Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
 
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/sysfs.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/regmap.h>
  25#include <linux/slab.h>
  26
  27#include "stm32-dfsdm.h"
  28
  29#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  30
  31/* Conversion timeout */
  32#define DFSDM_TIMEOUT_US 100000
  33#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  34
  35/* Oversampling attribute default */
  36#define DFSDM_DEFAULT_OVERSAMPLING  100
  37
  38/* Oversampling max values */
  39#define DFSDM_MAX_INT_OVERSAMPLING 256
  40#define DFSDM_MAX_FL_OVERSAMPLING 1024
  41
  42/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  43#define DFSDM_DATA_MAX BIT(30)
  44/*
  45 * Data are output as two's complement data in a 24 bit field.
  46 * Data from filters are in the range +/-2^(n-1)
  47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  49 * So, the resolution of samples from filter is actually limited to 23 bits
  50 */
  51#define DFSDM_DATA_RES 24
  52
  53/* Filter configuration */
  54#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  55			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  56			    DFSDM_CR1_JSCAN_MASK)
  57
  58enum sd_converter_type {
  59	DFSDM_AUDIO,
  60	DFSDM_IIO,
  61};
  62
  63struct stm32_dfsdm_dev_data {
  64	int type;
  65	int (*init)(struct device *dev, struct iio_dev *indio_dev);
  66	unsigned int num_channels;
  67	const struct regmap_config *regmap_cfg;
  68};
  69
  70struct stm32_dfsdm_adc {
  71	struct stm32_dfsdm *dfsdm;
  72	const struct stm32_dfsdm_dev_data *dev_data;
  73	unsigned int fl_id;
  74	unsigned int nconv;
  75	unsigned long smask;
  76
  77	/* ADC specific */
  78	unsigned int oversamp;
  79	struct iio_hw_consumer *hwc;
 
  80	struct completion completion;
  81	u32 *buffer;
  82
  83	/* Audio specific */
  84	unsigned int spi_freq;  /* SPI bus clock frequency */
  85	unsigned int sample_freq; /* Sample frequency after filter decimation */
  86	int (*cb)(const void *data, size_t size, void *cb_priv);
  87	void *cb_priv;
  88
  89	/* DMA */
  90	u8 *rx_buf;
  91	unsigned int bufi; /* Buffer current position */
  92	unsigned int buf_sz; /* Buffer size */
  93	struct dma_chan	*dma_chan;
  94	dma_addr_t dma_buf;
  95};
  96
  97struct stm32_dfsdm_str2field {
  98	const char	*name;
  99	unsigned int	val;
 100};
 101
 102/* DFSDM channel serial interface type */
 103static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 104	{ "SPI_R", 0 }, /* SPI with data on rising edge */
 105	{ "SPI_F", 1 }, /* SPI with data on falling edge */
 106	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 107	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 108	{},
 109};
 110
 111/* DFSDM channel clock source */
 112static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 113	/* External SPI clock (CLKIN x) */
 114	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 115	/* Internal SPI clock (CLKOUT) */
 116	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 117	/* Internal SPI clock divided by 2 (falling edge) */
 118	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 119	/* Internal SPI clock divided by 2 (falling edge) */
 120	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 121	{},
 122};
 123
 124static int stm32_dfsdm_str2val(const char *str,
 125			       const struct stm32_dfsdm_str2field *list)
 126{
 127	const struct stm32_dfsdm_str2field *p = list;
 128
 129	for (p = list; p && p->name; p++)
 130		if (!strcmp(p->name, str))
 131			return p->val;
 132
 133	return -EINVAL;
 134}
 135
 136/**
 137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 138 * @name:		name of the trigger, corresponding to its source
 139 * @jextsel:		trigger signal selection
 140 */
 141struct stm32_dfsdm_trig_info {
 142	const char *name;
 143	unsigned int jextsel;
 144};
 145
 146/* hardware injected trigger enable, edge selection */
 147enum stm32_dfsdm_jexten {
 148	STM32_DFSDM_JEXTEN_DISABLED,
 149	STM32_DFSDM_JEXTEN_RISING_EDGE,
 150	STM32_DFSDM_JEXTEN_FALLING_EDGE,
 151	STM32_DFSDM_EXTEN_BOTH_EDGES,
 152};
 153
 154static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 155	{ TIM1_TRGO, 0 },
 156	{ TIM1_TRGO2, 1 },
 157	{ TIM8_TRGO, 2 },
 158	{ TIM8_TRGO2, 3 },
 159	{ TIM3_TRGO, 4 },
 160	{ TIM4_TRGO, 5 },
 161	{ TIM16_OC1, 6 },
 162	{ TIM6_TRGO, 7 },
 163	{ TIM7_TRGO, 8 },
 164	{ LPTIM1_OUT, 26 },
 165	{ LPTIM2_OUT, 27 },
 166	{ LPTIM3_OUT, 28 },
 167	{},
 168};
 169
 170static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 171				   struct iio_trigger *trig)
 172{
 173	int i;
 174
 175	/* lookup triggers registered by stm32 timer trigger driver */
 176	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 177		/**
 178		 * Checking both stm32 timer trigger type and trig name
 179		 * should be safe against arbitrary trigger names.
 180		 */
 181		if ((is_stm32_timer_trigger(trig) ||
 182		     is_stm32_lptim_trigger(trig)) &&
 183		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 184			return stm32_dfsdm_trigs[i].jextsel;
 185		}
 186	}
 187
 188	return -EINVAL;
 189}
 190
 191static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 192				    unsigned int fast, unsigned int oversamp)
 193{
 194	unsigned int i, d, fosr, iosr;
 195	u64 res, max;
 196	int bits, shift;
 197	unsigned int m = 1;	/* multiplication factor */
 198	unsigned int p = fl->ford;	/* filter order (ford) */
 199	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 200
 201	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
 202	/*
 203	 * This function tries to compute filter oversampling and integrator
 204	 * oversampling, base on oversampling ratio requested by user.
 205	 *
 206	 * Decimation d depends on the filter order and the oversampling ratios.
 207	 * ford: filter order
 208	 * fosr: filter over sampling ratio
 209	 * iosr: integrator over sampling ratio
 210	 */
 211	if (fl->ford == DFSDM_FASTSINC_ORDER) {
 212		m = 2;
 213		p = 2;
 214	}
 215
 216	/*
 217	 * Look for filter and integrator oversampling ratios which allows
 218	 * to maximize data output resolution.
 219	 */
 220	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 221		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 222			if (fast)
 223				d = fosr * iosr;
 224			else if (fl->ford == DFSDM_FASTSINC_ORDER)
 225				d = fosr * (iosr + 3) + 2;
 226			else
 227				d = fosr * (iosr - 1 + p) + p;
 228
 229			if (d > oversamp)
 230				break;
 231			else if (d != oversamp)
 232				continue;
 233			/*
 234			 * Check resolution (limited to signed 32 bits)
 235			 *   res <= 2^31
 236			 * Sincx filters:
 237			 *   res = m * fosr^p x iosr (with m=1, p=ford)
 238			 * FastSinc filter
 239			 *   res = m * fosr^p x iosr (with m=2, p=2)
 240			 */
 241			res = fosr;
 242			for (i = p - 1; i > 0; i--) {
 243				res = res * (u64)fosr;
 244				if (res > DFSDM_DATA_MAX)
 245					break;
 246			}
 247			if (res > DFSDM_DATA_MAX)
 248				continue;
 249
 250			res = res * (u64)m * (u64)iosr;
 251			if (res > DFSDM_DATA_MAX)
 252				continue;
 253
 254			if (res >= flo->res) {
 255				flo->res = res;
 256				flo->fosr = fosr;
 257				flo->iosr = iosr;
 258
 259				bits = fls(flo->res);
 260				/* 8 LBSs in data register contain chan info */
 261				max = flo->res << 8;
 262
 263				/* if resolution is not a power of two */
 264				if (flo->res > BIT(bits - 1))
 265					bits++;
 266				else
 267					max--;
 268
 269				shift = DFSDM_DATA_RES - bits;
 270				/*
 271				 * Compute right/left shift
 272				 * Right shift is performed by hardware
 273				 * when transferring samples to data register.
 274				 * Left shift is done by software on buffer
 275				 */
 276				if (shift > 0) {
 277					/* Resolution is lower than 24 bits */
 278					flo->rshift = 0;
 279					flo->lshift = shift;
 280				} else {
 281					/*
 282					 * If resolution is 24 bits or more,
 283					 * max positive value may be ambiguous
 284					 * (equal to max negative value as sign
 285					 * bit is dropped).
 286					 * Reduce resolution to 23 bits (rshift)
 287					 * to keep the sign on bit 23 and treat
 288					 * saturation before rescaling on 24
 289					 * bits (lshift).
 290					 */
 291					flo->rshift = 1 - shift;
 292					flo->lshift = 1;
 293					max >>= flo->rshift;
 294				}
 295				flo->max = (s32)max;
 
 296
 297				pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 298					 __func__, fast, flo->fosr, flo->iosr,
 299					 flo->res, bits, flo->rshift,
 300					 flo->lshift);
 301			}
 302		}
 303	}
 304
 305	if (!flo->res)
 306		return -EINVAL;
 307
 308	return 0;
 309}
 310
 311static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 312					unsigned int oversamp)
 313{
 314	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 315	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 316	int ret0, ret1;
 317
 318	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 319	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 320
 321	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 322	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 323	if (ret0 < 0 && ret1 < 0) {
 324		dev_err(&indio_dev->dev,
 325			"Filter parameters not found: errors %d/%d\n",
 326			ret0, ret1);
 327		return -EINVAL;
 328	}
 329
 330	return 0;
 331}
 332
 333static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
 334{
 335	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 336	struct regmap *regmap = adc->dfsdm->regmap;
 337	const struct iio_chan_spec *chan;
 338	unsigned int bit;
 339	int ret;
 340
 341	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 342		chan = indio_dev->channels + bit;
 343		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 344					 DFSDM_CHCFGR1_CHEN_MASK,
 345					 DFSDM_CHCFGR1_CHEN(1));
 346		if (ret < 0)
 347			return ret;
 348	}
 349
 350	return 0;
 351}
 352
 353static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
 354{
 355	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 356	struct regmap *regmap = adc->dfsdm->regmap;
 357	const struct iio_chan_spec *chan;
 358	unsigned int bit;
 359
 360	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 361		chan = indio_dev->channels + bit;
 362		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 363				   DFSDM_CHCFGR1_CHEN_MASK,
 364				   DFSDM_CHCFGR1_CHEN(0));
 365	}
 366}
 367
 368static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 369				      struct stm32_dfsdm_channel *ch)
 370{
 371	unsigned int id = ch->id;
 372	struct regmap *regmap = dfsdm->regmap;
 373	int ret;
 374
 375	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 376				 DFSDM_CHCFGR1_SITP_MASK,
 377				 DFSDM_CHCFGR1_SITP(ch->type));
 378	if (ret < 0)
 379		return ret;
 380	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 381				 DFSDM_CHCFGR1_SPICKSEL_MASK,
 382				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 383	if (ret < 0)
 384		return ret;
 385	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 386				  DFSDM_CHCFGR1_CHINSEL_MASK,
 387				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 388}
 389
 390static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 391				    unsigned int fl_id,
 392				    struct iio_trigger *trig)
 393{
 394	struct stm32_dfsdm *dfsdm = adc->dfsdm;
 395	int ret;
 396
 397	/* Enable filter */
 398	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 399				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 400	if (ret < 0)
 401		return ret;
 402
 403	/* Nothing more to do for injected (scan mode/triggered) conversions */
 404	if (adc->nconv > 1 || trig)
 405		return 0;
 406
 407	/* Software start (single or continuous) regular conversion */
 408	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 409				  DFSDM_CR1_RSWSTART_MASK,
 410				  DFSDM_CR1_RSWSTART(1));
 411}
 412
 413static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 414				    unsigned int fl_id)
 415{
 416	/* Disable conversion */
 417	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 418			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 419}
 420
 421static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
 422				       unsigned int fl_id,
 423				       struct iio_trigger *trig)
 424{
 425	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 426	struct regmap *regmap = adc->dfsdm->regmap;
 427	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 428	int ret;
 429
 430	if (trig) {
 431		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 432		if (ret < 0)
 433			return ret;
 434
 435		/* set trigger source and polarity (default to rising edge) */
 436		jextsel = ret;
 437		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 438	}
 439
 440	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 441				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 442				 DFSDM_CR1_JEXTSEL(jextsel) |
 443				 DFSDM_CR1_JEXTEN(jexten));
 444	if (ret < 0)
 445		return ret;
 446
 447	return 0;
 448}
 449
 450static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
 451					  unsigned int fl_id,
 452					  struct iio_trigger *trig)
 453{
 454	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 455	struct regmap *regmap = adc->dfsdm->regmap;
 456	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 457	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 458	const struct iio_chan_spec *chan;
 459	unsigned int bit;
 460	int ret;
 461
 462	fl->fast = 0;
 463
 464	/*
 465	 * In continuous mode, use fast mode configuration,
 466	 * if it provides a better resolution.
 467	 */
 468	if (adc->nconv == 1 && !trig &&
 469	    (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
 470		if (fl->flo[1].res >= fl->flo[0].res) {
 471			fl->fast = 1;
 472			flo = &fl->flo[1];
 473		}
 474	}
 475
 476	if (!flo->res)
 477		return -EINVAL;
 478
 
 
 
 479	for_each_set_bit(bit, &adc->smask,
 480			 sizeof(adc->smask) * BITS_PER_BYTE) {
 481		chan = indio_dev->channels + bit;
 482
 483		ret = regmap_update_bits(regmap,
 484					 DFSDM_CHCFGR2(chan->channel),
 485					 DFSDM_CHCFGR2_DTRBS_MASK,
 486					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
 487		if (ret)
 488			return ret;
 489	}
 490
 491	return 0;
 492}
 493
 494static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
 495					unsigned int fl_id,
 496					struct iio_trigger *trig)
 497{
 498	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 499	struct regmap *regmap = adc->dfsdm->regmap;
 500	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 501	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 502	u32 cr1;
 503	const struct iio_chan_spec *chan;
 504	unsigned int bit, jchg = 0;
 505	int ret;
 506
 507	/* Average integrator oversampling */
 508	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 509				 DFSDM_FCR_IOSR(flo->iosr - 1));
 510	if (ret)
 511		return ret;
 512
 513	/* Filter order and Oversampling */
 514	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 515				 DFSDM_FCR_FOSR(flo->fosr - 1));
 516	if (ret)
 517		return ret;
 518
 519	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 520				 DFSDM_FCR_FORD(fl->ford));
 521	if (ret)
 522		return ret;
 523
 524	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
 525	if (ret)
 526		return ret;
 527
 528	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 529				 DFSDM_CR1_FAST_MASK,
 530				 DFSDM_CR1_FAST(fl->fast));
 531	if (ret)
 532		return ret;
 533
 534	/*
 535	 * DFSDM modes configuration W.R.T audio/iio type modes
 536	 * ----------------------------------------------------------------
 537	 * Modes         | regular |  regular     | injected | injected   |
 538	 *               |         |  continuous  |          | + scan     |
 539	 * --------------|---------|--------------|----------|------------|
 540	 * single conv   |    x    |              |          |            |
 541	 * (1 chan)      |         |              |          |            |
 542	 * --------------|---------|--------------|----------|------------|
 543	 * 1 Audio chan	 |         | sample freq  |          |            |
 544	 *               |         | or sync_mode |          |            |
 545	 * --------------|---------|--------------|----------|------------|
 546	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
 547	 *               |         | or sync_mode |          |            |
 548	 * --------------|---------|--------------|----------|------------|
 549	 * 2+ IIO chans  |         |              |          | trigger or |
 550	 *               |         |              |          | sync_mode  |
 551	 * ----------------------------------------------------------------
 552	 */
 553	if (adc->nconv == 1 && !trig) {
 554		bit = __ffs(adc->smask);
 555		chan = indio_dev->channels + bit;
 556
 557		/* Use regular conversion for single channel without trigger */
 558		cr1 = DFSDM_CR1_RCH(chan->channel);
 559
 560		/* Continuous conversions triggered by SPI clk in buffer mode */
 561		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
 562			cr1 |= DFSDM_CR1_RCONT(1);
 563
 564		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 565	} else {
 566		/* Use injected conversion for multiple channels */
 567		for_each_set_bit(bit, &adc->smask,
 568				 sizeof(adc->smask) * BITS_PER_BYTE) {
 569			chan = indio_dev->channels + bit;
 570			jchg |= BIT(chan->channel);
 571		}
 572		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 573		if (ret < 0)
 574			return ret;
 575
 576		/* Use scan mode for multiple channels */
 577		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 578
 579		/*
 580		 * Continuous conversions not supported in injected mode,
 581		 * either use:
 582		 * - conversions in sync with filter 0
 583		 * - triggered conversions
 584		 */
 585		if (!fl->sync_mode && !trig)
 586			return -EINVAL;
 587		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 588	}
 589
 590	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 591				  cr1);
 592}
 593
 594static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 595					struct iio_dev *indio_dev,
 596					struct iio_chan_spec *ch)
 597{
 598	struct stm32_dfsdm_channel *df_ch;
 599	const char *of_str;
 600	int chan_idx = ch->scan_index;
 601	int ret, val;
 602
 603	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 604					 "st,adc-channels", chan_idx,
 605					 &ch->channel);
 606	if (ret < 0) {
 607		dev_err(&indio_dev->dev,
 608			" Error parsing 'st,adc-channels' for idx %d\n",
 609			chan_idx);
 610		return ret;
 611	}
 612	if (ch->channel >= dfsdm->num_chs) {
 613		dev_err(&indio_dev->dev,
 614			" Error bad channel number %d (max = %d)\n",
 615			ch->channel, dfsdm->num_chs);
 616		return -EINVAL;
 617	}
 618
 619	ret = of_property_read_string_index(indio_dev->dev.of_node,
 620					    "st,adc-channel-names", chan_idx,
 621					    &ch->datasheet_name);
 622	if (ret < 0) {
 623		dev_err(&indio_dev->dev,
 624			" Error parsing 'st,adc-channel-names' for idx %d\n",
 625			chan_idx);
 626		return ret;
 627	}
 628
 629	df_ch =  &dfsdm->ch_list[ch->channel];
 630	df_ch->id = ch->channel;
 631
 632	ret = of_property_read_string_index(indio_dev->dev.of_node,
 633					    "st,adc-channel-types", chan_idx,
 634					    &of_str);
 635	if (!ret) {
 636		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 637		if (val < 0)
 638			return val;
 639	} else {
 640		val = 0;
 641	}
 642	df_ch->type = val;
 643
 644	ret = of_property_read_string_index(indio_dev->dev.of_node,
 645					    "st,adc-channel-clk-src", chan_idx,
 646					    &of_str);
 647	if (!ret) {
 648		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 649		if (val < 0)
 650			return val;
 651	} else {
 652		val = 0;
 653	}
 654	df_ch->src = val;
 655
 656	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 657					 "st,adc-alt-channel", chan_idx,
 658					 &df_ch->alt_si);
 659	if (ret < 0)
 660		df_ch->alt_si = 0;
 661
 662	return 0;
 663}
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 666					  uintptr_t priv,
 667					  const struct iio_chan_spec *chan,
 668					  char *buf)
 669{
 670	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 671
 672	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 673}
 674
 675static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 676				   unsigned int sample_freq,
 677				   unsigned int spi_freq)
 678{
 679	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 680	unsigned int oversamp;
 681	int ret;
 682
 683	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 684	if (spi_freq % sample_freq)
 685		dev_dbg(&indio_dev->dev,
 686			"Rate not accurate. requested (%u), actual (%u)\n",
 687			sample_freq, spi_freq / oversamp);
 688
 689	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 690	if (ret < 0)
 691		return ret;
 692
 693	adc->sample_freq = spi_freq / oversamp;
 694	adc->oversamp = oversamp;
 695
 696	return 0;
 697}
 698
 699static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 700					  uintptr_t priv,
 701					  const struct iio_chan_spec *chan,
 702					  const char *buf, size_t len)
 703{
 704	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 705	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 706	unsigned int sample_freq = adc->sample_freq;
 707	unsigned int spi_freq;
 708	int ret;
 709
 710	dev_err(&indio_dev->dev, "enter %s\n", __func__);
 711	/* If DFSDM is master on SPI, SPI freq can not be updated */
 712	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 713		return -EPERM;
 714
 715	ret = kstrtoint(buf, 0, &spi_freq);
 716	if (ret)
 717		return ret;
 718
 719	if (!spi_freq)
 720		return -EINVAL;
 721
 722	if (sample_freq) {
 723		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 724		if (ret < 0)
 725			return ret;
 726	}
 727	adc->spi_freq = spi_freq;
 728
 729	return len;
 730}
 731
 732static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
 733				  struct iio_trigger *trig)
 734{
 735	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 736	struct regmap *regmap = adc->dfsdm->regmap;
 737	int ret;
 738
 739	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
 740	if (ret < 0)
 741		return ret;
 742
 743	ret = stm32_dfsdm_start_channel(indio_dev);
 744	if (ret < 0)
 745		return ret;
 746
 747	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
 748	if (ret < 0)
 749		goto stop_channels;
 750
 751	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 752	if (ret < 0)
 753		goto filter_unconfigure;
 754
 755	return 0;
 756
 757filter_unconfigure:
 758	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 759			   DFSDM_CR1_CFG_MASK, 0);
 760stop_channels:
 761	stm32_dfsdm_stop_channel(indio_dev);
 762
 763	return ret;
 764}
 765
 766static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
 767{
 768	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 769	struct regmap *regmap = adc->dfsdm->regmap;
 770
 771	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 772
 773	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 774			   DFSDM_CR1_CFG_MASK, 0);
 775
 776	stm32_dfsdm_stop_channel(indio_dev);
 777}
 778
 779static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 780				     unsigned int val)
 781{
 782	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 783	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 784	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 785
 786	/*
 787	 * DMA cyclic transfers are used, buffer is split into two periods.
 788	 * There should be :
 789	 * - always one buffer (period) DMA is working on
 790	 * - one buffer (period) driver pushed to ASoC side.
 791	 */
 792	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 793	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 794
 795	return 0;
 796}
 797
 798static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 799{
 800	struct dma_tx_state state;
 801	enum dma_status status;
 802
 803	status = dmaengine_tx_status(adc->dma_chan,
 804				     adc->dma_chan->cookie,
 805				     &state);
 806	if (status == DMA_IN_PROGRESS) {
 807		/* Residue is size in bytes from end of buffer */
 808		unsigned int i = adc->buf_sz - state.residue;
 809		unsigned int size;
 810
 811		/* Return available bytes */
 812		if (i >= adc->bufi)
 813			size = i - adc->bufi;
 814		else
 815			size = adc->buf_sz + i - adc->bufi;
 816
 817		return size;
 818	}
 819
 820	return 0;
 821}
 822
 823static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 824					    s32 *buffer)
 825{
 826	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 827	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 828	unsigned int i = adc->nconv;
 829	s32 *ptr = buffer;
 830
 831	while (i--) {
 832		/* Mask 8 LSB that contains the channel ID */
 833		*ptr &= 0xFFFFFF00;
 834		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 835		if (*ptr > flo->max)
 836			*ptr -= 1;
 837		/*
 838		 * Samples from filter are retrieved with 23 bits resolution
 839		 * or less. Shift left to align MSB on 24 bits.
 840		 */
 841		*ptr <<= flo->lshift;
 842
 843		ptr++;
 844	}
 845}
 846
 847static void stm32_dfsdm_dma_buffer_done(void *data)
 848{
 849	struct iio_dev *indio_dev = data;
 850	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 851	int available = stm32_dfsdm_adc_dma_residue(adc);
 852	size_t old_pos;
 853
 854	/*
 855	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 856	 * offers only an interface to push data samples per samples.
 857	 * For this reason IIO buffer interface is not used and interface is
 858	 * bypassed using a private callback registered by ASoC.
 859	 * This should be a temporary solution waiting a cyclic DMA engine
 860	 * support in IIO.
 861	 */
 862
 863	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
 864		adc->bufi, available);
 865	old_pos = adc->bufi;
 866
 867	while (available >= indio_dev->scan_bytes) {
 868		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 869
 870		stm32_dfsdm_process_data(adc, buffer);
 871
 872		available -= indio_dev->scan_bytes;
 873		adc->bufi += indio_dev->scan_bytes;
 874		if (adc->bufi >= adc->buf_sz) {
 875			if (adc->cb)
 876				adc->cb(&adc->rx_buf[old_pos],
 877					 adc->buf_sz - old_pos, adc->cb_priv);
 878			adc->bufi = 0;
 879			old_pos = 0;
 880		}
 881		/*
 882		 * In DMA mode the trigger services of IIO are not used
 883		 * (e.g. no call to iio_trigger_poll).
 884		 * Calling irq handler associated to the hardware trigger is not
 885		 * relevant as the conversions have already been done. Data
 886		 * transfers are performed directly in DMA callback instead.
 887		 * This implementation avoids to call trigger irq handler that
 888		 * may sleep, in an atomic context (DMA irq handler context).
 889		 */
 890		if (adc->dev_data->type == DFSDM_IIO)
 891			iio_push_to_buffers(indio_dev, buffer);
 892	}
 893	if (adc->cb)
 894		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 895			adc->cb_priv);
 896}
 897
 898static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 899{
 900	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 901	/*
 902	 * The DFSDM supports half-word transfers. However, for 16 bits record,
 903	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 904	 * shift is required.
 905	 */
 906	struct dma_slave_config config = {
 907		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 908		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 909	};
 910	struct dma_async_tx_descriptor *desc;
 911	dma_cookie_t cookie;
 912	int ret;
 913
 914	if (!adc->dma_chan)
 915		return -EINVAL;
 916
 917	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
 918		adc->buf_sz, adc->buf_sz / 2);
 919
 920	if (adc->nconv == 1 && !indio_dev->trig)
 921		config.src_addr += DFSDM_RDATAR(adc->fl_id);
 922	else
 923		config.src_addr += DFSDM_JDATAR(adc->fl_id);
 924	ret = dmaengine_slave_config(adc->dma_chan, &config);
 925	if (ret)
 926		return ret;
 927
 928	/* Prepare a DMA cyclic transaction */
 929	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 930					 adc->dma_buf,
 931					 adc->buf_sz, adc->buf_sz / 2,
 932					 DMA_DEV_TO_MEM,
 933					 DMA_PREP_INTERRUPT);
 934	if (!desc)
 935		return -EBUSY;
 936
 937	desc->callback = stm32_dfsdm_dma_buffer_done;
 938	desc->callback_param = indio_dev;
 939
 940	cookie = dmaengine_submit(desc);
 941	ret = dma_submit_error(cookie);
 942	if (ret)
 943		goto err_stop_dma;
 944
 945	/* Issue pending DMA requests */
 946	dma_async_issue_pending(adc->dma_chan);
 947
 948	if (adc->nconv == 1 && !indio_dev->trig) {
 949		/* Enable regular DMA transfer*/
 950		ret = regmap_update_bits(adc->dfsdm->regmap,
 951					 DFSDM_CR1(adc->fl_id),
 952					 DFSDM_CR1_RDMAEN_MASK,
 953					 DFSDM_CR1_RDMAEN_MASK);
 954	} else {
 955		/* Enable injected DMA transfer*/
 956		ret = regmap_update_bits(adc->dfsdm->regmap,
 957					 DFSDM_CR1(adc->fl_id),
 958					 DFSDM_CR1_JDMAEN_MASK,
 959					 DFSDM_CR1_JDMAEN_MASK);
 960	}
 961
 962	if (ret < 0)
 963		goto err_stop_dma;
 964
 965	return 0;
 966
 967err_stop_dma:
 968	dmaengine_terminate_all(adc->dma_chan);
 969
 970	return ret;
 971}
 972
 973static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
 974{
 975	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 976
 977	if (!adc->dma_chan)
 978		return;
 979
 980	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
 981			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
 982	dmaengine_terminate_all(adc->dma_chan);
 983}
 984
 985static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
 986					const unsigned long *scan_mask)
 987{
 988	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 989
 990	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
 991	adc->smask = *scan_mask;
 992
 993	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
 994
 995	return 0;
 996}
 997
 998static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
 999{
1000	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 
1001	int ret;
1002
1003	/* Reset adc buffer index */
1004	adc->bufi = 0;
1005
1006	if (adc->hwc) {
1007		ret = iio_hw_consumer_enable(adc->hwc);
1008		if (ret < 0)
1009			return ret;
1010	}
1011
 
 
 
 
 
 
 
 
 
1012	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1013	if (ret < 0)
1014		goto err_stop_hwc;
1015
1016	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1017	if (ret) {
1018		dev_err(&indio_dev->dev, "Can't start DMA\n");
1019		goto stop_dfsdm;
1020	}
1021
1022	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1023	if (ret) {
1024		dev_err(&indio_dev->dev, "Can't start conversion\n");
1025		goto err_stop_dma;
1026	}
1027
1028	return 0;
1029
1030err_stop_dma:
1031	stm32_dfsdm_adc_dma_stop(indio_dev);
1032stop_dfsdm:
1033	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1034err_stop_hwc:
1035	if (adc->hwc)
1036		iio_hw_consumer_disable(adc->hwc);
1037
1038	return ret;
1039}
1040
1041static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1042{
1043	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 
1044
1045	stm32_dfsdm_stop_conv(indio_dev);
1046
1047	stm32_dfsdm_adc_dma_stop(indio_dev);
1048
1049	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1050
 
 
 
 
 
 
 
1051	if (adc->hwc)
1052		iio_hw_consumer_disable(adc->hwc);
1053
1054	return 0;
1055}
1056
1057static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1058	.postenable = &stm32_dfsdm_postenable,
1059	.predisable = &stm32_dfsdm_predisable,
1060};
1061
1062/**
1063 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1064 *                             DMA transfer period is achieved.
1065 *
1066 * @iio_dev: Handle to IIO device.
1067 * @cb: Pointer to callback function:
1068 *      - data: pointer to data buffer
1069 *      - size: size in byte of the data buffer
1070 *      - private: pointer to consumer private structure.
1071 * @private: Pointer to consumer private structure.
1072 */
1073int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1074			    int (*cb)(const void *data, size_t size,
1075				      void *private),
1076			    void *private)
1077{
1078	struct stm32_dfsdm_adc *adc;
1079
1080	if (!iio_dev)
1081		return -EINVAL;
1082	adc = iio_priv(iio_dev);
1083
1084	adc->cb = cb;
1085	adc->cb_priv = private;
1086
1087	return 0;
1088}
1089EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1090
1091/**
1092 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1093 *
1094 * @iio_dev: Handle to IIO device.
1095 */
1096int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1097{
1098	struct stm32_dfsdm_adc *adc;
1099
1100	if (!iio_dev)
1101		return -EINVAL;
1102	adc = iio_priv(iio_dev);
1103
1104	adc->cb = NULL;
1105	adc->cb_priv = NULL;
1106
1107	return 0;
1108}
1109EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1110
1111static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1112				   const struct iio_chan_spec *chan, int *res)
1113{
1114	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1115	long timeout;
1116	int ret;
1117
1118	reinit_completion(&adc->completion);
1119
1120	adc->buffer = res;
1121
1122	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1123	if (ret < 0)
1124		return ret;
1125
1126	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1127				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1128	if (ret < 0)
1129		goto stop_dfsdm;
1130
1131	adc->nconv = 1;
1132	adc->smask = BIT(chan->scan_index);
1133	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1134	if (ret < 0) {
1135		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1136				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1137		goto stop_dfsdm;
1138	}
1139
1140	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1141							    DFSDM_TIMEOUT);
1142
1143	/* Mask IRQ for regular conversion achievement*/
1144	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1145			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1146
1147	if (timeout == 0)
1148		ret = -ETIMEDOUT;
1149	else if (timeout < 0)
1150		ret = timeout;
1151	else
1152		ret = IIO_VAL_INT;
1153
1154	stm32_dfsdm_stop_conv(indio_dev);
1155
1156	stm32_dfsdm_process_data(adc, res);
1157
1158stop_dfsdm:
1159	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1160
1161	return ret;
1162}
1163
1164static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1165				 struct iio_chan_spec const *chan,
1166				 int val, int val2, long mask)
1167{
1168	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1169	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1170	unsigned int spi_freq;
1171	int ret = -EINVAL;
1172
1173	switch (ch->src) {
1174	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1175		spi_freq = adc->dfsdm->spi_master_freq;
1176		break;
1177	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1178	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1179		spi_freq = adc->dfsdm->spi_master_freq / 2;
1180		break;
1181	default:
1182		spi_freq = adc->spi_freq;
1183	}
1184
1185	switch (mask) {
1186	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1187		ret = iio_device_claim_direct_mode(indio_dev);
1188		if (ret)
1189			return ret;
1190
1191		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1192		if (!ret) {
1193			dev_dbg(&indio_dev->dev,
1194				"Sampling rate changed from (%u) to (%u)\n",
1195				adc->sample_freq, spi_freq / val);
1196			adc->oversamp = val;
1197			adc->sample_freq = spi_freq / val;
1198		}
1199		iio_device_release_direct_mode(indio_dev);
1200		return ret;
1201
1202	case IIO_CHAN_INFO_SAMP_FREQ:
1203		if (!val)
1204			return -EINVAL;
1205
1206		ret = iio_device_claim_direct_mode(indio_dev);
1207		if (ret)
1208			return ret;
1209
1210		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1211		iio_device_release_direct_mode(indio_dev);
1212		return ret;
1213	}
1214
1215	return -EINVAL;
1216}
1217
1218static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1219				struct iio_chan_spec const *chan, int *val,
1220				int *val2, long mask)
1221{
1222	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 
 
 
 
 
1223	int ret;
1224
 
 
 
1225	switch (mask) {
1226	case IIO_CHAN_INFO_RAW:
1227		ret = iio_device_claim_direct_mode(indio_dev);
1228		if (ret)
1229			return ret;
1230		ret = iio_hw_consumer_enable(adc->hwc);
 
 
 
1231		if (ret < 0) {
1232			dev_err(&indio_dev->dev,
1233				"%s: IIO enable failed (channel %d)\n",
1234				__func__, chan->channel);
1235			iio_device_release_direct_mode(indio_dev);
1236			return ret;
1237		}
1238		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1239		iio_hw_consumer_disable(adc->hwc);
 
 
 
1240		if (ret < 0) {
1241			dev_err(&indio_dev->dev,
1242				"%s: Conversion failed (channel %d)\n",
1243				__func__, chan->channel);
1244			iio_device_release_direct_mode(indio_dev);
1245			return ret;
1246		}
1247		iio_device_release_direct_mode(indio_dev);
1248		return IIO_VAL_INT;
1249
1250	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1251		*val = adc->oversamp;
1252
1253		return IIO_VAL_INT;
1254
1255	case IIO_CHAN_INFO_SAMP_FREQ:
1256		*val = adc->sample_freq;
1257
1258		return IIO_VAL_INT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259	}
1260
1261	return -EINVAL;
1262}
1263
1264static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1265					struct iio_trigger *trig)
1266{
1267	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1268}
1269
1270static const struct iio_info stm32_dfsdm_info_audio = {
1271	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1272	.read_raw = stm32_dfsdm_read_raw,
1273	.write_raw = stm32_dfsdm_write_raw,
1274	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1275};
1276
1277static const struct iio_info stm32_dfsdm_info_adc = {
1278	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1279	.read_raw = stm32_dfsdm_read_raw,
1280	.write_raw = stm32_dfsdm_write_raw,
1281	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1282	.validate_trigger = stm32_dfsdm_validate_trigger,
1283};
1284
1285static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1286{
1287	struct iio_dev *indio_dev = arg;
1288	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1289	struct regmap *regmap = adc->dfsdm->regmap;
1290	unsigned int status, int_en;
1291
1292	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1293	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1294
1295	if (status & DFSDM_ISR_REOCF_MASK) {
1296		/* Read the data register clean the IRQ status */
1297		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1298		complete(&adc->completion);
1299	}
1300
1301	if (status & DFSDM_ISR_ROVRF_MASK) {
1302		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1303			dev_warn(&indio_dev->dev, "Overrun detected\n");
1304		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1305				   DFSDM_ICR_CLRROVRF_MASK,
1306				   DFSDM_ICR_CLRROVRF_MASK);
1307	}
1308
1309	return IRQ_HANDLED;
1310}
1311
1312/*
1313 * Define external info for SPI Frequency and audio sampling rate that can be
1314 * configured by ASoC driver through consumer.h API
1315 */
1316static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1317	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1318	{
1319		.name = "spi_clk_freq",
1320		.shared = IIO_SHARED_BY_TYPE,
1321		.read = dfsdm_adc_audio_get_spiclk,
1322		.write = dfsdm_adc_audio_set_spiclk,
1323	},
1324	{},
1325};
1326
1327static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1328{
1329	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1330
1331	if (adc->dma_chan) {
1332		dma_free_coherent(adc->dma_chan->device->dev,
1333				  DFSDM_DMA_BUFFER_SIZE,
1334				  adc->rx_buf, adc->dma_buf);
1335		dma_release_channel(adc->dma_chan);
1336	}
1337}
1338
1339static int stm32_dfsdm_dma_request(struct device *dev,
1340				   struct iio_dev *indio_dev)
1341{
1342	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1343
1344	adc->dma_chan = dma_request_chan(dev, "rx");
1345	if (IS_ERR(adc->dma_chan)) {
1346		int ret = PTR_ERR(adc->dma_chan);
1347
1348		adc->dma_chan = NULL;
1349		return ret;
1350	}
1351
1352	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1353					 DFSDM_DMA_BUFFER_SIZE,
1354					 &adc->dma_buf, GFP_KERNEL);
1355	if (!adc->rx_buf) {
1356		dma_release_channel(adc->dma_chan);
1357		return -ENOMEM;
1358	}
1359
1360	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1361	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1362
1363	return 0;
1364}
1365
1366static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1367					 struct iio_chan_spec *ch)
1368{
1369	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1370	int ret;
1371
1372	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
 
 
 
1373	if (ret < 0)
1374		return ret;
1375
1376	ch->type = IIO_VOLTAGE;
1377	ch->indexed = 1;
1378
1379	/*
1380	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1381	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1382	 */
1383	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
 
 
 
 
 
 
 
 
1384	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1385					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1386
1387	if (adc->dev_data->type == DFSDM_AUDIO) {
1388		ch->ext_info = dfsdm_adc_audio_ext_info;
 
1389	} else {
1390		ch->scan_type.shift = 8;
1391	}
1392	ch->scan_type.sign = 's';
1393	ch->scan_type.realbits = 24;
1394	ch->scan_type.storagebits = 32;
1395
1396	return stm32_dfsdm_chan_configure(adc->dfsdm,
1397					  &adc->dfsdm->ch_list[ch->channel]);
1398}
1399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1401{
1402	struct iio_chan_spec *ch;
1403	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1404	struct stm32_dfsdm_channel *d_ch;
1405	int ret;
 
 
 
 
 
 
1406
1407	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1408	if (!ch)
1409		return -ENOMEM;
1410
1411	ch->scan_index = 0;
 
 
 
 
 
 
1412
1413	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1414	if (ret < 0) {
1415		dev_err(&indio_dev->dev, "Channels init failed\n");
1416		return ret;
1417	}
1418	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1419
1420	d_ch = &adc->dfsdm->ch_list[ch->channel];
1421	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1422		adc->spi_freq = adc->dfsdm->spi_master_freq;
1423
1424	indio_dev->num_channels = 1;
1425	indio_dev->channels = ch;
1426
1427	return stm32_dfsdm_dma_request(dev, indio_dev);
1428}
1429
1430static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1431{
1432	struct iio_chan_spec *ch;
1433	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1434	int num_ch;
1435	int ret, chan_idx;
1436
1437	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1438	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1439	if (ret < 0)
1440		return ret;
1441
1442	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1443					     "st,adc-channels");
1444	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1445		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1446		return num_ch < 0 ? num_ch : -EINVAL;
 
 
 
 
 
1447	}
1448
1449	/* Bind to SD modulator IIO device */
1450	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1451	if (IS_ERR(adc->hwc))
1452		return -EPROBE_DEFER;
 
 
1453
1454	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1455			  GFP_KERNEL);
1456	if (!ch)
1457		return -ENOMEM;
 
 
 
 
 
1458
1459	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1460		ch[chan_idx].scan_index = chan_idx;
1461		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1462		if (ret < 0) {
1463			dev_err(&indio_dev->dev, "Channels init failed\n");
1464			return ret;
1465		}
1466	}
1467
1468	indio_dev->num_channels = num_ch;
 
 
1469	indio_dev->channels = ch;
1470
 
 
 
 
 
 
 
1471	init_completion(&adc->completion);
1472
1473	/* Optionally request DMA */
1474	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1475	if (ret) {
1476		if (ret != -ENODEV) {
1477			if (ret != -EPROBE_DEFER)
1478				dev_err(dev,
1479					"DMA channel request failed with %d\n",
1480					ret);
1481			return ret;
1482		}
1483
1484		dev_dbg(dev, "No DMA support\n");
1485		return 0;
1486	}
1487
1488	ret = iio_triggered_buffer_setup(indio_dev,
1489					 &iio_pollfunc_store_time, NULL,
1490					 &stm32_dfsdm_buffer_setup_ops);
1491	if (ret) {
1492		stm32_dfsdm_dma_release(indio_dev);
1493		dev_err(&indio_dev->dev, "buffer setup failed\n");
1494		return ret;
1495	}
1496
1497	/* lptimer/timer hardware triggers */
1498	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499
1500	return 0;
1501}
1502
1503static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504	.type = DFSDM_IIO,
1505	.init = stm32_dfsdm_adc_init,
1506};
1507
1508static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509	.type = DFSDM_AUDIO,
1510	.init = stm32_dfsdm_audio_init,
1511};
1512
1513static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514	{
1515		.compatible = "st,stm32-dfsdm-adc",
1516		.data = &stm32h7_dfsdm_adc_data,
1517	},
1518	{
1519		.compatible = "st,stm32-dfsdm-dmic",
1520		.data = &stm32h7_dfsdm_audio_data,
1521	},
1522	{}
1523};
 
1524
1525static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1526{
1527	struct device *dev = &pdev->dev;
1528	struct stm32_dfsdm_adc *adc;
1529	struct device_node *np = dev->of_node;
1530	const struct stm32_dfsdm_dev_data *dev_data;
1531	struct iio_dev *iio;
1532	char *name;
1533	int ret, irq, val;
1534
1535	dev_data = of_device_get_match_data(dev);
1536	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1537	if (!iio) {
1538		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1539		return -ENOMEM;
1540	}
1541
1542	adc = iio_priv(iio);
1543	adc->dfsdm = dev_get_drvdata(dev->parent);
1544
1545	iio->dev.of_node = np;
1546	iio->modes = INDIO_DIRECT_MODE;
1547
1548	platform_set_drvdata(pdev, iio);
1549
1550	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552		dev_err(dev, "Missing or bad reg property\n");
1553		return -EINVAL;
1554	}
1555
1556	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1557	if (!name)
1558		return -ENOMEM;
1559	if (dev_data->type == DFSDM_AUDIO) {
1560		iio->info = &stm32_dfsdm_info_audio;
1561		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1562	} else {
1563		iio->info = &stm32_dfsdm_info_adc;
1564		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1565	}
1566	iio->name = name;
1567
1568	/*
1569	 * In a first step IRQs generated for channels are not treated.
1570	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1571	 */
1572	irq = platform_get_irq(pdev, 0);
1573	if (irq < 0)
1574		return irq;
1575
1576	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577			       0, pdev->name, iio);
1578	if (ret < 0) {
1579		dev_err(dev, "Failed to request IRQ\n");
1580		return ret;
1581	}
1582
1583	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1584	if (ret < 0) {
1585		dev_err(dev, "Failed to set filter order\n");
1586		return ret;
1587	}
1588
1589	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1590
1591	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1592	if (!ret)
1593		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1594
1595	adc->dev_data = dev_data;
1596	ret = dev_data->init(dev, iio);
1597	if (ret < 0)
1598		return ret;
1599
1600	ret = iio_device_register(iio);
1601	if (ret < 0)
1602		goto err_cleanup;
1603
1604	if (dev_data->type == DFSDM_AUDIO) {
1605		ret = of_platform_populate(np, NULL, NULL, dev);
1606		if (ret < 0) {
1607			dev_err(dev, "Failed to find an audio DAI\n");
1608			goto err_unregister;
1609		}
1610	}
1611
1612	return 0;
1613
1614err_unregister:
1615	iio_device_unregister(iio);
1616err_cleanup:
1617	stm32_dfsdm_dma_release(iio);
1618
1619	return ret;
1620}
1621
1622static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1623{
1624	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1626
1627	if (adc->dev_data->type == DFSDM_AUDIO)
1628		of_platform_depopulate(&pdev->dev);
1629	iio_device_unregister(indio_dev);
1630	stm32_dfsdm_dma_release(indio_dev);
1631
1632	return 0;
1633}
1634
1635static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1636{
1637	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1638
1639	if (iio_buffer_enabled(indio_dev))
1640		stm32_dfsdm_predisable(indio_dev);
1641
1642	return 0;
1643}
1644
1645static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1646{
1647	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649	const struct iio_chan_spec *chan;
1650	struct stm32_dfsdm_channel *ch;
1651	int i, ret;
1652
1653	/* restore channels configuration */
1654	for (i = 0; i < indio_dev->num_channels; i++) {
1655		chan = indio_dev->channels + i;
1656		ch = &adc->dfsdm->ch_list[chan->channel];
1657		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1658		if (ret)
1659			return ret;
1660	}
1661
1662	if (iio_buffer_enabled(indio_dev))
1663		stm32_dfsdm_postenable(indio_dev);
1664
1665	return 0;
1666}
1667
1668static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
 
1670
1671static struct platform_driver stm32_dfsdm_adc_driver = {
1672	.driver = {
1673		.name = "stm32-dfsdm-adc",
1674		.of_match_table = stm32_dfsdm_adc_match,
1675		.pm = &stm32_dfsdm_adc_pm_ops,
1676	},
1677	.probe = stm32_dfsdm_adc_probe,
1678	.remove = stm32_dfsdm_adc_remove,
1679};
1680module_platform_driver(stm32_dfsdm_adc_driver);
1681
1682MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/iio/adc/stm32-dfsdm-adc.h>
  12#include <linux/iio/backend.h>
  13#include <linux/iio/buffer.h>
  14#include <linux/iio/hw-consumer.h>
  15#include <linux/iio/sysfs.h>
  16#include <linux/iio/timer/stm32-lptim-trigger.h>
  17#include <linux/iio/timer/stm32-timer-trigger.h>
  18#include <linux/iio/trigger.h>
  19#include <linux/iio/trigger_consumer.h>
  20#include <linux/iio/triggered_buffer.h>
  21#include <linux/interrupt.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_platform.h>
  25#include <linux/platform_device.h>
  26#include <linux/regmap.h>
  27#include <linux/slab.h>
  28
  29#include "stm32-dfsdm.h"
  30
  31#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  32
  33/* Conversion timeout */
  34#define DFSDM_TIMEOUT_US 100000
  35#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  36
  37/* Oversampling attribute default */
  38#define DFSDM_DEFAULT_OVERSAMPLING  100
  39
  40/* Oversampling max values */
  41#define DFSDM_MAX_INT_OVERSAMPLING 256
  42#define DFSDM_MAX_FL_OVERSAMPLING 1024
  43
  44/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
  45#define DFSDM_DATA_MAX BIT(30)
  46/*
  47 * Data are output as two's complement data in a 24 bit field.
  48 * Data from filters are in the range +/-2^(n-1)
  49 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
  50 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
  51 * So, the resolution of samples from filter is actually limited to 23 bits
  52 */
  53#define DFSDM_DATA_RES 24
  54
  55/* Filter configuration */
  56#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
  57			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
  58			    DFSDM_CR1_JSCAN_MASK)
  59
  60enum sd_converter_type {
  61	DFSDM_AUDIO,
  62	DFSDM_IIO,
  63};
  64
  65struct stm32_dfsdm_dev_data {
  66	int type;
  67	int (*init)(struct device *dev, struct iio_dev *indio_dev);
  68	unsigned int num_channels;
  69	const struct regmap_config *regmap_cfg;
  70};
  71
  72struct stm32_dfsdm_adc {
  73	struct stm32_dfsdm *dfsdm;
  74	const struct stm32_dfsdm_dev_data *dev_data;
  75	unsigned int fl_id;
  76	unsigned int nconv;
  77	unsigned long smask;
  78
  79	/* ADC specific */
  80	unsigned int oversamp;
  81	struct iio_hw_consumer *hwc;
  82	struct iio_backend **backend;
  83	struct completion completion;
  84	u32 *buffer;
  85
  86	/* Audio specific */
  87	unsigned int spi_freq;  /* SPI bus clock frequency */
  88	unsigned int sample_freq; /* Sample frequency after filter decimation */
  89	int (*cb)(const void *data, size_t size, void *cb_priv);
  90	void *cb_priv;
  91
  92	/* DMA */
  93	u8 *rx_buf;
  94	unsigned int bufi; /* Buffer current position */
  95	unsigned int buf_sz; /* Buffer size */
  96	struct dma_chan	*dma_chan;
  97	dma_addr_t dma_buf;
  98};
  99
 100struct stm32_dfsdm_str2field {
 101	const char	*name;
 102	unsigned int	val;
 103};
 104
 105/* DFSDM channel serial interface type */
 106static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
 107	{ "SPI_R", 0 }, /* SPI with data on rising edge */
 108	{ "SPI_F", 1 }, /* SPI with data on falling edge */
 109	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
 110	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
 111	{},
 112};
 113
 114/* DFSDM channel clock source */
 115static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
 116	/* External SPI clock (CLKIN x) */
 117	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
 118	/* Internal SPI clock (CLKOUT) */
 119	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
 120	/* Internal SPI clock divided by 2 (falling edge) */
 121	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 122	/* Internal SPI clock divided by 2 (falling edge) */
 123	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 124	{},
 125};
 126
 127static int stm32_dfsdm_str2val(const char *str,
 128			       const struct stm32_dfsdm_str2field *list)
 129{
 130	const struct stm32_dfsdm_str2field *p = list;
 131
 132	for (p = list; p && p->name; p++)
 133		if (!strcmp(p->name, str))
 134			return p->val;
 135
 136	return -EINVAL;
 137}
 138
 139/**
 140 * struct stm32_dfsdm_trig_info - DFSDM trigger info
 141 * @name:		name of the trigger, corresponding to its source
 142 * @jextsel:		trigger signal selection
 143 */
 144struct stm32_dfsdm_trig_info {
 145	const char *name;
 146	unsigned int jextsel;
 147};
 148
 149/* hardware injected trigger enable, edge selection */
 150enum stm32_dfsdm_jexten {
 151	STM32_DFSDM_JEXTEN_DISABLED,
 152	STM32_DFSDM_JEXTEN_RISING_EDGE,
 153	STM32_DFSDM_JEXTEN_FALLING_EDGE,
 154	STM32_DFSDM_EXTEN_BOTH_EDGES,
 155};
 156
 157static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
 158	{ TIM1_TRGO, 0 },
 159	{ TIM1_TRGO2, 1 },
 160	{ TIM8_TRGO, 2 },
 161	{ TIM8_TRGO2, 3 },
 162	{ TIM3_TRGO, 4 },
 163	{ TIM4_TRGO, 5 },
 164	{ TIM16_OC1, 6 },
 165	{ TIM6_TRGO, 7 },
 166	{ TIM7_TRGO, 8 },
 167	{ LPTIM1_OUT, 26 },
 168	{ LPTIM2_OUT, 27 },
 169	{ LPTIM3_OUT, 28 },
 170	{},
 171};
 172
 173static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
 174				   struct iio_trigger *trig)
 175{
 176	int i;
 177
 178	/* lookup triggers registered by stm32 timer trigger driver */
 179	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
 180		/**
 181		 * Checking both stm32 timer trigger type and trig name
 182		 * should be safe against arbitrary trigger names.
 183		 */
 184		if ((is_stm32_timer_trigger(trig) ||
 185		     is_stm32_lptim_trigger(trig)) &&
 186		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
 187			return stm32_dfsdm_trigs[i].jextsel;
 188		}
 189	}
 190
 191	return -EINVAL;
 192}
 193
 194static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
 195				    unsigned int fast, unsigned int oversamp)
 196{
 197	unsigned int i, d, fosr, iosr;
 198	u64 res, max;
 199	int bits, shift;
 200	unsigned int m = 1;	/* multiplication factor */
 201	unsigned int p = fl->ford;	/* filter order (ford) */
 202	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
 203
 204	pr_debug("Requested oversampling: %d\n", oversamp);
 205	/*
 206	 * This function tries to compute filter oversampling and integrator
 207	 * oversampling, base on oversampling ratio requested by user.
 208	 *
 209	 * Decimation d depends on the filter order and the oversampling ratios.
 210	 * ford: filter order
 211	 * fosr: filter over sampling ratio
 212	 * iosr: integrator over sampling ratio
 213	 */
 214	if (fl->ford == DFSDM_FASTSINC_ORDER) {
 215		m = 2;
 216		p = 2;
 217	}
 218
 219	/*
 220	 * Look for filter and integrator oversampling ratios which allows
 221	 * to maximize data output resolution.
 222	 */
 223	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 224		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 225			if (fast)
 226				d = fosr * iosr;
 227			else if (fl->ford == DFSDM_FASTSINC_ORDER)
 228				d = fosr * (iosr + 3) + 2;
 229			else
 230				d = fosr * (iosr - 1 + p) + p;
 231
 232			if (d > oversamp)
 233				break;
 234			else if (d != oversamp)
 235				continue;
 236			/*
 237			 * Check resolution (limited to signed 32 bits)
 238			 *   res <= 2^31
 239			 * Sincx filters:
 240			 *   res = m * fosr^p x iosr (with m=1, p=ford)
 241			 * FastSinc filter
 242			 *   res = m * fosr^p x iosr (with m=2, p=2)
 243			 */
 244			res = fosr;
 245			for (i = p - 1; i > 0; i--) {
 246				res = res * (u64)fosr;
 247				if (res > DFSDM_DATA_MAX)
 248					break;
 249			}
 250			if (res > DFSDM_DATA_MAX)
 251				continue;
 252
 253			res = res * (u64)m * (u64)iosr;
 254			if (res > DFSDM_DATA_MAX)
 255				continue;
 256
 257			if (res >= flo->res) {
 258				flo->res = res;
 259				flo->fosr = fosr;
 260				flo->iosr = iosr;
 261
 262				bits = fls(flo->res);
 263				/* 8 LBSs in data register contain chan info */
 264				max = flo->res << 8;
 265
 266				/* if resolution is not a power of two */
 267				if (flo->res > BIT(bits - 1))
 268					bits++;
 269				else
 270					max--;
 271
 272				shift = DFSDM_DATA_RES - bits;
 273				/*
 274				 * Compute right/left shift
 275				 * Right shift is performed by hardware
 276				 * when transferring samples to data register.
 277				 * Left shift is done by software on buffer
 278				 */
 279				if (shift > 0) {
 280					/* Resolution is lower than 24 bits */
 281					flo->rshift = 0;
 282					flo->lshift = shift;
 283				} else {
 284					/*
 285					 * If resolution is 24 bits or more,
 286					 * max positive value may be ambiguous
 287					 * (equal to max negative value as sign
 288					 * bit is dropped).
 289					 * Reduce resolution to 23 bits (rshift)
 290					 * to keep the sign on bit 23 and treat
 291					 * saturation before rescaling on 24
 292					 * bits (lshift).
 293					 */
 294					flo->rshift = 1 - shift;
 295					flo->lshift = 1;
 296					max >>= flo->rshift;
 297				}
 298				flo->max = (s32)max;
 299				flo->bits = bits;
 300
 301				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
 302					 fast, flo->fosr, flo->iosr,
 303					 flo->res, bits, flo->rshift,
 304					 flo->lshift);
 305			}
 306		}
 307	}
 308
 309	if (!flo->res)
 310		return -EINVAL;
 311
 312	return 0;
 313}
 314
 315static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
 316					unsigned int oversamp)
 317{
 318	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 319	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 320	int ret0, ret1;
 321
 322	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
 323	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
 324
 325	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
 326	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
 327	if (ret0 < 0 && ret1 < 0) {
 328		dev_err(&indio_dev->dev,
 329			"Filter parameters not found: errors %d/%d\n",
 330			ret0, ret1);
 331		return -EINVAL;
 332	}
 333
 334	return 0;
 335}
 336
 337static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
 338{
 339	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 340	struct regmap *regmap = adc->dfsdm->regmap;
 341	const struct iio_chan_spec *chan;
 342	unsigned int bit;
 343	int ret;
 344
 345	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 346		chan = indio_dev->channels + bit;
 347		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 348					 DFSDM_CHCFGR1_CHEN_MASK,
 349					 DFSDM_CHCFGR1_CHEN(1));
 350		if (ret < 0)
 351			return ret;
 352	}
 353
 354	return 0;
 355}
 356
 357static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
 358{
 359	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 360	struct regmap *regmap = adc->dfsdm->regmap;
 361	const struct iio_chan_spec *chan;
 362	unsigned int bit;
 363
 364	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
 365		chan = indio_dev->channels + bit;
 366		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
 367				   DFSDM_CHCFGR1_CHEN_MASK,
 368				   DFSDM_CHCFGR1_CHEN(0));
 369	}
 370}
 371
 372static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 373				      struct stm32_dfsdm_channel *ch)
 374{
 375	unsigned int id = ch->id;
 376	struct regmap *regmap = dfsdm->regmap;
 377	int ret;
 378
 379	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 380				 DFSDM_CHCFGR1_SITP_MASK,
 381				 DFSDM_CHCFGR1_SITP(ch->type));
 382	if (ret < 0)
 383		return ret;
 384	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 385				 DFSDM_CHCFGR1_SPICKSEL_MASK,
 386				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 387	if (ret < 0)
 388		return ret;
 389	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 390				  DFSDM_CHCFGR1_CHINSEL_MASK,
 391				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 392}
 393
 394static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
 395				    unsigned int fl_id,
 396				    struct iio_trigger *trig)
 397{
 398	struct stm32_dfsdm *dfsdm = adc->dfsdm;
 399	int ret;
 400
 401	/* Enable filter */
 402	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 403				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 404	if (ret < 0)
 405		return ret;
 406
 407	/* Nothing more to do for injected (scan mode/triggered) conversions */
 408	if (adc->nconv > 1 || trig)
 409		return 0;
 410
 411	/* Software start (single or continuous) regular conversion */
 412	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 413				  DFSDM_CR1_RSWSTART_MASK,
 414				  DFSDM_CR1_RSWSTART(1));
 415}
 416
 417static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
 418				    unsigned int fl_id)
 419{
 420	/* Disable conversion */
 421	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 422			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 423}
 424
 425static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
 426				       unsigned int fl_id,
 427				       struct iio_trigger *trig)
 428{
 429	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 430	struct regmap *regmap = adc->dfsdm->regmap;
 431	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
 432	int ret;
 433
 434	if (trig) {
 435		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
 436		if (ret < 0)
 437			return ret;
 438
 439		/* set trigger source and polarity (default to rising edge) */
 440		jextsel = ret;
 441		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
 442	}
 443
 444	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 445				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
 446				 DFSDM_CR1_JEXTSEL(jextsel) |
 447				 DFSDM_CR1_JEXTEN(jexten));
 448	if (ret < 0)
 449		return ret;
 450
 451	return 0;
 452}
 453
 454static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
 455					  unsigned int fl_id,
 456					  struct iio_trigger *trig)
 457{
 458	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 459	struct regmap *regmap = adc->dfsdm->regmap;
 460	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 461	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
 462	const struct iio_chan_spec *chan;
 463	unsigned int bit;
 464	int ret;
 465
 466	fl->fast = 0;
 467
 468	/*
 469	 * In continuous mode, use fast mode configuration,
 470	 * if it provides a better resolution.
 471	 */
 472	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
 
 473		if (fl->flo[1].res >= fl->flo[0].res) {
 474			fl->fast = 1;
 475			flo = &fl->flo[1];
 476		}
 477	}
 478
 479	if (!flo->res)
 480		return -EINVAL;
 481
 482	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
 483		min(flo->bits, (u32)DFSDM_DATA_RES - 1));
 484
 485	for_each_set_bit(bit, &adc->smask,
 486			 sizeof(adc->smask) * BITS_PER_BYTE) {
 487		chan = indio_dev->channels + bit;
 488
 489		ret = regmap_update_bits(regmap,
 490					 DFSDM_CHCFGR2(chan->channel),
 491					 DFSDM_CHCFGR2_DTRBS_MASK,
 492					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
 493		if (ret)
 494			return ret;
 495	}
 496
 497	return 0;
 498}
 499
 500static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
 501					unsigned int fl_id,
 502					struct iio_trigger *trig)
 503{
 504	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 505	struct regmap *regmap = adc->dfsdm->regmap;
 506	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
 507	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 508	u32 cr1;
 509	const struct iio_chan_spec *chan;
 510	unsigned int bit, jchg = 0;
 511	int ret;
 512
 513	/* Average integrator oversampling */
 514	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 515				 DFSDM_FCR_IOSR(flo->iosr - 1));
 516	if (ret)
 517		return ret;
 518
 519	/* Filter order and Oversampling */
 520	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 521				 DFSDM_FCR_FOSR(flo->fosr - 1));
 522	if (ret)
 523		return ret;
 524
 525	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 526				 DFSDM_FCR_FORD(fl->ford));
 527	if (ret)
 528		return ret;
 529
 530	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
 531	if (ret)
 532		return ret;
 533
 534	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 535				 DFSDM_CR1_FAST_MASK,
 536				 DFSDM_CR1_FAST(fl->fast));
 537	if (ret)
 538		return ret;
 539
 540	/*
 541	 * DFSDM modes configuration W.R.T audio/iio type modes
 542	 * ----------------------------------------------------------------
 543	 * Modes         | regular |  regular     | injected | injected   |
 544	 *               |         |  continuous  |          | + scan     |
 545	 * --------------|---------|--------------|----------|------------|
 546	 * single conv   |    x    |              |          |            |
 547	 * (1 chan)      |         |              |          |            |
 548	 * --------------|---------|--------------|----------|------------|
 549	 * 1 Audio chan	 |         | sample freq  |          |            |
 550	 *               |         | or sync_mode |          |            |
 551	 * --------------|---------|--------------|----------|------------|
 552	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
 553	 *               |         | or sync_mode |          |            |
 554	 * --------------|---------|--------------|----------|------------|
 555	 * 2+ IIO chans  |         |              |          | trigger or |
 556	 *               |         |              |          | sync_mode  |
 557	 * ----------------------------------------------------------------
 558	 */
 559	if (adc->nconv == 1 && !trig) {
 560		bit = __ffs(adc->smask);
 561		chan = indio_dev->channels + bit;
 562
 563		/* Use regular conversion for single channel without trigger */
 564		cr1 = DFSDM_CR1_RCH(chan->channel);
 565
 566		/* Continuous conversions triggered by SPI clk in buffer mode */
 567		if (iio_buffer_enabled(indio_dev))
 568			cr1 |= DFSDM_CR1_RCONT(1);
 569
 570		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
 571	} else {
 572		/* Use injected conversion for multiple channels */
 573		for_each_set_bit(bit, &adc->smask,
 574				 sizeof(adc->smask) * BITS_PER_BYTE) {
 575			chan = indio_dev->channels + bit;
 576			jchg |= BIT(chan->channel);
 577		}
 578		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
 579		if (ret < 0)
 580			return ret;
 581
 582		/* Use scan mode for multiple channels */
 583		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
 584
 585		/*
 586		 * Continuous conversions not supported in injected mode,
 587		 * either use:
 588		 * - conversions in sync with filter 0
 589		 * - triggered conversions
 590		 */
 591		if (!fl->sync_mode && !trig)
 592			return -EINVAL;
 593		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
 594	}
 595
 596	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
 597				  cr1);
 598}
 599
 600static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 601					struct iio_dev *indio_dev,
 602					struct iio_chan_spec *ch)
 603{
 604	struct stm32_dfsdm_channel *df_ch;
 605	const char *of_str;
 606	int chan_idx = ch->scan_index;
 607	int ret, val;
 608
 609	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 610					 "st,adc-channels", chan_idx,
 611					 &ch->channel);
 612	if (ret < 0) {
 613		dev_err(&indio_dev->dev,
 614			" Error parsing 'st,adc-channels' for idx %d\n",
 615			chan_idx);
 616		return ret;
 617	}
 618	if (ch->channel >= dfsdm->num_chs) {
 619		dev_err(&indio_dev->dev,
 620			" Error bad channel number %d (max = %d)\n",
 621			ch->channel, dfsdm->num_chs);
 622		return -EINVAL;
 623	}
 624
 625	ret = of_property_read_string_index(indio_dev->dev.of_node,
 626					    "st,adc-channel-names", chan_idx,
 627					    &ch->datasheet_name);
 628	if (ret < 0) {
 629		dev_err(&indio_dev->dev,
 630			" Error parsing 'st,adc-channel-names' for idx %d\n",
 631			chan_idx);
 632		return ret;
 633	}
 634
 635	df_ch =  &dfsdm->ch_list[ch->channel];
 636	df_ch->id = ch->channel;
 637
 638	ret = of_property_read_string_index(indio_dev->dev.of_node,
 639					    "st,adc-channel-types", chan_idx,
 640					    &of_str);
 641	if (!ret) {
 642		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 643		if (val < 0)
 644			return val;
 645	} else {
 646		val = 0;
 647	}
 648	df_ch->type = val;
 649
 650	ret = of_property_read_string_index(indio_dev->dev.of_node,
 651					    "st,adc-channel-clk-src", chan_idx,
 652					    &of_str);
 653	if (!ret) {
 654		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 655		if (val < 0)
 656			return val;
 657	} else {
 658		val = 0;
 659	}
 660	df_ch->src = val;
 661
 662	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 663					 "st,adc-alt-channel", chan_idx,
 664					 &df_ch->alt_si);
 665	if (ret < 0)
 666		df_ch->alt_si = 0;
 667
 668	return 0;
 669}
 670
 671static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
 672						struct iio_dev *indio_dev,
 673						struct iio_chan_spec *ch,
 674						struct fwnode_handle *node)
 675{
 676	struct stm32_dfsdm_channel *df_ch;
 677	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 678	struct iio_backend *backend;
 679	const char *of_str;
 680	int ret, val;
 681
 682	ret = fwnode_property_read_u32(node, "reg", &ch->channel);
 683	if (ret < 0) {
 684		dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
 685		return ret;
 686	}
 687
 688	if (ch->channel >= dfsdm->num_chs) {
 689		dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
 690			ch->channel, dfsdm->num_chs);
 691		return -EINVAL;
 692	}
 693
 694	if (fwnode_property_present(node, "label")) {
 695		/* label is optional */
 696		ret = fwnode_property_read_string(node, "label", &ch->datasheet_name);
 697		if (ret < 0) {
 698			dev_err(&indio_dev->dev,
 699				" Error parsing 'label' for idx %d\n", ch->channel);
 700			return ret;
 701		}
 702	}
 703
 704	df_ch =  &dfsdm->ch_list[ch->channel];
 705	df_ch->id = ch->channel;
 706
 707	ret = fwnode_property_read_string(node, "st,adc-channel-type", &of_str);
 708	if (!ret) {
 709		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 710		if (val < 0)
 711			return val;
 712	} else {
 713		val = 0;
 714	}
 715	df_ch->type = val;
 716
 717	ret = fwnode_property_read_string(node, "st,adc-channel-clk-src", &of_str);
 718	if (!ret) {
 719		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 720		if (val < 0)
 721			return val;
 722	} else {
 723		val = 0;
 724	}
 725	df_ch->src = val;
 726
 727	ret = fwnode_property_read_u32(node, "st,adc-alt-channel", &df_ch->alt_si);
 728	if (ret != -EINVAL)
 729		df_ch->alt_si = 0;
 730
 731	if (adc->dev_data->type == DFSDM_IIO) {
 732		backend = devm_iio_backend_fwnode_get(&indio_dev->dev, NULL, node);
 733		if (IS_ERR(backend))
 734			return dev_err_probe(&indio_dev->dev, PTR_ERR(backend),
 735					     "Failed to get backend\n");
 736		adc->backend[ch->scan_index] = backend;
 737	}
 738
 739	return 0;
 740}
 741
 742static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 743					  uintptr_t priv,
 744					  const struct iio_chan_spec *chan,
 745					  char *buf)
 746{
 747	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 748
 749	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 750}
 751
 752static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
 753				   unsigned int sample_freq,
 754				   unsigned int spi_freq)
 755{
 756	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 757	unsigned int oversamp;
 758	int ret;
 759
 760	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
 761	if (spi_freq % sample_freq)
 762		dev_dbg(&indio_dev->dev,
 763			"Rate not accurate. requested (%u), actual (%u)\n",
 764			sample_freq, spi_freq / oversamp);
 765
 766	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
 767	if (ret < 0)
 768		return ret;
 769
 770	adc->sample_freq = spi_freq / oversamp;
 771	adc->oversamp = oversamp;
 772
 773	return 0;
 774}
 775
 776static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 777					  uintptr_t priv,
 778					  const struct iio_chan_spec *chan,
 779					  const char *buf, size_t len)
 780{
 781	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 782	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 783	unsigned int sample_freq = adc->sample_freq;
 784	unsigned int spi_freq;
 785	int ret;
 786
 787	dev_err(&indio_dev->dev, "enter %s\n", __func__);
 788	/* If DFSDM is master on SPI, SPI freq can not be updated */
 789	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 790		return -EPERM;
 791
 792	ret = kstrtoint(buf, 0, &spi_freq);
 793	if (ret)
 794		return ret;
 795
 796	if (!spi_freq)
 797		return -EINVAL;
 798
 799	if (sample_freq) {
 800		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
 801		if (ret < 0)
 802			return ret;
 803	}
 804	adc->spi_freq = spi_freq;
 805
 806	return len;
 807}
 808
 809static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
 810				  struct iio_trigger *trig)
 811{
 812	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 813	struct regmap *regmap = adc->dfsdm->regmap;
 814	int ret;
 815
 816	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
 817	if (ret < 0)
 818		return ret;
 819
 820	ret = stm32_dfsdm_start_channel(indio_dev);
 821	if (ret < 0)
 822		return ret;
 823
 824	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
 825	if (ret < 0)
 826		goto stop_channels;
 827
 828	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
 829	if (ret < 0)
 830		goto filter_unconfigure;
 831
 832	return 0;
 833
 834filter_unconfigure:
 835	regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
 
 836stop_channels:
 837	stm32_dfsdm_stop_channel(indio_dev);
 838
 839	return ret;
 840}
 841
 842static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
 843{
 844	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 845	struct regmap *regmap = adc->dfsdm->regmap;
 846
 847	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 848
 849	regmap_clear_bits(regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
 
 850
 851	stm32_dfsdm_stop_channel(indio_dev);
 852}
 853
 854static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 855				     unsigned int val)
 856{
 857	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 858	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 859	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
 860
 861	/*
 862	 * DMA cyclic transfers are used, buffer is split into two periods.
 863	 * There should be :
 864	 * - always one buffer (period) DMA is working on
 865	 * - one buffer (period) driver pushed to ASoC side.
 866	 */
 867	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 868	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
 869
 870	return 0;
 871}
 872
 873static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 874{
 875	struct dma_tx_state state;
 876	enum dma_status status;
 877
 878	status = dmaengine_tx_status(adc->dma_chan,
 879				     adc->dma_chan->cookie,
 880				     &state);
 881	if (status == DMA_IN_PROGRESS) {
 882		/* Residue is size in bytes from end of buffer */
 883		unsigned int i = adc->buf_sz - state.residue;
 884		unsigned int size;
 885
 886		/* Return available bytes */
 887		if (i >= adc->bufi)
 888			size = i - adc->bufi;
 889		else
 890			size = adc->buf_sz + i - adc->bufi;
 891
 892		return size;
 893	}
 894
 895	return 0;
 896}
 897
 898static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
 899					    s32 *buffer)
 900{
 901	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 902	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
 903	unsigned int i = adc->nconv;
 904	s32 *ptr = buffer;
 905
 906	while (i--) {
 907		/* Mask 8 LSB that contains the channel ID */
 908		*ptr &= 0xFFFFFF00;
 909		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
 910		if (*ptr > flo->max)
 911			*ptr -= 1;
 912		/*
 913		 * Samples from filter are retrieved with 23 bits resolution
 914		 * or less. Shift left to align MSB on 24 bits.
 915		 */
 916		*ptr <<= flo->lshift;
 917
 918		ptr++;
 919	}
 920}
 921
 922static void stm32_dfsdm_dma_buffer_done(void *data)
 923{
 924	struct iio_dev *indio_dev = data;
 925	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 926	int available = stm32_dfsdm_adc_dma_residue(adc);
 927	size_t old_pos;
 928
 929	/*
 930	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 931	 * offers only an interface to push data samples per samples.
 932	 * For this reason IIO buffer interface is not used and interface is
 933	 * bypassed using a private callback registered by ASoC.
 934	 * This should be a temporary solution waiting a cyclic DMA engine
 935	 * support in IIO.
 936	 */
 937
 938	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
 939		adc->bufi, available);
 940	old_pos = adc->bufi;
 941
 942	while (available >= indio_dev->scan_bytes) {
 943		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
 944
 945		stm32_dfsdm_process_data(adc, buffer);
 946
 947		available -= indio_dev->scan_bytes;
 948		adc->bufi += indio_dev->scan_bytes;
 949		if (adc->bufi >= adc->buf_sz) {
 950			if (adc->cb)
 951				adc->cb(&adc->rx_buf[old_pos],
 952					 adc->buf_sz - old_pos, adc->cb_priv);
 953			adc->bufi = 0;
 954			old_pos = 0;
 955		}
 956		/*
 957		 * In DMA mode the trigger services of IIO are not used
 958		 * (e.g. no call to iio_trigger_poll).
 959		 * Calling irq handler associated to the hardware trigger is not
 960		 * relevant as the conversions have already been done. Data
 961		 * transfers are performed directly in DMA callback instead.
 962		 * This implementation avoids to call trigger irq handler that
 963		 * may sleep, in an atomic context (DMA irq handler context).
 964		 */
 965		if (adc->dev_data->type == DFSDM_IIO)
 966			iio_push_to_buffers(indio_dev, buffer);
 967	}
 968	if (adc->cb)
 969		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 970			adc->cb_priv);
 971}
 972
 973static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 974{
 975	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 976	/*
 977	 * The DFSDM supports half-word transfers. However, for 16 bits record,
 978	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
 979	 * shift is required.
 980	 */
 981	struct dma_slave_config config = {
 982		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
 983		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 984	};
 985	struct dma_async_tx_descriptor *desc;
 986	dma_cookie_t cookie;
 987	int ret;
 988
 989	if (!adc->dma_chan)
 990		return -EINVAL;
 991
 992	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
 993		adc->buf_sz, adc->buf_sz / 2);
 994
 995	if (adc->nconv == 1 && !indio_dev->trig)
 996		config.src_addr += DFSDM_RDATAR(adc->fl_id);
 997	else
 998		config.src_addr += DFSDM_JDATAR(adc->fl_id);
 999	ret = dmaengine_slave_config(adc->dma_chan, &config);
1000	if (ret)
1001		return ret;
1002
1003	/* Prepare a DMA cyclic transaction */
1004	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1005					 adc->dma_buf,
1006					 adc->buf_sz, adc->buf_sz / 2,
1007					 DMA_DEV_TO_MEM,
1008					 DMA_PREP_INTERRUPT);
1009	if (!desc)
1010		return -EBUSY;
1011
1012	desc->callback = stm32_dfsdm_dma_buffer_done;
1013	desc->callback_param = indio_dev;
1014
1015	cookie = dmaengine_submit(desc);
1016	ret = dma_submit_error(cookie);
1017	if (ret)
1018		goto err_stop_dma;
1019
1020	/* Issue pending DMA requests */
1021	dma_async_issue_pending(adc->dma_chan);
1022
1023	if (adc->nconv == 1 && !indio_dev->trig) {
1024		/* Enable regular DMA transfer*/
1025		ret = regmap_set_bits(adc->dfsdm->regmap,
1026				      DFSDM_CR1(adc->fl_id),
1027				      DFSDM_CR1_RDMAEN_MASK);
 
1028	} else {
1029		/* Enable injected DMA transfer*/
1030		ret = regmap_set_bits(adc->dfsdm->regmap,
1031				      DFSDM_CR1(adc->fl_id),
1032				      DFSDM_CR1_JDMAEN_MASK);
 
1033	}
1034
1035	if (ret < 0)
1036		goto err_stop_dma;
1037
1038	return 0;
1039
1040err_stop_dma:
1041	dmaengine_terminate_all(adc->dma_chan);
1042
1043	return ret;
1044}
1045
1046static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1047{
1048	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1049
1050	if (!adc->dma_chan)
1051		return;
1052
1053	regmap_clear_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1054			  DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1055	dmaengine_terminate_all(adc->dma_chan);
1056}
1057
1058static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1059					const unsigned long *scan_mask)
1060{
1061	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1062
1063	adc->nconv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1064	adc->smask = *scan_mask;
1065
1066	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1067
1068	return 0;
1069}
1070
1071static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1072{
1073	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1074	int i = 0;
1075	int ret;
1076
1077	/* Reset adc buffer index */
1078	adc->bufi = 0;
1079
1080	if (adc->hwc) {
1081		ret = iio_hw_consumer_enable(adc->hwc);
1082		if (ret < 0)
1083			return ret;
1084	}
1085
1086	if (adc->backend) {
1087		while (adc->backend[i]) {
1088			ret = iio_backend_enable(adc->backend[i]);
1089			if (ret < 0)
1090				return ret;
1091			i++;
1092		}
1093	}
1094
1095	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1096	if (ret < 0)
1097		goto err_stop_hwc;
1098
1099	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1100	if (ret) {
1101		dev_err(&indio_dev->dev, "Can't start DMA\n");
1102		goto stop_dfsdm;
1103	}
1104
1105	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1106	if (ret) {
1107		dev_err(&indio_dev->dev, "Can't start conversion\n");
1108		goto err_stop_dma;
1109	}
1110
1111	return 0;
1112
1113err_stop_dma:
1114	stm32_dfsdm_adc_dma_stop(indio_dev);
1115stop_dfsdm:
1116	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1117err_stop_hwc:
1118	if (adc->hwc)
1119		iio_hw_consumer_disable(adc->hwc);
1120
1121	return ret;
1122}
1123
1124static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1125{
1126	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1127	int i = 0;
1128
1129	stm32_dfsdm_stop_conv(indio_dev);
1130
1131	stm32_dfsdm_adc_dma_stop(indio_dev);
1132
1133	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1134
1135	if (adc->backend) {
1136		while (adc->backend[i]) {
1137			iio_backend_disable(adc->backend[i]);
1138			i++;
1139		}
1140	}
1141
1142	if (adc->hwc)
1143		iio_hw_consumer_disable(adc->hwc);
1144
1145	return 0;
1146}
1147
1148static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1149	.postenable = &stm32_dfsdm_postenable,
1150	.predisable = &stm32_dfsdm_predisable,
1151};
1152
1153/**
1154 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1155 *                             DMA transfer period is achieved.
1156 *
1157 * @iio_dev: Handle to IIO device.
1158 * @cb: Pointer to callback function:
1159 *      - data: pointer to data buffer
1160 *      - size: size in byte of the data buffer
1161 *      - private: pointer to consumer private structure.
1162 * @private: Pointer to consumer private structure.
1163 */
1164int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1165			    int (*cb)(const void *data, size_t size,
1166				      void *private),
1167			    void *private)
1168{
1169	struct stm32_dfsdm_adc *adc;
1170
1171	if (!iio_dev)
1172		return -EINVAL;
1173	adc = iio_priv(iio_dev);
1174
1175	adc->cb = cb;
1176	adc->cb_priv = private;
1177
1178	return 0;
1179}
1180EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1181
1182/**
1183 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1184 *
1185 * @iio_dev: Handle to IIO device.
1186 */
1187int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1188{
1189	struct stm32_dfsdm_adc *adc;
1190
1191	if (!iio_dev)
1192		return -EINVAL;
1193	adc = iio_priv(iio_dev);
1194
1195	adc->cb = NULL;
1196	adc->cb_priv = NULL;
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1201
1202static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1203				   const struct iio_chan_spec *chan, int *res)
1204{
1205	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1206	long time_left;
1207	int ret;
1208
1209	reinit_completion(&adc->completion);
1210
1211	adc->buffer = res;
1212
1213	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1214	if (ret < 0)
1215		return ret;
1216
1217	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1218				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1219	if (ret < 0)
1220		goto stop_dfsdm;
1221
1222	adc->nconv = 1;
1223	adc->smask = BIT(chan->scan_index);
1224	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1225	if (ret < 0) {
1226		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1227				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1228		goto stop_dfsdm;
1229	}
1230
1231	time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1232							      DFSDM_TIMEOUT);
1233
1234	/* Mask IRQ for regular conversion achievement*/
1235	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1236			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1237
1238	if (time_left == 0)
1239		ret = -ETIMEDOUT;
1240	else if (time_left < 0)
1241		ret = time_left;
1242	else
1243		ret = IIO_VAL_INT;
1244
1245	stm32_dfsdm_stop_conv(indio_dev);
1246
1247	stm32_dfsdm_process_data(adc, res);
1248
1249stop_dfsdm:
1250	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1251
1252	return ret;
1253}
1254
1255static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1256				 struct iio_chan_spec const *chan,
1257				 int val, int val2, long mask)
1258{
1259	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1260	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1261	unsigned int spi_freq;
1262	int ret = -EINVAL;
1263
1264	switch (ch->src) {
1265	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1266		spi_freq = adc->dfsdm->spi_master_freq;
1267		break;
1268	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1269	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1270		spi_freq = adc->dfsdm->spi_master_freq / 2;
1271		break;
1272	default:
1273		spi_freq = adc->spi_freq;
1274	}
1275
1276	switch (mask) {
1277	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1278		ret = iio_device_claim_direct_mode(indio_dev);
1279		if (ret)
1280			return ret;
1281
1282		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1283		if (!ret) {
1284			dev_dbg(&indio_dev->dev,
1285				"Sampling rate changed from (%u) to (%u)\n",
1286				adc->sample_freq, spi_freq / val);
1287			adc->oversamp = val;
1288			adc->sample_freq = spi_freq / val;
1289		}
1290		iio_device_release_direct_mode(indio_dev);
1291		return ret;
1292
1293	case IIO_CHAN_INFO_SAMP_FREQ:
1294		if (!val)
1295			return -EINVAL;
1296
1297		ret = iio_device_claim_direct_mode(indio_dev);
1298		if (ret)
1299			return ret;
1300
1301		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1302		iio_device_release_direct_mode(indio_dev);
1303		return ret;
1304	}
1305
1306	return -EINVAL;
1307}
1308
1309static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1310				struct iio_chan_spec const *chan, int *val,
1311				int *val2, long mask)
1312{
1313	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1314
1315	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1316	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1317	u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1318	int idx = chan->scan_index;
1319	int ret;
1320
1321	if (flo->lshift < chan->scan_type.shift)
1322		max = flo->max >> (chan->scan_type.shift - flo->lshift);
1323
1324	switch (mask) {
1325	case IIO_CHAN_INFO_RAW:
1326		ret = iio_device_claim_direct_mode(indio_dev);
1327		if (ret)
1328			return ret;
1329		if (adc->hwc)
1330			ret = iio_hw_consumer_enable(adc->hwc);
1331		if (adc->backend)
1332			ret = iio_backend_enable(adc->backend[idx]);
1333		if (ret < 0) {
1334			dev_err(&indio_dev->dev,
1335				"%s: IIO enable failed (channel %d)\n",
1336				__func__, chan->channel);
1337			iio_device_release_direct_mode(indio_dev);
1338			return ret;
1339		}
1340		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1341		if (adc->hwc)
1342			iio_hw_consumer_disable(adc->hwc);
1343		if (adc->backend)
1344			iio_backend_disable(adc->backend[idx]);
1345		if (ret < 0) {
1346			dev_err(&indio_dev->dev,
1347				"%s: Conversion failed (channel %d)\n",
1348				__func__, chan->channel);
1349			iio_device_release_direct_mode(indio_dev);
1350			return ret;
1351		}
1352		iio_device_release_direct_mode(indio_dev);
1353		return IIO_VAL_INT;
1354
1355	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1356		*val = adc->oversamp;
1357
1358		return IIO_VAL_INT;
1359
1360	case IIO_CHAN_INFO_SAMP_FREQ:
1361		*val = adc->sample_freq;
1362
1363		return IIO_VAL_INT;
1364
1365	case IIO_CHAN_INFO_SCALE:
1366		/*
1367		 * Scale is expressed in mV.
1368		 * When fast mode is disabled, actual resolution may be lower
1369		 * than 2^n, where n = realbits - 1.
1370		 * This leads to underestimating the input voltage.
1371		 * To compensate this deviation, the voltage reference can be
1372		 * corrected with a factor = realbits resolution / actual max
1373		 */
1374		if (adc->backend) {
1375			ret = iio_backend_read_scale(adc->backend[idx], chan, val, NULL);
1376			if (ret < 0)
1377				return ret;
1378
1379			*val = div_u64((u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), max);
1380			*val2 = chan->scan_type.realbits;
1381			if (chan->differential)
1382				*val *= 2;
1383		}
1384		return IIO_VAL_FRACTIONAL_LOG2;
1385
1386	case IIO_CHAN_INFO_OFFSET:
1387		/*
1388		 * DFSDM output data are in the range [-2^n, 2^n],
1389		 * with n = realbits - 1.
1390		 * - Differential modulator:
1391		 * Offset correspond to SD modulator offset.
1392		 * - Single ended modulator:
1393		 * Input is in [0V, Vref] range,
1394		 * where 0V corresponds to -2^n, and Vref to 2^n.
1395		 * Add 2^n to offset. (i.e. middle of input range)
1396		 * offset = offset(sd) * vref / res(sd) * max / vref.
1397		 */
1398		if (adc->backend) {
1399			ret = iio_backend_read_offset(adc->backend[idx], chan, val, NULL);
1400			if (ret < 0)
1401				return ret;
1402
1403			*val = div_u64((u64)max * *val, BIT(*val2 - 1));
1404			if (!chan->differential)
1405				*val += max;
1406		}
1407		return IIO_VAL_INT;
1408	}
1409
1410	return -EINVAL;
1411}
1412
1413static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1414					struct iio_trigger *trig)
1415{
1416	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1417}
1418
1419static const struct iio_info stm32_dfsdm_info_audio = {
1420	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1421	.read_raw = stm32_dfsdm_read_raw,
1422	.write_raw = stm32_dfsdm_write_raw,
1423	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1424};
1425
1426static const struct iio_info stm32_dfsdm_info_adc = {
1427	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1428	.read_raw = stm32_dfsdm_read_raw,
1429	.write_raw = stm32_dfsdm_write_raw,
1430	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1431	.validate_trigger = stm32_dfsdm_validate_trigger,
1432};
1433
1434static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1435{
1436	struct iio_dev *indio_dev = arg;
1437	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438	struct regmap *regmap = adc->dfsdm->regmap;
1439	unsigned int status, int_en;
1440
1441	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1442	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1443
1444	if (status & DFSDM_ISR_REOCF_MASK) {
1445		/* Read the data register clean the IRQ status */
1446		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1447		complete(&adc->completion);
1448	}
1449
1450	if (status & DFSDM_ISR_ROVRF_MASK) {
1451		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1452			dev_warn(&indio_dev->dev, "Overrun detected\n");
1453		regmap_set_bits(regmap, DFSDM_ICR(adc->fl_id),
1454				DFSDM_ICR_CLRROVRF_MASK);
 
1455	}
1456
1457	return IRQ_HANDLED;
1458}
1459
1460/*
1461 * Define external info for SPI Frequency and audio sampling rate that can be
1462 * configured by ASoC driver through consumer.h API
1463 */
1464static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1465	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1466	{
1467		.name = "spi_clk_freq",
1468		.shared = IIO_SHARED_BY_TYPE,
1469		.read = dfsdm_adc_audio_get_spiclk,
1470		.write = dfsdm_adc_audio_set_spiclk,
1471	},
1472	{ }
1473};
1474
1475static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1476{
1477	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1478
1479	if (adc->dma_chan) {
1480		dma_free_coherent(adc->dma_chan->device->dev,
1481				  DFSDM_DMA_BUFFER_SIZE,
1482				  adc->rx_buf, adc->dma_buf);
1483		dma_release_channel(adc->dma_chan);
1484	}
1485}
1486
1487static int stm32_dfsdm_dma_request(struct device *dev,
1488				   struct iio_dev *indio_dev)
1489{
1490	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1491
1492	adc->dma_chan = dma_request_chan(dev, "rx");
1493	if (IS_ERR(adc->dma_chan)) {
1494		int ret = PTR_ERR(adc->dma_chan);
1495
1496		adc->dma_chan = NULL;
1497		return ret;
1498	}
1499
1500	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1501					 DFSDM_DMA_BUFFER_SIZE,
1502					 &adc->dma_buf, GFP_KERNEL);
1503	if (!adc->rx_buf) {
1504		dma_release_channel(adc->dma_chan);
1505		return -ENOMEM;
1506	}
1507
1508	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1509	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1510
1511	return 0;
1512}
1513
1514static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1515					 struct fwnode_handle *child)
1516{
1517	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1518	int ret;
1519
1520	if (child)
1521		ret = stm32_dfsdm_generic_channel_parse_of(adc->dfsdm, indio_dev, ch, child);
1522	else /* Legacy binding */
1523		ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1524	if (ret < 0)
1525		return dev_err_probe(&indio_dev->dev, ret, "Failed to parse channel\n");
1526
1527	ch->type = IIO_VOLTAGE;
1528	ch->indexed = 1;
1529
1530	/*
1531	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1532	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1533	 */
1534	if (child) {
1535		ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1536					 BIT(IIO_CHAN_INFO_SCALE) |
1537					 BIT(IIO_CHAN_INFO_OFFSET);
1538	} else {
1539		/* Legacy. Scaling not supported */
1540		ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1541	}
1542
1543	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1544					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1545
1546	if (adc->dev_data->type == DFSDM_AUDIO) {
1547		ch->ext_info = dfsdm_adc_audio_ext_info;
1548		ch->scan_index = 0;
1549	} else {
1550		ch->scan_type.shift = 8;
1551	}
1552	ch->scan_type.sign = 's';
1553	ch->scan_type.realbits = 24;
1554	ch->scan_type.storagebits = 32;
1555
1556	return stm32_dfsdm_chan_configure(adc->dfsdm,
1557					  &adc->dfsdm->ch_list[ch->channel]);
1558}
1559
1560static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1561{
1562	int num_ch = indio_dev->num_channels;
1563	int chan_idx = 0;
1564	int ret;
1565
1566	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1567		channels[chan_idx].scan_index = chan_idx;
1568		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], NULL);
1569		if (ret < 0)
1570			return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1571	}
1572
1573	return 0;
1574}
1575
1576static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1577{
1578	int chan_idx = 0, ret;
1579
1580	device_for_each_child_node_scoped(&indio_dev->dev, child) {
1581		/* Skip DAI node in DFSDM audio nodes */
1582		if (fwnode_property_present(child, "compatible"))
1583			continue;
1584
1585		channels[chan_idx].scan_index = chan_idx;
1586		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &channels[chan_idx], child);
1587		if (ret < 0)
1588			return dev_err_probe(&indio_dev->dev, ret, "Channels init failed\n");
1589
1590		chan_idx++;
1591	}
1592
1593	return chan_idx;
1594}
1595
1596static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1597{
1598	struct iio_chan_spec *ch;
1599	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1600	struct stm32_dfsdm_channel *d_ch;
1601	bool legacy = false;
1602	int num_ch, ret;
1603
1604	/* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1605	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1606	if (num_ch == 1)
1607		legacy = true;
1608
1609	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1610	if (!ch)
1611		return -ENOMEM;
1612
1613	indio_dev->num_channels = 1;
1614	indio_dev->channels = ch;
1615
1616	if (legacy)
1617		ret = stm32_dfsdm_chan_init(indio_dev, ch);
1618	else
1619		ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1620
 
1621	if (ret < 0) {
1622		dev_err(&indio_dev->dev, "Channels init failed\n");
1623		return ret;
1624	}
1625	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1626
1627	d_ch = &adc->dfsdm->ch_list[ch->channel];
1628	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1629		adc->spi_freq = adc->dfsdm->spi_master_freq;
1630
 
 
 
1631	return stm32_dfsdm_dma_request(dev, indio_dev);
1632}
1633
1634static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1635{
1636	struct iio_chan_spec *ch;
1637	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1638	int num_ch, ret;
1639	bool legacy = false;
1640
1641	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1642	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1643	if (ret < 0)
1644		return ret;
1645
1646	num_ch = device_get_child_node_count(&indio_dev->dev);
1647	if (!num_ch) {
1648		/* No channels nodes found. Assume legacy binding */
1649		num_ch = of_property_count_u32_elems(indio_dev->dev.of_node, "st,adc-channels");
1650		if (num_ch < 0) {
1651			dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1652			return num_ch;
1653		}
1654
1655		legacy = true;
1656	}
1657
1658	if (num_ch > adc->dfsdm->num_chs) {
1659		dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1660			num_ch, adc->dfsdm->num_chs);
1661		return -EINVAL;
1662	}
1663	indio_dev->num_channels = num_ch;
1664
1665	if (legacy) {
1666		/* Bind to SD modulator IIO device. */
1667		adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1668		if (IS_ERR(adc->hwc))
1669			return dev_err_probe(&indio_dev->dev, -EPROBE_DEFER,
1670					     "waiting for SD modulator\n");
1671	} else {
1672		/* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1673		adc->hwc = NULL;
1674
1675		adc->backend = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*adc->backend),
1676					    GFP_KERNEL);
1677		if (!adc->backend)
1678			return -ENOMEM;
 
 
 
1679	}
1680
1681	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch), GFP_KERNEL);
1682	if (!ch)
1683		return -ENOMEM;
1684	indio_dev->channels = ch;
1685
1686	if (legacy)
1687		ret = stm32_dfsdm_chan_init(indio_dev, ch);
1688	else
1689		ret = stm32_dfsdm_generic_chan_init(indio_dev, ch);
1690	if (ret < 0)
1691		return ret;
1692
1693	init_completion(&adc->completion);
1694
1695	/* Optionally request DMA */
1696	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1697	if (ret) {
1698		if (ret != -ENODEV)
1699			return dev_err_probe(dev, ret,
1700					     "DMA channel request failed with\n");
 
 
 
 
1701
1702		dev_dbg(dev, "No DMA support\n");
1703		return 0;
1704	}
1705
1706	ret = iio_triggered_buffer_setup(indio_dev,
1707					 &iio_pollfunc_store_time, NULL,
1708					 &stm32_dfsdm_buffer_setup_ops);
1709	if (ret) {
1710		stm32_dfsdm_dma_release(indio_dev);
1711		dev_err(&indio_dev->dev, "buffer setup failed\n");
1712		return ret;
1713	}
1714
1715	/* lptimer/timer hardware triggers */
1716	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1717
1718	return 0;
1719}
1720
1721static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1722	.type = DFSDM_IIO,
1723	.init = stm32_dfsdm_adc_init,
1724};
1725
1726static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1727	.type = DFSDM_AUDIO,
1728	.init = stm32_dfsdm_audio_init,
1729};
1730
1731static const struct of_device_id stm32_dfsdm_adc_match[] = {
1732	{
1733		.compatible = "st,stm32-dfsdm-adc",
1734		.data = &stm32h7_dfsdm_adc_data,
1735	},
1736	{
1737		.compatible = "st,stm32-dfsdm-dmic",
1738		.data = &stm32h7_dfsdm_audio_data,
1739	},
1740	{}
1741};
1742MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1743
1744static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1745{
1746	struct device *dev = &pdev->dev;
1747	struct stm32_dfsdm_adc *adc;
1748	struct device_node *np = dev->of_node;
1749	const struct stm32_dfsdm_dev_data *dev_data;
1750	struct iio_dev *iio;
1751	char *name;
1752	int ret, irq, val;
1753
1754	dev_data = of_device_get_match_data(dev);
1755	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1756	if (!iio) {
1757		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1758		return -ENOMEM;
1759	}
1760
1761	adc = iio_priv(iio);
1762	adc->dfsdm = dev_get_drvdata(dev->parent);
1763
1764	iio->dev.of_node = np;
1765	iio->modes = INDIO_DIRECT_MODE;
1766
1767	platform_set_drvdata(pdev, iio);
1768
1769	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1770	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1771		dev_err(dev, "Missing or bad reg property\n");
1772		return -EINVAL;
1773	}
1774
1775	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1776	if (!name)
1777		return -ENOMEM;
1778	if (dev_data->type == DFSDM_AUDIO) {
1779		iio->info = &stm32_dfsdm_info_audio;
1780		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1781	} else {
1782		iio->info = &stm32_dfsdm_info_adc;
1783		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1784	}
1785	iio->name = name;
1786
1787	/*
1788	 * In a first step IRQs generated for channels are not treated.
1789	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1790	 */
1791	irq = platform_get_irq(pdev, 0);
1792	if (irq < 0)
1793		return irq;
1794
1795	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1796			       0, pdev->name, iio);
1797	if (ret < 0) {
1798		dev_err(dev, "Failed to request IRQ\n");
1799		return ret;
1800	}
1801
1802	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1803	if (ret < 0) {
1804		dev_err(dev, "Failed to set filter order\n");
1805		return ret;
1806	}
1807
1808	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1809
1810	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1811	if (!ret)
1812		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1813
1814	adc->dev_data = dev_data;
1815	ret = dev_data->init(dev, iio);
1816	if (ret < 0)
1817		return ret;
1818
1819	ret = iio_device_register(iio);
1820	if (ret < 0)
1821		goto err_cleanup;
1822
1823	if (dev_data->type == DFSDM_AUDIO) {
1824		ret = of_platform_populate(np, NULL, NULL, dev);
1825		if (ret < 0) {
1826			dev_err(dev, "Failed to find an audio DAI\n");
1827			goto err_unregister;
1828		}
1829	}
1830
1831	return 0;
1832
1833err_unregister:
1834	iio_device_unregister(iio);
1835err_cleanup:
1836	stm32_dfsdm_dma_release(iio);
1837
1838	return ret;
1839}
1840
1841static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1842{
1843	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1844	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1845
1846	if (adc->dev_data->type == DFSDM_AUDIO)
1847		of_platform_depopulate(&pdev->dev);
1848	iio_device_unregister(indio_dev);
1849	stm32_dfsdm_dma_release(indio_dev);
 
 
1850}
1851
1852static int stm32_dfsdm_adc_suspend(struct device *dev)
1853{
1854	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1855
1856	if (iio_buffer_enabled(indio_dev))
1857		stm32_dfsdm_predisable(indio_dev);
1858
1859	return 0;
1860}
1861
1862static int stm32_dfsdm_adc_resume(struct device *dev)
1863{
1864	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1865	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1866	const struct iio_chan_spec *chan;
1867	struct stm32_dfsdm_channel *ch;
1868	int i, ret;
1869
1870	/* restore channels configuration */
1871	for (i = 0; i < indio_dev->num_channels; i++) {
1872		chan = indio_dev->channels + i;
1873		ch = &adc->dfsdm->ch_list[chan->channel];
1874		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1875		if (ret)
1876			return ret;
1877	}
1878
1879	if (iio_buffer_enabled(indio_dev))
1880		stm32_dfsdm_postenable(indio_dev);
1881
1882	return 0;
1883}
1884
1885static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1886				stm32_dfsdm_adc_suspend,
1887				stm32_dfsdm_adc_resume);
1888
1889static struct platform_driver stm32_dfsdm_adc_driver = {
1890	.driver = {
1891		.name = "stm32-dfsdm-adc",
1892		.of_match_table = stm32_dfsdm_adc_match,
1893		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1894	},
1895	.probe = stm32_dfsdm_adc_probe,
1896	.remove = stm32_dfsdm_adc_remove,
1897};
1898module_platform_driver(stm32_dfsdm_adc_driver);
1899
1900MODULE_DESCRIPTION("STM32 sigma delta ADC");
1901MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1902MODULE_LICENSE("GPL v2");
1903MODULE_IMPORT_NS("IIO_BACKEND");