Linux Audio

Check our new training course

Loading...
v5.9
 
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
 
 
 
  21
  22#define DM_MSG_PREFIX "bufio"
  23
  24/*
  25 * Memory management policy:
  26 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  27 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  28 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  29 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  30 *	dirty buffers.
  31 */
  32#define DM_BUFIO_MIN_BUFFERS		8
  33
  34#define DM_BUFIO_MEMORY_PERCENT		2
  35#define DM_BUFIO_VMALLOC_PERCENT	25
  36#define DM_BUFIO_WRITEBACK_RATIO	3
  37#define DM_BUFIO_LOW_WATERMARK_RATIO	16
  38
  39/*
  40 * Check buffer ages in this interval (seconds)
  41 */
  42#define DM_BUFIO_WORK_TIMER_SECS	30
  43
  44/*
  45 * Free buffers when they are older than this (seconds)
  46 */
  47#define DM_BUFIO_DEFAULT_AGE_SECS	300
  48
  49/*
  50 * The nr of bytes of cached data to keep around.
  51 */
  52#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  53
  54/*
  55 * Align buffer writes to this boundary.
  56 * Tests show that SSDs have the highest IOPS when using 4k writes.
  57 */
  58#define DM_BUFIO_WRITE_ALIGN		4096
  59
  60/*
  61 * dm_buffer->list_mode
  62 */
  63#define LIST_CLEAN	0
  64#define LIST_DIRTY	1
  65#define LIST_SIZE	2
  66
 
 
  67/*
  68 * Linking of buffers:
  69 *	All buffers are linked to buffer_tree with their node field.
  70 *
  71 *	Clean buffers that are not being written (B_WRITING not set)
  72 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  73 *
  74 *	Dirty and clean buffers that are being written are linked to
  75 *	lru[LIST_DIRTY] with their lru_list field. When the write
  76 *	finishes, the buffer cannot be relinked immediately (because we
  77 *	are in an interrupt context and relinking requires process
  78 *	context), so some clean-not-writing buffers can be held on
  79 *	dirty_lru too.  They are later added to lru in the process
  80 *	context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81 */
  82struct dm_bufio_client {
  83	struct mutex lock;
 
 
 
 
 
  84
  85	struct list_head lru[LIST_SIZE];
  86	unsigned long n_buffers[LIST_SIZE];
 
 
 
 
 
 
  87
  88	struct block_device *bdev;
  89	unsigned block_size;
  90	s8 sectors_per_block_bits;
  91	void (*alloc_callback)(struct dm_buffer *);
  92	void (*write_callback)(struct dm_buffer *);
  93
  94	struct kmem_cache *slab_buffer;
  95	struct kmem_cache *slab_cache;
  96	struct dm_io_client *dm_io;
 
 
 
 
  97
  98	struct list_head reserved_buffers;
  99	unsigned need_reserved_buffers;
 
 
 
 
 
 
 
 
 100
 101	unsigned minimum_buffers;
 
 
 
 
 
 
 102
 103	struct rb_root buffer_tree;
 104	wait_queue_head_t free_buffer_wait;
 105
 106	sector_t start;
 
 
 
 
 
 
 
 
 107
 108	int async_write_error;
 
 109
 110	struct list_head client_list;
 
 
 
 
 111
 112	struct shrinker shrinker;
 113	struct work_struct shrink_work;
 114	atomic_long_t need_shrink;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115};
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117/*
 118 * Buffer state bits.
 119 */
 120#define B_READING	0
 121#define B_WRITING	1
 122#define B_DIRTY		2
 123
 124/*
 125 * Describes how the block was allocated:
 126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 127 * See the comment at alloc_buffer_data.
 128 */
 129enum data_mode {
 130	DATA_MODE_SLAB = 0,
 131	DATA_MODE_GET_FREE_PAGES = 1,
 132	DATA_MODE_VMALLOC = 2,
 133	DATA_MODE_LIMIT = 3
 
 134};
 135
 136struct dm_buffer {
 
 137	struct rb_node node;
 138	struct list_head lru_list;
 139	struct list_head global_list;
 140	sector_t block;
 141	void *data;
 142	unsigned char data_mode;		/* DATA_MODE_* */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143	unsigned char list_mode;		/* LIST_* */
 144	blk_status_t read_error;
 145	blk_status_t write_error;
 146	unsigned accessed;
 147	unsigned hold_count;
 148	unsigned long state;
 149	unsigned long last_accessed;
 150	unsigned dirty_start;
 151	unsigned dirty_end;
 152	unsigned write_start;
 153	unsigned write_end;
 154	struct dm_bufio_client *c;
 155	struct list_head write_list;
 156	void (*end_io)(struct dm_buffer *, blk_status_t);
 
 157#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 158#define MAX_STACK 10
 159	unsigned int stack_len;
 160	unsigned long stack_entries[MAX_STACK];
 161#endif
 162};
 163
 164/*----------------------------------------------------------------*/
 165
 166#define dm_bufio_in_request()	(!!current->bio_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167
 168static void dm_bufio_lock(struct dm_bufio_client *c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 169{
 170	mutex_lock_nested(&c->lock, dm_bufio_in_request());
 171}
 172
 173static int dm_bufio_trylock(struct dm_bufio_client *c)
 174{
 175	return mutex_trylock(&c->lock);
 
 
 
 176}
 177
 178static void dm_bufio_unlock(struct dm_bufio_client *c)
 179{
 180	mutex_unlock(&c->lock);
 
 
 
 181}
 182
 183/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184
 185/*
 186 * Default cache size: available memory divided by the ratio.
 
 187 */
 188static unsigned long dm_bufio_default_cache_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189
 190/*
 191 * Total cache size set by the user.
 192 */
 193static unsigned long dm_bufio_cache_size;
 
 
 
 
 
 
 194
 195/*
 196 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 197 * at any time.  If it disagrees, the user has changed cache size.
 198 */
 199static unsigned long dm_bufio_cache_size_latch;
 
 
 200
 201static DEFINE_SPINLOCK(global_spinlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202
 203static LIST_HEAD(global_queue);
 
 
 
 
 
 
 
 
 
 204
 205static unsigned long global_num = 0;
 206
 207/*
 208 * Buffers are freed after this timeout
 209 */
 210static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 211static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 
 
 212
 213static unsigned long dm_bufio_peak_allocated;
 214static unsigned long dm_bufio_allocated_kmem_cache;
 215static unsigned long dm_bufio_allocated_get_free_pages;
 216static unsigned long dm_bufio_allocated_vmalloc;
 217static unsigned long dm_bufio_current_allocated;
 218
 219/*----------------------------------------------------------------*/
 220
 221/*
 222 * The current number of clients.
 
 
 
 
 223 */
 224static int dm_bufio_client_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 226/*
 227 * The list of all clients.
 
 228 */
 229static LIST_HEAD(dm_bufio_all_clients);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231/*
 232 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
 
 
 233 */
 234static DEFINE_MUTEX(dm_bufio_clients_lock);
 
 
 
 
 235
 236static struct workqueue_struct *dm_bufio_wq;
 237static struct delayed_work dm_bufio_cleanup_old_work;
 238static struct work_struct dm_bufio_replacement_work;
 
 
 
 
 
 239
 
 240
 241#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 242static void buffer_record_stack(struct dm_buffer *b)
 
 
 
 
 
 
 
 243{
 244	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
 
 
 
 
 
 
 
 
 
 
 
 
 245}
 246#endif
 247
 248/*----------------------------------------------------------------
 249 * A red/black tree acts as an index for all the buffers.
 250 *--------------------------------------------------------------*/
 251static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 252{
 253	struct rb_node *n = c->buffer_tree.rb_node;
 254	struct dm_buffer *b;
 
 255
 256	while (n) {
 257		b = container_of(n, struct dm_buffer, node);
 
 258
 259		if (b->block == block)
 260			return b;
 261
 262		n = block < b->block ? n->rb_left : n->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 263	}
 
 
 264
 265	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
 
 
 
 
 269{
 270	struct rb_node *n = c->buffer_tree.rb_node;
 271	struct dm_buffer *b;
 272	struct dm_buffer *best = NULL;
 273
 274	while (n) {
 275		b = container_of(n, struct dm_buffer, node);
 276
 277		if (b->block == block)
 278			return b;
 279
 280		if (block <= b->block) {
 281			n = n->rb_left;
 282			best = b;
 283		} else {
 284			n = n->rb_right;
 285		}
 286	}
 287
 288	return best;
 289}
 290
 291static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 
 
 
 292{
 293	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 294	struct dm_buffer *found;
 295
 296	while (*new) {
 297		found = container_of(*new, struct dm_buffer, node);
 298
 299		if (found->block == b->block) {
 300			BUG_ON(found != b);
 301			return;
 
 
 
 
 
 
 
 
 
 
 302		}
 
 
 303
 304		parent = *new;
 305		new = b->block < found->block ?
 306			&found->node.rb_left : &found->node.rb_right;
 
 
 
 
 
 
 
 
 307	}
 
 308
 309	rb_link_node(&b->node, parent, new);
 310	rb_insert_color(&b->node, &c->buffer_tree);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311}
 312
 313static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314{
 315	rb_erase(&b->node, &c->buffer_tree);
 316}
 
 317
 318/*----------------------------------------------------------------*/
 319
 320static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
 321{
 322	unsigned char data_mode;
 323	long diff;
 324
 325	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 326		&dm_bufio_allocated_kmem_cache,
 
 327		&dm_bufio_allocated_get_free_pages,
 328		&dm_bufio_allocated_vmalloc,
 329	};
 330
 331	data_mode = b->data_mode;
 332	diff = (long)b->c->block_size;
 333	if (unlink)
 334		diff = -diff;
 335
 336	spin_lock(&global_spinlock);
 337
 338	*class_ptr[data_mode] += diff;
 339
 340	dm_bufio_current_allocated += diff;
 341
 342	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 343		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 344
 345	b->accessed = 1;
 346
 347	if (!unlink) {
 348		list_add(&b->global_list, &global_queue);
 349		global_num++;
 350		if (dm_bufio_current_allocated > dm_bufio_cache_size)
 351			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
 352	} else {
 353		list_del(&b->global_list);
 354		global_num--;
 355	}
 356
 357	spin_unlock(&global_spinlock);
 358}
 359
 360/*
 361 * Change the number of clients and recalculate per-client limit.
 362 */
 363static void __cache_size_refresh(void)
 364{
 365	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 366	BUG_ON(dm_bufio_client_count < 0);
 
 
 367
 368	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 369
 370	/*
 371	 * Use default if set to 0 and report the actual cache size used.
 372	 */
 373	if (!dm_bufio_cache_size_latch) {
 374		(void)cmpxchg(&dm_bufio_cache_size, 0,
 375			      dm_bufio_default_cache_size);
 376		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 377	}
 378}
 379
 380/*
 381 * Allocating buffer data.
 382 *
 383 * Small buffers are allocated with kmem_cache, to use space optimally.
 384 *
 385 * For large buffers, we choose between get_free_pages and vmalloc.
 386 * Each has advantages and disadvantages.
 387 *
 388 * __get_free_pages can randomly fail if the memory is fragmented.
 389 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 390 * as low as 128M) so using it for caching is not appropriate.
 391 *
 392 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 393 * won't have a fatal effect here, but it just causes flushes of some other
 394 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 395 * always fails (i.e. order >= MAX_ORDER).
 396 *
 397 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 398 * initial reserve allocation, so there's no risk of wasting all vmalloc
 399 * space.
 400 */
 401static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 402			       unsigned char *data_mode)
 403{
 404	if (unlikely(c->slab_cache != NULL)) {
 405		*data_mode = DATA_MODE_SLAB;
 406		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 407	}
 408
 
 
 
 
 
 409	if (c->block_size <= KMALLOC_MAX_SIZE &&
 410	    gfp_mask & __GFP_NORETRY) {
 411		*data_mode = DATA_MODE_GET_FREE_PAGES;
 412		return (void *)__get_free_pages(gfp_mask,
 413						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 414	}
 415
 416	*data_mode = DATA_MODE_VMALLOC;
 417
 418	/*
 419	 * __vmalloc allocates the data pages and auxiliary structures with
 420	 * gfp_flags that were specified, but pagetables are always allocated
 421	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 422	 *
 423	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 424	 * all allocations done by this process (including pagetables) are done
 425	 * as if GFP_NOIO was specified.
 426	 */
 427	if (gfp_mask & __GFP_NORETRY) {
 428		unsigned noio_flag = memalloc_noio_save();
 429		void *ptr = __vmalloc(c->block_size, gfp_mask);
 430
 431		memalloc_noio_restore(noio_flag);
 432		return ptr;
 433	}
 434
 435	return __vmalloc(c->block_size, gfp_mask);
 436}
 437
 438/*
 439 * Free buffer's data.
 440 */
 441static void free_buffer_data(struct dm_bufio_client *c,
 442			     void *data, unsigned char data_mode)
 443{
 444	switch (data_mode) {
 445	case DATA_MODE_SLAB:
 446		kmem_cache_free(c->slab_cache, data);
 447		break;
 448
 
 
 
 
 449	case DATA_MODE_GET_FREE_PAGES:
 450		free_pages((unsigned long)data,
 451			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 452		break;
 453
 454	case DATA_MODE_VMALLOC:
 455		vfree(data);
 456		break;
 457
 458	default:
 459		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 460		       data_mode);
 461		BUG();
 462	}
 463}
 464
 465/*
 466 * Allocate buffer and its data.
 467 */
 468static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 469{
 470	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 471
 472	if (!b)
 473		return NULL;
 474
 475	b->c = c;
 476
 477	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 478	if (!b->data) {
 479		kmem_cache_free(c->slab_buffer, b);
 480		return NULL;
 481	}
 
 482
 483#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 484	b->stack_len = 0;
 485#endif
 486	return b;
 487}
 488
 489/*
 490 * Free buffer and its data.
 491 */
 492static void free_buffer(struct dm_buffer *b)
 493{
 494	struct dm_bufio_client *c = b->c;
 495
 
 496	free_buffer_data(c, b->data, b->data_mode);
 497	kmem_cache_free(c->slab_buffer, b);
 498}
 499
 500/*
 501 * Link buffer to the buffer tree and clean or dirty queue.
 502 */
 503static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 504{
 505	struct dm_bufio_client *c = b->c;
 506
 507	c->n_buffers[dirty]++;
 508	b->block = block;
 509	b->list_mode = dirty;
 510	list_add(&b->lru_list, &c->lru[dirty]);
 511	__insert(b->c, b);
 512	b->last_accessed = jiffies;
 513
 514	adjust_total_allocated(b, false);
 515}
 516
 517/*
 518 * Unlink buffer from the buffer tree and dirty or clean queue.
 519 */
 520static void __unlink_buffer(struct dm_buffer *b)
 521{
 522	struct dm_bufio_client *c = b->c;
 523
 524	BUG_ON(!c->n_buffers[b->list_mode]);
 525
 526	c->n_buffers[b->list_mode]--;
 527	__remove(b->c, b);
 528	list_del(&b->lru_list);
 529
 530	adjust_total_allocated(b, true);
 531}
 532
 533/*
 534 * Place the buffer to the head of dirty or clean LRU queue.
 535 */
 536static void __relink_lru(struct dm_buffer *b, int dirty)
 537{
 538	struct dm_bufio_client *c = b->c;
 539
 540	b->accessed = 1;
 541
 542	BUG_ON(!c->n_buffers[b->list_mode]);
 543
 544	c->n_buffers[b->list_mode]--;
 545	c->n_buffers[dirty]++;
 546	b->list_mode = dirty;
 547	list_move(&b->lru_list, &c->lru[dirty]);
 548	b->last_accessed = jiffies;
 549}
 550
 551/*----------------------------------------------------------------
 552 * Submit I/O on the buffer.
 553 *
 554 * Bio interface is faster but it has some problems:
 555 *	the vector list is limited (increasing this limit increases
 556 *	memory-consumption per buffer, so it is not viable);
 557 *
 558 *	the memory must be direct-mapped, not vmalloced;
 559 *
 560 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 561 * it is not vmalloced, try using the bio interface.
 562 *
 563 * If the buffer is big, if it is vmalloced or if the underlying device
 564 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 565 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 566 * shortcomings.
 567 *--------------------------------------------------------------*/
 
 568
 569/*
 570 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 571 * that the request was handled directly with bio interface.
 572 */
 573static void dmio_complete(unsigned long error, void *context)
 574{
 575	struct dm_buffer *b = context;
 576
 577	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 578}
 579
 580static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
 581		     unsigned n_sectors, unsigned offset)
 
 582{
 583	int r;
 584	struct dm_io_request io_req = {
 585		.bi_op = rw,
 586		.bi_op_flags = 0,
 587		.notify.fn = dmio_complete,
 588		.notify.context = b,
 589		.client = b->c->dm_io,
 590	};
 591	struct dm_io_region region = {
 592		.bdev = b->c->bdev,
 593		.sector = sector,
 594		.count = n_sectors,
 595	};
 596
 597	if (b->data_mode != DATA_MODE_VMALLOC) {
 598		io_req.mem.type = DM_IO_KMEM;
 599		io_req.mem.ptr.addr = (char *)b->data + offset;
 600	} else {
 601		io_req.mem.type = DM_IO_VMA;
 602		io_req.mem.ptr.vma = (char *)b->data + offset;
 603	}
 604
 605	r = dm_io(&io_req, 1, &region, NULL);
 606	if (unlikely(r))
 607		b->end_io(b, errno_to_blk_status(r));
 608}
 609
 610static void bio_complete(struct bio *bio)
 611{
 612	struct dm_buffer *b = bio->bi_private;
 613	blk_status_t status = bio->bi_status;
 614	bio_put(bio);
 
 
 615	b->end_io(b, status);
 616}
 617
 618static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
 619		    unsigned n_sectors, unsigned offset)
 
 620{
 621	struct bio *bio;
 622	char *ptr;
 623	unsigned vec_size, len;
 624
 625	vec_size = b->c->block_size >> PAGE_SHIFT;
 626	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 627		vec_size += 2;
 628
 629	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
 630	if (!bio) {
 631dmio:
 632		use_dmio(b, rw, sector, n_sectors, offset);
 633		return;
 634	}
 635
 636	bio->bi_iter.bi_sector = sector;
 637	bio_set_dev(bio, b->c->bdev);
 638	bio_set_op_attrs(bio, rw, 0);
 639	bio->bi_end_io = bio_complete;
 640	bio->bi_private = b;
 
 641
 642	ptr = (char *)b->data + offset;
 643	len = n_sectors << SECTOR_SHIFT;
 644
 645	do {
 646		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 647		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 648				  offset_in_page(ptr))) {
 649			bio_put(bio);
 650			goto dmio;
 651		}
 652
 653		len -= this_step;
 654		ptr += this_step;
 655	} while (len > 0);
 656
 657	submit_bio(bio);
 658}
 659
 660static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
 661{
 662	sector_t sector;
 663
 664	if (likely(c->sectors_per_block_bits >= 0))
 665		sector = block << c->sectors_per_block_bits;
 666	else
 667		sector = block * (c->block_size >> SECTOR_SHIFT);
 668	sector += c->start;
 669
 670	return sector;
 671}
 672
 673static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
 
 674{
 675	unsigned n_sectors;
 676	sector_t sector;
 677	unsigned offset, end;
 678
 679	b->end_io = end_io;
 680
 681	sector = block_to_sector(b->c, b->block);
 682
 683	if (rw != REQ_OP_WRITE) {
 684		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 685		offset = 0;
 686	} else {
 687		if (b->c->write_callback)
 688			b->c->write_callback(b);
 689		offset = b->write_start;
 690		end = b->write_end;
 691		offset &= -DM_BUFIO_WRITE_ALIGN;
 692		end += DM_BUFIO_WRITE_ALIGN - 1;
 693		end &= -DM_BUFIO_WRITE_ALIGN;
 694		if (unlikely(end > b->c->block_size))
 695			end = b->c->block_size;
 696
 697		sector += offset >> SECTOR_SHIFT;
 698		n_sectors = (end - offset) >> SECTOR_SHIFT;
 699	}
 700
 701	if (b->data_mode != DATA_MODE_VMALLOC)
 702		use_bio(b, rw, sector, n_sectors, offset);
 703	else
 704		use_dmio(b, rw, sector, n_sectors, offset);
 705}
 706
 707/*----------------------------------------------------------------
 
 708 * Writing dirty buffers
 709 *--------------------------------------------------------------*/
 
 710
 711/*
 712 * The endio routine for write.
 713 *
 714 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 715 * it.
 716 */
 717static void write_endio(struct dm_buffer *b, blk_status_t status)
 718{
 719	b->write_error = status;
 720	if (unlikely(status)) {
 721		struct dm_bufio_client *c = b->c;
 722
 723		(void)cmpxchg(&c->async_write_error, 0,
 724				blk_status_to_errno(status));
 725	}
 726
 727	BUG_ON(!test_bit(B_WRITING, &b->state));
 728
 729	smp_mb__before_atomic();
 730	clear_bit(B_WRITING, &b->state);
 731	smp_mb__after_atomic();
 732
 733	wake_up_bit(&b->state, B_WRITING);
 734}
 735
 736/*
 737 * Initiate a write on a dirty buffer, but don't wait for it.
 738 *
 739 * - If the buffer is not dirty, exit.
 740 * - If there some previous write going on, wait for it to finish (we can't
 741 *   have two writes on the same buffer simultaneously).
 742 * - Submit our write and don't wait on it. We set B_WRITING indicating
 743 *   that there is a write in progress.
 744 */
 745static void __write_dirty_buffer(struct dm_buffer *b,
 746				 struct list_head *write_list)
 747{
 748	if (!test_bit(B_DIRTY, &b->state))
 749		return;
 750
 751	clear_bit(B_DIRTY, &b->state);
 752	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 753
 754	b->write_start = b->dirty_start;
 755	b->write_end = b->dirty_end;
 756
 757	if (!write_list)
 758		submit_io(b, REQ_OP_WRITE, write_endio);
 759	else
 760		list_add_tail(&b->write_list, write_list);
 761}
 762
 763static void __flush_write_list(struct list_head *write_list)
 764{
 765	struct blk_plug plug;
 
 766	blk_start_plug(&plug);
 767	while (!list_empty(write_list)) {
 768		struct dm_buffer *b =
 769			list_entry(write_list->next, struct dm_buffer, write_list);
 770		list_del(&b->write_list);
 771		submit_io(b, REQ_OP_WRITE, write_endio);
 772		cond_resched();
 773	}
 774	blk_finish_plug(&plug);
 775}
 776
 777/*
 778 * Wait until any activity on the buffer finishes.  Possibly write the
 779 * buffer if it is dirty.  When this function finishes, there is no I/O
 780 * running on the buffer and the buffer is not dirty.
 781 */
 782static void __make_buffer_clean(struct dm_buffer *b)
 783{
 784	BUG_ON(b->hold_count);
 785
 786	if (!b->state)	/* fast case */
 
 787		return;
 788
 789	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 790	__write_dirty_buffer(b, NULL);
 791	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 792}
 793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794/*
 795 * Find some buffer that is not held by anybody, clean it, unlink it and
 796 * return it.
 797 */
 798static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 799{
 800	struct dm_buffer *b;
 801
 802	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 803		BUG_ON(test_bit(B_WRITING, &b->state));
 804		BUG_ON(test_bit(B_DIRTY, &b->state));
 805
 806		if (!b->hold_count) {
 807			__make_buffer_clean(b);
 808			__unlink_buffer(b);
 809			return b;
 810		}
 811		cond_resched();
 812	}
 813
 814	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 815		BUG_ON(test_bit(B_READING, &b->state));
 816
 817		if (!b->hold_count) {
 818			__make_buffer_clean(b);
 819			__unlink_buffer(b);
 820			return b;
 821		}
 822		cond_resched();
 823	}
 824
 825	return NULL;
 826}
 827
 828/*
 829 * Wait until some other threads free some buffer or release hold count on
 830 * some buffer.
 831 *
 832 * This function is entered with c->lock held, drops it and regains it
 833 * before exiting.
 834 */
 835static void __wait_for_free_buffer(struct dm_bufio_client *c)
 836{
 837	DECLARE_WAITQUEUE(wait, current);
 838
 839	add_wait_queue(&c->free_buffer_wait, &wait);
 840	set_current_state(TASK_UNINTERRUPTIBLE);
 841	dm_bufio_unlock(c);
 842
 843	io_schedule();
 
 
 
 
 
 844
 845	remove_wait_queue(&c->free_buffer_wait, &wait);
 846
 847	dm_bufio_lock(c);
 848}
 849
 850enum new_flag {
 851	NF_FRESH = 0,
 852	NF_READ = 1,
 853	NF_GET = 2,
 854	NF_PREFETCH = 3
 855};
 856
 857/*
 858 * Allocate a new buffer. If the allocation is not possible, wait until
 859 * some other thread frees a buffer.
 860 *
 861 * May drop the lock and regain it.
 862 */
 863static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 864{
 865	struct dm_buffer *b;
 866	bool tried_noio_alloc = false;
 867
 868	/*
 869	 * dm-bufio is resistant to allocation failures (it just keeps
 870	 * one buffer reserved in cases all the allocations fail).
 871	 * So set flags to not try too hard:
 872	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 873	 *		    mutex and wait ourselves.
 874	 *	__GFP_NORETRY: don't retry and rather return failure
 875	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 876	 *	__GFP_NOWARN: don't print a warning in case of failure
 877	 *
 878	 * For debugging, if we set the cache size to 1, no new buffers will
 879	 * be allocated.
 880	 */
 881	while (1) {
 882		if (dm_bufio_cache_size_latch != 1) {
 883			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 884			if (b)
 885				return b;
 886		}
 887
 888		if (nf == NF_PREFETCH)
 889			return NULL;
 890
 891		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 892			dm_bufio_unlock(c);
 893			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 894			dm_bufio_lock(c);
 895			if (b)
 896				return b;
 897			tried_noio_alloc = true;
 898		}
 899
 900		if (!list_empty(&c->reserved_buffers)) {
 901			b = list_entry(c->reserved_buffers.next,
 902				       struct dm_buffer, lru_list);
 903			list_del(&b->lru_list);
 904			c->need_reserved_buffers++;
 905
 906			return b;
 907		}
 908
 909		b = __get_unclaimed_buffer(c);
 910		if (b)
 911			return b;
 912
 913		__wait_for_free_buffer(c);
 914	}
 915}
 916
 917static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 918{
 919	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 920
 921	if (!b)
 922		return NULL;
 923
 924	if (c->alloc_callback)
 925		c->alloc_callback(b);
 926
 927	return b;
 928}
 929
 930/*
 931 * Free a buffer and wake other threads waiting for free buffers.
 932 */
 933static void __free_buffer_wake(struct dm_buffer *b)
 934{
 935	struct dm_bufio_client *c = b->c;
 936
 
 937	if (!c->need_reserved_buffers)
 938		free_buffer(b);
 939	else {
 940		list_add(&b->lru_list, &c->reserved_buffers);
 941		c->need_reserved_buffers--;
 942	}
 943
 944	wake_up(&c->free_buffer_wait);
 
 
 
 
 
 945}
 946
 947static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 948					struct list_head *write_list)
 949{
 950	struct dm_buffer *b, *tmp;
 
 951
 952	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 953		BUG_ON(test_bit(B_READING, &b->state));
 
 
 
 954
 955		if (!test_bit(B_DIRTY, &b->state) &&
 956		    !test_bit(B_WRITING, &b->state)) {
 957			__relink_lru(b, LIST_CLEAN);
 958			continue;
 959		}
 960
 961		if (no_wait && test_bit(B_WRITING, &b->state))
 962			return;
 
 
 963
 964		__write_dirty_buffer(b, write_list);
 965		cond_resched();
 966	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968
 969/*
 970 * Check if we're over watermark.
 971 * If we are over threshold_buffers, start freeing buffers.
 972 * If we're over "limit_buffers", block until we get under the limit.
 973 */
 974static void __check_watermark(struct dm_bufio_client *c,
 975			      struct list_head *write_list)
 976{
 977	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
 
 978		__write_dirty_buffers_async(c, 1, write_list);
 979}
 980
 981/*----------------------------------------------------------------
 
 982 * Getting a buffer
 983 *--------------------------------------------------------------*/
 
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 986				     enum new_flag nf, int *need_submit,
 987				     struct list_head *write_list)
 988{
 989	struct dm_buffer *b, *new_b = NULL;
 990
 991	*need_submit = 0;
 992
 993	b = __find(c, block);
 994	if (b)
 995		goto found_buffer;
 996
 997	if (nf == NF_GET)
 998		return NULL;
 999
1000	new_b = __alloc_buffer_wait(c, nf);
1001	if (!new_b)
1002		return NULL;
1003
1004	/*
1005	 * We've had a period where the mutex was unlocked, so need to
1006	 * recheck the buffer tree.
1007	 */
1008	b = __find(c, block);
1009	if (b) {
1010		__free_buffer_wake(new_b);
1011		goto found_buffer;
1012	}
1013
1014	__check_watermark(c, write_list);
1015
1016	b = new_b;
1017	b->hold_count = 1;
 
 
1018	b->read_error = 0;
1019	b->write_error = 0;
1020	__link_buffer(b, block, LIST_CLEAN);
1021
1022	if (nf == NF_FRESH) {
1023		b->state = 0;
1024		return b;
 
 
1025	}
1026
1027	b->state = 1 << B_READING;
1028	*need_submit = 1;
 
 
 
 
1029
1030	return b;
1031
1032found_buffer:
1033	if (nf == NF_PREFETCH)
 
1034		return NULL;
 
 
1035	/*
1036	 * Note: it is essential that we don't wait for the buffer to be
1037	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038	 * dm_bufio_prefetch can be used in the driver request routine.
1039	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040	 * the same buffer, it would deadlock if we waited.
1041	 */
1042	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
 
1043		return NULL;
 
1044
1045	b->hold_count++;
1046	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047		     test_bit(B_WRITING, &b->state));
1048	return b;
1049}
1050
1051/*
1052 * The endio routine for reading: set the error, clear the bit and wake up
1053 * anyone waiting on the buffer.
1054 */
1055static void read_endio(struct dm_buffer *b, blk_status_t status)
1056{
1057	b->read_error = status;
1058
1059	BUG_ON(!test_bit(B_READING, &b->state));
1060
1061	smp_mb__before_atomic();
1062	clear_bit(B_READING, &b->state);
1063	smp_mb__after_atomic();
1064
1065	wake_up_bit(&b->state, B_READING);
1066}
1067
1068/*
1069 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070 * functions is similar except that dm_bufio_new doesn't read the
1071 * buffer from the disk (assuming that the caller overwrites all the data
1072 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073 */
1074static void *new_read(struct dm_bufio_client *c, sector_t block,
1075		      enum new_flag nf, struct dm_buffer **bp)
 
1076{
1077	int need_submit;
1078	struct dm_buffer *b;
1079
1080	LIST_HEAD(write_list);
1081
1082	dm_bufio_lock(c);
1083	b = __bufio_new(c, block, nf, &need_submit, &write_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085	if (b && b->hold_count == 1)
1086		buffer_record_stack(b);
1087#endif
1088	dm_bufio_unlock(c);
1089
1090	__flush_write_list(&write_list);
1091
1092	if (!b)
1093		return NULL;
1094
1095	if (need_submit)
1096		submit_io(b, REQ_OP_READ, read_endio);
1097
1098	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 
1099
1100	if (b->read_error) {
1101		int error = blk_status_to_errno(b->read_error);
1102
1103		dm_bufio_release(b);
1104
1105		return ERR_PTR(error);
1106	}
1107
1108	*bp = b;
1109
1110	return b->data;
1111}
1112
1113void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114		   struct dm_buffer **bp)
1115{
1116	return new_read(c, block, NF_GET, bp);
1117}
1118EXPORT_SYMBOL_GPL(dm_bufio_get);
1119
 
 
 
 
 
 
 
 
 
1120void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121		    struct dm_buffer **bp)
1122{
1123	BUG_ON(dm_bufio_in_request());
1124
1125	return new_read(c, block, NF_READ, bp);
1126}
1127EXPORT_SYMBOL_GPL(dm_bufio_read);
1128
 
 
 
 
 
 
 
1129void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130		   struct dm_buffer **bp)
1131{
1132	BUG_ON(dm_bufio_in_request());
 
1133
1134	return new_read(c, block, NF_FRESH, bp);
1135}
1136EXPORT_SYMBOL_GPL(dm_bufio_new);
1137
1138void dm_bufio_prefetch(struct dm_bufio_client *c,
1139		       sector_t block, unsigned n_blocks)
 
1140{
1141	struct blk_plug plug;
1142
1143	LIST_HEAD(write_list);
1144
1145	BUG_ON(dm_bufio_in_request());
 
1146
1147	blk_start_plug(&plug);
1148	dm_bufio_lock(c);
1149
1150	for (; n_blocks--; block++) {
1151		int need_submit;
1152		struct dm_buffer *b;
 
 
 
 
 
 
 
 
 
1153		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154				&write_list);
1155		if (unlikely(!list_empty(&write_list))) {
1156			dm_bufio_unlock(c);
1157			blk_finish_plug(&plug);
1158			__flush_write_list(&write_list);
1159			blk_start_plug(&plug);
1160			dm_bufio_lock(c);
1161		}
1162		if (unlikely(b != NULL)) {
1163			dm_bufio_unlock(c);
1164
1165			if (need_submit)
1166				submit_io(b, REQ_OP_READ, read_endio);
1167			dm_bufio_release(b);
1168
1169			cond_resched();
1170
1171			if (!n_blocks)
1172				goto flush_plug;
1173			dm_bufio_lock(c);
1174		}
 
1175	}
1176
1177	dm_bufio_unlock(c);
1178
1179flush_plug:
1180	blk_finish_plug(&plug);
1181}
 
 
 
 
 
1182EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183
 
 
 
 
 
 
 
1184void dm_bufio_release(struct dm_buffer *b)
1185{
1186	struct dm_bufio_client *c = b->c;
1187
1188	dm_bufio_lock(c);
1189
1190	BUG_ON(!b->hold_count);
1191
1192	b->hold_count--;
1193	if (!b->hold_count) {
1194		wake_up(&c->free_buffer_wait);
 
 
 
1195
1196		/*
1197		 * If there were errors on the buffer, and the buffer is not
1198		 * to be written, free the buffer. There is no point in caching
1199		 * invalid buffer.
1200		 */
1201		if ((b->read_error || b->write_error) &&
1202		    !test_bit(B_READING, &b->state) &&
1203		    !test_bit(B_WRITING, &b->state) &&
1204		    !test_bit(B_DIRTY, &b->state)) {
1205			__unlink_buffer(b);
1206			__free_buffer_wake(b);
 
 
1207		}
 
 
1208	}
1209
1210	dm_bufio_unlock(c);
1211}
1212EXPORT_SYMBOL_GPL(dm_bufio_release);
1213
1214void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1215					unsigned start, unsigned end)
1216{
1217	struct dm_bufio_client *c = b->c;
1218
1219	BUG_ON(start >= end);
1220	BUG_ON(end > b->c->block_size);
1221
1222	dm_bufio_lock(c);
1223
1224	BUG_ON(test_bit(B_READING, &b->state));
1225
1226	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1227		b->dirty_start = start;
1228		b->dirty_end = end;
1229		__relink_lru(b, LIST_DIRTY);
1230	} else {
1231		if (start < b->dirty_start)
1232			b->dirty_start = start;
1233		if (end > b->dirty_end)
1234			b->dirty_end = end;
1235	}
1236
1237	dm_bufio_unlock(c);
1238}
1239EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1240
1241void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1242{
1243	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1244}
1245EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1246
1247void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1248{
1249	LIST_HEAD(write_list);
1250
1251	BUG_ON(dm_bufio_in_request());
 
1252
1253	dm_bufio_lock(c);
1254	__write_dirty_buffers_async(c, 0, &write_list);
1255	dm_bufio_unlock(c);
1256	__flush_write_list(&write_list);
1257}
1258EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1259
1260/*
1261 * For performance, it is essential that the buffers are written asynchronously
1262 * and simultaneously (so that the block layer can merge the writes) and then
1263 * waited upon.
1264 *
1265 * Finally, we flush hardware disk cache.
1266 */
 
 
 
 
 
 
 
1267int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1268{
1269	int a, f;
1270	unsigned long buffers_processed = 0;
1271	struct dm_buffer *b, *tmp;
 
1272
1273	LIST_HEAD(write_list);
1274
1275	dm_bufio_lock(c);
1276	__write_dirty_buffers_async(c, 0, &write_list);
1277	dm_bufio_unlock(c);
1278	__flush_write_list(&write_list);
1279	dm_bufio_lock(c);
1280
1281again:
1282	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1283		int dropped_lock = 0;
1284
1285		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1286			buffers_processed++;
1287
1288		BUG_ON(test_bit(B_READING, &b->state));
1289
1290		if (test_bit(B_WRITING, &b->state)) {
1291			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1292				dropped_lock = 1;
1293				b->hold_count++;
1294				dm_bufio_unlock(c);
1295				wait_on_bit_io(&b->state, B_WRITING,
1296					       TASK_UNINTERRUPTIBLE);
1297				dm_bufio_lock(c);
1298				b->hold_count--;
1299			} else
1300				wait_on_bit_io(&b->state, B_WRITING,
1301					       TASK_UNINTERRUPTIBLE);
1302		}
1303
1304		if (!test_bit(B_DIRTY, &b->state) &&
1305		    !test_bit(B_WRITING, &b->state))
1306			__relink_lru(b, LIST_CLEAN);
1307
1308		cond_resched();
 
1309
1310		/*
1311		 * If we dropped the lock, the list is no longer consistent,
1312		 * so we must restart the search.
1313		 *
1314		 * In the most common case, the buffer just processed is
1315		 * relinked to the clean list, so we won't loop scanning the
1316		 * same buffer again and again.
1317		 *
1318		 * This may livelock if there is another thread simultaneously
1319		 * dirtying buffers, so we count the number of buffers walked
1320		 * and if it exceeds the total number of buffers, it means that
1321		 * someone is doing some writes simultaneously with us.  In
1322		 * this case, stop, dropping the lock.
1323		 */
1324		if (dropped_lock)
1325			goto again;
1326	}
 
 
1327	wake_up(&c->free_buffer_wait);
1328	dm_bufio_unlock(c);
1329
1330	a = xchg(&c->async_write_error, 0);
1331	f = dm_bufio_issue_flush(c);
1332	if (a)
1333		return a;
1334
1335	return f;
1336}
1337EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1338
1339/*
1340 * Use dm-io to send an empty barrier to flush the device.
1341 */
1342int dm_bufio_issue_flush(struct dm_bufio_client *c)
1343{
1344	struct dm_io_request io_req = {
1345		.bi_op = REQ_OP_WRITE,
1346		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1347		.mem.type = DM_IO_KMEM,
1348		.mem.ptr.addr = NULL,
1349		.client = c->dm_io,
1350	};
1351	struct dm_io_region io_reg = {
1352		.bdev = c->bdev,
1353		.sector = 0,
1354		.count = 0,
1355	};
1356
1357	BUG_ON(dm_bufio_in_request());
 
1358
1359	return dm_io(&io_req, 1, &io_reg, NULL);
1360}
1361EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1362
1363/*
1364 * Use dm-io to send a discard request to flush the device.
1365 */
1366int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1367{
1368	struct dm_io_request io_req = {
1369		.bi_op = REQ_OP_DISCARD,
1370		.bi_op_flags = REQ_SYNC,
1371		.mem.type = DM_IO_KMEM,
1372		.mem.ptr.addr = NULL,
1373		.client = c->dm_io,
1374	};
1375	struct dm_io_region io_reg = {
1376		.bdev = c->bdev,
1377		.sector = block_to_sector(c, block),
1378		.count = block_to_sector(c, count),
1379	};
1380
1381	BUG_ON(dm_bufio_in_request());
 
1382
1383	return dm_io(&io_req, 1, &io_reg, NULL);
1384}
1385EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1386
1387/*
1388 * We first delete any other buffer that may be at that new location.
1389 *
1390 * Then, we write the buffer to the original location if it was dirty.
1391 *
1392 * Then, if we are the only one who is holding the buffer, relink the buffer
1393 * in the buffer tree for the new location.
1394 *
1395 * If there was someone else holding the buffer, we write it to the new
1396 * location but not relink it, because that other user needs to have the buffer
1397 * at the same place.
1398 */
1399void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1400{
1401	struct dm_bufio_client *c = b->c;
1402	struct dm_buffer *new;
1403
1404	BUG_ON(dm_bufio_in_request());
1405
1406	dm_bufio_lock(c);
1407
1408retry:
1409	new = __find(c, new_block);
1410	if (new) {
1411		if (new->hold_count) {
1412			__wait_for_free_buffer(c);
1413			goto retry;
 
 
 
1414		}
1415
1416		/*
1417		 * FIXME: Is there any point waiting for a write that's going
1418		 * to be overwritten in a bit?
1419		 */
1420		__make_buffer_clean(new);
1421		__unlink_buffer(new);
1422		__free_buffer_wake(new);
1423	}
1424
1425	BUG_ON(!b->hold_count);
1426	BUG_ON(test_bit(B_READING, &b->state));
1427
1428	__write_dirty_buffer(b, NULL);
1429	if (b->hold_count == 1) {
1430		wait_on_bit_io(&b->state, B_WRITING,
1431			       TASK_UNINTERRUPTIBLE);
1432		set_bit(B_DIRTY, &b->state);
1433		b->dirty_start = 0;
1434		b->dirty_end = c->block_size;
1435		__unlink_buffer(b);
1436		__link_buffer(b, new_block, LIST_DIRTY);
1437	} else {
1438		sector_t old_block;
1439		wait_on_bit_lock_io(&b->state, B_WRITING,
1440				    TASK_UNINTERRUPTIBLE);
1441		/*
1442		 * Relink buffer to "new_block" so that write_callback
1443		 * sees "new_block" as a block number.
1444		 * After the write, link the buffer back to old_block.
1445		 * All this must be done in bufio lock, so that block number
1446		 * change isn't visible to other threads.
1447		 */
1448		old_block = b->block;
1449		__unlink_buffer(b);
1450		__link_buffer(b, new_block, b->list_mode);
1451		submit_io(b, REQ_OP_WRITE, write_endio);
1452		wait_on_bit_io(&b->state, B_WRITING,
1453			       TASK_UNINTERRUPTIBLE);
1454		__unlink_buffer(b);
1455		__link_buffer(b, old_block, b->list_mode);
1456	}
1457
1458	dm_bufio_unlock(c);
1459	dm_bufio_release(b);
1460}
1461EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1462
1463static void forget_buffer_locked(struct dm_buffer *b)
1464{
1465	if (likely(!b->hold_count) && likely(!b->state)) {
1466		__unlink_buffer(b);
1467		__free_buffer_wake(b);
1468	}
1469}
1470
1471/*
1472 * Free the given buffer.
1473 *
1474 * This is just a hint, if the buffer is in use or dirty, this function
1475 * does nothing.
1476 */
1477void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1478{
1479	struct dm_buffer *b;
1480
1481	dm_bufio_lock(c);
1482
1483	b = __find(c, block);
1484	if (b)
1485		forget_buffer_locked(b);
1486
1487	dm_bufio_unlock(c);
1488}
1489EXPORT_SYMBOL_GPL(dm_bufio_forget);
1490
1491void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1492{
1493	struct dm_buffer *b;
1494	sector_t end_block = block + n_blocks;
1495
1496	while (block < end_block) {
1497		dm_bufio_lock(c);
1498
1499		b = __find_next(c, block);
1500		if (b) {
1501			block = b->block + 1;
1502			forget_buffer_locked(b);
1503		}
1504
1505		dm_bufio_unlock(c);
1506
1507		if (!b)
1508			break;
1509	}
1510
 
 
 
 
 
1511}
1512EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1513
1514void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1515{
1516	c->minimum_buffers = n;
1517}
1518EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1519
1520unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1521{
1522	return c->block_size;
1523}
1524EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1525
1526sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1527{
1528	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
 
 
 
 
 
1529	if (likely(c->sectors_per_block_bits >= 0))
1530		s >>= c->sectors_per_block_bits;
1531	else
1532		sector_div(s, c->block_size >> SECTOR_SHIFT);
1533	return s;
1534}
1535EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1536
 
 
 
 
 
 
1537sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1538{
1539	return b->block;
1540}
1541EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1542
1543void *dm_bufio_get_block_data(struct dm_buffer *b)
1544{
1545	return b->data;
1546}
1547EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1548
1549void *dm_bufio_get_aux_data(struct dm_buffer *b)
1550{
1551	return b + 1;
1552}
1553EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1554
1555struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1556{
1557	return b->c;
1558}
1559EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561static void drop_buffers(struct dm_bufio_client *c)
1562{
1563	struct dm_buffer *b;
1564	int i;
1565	bool warned = false;
1566
1567	BUG_ON(dm_bufio_in_request());
 
1568
1569	/*
1570	 * An optimization so that the buffers are not written one-by-one.
1571	 */
1572	dm_bufio_write_dirty_buffers_async(c);
1573
1574	dm_bufio_lock(c);
1575
1576	while ((b = __get_unclaimed_buffer(c)))
1577		__free_buffer_wake(b);
1578
1579	for (i = 0; i < LIST_SIZE; i++)
1580		list_for_each_entry(b, &c->lru[i], lru_list) {
1581			WARN_ON(!warned);
1582			warned = true;
1583			DMERR("leaked buffer %llx, hold count %u, list %d",
1584			      (unsigned long long)b->block, b->hold_count, i);
1585#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1586			stack_trace_print(b->stack_entries, b->stack_len, 1);
1587			/* mark unclaimed to avoid BUG_ON below */
1588			b->hold_count = 0;
1589#endif
1590		}
1591
1592#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1593	while ((b = __get_unclaimed_buffer(c)))
1594		__free_buffer_wake(b);
1595#endif
1596
1597	for (i = 0; i < LIST_SIZE; i++)
1598		BUG_ON(!list_empty(&c->lru[i]));
1599
1600	dm_bufio_unlock(c);
1601}
1602
1603/*
1604 * We may not be able to evict this buffer if IO pending or the client
1605 * is still using it.  Caller is expected to know buffer is too old.
1606 *
1607 * And if GFP_NOFS is used, we must not do any I/O because we hold
1608 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1609 * rerouted to different bufio client.
1610 */
1611static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1612{
1613	if (!(gfp & __GFP_FS)) {
1614		if (test_bit(B_READING, &b->state) ||
1615		    test_bit(B_WRITING, &b->state) ||
1616		    test_bit(B_DIRTY, &b->state))
1617			return false;
1618	}
1619
1620	if (b->hold_count)
1621		return false;
1622
1623	__make_buffer_clean(b);
1624	__unlink_buffer(b);
1625	__free_buffer_wake(b);
1626
1627	return true;
1628}
1629
1630static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1631{
1632	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
 
1633	if (likely(c->sectors_per_block_bits >= 0))
1634		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1635	else
1636		retain_bytes /= c->block_size;
 
1637	return retain_bytes;
1638}
1639
1640static void __scan(struct dm_bufio_client *c)
1641{
1642	int l;
1643	struct dm_buffer *b, *tmp;
1644	unsigned long freed = 0;
1645	unsigned long count = c->n_buffers[LIST_CLEAN] +
1646			      c->n_buffers[LIST_DIRTY];
1647	unsigned long retain_target = get_retain_buffers(c);
 
1648
1649	for (l = 0; l < LIST_SIZE; l++) {
1650		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1651			if (count - freed <= retain_target)
1652				atomic_long_set(&c->need_shrink, 0);
1653			if (!atomic_long_read(&c->need_shrink))
1654				return;
1655			if (__try_evict_buffer(b, GFP_KERNEL)) {
1656				atomic_long_dec(&c->need_shrink);
1657				freed++;
1658			}
 
 
 
 
 
 
 
1659			cond_resched();
1660		}
1661	}
1662}
1663
1664static void shrink_work(struct work_struct *w)
1665{
1666	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1667
1668	dm_bufio_lock(c);
1669	__scan(c);
1670	dm_bufio_unlock(c);
1671}
1672
1673static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1674{
1675	struct dm_bufio_client *c;
1676
1677	c = container_of(shrink, struct dm_bufio_client, shrinker);
1678	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1679	queue_work(dm_bufio_wq, &c->shrink_work);
1680
1681	return sc->nr_to_scan;
1682}
1683
1684static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1685{
1686	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1687	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1688			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1689	unsigned long retain_target = get_retain_buffers(c);
1690	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1691
1692	if (unlikely(count < retain_target))
1693		count = 0;
1694	else
1695		count -= retain_target;
1696
1697	if (unlikely(count < queued_for_cleanup))
1698		count = 0;
1699	else
1700		count -= queued_for_cleanup;
1701
1702	return count;
1703}
1704
1705/*
1706 * Create the buffering interface
1707 */
1708struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1709					       unsigned reserved_buffers, unsigned aux_size,
1710					       void (*alloc_callback)(struct dm_buffer *),
1711					       void (*write_callback)(struct dm_buffer *))
 
1712{
1713	int r;
 
1714	struct dm_bufio_client *c;
1715	unsigned i;
1716	char slab_name[27];
1717
1718	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1719		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1720		r = -EINVAL;
1721		goto bad_client;
1722	}
1723
1724	c = kzalloc(sizeof(*c), GFP_KERNEL);
 
1725	if (!c) {
1726		r = -ENOMEM;
1727		goto bad_client;
1728	}
1729	c->buffer_tree = RB_ROOT;
1730
1731	c->bdev = bdev;
1732	c->block_size = block_size;
1733	if (is_power_of_2(block_size))
1734		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1735	else
1736		c->sectors_per_block_bits = -1;
1737
1738	c->alloc_callback = alloc_callback;
1739	c->write_callback = write_callback;
1740
1741	for (i = 0; i < LIST_SIZE; i++) {
1742		INIT_LIST_HEAD(&c->lru[i]);
1743		c->n_buffers[i] = 0;
1744	}
1745
1746	mutex_init(&c->lock);
 
1747	INIT_LIST_HEAD(&c->reserved_buffers);
1748	c->need_reserved_buffers = reserved_buffers;
1749
1750	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1751
1752	init_waitqueue_head(&c->free_buffer_wait);
1753	c->async_write_error = 0;
1754
1755	c->dm_io = dm_io_client_create();
1756	if (IS_ERR(c->dm_io)) {
1757		r = PTR_ERR(c->dm_io);
1758		goto bad_dm_io;
1759	}
1760
1761	if (block_size <= KMALLOC_MAX_SIZE &&
1762	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1763		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1764		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
 
1765		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1766						  SLAB_RECLAIM_ACCOUNT, NULL);
1767		if (!c->slab_cache) {
1768			r = -ENOMEM;
1769			goto bad;
1770		}
1771	}
1772	if (aux_size)
1773		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
 
1774	else
1775		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
 
1776	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1777					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1778	if (!c->slab_buffer) {
1779		r = -ENOMEM;
1780		goto bad;
1781	}
1782
1783	while (c->need_reserved_buffers) {
1784		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1785
1786		if (!b) {
1787			r = -ENOMEM;
1788			goto bad;
1789		}
1790		__free_buffer_wake(b);
1791	}
1792
1793	INIT_WORK(&c->shrink_work, shrink_work);
1794	atomic_long_set(&c->need_shrink, 0);
1795
1796	c->shrinker.count_objects = dm_bufio_shrink_count;
1797	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1798	c->shrinker.seeks = 1;
1799	c->shrinker.batch = 0;
1800	r = register_shrinker(&c->shrinker);
1801	if (r)
1802		goto bad;
 
 
 
 
 
 
 
 
 
1803
1804	mutex_lock(&dm_bufio_clients_lock);
1805	dm_bufio_client_count++;
1806	list_add(&c->client_list, &dm_bufio_all_clients);
1807	__cache_size_refresh();
1808	mutex_unlock(&dm_bufio_clients_lock);
1809
1810	return c;
1811
1812bad:
1813	while (!list_empty(&c->reserved_buffers)) {
1814		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1815						 struct dm_buffer, lru_list);
1816		list_del(&b->lru_list);
1817		free_buffer(b);
1818	}
1819	kmem_cache_destroy(c->slab_cache);
1820	kmem_cache_destroy(c->slab_buffer);
1821	dm_io_client_destroy(c->dm_io);
1822bad_dm_io:
1823	mutex_destroy(&c->lock);
 
 
1824	kfree(c);
1825bad_client:
1826	return ERR_PTR(r);
1827}
1828EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1829
1830/*
1831 * Free the buffering interface.
1832 * It is required that there are no references on any buffers.
1833 */
1834void dm_bufio_client_destroy(struct dm_bufio_client *c)
1835{
1836	unsigned i;
1837
1838	drop_buffers(c);
1839
1840	unregister_shrinker(&c->shrinker);
1841	flush_work(&c->shrink_work);
1842
1843	mutex_lock(&dm_bufio_clients_lock);
1844
1845	list_del(&c->client_list);
1846	dm_bufio_client_count--;
1847	__cache_size_refresh();
1848
1849	mutex_unlock(&dm_bufio_clients_lock);
1850
1851	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1852	BUG_ON(c->need_reserved_buffers);
1853
1854	while (!list_empty(&c->reserved_buffers)) {
1855		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1856						 struct dm_buffer, lru_list);
1857		list_del(&b->lru_list);
1858		free_buffer(b);
1859	}
1860
1861	for (i = 0; i < LIST_SIZE; i++)
1862		if (c->n_buffers[i])
1863			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1864
1865	for (i = 0; i < LIST_SIZE; i++)
1866		BUG_ON(c->n_buffers[i]);
1867
 
1868	kmem_cache_destroy(c->slab_cache);
1869	kmem_cache_destroy(c->slab_buffer);
1870	dm_io_client_destroy(c->dm_io);
1871	mutex_destroy(&c->lock);
 
 
1872	kfree(c);
1873}
1874EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1875
 
 
 
 
 
 
 
1876void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1877{
1878	c->start = start;
1879}
1880EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1881
1882static unsigned get_max_age_hz(void)
 
 
1883{
1884	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1885
1886	if (max_age > UINT_MAX / HZ)
1887		max_age = UINT_MAX / HZ;
1888
1889	return max_age * HZ;
1890}
1891
1892static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1893{
1894	return time_after_eq(jiffies, b->last_accessed + age_hz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895}
1896
1897static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
 
 
1898{
1899	struct dm_buffer *b, *tmp;
1900	unsigned long retain_target = get_retain_buffers(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901	unsigned long count;
1902	LIST_HEAD(write_list);
1903
1904	dm_bufio_lock(c);
1905
1906	__check_watermark(c, &write_list);
1907	if (unlikely(!list_empty(&write_list))) {
1908		dm_bufio_unlock(c);
1909		__flush_write_list(&write_list);
1910		dm_bufio_lock(c);
1911	}
1912
1913	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1914	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1915		if (count <= retain_target)
1916			break;
1917
1918		if (!older_than(b, age_hz))
1919			break;
1920
1921		if (__try_evict_buffer(b, 0))
1922			count--;
1923
1924		cond_resched();
1925	}
1926
1927	dm_bufio_unlock(c);
1928}
1929
1930static void do_global_cleanup(struct work_struct *w)
1931{
1932	struct dm_bufio_client *locked_client = NULL;
1933	struct dm_bufio_client *current_client;
1934	struct dm_buffer *b;
1935	unsigned spinlock_hold_count;
1936	unsigned long threshold = dm_bufio_cache_size -
1937		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1938	unsigned long loops = global_num * 2;
1939
1940	mutex_lock(&dm_bufio_clients_lock);
1941
1942	while (1) {
1943		cond_resched();
1944
1945		spin_lock(&global_spinlock);
1946		if (unlikely(dm_bufio_current_allocated <= threshold))
1947			break;
1948
1949		spinlock_hold_count = 0;
1950get_next:
1951		if (!loops--)
1952			break;
1953		if (unlikely(list_empty(&global_queue)))
1954			break;
1955		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1956
1957		if (b->accessed) {
1958			b->accessed = 0;
1959			list_move(&b->global_list, &global_queue);
1960			if (likely(++spinlock_hold_count < 16))
1961				goto get_next;
1962			spin_unlock(&global_spinlock);
1963			continue;
1964		}
1965
1966		current_client = b->c;
1967		if (unlikely(current_client != locked_client)) {
1968			if (locked_client)
1969				dm_bufio_unlock(locked_client);
1970
1971			if (!dm_bufio_trylock(current_client)) {
1972				spin_unlock(&global_spinlock);
1973				dm_bufio_lock(current_client);
1974				locked_client = current_client;
1975				continue;
1976			}
1977
1978			locked_client = current_client;
1979		}
1980
1981		spin_unlock(&global_spinlock);
 
 
 
 
 
 
 
 
1982
1983		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1984			spin_lock(&global_spinlock);
1985			list_move(&b->global_list, &global_queue);
1986			spin_unlock(&global_spinlock);
1987		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988	}
1989
1990	spin_unlock(&global_spinlock);
 
1991
1992	if (locked_client)
1993		dm_bufio_unlock(locked_client);
 
 
 
 
 
 
 
 
1994
1995	mutex_unlock(&dm_bufio_clients_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1996}
1997
1998static void cleanup_old_buffers(void)
1999{
2000	unsigned long max_age_hz = get_max_age_hz();
2001	struct dm_bufio_client *c;
2002
2003	mutex_lock(&dm_bufio_clients_lock);
 
 
 
 
 
 
2004
2005	__cache_size_refresh();
 
2006
2007	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2008		__evict_old_buffers(c, max_age_hz);
 
 
2009
 
 
 
 
 
 
2010	mutex_unlock(&dm_bufio_clients_lock);
2011}
2012
2013static void work_fn(struct work_struct *w)
2014{
2015	cleanup_old_buffers();
2016
2017	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2018			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2019}
2020
2021/*----------------------------------------------------------------
 
2022 * Module setup
2023 *--------------------------------------------------------------*/
 
2024
2025/*
2026 * This is called only once for the whole dm_bufio module.
2027 * It initializes memory limit.
2028 */
2029static int __init dm_bufio_init(void)
2030{
2031	__u64 mem;
2032
2033	dm_bufio_allocated_kmem_cache = 0;
 
2034	dm_bufio_allocated_get_free_pages = 0;
2035	dm_bufio_allocated_vmalloc = 0;
2036	dm_bufio_current_allocated = 0;
2037
2038	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2039			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2040
2041	if (mem > ULONG_MAX)
2042		mem = ULONG_MAX;
2043
2044#ifdef CONFIG_MMU
2045	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2046		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2047#endif
2048
2049	dm_bufio_default_cache_size = mem;
2050
2051	mutex_lock(&dm_bufio_clients_lock);
2052	__cache_size_refresh();
2053	mutex_unlock(&dm_bufio_clients_lock);
2054
2055	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2056	if (!dm_bufio_wq)
2057		return -ENOMEM;
2058
2059	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2060	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2061	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2062			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2063
2064	return 0;
2065}
2066
2067/*
2068 * This is called once when unloading the dm_bufio module.
2069 */
2070static void __exit dm_bufio_exit(void)
2071{
2072	int bug = 0;
2073
2074	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2075	flush_workqueue(dm_bufio_wq);
2076	destroy_workqueue(dm_bufio_wq);
2077
2078	if (dm_bufio_client_count) {
2079		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2080			__func__, dm_bufio_client_count);
2081		bug = 1;
2082	}
2083
2084	if (dm_bufio_current_allocated) {
2085		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2086			__func__, dm_bufio_current_allocated);
2087		bug = 1;
2088	}
2089
2090	if (dm_bufio_allocated_get_free_pages) {
2091		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2092		       __func__, dm_bufio_allocated_get_free_pages);
2093		bug = 1;
2094	}
2095
2096	if (dm_bufio_allocated_vmalloc) {
2097		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2098		       __func__, dm_bufio_allocated_vmalloc);
2099		bug = 1;
2100	}
2101
2102	BUG_ON(bug);
2103}
2104
2105module_init(dm_bufio_init)
2106module_exit(dm_bufio_exit)
2107
2108module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2109MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2110
2111module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2112MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2113
2114module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2115MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2116
2117module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2118MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2119
2120module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2121MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2122
2123module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
 
 
 
2124MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2125
2126module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2127MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2128
2129module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2130MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2131
2132MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2133MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2134MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2009-2011 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/dm-bufio.h>
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/slab.h>
  15#include <linux/sched/mm.h>
  16#include <linux/jiffies.h>
  17#include <linux/vmalloc.h>
  18#include <linux/shrinker.h>
  19#include <linux/module.h>
  20#include <linux/rbtree.h>
  21#include <linux/stacktrace.h>
  22#include <linux/jump_label.h>
  23
  24#include "dm.h"
  25
  26#define DM_MSG_PREFIX "bufio"
  27
  28/*
  29 * Memory management policy:
  30 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  31 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  32 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  33 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  34 *	dirty buffers.
  35 */
  36#define DM_BUFIO_MIN_BUFFERS		8
  37
  38#define DM_BUFIO_MEMORY_PERCENT		2
  39#define DM_BUFIO_VMALLOC_PERCENT	25
  40#define DM_BUFIO_WRITEBACK_RATIO	3
  41#define DM_BUFIO_LOW_WATERMARK_RATIO	16
  42
  43/*
  44 * Check buffer ages in this interval (seconds)
  45 */
  46#define DM_BUFIO_WORK_TIMER_SECS	30
  47
  48/*
  49 * Free buffers when they are older than this (seconds)
  50 */
  51#define DM_BUFIO_DEFAULT_AGE_SECS	300
  52
  53/*
  54 * The nr of bytes of cached data to keep around.
  55 */
  56#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  57
  58/*
  59 * Align buffer writes to this boundary.
  60 * Tests show that SSDs have the highest IOPS when using 4k writes.
  61 */
  62#define DM_BUFIO_WRITE_ALIGN		4096
  63
  64/*
  65 * dm_buffer->list_mode
  66 */
  67#define LIST_CLEAN	0
  68#define LIST_DIRTY	1
  69#define LIST_SIZE	2
  70
  71/*--------------------------------------------------------------*/
  72
  73/*
  74 * Rather than use an LRU list, we use a clock algorithm where entries
  75 * are held in a circular list.  When an entry is 'hit' a reference bit
  76 * is set.  The least recently used entry is approximated by running a
  77 * cursor around the list selecting unreferenced entries. Referenced
  78 * entries have their reference bit cleared as the cursor passes them.
  79 */
  80struct lru_entry {
  81	struct list_head list;
  82	atomic_t referenced;
  83};
  84
  85struct lru_iter {
  86	struct lru *lru;
  87	struct list_head list;
  88	struct lru_entry *stop;
  89	struct lru_entry *e;
  90};
  91
  92struct lru {
  93	struct list_head *cursor;
  94	unsigned long count;
  95
  96	struct list_head iterators;
  97};
  98
  99/*--------------*/
 100
 101static void lru_init(struct lru *lru)
 102{
 103	lru->cursor = NULL;
 104	lru->count = 0;
 105	INIT_LIST_HEAD(&lru->iterators);
 106}
 107
 108static void lru_destroy(struct lru *lru)
 109{
 110	WARN_ON_ONCE(lru->cursor);
 111	WARN_ON_ONCE(!list_empty(&lru->iterators));
 112}
 113
 114/*
 115 * Insert a new entry into the lru.
 116 */
 117static void lru_insert(struct lru *lru, struct lru_entry *le)
 118{
 119	/*
 120	 * Don't be tempted to set to 1, makes the lru aspect
 121	 * perform poorly.
 122	 */
 123	atomic_set(&le->referenced, 0);
 124
 125	if (lru->cursor) {
 126		list_add_tail(&le->list, lru->cursor);
 127	} else {
 128		INIT_LIST_HEAD(&le->list);
 129		lru->cursor = &le->list;
 130	}
 131	lru->count++;
 132}
 133
 134/*--------------*/
 
 
 
 
 135
 136/*
 137 * Convert a list_head pointer to an lru_entry pointer.
 138 */
 139static inline struct lru_entry *to_le(struct list_head *l)
 140{
 141	return container_of(l, struct lru_entry, list);
 142}
 143
 144/*
 145 * Initialize an lru_iter and add it to the list of cursors in the lru.
 146 */
 147static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
 148{
 149	it->lru = lru;
 150	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
 151	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
 152	list_add(&it->list, &lru->iterators);
 153}
 154
 155/*
 156 * Remove an lru_iter from the list of cursors in the lru.
 157 */
 158static inline void lru_iter_end(struct lru_iter *it)
 159{
 160	list_del(&it->list);
 161}
 162
 163/* Predicate function type to be used with lru_iter_next */
 164typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
 165
 166/*
 167 * Advance the cursor to the next entry that passes the
 168 * predicate, and return that entry.  Returns NULL if the
 169 * iteration is complete.
 170 */
 171static struct lru_entry *lru_iter_next(struct lru_iter *it,
 172				       iter_predicate pred, void *context)
 173{
 174	struct lru_entry *e;
 175
 176	while (it->e) {
 177		e = it->e;
 178
 179		/* advance the cursor */
 180		if (it->e == it->stop)
 181			it->e = NULL;
 182		else
 183			it->e = to_le(it->e->list.next);
 184
 185		if (pred(e, context))
 186			return e;
 187	}
 188
 189	return NULL;
 190}
 191
 192/*
 193 * Invalidate a specific lru_entry and update all cursors in
 194 * the lru accordingly.
 195 */
 196static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
 197{
 198	struct lru_iter *it;
 199
 200	list_for_each_entry(it, &lru->iterators, list) {
 201		/* Move c->e forwards if necc. */
 202		if (it->e == e) {
 203			it->e = to_le(it->e->list.next);
 204			if (it->e == e)
 205				it->e = NULL;
 206		}
 207
 208		/* Move it->stop backwards if necc. */
 209		if (it->stop == e) {
 210			it->stop = to_le(it->stop->list.prev);
 211			if (it->stop == e)
 212				it->stop = NULL;
 213		}
 214	}
 215}
 216
 217/*--------------*/
 218
 219/*
 220 * Remove a specific entry from the lru.
 221 */
 222static void lru_remove(struct lru *lru, struct lru_entry *le)
 223{
 224	lru_iter_invalidate(lru, le);
 225	if (lru->count == 1) {
 226		lru->cursor = NULL;
 227	} else {
 228		if (lru->cursor == &le->list)
 229			lru->cursor = lru->cursor->next;
 230		list_del(&le->list);
 231	}
 232	lru->count--;
 233}
 234
 235/*
 236 * Mark as referenced.
 237 */
 238static inline void lru_reference(struct lru_entry *le)
 239{
 240	atomic_set(&le->referenced, 1);
 241}
 242
 243/*--------------*/
 244
 245/*
 246 * Remove the least recently used entry (approx), that passes the predicate.
 247 * Returns NULL on failure.
 248 */
 249enum evict_result {
 250	ER_EVICT,
 251	ER_DONT_EVICT,
 252	ER_STOP, /* stop looking for something to evict */
 253};
 254
 255typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
 256
 257static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
 258{
 259	unsigned long tested = 0;
 260	struct list_head *h = lru->cursor;
 261	struct lru_entry *le;
 262
 263	if (!h)
 264		return NULL;
 265	/*
 266	 * In the worst case we have to loop around twice. Once to clear
 267	 * the reference flags, and then again to discover the predicate
 268	 * fails for all entries.
 269	 */
 270	while (tested < lru->count) {
 271		le = container_of(h, struct lru_entry, list);
 272
 273		if (atomic_read(&le->referenced)) {
 274			atomic_set(&le->referenced, 0);
 275		} else {
 276			tested++;
 277			switch (pred(le, context)) {
 278			case ER_EVICT:
 279				/*
 280				 * Adjust the cursor, so we start the next
 281				 * search from here.
 282				 */
 283				lru->cursor = le->list.next;
 284				lru_remove(lru, le);
 285				return le;
 286
 287			case ER_DONT_EVICT:
 288				break;
 289
 290			case ER_STOP:
 291				lru->cursor = le->list.next;
 292				return NULL;
 293			}
 294		}
 295
 296		h = h->next;
 297
 298		if (!no_sleep)
 299			cond_resched();
 300	}
 301
 302	return NULL;
 303}
 304
 305/*--------------------------------------------------------------*/
 306
 307/*
 308 * Buffer state bits.
 309 */
 310#define B_READING	0
 311#define B_WRITING	1
 312#define B_DIRTY		2
 313
 314/*
 315 * Describes how the block was allocated:
 316 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 317 * See the comment at alloc_buffer_data.
 318 */
 319enum data_mode {
 320	DATA_MODE_SLAB = 0,
 321	DATA_MODE_KMALLOC = 1,
 322	DATA_MODE_GET_FREE_PAGES = 2,
 323	DATA_MODE_VMALLOC = 3,
 324	DATA_MODE_LIMIT = 4
 325};
 326
 327struct dm_buffer {
 328	/* protected by the locks in dm_buffer_cache */
 329	struct rb_node node;
 330
 331	/* immutable, so don't need protecting */
 332	sector_t block;
 333	void *data;
 334	unsigned char data_mode;		/* DATA_MODE_* */
 335
 336	/*
 337	 * These two fields are used in isolation, so do not need
 338	 * a surrounding lock.
 339	 */
 340	atomic_t hold_count;
 341	unsigned long last_accessed;
 342
 343	/*
 344	 * Everything else is protected by the mutex in
 345	 * dm_bufio_client
 346	 */
 347	unsigned long state;
 348	struct lru_entry lru;
 349	unsigned char list_mode;		/* LIST_* */
 350	blk_status_t read_error;
 351	blk_status_t write_error;
 352	unsigned int dirty_start;
 353	unsigned int dirty_end;
 354	unsigned int write_start;
 355	unsigned int write_end;
 
 
 
 
 
 356	struct list_head write_list;
 357	struct dm_bufio_client *c;
 358	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
 359#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 360#define MAX_STACK 10
 361	unsigned int stack_len;
 362	unsigned long stack_entries[MAX_STACK];
 363#endif
 364};
 365
 366/*--------------------------------------------------------------*/
 367
 368/*
 369 * The buffer cache manages buffers, particularly:
 370 *  - inc/dec of holder count
 371 *  - setting the last_accessed field
 372 *  - maintains clean/dirty state along with lru
 373 *  - selecting buffers that match predicates
 374 *
 375 * It does *not* handle:
 376 *  - allocation/freeing of buffers.
 377 *  - IO
 378 *  - Eviction or cache sizing.
 379 *
 380 * cache_get() and cache_put() are threadsafe, you do not need to
 381 * protect these calls with a surrounding mutex.  All the other
 382 * methods are not threadsafe; they do use locking primitives, but
 383 * only enough to ensure get/put are threadsafe.
 384 */
 385
 386struct buffer_tree {
 387	union {
 388		struct rw_semaphore lock;
 389		rwlock_t spinlock;
 390	} u;
 391	struct rb_root root;
 392} ____cacheline_aligned_in_smp;
 393
 394struct dm_buffer_cache {
 395	struct lru lru[LIST_SIZE];
 396	/*
 397	 * We spread entries across multiple trees to reduce contention
 398	 * on the locks.
 399	 */
 400	unsigned int num_locks;
 401	bool no_sleep;
 402	struct buffer_tree trees[];
 403};
 404
 405static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
 406
 407static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
 408{
 409	return dm_hash_locks_index(block, num_locks);
 410}
 411
 412static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
 413{
 414	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
 415		read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
 416	else
 417		down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
 418}
 419
 420static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
 421{
 422	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
 423		read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
 424	else
 425		up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
 426}
 427
 428static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
 429{
 430	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
 431		write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
 432	else
 433		down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
 434}
 435
 436static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
 437{
 438	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
 439		write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
 440	else
 441		up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
 442}
 443
 444/*
 445 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
 446 * This struct helps avoid redundant drop and gets of the same lock.
 447 */
 448struct lock_history {
 449	struct dm_buffer_cache *cache;
 450	bool write;
 451	unsigned int previous;
 452	unsigned int no_previous;
 453};
 454
 455static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
 456{
 457	lh->cache = cache;
 458	lh->write = write;
 459	lh->no_previous = cache->num_locks;
 460	lh->previous = lh->no_previous;
 461}
 462
 463static void __lh_lock(struct lock_history *lh, unsigned int index)
 464{
 465	if (lh->write) {
 466		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
 467			write_lock_bh(&lh->cache->trees[index].u.spinlock);
 468		else
 469			down_write(&lh->cache->trees[index].u.lock);
 470	} else {
 471		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
 472			read_lock_bh(&lh->cache->trees[index].u.spinlock);
 473		else
 474			down_read(&lh->cache->trees[index].u.lock);
 475	}
 476}
 477
 478static void __lh_unlock(struct lock_history *lh, unsigned int index)
 479{
 480	if (lh->write) {
 481		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
 482			write_unlock_bh(&lh->cache->trees[index].u.spinlock);
 483		else
 484			up_write(&lh->cache->trees[index].u.lock);
 485	} else {
 486		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
 487			read_unlock_bh(&lh->cache->trees[index].u.spinlock);
 488		else
 489			up_read(&lh->cache->trees[index].u.lock);
 490	}
 491}
 492
 493/*
 494 * Make sure you call this since it will unlock the final lock.
 495 */
 496static void lh_exit(struct lock_history *lh)
 497{
 498	if (lh->previous != lh->no_previous) {
 499		__lh_unlock(lh, lh->previous);
 500		lh->previous = lh->no_previous;
 501	}
 502}
 503
 504/*
 505 * Named 'next' because there is no corresponding
 506 * 'up/unlock' call since it's done automatically.
 507 */
 508static void lh_next(struct lock_history *lh, sector_t b)
 509{
 510	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
 511
 512	if (lh->previous != lh->no_previous) {
 513		if (lh->previous != index) {
 514			__lh_unlock(lh, lh->previous);
 515			__lh_lock(lh, index);
 516			lh->previous = index;
 517		}
 518	} else {
 519		__lh_lock(lh, index);
 520		lh->previous = index;
 521	}
 522}
 523
 524static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
 525{
 526	return container_of(le, struct dm_buffer, lru);
 527}
 528
 529static struct dm_buffer *list_to_buffer(struct list_head *l)
 530{
 531	struct lru_entry *le = list_entry(l, struct lru_entry, list);
 532
 533	return le_to_buffer(le);
 534}
 535
 536static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
 537{
 538	unsigned int i;
 539
 540	bc->num_locks = num_locks;
 541	bc->no_sleep = no_sleep;
 542
 543	for (i = 0; i < bc->num_locks; i++) {
 544		if (no_sleep)
 545			rwlock_init(&bc->trees[i].u.spinlock);
 546		else
 547			init_rwsem(&bc->trees[i].u.lock);
 548		bc->trees[i].root = RB_ROOT;
 549	}
 550
 551	lru_init(&bc->lru[LIST_CLEAN]);
 552	lru_init(&bc->lru[LIST_DIRTY]);
 553}
 554
 555static void cache_destroy(struct dm_buffer_cache *bc)
 556{
 557	unsigned int i;
 558
 559	for (i = 0; i < bc->num_locks; i++)
 560		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
 561
 562	lru_destroy(&bc->lru[LIST_CLEAN]);
 563	lru_destroy(&bc->lru[LIST_DIRTY]);
 564}
 565
 566/*--------------*/
 567
 568/*
 569 * not threadsafe, or racey depending how you look at it
 570 */
 571static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
 572{
 573	return bc->lru[list_mode].count;
 574}
 575
 576static inline unsigned long cache_total(struct dm_buffer_cache *bc)
 577{
 578	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
 579}
 
 580
 581/*--------------*/
 582
 583/*
 584 * Gets a specific buffer, indexed by block.
 585 * If the buffer is found then its holder count will be incremented and
 586 * lru_reference will be called.
 587 *
 588 * threadsafe
 589 */
 590static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
 591{
 592	struct rb_node *n = root->rb_node;
 593	struct dm_buffer *b;
 594
 595	while (n) {
 596		b = container_of(n, struct dm_buffer, node);
 597
 598		if (b->block == block)
 599			return b;
 600
 601		n = block < b->block ? n->rb_left : n->rb_right;
 602	}
 603
 604	return NULL;
 605}
 606
 607static void __cache_inc_buffer(struct dm_buffer *b)
 608{
 609	atomic_inc(&b->hold_count);
 610	WRITE_ONCE(b->last_accessed, jiffies);
 611}
 612
 613static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
 614{
 615	struct dm_buffer *b;
 616
 617	cache_read_lock(bc, block);
 618	b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
 619	if (b) {
 620		lru_reference(&b->lru);
 621		__cache_inc_buffer(b);
 622	}
 623	cache_read_unlock(bc, block);
 624
 625	return b;
 626}
 627
 628/*--------------*/
 629
 630/*
 631 * Returns true if the hold count hits zero.
 632 * threadsafe
 633 */
 634static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
 635{
 636	bool r;
 637
 638	cache_read_lock(bc, b->block);
 639	BUG_ON(!atomic_read(&b->hold_count));
 640	r = atomic_dec_and_test(&b->hold_count);
 641	cache_read_unlock(bc, b->block);
 642
 643	return r;
 644}
 645
 646/*--------------*/
 647
 648typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
 649
 650/*
 651 * Evicts a buffer based on a predicate.  The oldest buffer that
 652 * matches the predicate will be selected.  In addition to the
 653 * predicate the hold_count of the selected buffer will be zero.
 654 */
 655struct evict_wrapper {
 656	struct lock_history *lh;
 657	b_predicate pred;
 658	void *context;
 659};
 660
 661/*
 662 * Wraps the buffer predicate turning it into an lru predicate.  Adds
 663 * extra test for hold_count.
 664 */
 665static enum evict_result __evict_pred(struct lru_entry *le, void *context)
 666{
 667	struct evict_wrapper *w = context;
 668	struct dm_buffer *b = le_to_buffer(le);
 669
 670	lh_next(w->lh, b->block);
 671
 672	if (atomic_read(&b->hold_count))
 673		return ER_DONT_EVICT;
 674
 675	return w->pred(b, w->context);
 676}
 677
 678static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
 679				       b_predicate pred, void *context,
 680				       struct lock_history *lh)
 681{
 682	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
 683	struct lru_entry *le;
 684	struct dm_buffer *b;
 685
 686	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
 687	if (!le)
 688		return NULL;
 689
 690	b = le_to_buffer(le);
 691	/* __evict_pred will have locked the appropriate tree. */
 692	rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
 693
 694	return b;
 695}
 
 696
 697static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
 698				     b_predicate pred, void *context)
 
 
 699{
 
 700	struct dm_buffer *b;
 701	struct lock_history lh;
 702
 703	lh_init(&lh, bc, true);
 704	b = __cache_evict(bc, list_mode, pred, context, &lh);
 705	lh_exit(&lh);
 706
 707	return b;
 708}
 709
 710/*--------------*/
 711
 712/*
 713 * Mark a buffer as clean or dirty. Not threadsafe.
 714 */
 715static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
 716{
 717	cache_write_lock(bc, b->block);
 718	if (list_mode != b->list_mode) {
 719		lru_remove(&bc->lru[b->list_mode], &b->lru);
 720		b->list_mode = list_mode;
 721		lru_insert(&bc->lru[b->list_mode], &b->lru);
 722	}
 723	cache_write_unlock(bc, b->block);
 724}
 725
 726/*--------------*/
 727
 728/*
 729 * Runs through the lru associated with 'old_mode', if the predicate matches then
 730 * it moves them to 'new_mode'.  Not threadsafe.
 731 */
 732static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
 733			      b_predicate pred, void *context, struct lock_history *lh)
 734{
 735	struct lru_entry *le;
 736	struct dm_buffer *b;
 737	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
 738
 739	while (true) {
 740		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
 741		if (!le)
 742			break;
 743
 744		b = le_to_buffer(le);
 745		b->list_mode = new_mode;
 746		lru_insert(&bc->lru[b->list_mode], &b->lru);
 747	}
 748}
 749
 750static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
 751			    b_predicate pred, void *context)
 752{
 753	struct lock_history lh;
 754
 755	lh_init(&lh, bc, true);
 756	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
 757	lh_exit(&lh);
 758}
 759
 760/*--------------*/
 761
 762/*
 763 * Iterates through all clean or dirty entries calling a function for each
 764 * entry.  The callback may terminate the iteration early.  Not threadsafe.
 765 */
 766
 767/*
 768 * Iterator functions should return one of these actions to indicate
 769 * how the iteration should proceed.
 770 */
 771enum it_action {
 772	IT_NEXT,
 773	IT_COMPLETE,
 774};
 775
 776typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
 777
 778static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
 779			    iter_fn fn, void *context, struct lock_history *lh)
 780{
 781	struct lru *lru = &bc->lru[list_mode];
 782	struct lru_entry *le, *first;
 783
 784	if (!lru->cursor)
 785		return;
 786
 787	first = le = to_le(lru->cursor);
 788	do {
 789		struct dm_buffer *b = le_to_buffer(le);
 790
 791		lh_next(lh, b->block);
 792
 793		switch (fn(b, context)) {
 794		case IT_NEXT:
 795			break;
 796
 797		case IT_COMPLETE:
 798			return;
 799		}
 800		cond_resched();
 801
 802		le = to_le(le->list.next);
 803	} while (le != first);
 804}
 805
 806static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
 807			  iter_fn fn, void *context)
 808{
 809	struct lock_history lh;
 810
 811	lh_init(&lh, bc, false);
 812	__cache_iterate(bc, list_mode, fn, context, &lh);
 813	lh_exit(&lh);
 814}
 815
 816/*--------------*/
 817
 818/*
 819 * Passes ownership of the buffer to the cache. Returns false if the
 820 * buffer was already present (in which case ownership does not pass).
 821 * eg, a race with another thread.
 822 *
 823 * Holder count should be 1 on insertion.
 824 *
 825 * Not threadsafe.
 826 */
 827static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
 828{
 829	struct rb_node **new = &root->rb_node, *parent = NULL;
 830	struct dm_buffer *found;
 831
 832	while (*new) {
 833		found = container_of(*new, struct dm_buffer, node);
 834
 835		if (found->block == b->block)
 836			return false;
 837
 838		parent = *new;
 839		new = b->block < found->block ?
 840			&found->node.rb_left : &found->node.rb_right;
 841	}
 842
 843	rb_link_node(&b->node, parent, new);
 844	rb_insert_color(&b->node, root);
 845
 846	return true;
 847}
 848
 849static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
 850{
 851	bool r;
 852
 853	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
 854		return false;
 855
 856	cache_write_lock(bc, b->block);
 857	BUG_ON(atomic_read(&b->hold_count) != 1);
 858	r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
 859	if (r)
 860		lru_insert(&bc->lru[b->list_mode], &b->lru);
 861	cache_write_unlock(bc, b->block);
 862
 863	return r;
 864}
 865
 866/*--------------*/
 867
 868/*
 869 * Removes buffer from cache, ownership of the buffer passes back to the caller.
 870 * Fails if the hold_count is not one (ie. the caller holds the only reference).
 871 *
 872 * Not threadsafe.
 873 */
 874static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
 875{
 876	bool r;
 877
 878	cache_write_lock(bc, b->block);
 879
 880	if (atomic_read(&b->hold_count) != 1) {
 881		r = false;
 882	} else {
 883		r = true;
 884		rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
 885		lru_remove(&bc->lru[b->list_mode], &b->lru);
 886	}
 887
 888	cache_write_unlock(bc, b->block);
 889
 890	return r;
 891}
 892
 893/*--------------*/
 894
 895typedef void (*b_release)(struct dm_buffer *);
 896
 897static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
 898{
 899	struct rb_node *n = root->rb_node;
 900	struct dm_buffer *b;
 901	struct dm_buffer *best = NULL;
 902
 903	while (n) {
 904		b = container_of(n, struct dm_buffer, node);
 905
 906		if (b->block == block)
 907			return b;
 908
 909		if (block <= b->block) {
 910			n = n->rb_left;
 911			best = b;
 912		} else {
 913			n = n->rb_right;
 914		}
 915	}
 916
 917	return best;
 918}
 919
 920static void __remove_range(struct dm_buffer_cache *bc,
 921			   struct rb_root *root,
 922			   sector_t begin, sector_t end,
 923			   b_predicate pred, b_release release)
 924{
 925	struct dm_buffer *b;
 
 926
 927	while (true) {
 928		cond_resched();
 929
 930		b = __find_next(root, begin);
 931		if (!b || (b->block >= end))
 932			break;
 933
 934		begin = b->block + 1;
 935
 936		if (atomic_read(&b->hold_count))
 937			continue;
 938
 939		if (pred(b, NULL) == ER_EVICT) {
 940			rb_erase(&b->node, root);
 941			lru_remove(&bc->lru[b->list_mode], &b->lru);
 942			release(b);
 943		}
 944	}
 945}
 946
 947static void cache_remove_range(struct dm_buffer_cache *bc,
 948			       sector_t begin, sector_t end,
 949			       b_predicate pred, b_release release)
 950{
 951	unsigned int i;
 952
 953	BUG_ON(bc->no_sleep);
 954	for (i = 0; i < bc->num_locks; i++) {
 955		down_write(&bc->trees[i].u.lock);
 956		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
 957		up_write(&bc->trees[i].u.lock);
 958	}
 959}
 960
 961/*----------------------------------------------------------------*/
 962
 963/*
 964 * Linking of buffers:
 965 *	All buffers are linked to buffer_cache with their node field.
 966 *
 967 *	Clean buffers that are not being written (B_WRITING not set)
 968 *	are linked to lru[LIST_CLEAN] with their lru_list field.
 969 *
 970 *	Dirty and clean buffers that are being written are linked to
 971 *	lru[LIST_DIRTY] with their lru_list field. When the write
 972 *	finishes, the buffer cannot be relinked immediately (because we
 973 *	are in an interrupt context and relinking requires process
 974 *	context), so some clean-not-writing buffers can be held on
 975 *	dirty_lru too.  They are later added to lru in the process
 976 *	context.
 977 */
 978struct dm_bufio_client {
 979	struct block_device *bdev;
 980	unsigned int block_size;
 981	s8 sectors_per_block_bits;
 982
 983	bool no_sleep;
 984	struct mutex lock;
 985	spinlock_t spinlock;
 986
 987	int async_write_error;
 988
 989	void (*alloc_callback)(struct dm_buffer *buf);
 990	void (*write_callback)(struct dm_buffer *buf);
 991	struct kmem_cache *slab_buffer;
 992	struct kmem_cache *slab_cache;
 993	struct dm_io_client *dm_io;
 994
 995	struct list_head reserved_buffers;
 996	unsigned int need_reserved_buffers;
 997
 998	unsigned int minimum_buffers;
 999
1000	sector_t start;
1001
1002	struct shrinker *shrinker;
1003	struct work_struct shrink_work;
1004	atomic_long_t need_shrink;
1005
1006	wait_queue_head_t free_buffer_wait;
1007
1008	struct list_head client_list;
1009
1010	/*
1011	 * Used by global_cleanup to sort the clients list.
1012	 */
1013	unsigned long oldest_buffer;
1014
1015	struct dm_buffer_cache cache; /* must be last member */
1016};
1017
1018/*----------------------------------------------------------------*/
1019
1020#define dm_bufio_in_request()	(!!current->bio_list)
1021
1022static void dm_bufio_lock(struct dm_bufio_client *c)
1023{
1024	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1025		spin_lock_bh(&c->spinlock);
1026	else
1027		mutex_lock_nested(&c->lock, dm_bufio_in_request());
1028}
1029
1030static void dm_bufio_unlock(struct dm_bufio_client *c)
1031{
1032	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1033		spin_unlock_bh(&c->spinlock);
1034	else
1035		mutex_unlock(&c->lock);
1036}
1037
1038/*----------------------------------------------------------------*/
1039
1040/*
1041 * Default cache size: available memory divided by the ratio.
1042 */
1043static unsigned long dm_bufio_default_cache_size;
1044
1045/*
1046 * Total cache size set by the user.
1047 */
1048static unsigned long dm_bufio_cache_size;
1049
1050/*
1051 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1052 * at any time.  If it disagrees, the user has changed cache size.
1053 */
1054static unsigned long dm_bufio_cache_size_latch;
1055
1056static DEFINE_SPINLOCK(global_spinlock);
1057
1058/*
1059 * Buffers are freed after this timeout
1060 */
1061static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1062static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1063
1064static unsigned long dm_bufio_peak_allocated;
1065static unsigned long dm_bufio_allocated_kmem_cache;
1066static unsigned long dm_bufio_allocated_kmalloc;
1067static unsigned long dm_bufio_allocated_get_free_pages;
1068static unsigned long dm_bufio_allocated_vmalloc;
1069static unsigned long dm_bufio_current_allocated;
1070
1071/*----------------------------------------------------------------*/
1072
1073/*
1074 * The current number of clients.
1075 */
1076static int dm_bufio_client_count;
1077
1078/*
1079 * The list of all clients.
1080 */
1081static LIST_HEAD(dm_bufio_all_clients);
1082
1083/*
1084 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1085 */
1086static DEFINE_MUTEX(dm_bufio_clients_lock);
1087
1088static struct workqueue_struct *dm_bufio_wq;
1089static struct delayed_work dm_bufio_cleanup_old_work;
1090static struct work_struct dm_bufio_replacement_work;
1091
1092
1093#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1094static void buffer_record_stack(struct dm_buffer *b)
1095{
1096	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1097}
1098#endif
1099
1100/*----------------------------------------------------------------*/
1101
1102static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1103{
1104	unsigned char data_mode;
1105	long diff;
1106
1107	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1108		&dm_bufio_allocated_kmem_cache,
1109		&dm_bufio_allocated_kmalloc,
1110		&dm_bufio_allocated_get_free_pages,
1111		&dm_bufio_allocated_vmalloc,
1112	};
1113
1114	data_mode = b->data_mode;
1115	diff = (long)b->c->block_size;
1116	if (unlink)
1117		diff = -diff;
1118
1119	spin_lock(&global_spinlock);
1120
1121	*class_ptr[data_mode] += diff;
1122
1123	dm_bufio_current_allocated += diff;
1124
1125	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127
 
 
1128	if (!unlink) {
 
 
1129		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
 
 
 
1131	}
1132
1133	spin_unlock(&global_spinlock);
1134}
1135
1136/*
1137 * Change the number of clients and recalculate per-client limit.
1138 */
1139static void __cache_size_refresh(void)
1140{
1141	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142		return;
1143	if (WARN_ON(dm_bufio_client_count < 0))
1144		return;
1145
1146	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147
1148	/*
1149	 * Use default if set to 0 and report the actual cache size used.
1150	 */
1151	if (!dm_bufio_cache_size_latch) {
1152		(void)cmpxchg(&dm_bufio_cache_size, 0,
1153			      dm_bufio_default_cache_size);
1154		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155	}
1156}
1157
1158/*
1159 * Allocating buffer data.
1160 *
1161 * Small buffers are allocated with kmem_cache, to use space optimally.
1162 *
1163 * For large buffers, we choose between get_free_pages and vmalloc.
1164 * Each has advantages and disadvantages.
1165 *
1166 * __get_free_pages can randomly fail if the memory is fragmented.
1167 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168 * as low as 128M) so using it for caching is not appropriate.
1169 *
1170 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171 * won't have a fatal effect here, but it just causes flushes of some other
1172 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173 * always fails (i.e. order > MAX_PAGE_ORDER).
1174 *
1175 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176 * initial reserve allocation, so there's no risk of wasting all vmalloc
1177 * space.
1178 */
1179static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180			       unsigned char *data_mode)
1181{
1182	if (unlikely(c->slab_cache != NULL)) {
1183		*data_mode = DATA_MODE_SLAB;
1184		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185	}
1186
1187	if (unlikely(c->block_size < PAGE_SIZE)) {
1188		*data_mode = DATA_MODE_KMALLOC;
1189		return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1190	}
1191
1192	if (c->block_size <= KMALLOC_MAX_SIZE &&
1193	    gfp_mask & __GFP_NORETRY) {
1194		*data_mode = DATA_MODE_GET_FREE_PAGES;
1195		return (void *)__get_free_pages(gfp_mask,
1196						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1197	}
1198
1199	*data_mode = DATA_MODE_VMALLOC;
1200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	return __vmalloc(c->block_size, gfp_mask);
1202}
1203
1204/*
1205 * Free buffer's data.
1206 */
1207static void free_buffer_data(struct dm_bufio_client *c,
1208			     void *data, unsigned char data_mode)
1209{
1210	switch (data_mode) {
1211	case DATA_MODE_SLAB:
1212		kmem_cache_free(c->slab_cache, data);
1213		break;
1214
1215	case DATA_MODE_KMALLOC:
1216		kfree(data);
1217		break;
1218
1219	case DATA_MODE_GET_FREE_PAGES:
1220		free_pages((unsigned long)data,
1221			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1222		break;
1223
1224	case DATA_MODE_VMALLOC:
1225		vfree(data);
1226		break;
1227
1228	default:
1229		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1230		       data_mode);
1231		BUG();
1232	}
1233}
1234
1235/*
1236 * Allocate buffer and its data.
1237 */
1238static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1239{
1240	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1241
1242	if (!b)
1243		return NULL;
1244
1245	b->c = c;
1246
1247	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1248	if (!b->data) {
1249		kmem_cache_free(c->slab_buffer, b);
1250		return NULL;
1251	}
1252	adjust_total_allocated(b, false);
1253
1254#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1255	b->stack_len = 0;
1256#endif
1257	return b;
1258}
1259
1260/*
1261 * Free buffer and its data.
1262 */
1263static void free_buffer(struct dm_buffer *b)
1264{
1265	struct dm_bufio_client *c = b->c;
1266
1267	adjust_total_allocated(b, true);
1268	free_buffer_data(c, b->data, b->data_mode);
1269	kmem_cache_free(c->slab_buffer, b);
1270}
1271
1272/*
1273 *--------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274 * Submit I/O on the buffer.
1275 *
1276 * Bio interface is faster but it has some problems:
1277 *	the vector list is limited (increasing this limit increases
1278 *	memory-consumption per buffer, so it is not viable);
1279 *
1280 *	the memory must be direct-mapped, not vmalloced;
1281 *
1282 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1283 * it is not vmalloced, try using the bio interface.
1284 *
1285 * If the buffer is big, if it is vmalloced or if the underlying device
1286 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1287 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1288 * shortcomings.
1289 *--------------------------------------------------------------------------
1290 */
1291
1292/*
1293 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1294 * that the request was handled directly with bio interface.
1295 */
1296static void dmio_complete(unsigned long error, void *context)
1297{
1298	struct dm_buffer *b = context;
1299
1300	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1301}
1302
1303static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1304		     unsigned int n_sectors, unsigned int offset,
1305		     unsigned short ioprio)
1306{
1307	int r;
1308	struct dm_io_request io_req = {
1309		.bi_opf = op,
 
1310		.notify.fn = dmio_complete,
1311		.notify.context = b,
1312		.client = b->c->dm_io,
1313	};
1314	struct dm_io_region region = {
1315		.bdev = b->c->bdev,
1316		.sector = sector,
1317		.count = n_sectors,
1318	};
1319
1320	if (b->data_mode != DATA_MODE_VMALLOC) {
1321		io_req.mem.type = DM_IO_KMEM;
1322		io_req.mem.ptr.addr = (char *)b->data + offset;
1323	} else {
1324		io_req.mem.type = DM_IO_VMA;
1325		io_req.mem.ptr.vma = (char *)b->data + offset;
1326	}
1327
1328	r = dm_io(&io_req, 1, &region, NULL, ioprio);
1329	if (unlikely(r))
1330		b->end_io(b, errno_to_blk_status(r));
1331}
1332
1333static void bio_complete(struct bio *bio)
1334{
1335	struct dm_buffer *b = bio->bi_private;
1336	blk_status_t status = bio->bi_status;
1337
1338	bio_uninit(bio);
1339	kfree(bio);
1340	b->end_io(b, status);
1341}
1342
1343static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1344		    unsigned int n_sectors, unsigned int offset,
1345		    unsigned short ioprio)
1346{
1347	struct bio *bio;
1348	char *ptr;
1349	unsigned int len;
1350
1351	bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
 
 
 
 
1352	if (!bio) {
1353		use_dmio(b, op, sector, n_sectors, offset, ioprio);
 
1354		return;
1355	}
1356	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1357	bio->bi_iter.bi_sector = sector;
 
 
1358	bio->bi_end_io = bio_complete;
1359	bio->bi_private = b;
1360	bio->bi_ioprio = ioprio;
1361
1362	ptr = (char *)b->data + offset;
1363	len = n_sectors << SECTOR_SHIFT;
1364
1365	__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
 
 
 
 
 
 
 
 
 
 
1366
1367	submit_bio(bio);
1368}
1369
1370static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1371{
1372	sector_t sector;
1373
1374	if (likely(c->sectors_per_block_bits >= 0))
1375		sector = block << c->sectors_per_block_bits;
1376	else
1377		sector = block * (c->block_size >> SECTOR_SHIFT);
1378	sector += c->start;
1379
1380	return sector;
1381}
1382
1383static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1384		      void (*end_io)(struct dm_buffer *, blk_status_t))
1385{
1386	unsigned int n_sectors;
1387	sector_t sector;
1388	unsigned int offset, end;
1389
1390	b->end_io = end_io;
1391
1392	sector = block_to_sector(b->c, b->block);
1393
1394	if (op != REQ_OP_WRITE) {
1395		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1396		offset = 0;
1397	} else {
1398		if (b->c->write_callback)
1399			b->c->write_callback(b);
1400		offset = b->write_start;
1401		end = b->write_end;
1402		offset &= -DM_BUFIO_WRITE_ALIGN;
1403		end += DM_BUFIO_WRITE_ALIGN - 1;
1404		end &= -DM_BUFIO_WRITE_ALIGN;
1405		if (unlikely(end > b->c->block_size))
1406			end = b->c->block_size;
1407
1408		sector += offset >> SECTOR_SHIFT;
1409		n_sectors = (end - offset) >> SECTOR_SHIFT;
1410	}
1411
1412	if (b->data_mode != DATA_MODE_VMALLOC)
1413		use_bio(b, op, sector, n_sectors, offset, ioprio);
1414	else
1415		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1416}
1417
1418/*
1419 *--------------------------------------------------------------
1420 * Writing dirty buffers
1421 *--------------------------------------------------------------
1422 */
1423
1424/*
1425 * The endio routine for write.
1426 *
1427 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1428 * it.
1429 */
1430static void write_endio(struct dm_buffer *b, blk_status_t status)
1431{
1432	b->write_error = status;
1433	if (unlikely(status)) {
1434		struct dm_bufio_client *c = b->c;
1435
1436		(void)cmpxchg(&c->async_write_error, 0,
1437				blk_status_to_errno(status));
1438	}
1439
1440	BUG_ON(!test_bit(B_WRITING, &b->state));
1441
1442	smp_mb__before_atomic();
1443	clear_bit(B_WRITING, &b->state);
1444	smp_mb__after_atomic();
1445
1446	wake_up_bit(&b->state, B_WRITING);
1447}
1448
1449/*
1450 * Initiate a write on a dirty buffer, but don't wait for it.
1451 *
1452 * - If the buffer is not dirty, exit.
1453 * - If there some previous write going on, wait for it to finish (we can't
1454 *   have two writes on the same buffer simultaneously).
1455 * - Submit our write and don't wait on it. We set B_WRITING indicating
1456 *   that there is a write in progress.
1457 */
1458static void __write_dirty_buffer(struct dm_buffer *b,
1459				 struct list_head *write_list)
1460{
1461	if (!test_bit(B_DIRTY, &b->state))
1462		return;
1463
1464	clear_bit(B_DIRTY, &b->state);
1465	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1466
1467	b->write_start = b->dirty_start;
1468	b->write_end = b->dirty_end;
1469
1470	if (!write_list)
1471		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1472	else
1473		list_add_tail(&b->write_list, write_list);
1474}
1475
1476static void __flush_write_list(struct list_head *write_list)
1477{
1478	struct blk_plug plug;
1479
1480	blk_start_plug(&plug);
1481	while (!list_empty(write_list)) {
1482		struct dm_buffer *b =
1483			list_entry(write_list->next, struct dm_buffer, write_list);
1484		list_del(&b->write_list);
1485		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1486		cond_resched();
1487	}
1488	blk_finish_plug(&plug);
1489}
1490
1491/*
1492 * Wait until any activity on the buffer finishes.  Possibly write the
1493 * buffer if it is dirty.  When this function finishes, there is no I/O
1494 * running on the buffer and the buffer is not dirty.
1495 */
1496static void __make_buffer_clean(struct dm_buffer *b)
1497{
1498	BUG_ON(atomic_read(&b->hold_count));
1499
1500	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1501	if (!smp_load_acquire(&b->state))	/* fast case */
1502		return;
1503
1504	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1505	__write_dirty_buffer(b, NULL);
1506	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1507}
1508
1509static enum evict_result is_clean(struct dm_buffer *b, void *context)
1510{
1511	struct dm_bufio_client *c = context;
1512
1513	/* These should never happen */
1514	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1515		return ER_DONT_EVICT;
1516	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1517		return ER_DONT_EVICT;
1518	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1519		return ER_DONT_EVICT;
1520
1521	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1522	    unlikely(test_bit(B_READING, &b->state)))
1523		return ER_DONT_EVICT;
1524
1525	return ER_EVICT;
1526}
1527
1528static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1529{
1530	/* These should never happen */
1531	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1532		return ER_DONT_EVICT;
1533	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1534		return ER_DONT_EVICT;
1535
1536	return ER_EVICT;
1537}
1538
1539/*
1540 * Find some buffer that is not held by anybody, clean it, unlink it and
1541 * return it.
1542 */
1543static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1544{
1545	struct dm_buffer *b;
1546
1547	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1548	if (b) {
1549		/* this also waits for pending reads */
1550		__make_buffer_clean(b);
1551		return b;
 
 
 
 
 
1552	}
1553
1554	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1555		return NULL;
1556
1557	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1558	if (b) {
1559		__make_buffer_clean(b);
1560		return b;
 
 
1561	}
1562
1563	return NULL;
1564}
1565
1566/*
1567 * Wait until some other threads free some buffer or release hold count on
1568 * some buffer.
1569 *
1570 * This function is entered with c->lock held, drops it and regains it
1571 * before exiting.
1572 */
1573static void __wait_for_free_buffer(struct dm_bufio_client *c)
1574{
1575	DECLARE_WAITQUEUE(wait, current);
1576
1577	add_wait_queue(&c->free_buffer_wait, &wait);
1578	set_current_state(TASK_UNINTERRUPTIBLE);
1579	dm_bufio_unlock(c);
1580
1581	/*
1582	 * It's possible to miss a wake up event since we don't always
1583	 * hold c->lock when wake_up is called.  So we have a timeout here,
1584	 * just in case.
1585	 */
1586	io_schedule_timeout(5 * HZ);
1587
1588	remove_wait_queue(&c->free_buffer_wait, &wait);
1589
1590	dm_bufio_lock(c);
1591}
1592
1593enum new_flag {
1594	NF_FRESH = 0,
1595	NF_READ = 1,
1596	NF_GET = 2,
1597	NF_PREFETCH = 3
1598};
1599
1600/*
1601 * Allocate a new buffer. If the allocation is not possible, wait until
1602 * some other thread frees a buffer.
1603 *
1604 * May drop the lock and regain it.
1605 */
1606static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1607{
1608	struct dm_buffer *b;
1609	bool tried_noio_alloc = false;
1610
1611	/*
1612	 * dm-bufio is resistant to allocation failures (it just keeps
1613	 * one buffer reserved in cases all the allocations fail).
1614	 * So set flags to not try too hard:
1615	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1616	 *		    mutex and wait ourselves.
1617	 *	__GFP_NORETRY: don't retry and rather return failure
1618	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1619	 *	__GFP_NOWARN: don't print a warning in case of failure
1620	 *
1621	 * For debugging, if we set the cache size to 1, no new buffers will
1622	 * be allocated.
1623	 */
1624	while (1) {
1625		if (dm_bufio_cache_size_latch != 1) {
1626			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1627			if (b)
1628				return b;
1629		}
1630
1631		if (nf == NF_PREFETCH)
1632			return NULL;
1633
1634		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1635			dm_bufio_unlock(c);
1636			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1637			dm_bufio_lock(c);
1638			if (b)
1639				return b;
1640			tried_noio_alloc = true;
1641		}
1642
1643		if (!list_empty(&c->reserved_buffers)) {
1644			b = list_to_buffer(c->reserved_buffers.next);
1645			list_del(&b->lru.list);
 
1646			c->need_reserved_buffers++;
1647
1648			return b;
1649		}
1650
1651		b = __get_unclaimed_buffer(c);
1652		if (b)
1653			return b;
1654
1655		__wait_for_free_buffer(c);
1656	}
1657}
1658
1659static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1660{
1661	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1662
1663	if (!b)
1664		return NULL;
1665
1666	if (c->alloc_callback)
1667		c->alloc_callback(b);
1668
1669	return b;
1670}
1671
1672/*
1673 * Free a buffer and wake other threads waiting for free buffers.
1674 */
1675static void __free_buffer_wake(struct dm_buffer *b)
1676{
1677	struct dm_bufio_client *c = b->c;
1678
1679	b->block = -1;
1680	if (!c->need_reserved_buffers)
1681		free_buffer(b);
1682	else {
1683		list_add(&b->lru.list, &c->reserved_buffers);
1684		c->need_reserved_buffers--;
1685	}
1686
1687	/*
1688	 * We hold the bufio lock here, so no one can add entries to the
1689	 * wait queue anyway.
1690	 */
1691	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1692		wake_up(&c->free_buffer_wait);
1693}
1694
1695static enum evict_result cleaned(struct dm_buffer *b, void *context)
 
1696{
1697	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1698		return ER_DONT_EVICT; /* should never happen */
1699
1700	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1701		return ER_DONT_EVICT;
1702	else
1703		return ER_EVICT;
1704}
1705
1706static void __move_clean_buffers(struct dm_bufio_client *c)
1707{
1708	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1709}
 
1710
1711struct write_context {
1712	int no_wait;
1713	struct list_head *write_list;
1714};
1715
1716static enum it_action write_one(struct dm_buffer *b, void *context)
1717{
1718	struct write_context *wc = context;
1719
1720	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1721		return IT_COMPLETE;
1722
1723	__write_dirty_buffer(b, wc->write_list);
1724	return IT_NEXT;
1725}
1726
1727static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1728					struct list_head *write_list)
1729{
1730	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1731
1732	__move_clean_buffers(c);
1733	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1734}
1735
1736/*
1737 * Check if we're over watermark.
1738 * If we are over threshold_buffers, start freeing buffers.
1739 * If we're over "limit_buffers", block until we get under the limit.
1740 */
1741static void __check_watermark(struct dm_bufio_client *c,
1742			      struct list_head *write_list)
1743{
1744	if (cache_count(&c->cache, LIST_DIRTY) >
1745	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1746		__write_dirty_buffers_async(c, 1, write_list);
1747}
1748
1749/*
1750 *--------------------------------------------------------------
1751 * Getting a buffer
1752 *--------------------------------------------------------------
1753 */
1754
1755static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1756{
1757	/*
1758	 * Relying on waitqueue_active() is racey, but we sleep
1759	 * with schedule_timeout anyway.
1760	 */
1761	if (cache_put(&c->cache, b) &&
1762	    unlikely(waitqueue_active(&c->free_buffer_wait)))
1763		wake_up(&c->free_buffer_wait);
1764}
1765
1766/*
1767 * This assumes you have already checked the cache to see if the buffer
1768 * is already present (it will recheck after dropping the lock for allocation).
1769 */
1770static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1771				     enum new_flag nf, int *need_submit,
1772				     struct list_head *write_list)
1773{
1774	struct dm_buffer *b, *new_b = NULL;
1775
1776	*need_submit = 0;
1777
1778	/* This can't be called with NF_GET */
1779	if (WARN_ON_ONCE(nf == NF_GET))
 
 
 
1780		return NULL;
1781
1782	new_b = __alloc_buffer_wait(c, nf);
1783	if (!new_b)
1784		return NULL;
1785
1786	/*
1787	 * We've had a period where the mutex was unlocked, so need to
1788	 * recheck the buffer tree.
1789	 */
1790	b = cache_get(&c->cache, block);
1791	if (b) {
1792		__free_buffer_wake(new_b);
1793		goto found_buffer;
1794	}
1795
1796	__check_watermark(c, write_list);
1797
1798	b = new_b;
1799	atomic_set(&b->hold_count, 1);
1800	WRITE_ONCE(b->last_accessed, jiffies);
1801	b->block = block;
1802	b->read_error = 0;
1803	b->write_error = 0;
1804	b->list_mode = LIST_CLEAN;
1805
1806	if (nf == NF_FRESH)
1807		b->state = 0;
1808	else {
1809		b->state = 1 << B_READING;
1810		*need_submit = 1;
1811	}
1812
1813	/*
1814	 * We mustn't insert into the cache until the B_READING state
1815	 * is set.  Otherwise another thread could get it and use
1816	 * it before it had been read.
1817	 */
1818	cache_insert(&c->cache, b);
1819
1820	return b;
1821
1822found_buffer:
1823	if (nf == NF_PREFETCH) {
1824		cache_put_and_wake(c, b);
1825		return NULL;
1826	}
1827
1828	/*
1829	 * Note: it is essential that we don't wait for the buffer to be
1830	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1831	 * dm_bufio_prefetch can be used in the driver request routine.
1832	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1833	 * the same buffer, it would deadlock if we waited.
1834	 */
1835	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1836		cache_put_and_wake(c, b);
1837		return NULL;
1838	}
1839
 
 
 
1840	return b;
1841}
1842
1843/*
1844 * The endio routine for reading: set the error, clear the bit and wake up
1845 * anyone waiting on the buffer.
1846 */
1847static void read_endio(struct dm_buffer *b, blk_status_t status)
1848{
1849	b->read_error = status;
1850
1851	BUG_ON(!test_bit(B_READING, &b->state));
1852
1853	smp_mb__before_atomic();
1854	clear_bit(B_READING, &b->state);
1855	smp_mb__after_atomic();
1856
1857	wake_up_bit(&b->state, B_READING);
1858}
1859
1860/*
1861 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1862 * functions is similar except that dm_bufio_new doesn't read the
1863 * buffer from the disk (assuming that the caller overwrites all the data
1864 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1865 */
1866static void *new_read(struct dm_bufio_client *c, sector_t block,
1867		      enum new_flag nf, struct dm_buffer **bp,
1868		      unsigned short ioprio)
1869{
1870	int need_submit = 0;
1871	struct dm_buffer *b;
1872
1873	LIST_HEAD(write_list);
1874
1875	*bp = NULL;
1876
1877	/*
1878	 * Fast path, hopefully the block is already in the cache.  No need
1879	 * to get the client lock for this.
1880	 */
1881	b = cache_get(&c->cache, block);
1882	if (b) {
1883		if (nf == NF_PREFETCH) {
1884			cache_put_and_wake(c, b);
1885			return NULL;
1886		}
1887
1888		/*
1889		 * Note: it is essential that we don't wait for the buffer to be
1890		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1891		 * dm_bufio_prefetch can be used in the driver request routine.
1892		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1893		 * the same buffer, it would deadlock if we waited.
1894		 */
1895		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1896			cache_put_and_wake(c, b);
1897			return NULL;
1898		}
1899	}
1900
1901	if (!b) {
1902		if (nf == NF_GET)
1903			return NULL;
1904
1905		dm_bufio_lock(c);
1906		b = __bufio_new(c, block, nf, &need_submit, &write_list);
1907		dm_bufio_unlock(c);
1908	}
1909
1910#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1911	if (b && (atomic_read(&b->hold_count) == 1))
1912		buffer_record_stack(b);
1913#endif
 
1914
1915	__flush_write_list(&write_list);
1916
1917	if (!b)
1918		return NULL;
1919
1920	if (need_submit)
1921		submit_io(b, REQ_OP_READ, ioprio, read_endio);
1922
1923	if (nf != NF_GET)	/* we already tested this condition above */
1924		wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1925
1926	if (b->read_error) {
1927		int error = blk_status_to_errno(b->read_error);
1928
1929		dm_bufio_release(b);
1930
1931		return ERR_PTR(error);
1932	}
1933
1934	*bp = b;
1935
1936	return b->data;
1937}
1938
1939void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1940		   struct dm_buffer **bp)
1941{
1942	return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1943}
1944EXPORT_SYMBOL_GPL(dm_bufio_get);
1945
1946static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947			struct dm_buffer **bp, unsigned short ioprio)
1948{
1949	if (WARN_ON_ONCE(dm_bufio_in_request()))
1950		return ERR_PTR(-EINVAL);
1951
1952	return new_read(c, block, NF_READ, bp, ioprio);
1953}
1954
1955void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1956		    struct dm_buffer **bp)
1957{
1958	return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
 
 
1959}
1960EXPORT_SYMBOL_GPL(dm_bufio_read);
1961
1962void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1963				struct dm_buffer **bp, unsigned short ioprio)
1964{
1965	return __dm_bufio_read(c, block, bp, ioprio);
1966}
1967EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1968
1969void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1970		   struct dm_buffer **bp)
1971{
1972	if (WARN_ON_ONCE(dm_bufio_in_request()))
1973		return ERR_PTR(-EINVAL);
1974
1975	return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1976}
1977EXPORT_SYMBOL_GPL(dm_bufio_new);
1978
1979static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1980			sector_t block, unsigned int n_blocks,
1981			unsigned short ioprio)
1982{
1983	struct blk_plug plug;
1984
1985	LIST_HEAD(write_list);
1986
1987	if (WARN_ON_ONCE(dm_bufio_in_request()))
1988		return; /* should never happen */
1989
1990	blk_start_plug(&plug);
 
1991
1992	for (; n_blocks--; block++) {
1993		int need_submit;
1994		struct dm_buffer *b;
1995
1996		b = cache_get(&c->cache, block);
1997		if (b) {
1998			/* already in cache */
1999			cache_put_and_wake(c, b);
2000			continue;
2001		}
2002
2003		dm_bufio_lock(c);
2004		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
2005				&write_list);
2006		if (unlikely(!list_empty(&write_list))) {
2007			dm_bufio_unlock(c);
2008			blk_finish_plug(&plug);
2009			__flush_write_list(&write_list);
2010			blk_start_plug(&plug);
2011			dm_bufio_lock(c);
2012		}
2013		if (unlikely(b != NULL)) {
2014			dm_bufio_unlock(c);
2015
2016			if (need_submit)
2017				submit_io(b, REQ_OP_READ, ioprio, read_endio);
2018			dm_bufio_release(b);
2019
2020			cond_resched();
2021
2022			if (!n_blocks)
2023				goto flush_plug;
2024			dm_bufio_lock(c);
2025		}
2026		dm_bufio_unlock(c);
2027	}
2028
 
 
2029flush_plug:
2030	blk_finish_plug(&plug);
2031}
2032
2033void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2034{
2035	return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2036}
2037EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2038
2039void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2040				unsigned int n_blocks, unsigned short ioprio)
2041{
2042	return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2043}
2044EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2045
2046void dm_bufio_release(struct dm_buffer *b)
2047{
2048	struct dm_bufio_client *c = b->c;
2049
2050	/*
2051	 * If there were errors on the buffer, and the buffer is not
2052	 * to be written, free the buffer. There is no point in caching
2053	 * invalid buffer.
2054	 */
2055	if ((b->read_error || b->write_error) &&
2056	    !test_bit_acquire(B_READING, &b->state) &&
2057	    !test_bit(B_WRITING, &b->state) &&
2058	    !test_bit(B_DIRTY, &b->state)) {
2059		dm_bufio_lock(c);
2060
2061		/* cache remove can fail if there are other holders */
2062		if (cache_remove(&c->cache, b)) {
 
 
 
 
 
 
 
 
2063			__free_buffer_wake(b);
2064			dm_bufio_unlock(c);
2065			return;
2066		}
2067
2068		dm_bufio_unlock(c);
2069	}
2070
2071	cache_put_and_wake(c, b);
2072}
2073EXPORT_SYMBOL_GPL(dm_bufio_release);
2074
2075void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2076					unsigned int start, unsigned int end)
2077{
2078	struct dm_bufio_client *c = b->c;
2079
2080	BUG_ON(start >= end);
2081	BUG_ON(end > b->c->block_size);
2082
2083	dm_bufio_lock(c);
2084
2085	BUG_ON(test_bit(B_READING, &b->state));
2086
2087	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2088		b->dirty_start = start;
2089		b->dirty_end = end;
2090		cache_mark(&c->cache, b, LIST_DIRTY);
2091	} else {
2092		if (start < b->dirty_start)
2093			b->dirty_start = start;
2094		if (end > b->dirty_end)
2095			b->dirty_end = end;
2096	}
2097
2098	dm_bufio_unlock(c);
2099}
2100EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2101
2102void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2103{
2104	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2105}
2106EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2107
2108void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2109{
2110	LIST_HEAD(write_list);
2111
2112	if (WARN_ON_ONCE(dm_bufio_in_request()))
2113		return; /* should never happen */
2114
2115	dm_bufio_lock(c);
2116	__write_dirty_buffers_async(c, 0, &write_list);
2117	dm_bufio_unlock(c);
2118	__flush_write_list(&write_list);
2119}
2120EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2121
2122/*
2123 * For performance, it is essential that the buffers are written asynchronously
2124 * and simultaneously (so that the block layer can merge the writes) and then
2125 * waited upon.
2126 *
2127 * Finally, we flush hardware disk cache.
2128 */
2129static bool is_writing(struct lru_entry *e, void *context)
2130{
2131	struct dm_buffer *b = le_to_buffer(e);
2132
2133	return test_bit(B_WRITING, &b->state);
2134}
2135
2136int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2137{
2138	int a, f;
2139	unsigned long nr_buffers;
2140	struct lru_entry *e;
2141	struct lru_iter it;
2142
2143	LIST_HEAD(write_list);
2144
2145	dm_bufio_lock(c);
2146	__write_dirty_buffers_async(c, 0, &write_list);
2147	dm_bufio_unlock(c);
2148	__flush_write_list(&write_list);
2149	dm_bufio_lock(c);
2150
2151	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2152	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2153	while ((e = lru_iter_next(&it, is_writing, c))) {
2154		struct dm_buffer *b = le_to_buffer(e);
2155		__cache_inc_buffer(b);
 
2156
2157		BUG_ON(test_bit(B_READING, &b->state));
2158
2159		if (nr_buffers) {
2160			nr_buffers--;
2161			dm_bufio_unlock(c);
2162			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2163			dm_bufio_lock(c);
2164		} else {
2165			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2166		}
 
 
 
 
 
 
 
 
 
2167
2168		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2169			cache_mark(&c->cache, b, LIST_CLEAN);
2170
2171		cache_put_and_wake(c, b);
2172
2173		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
2174	}
2175	lru_iter_end(&it);
2176
2177	wake_up(&c->free_buffer_wait);
2178	dm_bufio_unlock(c);
2179
2180	a = xchg(&c->async_write_error, 0);
2181	f = dm_bufio_issue_flush(c);
2182	if (a)
2183		return a;
2184
2185	return f;
2186}
2187EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2188
2189/*
2190 * Use dm-io to send an empty barrier to flush the device.
2191 */
2192int dm_bufio_issue_flush(struct dm_bufio_client *c)
2193{
2194	struct dm_io_request io_req = {
2195		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
 
2196		.mem.type = DM_IO_KMEM,
2197		.mem.ptr.addr = NULL,
2198		.client = c->dm_io,
2199	};
2200	struct dm_io_region io_reg = {
2201		.bdev = c->bdev,
2202		.sector = 0,
2203		.count = 0,
2204	};
2205
2206	if (WARN_ON_ONCE(dm_bufio_in_request()))
2207		return -EINVAL;
2208
2209	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2210}
2211EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2212
2213/*
2214 * Use dm-io to send a discard request to flush the device.
2215 */
2216int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2217{
2218	struct dm_io_request io_req = {
2219		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
 
2220		.mem.type = DM_IO_KMEM,
2221		.mem.ptr.addr = NULL,
2222		.client = c->dm_io,
2223	};
2224	struct dm_io_region io_reg = {
2225		.bdev = c->bdev,
2226		.sector = block_to_sector(c, block),
2227		.count = block_to_sector(c, count),
2228	};
2229
2230	if (WARN_ON_ONCE(dm_bufio_in_request()))
2231		return -EINVAL; /* discards are optional */
2232
2233	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2234}
2235EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2236
2237static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
 
 
 
 
 
 
 
 
 
 
 
 
2238{
2239	struct dm_buffer *b;
 
 
 
 
 
2240
2241	b = cache_get(&c->cache, block);
2242	if (b) {
2243		if (likely(!smp_load_acquire(&b->state))) {
2244			if (cache_remove(&c->cache, b))
2245				__free_buffer_wake(b);
2246			else
2247				cache_put_and_wake(c, b);
2248		} else {
2249			cache_put_and_wake(c, b);
2250		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251	}
2252
2253	return b ? true : false;
 
 
 
 
 
 
 
 
 
 
2254}
2255
2256/*
2257 * Free the given buffer.
2258 *
2259 * This is just a hint, if the buffer is in use or dirty, this function
2260 * does nothing.
2261 */
2262void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2263{
 
 
2264	dm_bufio_lock(c);
2265	forget_buffer(c, block);
 
 
 
 
2266	dm_bufio_unlock(c);
2267}
2268EXPORT_SYMBOL_GPL(dm_bufio_forget);
2269
2270static enum evict_result idle(struct dm_buffer *b, void *context)
2271{
2272	return b->state ? ER_DONT_EVICT : ER_EVICT;
2273}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274
2275void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2276{
2277	dm_bufio_lock(c);
2278	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2279	dm_bufio_unlock(c);
2280}
2281EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2282
2283void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2284{
2285	c->minimum_buffers = n;
2286}
2287EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2288
2289unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2290{
2291	return c->block_size;
2292}
2293EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2294
2295sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2296{
2297	sector_t s = bdev_nr_sectors(c->bdev);
2298
2299	if (s >= c->start)
2300		s -= c->start;
2301	else
2302		s = 0;
2303	if (likely(c->sectors_per_block_bits >= 0))
2304		s >>= c->sectors_per_block_bits;
2305	else
2306		sector_div(s, c->block_size >> SECTOR_SHIFT);
2307	return s;
2308}
2309EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2310
2311struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2312{
2313	return c->dm_io;
2314}
2315EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2316
2317sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2318{
2319	return b->block;
2320}
2321EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2322
2323void *dm_bufio_get_block_data(struct dm_buffer *b)
2324{
2325	return b->data;
2326}
2327EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2328
2329void *dm_bufio_get_aux_data(struct dm_buffer *b)
2330{
2331	return b + 1;
2332}
2333EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2334
2335struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2336{
2337	return b->c;
2338}
2339EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2340
2341static enum it_action warn_leak(struct dm_buffer *b, void *context)
2342{
2343	bool *warned = context;
2344
2345	WARN_ON(!(*warned));
2346	*warned = true;
2347	DMERR("leaked buffer %llx, hold count %u, list %d",
2348	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2349#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2350	stack_trace_print(b->stack_entries, b->stack_len, 1);
2351	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2352	atomic_set(&b->hold_count, 0);
2353#endif
2354	return IT_NEXT;
2355}
2356
2357static void drop_buffers(struct dm_bufio_client *c)
2358{
 
2359	int i;
2360	struct dm_buffer *b;
2361
2362	if (WARN_ON(dm_bufio_in_request()))
2363		return; /* should never happen */
2364
2365	/*
2366	 * An optimization so that the buffers are not written one-by-one.
2367	 */
2368	dm_bufio_write_dirty_buffers_async(c);
2369
2370	dm_bufio_lock(c);
2371
2372	while ((b = __get_unclaimed_buffer(c)))
2373		__free_buffer_wake(b);
2374
2375	for (i = 0; i < LIST_SIZE; i++) {
2376		bool warned = false;
2377
2378		cache_iterate(&c->cache, i, warn_leak, &warned);
2379	}
 
 
 
 
 
 
 
2380
2381#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2382	while ((b = __get_unclaimed_buffer(c)))
2383		__free_buffer_wake(b);
2384#endif
2385
2386	for (i = 0; i < LIST_SIZE; i++)
2387		WARN_ON(cache_count(&c->cache, i));
2388
2389	dm_bufio_unlock(c);
2390}
2391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2393{
2394	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2395
2396	if (likely(c->sectors_per_block_bits >= 0))
2397		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2398	else
2399		retain_bytes /= c->block_size;
2400
2401	return retain_bytes;
2402}
2403
2404static void __scan(struct dm_bufio_client *c)
2405{
2406	int l;
2407	struct dm_buffer *b;
2408	unsigned long freed = 0;
 
 
2409	unsigned long retain_target = get_retain_buffers(c);
2410	unsigned long count = cache_total(&c->cache);
2411
2412	for (l = 0; l < LIST_SIZE; l++) {
2413		while (true) {
2414			if (count - freed <= retain_target)
2415				atomic_long_set(&c->need_shrink, 0);
2416			if (!atomic_long_read(&c->need_shrink))
2417				break;
2418
2419			b = cache_evict(&c->cache, l,
2420					l == LIST_CLEAN ? is_clean : is_dirty, c);
2421			if (!b)
2422				break;
2423
2424			__make_buffer_clean(b);
2425			__free_buffer_wake(b);
2426
2427			atomic_long_dec(&c->need_shrink);
2428			freed++;
2429			cond_resched();
2430		}
2431	}
2432}
2433
2434static void shrink_work(struct work_struct *w)
2435{
2436	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2437
2438	dm_bufio_lock(c);
2439	__scan(c);
2440	dm_bufio_unlock(c);
2441}
2442
2443static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2444{
2445	struct dm_bufio_client *c;
2446
2447	c = shrink->private_data;
2448	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2449	queue_work(dm_bufio_wq, &c->shrink_work);
2450
2451	return sc->nr_to_scan;
2452}
2453
2454static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2455{
2456	struct dm_bufio_client *c = shrink->private_data;
2457	unsigned long count = cache_total(&c->cache);
 
2458	unsigned long retain_target = get_retain_buffers(c);
2459	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2460
2461	if (unlikely(count < retain_target))
2462		count = 0;
2463	else
2464		count -= retain_target;
2465
2466	if (unlikely(count < queued_for_cleanup))
2467		count = 0;
2468	else
2469		count -= queued_for_cleanup;
2470
2471	return count;
2472}
2473
2474/*
2475 * Create the buffering interface
2476 */
2477struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2478					       unsigned int reserved_buffers, unsigned int aux_size,
2479					       void (*alloc_callback)(struct dm_buffer *),
2480					       void (*write_callback)(struct dm_buffer *),
2481					       unsigned int flags)
2482{
2483	int r;
2484	unsigned int num_locks;
2485	struct dm_bufio_client *c;
2486	char slab_name[64];
2487	static atomic_t seqno = ATOMIC_INIT(0);
2488
2489	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2490		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2491		r = -EINVAL;
2492		goto bad_client;
2493	}
2494
2495	num_locks = dm_num_hash_locks();
2496	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2497	if (!c) {
2498		r = -ENOMEM;
2499		goto bad_client;
2500	}
2501	cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2502
2503	c->bdev = bdev;
2504	c->block_size = block_size;
2505	if (is_power_of_2(block_size))
2506		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2507	else
2508		c->sectors_per_block_bits = -1;
2509
2510	c->alloc_callback = alloc_callback;
2511	c->write_callback = write_callback;
2512
2513	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2514		c->no_sleep = true;
2515		static_branch_inc(&no_sleep_enabled);
2516	}
2517
2518	mutex_init(&c->lock);
2519	spin_lock_init(&c->spinlock);
2520	INIT_LIST_HEAD(&c->reserved_buffers);
2521	c->need_reserved_buffers = reserved_buffers;
2522
2523	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2524
2525	init_waitqueue_head(&c->free_buffer_wait);
2526	c->async_write_error = 0;
2527
2528	c->dm_io = dm_io_client_create();
2529	if (IS_ERR(c->dm_io)) {
2530		r = PTR_ERR(c->dm_io);
2531		goto bad_dm_io;
2532	}
2533
2534	if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2535		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2536
2537		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2538					block_size, atomic_inc_return(&seqno));
2539		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2540						  SLAB_RECLAIM_ACCOUNT, NULL);
2541		if (!c->slab_cache) {
2542			r = -ENOMEM;
2543			goto bad;
2544		}
2545	}
2546	if (aux_size)
2547		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2548					aux_size, atomic_inc_return(&seqno));
2549	else
2550		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2551					atomic_inc_return(&seqno));
2552	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2553					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2554	if (!c->slab_buffer) {
2555		r = -ENOMEM;
2556		goto bad;
2557	}
2558
2559	while (c->need_reserved_buffers) {
2560		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2561
2562		if (!b) {
2563			r = -ENOMEM;
2564			goto bad;
2565		}
2566		__free_buffer_wake(b);
2567	}
2568
2569	INIT_WORK(&c->shrink_work, shrink_work);
2570	atomic_long_set(&c->need_shrink, 0);
2571
2572	c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2573				     MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2574	if (!c->shrinker) {
2575		r = -ENOMEM;
 
 
2576		goto bad;
2577	}
2578
2579	c->shrinker->count_objects = dm_bufio_shrink_count;
2580	c->shrinker->scan_objects = dm_bufio_shrink_scan;
2581	c->shrinker->seeks = 1;
2582	c->shrinker->batch = 0;
2583	c->shrinker->private_data = c;
2584
2585	shrinker_register(c->shrinker);
2586
2587	mutex_lock(&dm_bufio_clients_lock);
2588	dm_bufio_client_count++;
2589	list_add(&c->client_list, &dm_bufio_all_clients);
2590	__cache_size_refresh();
2591	mutex_unlock(&dm_bufio_clients_lock);
2592
2593	return c;
2594
2595bad:
2596	while (!list_empty(&c->reserved_buffers)) {
2597		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2598
2599		list_del(&b->lru.list);
2600		free_buffer(b);
2601	}
2602	kmem_cache_destroy(c->slab_cache);
2603	kmem_cache_destroy(c->slab_buffer);
2604	dm_io_client_destroy(c->dm_io);
2605bad_dm_io:
2606	mutex_destroy(&c->lock);
2607	if (c->no_sleep)
2608		static_branch_dec(&no_sleep_enabled);
2609	kfree(c);
2610bad_client:
2611	return ERR_PTR(r);
2612}
2613EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2614
2615/*
2616 * Free the buffering interface.
2617 * It is required that there are no references on any buffers.
2618 */
2619void dm_bufio_client_destroy(struct dm_bufio_client *c)
2620{
2621	unsigned int i;
2622
2623	drop_buffers(c);
2624
2625	shrinker_free(c->shrinker);
2626	flush_work(&c->shrink_work);
2627
2628	mutex_lock(&dm_bufio_clients_lock);
2629
2630	list_del(&c->client_list);
2631	dm_bufio_client_count--;
2632	__cache_size_refresh();
2633
2634	mutex_unlock(&dm_bufio_clients_lock);
2635
2636	WARN_ON(c->need_reserved_buffers);
 
2637
2638	while (!list_empty(&c->reserved_buffers)) {
2639		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2640
2641		list_del(&b->lru.list);
2642		free_buffer(b);
2643	}
2644
2645	for (i = 0; i < LIST_SIZE; i++)
2646		if (cache_count(&c->cache, i))
2647			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2648
2649	for (i = 0; i < LIST_SIZE; i++)
2650		WARN_ON(cache_count(&c->cache, i));
2651
2652	cache_destroy(&c->cache);
2653	kmem_cache_destroy(c->slab_cache);
2654	kmem_cache_destroy(c->slab_buffer);
2655	dm_io_client_destroy(c->dm_io);
2656	mutex_destroy(&c->lock);
2657	if (c->no_sleep)
2658		static_branch_dec(&no_sleep_enabled);
2659	kfree(c);
2660}
2661EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2662
2663void dm_bufio_client_reset(struct dm_bufio_client *c)
2664{
2665	drop_buffers(c);
2666	flush_work(&c->shrink_work);
2667}
2668EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2669
2670void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2671{
2672	c->start = start;
2673}
2674EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2675
2676/*--------------------------------------------------------------*/
2677
2678static unsigned int get_max_age_hz(void)
2679{
2680	unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2681
2682	if (max_age > UINT_MAX / HZ)
2683		max_age = UINT_MAX / HZ;
2684
2685	return max_age * HZ;
2686}
2687
2688static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2689{
2690	return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2691}
2692
2693struct evict_params {
2694	gfp_t gfp;
2695	unsigned long age_hz;
2696
2697	/*
2698	 * This gets updated with the largest last_accessed (ie. most
2699	 * recently used) of the evicted buffers.  It will not be reinitialised
2700	 * by __evict_many(), so you can use it across multiple invocations.
2701	 */
2702	unsigned long last_accessed;
2703};
2704
2705/*
2706 * We may not be able to evict this buffer if IO pending or the client
2707 * is still using it.
2708 *
2709 * And if GFP_NOFS is used, we must not do any I/O because we hold
2710 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2711 * rerouted to different bufio client.
2712 */
2713static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2714{
2715	struct evict_params *params = context;
2716
2717	if (!(params->gfp & __GFP_FS) ||
2718	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2719		if (test_bit_acquire(B_READING, &b->state) ||
2720		    test_bit(B_WRITING, &b->state) ||
2721		    test_bit(B_DIRTY, &b->state))
2722			return ER_DONT_EVICT;
2723	}
2724
2725	return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2726}
2727
2728static unsigned long __evict_many(struct dm_bufio_client *c,
2729				  struct evict_params *params,
2730				  int list_mode, unsigned long max_count)
2731{
2732	unsigned long count;
2733	unsigned long last_accessed;
2734	struct dm_buffer *b;
2735
2736	for (count = 0; count < max_count; count++) {
2737		b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2738		if (!b)
2739			break;
2740
2741		last_accessed = READ_ONCE(b->last_accessed);
2742		if (time_after_eq(params->last_accessed, last_accessed))
2743			params->last_accessed = last_accessed;
2744
2745		__make_buffer_clean(b);
2746		__free_buffer_wake(b);
2747
2748		cond_resched();
2749	}
2750
2751	return count;
2752}
2753
2754static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2755{
2756	struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2757	unsigned long retain = get_retain_buffers(c);
2758	unsigned long count;
2759	LIST_HEAD(write_list);
2760
2761	dm_bufio_lock(c);
2762
2763	__check_watermark(c, &write_list);
2764	if (unlikely(!list_empty(&write_list))) {
2765		dm_bufio_unlock(c);
2766		__flush_write_list(&write_list);
2767		dm_bufio_lock(c);
2768	}
2769
2770	count = cache_total(&c->cache);
2771	if (count > retain)
2772		__evict_many(c, &params, LIST_CLEAN, count - retain);
 
 
 
 
 
 
 
 
 
 
2773
2774	dm_bufio_unlock(c);
2775}
2776
2777static void cleanup_old_buffers(void)
2778{
2779	unsigned long max_age_hz = get_max_age_hz();
2780	struct dm_bufio_client *c;
 
 
 
 
 
2781
2782	mutex_lock(&dm_bufio_clients_lock);
2783
2784	__cache_size_refresh();
 
2785
2786	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2787		evict_old_buffers(c, max_age_hz);
 
2788
2789	mutex_unlock(&dm_bufio_clients_lock);
2790}
 
 
 
 
 
2791
2792static void work_fn(struct work_struct *w)
2793{
2794	cleanup_old_buffers();
 
 
 
 
 
2795
2796	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2797			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2798}
 
 
 
 
 
 
 
 
2799
2800/*--------------------------------------------------------------*/
 
2801
2802/*
2803 * Global cleanup tries to evict the oldest buffers from across _all_
2804 * the clients.  It does this by repeatedly evicting a few buffers from
2805 * the client that holds the oldest buffer.  It's approximate, but hopefully
2806 * good enough.
2807 */
2808static struct dm_bufio_client *__pop_client(void)
2809{
2810	struct list_head *h;
2811
2812	if (list_empty(&dm_bufio_all_clients))
2813		return NULL;
2814
2815	h = dm_bufio_all_clients.next;
2816	list_del(h);
2817	return container_of(h, struct dm_bufio_client, client_list);
2818}
2819
2820/*
2821 * Inserts the client in the global client list based on its
2822 * 'oldest_buffer' field.
2823 */
2824static void __insert_client(struct dm_bufio_client *new_client)
2825{
2826	struct dm_bufio_client *c;
2827	struct list_head *h = dm_bufio_all_clients.next;
2828
2829	while (h != &dm_bufio_all_clients) {
2830		c = container_of(h, struct dm_bufio_client, client_list);
2831		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2832			break;
2833		h = h->next;
2834	}
2835
2836	list_add_tail(&new_client->client_list, h);
2837}
2838
2839static unsigned long __evict_a_few(unsigned long nr_buffers)
2840{
2841	unsigned long count;
2842	struct dm_bufio_client *c;
2843	struct evict_params params = {
2844		.gfp = GFP_KERNEL,
2845		.age_hz = 0,
2846		/* set to jiffies in case there are no buffers in this client */
2847		.last_accessed = jiffies
2848	};
2849
2850	c = __pop_client();
2851	if (!c)
2852		return 0;
2853
2854	dm_bufio_lock(c);
2855	count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2856	dm_bufio_unlock(c);
2857
2858	if (count)
2859		c->oldest_buffer = params.last_accessed;
2860	__insert_client(c);
2861
2862	return count;
2863}
2864
2865static void check_watermarks(void)
2866{
2867	LIST_HEAD(write_list);
2868	struct dm_bufio_client *c;
2869
2870	mutex_lock(&dm_bufio_clients_lock);
2871	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2872		dm_bufio_lock(c);
2873		__check_watermark(c, &write_list);
2874		dm_bufio_unlock(c);
2875	}
2876	mutex_unlock(&dm_bufio_clients_lock);
2877
2878	__flush_write_list(&write_list);
2879}
2880
2881static void evict_old(void)
2882{
2883	unsigned long threshold = dm_bufio_cache_size -
2884		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2885
2886	mutex_lock(&dm_bufio_clients_lock);
2887	while (dm_bufio_current_allocated > threshold) {
2888		if (!__evict_a_few(64))
2889			break;
2890		cond_resched();
2891	}
2892	mutex_unlock(&dm_bufio_clients_lock);
2893}
2894
2895static void do_global_cleanup(struct work_struct *w)
2896{
2897	check_watermarks();
2898	evict_old();
 
 
2899}
2900
2901/*
2902 *--------------------------------------------------------------
2903 * Module setup
2904 *--------------------------------------------------------------
2905 */
2906
2907/*
2908 * This is called only once for the whole dm_bufio module.
2909 * It initializes memory limit.
2910 */
2911static int __init dm_bufio_init(void)
2912{
2913	__u64 mem;
2914
2915	dm_bufio_allocated_kmem_cache = 0;
2916	dm_bufio_allocated_kmalloc = 0;
2917	dm_bufio_allocated_get_free_pages = 0;
2918	dm_bufio_allocated_vmalloc = 0;
2919	dm_bufio_current_allocated = 0;
2920
2921	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2922			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2923
2924	if (mem > ULONG_MAX)
2925		mem = ULONG_MAX;
2926
2927#ifdef CONFIG_MMU
2928	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2929		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2930#endif
2931
2932	dm_bufio_default_cache_size = mem;
2933
2934	mutex_lock(&dm_bufio_clients_lock);
2935	__cache_size_refresh();
2936	mutex_unlock(&dm_bufio_clients_lock);
2937
2938	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2939	if (!dm_bufio_wq)
2940		return -ENOMEM;
2941
2942	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2943	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2944	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2945			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2946
2947	return 0;
2948}
2949
2950/*
2951 * This is called once when unloading the dm_bufio module.
2952 */
2953static void __exit dm_bufio_exit(void)
2954{
2955	int bug = 0;
2956
2957	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
 
2958	destroy_workqueue(dm_bufio_wq);
2959
2960	if (dm_bufio_client_count) {
2961		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2962			__func__, dm_bufio_client_count);
2963		bug = 1;
2964	}
2965
2966	if (dm_bufio_current_allocated) {
2967		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2968			__func__, dm_bufio_current_allocated);
2969		bug = 1;
2970	}
2971
2972	if (dm_bufio_allocated_get_free_pages) {
2973		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2974		       __func__, dm_bufio_allocated_get_free_pages);
2975		bug = 1;
2976	}
2977
2978	if (dm_bufio_allocated_vmalloc) {
2979		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2980		       __func__, dm_bufio_allocated_vmalloc);
2981		bug = 1;
2982	}
2983
2984	WARN_ON(bug); /* leaks are not worth crashing the system */
2985}
2986
2987module_init(dm_bufio_init)
2988module_exit(dm_bufio_exit)
2989
2990module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2991MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2992
2993module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2994MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2995
2996module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2997MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2998
2999module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
3000MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
3001
3002module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
3003MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
3004
3005module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
3006MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
3007
3008module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
3009MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
3010
3011module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
3012MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
3013
3014module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3015MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3016
3017MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3018MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3019MODULE_LICENSE("GPL");