Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Xilinx AMS driver
   4 *
   5 *  Copyright (C) 2021 Xilinx, Inc.
   6 *
   7 *  Manish Narani <mnarani@xilinx.com>
   8 *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/devm-helpers.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iopoll.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/overflow.h>
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/slab.h>
  26
  27#include <linux/iio/events.h>
  28#include <linux/iio/iio.h>
  29
  30/* AMS registers definitions */
  31#define AMS_ISR_0			0x010
  32#define AMS_ISR_1			0x014
  33#define AMS_IER_0			0x020
  34#define AMS_IER_1			0x024
  35#define AMS_IDR_0			0x028
  36#define AMS_IDR_1			0x02C
  37#define AMS_PS_CSTS			0x040
  38#define AMS_PL_CSTS			0x044
  39
  40#define AMS_VCC_PSPLL0			0x060
  41#define AMS_VCC_PSPLL3			0x06C
  42#define AMS_VCCINT			0x078
  43#define AMS_VCCBRAM			0x07C
  44#define AMS_VCCAUX			0x080
  45#define AMS_PSDDRPLL			0x084
  46#define AMS_PSINTFPDDR			0x09C
  47
  48#define AMS_VCC_PSPLL0_CH		48
  49#define AMS_VCC_PSPLL3_CH		51
  50#define AMS_VCCINT_CH			54
  51#define AMS_VCCBRAM_CH			55
  52#define AMS_VCCAUX_CH			56
  53#define AMS_PSDDRPLL_CH			57
  54#define AMS_PSINTFPDDR_CH		63
  55
  56#define AMS_REG_CONFIG0			0x100
  57#define AMS_REG_CONFIG1			0x104
  58#define AMS_REG_CONFIG3			0x10C
  59#define AMS_REG_CONFIG4			0x110
  60#define AMS_REG_SEQ_CH0			0x120
  61#define AMS_REG_SEQ_CH1			0x124
  62#define AMS_REG_SEQ_CH2			0x118
  63
  64#define AMS_VUSER0_MASK			BIT(0)
  65#define AMS_VUSER1_MASK			BIT(1)
  66#define AMS_VUSER2_MASK			BIT(2)
  67#define AMS_VUSER3_MASK			BIT(3)
  68
  69#define AMS_TEMP			0x000
  70#define AMS_SUPPLY1			0x004
  71#define AMS_SUPPLY2			0x008
  72#define AMS_VP_VN			0x00C
  73#define AMS_VREFP			0x010
  74#define AMS_VREFN			0x014
  75#define AMS_SUPPLY3			0x018
  76#define AMS_SUPPLY4			0x034
  77#define AMS_SUPPLY5			0x038
  78#define AMS_SUPPLY6			0x03C
  79#define AMS_SUPPLY7			0x200
  80#define AMS_SUPPLY8			0x204
  81#define AMS_SUPPLY9			0x208
  82#define AMS_SUPPLY10			0x20C
  83#define AMS_VCCAMS			0x210
  84#define AMS_TEMP_REMOTE			0x214
  85
  86#define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
  87
  88#define AMS_PS_RESET_VALUE		0xFFFF
  89#define AMS_PL_RESET_VALUE		0xFFFF
  90
  91#define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
  92
  93#define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
  94#define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
  95#define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
  96#define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
  97
  98#define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
  99#define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
 100#define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
 101
 102#define AMS_PS_SEQ_MASK			GENMASK(21, 0)
 103#define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
 104
 105#define AMS_ALARM_TEMP			0x140
 106#define AMS_ALARM_SUPPLY1		0x144
 107#define AMS_ALARM_SUPPLY2		0x148
 108#define AMS_ALARM_SUPPLY3		0x160
 109#define AMS_ALARM_SUPPLY4		0x164
 110#define AMS_ALARM_SUPPLY5		0x168
 111#define AMS_ALARM_SUPPLY6		0x16C
 112#define AMS_ALARM_SUPPLY7		0x180
 113#define AMS_ALARM_SUPPLY8		0x184
 114#define AMS_ALARM_SUPPLY9		0x188
 115#define AMS_ALARM_SUPPLY10		0x18C
 116#define AMS_ALARM_VCCAMS		0x190
 117#define AMS_ALARM_TEMP_REMOTE		0x194
 118#define AMS_ALARM_THRESHOLD_OFF_10	0x10
 119#define AMS_ALARM_THRESHOLD_OFF_20	0x20
 120
 121#define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
 122#define AMS_ALARM_THR_MIN		0x0000
 123#define AMS_ALARM_THR_MAX		(BIT(16) - 1)
 124
 125#define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
 126#define AMS_NO_OF_ALARMS		32
 127#define AMS_PL_ALARM_START		16
 128#define AMS_PL_ALARM_MASK		GENMASK(31, 16)
 129#define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
 130#define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
 131#define AMS_ISR1_EOC_MASK		BIT(3)
 132#define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
 133#define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
 134#define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
 135#define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
 136#define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
 137#define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
 138#define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
 139#define AMS_REGCFG1_ALARM_MASK  \
 140	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
 141#define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
 142
 143#define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
 144#define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
 145
 146#define AMS_PL_MAX_FIXED_CHANNEL	10
 147#define AMS_PL_MAX_EXT_CHANNEL		20
 148
 149#define AMS_INIT_POLL_TIME_US		200
 150#define AMS_INIT_TIMEOUT_US		10000
 151#define AMS_UNMASK_TIMEOUT_MS		500
 152
 153/*
 154 * Following scale and offset value is derived from
 155 * UG580 (v1.7) December 20, 2016
 156 */
 157#define AMS_SUPPLY_SCALE_1VOLT_mV		1000
 158#define AMS_SUPPLY_SCALE_3VOLT_mV		3000
 159#define AMS_SUPPLY_SCALE_6VOLT_mV		6000
 160#define AMS_SUPPLY_SCALE_DIV_BIT	16
 161
 162#define AMS_TEMP_SCALE			509314
 163#define AMS_TEMP_SCALE_DIV_BIT		16
 164#define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
 165
 166enum ams_alarm_bit {
 167	AMS_ALARM_BIT_TEMP = 0,
 168	AMS_ALARM_BIT_SUPPLY1 = 1,
 169	AMS_ALARM_BIT_SUPPLY2 = 2,
 170	AMS_ALARM_BIT_SUPPLY3 = 3,
 171	AMS_ALARM_BIT_SUPPLY4 = 4,
 172	AMS_ALARM_BIT_SUPPLY5 = 5,
 173	AMS_ALARM_BIT_SUPPLY6 = 6,
 174	AMS_ALARM_BIT_RESERVED = 7,
 175	AMS_ALARM_BIT_SUPPLY7 = 8,
 176	AMS_ALARM_BIT_SUPPLY8 = 9,
 177	AMS_ALARM_BIT_SUPPLY9 = 10,
 178	AMS_ALARM_BIT_SUPPLY10 = 11,
 179	AMS_ALARM_BIT_VCCAMS = 12,
 180	AMS_ALARM_BIT_TEMP_REMOTE = 13,
 181};
 182
 183enum ams_seq {
 184	AMS_SEQ_VCC_PSPLL = 0,
 185	AMS_SEQ_VCC_PSBATT = 1,
 186	AMS_SEQ_VCCINT = 2,
 187	AMS_SEQ_VCCBRAM = 3,
 188	AMS_SEQ_VCCAUX = 4,
 189	AMS_SEQ_PSDDRPLL = 5,
 190	AMS_SEQ_INTDDR = 6,
 191};
 192
 193enum ams_ps_pl_seq {
 194	AMS_SEQ_CALIB = 0,
 195	AMS_SEQ_RSVD_1 = 1,
 196	AMS_SEQ_RSVD_2 = 2,
 197	AMS_SEQ_TEST = 3,
 198	AMS_SEQ_RSVD_4 = 4,
 199	AMS_SEQ_SUPPLY4 = 5,
 200	AMS_SEQ_SUPPLY5 = 6,
 201	AMS_SEQ_SUPPLY6 = 7,
 202	AMS_SEQ_TEMP = 8,
 203	AMS_SEQ_SUPPLY2 = 9,
 204	AMS_SEQ_SUPPLY1 = 10,
 205	AMS_SEQ_VP_VN = 11,
 206	AMS_SEQ_VREFP = 12,
 207	AMS_SEQ_VREFN = 13,
 208	AMS_SEQ_SUPPLY3 = 14,
 209	AMS_SEQ_CURRENT_MON = 15,
 210	AMS_SEQ_SUPPLY7 = 16,
 211	AMS_SEQ_SUPPLY8 = 17,
 212	AMS_SEQ_SUPPLY9 = 18,
 213	AMS_SEQ_SUPPLY10 = 19,
 214	AMS_SEQ_VCCAMS = 20,
 215	AMS_SEQ_TEMP_REMOTE = 21,
 216	AMS_SEQ_MAX = 22
 217};
 218
 219#define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
 220#define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
 221#define PS_SEQ(x)		(x)
 222#define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
 223#define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
 224
 225#define AMS_CHAN_TEMP(_scan_index, _addr, _name) { \
 226	.type = IIO_TEMP, \
 227	.indexed = 1, \
 228	.address = (_addr), \
 229	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 230		BIT(IIO_CHAN_INFO_SCALE) | \
 231		BIT(IIO_CHAN_INFO_OFFSET), \
 232	.event_spec = ams_temp_events, \
 233	.scan_index = _scan_index, \
 234	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
 235	.datasheet_name = _name, \
 236}
 237
 238#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) { \
 239	.type = IIO_VOLTAGE, \
 240	.indexed = 1, \
 241	.address = (_addr), \
 242	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 243		BIT(IIO_CHAN_INFO_SCALE), \
 244	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
 245	.scan_index = _scan_index, \
 246	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
 247	.datasheet_name = _name, \
 248}
 249
 250#define AMS_PS_CHAN_TEMP(_scan_index, _addr, _name) \
 251	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr, _name)
 252#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr, _name) \
 253	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true, _name)
 254
 255#define AMS_PL_CHAN_TEMP(_scan_index, _addr, _name) \
 256	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr, _name)
 257#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) \
 258	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm, _name)
 259#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
 260	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false, \
 261			 "VAUX" #_auxno)
 262#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr, _name) \
 263	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false, \
 264			 _name)
 265
 266/**
 267 * struct ams - This structure contains necessary state for xilinx-ams to operate
 268 * @base: physical base address of device
 269 * @ps_base: physical base address of PS device
 270 * @pl_base: physical base address of PL device
 271 * @clk: clocks associated with the device
 272 * @dev: pointer to device struct
 273 * @lock: to handle multiple user interaction
 274 * @intr_lock: to protect interrupt mask values
 275 * @alarm_mask: alarm configuration
 276 * @current_masked_alarm: currently masked due to alarm
 277 * @intr_mask: interrupt configuration
 278 * @ams_unmask_work: re-enables event once the event condition disappears
 279 *
 280 */
 281struct ams {
 282	void __iomem *base;
 283	void __iomem *ps_base;
 284	void __iomem *pl_base;
 285	struct clk *clk;
 286	struct device *dev;
 287	struct mutex lock;
 288	spinlock_t intr_lock;
 289	unsigned int alarm_mask;
 290	unsigned int current_masked_alarm;
 291	u64 intr_mask;
 292	struct delayed_work ams_unmask_work;
 293};
 294
 295static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
 296				     u32 mask, u32 data)
 297{
 298	u32 val, regval;
 299
 300	val = readl(ams->ps_base + offset);
 301	regval = (val & ~mask) | (data & mask);
 302	writel(regval, ams->ps_base + offset);
 303}
 304
 305static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
 306				     u32 mask, u32 data)
 307{
 308	u32 val, regval;
 309
 310	val = readl(ams->pl_base + offset);
 311	regval = (val & ~mask) | (data & mask);
 312	writel(regval, ams->pl_base + offset);
 313}
 314
 315static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
 316{
 317	u32 regval;
 318
 319	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
 320
 321	regval = ~(ams->intr_mask | ams->current_masked_alarm);
 322	writel(regval, ams->base + AMS_IER_0);
 323
 324	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
 325	writel(regval, ams->base + AMS_IER_1);
 326
 327	regval = ams->intr_mask | ams->current_masked_alarm;
 328	writel(regval, ams->base + AMS_IDR_0);
 329
 330	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
 331	writel(regval, ams->base + AMS_IDR_1);
 332}
 333
 334static void ams_disable_all_alarms(struct ams *ams)
 335{
 336	/* disable PS module alarm */
 337	if (ams->ps_base) {
 338		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
 339				  AMS_REGCFG1_ALARM_MASK);
 340		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
 341				  AMS_REGCFG3_ALARM_MASK);
 342	}
 343
 344	/* disable PL module alarm */
 345	if (ams->pl_base) {
 346		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
 347				  AMS_REGCFG1_ALARM_MASK);
 348		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
 349				  AMS_REGCFG3_ALARM_MASK);
 350	}
 351}
 352
 353static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
 354{
 355	u32 cfg;
 356	u32 val;
 357
 358	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
 359	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
 360
 361	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
 362	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
 363
 364	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
 365
 366	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
 367	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
 368	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
 369}
 370
 371static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
 372{
 373	unsigned long pl_alarm_mask;
 374	u32 cfg;
 375	u32 val;
 376
 377	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
 378
 379	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
 380	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
 381
 382	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
 383	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
 384
 385	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
 386
 387	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
 388	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
 389	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
 390}
 391
 392static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
 393{
 394	unsigned long flags;
 395
 396	if (ams->ps_base)
 397		ams_update_ps_alarm(ams, alarm_mask);
 398
 399	if (ams->pl_base)
 400		ams_update_pl_alarm(ams, alarm_mask);
 401
 402	spin_lock_irqsave(&ams->intr_lock, flags);
 403	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
 404	spin_unlock_irqrestore(&ams->intr_lock, flags);
 405}
 406
 407static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
 408{
 409	struct ams *ams = iio_priv(indio_dev);
 410	unsigned long long scan_mask;
 411	int i;
 412	u32 regval;
 413
 414	/*
 415	 * Enable channel sequence. First 22 bits of scan_mask represent
 416	 * PS channels, and next remaining bits represent PL channels.
 417	 */
 418
 419	/* Run calibration of PS & PL as part of the sequence */
 420	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
 421	for (i = 0; i < indio_dev->num_channels; i++) {
 422		const struct iio_chan_spec *chan = &indio_dev->channels[i];
 423
 424		if (chan->scan_index < AMS_CTRL_SEQ_BASE)
 425			scan_mask |= BIT_ULL(chan->scan_index);
 426	}
 427
 428	if (ams->ps_base) {
 429		/* put sysmon in a soft reset to change the sequence */
 430		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 431				  AMS_CONF1_SEQ_DEFAULT);
 432
 433		/* configure basic channels */
 434		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
 435		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
 436
 437		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
 438		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
 439
 440		/* set continuous sequence mode */
 441		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 442				  AMS_CONF1_SEQ_CONTINUOUS);
 443	}
 444
 445	if (ams->pl_base) {
 446		/* put sysmon in a soft reset to change the sequence */
 447		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 448				  AMS_CONF1_SEQ_DEFAULT);
 449
 450		/* configure basic channels */
 451		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
 452
 453		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
 454		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
 455
 456		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
 457		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
 458
 459		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
 460		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
 461
 462		/* set continuous sequence mode */
 463		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 464				  AMS_CONF1_SEQ_CONTINUOUS);
 465	}
 466}
 467
 468static int ams_init_device(struct ams *ams)
 469{
 470	u32 expect = AMS_PS_CSTS_PS_READY;
 471	u32 reg, value;
 472	int ret;
 473
 474	/* reset AMS */
 475	if (ams->ps_base) {
 476		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
 477
 478		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
 479					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
 480		if (ret)
 481			return ret;
 482
 483		/* put sysmon in a default state */
 484		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 485				  AMS_CONF1_SEQ_DEFAULT);
 486	}
 487
 488	if (ams->pl_base) {
 489		value = readl(ams->base + AMS_PL_CSTS);
 490		if (value == 0)
 491			return 0;
 492
 493		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
 494
 495		/* put sysmon in a default state */
 496		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 497				  AMS_CONF1_SEQ_DEFAULT);
 498	}
 499
 500	ams_disable_all_alarms(ams);
 501
 502	/* Disable interrupt */
 503	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
 504
 505	/* Clear any pending interrupt */
 506	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
 507	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
 508
 509	return 0;
 510}
 511
 512static int ams_read_label(struct iio_dev *indio_dev,
 513			  struct iio_chan_spec const *chan, char *label)
 514{
 515	return sysfs_emit(label, "%s\n", chan->datasheet_name);
 516}
 517
 518static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
 519{
 520	u8 channel_num;
 521
 522	switch (offset) {
 523	case AMS_VCC_PSPLL0:
 524		channel_num = AMS_VCC_PSPLL0_CH;
 525		break;
 526	case AMS_VCC_PSPLL3:
 527		channel_num = AMS_VCC_PSPLL3_CH;
 528		break;
 529	case AMS_VCCINT:
 530		channel_num = AMS_VCCINT_CH;
 531		break;
 532	case AMS_VCCBRAM:
 533		channel_num = AMS_VCCBRAM_CH;
 534		break;
 535	case AMS_VCCAUX:
 536		channel_num = AMS_VCCAUX_CH;
 537		break;
 538	case AMS_PSDDRPLL:
 539		channel_num = AMS_PSDDRPLL_CH;
 540		break;
 541	case AMS_PSINTFPDDR:
 542		channel_num = AMS_PSINTFPDDR_CH;
 543		break;
 544	default:
 545		return -EINVAL;
 546	}
 547
 548	/* put sysmon in a soft reset to change the sequence */
 549	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 550			  AMS_CONF1_SEQ_DEFAULT);
 551
 552	/* write the channel number */
 553	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
 554			  channel_num);
 555
 556	/* set single channel, sequencer off mode */
 557	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
 558			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
 559
 560	return 0;
 561}
 562
 563static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
 564{
 565	u32 expect = AMS_ISR1_EOC_MASK;
 566	u32 reg;
 567	int ret;
 568
 569	ret = ams_enable_single_channel(ams, offset);
 570	if (ret)
 571		return ret;
 572
 573	/* clear end-of-conversion flag, wait for next conversion to complete */
 574	writel(expect, ams->base + AMS_ISR_1);
 575	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
 576				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
 577	if (ret)
 578		return ret;
 579
 580	*data = readl(ams->base + offset);
 581
 582	return 0;
 583}
 584
 585static int ams_get_ps_scale(int address)
 586{
 587	int val;
 588
 589	switch (address) {
 590	case AMS_SUPPLY1:
 591	case AMS_SUPPLY2:
 592	case AMS_SUPPLY3:
 593	case AMS_SUPPLY4:
 594	case AMS_SUPPLY9:
 595	case AMS_SUPPLY10:
 596	case AMS_VCCAMS:
 597		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 598		break;
 599	case AMS_SUPPLY5:
 600	case AMS_SUPPLY6:
 601	case AMS_SUPPLY7:
 602	case AMS_SUPPLY8:
 603		val = AMS_SUPPLY_SCALE_6VOLT_mV;
 604		break;
 605	default:
 606		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 607		break;
 608	}
 609
 610	return val;
 611}
 612
 613static int ams_get_pl_scale(struct ams *ams, int address)
 614{
 615	int val, regval;
 616
 617	switch (address) {
 618	case AMS_SUPPLY1:
 619	case AMS_SUPPLY2:
 620	case AMS_SUPPLY3:
 621	case AMS_SUPPLY4:
 622	case AMS_SUPPLY5:
 623	case AMS_SUPPLY6:
 624	case AMS_VCCAMS:
 625	case AMS_VREFP:
 626	case AMS_VREFN:
 627		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 628		break;
 629	case AMS_SUPPLY7:
 630		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 631		if (FIELD_GET(AMS_VUSER0_MASK, regval))
 632			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 633		else
 634			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 635		break;
 636	case AMS_SUPPLY8:
 637		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 638		if (FIELD_GET(AMS_VUSER1_MASK, regval))
 639			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 640		else
 641			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 642		break;
 643	case AMS_SUPPLY9:
 644		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 645		if (FIELD_GET(AMS_VUSER2_MASK, regval))
 646			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 647		else
 648			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 649		break;
 650	case AMS_SUPPLY10:
 651		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
 652		if (FIELD_GET(AMS_VUSER3_MASK, regval))
 653			val = AMS_SUPPLY_SCALE_6VOLT_mV;
 654		else
 655			val = AMS_SUPPLY_SCALE_3VOLT_mV;
 656		break;
 657	case AMS_VP_VN:
 658	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
 659		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 660		break;
 661	default:
 662		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 663		break;
 664	}
 665
 666	return val;
 667}
 668
 669static int ams_get_ctrl_scale(int address)
 670{
 671	int val;
 672
 673	switch (address) {
 674	case AMS_VCC_PSPLL0:
 675	case AMS_VCC_PSPLL3:
 676	case AMS_VCCINT:
 677	case AMS_VCCBRAM:
 678	case AMS_VCCAUX:
 679	case AMS_PSDDRPLL:
 680	case AMS_PSINTFPDDR:
 681		val = AMS_SUPPLY_SCALE_3VOLT_mV;
 682		break;
 683	default:
 684		val = AMS_SUPPLY_SCALE_1VOLT_mV;
 685		break;
 686	}
 687
 688	return val;
 689}
 690
 691static int ams_read_raw(struct iio_dev *indio_dev,
 692			struct iio_chan_spec const *chan,
 693			int *val, int *val2, long mask)
 694{
 695	struct ams *ams = iio_priv(indio_dev);
 696	int ret;
 697
 698	switch (mask) {
 699	case IIO_CHAN_INFO_RAW:
 700		mutex_lock(&ams->lock);
 701		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
 702			ret = ams_read_vcc_reg(ams, chan->address, val);
 703			if (ret)
 704				goto unlock_mutex;
 705			ams_enable_channel_sequence(indio_dev);
 706		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
 707			*val = readl(ams->pl_base + chan->address);
 708		else
 709			*val = readl(ams->ps_base + chan->address);
 710
 711		ret = IIO_VAL_INT;
 712unlock_mutex:
 713		mutex_unlock(&ams->lock);
 714		return ret;
 715	case IIO_CHAN_INFO_SCALE:
 716		switch (chan->type) {
 717		case IIO_VOLTAGE:
 718			if (chan->scan_index < AMS_PS_SEQ_MAX)
 719				*val = ams_get_ps_scale(chan->address);
 720			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
 721				 chan->scan_index < AMS_CTRL_SEQ_BASE)
 722				*val = ams_get_pl_scale(ams, chan->address);
 723			else
 724				*val = ams_get_ctrl_scale(chan->address);
 725
 726			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
 727			return IIO_VAL_FRACTIONAL_LOG2;
 728		case IIO_TEMP:
 729			*val = AMS_TEMP_SCALE;
 730			*val2 = AMS_TEMP_SCALE_DIV_BIT;
 731			return IIO_VAL_FRACTIONAL_LOG2;
 732		default:
 733			return -EINVAL;
 734		}
 735	case IIO_CHAN_INFO_OFFSET:
 736		/* Only the temperature channel has an offset */
 737		*val = AMS_TEMP_OFFSET;
 738		return IIO_VAL_INT;
 739	default:
 740		return -EINVAL;
 741	}
 742}
 743
 744static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
 745{
 746	int offset;
 747
 748	if (scan_index >= AMS_PS_SEQ_MAX)
 749		scan_index -= AMS_PS_SEQ_MAX;
 750
 751	if (dir == IIO_EV_DIR_FALLING) {
 752		if (scan_index < AMS_SEQ_SUPPLY7)
 753			offset = AMS_ALARM_THRESHOLD_OFF_10;
 754		else
 755			offset = AMS_ALARM_THRESHOLD_OFF_20;
 756	} else {
 757		offset = 0;
 758	}
 759
 760	switch (scan_index) {
 761	case AMS_SEQ_TEMP:
 762		return AMS_ALARM_TEMP + offset;
 763	case AMS_SEQ_SUPPLY1:
 764		return AMS_ALARM_SUPPLY1 + offset;
 765	case AMS_SEQ_SUPPLY2:
 766		return AMS_ALARM_SUPPLY2 + offset;
 767	case AMS_SEQ_SUPPLY3:
 768		return AMS_ALARM_SUPPLY3 + offset;
 769	case AMS_SEQ_SUPPLY4:
 770		return AMS_ALARM_SUPPLY4 + offset;
 771	case AMS_SEQ_SUPPLY5:
 772		return AMS_ALARM_SUPPLY5 + offset;
 773	case AMS_SEQ_SUPPLY6:
 774		return AMS_ALARM_SUPPLY6 + offset;
 775	case AMS_SEQ_SUPPLY7:
 776		return AMS_ALARM_SUPPLY7 + offset;
 777	case AMS_SEQ_SUPPLY8:
 778		return AMS_ALARM_SUPPLY8 + offset;
 779	case AMS_SEQ_SUPPLY9:
 780		return AMS_ALARM_SUPPLY9 + offset;
 781	case AMS_SEQ_SUPPLY10:
 782		return AMS_ALARM_SUPPLY10 + offset;
 783	case AMS_SEQ_VCCAMS:
 784		return AMS_ALARM_VCCAMS + offset;
 785	case AMS_SEQ_TEMP_REMOTE:
 786		return AMS_ALARM_TEMP_REMOTE + offset;
 787	default:
 788		return 0;
 789	}
 790}
 791
 792static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
 793							u32 event)
 794{
 795	int scan_index = 0, i;
 796
 797	if (event >= AMS_PL_ALARM_START) {
 798		event -= AMS_PL_ALARM_START;
 799		scan_index = AMS_PS_SEQ_MAX;
 800	}
 801
 802	switch (event) {
 803	case AMS_ALARM_BIT_TEMP:
 804		scan_index += AMS_SEQ_TEMP;
 805		break;
 806	case AMS_ALARM_BIT_SUPPLY1:
 807		scan_index += AMS_SEQ_SUPPLY1;
 808		break;
 809	case AMS_ALARM_BIT_SUPPLY2:
 810		scan_index += AMS_SEQ_SUPPLY2;
 811		break;
 812	case AMS_ALARM_BIT_SUPPLY3:
 813		scan_index += AMS_SEQ_SUPPLY3;
 814		break;
 815	case AMS_ALARM_BIT_SUPPLY4:
 816		scan_index += AMS_SEQ_SUPPLY4;
 817		break;
 818	case AMS_ALARM_BIT_SUPPLY5:
 819		scan_index += AMS_SEQ_SUPPLY5;
 820		break;
 821	case AMS_ALARM_BIT_SUPPLY6:
 822		scan_index += AMS_SEQ_SUPPLY6;
 823		break;
 824	case AMS_ALARM_BIT_SUPPLY7:
 825		scan_index += AMS_SEQ_SUPPLY7;
 826		break;
 827	case AMS_ALARM_BIT_SUPPLY8:
 828		scan_index += AMS_SEQ_SUPPLY8;
 829		break;
 830	case AMS_ALARM_BIT_SUPPLY9:
 831		scan_index += AMS_SEQ_SUPPLY9;
 832		break;
 833	case AMS_ALARM_BIT_SUPPLY10:
 834		scan_index += AMS_SEQ_SUPPLY10;
 835		break;
 836	case AMS_ALARM_BIT_VCCAMS:
 837		scan_index += AMS_SEQ_VCCAMS;
 838		break;
 839	case AMS_ALARM_BIT_TEMP_REMOTE:
 840		scan_index += AMS_SEQ_TEMP_REMOTE;
 841		break;
 842	default:
 843		break;
 844	}
 845
 846	for (i = 0; i < dev->num_channels; i++)
 847		if (dev->channels[i].scan_index == scan_index)
 848			break;
 849
 850	return &dev->channels[i];
 851}
 852
 853static int ams_get_alarm_mask(int scan_index)
 854{
 855	int bit = 0;
 856
 857	if (scan_index >= AMS_PS_SEQ_MAX) {
 858		bit = AMS_PL_ALARM_START;
 859		scan_index -= AMS_PS_SEQ_MAX;
 860	}
 861
 862	switch (scan_index) {
 863	case AMS_SEQ_TEMP:
 864		return BIT(AMS_ALARM_BIT_TEMP + bit);
 865	case AMS_SEQ_SUPPLY1:
 866		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
 867	case AMS_SEQ_SUPPLY2:
 868		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
 869	case AMS_SEQ_SUPPLY3:
 870		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
 871	case AMS_SEQ_SUPPLY4:
 872		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
 873	case AMS_SEQ_SUPPLY5:
 874		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
 875	case AMS_SEQ_SUPPLY6:
 876		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
 877	case AMS_SEQ_SUPPLY7:
 878		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
 879	case AMS_SEQ_SUPPLY8:
 880		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
 881	case AMS_SEQ_SUPPLY9:
 882		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
 883	case AMS_SEQ_SUPPLY10:
 884		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
 885	case AMS_SEQ_VCCAMS:
 886		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
 887	case AMS_SEQ_TEMP_REMOTE:
 888		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
 889	default:
 890		return 0;
 891	}
 892}
 893
 894static int ams_read_event_config(struct iio_dev *indio_dev,
 895				 const struct iio_chan_spec *chan,
 896				 enum iio_event_type type,
 897				 enum iio_event_direction dir)
 898{
 899	struct ams *ams = iio_priv(indio_dev);
 900
 901	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
 902}
 903
 904static int ams_write_event_config(struct iio_dev *indio_dev,
 905				  const struct iio_chan_spec *chan,
 906				  enum iio_event_type type,
 907				  enum iio_event_direction dir,
 908				  bool state)
 909{
 910	struct ams *ams = iio_priv(indio_dev);
 911	unsigned int alarm;
 912
 913	alarm = ams_get_alarm_mask(chan->scan_index);
 914
 915	mutex_lock(&ams->lock);
 916
 917	if (state)
 918		ams->alarm_mask |= alarm;
 919	else
 920		ams->alarm_mask &= ~alarm;
 921
 922	ams_update_alarm(ams, ams->alarm_mask);
 923
 924	mutex_unlock(&ams->lock);
 925
 926	return 0;
 927}
 928
 929static int ams_read_event_value(struct iio_dev *indio_dev,
 930				const struct iio_chan_spec *chan,
 931				enum iio_event_type type,
 932				enum iio_event_direction dir,
 933				enum iio_event_info info, int *val, int *val2)
 934{
 935	struct ams *ams = iio_priv(indio_dev);
 936	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
 937
 938	mutex_lock(&ams->lock);
 939
 940	if (chan->scan_index >= AMS_PS_SEQ_MAX)
 941		*val = readl(ams->pl_base + offset);
 942	else
 943		*val = readl(ams->ps_base + offset);
 944
 945	mutex_unlock(&ams->lock);
 946
 947	return IIO_VAL_INT;
 948}
 949
 950static int ams_write_event_value(struct iio_dev *indio_dev,
 951				 const struct iio_chan_spec *chan,
 952				 enum iio_event_type type,
 953				 enum iio_event_direction dir,
 954				 enum iio_event_info info, int val, int val2)
 955{
 956	struct ams *ams = iio_priv(indio_dev);
 957	unsigned int offset;
 958
 959	mutex_lock(&ams->lock);
 960
 961	/* Set temperature channel threshold to direct threshold */
 962	if (chan->type == IIO_TEMP) {
 963		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
 964
 965		if (chan->scan_index >= AMS_PS_SEQ_MAX)
 966			ams_pl_update_reg(ams, offset,
 967					  AMS_ALARM_THR_DIRECT_MASK,
 968					  AMS_ALARM_THR_DIRECT_MASK);
 969		else
 970			ams_ps_update_reg(ams, offset,
 971					  AMS_ALARM_THR_DIRECT_MASK,
 972					  AMS_ALARM_THR_DIRECT_MASK);
 973	}
 974
 975	offset = ams_get_alarm_offset(chan->scan_index, dir);
 976	if (chan->scan_index >= AMS_PS_SEQ_MAX)
 977		writel(val, ams->pl_base + offset);
 978	else
 979		writel(val, ams->ps_base + offset);
 980
 981	mutex_unlock(&ams->lock);
 982
 983	return 0;
 984}
 985
 986static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
 987{
 988	const struct iio_chan_spec *chan;
 989
 990	chan = ams_event_to_channel(indio_dev, event);
 991
 992	if (chan->type == IIO_TEMP) {
 993		/*
 994		 * The temperature channel only supports over-temperature
 995		 * events.
 996		 */
 997		iio_push_event(indio_dev,
 998			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
 999						    IIO_EV_TYPE_THRESH,
1000						    IIO_EV_DIR_RISING),
1001			       iio_get_time_ns(indio_dev));
1002	} else {
1003		/*
1004		 * For other channels we don't know whether it is a upper or
1005		 * lower threshold event. Userspace will have to check the
1006		 * channel value if it wants to know.
1007		 */
1008		iio_push_event(indio_dev,
1009			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1010						    IIO_EV_TYPE_THRESH,
1011						    IIO_EV_DIR_EITHER),
1012			       iio_get_time_ns(indio_dev));
1013	}
1014}
1015
1016static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1017{
1018	unsigned int bit;
1019
1020	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1021		ams_handle_event(indio_dev, bit);
1022}
1023
1024/**
1025 * ams_unmask_worker - ams alarm interrupt unmask worker
1026 * @work: work to be done
1027 *
1028 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1029 * threshold condition go way from within the interrupt handler, this means as
1030 * soon as a threshold condition is present we would enter the interrupt handler
1031 * again and again. To work around this we mask all active threshold interrupts
1032 * in the interrupt handler and start a timer. In this timer we poll the
1033 * interrupt status and only if the interrupt is inactive we unmask it again.
1034 */
1035static void ams_unmask_worker(struct work_struct *work)
1036{
1037	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1038	unsigned int status, unmask;
1039
1040	spin_lock_irq(&ams->intr_lock);
1041
1042	status = readl(ams->base + AMS_ISR_0);
1043
1044	/* Clear those bits which are not active anymore */
1045	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1046
1047	/* Clear status of disabled alarm */
1048	unmask |= ams->intr_mask;
1049
1050	ams->current_masked_alarm &= status;
1051
1052	/* Also clear those which are masked out anyway */
1053	ams->current_masked_alarm &= ~ams->intr_mask;
1054
1055	/* Clear the interrupts before we unmask them */
1056	writel(unmask, ams->base + AMS_ISR_0);
1057
1058	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1059
1060	spin_unlock_irq(&ams->intr_lock);
1061
1062	/* If still pending some alarm re-trigger the timer */
1063	if (ams->current_masked_alarm)
1064		schedule_delayed_work(&ams->ams_unmask_work,
1065				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1066}
1067
1068static irqreturn_t ams_irq(int irq, void *data)
1069{
1070	struct iio_dev *indio_dev = data;
1071	struct ams *ams = iio_priv(indio_dev);
1072	u32 isr0;
1073
1074	spin_lock(&ams->intr_lock);
1075
1076	isr0 = readl(ams->base + AMS_ISR_0);
1077
1078	/* Only process alarms that are not masked */
1079	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1080	if (!isr0) {
1081		spin_unlock(&ams->intr_lock);
1082		return IRQ_NONE;
1083	}
1084
1085	/* Clear interrupt */
1086	writel(isr0, ams->base + AMS_ISR_0);
1087
1088	/* Mask the alarm interrupts until cleared */
1089	ams->current_masked_alarm |= isr0;
1090	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1091
1092	ams_handle_events(indio_dev, isr0);
1093
1094	schedule_delayed_work(&ams->ams_unmask_work,
1095			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1096
1097	spin_unlock(&ams->intr_lock);
1098
1099	return IRQ_HANDLED;
1100}
1101
1102static const struct iio_event_spec ams_temp_events[] = {
1103	{
1104		.type = IIO_EV_TYPE_THRESH,
1105		.dir = IIO_EV_DIR_RISING,
1106		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1107	},
1108};
1109
1110static const struct iio_event_spec ams_voltage_events[] = {
1111	{
1112		.type = IIO_EV_TYPE_THRESH,
1113		.dir = IIO_EV_DIR_RISING,
1114		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1115	},
1116	{
1117		.type = IIO_EV_TYPE_THRESH,
1118		.dir = IIO_EV_DIR_FALLING,
1119		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1120	},
1121	{
1122		.type = IIO_EV_TYPE_THRESH,
1123		.dir = IIO_EV_DIR_EITHER,
1124		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1125	},
1126};
1127
1128static const struct iio_chan_spec ams_ps_channels[] = {
1129	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_LPD"),
1130	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE, "Temp_FPD"),
1131	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, "VCC_PSINTLP"),
1132	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, "VCC_PSINTFP"),
1133	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, "VCC_PSAUX"),
1134	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, "VCC_PSDDR"),
1135	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, "VCC_PSIO3"),
1136	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, "VCC_PSIO0"),
1137	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, "VCC_PSIO1"),
1138	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, "VCC_PSIO2"),
1139	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, "PS_MGTRAVCC"),
1140	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, "PS_MGTRAVTT"),
1141	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, "VCC_PSADC"),
1142};
1143
1144static const struct iio_chan_spec ams_pl_channels[] = {
1145	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_PL"),
1146	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true, "VCCINT"),
1147	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true, "VCCAUX"),
1148	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false, "VREFP"),
1149	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false, "VREFN"),
1150	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true, "VCCBRAM"),
1151	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true, "VCC_PSINTLP"),
1152	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true, "VCC_PSINTFP"),
1153	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true, "VCC_PSAUX"),
1154	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true, "VCCAMS"),
1155	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false, "VP_VN"),
1156	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true, "VUser0"),
1157	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true, "VUser1"),
1158	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true, "VUser2"),
1159	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true, "VUser3"),
1160	AMS_PL_AUX_CHAN_VOLTAGE(0),
1161	AMS_PL_AUX_CHAN_VOLTAGE(1),
1162	AMS_PL_AUX_CHAN_VOLTAGE(2),
1163	AMS_PL_AUX_CHAN_VOLTAGE(3),
1164	AMS_PL_AUX_CHAN_VOLTAGE(4),
1165	AMS_PL_AUX_CHAN_VOLTAGE(5),
1166	AMS_PL_AUX_CHAN_VOLTAGE(6),
1167	AMS_PL_AUX_CHAN_VOLTAGE(7),
1168	AMS_PL_AUX_CHAN_VOLTAGE(8),
1169	AMS_PL_AUX_CHAN_VOLTAGE(9),
1170	AMS_PL_AUX_CHAN_VOLTAGE(10),
1171	AMS_PL_AUX_CHAN_VOLTAGE(11),
1172	AMS_PL_AUX_CHAN_VOLTAGE(12),
1173	AMS_PL_AUX_CHAN_VOLTAGE(13),
1174	AMS_PL_AUX_CHAN_VOLTAGE(14),
1175	AMS_PL_AUX_CHAN_VOLTAGE(15),
1176};
1177
1178static const struct iio_chan_spec ams_ctrl_channels[] = {
1179	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0, "VCC_PSPLL"),
1180	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3, "VCC_PSBATT"),
1181	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT, "VCCINT"),
1182	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM, "VCCBRAM"),
1183	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX, "VCCAUX"),
1184	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL, "VCC_PSDDR_PLL"),
1185	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR, "VCC_PSINTFP_DDR"),
1186};
1187
1188static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1189			    struct iio_chan_spec *channels, int num_channels)
1190{
1191	struct iio_chan_spec *chan;
1192	struct fwnode_handle *child;
1193	unsigned int reg, ext_chan;
1194	int ret;
1195
1196	fwnode_for_each_child_node(chan_node, child) {
1197		ret = fwnode_property_read_u32(child, "reg", &reg);
1198		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1199			continue;
1200
1201		chan = &channels[num_channels];
1202		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1203		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1204
1205		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1206			chan->scan_type.sign = 's';
1207
1208		num_channels++;
1209	}
1210
1211	return num_channels;
1212}
1213
1214static void ams_iounmap_ps(void *data)
1215{
1216	struct ams *ams = data;
1217
1218	iounmap(ams->ps_base);
1219}
1220
1221static void ams_iounmap_pl(void *data)
1222{
1223	struct ams *ams = data;
1224
1225	iounmap(ams->pl_base);
1226}
1227
1228static int ams_init_module(struct iio_dev *indio_dev,
1229			   struct fwnode_handle *fwnode,
1230			   struct iio_chan_spec *channels)
1231{
1232	struct device *dev = indio_dev->dev.parent;
1233	struct ams *ams = iio_priv(indio_dev);
1234	int num_channels = 0;
1235	int ret;
1236
1237	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1238		ams->ps_base = fwnode_iomap(fwnode, 0);
1239		if (!ams->ps_base)
1240			return -ENXIO;
1241		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1242		if (ret < 0)
1243			return ret;
1244
1245		/* add PS channels to iio device channels */
1246		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1247		num_channels = ARRAY_SIZE(ams_ps_channels);
1248	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1249		ams->pl_base = fwnode_iomap(fwnode, 0);
1250		if (!ams->pl_base)
1251			return -ENXIO;
1252
1253		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1254		if (ret < 0)
1255			return ret;
1256
1257		/* Copy only first 10 fix channels */
1258		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1259		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1260		num_channels = ams_get_ext_chan(fwnode, channels,
1261						num_channels);
1262	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1263		/* add AMS channels to iio device channels */
1264		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1265		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1266	} else {
1267		return -EINVAL;
1268	}
1269
1270	return num_channels;
1271}
1272
1273static int ams_parse_firmware(struct iio_dev *indio_dev)
1274{
1275	struct ams *ams = iio_priv(indio_dev);
1276	struct iio_chan_spec *ams_channels, *dev_channels;
1277	struct device *dev = indio_dev->dev.parent;
1278	struct fwnode_handle *fwnode = dev_fwnode(dev);
1279	size_t ams_size;
1280	int ret, ch_cnt = 0, i, rising_off, falling_off;
1281	unsigned int num_channels = 0;
1282
1283	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1284		ARRAY_SIZE(ams_ctrl_channels);
1285
1286	/* Initialize buffer for channel specification */
1287	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1288	if (!ams_channels)
1289		return -ENOMEM;
1290
1291	if (fwnode_device_is_available(fwnode)) {
1292		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1293		if (ret < 0)
1294			return ret;
1295
1296		num_channels += ret;
1297	}
1298
1299	device_for_each_child_node_scoped(dev, child) {
1300		ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1301		if (ret < 0)
1302			return ret;
1303
1304		num_channels += ret;
1305	}
1306
1307	for (i = 0; i < num_channels; i++) {
1308		ams_channels[i].channel = ch_cnt++;
1309
1310		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1311			/* set threshold to max and min for each channel */
1312			falling_off =
1313				ams_get_alarm_offset(ams_channels[i].scan_index,
1314						     IIO_EV_DIR_FALLING);
1315			rising_off =
1316				ams_get_alarm_offset(ams_channels[i].scan_index,
1317						     IIO_EV_DIR_RISING);
1318			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1319				writel(AMS_ALARM_THR_MIN,
1320				       ams->pl_base + falling_off);
1321				writel(AMS_ALARM_THR_MAX,
1322				       ams->pl_base + rising_off);
1323			} else {
1324				writel(AMS_ALARM_THR_MIN,
1325				       ams->ps_base + falling_off);
1326				writel(AMS_ALARM_THR_MAX,
1327				       ams->ps_base + rising_off);
1328			}
1329		}
1330	}
1331
1332	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1333					   sizeof(*dev_channels), GFP_KERNEL);
1334	if (!dev_channels)
1335		return -ENOMEM;
1336
1337	indio_dev->channels = dev_channels;
1338	indio_dev->num_channels = num_channels;
1339
1340	return 0;
1341}
1342
1343static const struct iio_info iio_ams_info = {
1344	.read_label = ams_read_label,
1345	.read_raw = &ams_read_raw,
1346	.read_event_config = &ams_read_event_config,
1347	.write_event_config = &ams_write_event_config,
1348	.read_event_value = &ams_read_event_value,
1349	.write_event_value = &ams_write_event_value,
1350};
1351
1352static const struct of_device_id ams_of_match_table[] = {
1353	{ .compatible = "xlnx,zynqmp-ams" },
1354	{ }
1355};
1356MODULE_DEVICE_TABLE(of, ams_of_match_table);
1357
1358static int ams_probe(struct platform_device *pdev)
1359{
1360	struct iio_dev *indio_dev;
1361	struct ams *ams;
1362	int ret;
1363	int irq;
1364
1365	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1366	if (!indio_dev)
1367		return -ENOMEM;
1368
1369	ams = iio_priv(indio_dev);
1370	mutex_init(&ams->lock);
1371	spin_lock_init(&ams->intr_lock);
1372
1373	indio_dev->name = "xilinx-ams";
1374
1375	indio_dev->info = &iio_ams_info;
1376	indio_dev->modes = INDIO_DIRECT_MODE;
1377
1378	ams->base = devm_platform_ioremap_resource(pdev, 0);
1379	if (IS_ERR(ams->base))
1380		return PTR_ERR(ams->base);
1381
1382	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1383	if (IS_ERR(ams->clk))
1384		return PTR_ERR(ams->clk);
1385
1386	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1387					   ams_unmask_worker);
1388	if (ret < 0)
1389		return ret;
1390
1391	ret = ams_parse_firmware(indio_dev);
1392	if (ret)
1393		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1394
1395	ret = ams_init_device(ams);
1396	if (ret)
1397		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1398
1399	ams_enable_channel_sequence(indio_dev);
1400
1401	irq = platform_get_irq(pdev, 0);
1402	if (irq < 0)
1403		return irq;
1404
1405	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1406			       indio_dev);
1407	if (ret < 0)
1408		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1409
1410	platform_set_drvdata(pdev, indio_dev);
1411
1412	return devm_iio_device_register(&pdev->dev, indio_dev);
1413}
1414
1415static int ams_suspend(struct device *dev)
1416{
1417	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1418
1419	clk_disable_unprepare(ams->clk);
1420
1421	return 0;
1422}
1423
1424static int ams_resume(struct device *dev)
1425{
1426	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1427
1428	return clk_prepare_enable(ams->clk);
1429}
1430
1431static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1432
1433static struct platform_driver ams_driver = {
1434	.probe = ams_probe,
1435	.driver = {
1436		.name = "xilinx-ams",
1437		.pm = pm_sleep_ptr(&ams_pm_ops),
1438		.of_match_table = ams_of_match_table,
1439	},
1440};
1441module_platform_driver(ams_driver);
1442
1443MODULE_DESCRIPTION("Xilinx AMS driver");
1444MODULE_LICENSE("GPL v2");
1445MODULE_AUTHOR("Xilinx, Inc.");