;
2035
2036 return tb_plug_events_active(sw, true);
2037}
2038
2039static int tb_switch_set_uuid(struct tb_switch *sw)
2040{
2041 bool uid = false;
2042 u32 uuid[4];
2043 int ret;
2044
2045 if (sw->uuid)
2046 return 0;
2047
2048 if (tb_switch_is_usb4(sw)) {
2049 ret = usb4_switch_read_uid(sw, &sw->uid);
2050 if (ret)
2051 return ret;
2052 uid = true;
2053 } else {
2054 /*
2055 * The newer controllers include fused UUID as part of
2056 * link controller specific registers
2057 */
2058 ret = tb_lc_read_uuid(sw, uuid);
2059 if (ret) {
2060 if (ret != -EINVAL)
2061 return ret;
2062 uid = true;
2063 }
2064 }
2065
2066 if (uid) {
2067 /*
2068 * ICM generates UUID based on UID and fills the upper
2069 * two words with ones. This is not strictly following
2070 * UUID format but we want to be compatible with it so
2071 * we do the same here.
2072 */
2073 uuid[0] = sw->uid & 0xffffffff;
2074 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2075 uuid[2] = 0xffffffff;
2076 uuid[3] = 0xffffffff;
2077 }
2078
2079 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2080 if (!sw->uuid)
2081 return -ENOMEM;
2082 return 0;
2083}
2084
2085static int tb_switch_add_dma_port(struct tb_switch *sw)
2086{
2087 u32 status;
2088 int ret;
2089
2090 switch (sw->generation) {
2091 case 2:
2092 /* Only root switch can be upgraded */
2093 if (tb_route(sw))
2094 return 0;
2095
2096 fallthrough;
2097 case 3:
2098 ret = tb_switch_set_uuid(sw);
2099 if (ret)
2100 return ret;
2101 break;
2102
2103 default:
2104 /*
2105 * DMA port is the only thing available when the switch
2106 * is in safe mode.
2107 */
2108 if (!sw->safe_mode)
2109 return 0;
2110 break;
2111 }
2112
2113 /* Root switch DMA port requires running firmware */
2114 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2115 return 0;
2116
2117 sw->dma_port = dma_port_alloc(sw);
2118 if (!sw->dma_port)
2119 return 0;
2120
2121 if (sw->no_nvm_upgrade)
2122 return 0;
2123
2124 /*
2125 * If there is status already set then authentication failed
2126 * when the dma_port_flash_update_auth() returned. Power cycling
2127 * is not needed (it was done already) so only thing we do here
2128 * is to unblock runtime PM of the root port.
2129 */
2130 nvm_get_auth_status(sw, &status);
2131 if (status) {
2132 if (!tb_route(sw))
2133 nvm_authenticate_complete_dma_port(sw);
2134 return 0;
2135 }
2136
2137 /*
2138 * Check status of the previous flash authentication. If there
2139 * is one we need to power cycle the switch in any case to make
2140 * it functional again.
2141 */
2142 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2143 if (ret <= 0)
2144 return ret;
2145
2146 /* Now we can allow root port to suspend again */
2147 if (!tb_route(sw))
2148 nvm_authenticate_complete_dma_port(sw);
2149
2150 if (status) {
2151 tb_sw_info(sw, "switch flash authentication failed\n");
2152 nvm_set_auth_status(sw, status);
2153 }
2154
2155 tb_sw_info(sw, "power cycling the switch now\n");
2156 dma_port_power_cycle(sw->dma_port);
2157
2158 /*
2159 * We return error here which causes the switch adding failure.
2160 * It should appear back after power cycle is complete.
2161 */
2162 return -ESHUTDOWN;
2163}
2164
2165static void tb_switch_default_link_ports(struct tb_switch *sw)
2166{
2167 int i;
2168
2169 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2170 struct tb_port *port = &sw->ports[i];
2171 struct tb_port *subordinate;
2172
2173 if (!tb_port_is_null(port))
2174 continue;
2175
2176 /* Check for the subordinate port */
2177 if (i == sw->config.max_port_number ||
2178 !tb_port_is_null(&sw->ports[i + 1]))
2179 continue;
2180
2181 /* Link them if not already done so (by DROM) */
2182 subordinate = &sw->ports[i + 1];
2183 if (!port->dual_link_port && !subordinate->dual_link_port) {
2184 port->link_nr = 0;
2185 port->dual_link_port = subordinate;
2186 subordinate->link_nr = 1;
2187 subordinate->dual_link_port = port;
2188
2189 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2190 port->port, subordinate->port);
2191 }
2192 }
2193}
2194
2195static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2196{
2197 const struct tb_port *up = tb_upstream_port(sw);
2198
2199 if (!up->dual_link_port || !up->dual_link_port->remote)
2200 return false;
2201
2202 if (tb_switch_is_usb4(sw))
2203 return usb4_switch_lane_bonding_possible(sw);
2204 return tb_lc_lane_bonding_possible(sw);
2205}
2206
2207static int tb_switch_update_link_attributes(struct tb_switch *sw)
2208{
2209 struct tb_port *up;
2210 bool change = false;
2211 int ret;
2212
2213 if (!tb_route(sw) || tb_switch_is_icm(sw))
2214 return 0;
2215
2216 up = tb_upstream_port(sw);
2217
2218 ret = tb_port_get_link_speed(up);
2219 if (ret < 0)
2220 return ret;
2221 if (sw->link_speed != ret)
2222 change = true;
2223 sw->link_speed = ret;
2224
2225 ret = tb_port_get_link_width(up);
2226 if (ret < 0)
2227 return ret;
2228 if (sw->link_width != ret)
2229 change = true;
2230 sw->link_width = ret;
2231
2232 /* Notify userspace that there is possible link attribute change */
2233 if (device_is_registered(&sw->dev) && change)
2234 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2235
2236 return 0;
2237}
2238
2239/**
2240 * tb_switch_lane_bonding_enable() - Enable lane bonding
2241 * @sw: Switch to enable lane bonding
2242 *
2243 * Connection manager can call this function to enable lane bonding of a
2244 * switch. If conditions are correct and both switches support the feature,
2245 * lanes are bonded. It is safe to call this to any switch.
2246 */
2247int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2248{
2249 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2250 struct tb_port *up, *down;
2251 u64 route = tb_route(sw);
2252 int ret;
2253
2254 if (!route)
2255 return 0;
2256
2257 if (!tb_switch_lane_bonding_possible(sw))
2258 return 0;
2259
2260 up = tb_upstream_port(sw);
2261 down = tb_port_at(route, parent);
2262
2263 if (!tb_port_is_width_supported(up, 2) ||
2264 !tb_port_is_width_supported(down, 2))
2265 return 0;
2266
2267 ret = tb_port_lane_bonding_enable(up);
2268 if (ret) {
2269 tb_port_warn(up, "failed to enable lane bonding\n");
2270 return ret;
2271 }
2272
2273 ret = tb_port_lane_bonding_enable(down);
2274 if (ret) {
2275 tb_port_warn(down, "failed to enable lane bonding\n");
2276 tb_port_lane_bonding_disable(up);
2277 return ret;
2278 }
2279
2280 tb_switch_update_link_attributes(sw);
2281
2282 tb_sw_dbg(sw, "lane bonding enabled\n");
2283 return ret;
2284}
2285
2286/**
2287 * tb_switch_lane_bonding_disable() - Disable lane bonding
2288 * @sw: Switch whose lane bonding to disable
2289 *
2290 * Disables lane bonding between @sw and parent. This can be called even
2291 * if lanes were not bonded originally.
2292 */
2293void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2294{
2295 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2296 struct tb_port *up, *down;
2297
2298 if (!tb_route(sw))
2299 return;
2300
2301 up = tb_upstream_port(sw);
2302 if (!up->bonded)
2303 return;
2304
2305 down = tb_port_at(tb_route(sw), parent);
2306
2307 tb_port_lane_bonding_disable(up);
2308 tb_port_lane_bonding_disable(down);
2309
2310 tb_switch_update_link_attributes(sw);
2311 tb_sw_dbg(sw, "lane bonding disabled\n");
2312}
2313
2314/**
2315 * tb_switch_add() - Add a switch to the domain
2316 * @sw: Switch to add
2317 *
2318 * This is the last step in adding switch to the domain. It will read
2319 * identification information from DROM and initializes ports so that
2320 * they can be used to connect other switches. The switch will be
2321 * exposed to the userspace when this function successfully returns. To
2322 * remove and release the switch, call tb_switch_remove().
2323 *
2324 * Return: %0 in case of success and negative errno in case of failure
2325 */
2326int tb_switch_add(struct tb_switch *sw)
2327{
2328 int i, ret;
2329
2330 /*
2331 * Initialize DMA control port now before we read DROM. Recent
2332 * host controllers have more complete DROM on NVM that includes
2333 * vendor and model identification strings which we then expose
2334 * to the userspace. NVM can be accessed through DMA
2335 * configuration based mailbox.
2336 */
2337 ret = tb_switch_add_dma_port(sw);
2338 if (ret) {
2339 dev_err(&sw->dev, "failed to add DMA port\n");
2340 return ret;
2341 }
2342
2343 if (!sw->safe_mode) {
2344 /* read drom */
2345 ret = tb_drom_read(sw);
2346 if (ret) {
2347 dev_err(&sw->dev, "reading DROM failed\n");
2348 return ret;
2349 }
2350 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2351
2352 ret = tb_switch_set_uuid(sw);
2353 if (ret) {
2354 dev_err(&sw->dev, "failed to set UUID\n");
2355 return ret;
2356 }
2357
2358 for (i = 0; i <= sw->config.max_port_number; i++) {
2359 if (sw->ports[i].disabled) {
2360 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2361 continue;
2362 }
2363 ret = tb_init_port(&sw->ports[i]);
2364 if (ret) {
2365 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2366 return ret;
2367 }
2368 }
2369
2370 tb_switch_default_link_ports(sw);
2371
2372 ret = tb_switch_update_link_attributes(sw);
2373 if (ret)
2374 return ret;
2375
2376 ret = tb_switch_tmu_init(sw);
2377 if (ret)
2378 return ret;
2379 }
2380
2381 ret = device_add(&sw->dev);
2382 if (ret) {
2383 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2384 return ret;
2385 }
2386
2387 if (tb_route(sw)) {
2388 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2389 sw->vendor, sw->device);
2390 if (sw->vendor_name && sw->device_name)
2391 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2392 sw->device_name);
2393 }
2394
2395 ret = tb_switch_nvm_add(sw);
2396 if (ret) {
2397 dev_err(&sw->dev, "failed to add NVM devices\n");
2398 device_del(&sw->dev);
2399 return ret;
2400 }
2401
2402 pm_runtime_set_active(&sw->dev);
2403 if (sw->rpm) {
2404 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2405 pm_runtime_use_autosuspend(&sw->dev);
2406 pm_runtime_mark_last_busy(&sw->dev);
2407 pm_runtime_enable(&sw->dev);
2408 pm_request_autosuspend(&sw->dev);
2409 }
2410
2411 return 0;
2412}
2413
2414/**
2415 * tb_switch_remove() - Remove and release a switch
2416 * @sw: Switch to remove
2417 *
2418 * This will remove the switch from the domain and release it after last
2419 * reference count drops to zero. If there are switches connected below
2420 * this switch, they will be removed as well.
2421 */
2422void tb_switch_remove(struct tb_switch *sw)
2423{
2424 struct tb_port *port;
2425
2426 if (sw->rpm) {
2427 pm_runtime_get_sync(&sw->dev);
2428 pm_runtime_disable(&sw->dev);
2429 }
2430
2431 /* port 0 is the switch itself and never has a remote */
2432 tb_switch_for_each_port(sw, port) {
2433 if (tb_port_has_remote(port)) {
2434 tb_switch_remove(port->remote->sw);
2435 port->remote = NULL;
2436 } else if (port->xdomain) {
2437 tb_xdomain_remove(port->xdomain);
2438 port->xdomain = NULL;
2439 }
2440
2441 /* Remove any downstream retimers */
2442 tb_retimer_remove_all(port);
2443 }
2444
2445 if (!sw->is_unplugged)
2446 tb_plug_events_active(sw, false);
2447
2448 if (tb_switch_is_usb4(sw))
2449 usb4_switch_unconfigure_link(sw);
2450 else
2451 tb_lc_unconfigure_link(sw);
2452
2453 tb_switch_nvm_remove(sw);
2454
2455 if (tb_route(sw))
2456 dev_info(&sw->dev, "device disconnected\n");
2457 device_unregister(&sw->dev);
2458}
2459
2460/**
2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2462 */
2463void tb_sw_set_unplugged(struct tb_switch *sw)
2464{
2465 struct tb_port *port;
2466
2467 if (sw == sw->tb->root_switch) {
2468 tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 return;
2470 }
2471 if (sw->is_unplugged) {
2472 tb_sw_WARN(sw, "is_unplugged already set\n");
2473 return;
2474 }
2475 sw->is_unplugged = true;
2476 tb_switch_for_each_port(sw, port) {
2477 if (tb_port_has_remote(port))
2478 tb_sw_set_unplugged(port->remote->sw);
2479 else if (port->xdomain)
2480 port->xdomain->is_unplugged = true;
2481 }
2482}
2483
2484int tb_switch_resume(struct tb_switch *sw)
2485{
2486 struct tb_port *port;
2487 int err;
2488
2489 tb_sw_dbg(sw, "resuming switch\n");
2490
2491 /*
2492 * Check for UID of the connected switches except for root
2493 * switch which we assume cannot be removed.
2494 */
2495 if (tb_route(sw)) {
2496 u64 uid;
2497
2498 /*
2499 * Check first that we can still read the switch config
2500 * space. It may be that there is now another domain
2501 * connected.
2502 */
2503 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 if (err < 0) {
2505 tb_sw_info(sw, "switch not present anymore\n");
2506 return err;
2507 }
2508
2509 if (tb_switch_is_usb4(sw))
2510 err = usb4_switch_read_uid(sw, &uid);
2511 else
2512 err = tb_drom_read_uid_only(sw, &uid);
2513 if (err) {
2514 tb_sw_warn(sw, "uid read failed\n");
2515 return err;
2516 }
2517 if (sw->uid != uid) {
2518 tb_sw_info(sw,
2519 "changed while suspended (uid %#llx -> %#llx)\n",
2520 sw->uid, uid);
2521 return -ENODEV;
2522 }
2523 }
2524
2525 err = tb_switch_configure(sw);
2526 if (err)
2527 return err;
2528
2529 /* check for surviving downstream switches */
2530 tb_switch_for_each_port(sw, port) {
2531 if (!tb_port_has_remote(port) && !port->xdomain)
2532 continue;
2533
2534 if (tb_wait_for_port(port, true) <= 0) {
2535 tb_port_warn(port,
2536 "lost during suspend, disconnecting\n");
2537 if (tb_port_has_remote(port))
2538 tb_sw_set_unplugged(port->remote->sw);
2539 else if (port->xdomain)
2540 port->xdomain->is_unplugged = true;
2541 } else if (tb_port_has_remote(port) || port->xdomain) {
2542 /*
2543 * Always unlock the port so the downstream
2544 * switch/domain is accessible.
2545 */
2546 if (tb_port_unlock(port))
2547 tb_port_warn(port, "failed to unlock port\n");
2548 if (port->remote && tb_switch_resume(port->remote->sw)) {
2549 tb_port_warn(port,
2550 "lost during suspend, disconnecting\n");
2551 tb_sw_set_unplugged(port->remote->sw);
2552 }
2553 }
2554 }
2555 return 0;
2556}
2557
2558void tb_switch_suspend(struct tb_switch *sw)
2559{
2560 struct tb_port *port;
2561 int err;
2562
2563 err = tb_plug_events_active(sw, false);
2564 if (err)
2565 return;
2566
2567 tb_switch_for_each_port(sw, port) {
2568 if (tb_port_has_remote(port))
2569 tb_switch_suspend(port->remote->sw);
2570 }
2571
2572 if (tb_switch_is_usb4(sw))
2573 usb4_switch_set_sleep(sw);
2574 else
2575 tb_lc_set_sleep(sw);
2576}
2577
2578/**
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2581 * @in: DP IN port
2582 *
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2585 */
2586bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587{
2588 if (tb_switch_is_usb4(sw))
2589 return usb4_switch_query_dp_resource(sw, in);
2590 return tb_lc_dp_sink_query(sw, in);
2591}
2592
2593/**
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2596 * @in: DP IN port
2597 *
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2601 */
2602int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603{
2604 if (tb_switch_is_usb4(sw))
2605 return usb4_switch_alloc_dp_resource(sw, in);
2606 return tb_lc_dp_sink_alloc(sw, in);
2607}
2608
2609/**
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2612 * @in: DP IN port
2613 *
2614 * De-allocates DP resource that was previously allocated for DP
2615 * tunneling.
2616 */
2617void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618{
2619 int ret;
2620
2621 if (tb_switch_is_usb4(sw))
2622 ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 else
2624 ret = tb_lc_dp_sink_dealloc(sw, in);
2625
2626 if (ret)
2627 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 in->port);
2629}
2630
2631struct tb_sw_lookup {
2632 struct tb *tb;
2633 u8 link;
2634 u8 depth;
2635 const uuid_t *uuid;
2636 u64 route;
2637};
2638
2639static int tb_switch_match(struct device *dev, const void *data)
2640{
2641 struct tb_switch *sw = tb_to_switch(dev);
2642 const struct tb_sw_lookup *lookup = data;
2643
2644 if (!sw)
2645 return 0;
2646 if (sw->tb != lookup->tb)
2647 return 0;
2648
2649 if (lookup->uuid)
2650 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651
2652 if (lookup->route) {
2653 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 sw->config.route_hi == upper_32_bits(lookup->route);
2655 }
2656
2657 /* Root switch is matched only by depth */
2658 if (!lookup->depth)
2659 return !sw->depth;
2660
2661 return sw->link == lookup->link && sw->depth == lookup->depth;
2662}
2663
2664/**
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2669 *
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2672 */
2673struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674{
2675 struct tb_sw_lookup lookup;
2676 struct device *dev;
2677
2678 memset(&lookup, 0, sizeof(lookup));
2679 lookup.tb = tb;
2680 lookup.link = link;
2681 lookup.depth = depth;
2682
2683 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 if (dev)
2685 return tb_to_switch(dev);
2686
2687 return NULL;
2688}
2689
2690/**
2691 * tb_switch_find_by_uuid() - Find switch by UUID
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2694 *
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2697 */
2698struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2699{
2700 struct tb_sw_lookup lookup;
2701 struct device *dev;
2702
2703 memset(&lookup, 0, sizeof(lookup));
2704 lookup.tb = tb;
2705 lookup.uuid = uuid;
2706
2707 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 if (dev)
2709 return tb_to_switch(dev);
2710
2711 return NULL;
2712}
2713
2714/**
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2718 *
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2721 */
2722struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723{
2724 struct tb_sw_lookup lookup;
2725 struct device *dev;
2726
2727 if (!route)
2728 return tb_switch_get(tb->root_switch);
2729
2730 memset(&lookup, 0, sizeof(lookup));
2731 lookup.tb = tb;
2732 lookup.route = route;
2733
2734 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 if (dev)
2736 return tb_to_switch(dev);
2737
2738 return NULL;
2739}
2740
2741/**
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2745 */
2746struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 enum tb_port_type type)
2748{
2749 struct tb_port *port;
2750
2751 tb_switch_for_each_port(sw, port) {
2752 if (port->config.type == type)
2753 return port;
2754 }
2755
2756 return NULL;
2757}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/module.h>
12#include <linux/nvmem-provider.h>
13#include <linux/pm_runtime.h>
14#include <linux/sched/signal.h>
15#include <linux/sizes.h>
16#include <linux/slab.h>
17#include <linux/string_helpers.h>
18
19#include "tb.h"
20
21/* Switch NVM support */
22
23struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27};
28
29/*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34static LIST_HEAD(nvm_auth_status_cache);
35static DEFINE_MUTEX(nvm_auth_status_lock);
36
37static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38{
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47}
48
49static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50{
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58}
59
60static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61{
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83}
84
85static void nvm_clear_auth_status(const struct tb_switch *sw)
86{
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96}
97
98static int nvm_validate_and_write(struct tb_switch *sw)
99{
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124}
125
126static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127{
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164}
165
166static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167{
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209}
210
211static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212{
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224}
225
226static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227{
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233}
234
235static inline bool nvm_readable(struct tb_switch *sw)
236{
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249}
250
251static inline bool nvm_upgradeable(struct tb_switch *sw)
252{
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256}
257
258static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259{
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283}
284
285/**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298{
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302}
303
304static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305{
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325}
326
327static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328{
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346}
347
348static int tb_switch_nvm_add(struct tb_switch *sw)
349{
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 }
377
378 if (!sw->no_nvm_upgrade) {
379 ret = tb_nvm_add_non_active(nvm, nvm_write);
380 if (ret)
381 goto err_nvm;
382 }
383
384 sw->nvm = nvm;
385 return 0;
386
387err_nvm:
388 tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 sw->no_nvm_upgrade = true;
390 if (!IS_ERR(nvm))
391 tb_nvm_free(nvm);
392
393 return ret;
394}
395
396static void tb_switch_nvm_remove(struct tb_switch *sw)
397{
398 struct tb_nvm *nvm;
399
400 nvm = sw->nvm;
401 sw->nvm = NULL;
402
403 if (!nvm)
404 return;
405
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm->authenticating)
408 nvm_clear_auth_status(sw);
409
410 tb_nvm_free(nvm);
411}
412
413/* port utility functions */
414
415static const char *tb_port_type(const struct tb_regs_port_header *port)
416{
417 switch (port->type >> 16) {
418 case 0:
419 switch ((u8) port->type) {
420 case 0:
421 return "Inactive";
422 case 1:
423 return "Port";
424 case 2:
425 return "NHI";
426 default:
427 return "unknown";
428 }
429 case 0x2:
430 return "Ethernet";
431 case 0x8:
432 return "SATA";
433 case 0xe:
434 return "DP/HDMI";
435 case 0x10:
436 return "PCIe";
437 case 0x20:
438 return "USB";
439 default:
440 return "unknown";
441 }
442}
443
444static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445{
446 const struct tb_regs_port_header *regs = &port->config;
447
448 tb_dbg(tb,
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs->port_number, regs->vendor_id, regs->device_id,
451 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 regs->type);
453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
454 regs->max_in_hop_id, regs->max_out_hop_id);
455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
458 port->ctl_credits);
459}
460
461/**
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
464 *
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466 *
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
468 */
469int tb_port_state(struct tb_port *port)
470{
471 struct tb_cap_phy phy;
472 int res;
473 if (port->cap_phy == 0) {
474 tb_port_WARN(port, "does not have a PHY\n");
475 return -EINVAL;
476 }
477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 if (res)
479 return res;
480 return phy.state;
481}
482
483/**
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
487 *
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
493 *
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
497 */
498int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499{
500 int retries = 10;
501 int state;
502 if (!port->cap_phy) {
503 tb_port_WARN(port, "does not have PHY\n");
504 return -EINVAL;
505 }
506 if (tb_is_upstream_port(port)) {
507 tb_port_WARN(port, "is the upstream port\n");
508 return -EINVAL;
509 }
510
511 while (retries--) {
512 state = tb_port_state(port);
513 switch (state) {
514 case TB_PORT_DISABLED:
515 tb_port_dbg(port, "is disabled (state: 0)\n");
516 return 0;
517
518 case TB_PORT_UNPLUGGED:
519 if (wait_if_unplugged) {
520 /* used during resume */
521 tb_port_dbg(port,
522 "is unplugged (state: 7), retrying...\n");
523 msleep(100);
524 break;
525 }
526 tb_port_dbg(port, "is unplugged (state: 7)\n");
527 return 0;
528
529 case TB_PORT_UP:
530 case TB_PORT_TX_CL0S:
531 case TB_PORT_RX_CL0S:
532 case TB_PORT_CL1:
533 case TB_PORT_CL2:
534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 return 1;
536
537 default:
538 if (state < 0)
539 return state;
540
541 /*
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 * time.
544 */
545 tb_port_dbg(port,
546 "is connected, link is not up (state: %d), retrying...\n",
547 state);
548 msleep(100);
549 }
550
551 }
552 tb_port_warn(port,
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 return 0;
555}
556
557/**
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
561 *
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
564 *
565 * Return: Returns 0 on success or an error code on failure.
566 */
567int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568{
569 u32 nfc_credits;
570
571 if (credits == 0 || port->sw->is_unplugged)
572 return 0;
573
574 /*
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
577 */
578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 return 0;
580
581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 if (credits < 0)
583 credits = max_t(int, -nfc_credits, credits);
584
585 nfc_credits += credits;
586
587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589
590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 port->config.nfc_credits |= nfc_credits;
592
593 return tb_port_write(port, &port->config.nfc_credits,
594 TB_CFG_PORT, ADP_CS_4, 1);
595}
596
597/**
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
601 *
602 * Return: Returns 0 on success or an error code on failure.
603 */
604int tb_port_clear_counter(struct tb_port *port, int counter)
605{
606 u32 zero[3] = { 0, 0, 0 };
607 tb_port_dbg(port, "clearing counter %d\n", counter);
608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609}
610
611/**
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
614 *
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
617 */
618int tb_port_unlock(struct tb_port *port)
619{
620 if (tb_switch_is_icm(port->sw))
621 return 0;
622 if (!tb_port_is_null(port))
623 return -EINVAL;
624 if (tb_switch_is_usb4(port->sw))
625 return usb4_port_unlock(port);
626 return 0;
627}
628
629static int __tb_port_enable(struct tb_port *port, bool enable)
630{
631 int ret;
632 u32 phy;
633
634 if (!tb_port_is_null(port))
635 return -EINVAL;
636
637 ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 port->cap_phy + LANE_ADP_CS_1, 1);
639 if (ret)
640 return ret;
641
642 if (enable)
643 phy &= ~LANE_ADP_CS_1_LD;
644 else
645 phy |= LANE_ADP_CS_1_LD;
646
647
648 ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 port->cap_phy + LANE_ADP_CS_1, 1);
650 if (ret)
651 return ret;
652
653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 return 0;
655}
656
657/**
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
660 *
661 * This is used for lane 0 and 1 adapters to enable it.
662 */
663int tb_port_enable(struct tb_port *port)
664{
665 return __tb_port_enable(port, true);
666}
667
668/**
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
671 *
672 * This is used for lane 0 and 1 adapters to disable it.
673 */
674int tb_port_disable(struct tb_port *port)
675{
676 return __tb_port_enable(port, false);
677}
678
679static int tb_port_reset(struct tb_port *port)
680{
681 if (tb_switch_is_usb4(port->sw))
682 return port->cap_usb4 ? usb4_port_reset(port) : 0;
683 return tb_lc_reset_port(port);
684}
685
686/*
687 * tb_init_port() - initialize a port
688 *
689 * This is a helper method for tb_switch_alloc. Does not check or initialize
690 * any downstream switches.
691 *
692 * Return: Returns 0 on success or an error code on failure.
693 */
694static int tb_init_port(struct tb_port *port)
695{
696 int res;
697 int cap;
698
699 INIT_LIST_HEAD(&port->list);
700
701 /* Control adapter does not have configuration space */
702 if (!port->port)
703 return 0;
704
705 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
706 if (res) {
707 if (res == -ENODEV) {
708 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
709 port->port);
710 port->disabled = true;
711 return 0;
712 }
713 return res;
714 }
715
716 /* Port 0 is the switch itself and has no PHY. */
717 if (port->config.type == TB_TYPE_PORT) {
718 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
719
720 if (cap > 0)
721 port->cap_phy = cap;
722 else
723 tb_port_WARN(port, "non switch port without a PHY\n");
724
725 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
726 if (cap > 0)
727 port->cap_usb4 = cap;
728
729 /*
730 * USB4 ports the buffers allocated for the control path
731 * can be read from the path config space. Legacy
732 * devices we use hard-coded value.
733 */
734 if (port->cap_usb4) {
735 struct tb_regs_hop hop;
736
737 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
738 port->ctl_credits = hop.initial_credits;
739 }
740 if (!port->ctl_credits)
741 port->ctl_credits = 2;
742
743 } else {
744 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
745 if (cap > 0)
746 port->cap_adap = cap;
747 }
748
749 port->total_credits =
750 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
751 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
752
753 tb_dump_port(port->sw->tb, port);
754 return 0;
755}
756
757static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
758 int max_hopid)
759{
760 int port_max_hopid;
761 struct ida *ida;
762
763 if (in) {
764 port_max_hopid = port->config.max_in_hop_id;
765 ida = &port->in_hopids;
766 } else {
767 port_max_hopid = port->config.max_out_hop_id;
768 ida = &port->out_hopids;
769 }
770
771 /*
772 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
773 * reserved.
774 */
775 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
776 min_hopid = TB_PATH_MIN_HOPID;
777
778 if (max_hopid < 0 || max_hopid > port_max_hopid)
779 max_hopid = port_max_hopid;
780
781 return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
782}
783
784/**
785 * tb_port_alloc_in_hopid() - Allocate input HopID from port
786 * @port: Port to allocate HopID for
787 * @min_hopid: Minimum acceptable input HopID
788 * @max_hopid: Maximum acceptable input HopID
789 *
790 * Return: HopID between @min_hopid and @max_hopid or negative errno in
791 * case of error.
792 */
793int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
794{
795 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
796}
797
798/**
799 * tb_port_alloc_out_hopid() - Allocate output HopID from port
800 * @port: Port to allocate HopID for
801 * @min_hopid: Minimum acceptable output HopID
802 * @max_hopid: Maximum acceptable output HopID
803 *
804 * Return: HopID between @min_hopid and @max_hopid or negative errno in
805 * case of error.
806 */
807int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
808{
809 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
810}
811
812/**
813 * tb_port_release_in_hopid() - Release allocated input HopID from port
814 * @port: Port whose HopID to release
815 * @hopid: HopID to release
816 */
817void tb_port_release_in_hopid(struct tb_port *port, int hopid)
818{
819 ida_free(&port->in_hopids, hopid);
820}
821
822/**
823 * tb_port_release_out_hopid() - Release allocated output HopID from port
824 * @port: Port whose HopID to release
825 * @hopid: HopID to release
826 */
827void tb_port_release_out_hopid(struct tb_port *port, int hopid)
828{
829 ida_free(&port->out_hopids, hopid);
830}
831
832static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
833 const struct tb_switch *sw)
834{
835 u64 mask = (1ULL << parent->config.depth * 8) - 1;
836 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
837}
838
839/**
840 * tb_next_port_on_path() - Return next port for given port on a path
841 * @start: Start port of the walk
842 * @end: End port of the walk
843 * @prev: Previous port (%NULL if this is the first)
844 *
845 * This function can be used to walk from one port to another if they
846 * are connected through zero or more switches. If the @prev is dual
847 * link port, the function follows that link and returns another end on
848 * that same link.
849 *
850 * If the @end port has been reached, return %NULL.
851 *
852 * Domain tb->lock must be held when this function is called.
853 */
854struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
855 struct tb_port *prev)
856{
857 struct tb_port *next;
858
859 if (!prev)
860 return start;
861
862 if (prev->sw == end->sw) {
863 if (prev == end)
864 return NULL;
865 return end;
866 }
867
868 if (tb_switch_is_reachable(prev->sw, end->sw)) {
869 next = tb_port_at(tb_route(end->sw), prev->sw);
870 /* Walk down the topology if next == prev */
871 if (prev->remote &&
872 (next == prev || next->dual_link_port == prev))
873 next = prev->remote;
874 } else {
875 if (tb_is_upstream_port(prev)) {
876 next = prev->remote;
877 } else {
878 next = tb_upstream_port(prev->sw);
879 /*
880 * Keep the same link if prev and next are both
881 * dual link ports.
882 */
883 if (next->dual_link_port &&
884 next->link_nr != prev->link_nr) {
885 next = next->dual_link_port;
886 }
887 }
888 }
889
890 return next != prev ? next : NULL;
891}
892
893/**
894 * tb_port_get_link_speed() - Get current link speed
895 * @port: Port to check (USB4 or CIO)
896 *
897 * Returns link speed in Gb/s or negative errno in case of failure.
898 */
899int tb_port_get_link_speed(struct tb_port *port)
900{
901 u32 val, speed;
902 int ret;
903
904 if (!port->cap_phy)
905 return -EINVAL;
906
907 ret = tb_port_read(port, &val, TB_CFG_PORT,
908 port->cap_phy + LANE_ADP_CS_1, 1);
909 if (ret)
910 return ret;
911
912 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
913 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
914
915 switch (speed) {
916 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
917 return 40;
918 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
919 return 20;
920 default:
921 return 10;
922 }
923}
924
925/**
926 * tb_port_get_link_generation() - Returns link generation
927 * @port: Lane adapter
928 *
929 * Returns link generation as number or negative errno in case of
930 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931 * links so for those always returns 2.
932 */
933int tb_port_get_link_generation(struct tb_port *port)
934{
935 int ret;
936
937 ret = tb_port_get_link_speed(port);
938 if (ret < 0)
939 return ret;
940
941 switch (ret) {
942 case 40:
943 return 4;
944 case 20:
945 return 3;
946 default:
947 return 2;
948 }
949}
950
951/**
952 * tb_port_get_link_width() - Get current link width
953 * @port: Port to check (USB4 or CIO)
954 *
955 * Returns link width. Return the link width as encoded in &enum
956 * tb_link_width or negative errno in case of failure.
957 */
958int tb_port_get_link_width(struct tb_port *port)
959{
960 u32 val;
961 int ret;
962
963 if (!port->cap_phy)
964 return -EINVAL;
965
966 ret = tb_port_read(port, &val, TB_CFG_PORT,
967 port->cap_phy + LANE_ADP_CS_1, 1);
968 if (ret)
969 return ret;
970
971 /* Matches the values in enum tb_link_width */
972 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
973 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
974}
975
976/**
977 * tb_port_width_supported() - Is the given link width supported
978 * @port: Port to check
979 * @width: Widths to check (bitmask)
980 *
981 * Can be called to any lane adapter. Checks if given @width is
982 * supported by the hardware and returns %true if it is.
983 */
984bool tb_port_width_supported(struct tb_port *port, unsigned int width)
985{
986 u32 phy, widths;
987 int ret;
988
989 if (!port->cap_phy)
990 return false;
991
992 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
993 if (tb_port_get_link_generation(port) < 4 ||
994 !usb4_port_asym_supported(port))
995 return false;
996 }
997
998 ret = tb_port_read(port, &phy, TB_CFG_PORT,
999 port->cap_phy + LANE_ADP_CS_0, 1);
1000 if (ret)
1001 return false;
1002
1003 /*
1004 * The field encoding is the same as &enum tb_link_width (which is
1005 * passed to @width).
1006 */
1007 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1008 return widths & width;
1009}
1010
1011/**
1012 * tb_port_set_link_width() - Set target link width of the lane adapter
1013 * @port: Lane adapter
1014 * @width: Target link width
1015 *
1016 * Sets the target link width of the lane adapter to @width. Does not
1017 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1018 *
1019 * Return: %0 in case of success and negative errno in case of error
1020 */
1021int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1022{
1023 u32 val;
1024 int ret;
1025
1026 if (!port->cap_phy)
1027 return -EINVAL;
1028
1029 ret = tb_port_read(port, &val, TB_CFG_PORT,
1030 port->cap_phy + LANE_ADP_CS_1, 1);
1031 if (ret)
1032 return ret;
1033
1034 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1035 switch (width) {
1036 case TB_LINK_WIDTH_SINGLE:
1037 /* Gen 4 link cannot be single */
1038 if (tb_port_get_link_generation(port) >= 4)
1039 return -EOPNOTSUPP;
1040 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 break;
1043
1044 case TB_LINK_WIDTH_DUAL:
1045 if (tb_port_get_link_generation(port) >= 4)
1046 return usb4_port_asym_set_link_width(port, width);
1047 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1048 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1049 break;
1050
1051 case TB_LINK_WIDTH_ASYM_TX:
1052 case TB_LINK_WIDTH_ASYM_RX:
1053 return usb4_port_asym_set_link_width(port, width);
1054
1055 default:
1056 return -EINVAL;
1057 }
1058
1059 return tb_port_write(port, &val, TB_CFG_PORT,
1060 port->cap_phy + LANE_ADP_CS_1, 1);
1061}
1062
1063/**
1064 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065 * @port: Lane adapter
1066 * @bonding: enable/disable bonding
1067 *
1068 * Enables or disables lane bonding. This should be called after target
1069 * link width has been set (tb_port_set_link_width()). Note in most
1070 * cases one should use tb_port_lane_bonding_enable() instead to enable
1071 * lane bonding.
1072 *
1073 * Return: %0 in case of success and negative errno in case of error
1074 */
1075static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1076{
1077 u32 val;
1078 int ret;
1079
1080 if (!port->cap_phy)
1081 return -EINVAL;
1082
1083 ret = tb_port_read(port, &val, TB_CFG_PORT,
1084 port->cap_phy + LANE_ADP_CS_1, 1);
1085 if (ret)
1086 return ret;
1087
1088 if (bonding)
1089 val |= LANE_ADP_CS_1_LB;
1090 else
1091 val &= ~LANE_ADP_CS_1_LB;
1092
1093 return tb_port_write(port, &val, TB_CFG_PORT,
1094 port->cap_phy + LANE_ADP_CS_1, 1);
1095}
1096
1097/**
1098 * tb_port_lane_bonding_enable() - Enable bonding on port
1099 * @port: port to enable
1100 *
1101 * Enable bonding by setting the link width of the port and the other
1102 * port in case of dual link port. Does not wait for the link to
1103 * actually reach the bonded state so caller needs to call
1104 * tb_port_wait_for_link_width() before enabling any paths through the
1105 * link to make sure the link is in expected state.
1106 *
1107 * Return: %0 in case of success and negative errno in case of error
1108 */
1109int tb_port_lane_bonding_enable(struct tb_port *port)
1110{
1111 enum tb_link_width width;
1112 int ret;
1113
1114 /*
1115 * Enable lane bonding for both links if not already enabled by
1116 * for example the boot firmware.
1117 */
1118 width = tb_port_get_link_width(port);
1119 if (width == TB_LINK_WIDTH_SINGLE) {
1120 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1121 if (ret)
1122 goto err_lane0;
1123 }
1124
1125 width = tb_port_get_link_width(port->dual_link_port);
1126 if (width == TB_LINK_WIDTH_SINGLE) {
1127 ret = tb_port_set_link_width(port->dual_link_port,
1128 TB_LINK_WIDTH_DUAL);
1129 if (ret)
1130 goto err_lane1;
1131 }
1132
1133 /*
1134 * Only set bonding if the link was not already bonded. This
1135 * avoids the lane adapter to re-enter bonding state.
1136 */
1137 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1138 ret = tb_port_set_lane_bonding(port, true);
1139 if (ret)
1140 goto err_lane1;
1141 }
1142
1143 /*
1144 * When lane 0 bonding is set it will affect lane 1 too so
1145 * update both.
1146 */
1147 port->bonded = true;
1148 port->dual_link_port->bonded = true;
1149
1150 return 0;
1151
1152err_lane1:
1153 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1154err_lane0:
1155 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1156
1157 return ret;
1158}
1159
1160/**
1161 * tb_port_lane_bonding_disable() - Disable bonding on port
1162 * @port: port to disable
1163 *
1164 * Disable bonding by setting the link width of the port and the
1165 * other port in case of dual link port.
1166 */
1167void tb_port_lane_bonding_disable(struct tb_port *port)
1168{
1169 tb_port_set_lane_bonding(port, false);
1170 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1171 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1172 port->dual_link_port->bonded = false;
1173 port->bonded = false;
1174}
1175
1176/**
1177 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178 * @port: Port to wait for
1179 * @width: Expected link width (bitmask)
1180 * @timeout_msec: Timeout in ms how long to wait
1181 *
1182 * Should be used after both ends of the link have been bonded (or
1183 * bonding has been disabled) to wait until the link actually reaches
1184 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185 * within the given timeout, %0 if it did. Can be passed a mask of
1186 * expected widths and succeeds if any of the widths is reached.
1187 */
1188int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1189 int timeout_msec)
1190{
1191 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1192 int ret;
1193
1194 /* Gen 4 link does not support single lane */
1195 if ((width & TB_LINK_WIDTH_SINGLE) &&
1196 tb_port_get_link_generation(port) >= 4)
1197 return -EOPNOTSUPP;
1198
1199 do {
1200 ret = tb_port_get_link_width(port);
1201 if (ret < 0) {
1202 /*
1203 * Sometimes we get port locked error when
1204 * polling the lanes so we can ignore it and
1205 * retry.
1206 */
1207 if (ret != -EACCES)
1208 return ret;
1209 } else if (ret & width) {
1210 return 0;
1211 }
1212
1213 usleep_range(1000, 2000);
1214 } while (ktime_before(ktime_get(), timeout));
1215
1216 return -ETIMEDOUT;
1217}
1218
1219static int tb_port_do_update_credits(struct tb_port *port)
1220{
1221 u32 nfc_credits;
1222 int ret;
1223
1224 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1225 if (ret)
1226 return ret;
1227
1228 if (nfc_credits != port->config.nfc_credits) {
1229 u32 total;
1230
1231 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1232 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1233
1234 tb_port_dbg(port, "total credits changed %u -> %u\n",
1235 port->total_credits, total);
1236
1237 port->config.nfc_credits = nfc_credits;
1238 port->total_credits = total;
1239 }
1240
1241 return 0;
1242}
1243
1244/**
1245 * tb_port_update_credits() - Re-read port total credits
1246 * @port: Port to update
1247 *
1248 * After the link is bonded (or bonding was disabled) the port total
1249 * credits may change, so this function needs to be called to re-read
1250 * the credits. Updates also the second lane adapter.
1251 */
1252int tb_port_update_credits(struct tb_port *port)
1253{
1254 int ret;
1255
1256 ret = tb_port_do_update_credits(port);
1257 if (ret)
1258 return ret;
1259
1260 if (!port->dual_link_port)
1261 return 0;
1262 return tb_port_do_update_credits(port->dual_link_port);
1263}
1264
1265static int tb_port_start_lane_initialization(struct tb_port *port)
1266{
1267 int ret;
1268
1269 if (tb_switch_is_usb4(port->sw))
1270 return 0;
1271
1272 ret = tb_lc_start_lane_initialization(port);
1273 return ret == -EINVAL ? 0 : ret;
1274}
1275
1276/*
1277 * Returns true if the port had something (router, XDomain) connected
1278 * before suspend.
1279 */
1280static bool tb_port_resume(struct tb_port *port)
1281{
1282 bool has_remote = tb_port_has_remote(port);
1283
1284 if (port->usb4) {
1285 usb4_port_device_resume(port->usb4);
1286 } else if (!has_remote) {
1287 /*
1288 * For disconnected downstream lane adapters start lane
1289 * initialization now so we detect future connects.
1290 *
1291 * For XDomain start the lane initialzation now so the
1292 * link gets re-established.
1293 *
1294 * This is only needed for non-USB4 ports.
1295 */
1296 if (!tb_is_upstream_port(port) || port->xdomain)
1297 tb_port_start_lane_initialization(port);
1298 }
1299
1300 return has_remote || port->xdomain;
1301}
1302
1303/**
1304 * tb_port_is_enabled() - Is the adapter port enabled
1305 * @port: Port to check
1306 */
1307bool tb_port_is_enabled(struct tb_port *port)
1308{
1309 switch (port->config.type) {
1310 case TB_TYPE_PCIE_UP:
1311 case TB_TYPE_PCIE_DOWN:
1312 return tb_pci_port_is_enabled(port);
1313
1314 case TB_TYPE_DP_HDMI_IN:
1315 case TB_TYPE_DP_HDMI_OUT:
1316 return tb_dp_port_is_enabled(port);
1317
1318 case TB_TYPE_USB3_UP:
1319 case TB_TYPE_USB3_DOWN:
1320 return tb_usb3_port_is_enabled(port);
1321
1322 default:
1323 return false;
1324 }
1325}
1326
1327/**
1328 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329 * @port: USB3 adapter port to check
1330 */
1331bool tb_usb3_port_is_enabled(struct tb_port *port)
1332{
1333 u32 data;
1334
1335 if (tb_port_read(port, &data, TB_CFG_PORT,
1336 port->cap_adap + ADP_USB3_CS_0, 1))
1337 return false;
1338
1339 return !!(data & ADP_USB3_CS_0_PE);
1340}
1341
1342/**
1343 * tb_usb3_port_enable() - Enable USB3 adapter port
1344 * @port: USB3 adapter port to enable
1345 * @enable: Enable/disable the USB3 adapter
1346 */
1347int tb_usb3_port_enable(struct tb_port *port, bool enable)
1348{
1349 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1350 : ADP_USB3_CS_0_V;
1351
1352 if (!port->cap_adap)
1353 return -ENXIO;
1354 return tb_port_write(port, &word, TB_CFG_PORT,
1355 port->cap_adap + ADP_USB3_CS_0, 1);
1356}
1357
1358/**
1359 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360 * @port: PCIe port to check
1361 */
1362bool tb_pci_port_is_enabled(struct tb_port *port)
1363{
1364 u32 data;
1365
1366 if (tb_port_read(port, &data, TB_CFG_PORT,
1367 port->cap_adap + ADP_PCIE_CS_0, 1))
1368 return false;
1369
1370 return !!(data & ADP_PCIE_CS_0_PE);
1371}
1372
1373/**
1374 * tb_pci_port_enable() - Enable PCIe adapter port
1375 * @port: PCIe port to enable
1376 * @enable: Enable/disable the PCIe adapter
1377 */
1378int tb_pci_port_enable(struct tb_port *port, bool enable)
1379{
1380 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1381 if (!port->cap_adap)
1382 return -ENXIO;
1383 return tb_port_write(port, &word, TB_CFG_PORT,
1384 port->cap_adap + ADP_PCIE_CS_0, 1);
1385}
1386
1387/**
1388 * tb_dp_port_hpd_is_active() - Is HPD already active
1389 * @port: DP out port to check
1390 *
1391 * Checks if the DP OUT adapter port has HPD bit already set.
1392 */
1393int tb_dp_port_hpd_is_active(struct tb_port *port)
1394{
1395 u32 data;
1396 int ret;
1397
1398 ret = tb_port_read(port, &data, TB_CFG_PORT,
1399 port->cap_adap + ADP_DP_CS_2, 1);
1400 if (ret)
1401 return ret;
1402
1403 return !!(data & ADP_DP_CS_2_HPD);
1404}
1405
1406/**
1407 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408 * @port: Port to clear HPD
1409 *
1410 * If the DP IN port has HPD set, this function can be used to clear it.
1411 */
1412int tb_dp_port_hpd_clear(struct tb_port *port)
1413{
1414 u32 data;
1415 int ret;
1416
1417 ret = tb_port_read(port, &data, TB_CFG_PORT,
1418 port->cap_adap + ADP_DP_CS_3, 1);
1419 if (ret)
1420 return ret;
1421
1422 data |= ADP_DP_CS_3_HPDC;
1423 return tb_port_write(port, &data, TB_CFG_PORT,
1424 port->cap_adap + ADP_DP_CS_3, 1);
1425}
1426
1427/**
1428 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429 * @port: DP IN/OUT port to set hops
1430 * @video: Video Hop ID
1431 * @aux_tx: AUX TX Hop ID
1432 * @aux_rx: AUX RX Hop ID
1433 *
1434 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435 * router DP adapters too but does not program the values as the fields
1436 * are read-only.
1437 */
1438int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1439 unsigned int aux_tx, unsigned int aux_rx)
1440{
1441 u32 data[2];
1442 int ret;
1443
1444 if (tb_switch_is_usb4(port->sw))
1445 return 0;
1446
1447 ret = tb_port_read(port, data, TB_CFG_PORT,
1448 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1449 if (ret)
1450 return ret;
1451
1452 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1453 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1455
1456 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1457 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1458 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1459 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1460 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1461
1462 return tb_port_write(port, data, TB_CFG_PORT,
1463 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464}
1465
1466/**
1467 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468 * @port: DP adapter port to check
1469 */
1470bool tb_dp_port_is_enabled(struct tb_port *port)
1471{
1472 u32 data[2];
1473
1474 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1475 ARRAY_SIZE(data)))
1476 return false;
1477
1478 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1479}
1480
1481/**
1482 * tb_dp_port_enable() - Enables/disables DP paths of a port
1483 * @port: DP IN/OUT port
1484 * @enable: Enable/disable DP path
1485 *
1486 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487 * calling this function.
1488 */
1489int tb_dp_port_enable(struct tb_port *port, bool enable)
1490{
1491 u32 data[2];
1492 int ret;
1493
1494 ret = tb_port_read(port, data, TB_CFG_PORT,
1495 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496 if (ret)
1497 return ret;
1498
1499 if (enable)
1500 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1501 else
1502 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1503
1504 return tb_port_write(port, data, TB_CFG_PORT,
1505 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1506}
1507
1508/* switch utility functions */
1509
1510static const char *tb_switch_generation_name(const struct tb_switch *sw)
1511{
1512 switch (sw->generation) {
1513 case 1:
1514 return "Thunderbolt 1";
1515 case 2:
1516 return "Thunderbolt 2";
1517 case 3:
1518 return "Thunderbolt 3";
1519 case 4:
1520 return "USB4";
1521 default:
1522 return "Unknown";
1523 }
1524}
1525
1526static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1527{
1528 const struct tb_regs_switch_header *regs = &sw->config;
1529
1530 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1532 regs->revision, regs->thunderbolt_version);
1533 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1534 tb_dbg(tb, " Config:\n");
1535 tb_dbg(tb,
1536 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537 regs->upstream_port_number, regs->depth,
1538 (((u64) regs->route_hi) << 32) | regs->route_lo,
1539 regs->enabled, regs->plug_events_delay);
1540 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1541 regs->__unknown1, regs->__unknown4);
1542}
1543
1544static int tb_switch_reset_host(struct tb_switch *sw)
1545{
1546 if (sw->generation > 1) {
1547 struct tb_port *port;
1548
1549 tb_switch_for_each_port(sw, port) {
1550 int i, ret;
1551
1552 /*
1553 * For lane adapters we issue downstream port
1554 * reset and clear up path config spaces.
1555 *
1556 * For protocol adapters we disable the path and
1557 * clear path config space one by one (from 8 to
1558 * Max Input HopID of the adapter).
1559 */
1560 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1561 ret = tb_port_reset(port);
1562 if (ret)
1563 return ret;
1564 } else if (tb_port_is_usb3_down(port) ||
1565 tb_port_is_usb3_up(port)) {
1566 tb_usb3_port_enable(port, false);
1567 } else if (tb_port_is_dpin(port) ||
1568 tb_port_is_dpout(port)) {
1569 tb_dp_port_enable(port, false);
1570 } else if (tb_port_is_pcie_down(port) ||
1571 tb_port_is_pcie_up(port)) {
1572 tb_pci_port_enable(port, false);
1573 } else {
1574 continue;
1575 }
1576
1577 /* Cleanup path config space of protocol adapter */
1578 for (i = TB_PATH_MIN_HOPID;
1579 i <= port->config.max_in_hop_id; i++) {
1580 ret = tb_path_deactivate_hop(port, i);
1581 if (ret)
1582 return ret;
1583 }
1584 }
1585 } else {
1586 struct tb_cfg_result res;
1587
1588 /* Thunderbolt 1 uses the "reset" config space packet */
1589 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1590 TB_CFG_SWITCH, 2, 2);
1591 if (res.err)
1592 return res.err;
1593 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1594 if (res.err > 0)
1595 return -EIO;
1596 else if (res.err < 0)
1597 return res.err;
1598 }
1599
1600 return 0;
1601}
1602
1603static int tb_switch_reset_device(struct tb_switch *sw)
1604{
1605 return tb_port_reset(tb_switch_downstream_port(sw));
1606}
1607
1608static bool tb_switch_enumerated(struct tb_switch *sw)
1609{
1610 u32 val;
1611 int ret;
1612
1613 /*
1614 * Read directly from the hardware because we use this also
1615 * during system sleep where sw->config.enabled is already set
1616 * by us.
1617 */
1618 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1619 if (ret)
1620 return false;
1621
1622 return !!(val & ROUTER_CS_3_V);
1623}
1624
1625/**
1626 * tb_switch_reset() - Perform reset to the router
1627 * @sw: Router to reset
1628 *
1629 * Issues reset to the router @sw. Can be used for any router. For host
1630 * routers, resets all the downstream ports and cleans up path config
1631 * spaces accordingly. For device routers issues downstream port reset
1632 * through the parent router, so as side effect there will be unplug
1633 * soon after this is finished.
1634 *
1635 * If the router is not enumerated does nothing.
1636 *
1637 * Returns %0 on success or negative errno in case of failure.
1638 */
1639int tb_switch_reset(struct tb_switch *sw)
1640{
1641 int ret;
1642
1643 /*
1644 * We cannot access the port config spaces unless the router is
1645 * already enumerated. If the router is not enumerated it is
1646 * equal to being reset so we can skip that here.
1647 */
1648 if (!tb_switch_enumerated(sw))
1649 return 0;
1650
1651 tb_sw_dbg(sw, "resetting\n");
1652
1653 if (tb_route(sw))
1654 ret = tb_switch_reset_device(sw);
1655 else
1656 ret = tb_switch_reset_host(sw);
1657
1658 if (ret)
1659 tb_sw_warn(sw, "failed to reset\n");
1660
1661 return ret;
1662}
1663
1664/**
1665 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666 * @sw: Router to read the offset value from
1667 * @offset: Offset in the router config space to read from
1668 * @bit: Bit mask in the offset to wait for
1669 * @value: Value of the bits to wait for
1670 * @timeout_msec: Timeout in ms how long to wait
1671 *
1672 * Wait till the specified bits in specified offset reach specified value.
1673 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674 * within the given timeout or a negative errno in case of failure.
1675 */
1676int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1677 u32 value, int timeout_msec)
1678{
1679 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1680
1681 do {
1682 u32 val;
1683 int ret;
1684
1685 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1686 if (ret)
1687 return ret;
1688
1689 if ((val & bit) == value)
1690 return 0;
1691
1692 usleep_range(50, 100);
1693 } while (ktime_before(ktime_get(), timeout));
1694
1695 return -ETIMEDOUT;
1696}
1697
1698/*
1699 * tb_plug_events_active() - enable/disable plug events on a switch
1700 *
1701 * Also configures a sane plug_events_delay of 255ms.
1702 *
1703 * Return: Returns 0 on success or an error code on failure.
1704 */
1705static int tb_plug_events_active(struct tb_switch *sw, bool active)
1706{
1707 u32 data;
1708 int res;
1709
1710 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1711 return 0;
1712
1713 sw->config.plug_events_delay = 0xff;
1714 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1715 if (res)
1716 return res;
1717
1718 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1719 if (res)
1720 return res;
1721
1722 if (active) {
1723 data = data & 0xFFFFFF83;
1724 switch (sw->config.device_id) {
1725 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1726 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1727 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1728 break;
1729 default:
1730 /*
1731 * Skip Alpine Ridge, it needs to have vendor
1732 * specific USB hotplug event enabled for the
1733 * internal xHCI to work.
1734 */
1735 if (!tb_switch_is_alpine_ridge(sw))
1736 data |= TB_PLUG_EVENTS_USB_DISABLE;
1737 }
1738 } else {
1739 data = data | 0x7c;
1740 }
1741 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1742 sw->cap_plug_events + 1, 1);
1743}
1744
1745static ssize_t authorized_show(struct device *dev,
1746 struct device_attribute *attr,
1747 char *buf)
1748{
1749 struct tb_switch *sw = tb_to_switch(dev);
1750
1751 return sysfs_emit(buf, "%u\n", sw->authorized);
1752}
1753
1754static int disapprove_switch(struct device *dev, void *not_used)
1755{
1756 char *envp[] = { "AUTHORIZED=0", NULL };
1757 struct tb_switch *sw;
1758
1759 sw = tb_to_switch(dev);
1760 if (sw && sw->authorized) {
1761 int ret;
1762
1763 /* First children */
1764 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1765 if (ret)
1766 return ret;
1767
1768 ret = tb_domain_disapprove_switch(sw->tb, sw);
1769 if (ret)
1770 return ret;
1771
1772 sw->authorized = 0;
1773 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1774 }
1775
1776 return 0;
1777}
1778
1779static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1780{
1781 char envp_string[13];
1782 int ret = -EINVAL;
1783 char *envp[] = { envp_string, NULL };
1784
1785 if (!mutex_trylock(&sw->tb->lock))
1786 return restart_syscall();
1787
1788 if (!!sw->authorized == !!val)
1789 goto unlock;
1790
1791 switch (val) {
1792 /* Disapprove switch */
1793 case 0:
1794 if (tb_route(sw)) {
1795 ret = disapprove_switch(&sw->dev, NULL);
1796 goto unlock;
1797 }
1798 break;
1799
1800 /* Approve switch */
1801 case 1:
1802 if (sw->key)
1803 ret = tb_domain_approve_switch_key(sw->tb, sw);
1804 else
1805 ret = tb_domain_approve_switch(sw->tb, sw);
1806 break;
1807
1808 /* Challenge switch */
1809 case 2:
1810 if (sw->key)
1811 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1812 break;
1813
1814 default:
1815 break;
1816 }
1817
1818 if (!ret) {
1819 sw->authorized = val;
1820 /*
1821 * Notify status change to the userspace, informing the new
1822 * value of /sys/bus/thunderbolt/devices/.../authorized.
1823 */
1824 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1825 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1826 }
1827
1828unlock:
1829 mutex_unlock(&sw->tb->lock);
1830 return ret;
1831}
1832
1833static ssize_t authorized_store(struct device *dev,
1834 struct device_attribute *attr,
1835 const char *buf, size_t count)
1836{
1837 struct tb_switch *sw = tb_to_switch(dev);
1838 unsigned int val;
1839 ssize_t ret;
1840
1841 ret = kstrtouint(buf, 0, &val);
1842 if (ret)
1843 return ret;
1844 if (val > 2)
1845 return -EINVAL;
1846
1847 pm_runtime_get_sync(&sw->dev);
1848 ret = tb_switch_set_authorized(sw, val);
1849 pm_runtime_mark_last_busy(&sw->dev);
1850 pm_runtime_put_autosuspend(&sw->dev);
1851
1852 return ret ? ret : count;
1853}
1854static DEVICE_ATTR_RW(authorized);
1855
1856static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1857 char *buf)
1858{
1859 struct tb_switch *sw = tb_to_switch(dev);
1860
1861 return sysfs_emit(buf, "%u\n", sw->boot);
1862}
1863static DEVICE_ATTR_RO(boot);
1864
1865static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1866 char *buf)
1867{
1868 struct tb_switch *sw = tb_to_switch(dev);
1869
1870 return sysfs_emit(buf, "%#x\n", sw->device);
1871}
1872static DEVICE_ATTR_RO(device);
1873
1874static ssize_t
1875device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1876{
1877 struct tb_switch *sw = tb_to_switch(dev);
1878
1879 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1880}
1881static DEVICE_ATTR_RO(device_name);
1882
1883static ssize_t
1884generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1885{
1886 struct tb_switch *sw = tb_to_switch(dev);
1887
1888 return sysfs_emit(buf, "%u\n", sw->generation);
1889}
1890static DEVICE_ATTR_RO(generation);
1891
1892static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1893 char *buf)
1894{
1895 struct tb_switch *sw = tb_to_switch(dev);
1896 ssize_t ret;
1897
1898 if (!mutex_trylock(&sw->tb->lock))
1899 return restart_syscall();
1900
1901 if (sw->key)
1902 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1903 else
1904 ret = sysfs_emit(buf, "\n");
1905
1906 mutex_unlock(&sw->tb->lock);
1907 return ret;
1908}
1909
1910static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1911 const char *buf, size_t count)
1912{
1913 struct tb_switch *sw = tb_to_switch(dev);
1914 u8 key[TB_SWITCH_KEY_SIZE];
1915 ssize_t ret = count;
1916 bool clear = false;
1917
1918 if (!strcmp(buf, "\n"))
1919 clear = true;
1920 else if (hex2bin(key, buf, sizeof(key)))
1921 return -EINVAL;
1922
1923 if (!mutex_trylock(&sw->tb->lock))
1924 return restart_syscall();
1925
1926 if (sw->authorized) {
1927 ret = -EBUSY;
1928 } else {
1929 kfree(sw->key);
1930 if (clear) {
1931 sw->key = NULL;
1932 } else {
1933 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1934 if (!sw->key)
1935 ret = -ENOMEM;
1936 }
1937 }
1938
1939 mutex_unlock(&sw->tb->lock);
1940 return ret;
1941}
1942static DEVICE_ATTR(key, 0600, key_show, key_store);
1943
1944static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1945 char *buf)
1946{
1947 struct tb_switch *sw = tb_to_switch(dev);
1948
1949 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1950}
1951
1952/*
1953 * Currently all lanes must run at the same speed but we expose here
1954 * both directions to allow possible asymmetric links in the future.
1955 */
1956static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1957static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1958
1959static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1960 char *buf)
1961{
1962 struct tb_switch *sw = tb_to_switch(dev);
1963 unsigned int width;
1964
1965 switch (sw->link_width) {
1966 case TB_LINK_WIDTH_SINGLE:
1967 case TB_LINK_WIDTH_ASYM_TX:
1968 width = 1;
1969 break;
1970 case TB_LINK_WIDTH_DUAL:
1971 width = 2;
1972 break;
1973 case TB_LINK_WIDTH_ASYM_RX:
1974 width = 3;
1975 break;
1976 default:
1977 WARN_ON_ONCE(1);
1978 return -EINVAL;
1979 }
1980
1981 return sysfs_emit(buf, "%u\n", width);
1982}
1983static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1984
1985static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1986 char *buf)
1987{
1988 struct tb_switch *sw = tb_to_switch(dev);
1989 unsigned int width;
1990
1991 switch (sw->link_width) {
1992 case TB_LINK_WIDTH_SINGLE:
1993 case TB_LINK_WIDTH_ASYM_RX:
1994 width = 1;
1995 break;
1996 case TB_LINK_WIDTH_DUAL:
1997 width = 2;
1998 break;
1999 case TB_LINK_WIDTH_ASYM_TX:
2000 width = 3;
2001 break;
2002 default:
2003 WARN_ON_ONCE(1);
2004 return -EINVAL;
2005 }
2006
2007 return sysfs_emit(buf, "%u\n", width);
2008}
2009static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2010
2011static ssize_t nvm_authenticate_show(struct device *dev,
2012 struct device_attribute *attr, char *buf)
2013{
2014 struct tb_switch *sw = tb_to_switch(dev);
2015 u32 status;
2016
2017 nvm_get_auth_status(sw, &status);
2018 return sysfs_emit(buf, "%#x\n", status);
2019}
2020
2021static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2022 bool disconnect)
2023{
2024 struct tb_switch *sw = tb_to_switch(dev);
2025 int val, ret;
2026
2027 pm_runtime_get_sync(&sw->dev);
2028
2029 if (!mutex_trylock(&sw->tb->lock)) {
2030 ret = restart_syscall();
2031 goto exit_rpm;
2032 }
2033
2034 if (sw->no_nvm_upgrade) {
2035 ret = -EOPNOTSUPP;
2036 goto exit_unlock;
2037 }
2038
2039 /* If NVMem devices are not yet added */
2040 if (!sw->nvm) {
2041 ret = -EAGAIN;
2042 goto exit_unlock;
2043 }
2044
2045 ret = kstrtoint(buf, 10, &val);
2046 if (ret)
2047 goto exit_unlock;
2048
2049 /* Always clear the authentication status */
2050 nvm_clear_auth_status(sw);
2051
2052 if (val > 0) {
2053 if (val == AUTHENTICATE_ONLY) {
2054 if (disconnect)
2055 ret = -EINVAL;
2056 else
2057 ret = nvm_authenticate(sw, true);
2058 } else {
2059 if (!sw->nvm->flushed) {
2060 if (!sw->nvm->buf) {
2061 ret = -EINVAL;
2062 goto exit_unlock;
2063 }
2064
2065 ret = nvm_validate_and_write(sw);
2066 if (ret || val == WRITE_ONLY)
2067 goto exit_unlock;
2068 }
2069 if (val == WRITE_AND_AUTHENTICATE) {
2070 if (disconnect)
2071 ret = tb_lc_force_power(sw);
2072 else
2073 ret = nvm_authenticate(sw, false);
2074 }
2075 }
2076 }
2077
2078exit_unlock:
2079 mutex_unlock(&sw->tb->lock);
2080exit_rpm:
2081 pm_runtime_mark_last_busy(&sw->dev);
2082 pm_runtime_put_autosuspend(&sw->dev);
2083
2084 return ret;
2085}
2086
2087static ssize_t nvm_authenticate_store(struct device *dev,
2088 struct device_attribute *attr, const char *buf, size_t count)
2089{
2090 int ret = nvm_authenticate_sysfs(dev, buf, false);
2091 if (ret)
2092 return ret;
2093 return count;
2094}
2095static DEVICE_ATTR_RW(nvm_authenticate);
2096
2097static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2098 struct device_attribute *attr, char *buf)
2099{
2100 return nvm_authenticate_show(dev, attr, buf);
2101}
2102
2103static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2104 struct device_attribute *attr, const char *buf, size_t count)
2105{
2106 int ret;
2107
2108 ret = nvm_authenticate_sysfs(dev, buf, true);
2109 return ret ? ret : count;
2110}
2111static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2112
2113static ssize_t nvm_version_show(struct device *dev,
2114 struct device_attribute *attr, char *buf)
2115{
2116 struct tb_switch *sw = tb_to_switch(dev);
2117 int ret;
2118
2119 if (!mutex_trylock(&sw->tb->lock))
2120 return restart_syscall();
2121
2122 if (sw->safe_mode)
2123 ret = -ENODATA;
2124 else if (!sw->nvm)
2125 ret = -EAGAIN;
2126 else
2127 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2128
2129 mutex_unlock(&sw->tb->lock);
2130
2131 return ret;
2132}
2133static DEVICE_ATTR_RO(nvm_version);
2134
2135static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2136 char *buf)
2137{
2138 struct tb_switch *sw = tb_to_switch(dev);
2139
2140 return sysfs_emit(buf, "%#x\n", sw->vendor);
2141}
2142static DEVICE_ATTR_RO(vendor);
2143
2144static ssize_t
2145vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2146{
2147 struct tb_switch *sw = tb_to_switch(dev);
2148
2149 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2150}
2151static DEVICE_ATTR_RO(vendor_name);
2152
2153static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2154 char *buf)
2155{
2156 struct tb_switch *sw = tb_to_switch(dev);
2157
2158 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2159}
2160static DEVICE_ATTR_RO(unique_id);
2161
2162static struct attribute *switch_attrs[] = {
2163 &dev_attr_authorized.attr,
2164 &dev_attr_boot.attr,
2165 &dev_attr_device.attr,
2166 &dev_attr_device_name.attr,
2167 &dev_attr_generation.attr,
2168 &dev_attr_key.attr,
2169 &dev_attr_nvm_authenticate.attr,
2170 &dev_attr_nvm_authenticate_on_disconnect.attr,
2171 &dev_attr_nvm_version.attr,
2172 &dev_attr_rx_speed.attr,
2173 &dev_attr_rx_lanes.attr,
2174 &dev_attr_tx_speed.attr,
2175 &dev_attr_tx_lanes.attr,
2176 &dev_attr_vendor.attr,
2177 &dev_attr_vendor_name.attr,
2178 &dev_attr_unique_id.attr,
2179 NULL,
2180};
2181
2182static umode_t switch_attr_is_visible(struct kobject *kobj,
2183 struct attribute *attr, int n)
2184{
2185 struct device *dev = kobj_to_dev(kobj);
2186 struct tb_switch *sw = tb_to_switch(dev);
2187
2188 if (attr == &dev_attr_authorized.attr) {
2189 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2190 sw->tb->security_level == TB_SECURITY_DPONLY)
2191 return 0;
2192 } else if (attr == &dev_attr_device.attr) {
2193 if (!sw->device)
2194 return 0;
2195 } else if (attr == &dev_attr_device_name.attr) {
2196 if (!sw->device_name)
2197 return 0;
2198 } else if (attr == &dev_attr_vendor.attr) {
2199 if (!sw->vendor)
2200 return 0;
2201 } else if (attr == &dev_attr_vendor_name.attr) {
2202 if (!sw->vendor_name)
2203 return 0;
2204 } else if (attr == &dev_attr_key.attr) {
2205 if (tb_route(sw) &&
2206 sw->tb->security_level == TB_SECURITY_SECURE &&
2207 sw->security_level == TB_SECURITY_SECURE)
2208 return attr->mode;
2209 return 0;
2210 } else if (attr == &dev_attr_rx_speed.attr ||
2211 attr == &dev_attr_rx_lanes.attr ||
2212 attr == &dev_attr_tx_speed.attr ||
2213 attr == &dev_attr_tx_lanes.attr) {
2214 if (tb_route(sw))
2215 return attr->mode;
2216 return 0;
2217 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2218 if (nvm_upgradeable(sw))
2219 return attr->mode;
2220 return 0;
2221 } else if (attr == &dev_attr_nvm_version.attr) {
2222 if (nvm_readable(sw))
2223 return attr->mode;
2224 return 0;
2225 } else if (attr == &dev_attr_boot.attr) {
2226 if (tb_route(sw))
2227 return attr->mode;
2228 return 0;
2229 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2230 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2231 return attr->mode;
2232 return 0;
2233 }
2234
2235 return sw->safe_mode ? 0 : attr->mode;
2236}
2237
2238static const struct attribute_group switch_group = {
2239 .is_visible = switch_attr_is_visible,
2240 .attrs = switch_attrs,
2241};
2242
2243static const struct attribute_group *switch_groups[] = {
2244 &switch_group,
2245 NULL,
2246};
2247
2248static void tb_switch_release(struct device *dev)
2249{
2250 struct tb_switch *sw = tb_to_switch(dev);
2251 struct tb_port *port;
2252
2253 dma_port_free(sw->dma_port);
2254
2255 tb_switch_for_each_port(sw, port) {
2256 ida_destroy(&port->in_hopids);
2257 ida_destroy(&port->out_hopids);
2258 }
2259
2260 kfree(sw->uuid);
2261 kfree(sw->device_name);
2262 kfree(sw->vendor_name);
2263 kfree(sw->ports);
2264 kfree(sw->drom);
2265 kfree(sw->key);
2266 kfree(sw);
2267}
2268
2269static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2270{
2271 const struct tb_switch *sw = tb_to_switch(dev);
2272 const char *type;
2273
2274 if (tb_switch_is_usb4(sw)) {
2275 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2276 usb4_switch_version(sw)))
2277 return -ENOMEM;
2278 }
2279
2280 if (!tb_route(sw)) {
2281 type = "host";
2282 } else {
2283 const struct tb_port *port;
2284 bool hub = false;
2285
2286 /* Device is hub if it has any downstream ports */
2287 tb_switch_for_each_port(sw, port) {
2288 if (!port->disabled && !tb_is_upstream_port(port) &&
2289 tb_port_is_null(port)) {
2290 hub = true;
2291 break;
2292 }
2293 }
2294
2295 type = hub ? "hub" : "device";
2296 }
2297
2298 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2299 return -ENOMEM;
2300 return 0;
2301}
2302
2303/*
2304 * Currently only need to provide the callbacks. Everything else is handled
2305 * in the connection manager.
2306 */
2307static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2308{
2309 struct tb_switch *sw = tb_to_switch(dev);
2310 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2311
2312 if (cm_ops->runtime_suspend_switch)
2313 return cm_ops->runtime_suspend_switch(sw);
2314
2315 return 0;
2316}
2317
2318static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2319{
2320 struct tb_switch *sw = tb_to_switch(dev);
2321 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2322
2323 if (cm_ops->runtime_resume_switch)
2324 return cm_ops->runtime_resume_switch(sw);
2325 return 0;
2326}
2327
2328static const struct dev_pm_ops tb_switch_pm_ops = {
2329 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2330 NULL)
2331};
2332
2333const struct device_type tb_switch_type = {
2334 .name = "thunderbolt_device",
2335 .release = tb_switch_release,
2336 .uevent = tb_switch_uevent,
2337 .pm = &tb_switch_pm_ops,
2338};
2339
2340static int tb_switch_get_generation(struct tb_switch *sw)
2341{
2342 if (tb_switch_is_usb4(sw))
2343 return 4;
2344
2345 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2346 switch (sw->config.device_id) {
2347 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2348 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2349 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2350 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2351 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2352 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2353 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2354 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2355 return 1;
2356
2357 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2358 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2359 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2360 return 2;
2361
2362 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2363 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2364 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2365 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2366 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2367 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2368 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2369 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2370 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2371 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2372 return 3;
2373 }
2374 }
2375
2376 /*
2377 * For unknown switches assume generation to be 1 to be on the
2378 * safe side.
2379 */
2380 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2381 sw->config.device_id);
2382 return 1;
2383}
2384
2385static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2386{
2387 int max_depth;
2388
2389 if (tb_switch_is_usb4(sw) ||
2390 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2391 max_depth = USB4_SWITCH_MAX_DEPTH;
2392 else
2393 max_depth = TB_SWITCH_MAX_DEPTH;
2394
2395 return depth > max_depth;
2396}
2397
2398/**
2399 * tb_switch_alloc() - allocate a switch
2400 * @tb: Pointer to the owning domain
2401 * @parent: Parent device for this switch
2402 * @route: Route string for this switch
2403 *
2404 * Allocates and initializes a switch. Will not upload configuration to
2405 * the switch. For that you need to call tb_switch_configure()
2406 * separately. The returned switch should be released by calling
2407 * tb_switch_put().
2408 *
2409 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2410 * failure.
2411 */
2412struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2413 u64 route)
2414{
2415 struct tb_switch *sw;
2416 int upstream_port;
2417 int i, ret, depth;
2418
2419 /* Unlock the downstream port so we can access the switch below */
2420 if (route) {
2421 struct tb_switch *parent_sw = tb_to_switch(parent);
2422 struct tb_port *down;
2423
2424 down = tb_port_at(route, parent_sw);
2425 tb_port_unlock(down);
2426 }
2427
2428 depth = tb_route_length(route);
2429
2430 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2431 if (upstream_port < 0)
2432 return ERR_PTR(upstream_port);
2433
2434 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2435 if (!sw)
2436 return ERR_PTR(-ENOMEM);
2437
2438 sw->tb = tb;
2439 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2440 if (ret)
2441 goto err_free_sw_ports;
2442
2443 sw->generation = tb_switch_get_generation(sw);
2444
2445 tb_dbg(tb, "current switch config:\n");
2446 tb_dump_switch(tb, sw);
2447
2448 /* configure switch */
2449 sw->config.upstream_port_number = upstream_port;
2450 sw->config.depth = depth;
2451 sw->config.route_hi = upper_32_bits(route);
2452 sw->config.route_lo = lower_32_bits(route);
2453 sw->config.enabled = 0;
2454
2455 /* Make sure we do not exceed maximum topology limit */
2456 if (tb_switch_exceeds_max_depth(sw, depth)) {
2457 ret = -EADDRNOTAVAIL;
2458 goto err_free_sw_ports;
2459 }
2460
2461 /* initialize ports */
2462 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2463 GFP_KERNEL);
2464 if (!sw->ports) {
2465 ret = -ENOMEM;
2466 goto err_free_sw_ports;
2467 }
2468
2469 for (i = 0; i <= sw->config.max_port_number; i++) {
2470 /* minimum setup for tb_find_cap and tb_drom_read to work */
2471 sw->ports[i].sw = sw;
2472 sw->ports[i].port = i;
2473
2474 /* Control port does not need HopID allocation */
2475 if (i) {
2476 ida_init(&sw->ports[i].in_hopids);
2477 ida_init(&sw->ports[i].out_hopids);
2478 }
2479 }
2480
2481 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2482 if (ret > 0)
2483 sw->cap_plug_events = ret;
2484
2485 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2486 if (ret > 0)
2487 sw->cap_vsec_tmu = ret;
2488
2489 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2490 if (ret > 0)
2491 sw->cap_lc = ret;
2492
2493 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2494 if (ret > 0)
2495 sw->cap_lp = ret;
2496
2497 /* Root switch is always authorized */
2498 if (!route)
2499 sw->authorized = true;
2500
2501 device_initialize(&sw->dev);
2502 sw->dev.parent = parent;
2503 sw->dev.bus = &tb_bus_type;
2504 sw->dev.type = &tb_switch_type;
2505 sw->dev.groups = switch_groups;
2506 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2507
2508 return sw;
2509
2510err_free_sw_ports:
2511 kfree(sw->ports);
2512 kfree(sw);
2513
2514 return ERR_PTR(ret);
2515}
2516
2517/**
2518 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519 * @tb: Pointer to the owning domain
2520 * @parent: Parent device for this switch
2521 * @route: Route string for this switch
2522 *
2523 * This creates a switch in safe mode. This means the switch pretty much
2524 * lacks all capabilities except DMA configuration port before it is
2525 * flashed with a valid NVM firmware.
2526 *
2527 * The returned switch must be released by calling tb_switch_put().
2528 *
2529 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2530 */
2531struct tb_switch *
2532tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2533{
2534 struct tb_switch *sw;
2535
2536 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2537 if (!sw)
2538 return ERR_PTR(-ENOMEM);
2539
2540 sw->tb = tb;
2541 sw->config.depth = tb_route_length(route);
2542 sw->config.route_hi = upper_32_bits(route);
2543 sw->config.route_lo = lower_32_bits(route);
2544 sw->safe_mode = true;
2545
2546 device_initialize(&sw->dev);
2547 sw->dev.parent = parent;
2548 sw->dev.bus = &tb_bus_type;
2549 sw->dev.type = &tb_switch_type;
2550 sw->dev.groups = switch_groups;
2551 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2552
2553 return sw;
2554}
2555
2556/**
2557 * tb_switch_configure() - Uploads configuration to the switch
2558 * @sw: Switch to configure
2559 *
2560 * Call this function before the switch is added to the system. It will
2561 * upload configuration to the switch and makes it available for the
2562 * connection manager to use. Can be called to the switch again after
2563 * resume from low power states to re-initialize it.
2564 *
2565 * Return: %0 in case of success and negative errno in case of failure
2566 */
2567int tb_switch_configure(struct tb_switch *sw)
2568{
2569 struct tb *tb = sw->tb;
2570 u64 route;
2571 int ret;
2572
2573 route = tb_route(sw);
2574
2575 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576 sw->config.enabled ? "restoring" : "initializing", route,
2577 tb_route_length(route), sw->config.upstream_port_number);
2578
2579 sw->config.enabled = 1;
2580
2581 if (tb_switch_is_usb4(sw)) {
2582 /*
2583 * For USB4 devices, we need to program the CM version
2584 * accordingly so that it knows to expose all the
2585 * additional capabilities. Program it according to USB4
2586 * version to avoid changing existing (v1) routers behaviour.
2587 */
2588 if (usb4_switch_version(sw) < 2)
2589 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2590 else
2591 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2592 sw->config.plug_events_delay = 0xa;
2593
2594 /* Enumerate the switch */
2595 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2596 ROUTER_CS_1, 4);
2597 if (ret)
2598 return ret;
2599
2600 ret = usb4_switch_setup(sw);
2601 } else {
2602 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2603 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2604 sw->config.vendor_id);
2605
2606 if (!sw->cap_plug_events) {
2607 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2608 return -ENODEV;
2609 }
2610
2611 /* Enumerate the switch */
2612 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2613 ROUTER_CS_1, 3);
2614 }
2615 if (ret)
2616 return ret;
2617
2618 return tb_plug_events_active(sw, true);
2619}
2620
2621/**
2622 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623 * @sw: Router to configure
2624 *
2625 * Needs to be called before any tunnels can be setup through the
2626 * router. Can be called to any router.
2627 *
2628 * Returns %0 in success and negative errno otherwise.
2629 */
2630int tb_switch_configuration_valid(struct tb_switch *sw)
2631{
2632 if (tb_switch_is_usb4(sw))
2633 return usb4_switch_configuration_valid(sw);
2634 return 0;
2635}
2636
2637static int tb_switch_set_uuid(struct tb_switch *sw)
2638{
2639 bool uid = false;
2640 u32 uuid[4];
2641 int ret;
2642
2643 if (sw->uuid)
2644 return 0;
2645
2646 if (tb_switch_is_usb4(sw)) {
2647 ret = usb4_switch_read_uid(sw, &sw->uid);
2648 if (ret)
2649 return ret;
2650 uid = true;
2651 } else {
2652 /*
2653 * The newer controllers include fused UUID as part of
2654 * link controller specific registers
2655 */
2656 ret = tb_lc_read_uuid(sw, uuid);
2657 if (ret) {
2658 if (ret != -EINVAL)
2659 return ret;
2660 uid = true;
2661 }
2662 }
2663
2664 if (uid) {
2665 /*
2666 * ICM generates UUID based on UID and fills the upper
2667 * two words with ones. This is not strictly following
2668 * UUID format but we want to be compatible with it so
2669 * we do the same here.
2670 */
2671 uuid[0] = sw->uid & 0xffffffff;
2672 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2673 uuid[2] = 0xffffffff;
2674 uuid[3] = 0xffffffff;
2675 }
2676
2677 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2678 if (!sw->uuid)
2679 return -ENOMEM;
2680 return 0;
2681}
2682
2683static int tb_switch_add_dma_port(struct tb_switch *sw)
2684{
2685 u32 status;
2686 int ret;
2687
2688 switch (sw->generation) {
2689 case 2:
2690 /* Only root switch can be upgraded */
2691 if (tb_route(sw))
2692 return 0;
2693
2694 fallthrough;
2695 case 3:
2696 case 4:
2697 ret = tb_switch_set_uuid(sw);
2698 if (ret)
2699 return ret;
2700 break;
2701
2702 default:
2703 /*
2704 * DMA port is the only thing available when the switch
2705 * is in safe mode.
2706 */
2707 if (!sw->safe_mode)
2708 return 0;
2709 break;
2710 }
2711
2712 if (sw->no_nvm_upgrade)
2713 return 0;
2714
2715 if (tb_switch_is_usb4(sw)) {
2716 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2717 if (ret)
2718 return ret;
2719
2720 if (status) {
2721 tb_sw_info(sw, "switch flash authentication failed\n");
2722 nvm_set_auth_status(sw, status);
2723 }
2724
2725 return 0;
2726 }
2727
2728 /* Root switch DMA port requires running firmware */
2729 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2730 return 0;
2731
2732 sw->dma_port = dma_port_alloc(sw);
2733 if (!sw->dma_port)
2734 return 0;
2735
2736 /*
2737 * If there is status already set then authentication failed
2738 * when the dma_port_flash_update_auth() returned. Power cycling
2739 * is not needed (it was done already) so only thing we do here
2740 * is to unblock runtime PM of the root port.
2741 */
2742 nvm_get_auth_status(sw, &status);
2743 if (status) {
2744 if (!tb_route(sw))
2745 nvm_authenticate_complete_dma_port(sw);
2746 return 0;
2747 }
2748
2749 /*
2750 * Check status of the previous flash authentication. If there
2751 * is one we need to power cycle the switch in any case to make
2752 * it functional again.
2753 */
2754 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2755 if (ret <= 0)
2756 return ret;
2757
2758 /* Now we can allow root port to suspend again */
2759 if (!tb_route(sw))
2760 nvm_authenticate_complete_dma_port(sw);
2761
2762 if (status) {
2763 tb_sw_info(sw, "switch flash authentication failed\n");
2764 nvm_set_auth_status(sw, status);
2765 }
2766
2767 tb_sw_info(sw, "power cycling the switch now\n");
2768 dma_port_power_cycle(sw->dma_port);
2769
2770 /*
2771 * We return error here which causes the switch adding failure.
2772 * It should appear back after power cycle is complete.
2773 */
2774 return -ESHUTDOWN;
2775}
2776
2777static void tb_switch_default_link_ports(struct tb_switch *sw)
2778{
2779 int i;
2780
2781 for (i = 1; i <= sw->config.max_port_number; i++) {
2782 struct tb_port *port = &sw->ports[i];
2783 struct tb_port *subordinate;
2784
2785 if (!tb_port_is_null(port))
2786 continue;
2787
2788 /* Check for the subordinate port */
2789 if (i == sw->config.max_port_number ||
2790 !tb_port_is_null(&sw->ports[i + 1]))
2791 continue;
2792
2793 /* Link them if not already done so (by DROM) */
2794 subordinate = &sw->ports[i + 1];
2795 if (!port->dual_link_port && !subordinate->dual_link_port) {
2796 port->link_nr = 0;
2797 port->dual_link_port = subordinate;
2798 subordinate->link_nr = 1;
2799 subordinate->dual_link_port = port;
2800
2801 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2802 port->port, subordinate->port);
2803 }
2804 }
2805}
2806
2807static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2808{
2809 const struct tb_port *up = tb_upstream_port(sw);
2810
2811 if (!up->dual_link_port || !up->dual_link_port->remote)
2812 return false;
2813
2814 if (tb_switch_is_usb4(sw))
2815 return usb4_switch_lane_bonding_possible(sw);
2816 return tb_lc_lane_bonding_possible(sw);
2817}
2818
2819static int tb_switch_update_link_attributes(struct tb_switch *sw)
2820{
2821 struct tb_port *up;
2822 bool change = false;
2823 int ret;
2824
2825 if (!tb_route(sw) || tb_switch_is_icm(sw))
2826 return 0;
2827
2828 up = tb_upstream_port(sw);
2829
2830 ret = tb_port_get_link_speed(up);
2831 if (ret < 0)
2832 return ret;
2833 if (sw->link_speed != ret)
2834 change = true;
2835 sw->link_speed = ret;
2836
2837 ret = tb_port_get_link_width(up);
2838 if (ret < 0)
2839 return ret;
2840 if (sw->link_width != ret)
2841 change = true;
2842 sw->link_width = ret;
2843
2844 /* Notify userspace that there is possible link attribute change */
2845 if (device_is_registered(&sw->dev) && change)
2846 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2847
2848 return 0;
2849}
2850
2851/* Must be called after tb_switch_update_link_attributes() */
2852static void tb_switch_link_init(struct tb_switch *sw)
2853{
2854 struct tb_port *up, *down;
2855 bool bonded;
2856
2857 if (!tb_route(sw) || tb_switch_is_icm(sw))
2858 return;
2859
2860 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2861 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2862
2863 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2864
2865 /*
2866 * Gen 4 links come up as bonded so update the port structures
2867 * accordingly.
2868 */
2869 up = tb_upstream_port(sw);
2870 down = tb_switch_downstream_port(sw);
2871
2872 up->bonded = bonded;
2873 if (up->dual_link_port)
2874 up->dual_link_port->bonded = bonded;
2875 tb_port_update_credits(up);
2876
2877 down->bonded = bonded;
2878 if (down->dual_link_port)
2879 down->dual_link_port->bonded = bonded;
2880 tb_port_update_credits(down);
2881
2882 if (tb_port_get_link_generation(up) < 4)
2883 return;
2884
2885 /*
2886 * Set the Gen 4 preferred link width. This is what the router
2887 * prefers when the link is brought up. If the router does not
2888 * support asymmetric link configuration, this also will be set
2889 * to TB_LINK_WIDTH_DUAL.
2890 */
2891 sw->preferred_link_width = sw->link_width;
2892 tb_sw_dbg(sw, "preferred link width %s\n",
2893 tb_width_name(sw->preferred_link_width));
2894}
2895
2896/**
2897 * tb_switch_lane_bonding_enable() - Enable lane bonding
2898 * @sw: Switch to enable lane bonding
2899 *
2900 * Connection manager can call this function to enable lane bonding of a
2901 * switch. If conditions are correct and both switches support the feature,
2902 * lanes are bonded. It is safe to call this to any switch.
2903 */
2904static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2905{
2906 struct tb_port *up, *down;
2907 unsigned int width;
2908 int ret;
2909
2910 if (!tb_switch_lane_bonding_possible(sw))
2911 return 0;
2912
2913 up = tb_upstream_port(sw);
2914 down = tb_switch_downstream_port(sw);
2915
2916 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2917 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2918 return 0;
2919
2920 /*
2921 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922 * CL0 and check just for lane 1.
2923 */
2924 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2925 return -ENOTCONN;
2926
2927 ret = tb_port_lane_bonding_enable(up);
2928 if (ret) {
2929 tb_port_warn(up, "failed to enable lane bonding\n");
2930 return ret;
2931 }
2932
2933 ret = tb_port_lane_bonding_enable(down);
2934 if (ret) {
2935 tb_port_warn(down, "failed to enable lane bonding\n");
2936 tb_port_lane_bonding_disable(up);
2937 return ret;
2938 }
2939
2940 /* Any of the widths are all bonded */
2941 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2942 TB_LINK_WIDTH_ASYM_RX;
2943
2944 return tb_port_wait_for_link_width(down, width, 100);
2945}
2946
2947/**
2948 * tb_switch_lane_bonding_disable() - Disable lane bonding
2949 * @sw: Switch whose lane bonding to disable
2950 *
2951 * Disables lane bonding between @sw and parent. This can be called even
2952 * if lanes were not bonded originally.
2953 */
2954static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2955{
2956 struct tb_port *up, *down;
2957 int ret;
2958
2959 up = tb_upstream_port(sw);
2960 if (!up->bonded)
2961 return 0;
2962
2963 /*
2964 * If the link is Gen 4 there is no way to switch the link to
2965 * two single lane links so avoid that here. Also don't bother
2966 * if the link is not up anymore (sw is unplugged).
2967 */
2968 ret = tb_port_get_link_generation(up);
2969 if (ret < 0)
2970 return ret;
2971 if (ret >= 4)
2972 return -EOPNOTSUPP;
2973
2974 down = tb_switch_downstream_port(sw);
2975 tb_port_lane_bonding_disable(up);
2976 tb_port_lane_bonding_disable(down);
2977
2978 /*
2979 * It is fine if we get other errors as the router might have
2980 * been unplugged.
2981 */
2982 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2983}
2984
2985/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2987{
2988 struct tb_port *up, *down, *port;
2989 enum tb_link_width down_width;
2990 int ret;
2991
2992 up = tb_upstream_port(sw);
2993 down = tb_switch_downstream_port(sw);
2994
2995 if (width == TB_LINK_WIDTH_ASYM_TX) {
2996 down_width = TB_LINK_WIDTH_ASYM_RX;
2997 port = down;
2998 } else {
2999 down_width = TB_LINK_WIDTH_ASYM_TX;
3000 port = up;
3001 }
3002
3003 ret = tb_port_set_link_width(up, width);
3004 if (ret)
3005 return ret;
3006
3007 ret = tb_port_set_link_width(down, down_width);
3008 if (ret)
3009 return ret;
3010
3011 /*
3012 * Initiate the change in the router that one of its TX lanes is
3013 * changing to RX but do so only if there is an actual change.
3014 */
3015 if (sw->link_width != width) {
3016 ret = usb4_port_asym_start(port);
3017 if (ret)
3018 return ret;
3019
3020 ret = tb_port_wait_for_link_width(up, width, 100);
3021 if (ret)
3022 return ret;
3023 }
3024
3025 return 0;
3026}
3027
3028/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029static int tb_switch_asym_disable(struct tb_switch *sw)
3030{
3031 struct tb_port *up, *down;
3032 int ret;
3033
3034 up = tb_upstream_port(sw);
3035 down = tb_switch_downstream_port(sw);
3036
3037 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3038 if (ret)
3039 return ret;
3040
3041 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3042 if (ret)
3043 return ret;
3044
3045 /*
3046 * Initiate the change in the router that has three TX lanes and
3047 * is changing one of its TX lanes to RX but only if there is a
3048 * change in the link width.
3049 */
3050 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3051 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3052 ret = usb4_port_asym_start(up);
3053 else
3054 ret = usb4_port_asym_start(down);
3055 if (ret)
3056 return ret;
3057
3058 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3059 if (ret)
3060 return ret;
3061 }
3062
3063 return 0;
3064}
3065
3066/**
3067 * tb_switch_set_link_width() - Configure router link width
3068 * @sw: Router to configure
3069 * @width: The new link width
3070 *
3071 * Set device router link width to @width from router upstream port
3072 * perspective. Supports also asymmetric links if the routers boths side
3073 * of the link supports it.
3074 *
3075 * Does nothing for host router.
3076 *
3077 * Returns %0 in case of success, negative errno otherwise.
3078 */
3079int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3080{
3081 struct tb_port *up, *down;
3082 int ret = 0;
3083
3084 if (!tb_route(sw))
3085 return 0;
3086
3087 up = tb_upstream_port(sw);
3088 down = tb_switch_downstream_port(sw);
3089
3090 switch (width) {
3091 case TB_LINK_WIDTH_SINGLE:
3092 ret = tb_switch_lane_bonding_disable(sw);
3093 break;
3094
3095 case TB_LINK_WIDTH_DUAL:
3096 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3097 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3098 ret = tb_switch_asym_disable(sw);
3099 if (ret)
3100 break;
3101 }
3102 ret = tb_switch_lane_bonding_enable(sw);
3103 break;
3104
3105 case TB_LINK_WIDTH_ASYM_TX:
3106 case TB_LINK_WIDTH_ASYM_RX:
3107 ret = tb_switch_asym_enable(sw, width);
3108 break;
3109 }
3110
3111 switch (ret) {
3112 case 0:
3113 break;
3114
3115 case -ETIMEDOUT:
3116 tb_sw_warn(sw, "timeout changing link width\n");
3117 return ret;
3118
3119 case -ENOTCONN:
3120 case -EOPNOTSUPP:
3121 case -ENODEV:
3122 return ret;
3123
3124 default:
3125 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3126 return ret;
3127 }
3128
3129 tb_port_update_credits(down);
3130 tb_port_update_credits(up);
3131
3132 tb_switch_update_link_attributes(sw);
3133
3134 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3135 return ret;
3136}
3137
3138/**
3139 * tb_switch_configure_link() - Set link configured
3140 * @sw: Switch whose link is configured
3141 *
3142 * Sets the link upstream from @sw configured (from both ends) so that
3143 * it will not be disconnected when the domain exits sleep. Can be
3144 * called for any switch.
3145 *
3146 * It is recommended that this is called after lane bonding is enabled.
3147 *
3148 * Returns %0 on success and negative errno in case of error.
3149 */
3150int tb_switch_configure_link(struct tb_switch *sw)
3151{
3152 struct tb_port *up, *down;
3153 int ret;
3154
3155 if (!tb_route(sw) || tb_switch_is_icm(sw))
3156 return 0;
3157
3158 up = tb_upstream_port(sw);
3159 if (tb_switch_is_usb4(up->sw))
3160 ret = usb4_port_configure(up);
3161 else
3162 ret = tb_lc_configure_port(up);
3163 if (ret)
3164 return ret;
3165
3166 down = up->remote;
3167 if (tb_switch_is_usb4(down->sw))
3168 return usb4_port_configure(down);
3169 return tb_lc_configure_port(down);
3170}
3171
3172/**
3173 * tb_switch_unconfigure_link() - Unconfigure link
3174 * @sw: Switch whose link is unconfigured
3175 *
3176 * Sets the link unconfigured so the @sw will be disconnected if the
3177 * domain exists sleep.
3178 */
3179void tb_switch_unconfigure_link(struct tb_switch *sw)
3180{
3181 struct tb_port *up, *down;
3182
3183 if (!tb_route(sw) || tb_switch_is_icm(sw))
3184 return;
3185
3186 /*
3187 * Unconfigure downstream port so that wake-on-connect can be
3188 * configured after router unplug. No need to unconfigure upstream port
3189 * since its router is unplugged.
3190 */
3191 up = tb_upstream_port(sw);
3192 down = up->remote;
3193 if (tb_switch_is_usb4(down->sw))
3194 usb4_port_unconfigure(down);
3195 else
3196 tb_lc_unconfigure_port(down);
3197
3198 if (sw->is_unplugged)
3199 return;
3200
3201 up = tb_upstream_port(sw);
3202 if (tb_switch_is_usb4(up->sw))
3203 usb4_port_unconfigure(up);
3204 else
3205 tb_lc_unconfigure_port(up);
3206}
3207
3208static void tb_switch_credits_init(struct tb_switch *sw)
3209{
3210 if (tb_switch_is_icm(sw))
3211 return;
3212 if (!tb_switch_is_usb4(sw))
3213 return;
3214 if (usb4_switch_credits_init(sw))
3215 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3216}
3217
3218static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3219{
3220 struct tb_port *port;
3221
3222 if (tb_switch_is_icm(sw))
3223 return 0;
3224
3225 tb_switch_for_each_port(sw, port) {
3226 int res;
3227
3228 if (!port->cap_usb4)
3229 continue;
3230
3231 res = usb4_port_hotplug_enable(port);
3232 if (res)
3233 return res;
3234 }
3235 return 0;
3236}
3237
3238/**
3239 * tb_switch_add() - Add a switch to the domain
3240 * @sw: Switch to add
3241 *
3242 * This is the last step in adding switch to the domain. It will read
3243 * identification information from DROM and initializes ports so that
3244 * they can be used to connect other switches. The switch will be
3245 * exposed to the userspace when this function successfully returns. To
3246 * remove and release the switch, call tb_switch_remove().
3247 *
3248 * Return: %0 in case of success and negative errno in case of failure
3249 */
3250int tb_switch_add(struct tb_switch *sw)
3251{
3252 int i, ret;
3253
3254 /*
3255 * Initialize DMA control port now before we read DROM. Recent
3256 * host controllers have more complete DROM on NVM that includes
3257 * vendor and model identification strings which we then expose
3258 * to the userspace. NVM can be accessed through DMA
3259 * configuration based mailbox.
3260 */
3261 ret = tb_switch_add_dma_port(sw);
3262 if (ret) {
3263 dev_err(&sw->dev, "failed to add DMA port\n");
3264 return ret;
3265 }
3266
3267 if (!sw->safe_mode) {
3268 tb_switch_credits_init(sw);
3269
3270 /* read drom */
3271 ret = tb_drom_read(sw);
3272 if (ret)
3273 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3274 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3275
3276 ret = tb_switch_set_uuid(sw);
3277 if (ret) {
3278 dev_err(&sw->dev, "failed to set UUID\n");
3279 return ret;
3280 }
3281
3282 for (i = 0; i <= sw->config.max_port_number; i++) {
3283 if (sw->ports[i].disabled) {
3284 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3285 continue;
3286 }
3287 ret = tb_init_port(&sw->ports[i]);
3288 if (ret) {
3289 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3290 return ret;
3291 }
3292 }
3293
3294 tb_check_quirks(sw);
3295
3296 tb_switch_default_link_ports(sw);
3297
3298 ret = tb_switch_update_link_attributes(sw);
3299 if (ret)
3300 return ret;
3301
3302 tb_switch_link_init(sw);
3303
3304 ret = tb_switch_clx_init(sw);
3305 if (ret)
3306 return ret;
3307
3308 ret = tb_switch_tmu_init(sw);
3309 if (ret)
3310 return ret;
3311 }
3312
3313 ret = tb_switch_port_hotplug_enable(sw);
3314 if (ret)
3315 return ret;
3316
3317 ret = device_add(&sw->dev);
3318 if (ret) {
3319 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3320 return ret;
3321 }
3322
3323 if (tb_route(sw)) {
3324 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3325 sw->vendor, sw->device);
3326 if (sw->vendor_name && sw->device_name)
3327 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3328 sw->device_name);
3329 }
3330
3331 ret = usb4_switch_add_ports(sw);
3332 if (ret) {
3333 dev_err(&sw->dev, "failed to add USB4 ports\n");
3334 goto err_del;
3335 }
3336
3337 ret = tb_switch_nvm_add(sw);
3338 if (ret) {
3339 dev_err(&sw->dev, "failed to add NVM devices\n");
3340 goto err_ports;
3341 }
3342
3343 /*
3344 * Thunderbolt routers do not generate wakeups themselves but
3345 * they forward wakeups from tunneled protocols, so enable it
3346 * here.
3347 */
3348 device_init_wakeup(&sw->dev, true);
3349
3350 pm_runtime_set_active(&sw->dev);
3351 if (sw->rpm) {
3352 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3353 pm_runtime_use_autosuspend(&sw->dev);
3354 pm_runtime_mark_last_busy(&sw->dev);
3355 pm_runtime_enable(&sw->dev);
3356 pm_request_autosuspend(&sw->dev);
3357 }
3358
3359 tb_switch_debugfs_init(sw);
3360 return 0;
3361
3362err_ports:
3363 usb4_switch_remove_ports(sw);
3364err_del:
3365 device_del(&sw->dev);
3366
3367 return ret;
3368}
3369
3370/**
3371 * tb_switch_remove() - Remove and release a switch
3372 * @sw: Switch to remove
3373 *
3374 * This will remove the switch from the domain and release it after last
3375 * reference count drops to zero. If there are switches connected below
3376 * this switch, they will be removed as well.
3377 */
3378void tb_switch_remove(struct tb_switch *sw)
3379{
3380 struct tb_port *port;
3381
3382 tb_switch_debugfs_remove(sw);
3383
3384 if (sw->rpm) {
3385 pm_runtime_get_sync(&sw->dev);
3386 pm_runtime_disable(&sw->dev);
3387 }
3388
3389 /* port 0 is the switch itself and never has a remote */
3390 tb_switch_for_each_port(sw, port) {
3391 if (tb_port_has_remote(port)) {
3392 tb_switch_remove(port->remote->sw);
3393 port->remote = NULL;
3394 } else if (port->xdomain) {
3395 port->xdomain->is_unplugged = true;
3396 tb_xdomain_remove(port->xdomain);
3397 port->xdomain = NULL;
3398 }
3399
3400 /* Remove any downstream retimers */
3401 tb_retimer_remove_all(port);
3402 }
3403
3404 if (!sw->is_unplugged)
3405 tb_plug_events_active(sw, false);
3406
3407 tb_switch_nvm_remove(sw);
3408 usb4_switch_remove_ports(sw);
3409
3410 if (tb_route(sw))
3411 dev_info(&sw->dev, "device disconnected\n");
3412 device_unregister(&sw->dev);
3413}
3414
3415/**
3416 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3417 * @sw: Router to mark unplugged
3418 */
3419void tb_sw_set_unplugged(struct tb_switch *sw)
3420{
3421 struct tb_port *port;
3422
3423 if (sw == sw->tb->root_switch) {
3424 tb_sw_WARN(sw, "cannot unplug root switch\n");
3425 return;
3426 }
3427 if (sw->is_unplugged) {
3428 tb_sw_WARN(sw, "is_unplugged already set\n");
3429 return;
3430 }
3431 sw->is_unplugged = true;
3432 tb_switch_for_each_port(sw, port) {
3433 if (tb_port_has_remote(port))
3434 tb_sw_set_unplugged(port->remote->sw);
3435 else if (port->xdomain)
3436 port->xdomain->is_unplugged = true;
3437 }
3438}
3439
3440static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3441{
3442 if (flags)
3443 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3444 else
3445 tb_sw_dbg(sw, "disabling wakeup\n");
3446
3447 if (tb_switch_is_usb4(sw))
3448 return usb4_switch_set_wake(sw, flags);
3449 return tb_lc_set_wake(sw, flags);
3450}
3451
3452static void tb_switch_check_wakes(struct tb_switch *sw)
3453{
3454 if (device_may_wakeup(&sw->dev)) {
3455 if (tb_switch_is_usb4(sw))
3456 usb4_switch_check_wakes(sw);
3457 }
3458}
3459
3460/**
3461 * tb_switch_resume() - Resume a switch after sleep
3462 * @sw: Switch to resume
3463 * @runtime: Is this resume from runtime suspend or system sleep
3464 *
3465 * Resumes and re-enumerates router (and all its children), if still plugged
3466 * after suspend. Don't enumerate device router whose UID was changed during
3467 * suspend. If this is resume from system sleep, notifies PM core about the
3468 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3469 * upstream port for USB4 routers that shall be always enabled.
3470 */
3471int tb_switch_resume(struct tb_switch *sw, bool runtime)
3472{
3473 struct tb_port *port;
3474 int err;
3475
3476 tb_sw_dbg(sw, "resuming switch\n");
3477
3478 /*
3479 * Check for UID of the connected switches except for root
3480 * switch which we assume cannot be removed.
3481 */
3482 if (tb_route(sw)) {
3483 u64 uid;
3484
3485 /*
3486 * Check first that we can still read the switch config
3487 * space. It may be that there is now another domain
3488 * connected.
3489 */
3490 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3491 if (err < 0) {
3492 tb_sw_info(sw, "switch not present anymore\n");
3493 return err;
3494 }
3495
3496 /* We don't have any way to confirm this was the same device */
3497 if (!sw->uid)
3498 return -ENODEV;
3499
3500 if (tb_switch_is_usb4(sw))
3501 err = usb4_switch_read_uid(sw, &uid);
3502 else
3503 err = tb_drom_read_uid_only(sw, &uid);
3504 if (err) {
3505 tb_sw_warn(sw, "uid read failed\n");
3506 return err;
3507 }
3508 if (sw->uid != uid) {
3509 tb_sw_info(sw,
3510 "changed while suspended (uid %#llx -> %#llx)\n",
3511 sw->uid, uid);
3512 return -ENODEV;
3513 }
3514 }
3515
3516 err = tb_switch_configure(sw);
3517 if (err)
3518 return err;
3519
3520 if (!runtime)
3521 tb_switch_check_wakes(sw);
3522
3523 /* Disable wakes */
3524 tb_switch_set_wake(sw, 0);
3525
3526 err = tb_switch_tmu_init(sw);
3527 if (err)
3528 return err;
3529
3530 /* check for surviving downstream switches */
3531 tb_switch_for_each_port(sw, port) {
3532 if (!tb_port_is_null(port))
3533 continue;
3534
3535 if (!tb_port_resume(port))
3536 continue;
3537
3538 if (tb_wait_for_port(port, true) <= 0) {
3539 tb_port_warn(port,
3540 "lost during suspend, disconnecting\n");
3541 if (tb_port_has_remote(port))
3542 tb_sw_set_unplugged(port->remote->sw);
3543 else if (port->xdomain)
3544 port->xdomain->is_unplugged = true;
3545 } else {
3546 /*
3547 * Always unlock the port so the downstream
3548 * switch/domain is accessible.
3549 */
3550 if (tb_port_unlock(port))
3551 tb_port_warn(port, "failed to unlock port\n");
3552 if (port->remote &&
3553 tb_switch_resume(port->remote->sw, runtime)) {
3554 tb_port_warn(port,
3555 "lost during suspend, disconnecting\n");
3556 tb_sw_set_unplugged(port->remote->sw);
3557 }
3558 }
3559 }
3560 return 0;
3561}
3562
3563/**
3564 * tb_switch_suspend() - Put a switch to sleep
3565 * @sw: Switch to suspend
3566 * @runtime: Is this runtime suspend or system sleep
3567 *
3568 * Suspends router and all its children. Enables wakes according to
3569 * value of @runtime and then sets sleep bit for the router. If @sw is
3570 * host router the domain is ready to go to sleep once this function
3571 * returns.
3572 */
3573void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3574{
3575 unsigned int flags = 0;
3576 struct tb_port *port;
3577 int err;
3578
3579 tb_sw_dbg(sw, "suspending switch\n");
3580
3581 /*
3582 * Actually only needed for Titan Ridge but for simplicity can be
3583 * done for USB4 device too as CLx is re-enabled at resume.
3584 */
3585 tb_switch_clx_disable(sw);
3586
3587 err = tb_plug_events_active(sw, false);
3588 if (err)
3589 return;
3590
3591 tb_switch_for_each_port(sw, port) {
3592 if (tb_port_has_remote(port))
3593 tb_switch_suspend(port->remote->sw, runtime);
3594 }
3595
3596 if (runtime) {
3597 /* Trigger wake when something is plugged in/out */
3598 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3599 flags |= TB_WAKE_ON_USB4;
3600 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3601 } else if (device_may_wakeup(&sw->dev)) {
3602 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3603 }
3604
3605 tb_switch_set_wake(sw, flags);
3606
3607 if (tb_switch_is_usb4(sw))
3608 usb4_switch_set_sleep(sw);
3609 else
3610 tb_lc_set_sleep(sw);
3611}
3612
3613/**
3614 * tb_switch_query_dp_resource() - Query availability of DP resource
3615 * @sw: Switch whose DP resource is queried
3616 * @in: DP IN port
3617 *
3618 * Queries availability of DP resource for DP tunneling using switch
3619 * specific means. Returns %true if resource is available.
3620 */
3621bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3622{
3623 if (tb_switch_is_usb4(sw))
3624 return usb4_switch_query_dp_resource(sw, in);
3625 return tb_lc_dp_sink_query(sw, in);
3626}
3627
3628/**
3629 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3630 * @sw: Switch whose DP resource is allocated
3631 * @in: DP IN port
3632 *
3633 * Allocates DP resource for DP tunneling. The resource must be
3634 * available for this to succeed (see tb_switch_query_dp_resource()).
3635 * Returns %0 in success and negative errno otherwise.
3636 */
3637int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3638{
3639 int ret;
3640
3641 if (tb_switch_is_usb4(sw))
3642 ret = usb4_switch_alloc_dp_resource(sw, in);
3643 else
3644 ret = tb_lc_dp_sink_alloc(sw, in);
3645
3646 if (ret)
3647 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3648 in->port);
3649 else
3650 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3651
3652 return ret;
3653}
3654
3655/**
3656 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3657 * @sw: Switch whose DP resource is de-allocated
3658 * @in: DP IN port
3659 *
3660 * De-allocates DP resource that was previously allocated for DP
3661 * tunneling.
3662 */
3663void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3664{
3665 int ret;
3666
3667 if (tb_switch_is_usb4(sw))
3668 ret = usb4_switch_dealloc_dp_resource(sw, in);
3669 else
3670 ret = tb_lc_dp_sink_dealloc(sw, in);
3671
3672 if (ret)
3673 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3674 in->port);
3675 else
3676 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3677}
3678
3679struct tb_sw_lookup {
3680 struct tb *tb;
3681 u8 link;
3682 u8 depth;
3683 const uuid_t *uuid;
3684 u64 route;
3685};
3686
3687static int tb_switch_match(struct device *dev, const void *data)
3688{
3689 struct tb_switch *sw = tb_to_switch(dev);
3690 const struct tb_sw_lookup *lookup = data;
3691
3692 if (!sw)
3693 return 0;
3694 if (sw->tb != lookup->tb)
3695 return 0;
3696
3697 if (lookup->uuid)
3698 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3699
3700 if (lookup->route) {
3701 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3702 sw->config.route_hi == upper_32_bits(lookup->route);
3703 }
3704
3705 /* Root switch is matched only by depth */
3706 if (!lookup->depth)
3707 return !sw->depth;
3708
3709 return sw->link == lookup->link && sw->depth == lookup->depth;
3710}
3711
3712/**
3713 * tb_switch_find_by_link_depth() - Find switch by link and depth
3714 * @tb: Domain the switch belongs
3715 * @link: Link number the switch is connected
3716 * @depth: Depth of the switch in link
3717 *
3718 * Returned switch has reference count increased so the caller needs to
3719 * call tb_switch_put() when done with the switch.
3720 */
3721struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3722{
3723 struct tb_sw_lookup lookup;
3724 struct device *dev;
3725
3726 memset(&lookup, 0, sizeof(lookup));
3727 lookup.tb = tb;
3728 lookup.link = link;
3729 lookup.depth = depth;
3730
3731 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3732 if (dev)
3733 return tb_to_switch(dev);
3734
3735 return NULL;
3736}
3737
3738/**
3739 * tb_switch_find_by_uuid() - Find switch by UUID
3740 * @tb: Domain the switch belongs
3741 * @uuid: UUID to look for
3742 *
3743 * Returned switch has reference count increased so the caller needs to
3744 * call tb_switch_put() when done with the switch.
3745 */
3746struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3747{
3748 struct tb_sw_lookup lookup;
3749 struct device *dev;
3750
3751 memset(&lookup, 0, sizeof(lookup));
3752 lookup.tb = tb;
3753 lookup.uuid = uuid;
3754
3755 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3756 if (dev)
3757 return tb_to_switch(dev);
3758
3759 return NULL;
3760}
3761
3762/**
3763 * tb_switch_find_by_route() - Find switch by route string
3764 * @tb: Domain the switch belongs
3765 * @route: Route string to look for
3766 *
3767 * Returned switch has reference count increased so the caller needs to
3768 * call tb_switch_put() when done with the switch.
3769 */
3770struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3771{
3772 struct tb_sw_lookup lookup;
3773 struct device *dev;
3774
3775 if (!route)
3776 return tb_switch_get(tb->root_switch);
3777
3778 memset(&lookup, 0, sizeof(lookup));
3779 lookup.tb = tb;
3780 lookup.route = route;
3781
3782 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3783 if (dev)
3784 return tb_to_switch(dev);
3785
3786 return NULL;
3787}
3788
3789/**
3790 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3791 * @sw: Switch to find the port from
3792 * @type: Port type to look for
3793 */
3794struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3795 enum tb_port_type type)
3796{
3797 struct tb_port *port;
3798
3799 tb_switch_for_each_port(sw, port) {
3800 if (port->config.type == type)
3801 return port;
3802 }
3803
3804 return NULL;
3805}
3806
3807/*
3808 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3809 * device. For now used only for Titan Ridge.
3810 */
3811static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3812 unsigned int pcie_offset, u32 value)
3813{
3814 u32 offset, command, val;
3815 int ret;
3816
3817 if (sw->generation != 3)
3818 return -EOPNOTSUPP;
3819
3820 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3821 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3822 if (ret)
3823 return ret;
3824
3825 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3826 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3827 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3828 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3829 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3830 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3831
3832 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3833
3834 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3835 if (ret)
3836 return ret;
3837
3838 ret = tb_switch_wait_for_bit(sw, offset,
3839 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3840 if (ret)
3841 return ret;
3842
3843 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3844 if (ret)
3845 return ret;
3846
3847 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3848 return -ETIMEDOUT;
3849
3850 return 0;
3851}
3852
3853/**
3854 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3855 * @sw: Router to enable PCIe L1
3856 *
3857 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3858 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3859 * was configured. Due to Intel platforms limitation, shall be called only
3860 * for first hop switch.
3861 */
3862int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3863{
3864 struct tb_switch *parent = tb_switch_parent(sw);
3865 int ret;
3866
3867 if (!tb_route(sw))
3868 return 0;
3869
3870 if (!tb_switch_is_titan_ridge(sw))
3871 return 0;
3872
3873 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3874 if (tb_route(parent))
3875 return 0;
3876
3877 /* Write to downstream PCIe bridge #5 aka Dn4 */
3878 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3879 if (ret)
3880 return ret;
3881
3882 /* Write to Upstream PCIe bridge #0 aka Up0 */
3883 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3884}
3885
3886/**
3887 * tb_switch_xhci_connect() - Connect internal xHCI
3888 * @sw: Router whose xHCI to connect
3889 *
3890 * Can be called to any router. For Alpine Ridge and Titan Ridge
3891 * performs special flows that bring the xHCI functional for any device
3892 * connected to the type-C port. Call only after PCIe tunnel has been
3893 * established. The function only does the connect if not done already
3894 * so can be called several times for the same router.
3895 */
3896int tb_switch_xhci_connect(struct tb_switch *sw)
3897{
3898 struct tb_port *port1, *port3;
3899 int ret;
3900
3901 if (sw->generation != 3)
3902 return 0;
3903
3904 port1 = &sw->ports[1];
3905 port3 = &sw->ports[3];
3906
3907 if (tb_switch_is_alpine_ridge(sw)) {
3908 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3909
3910 usb_port1 = tb_lc_is_usb_plugged(port1);
3911 usb_port3 = tb_lc_is_usb_plugged(port3);
3912 xhci_port1 = tb_lc_is_xhci_connected(port1);
3913 xhci_port3 = tb_lc_is_xhci_connected(port3);
3914
3915 /* Figure out correct USB port to connect */
3916 if (usb_port1 && !xhci_port1) {
3917 ret = tb_lc_xhci_connect(port1);
3918 if (ret)
3919 return ret;
3920 }
3921 if (usb_port3 && !xhci_port3)
3922 return tb_lc_xhci_connect(port3);
3923 } else if (tb_switch_is_titan_ridge(sw)) {
3924 ret = tb_lc_xhci_connect(port1);
3925 if (ret)
3926 return ret;
3927 return tb_lc_xhci_connect(port3);
3928 }
3929
3930 return 0;
3931}
3932
3933/**
3934 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3935 * @sw: Router whose xHCI to disconnect
3936 *
3937 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3938 * ports.
3939 */
3940void tb_switch_xhci_disconnect(struct tb_switch *sw)
3941{
3942 if (sw->generation == 3) {
3943 struct tb_port *port1 = &sw->ports[1];
3944 struct tb_port *port3 = &sw->ports[3];
3945
3946 tb_lc_xhci_disconnect(port1);
3947 tb_port_dbg(port1, "disconnected xHCI\n");
3948 tb_lc_xhci_disconnect(port3);
3949 tb_port_dbg(port3, "disconnected xHCI\n");
3950 }
3951}