Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of STM32 ADC driver
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   7 */
   8
   9#include <linux/clk.h>
 
  10#include <linux/delay.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/iio/iio.h>
  14#include <linux/iio/buffer.h>
  15#include <linux/iio/timer/stm32-lptim-trigger.h>
  16#include <linux/iio/timer/stm32-timer-trigger.h>
  17#include <linux/iio/trigger.h>
  18#include <linux/iio/trigger_consumer.h>
  19#include <linux/iio/triggered_buffer.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/iopoll.h>
  23#include <linux/module.h>
 
 
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include "stm32-adc-core.h"
  30
  31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
  32#define STM32H7_LINCALFACT_NUM		6
  33
  34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
  35#define STM32H7_BOOST_CLKRATE		20000000UL
  36
  37#define STM32_ADC_CH_MAX		20	/* max number of channels */
  38#define STM32_ADC_CH_SZ			10	/* max channel name size */
  39#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
  40#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
  41#define STM32_ADC_TIMEOUT_US		100000
  42#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
  43#define STM32_ADC_HW_STOP_DELAY_MS	100
 
  44
  45#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
  46
  47/* External trigger enable */
  48enum stm32_adc_exten {
  49	STM32_EXTEN_SWTRIG,
  50	STM32_EXTEN_HWTRIG_RISING_EDGE,
  51	STM32_EXTEN_HWTRIG_FALLING_EDGE,
  52	STM32_EXTEN_HWTRIG_BOTH_EDGES,
  53};
  54
  55/* extsel - trigger mux selection value */
  56enum stm32_adc_extsel {
  57	STM32_EXT0,
  58	STM32_EXT1,
  59	STM32_EXT2,
  60	STM32_EXT3,
  61	STM32_EXT4,
  62	STM32_EXT5,
  63	STM32_EXT6,
  64	STM32_EXT7,
  65	STM32_EXT8,
  66	STM32_EXT9,
  67	STM32_EXT10,
  68	STM32_EXT11,
  69	STM32_EXT12,
  70	STM32_EXT13,
  71	STM32_EXT14,
  72	STM32_EXT15,
  73	STM32_EXT16,
  74	STM32_EXT17,
  75	STM32_EXT18,
  76	STM32_EXT19,
  77	STM32_EXT20,
  78};
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80/**
  81 * struct stm32_adc_trig_info - ADC trigger info
  82 * @name:		name of the trigger, corresponding to its source
  83 * @extsel:		trigger selection
  84 */
  85struct stm32_adc_trig_info {
  86	const char *name;
  87	enum stm32_adc_extsel extsel;
  88};
  89
  90/**
  91 * struct stm32_adc_calib - optional adc calibration data
  92 * @calfact_s: Calibration offset for single ended channels
  93 * @calfact_d: Calibration offset in differential
  94 * @lincalfact: Linearity calibration factor
  95 * @calibrated: Indicates calibration status
  96 */
  97struct stm32_adc_calib {
  98	u32			calfact_s;
  99	u32			calfact_d;
 100	u32			lincalfact[STM32H7_LINCALFACT_NUM];
 101	bool			calibrated;
 102};
 103
 104/**
 105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 106 * @reg:		register offset
 107 * @mask:		bitfield mask
 108 * @shift:		left shift
 109 */
 110struct stm32_adc_regs {
 111	int reg;
 112	int mask;
 113	int shift;
 114};
 115
 116/**
 
 
 
 
 
 
 
 
 
 
 117 * struct stm32_adc_regspec - stm32 registers definition
 118 * @dr:			data register offset
 119 * @ier_eoc:		interrupt enable register & eocie bitfield
 120 * @ier_ovr:		interrupt enable register & overrun bitfield
 121 * @isr_eoc:		interrupt status register & eoc bitfield
 122 * @isr_ovr:		interrupt status register & overrun bitfield
 123 * @sqr:		reference to sequence registers array
 124 * @exten:		trigger control register & bitfield
 125 * @extsel:		trigger selection register & bitfield
 126 * @res:		resolution selection register & bitfield
 
 127 * @smpr:		smpr1 & smpr2 registers offset array
 128 * @smp_bits:		smpr1 & smpr2 index and bitfields
 
 
 
 
 
 129 */
 130struct stm32_adc_regspec {
 131	const u32 dr;
 132	const struct stm32_adc_regs ier_eoc;
 133	const struct stm32_adc_regs ier_ovr;
 134	const struct stm32_adc_regs isr_eoc;
 135	const struct stm32_adc_regs isr_ovr;
 136	const struct stm32_adc_regs *sqr;
 137	const struct stm32_adc_regs exten;
 138	const struct stm32_adc_regs extsel;
 139	const struct stm32_adc_regs res;
 
 140	const u32 smpr[2];
 141	const struct stm32_adc_regs *smp_bits;
 
 
 
 
 
 142};
 143
 144struct stm32_adc;
 145
 146/**
 147 * struct stm32_adc_cfg - stm32 compatible configuration data
 148 * @regs:		registers descriptions
 149 * @adc_info:		per instance input channels definitions
 150 * @trigs:		external trigger sources
 151 * @clk_required:	clock is required
 152 * @has_vregready:	vregready status flag presence
 
 
 
 153 * @prepare:		optional prepare routine (power-up, enable)
 154 * @start_conv:		routine to start conversions
 155 * @stop_conv:		routine to stop conversions
 156 * @unprepare:		optional unprepare routine (disable, power-down)
 
 157 * @smp_cycles:		programmable sampling time (ADC clock cycles)
 
 158 */
 159struct stm32_adc_cfg {
 160	const struct stm32_adc_regspec	*regs;
 161	const struct stm32_adc_info	*adc_info;
 162	struct stm32_adc_trig_info	*trigs;
 163	bool clk_required;
 164	bool has_vregready;
 
 
 
 165	int (*prepare)(struct iio_dev *);
 166	void (*start_conv)(struct iio_dev *, bool dma);
 167	void (*stop_conv)(struct iio_dev *);
 168	void (*unprepare)(struct iio_dev *);
 
 169	const unsigned int *smp_cycles;
 
 170};
 171
 172/**
 173 * struct stm32_adc - private data of each ADC IIO instance
 174 * @common:		reference to ADC block common data
 175 * @offset:		ADC instance register offset in ADC block
 176 * @cfg:		compatible configuration data
 177 * @completion:		end of single conversion completion
 178 * @buffer:		data buffer
 179 * @clk:		clock for this adc instance
 180 * @irq:		interrupt for this adc instance
 181 * @lock:		spinlock
 182 * @bufi:		data buffer index
 183 * @num_conv:		expected number of scan conversions
 184 * @res:		data resolution (e.g. RES bitfield value)
 185 * @trigger_polarity:	external trigger polarity (e.g. exten)
 186 * @dma_chan:		dma channel
 187 * @rx_buf:		dma rx buffer cpu address
 188 * @rx_dma_buf:		dma rx buffer bus address
 189 * @rx_buf_sz:		dma rx buffer size
 190 * @difsel:		bitmask to set single-ended/differential channel
 191 * @pcsel:		bitmask to preselect channels on some devices
 192 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
 193 * @cal:		optional calibration data on some devices
 
 194 * @chan_name:		channel name array
 
 
 
 195 */
 196struct stm32_adc {
 197	struct stm32_adc_common	*common;
 198	u32			offset;
 199	const struct stm32_adc_cfg	*cfg;
 200	struct completion	completion;
 201	u16			buffer[STM32_ADC_MAX_SQ];
 202	struct clk		*clk;
 203	int			irq;
 204	spinlock_t		lock;		/* interrupt lock */
 205	unsigned int		bufi;
 206	unsigned int		num_conv;
 207	u32			res;
 208	u32			trigger_polarity;
 209	struct dma_chan		*dma_chan;
 210	u8			*rx_buf;
 211	dma_addr_t		rx_dma_buf;
 212	unsigned int		rx_buf_sz;
 213	u32			difsel;
 214	u32			pcsel;
 215	u32			smpr_val[2];
 216	struct stm32_adc_calib	cal;
 
 217	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
 
 
 
 218};
 219
 220struct stm32_adc_diff_channel {
 221	u32 vinp;
 222	u32 vinn;
 223};
 224
 225/**
 226 * struct stm32_adc_info - stm32 ADC, per instance config data
 227 * @max_channels:	Number of channels
 228 * @resolutions:	available resolutions
 229 * @num_res:		number of available resolutions
 230 */
 231struct stm32_adc_info {
 232	int max_channels;
 233	const unsigned int *resolutions;
 234	const unsigned int num_res;
 235};
 236
 237static const unsigned int stm32f4_adc_resolutions[] = {
 238	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 239	12, 10, 8, 6,
 240};
 241
 242/* stm32f4 can have up to 16 channels */
 243static const struct stm32_adc_info stm32f4_adc_info = {
 244	.max_channels = 16,
 245	.resolutions = stm32f4_adc_resolutions,
 246	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 247};
 248
 249static const unsigned int stm32h7_adc_resolutions[] = {
 250	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 251	16, 14, 12, 10, 8,
 252};
 253
 254/* stm32h7 can have up to 20 channels */
 255static const struct stm32_adc_info stm32h7_adc_info = {
 256	.max_channels = STM32_ADC_CH_MAX,
 257	.resolutions = stm32h7_adc_resolutions,
 258	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 259};
 260
 
 
 
 
 
 
 
 261/*
 262 * stm32f4_sq - describe regular sequence registers
 263 * - L: sequence len (register & bit field)
 264 * - SQ1..SQ16: sequence entries (register & bit field)
 265 */
 266static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 267	/* L: len bit field description to be kept as first element */
 268	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 269	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 270	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 271	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 272	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 273	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 274	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 275	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 276	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 277	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 278	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 279	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 280	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 281	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 282	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 283	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 284	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 285	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 286};
 287
 288/* STM32F4 external trigger sources for all instances */
 289static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 290	{ TIM1_CH1, STM32_EXT0 },
 291	{ TIM1_CH2, STM32_EXT1 },
 292	{ TIM1_CH3, STM32_EXT2 },
 293	{ TIM2_CH2, STM32_EXT3 },
 294	{ TIM2_CH3, STM32_EXT4 },
 295	{ TIM2_CH4, STM32_EXT5 },
 296	{ TIM2_TRGO, STM32_EXT6 },
 297	{ TIM3_CH1, STM32_EXT7 },
 298	{ TIM3_TRGO, STM32_EXT8 },
 299	{ TIM4_CH4, STM32_EXT9 },
 300	{ TIM5_CH1, STM32_EXT10 },
 301	{ TIM5_CH2, STM32_EXT11 },
 302	{ TIM5_CH3, STM32_EXT12 },
 303	{ TIM8_CH1, STM32_EXT13 },
 304	{ TIM8_TRGO, STM32_EXT14 },
 305	{}, /* sentinel */
 306};
 307
 308/*
 309 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 310 * Sorted so it can be indexed by channel number.
 311 */
 312static const struct stm32_adc_regs stm32f4_smp_bits[] = {
 313	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
 314	{ 1, GENMASK(2, 0), 0 },
 315	{ 1, GENMASK(5, 3), 3 },
 316	{ 1, GENMASK(8, 6), 6 },
 317	{ 1, GENMASK(11, 9), 9 },
 318	{ 1, GENMASK(14, 12), 12 },
 319	{ 1, GENMASK(17, 15), 15 },
 320	{ 1, GENMASK(20, 18), 18 },
 321	{ 1, GENMASK(23, 21), 21 },
 322	{ 1, GENMASK(26, 24), 24 },
 323	{ 1, GENMASK(29, 27), 27 },
 324	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
 325	{ 0, GENMASK(2, 0), 0 },
 326	{ 0, GENMASK(5, 3), 3 },
 327	{ 0, GENMASK(8, 6), 6 },
 328	{ 0, GENMASK(11, 9), 9 },
 329	{ 0, GENMASK(14, 12), 12 },
 330	{ 0, GENMASK(17, 15), 15 },
 331	{ 0, GENMASK(20, 18), 18 },
 332	{ 0, GENMASK(23, 21), 21 },
 333	{ 0, GENMASK(26, 24), 24 },
 334};
 335
 336/* STM32F4 programmable sampling time (ADC clock cycles) */
 337static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 338	3, 15, 28, 56, 84, 112, 144, 480,
 339};
 340
 341static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 342	.dr = STM32F4_ADC_DR,
 343	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 344	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
 345	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 346	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
 347	.sqr = stm32f4_sq,
 348	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 349	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 350		    STM32F4_EXTSEL_SHIFT },
 351	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 352	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
 353	.smp_bits = stm32f4_smp_bits,
 354};
 355
 356static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 357	/* L: len bit field description to be kept as first element */
 358	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 359	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 360	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 361	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 362	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 363	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 364	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 365	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 366	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 367	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 368	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 369	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 370	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 371	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 372	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 373	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 374	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 375	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 376};
 377
 378/* STM32H7 external trigger sources for all instances */
 379static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 380	{ TIM1_CH1, STM32_EXT0 },
 381	{ TIM1_CH2, STM32_EXT1 },
 382	{ TIM1_CH3, STM32_EXT2 },
 383	{ TIM2_CH2, STM32_EXT3 },
 384	{ TIM3_TRGO, STM32_EXT4 },
 385	{ TIM4_CH4, STM32_EXT5 },
 386	{ TIM8_TRGO, STM32_EXT7 },
 387	{ TIM8_TRGO2, STM32_EXT8 },
 388	{ TIM1_TRGO, STM32_EXT9 },
 389	{ TIM1_TRGO2, STM32_EXT10 },
 390	{ TIM2_TRGO, STM32_EXT11 },
 391	{ TIM4_TRGO, STM32_EXT12 },
 392	{ TIM6_TRGO, STM32_EXT13 },
 393	{ TIM15_TRGO, STM32_EXT14 },
 394	{ TIM3_CH4, STM32_EXT15 },
 395	{ LPTIM1_OUT, STM32_EXT18 },
 396	{ LPTIM2_OUT, STM32_EXT19 },
 397	{ LPTIM3_OUT, STM32_EXT20 },
 398	{},
 399};
 400
 401/*
 402 * stm32h7_smp_bits - describe sampling time register index & bit fields
 403 * Sorted so it can be indexed by channel number.
 404 */
 405static const struct stm32_adc_regs stm32h7_smp_bits[] = {
 406	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
 407	{ 0, GENMASK(2, 0), 0 },
 408	{ 0, GENMASK(5, 3), 3 },
 409	{ 0, GENMASK(8, 6), 6 },
 410	{ 0, GENMASK(11, 9), 9 },
 411	{ 0, GENMASK(14, 12), 12 },
 412	{ 0, GENMASK(17, 15), 15 },
 413	{ 0, GENMASK(20, 18), 18 },
 414	{ 0, GENMASK(23, 21), 21 },
 415	{ 0, GENMASK(26, 24), 24 },
 416	{ 0, GENMASK(29, 27), 27 },
 417	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
 418	{ 1, GENMASK(2, 0), 0 },
 419	{ 1, GENMASK(5, 3), 3 },
 420	{ 1, GENMASK(8, 6), 6 },
 421	{ 1, GENMASK(11, 9), 9 },
 422	{ 1, GENMASK(14, 12), 12 },
 423	{ 1, GENMASK(17, 15), 15 },
 424	{ 1, GENMASK(20, 18), 18 },
 425	{ 1, GENMASK(23, 21), 21 },
 426	{ 1, GENMASK(26, 24), 24 },
 427	{ 1, GENMASK(29, 27), 27 },
 428};
 429
 430/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
 431static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 432	1, 2, 8, 16, 32, 64, 387, 810,
 433};
 434
 435static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 436	.dr = STM32H7_ADC_DR,
 437	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 438	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
 439	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 440	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
 441	.sqr = stm32h7_sq,
 442	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 443	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 444		    STM32H7_EXTSEL_SHIFT },
 445	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 
 446	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 447	.smp_bits = stm32h7_smp_bits,
 448};
 449
 450/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451 * STM32 ADC registers access routines
 452 * @adc: stm32 adc instance
 453 * @reg: reg offset in adc instance
 454 *
 455 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 456 * for adc1, adc2 and adc3.
 457 */
 458static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 459{
 460	return readl_relaxed(adc->common->base + adc->offset + reg);
 461}
 462
 463#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
 464
 465#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 466	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 467			   cond, sleep_us, timeout_us)
 468
 469static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 470{
 471	return readw_relaxed(adc->common->base + adc->offset + reg);
 472}
 473
 474static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 475{
 476	writel_relaxed(val, adc->common->base + adc->offset + reg);
 477}
 478
 479static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 480{
 481	unsigned long flags;
 482
 483	spin_lock_irqsave(&adc->lock, flags);
 484	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 485	spin_unlock_irqrestore(&adc->lock, flags);
 486}
 487
 
 
 
 
 
 
 
 
 488static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 489{
 490	unsigned long flags;
 491
 492	spin_lock_irqsave(&adc->lock, flags);
 493	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 494	spin_unlock_irqrestore(&adc->lock, flags);
 495}
 496
 
 
 
 
 
 
 
 
 497/**
 498 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 499 * @adc: stm32 adc instance
 500 */
 501static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 502{
 503	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 504			   adc->cfg->regs->ier_eoc.mask);
 505};
 506
 507/**
 508 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 509 * @adc: stm32 adc instance
 510 */
 511static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 512{
 513	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 514			   adc->cfg->regs->ier_eoc.mask);
 515}
 516
 517static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
 518{
 519	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
 520			   adc->cfg->regs->ier_ovr.mask);
 521}
 522
 523static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
 524{
 525	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
 526			   adc->cfg->regs->ier_ovr.mask);
 527}
 528
 529static void stm32_adc_set_res(struct stm32_adc *adc)
 530{
 531	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 532	u32 val;
 533
 534	val = stm32_adc_readl(adc, res->reg);
 535	val = (val & ~res->mask) | (adc->res << res->shift);
 536	stm32_adc_writel(adc, res->reg, val);
 537}
 538
 539static int stm32_adc_hw_stop(struct device *dev)
 540{
 541	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 542	struct stm32_adc *adc = iio_priv(indio_dev);
 543
 544	if (adc->cfg->unprepare)
 545		adc->cfg->unprepare(indio_dev);
 546
 547	if (adc->clk)
 548		clk_disable_unprepare(adc->clk);
 549
 550	return 0;
 551}
 552
 553static int stm32_adc_hw_start(struct device *dev)
 554{
 555	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 556	struct stm32_adc *adc = iio_priv(indio_dev);
 557	int ret;
 558
 559	if (adc->clk) {
 560		ret = clk_prepare_enable(adc->clk);
 561		if (ret)
 562			return ret;
 563	}
 564
 565	stm32_adc_set_res(adc);
 566
 567	if (adc->cfg->prepare) {
 568		ret = adc->cfg->prepare(indio_dev);
 569		if (ret)
 570			goto err_clk_dis;
 571	}
 572
 573	return 0;
 574
 575err_clk_dis:
 576	if (adc->clk)
 577		clk_disable_unprepare(adc->clk);
 578
 579	return ret;
 580}
 581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582/**
 583 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 584 * @indio_dev: IIO device instance
 585 * @dma: use dma to transfer conversion result
 586 *
 587 * Start conversions for regular channels.
 588 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 589 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 590 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 591 */
 592static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 593{
 594	struct stm32_adc *adc = iio_priv(indio_dev);
 595
 596	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 597
 598	if (dma)
 599		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 600				   STM32F4_DMA | STM32F4_DDS);
 601
 602	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 603
 604	/* Wait for Power-up time (tSTAB from datasheet) */
 605	usleep_range(2, 3);
 606
 607	/* Software start ? (e.g. trigger detection disabled ?) */
 608	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 609		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 610}
 611
 612static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
 613{
 614	struct stm32_adc *adc = iio_priv(indio_dev);
 615
 616	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 617	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 618
 619	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 620	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 621			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 622}
 623
 
 
 
 
 
 
 
 624static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 625{
 626	struct stm32_adc *adc = iio_priv(indio_dev);
 627	enum stm32h7_adc_dmngt dmngt;
 628	unsigned long flags;
 629	u32 val;
 630
 631	if (dma)
 632		dmngt = STM32H7_DMNGT_DMA_CIRC;
 633	else
 634		dmngt = STM32H7_DMNGT_DR_ONLY;
 635
 636	spin_lock_irqsave(&adc->lock, flags);
 637	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 638	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 639	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 640	spin_unlock_irqrestore(&adc->lock, flags);
 641
 642	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 643}
 644
 645static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
 646{
 647	struct stm32_adc *adc = iio_priv(indio_dev);
 648	int ret;
 649	u32 val;
 650
 651	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 652
 653	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 654					   !(val & (STM32H7_ADSTART)),
 655					   100, STM32_ADC_TIMEOUT_US);
 656	if (ret)
 657		dev_warn(&indio_dev->dev, "stop failed\n");
 658
 
 659	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 660}
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
 663{
 664	struct stm32_adc *adc = iio_priv(indio_dev);
 665	int ret;
 666	u32 val;
 667
 668	/* Exit deep power down, then enable ADC voltage regulator */
 669	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 670	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 671
 672	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
 
 673		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 674
 675	/* Wait for startup time */
 676	if (!adc->cfg->has_vregready) {
 677		usleep_range(10, 20);
 678		return 0;
 679	}
 680
 681	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 682					   val & STM32MP1_VREGREADY, 100,
 683					   STM32_ADC_TIMEOUT_US);
 684	if (ret) {
 685		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 686		dev_err(&indio_dev->dev, "Failed to exit power down\n");
 687	}
 688
 689	return ret;
 690}
 691
 692static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 693{
 694	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 
 695
 696	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 697	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 698}
 699
 700static int stm32h7_adc_enable(struct iio_dev *indio_dev)
 701{
 702	struct stm32_adc *adc = iio_priv(indio_dev);
 703	int ret;
 704	u32 val;
 705
 706	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 707
 708	/* Poll for ADRDY to be set (after adc startup time) */
 709	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 710					   val & STM32H7_ADRDY,
 711					   100, STM32_ADC_TIMEOUT_US);
 712	if (ret) {
 713		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 714		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 715	} else {
 716		/* Clear ADRDY by writing one */
 717		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 718	}
 719
 720	return ret;
 721}
 722
 723static void stm32h7_adc_disable(struct iio_dev *indio_dev)
 724{
 725	struct stm32_adc *adc = iio_priv(indio_dev);
 726	int ret;
 727	u32 val;
 728
 
 
 
 729	/* Disable ADC and wait until it's effectively disabled */
 730	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 731	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 732					   !(val & STM32H7_ADEN), 100,
 733					   STM32_ADC_TIMEOUT_US);
 734	if (ret)
 735		dev_warn(&indio_dev->dev, "Failed to disable\n");
 736}
 737
 738/**
 739 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 740 * @indio_dev: IIO device instance
 741 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
 742 */
 743static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
 744{
 745	struct stm32_adc *adc = iio_priv(indio_dev);
 746	int i, ret;
 747	u32 lincalrdyw_mask, val;
 748
 749	/* Read linearity calibration */
 750	lincalrdyw_mask = STM32H7_LINCALRDYW6;
 751	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 752		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 753		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 754
 755		/* Poll: wait calib data to be ready in CALFACT2 register */
 756		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 757						   !(val & lincalrdyw_mask),
 758						   100, STM32_ADC_TIMEOUT_US);
 759		if (ret) {
 760			dev_err(&indio_dev->dev, "Failed to read calfact\n");
 761			return ret;
 762		}
 763
 764		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 765		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
 766		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
 767
 768		lincalrdyw_mask >>= 1;
 769	}
 770
 771	/* Read offset calibration */
 772	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
 773	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
 774	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
 775	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
 776	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
 777	adc->cal.calibrated = true;
 778
 779	return 0;
 780}
 781
 782/**
 783 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 784 * @indio_dev: IIO device instance
 785 * Note: ADC must be enabled, with no on-going conversions.
 786 */
 787static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
 788{
 789	struct stm32_adc *adc = iio_priv(indio_dev);
 790	int i, ret;
 791	u32 lincalrdyw_mask, val;
 792
 793	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
 794		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
 795	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
 796
 797	lincalrdyw_mask = STM32H7_LINCALRDYW6;
 798	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 799		/*
 800		 * Write saved calibration data to shadow registers:
 801		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
 802		 * data write. Then poll to wait for complete transfer.
 803		 */
 804		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
 805		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
 806		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 807		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 808						   val & lincalrdyw_mask,
 809						   100, STM32_ADC_TIMEOUT_US);
 810		if (ret) {
 811			dev_err(&indio_dev->dev, "Failed to write calfact\n");
 812			return ret;
 813		}
 814
 815		/*
 816		 * Read back calibration data, has two effects:
 817		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
 818		 *   for next time calibration needs to be restored.
 819		 * - BTW, bit clear triggers a read, then check data has been
 820		 *   correctly written.
 821		 */
 822		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 823		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 824						   !(val & lincalrdyw_mask),
 825						   100, STM32_ADC_TIMEOUT_US);
 826		if (ret) {
 827			dev_err(&indio_dev->dev, "Failed to read calfact\n");
 828			return ret;
 829		}
 830		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 831		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
 832			dev_err(&indio_dev->dev, "calfact not consistent\n");
 833			return -EIO;
 834		}
 835
 836		lincalrdyw_mask >>= 1;
 837	}
 838
 839	return 0;
 840}
 841
 842/**
 843 * Fixed timeout value for ADC calibration.
 844 * worst cases:
 845 * - low clock frequency
 846 * - maximum prescalers
 847 * Calibration requires:
 848 * - 131,072 ADC clock cycle for the linear calibration
 849 * - 20 ADC clock cycle for the offset calibration
 850 *
 851 * Set to 100ms for now
 852 */
 853#define STM32H7_ADC_CALIB_TIMEOUT_US		100000
 854
 855/**
 856 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
 857 * @indio_dev: IIO device instance
 
 858 * Note: Must be called once ADC is out of power down.
 
 
 
 859 */
 860static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
 861{
 862	struct stm32_adc *adc = iio_priv(indio_dev);
 863	int ret;
 
 864	u32 val;
 865
 866	if (adc->cal.calibrated)
 867		return true;
 
 
 868
 869	/*
 870	 * Select calibration mode:
 871	 * - Offset calibration for single ended inputs
 872	 * - No linearity calibration (do it later, before reading it)
 873	 */
 874	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
 875	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
 876
 877	/* Start calibration, then wait for completion */
 878	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 879	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 880					   !(val & STM32H7_ADCAL), 100,
 881					   STM32H7_ADC_CALIB_TIMEOUT_US);
 882	if (ret) {
 883		dev_err(&indio_dev->dev, "calibration failed\n");
 884		goto out;
 885	}
 886
 887	/*
 888	 * Select calibration mode, then start calibration:
 889	 * - Offset calibration for differential input
 890	 * - Linearity calibration (needs to be done only once for single/diff)
 891	 *   will run simultaneously with offset calibration.
 892	 */
 893	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
 894			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 895	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 896	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 897					   !(val & STM32H7_ADCAL), 100,
 898					   STM32H7_ADC_CALIB_TIMEOUT_US);
 899	if (ret) {
 900		dev_err(&indio_dev->dev, "calibration failed\n");
 
 901		goto out;
 902	}
 903
 904out:
 905	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
 906			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 907
 908	return ret;
 909}
 910
 911/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 913 * @indio_dev: IIO device instance
 914 * Leave power down mode.
 915 * Configure channels as single ended or differential before enabling ADC.
 916 * Enable ADC.
 917 * Restore calibration data.
 918 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
 919 * - Only one input is selected for single ended (e.g. 'vinp')
 920 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
 921 */
 922static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
 923{
 924	struct stm32_adc *adc = iio_priv(indio_dev);
 925	int calib, ret;
 
 926
 927	ret = stm32h7_adc_exit_pwr_down(indio_dev);
 928	if (ret)
 929		return ret;
 930
 931	ret = stm32h7_adc_selfcalib(indio_dev);
 
 
 
 
 932	if (ret < 0)
 933		goto pwr_dwn;
 934	calib = ret;
 935
 936	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
 
 
 937
 938	ret = stm32h7_adc_enable(indio_dev);
 939	if (ret)
 940		goto pwr_dwn;
 941
 942	/* Either restore or read calibration result for future reference */
 943	if (calib)
 944		ret = stm32h7_adc_restore_selfcalib(indio_dev);
 945	else
 946		ret = stm32h7_adc_read_selfcalib(indio_dev);
 947	if (ret)
 948		goto disable;
 949
 950	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
 
 
 
 
 
 951
 952	return 0;
 953
 954disable:
 955	stm32h7_adc_disable(indio_dev);
 
 
 956pwr_dwn:
 957	stm32h7_adc_enter_pwr_down(adc);
 958
 959	return ret;
 960}
 961
 962static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
 963{
 964	struct stm32_adc *adc = iio_priv(indio_dev);
 965
 
 
 966	stm32h7_adc_disable(indio_dev);
 
 967	stm32h7_adc_enter_pwr_down(adc);
 968}
 969
 970/**
 971 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 972 * @indio_dev: IIO device
 973 * @scan_mask: channels to be converted
 974 *
 975 * Conversion sequence :
 976 * Apply sampling time settings for all channels.
 977 * Configure ADC scan sequence based on selected channels in scan_mask.
 978 * Add channels to SQR registers, from scan_mask LSB to MSB, then
 979 * program sequence len.
 980 */
 981static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
 982				   const unsigned long *scan_mask)
 983{
 984	struct stm32_adc *adc = iio_priv(indio_dev);
 985	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
 986	const struct iio_chan_spec *chan;
 987	u32 val, bit;
 988	int i = 0;
 989
 990	/* Apply sampling time settings */
 991	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
 992	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
 993
 994	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
 995		chan = indio_dev->channels + bit;
 996		/*
 997		 * Assign one channel per SQ entry in regular
 998		 * sequence, starting with SQ1.
 999		 */
1000		i++;
1001		if (i > STM32_ADC_MAX_SQ)
1002			return -EINVAL;
1003
1004		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1005			__func__, chan->channel, i);
1006
1007		val = stm32_adc_readl(adc, sqr[i].reg);
1008		val &= ~sqr[i].mask;
1009		val |= chan->channel << sqr[i].shift;
1010		stm32_adc_writel(adc, sqr[i].reg, val);
1011	}
1012
1013	if (!i)
1014		return -EINVAL;
1015
1016	/* Sequence len */
1017	val = stm32_adc_readl(adc, sqr[0].reg);
1018	val &= ~sqr[0].mask;
1019	val |= ((i - 1) << sqr[0].shift);
1020	stm32_adc_writel(adc, sqr[0].reg, val);
1021
1022	return 0;
1023}
1024
1025/**
1026 * stm32_adc_get_trig_extsel() - Get external trigger selection
1027 * @indio_dev: IIO device structure
1028 * @trig: trigger
1029 *
1030 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1031 */
1032static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1033				     struct iio_trigger *trig)
1034{
1035	struct stm32_adc *adc = iio_priv(indio_dev);
1036	int i;
1037
1038	/* lookup triggers registered by stm32 timer trigger driver */
1039	for (i = 0; adc->cfg->trigs[i].name; i++) {
1040		/**
1041		 * Checking both stm32 timer trigger type and trig name
1042		 * should be safe against arbitrary trigger names.
1043		 */
1044		if ((is_stm32_timer_trigger(trig) ||
1045		     is_stm32_lptim_trigger(trig)) &&
1046		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1047			return adc->cfg->trigs[i].extsel;
1048		}
1049	}
1050
1051	return -EINVAL;
1052}
1053
1054/**
1055 * stm32_adc_set_trig() - Set a regular trigger
1056 * @indio_dev: IIO device
1057 * @trig: IIO trigger
1058 *
1059 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1060 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1061 * - if HW trigger enabled, set source & polarity
1062 */
1063static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1064			      struct iio_trigger *trig)
1065{
1066	struct stm32_adc *adc = iio_priv(indio_dev);
1067	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1068	unsigned long flags;
1069	int ret;
1070
1071	if (trig) {
1072		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1073		if (ret < 0)
1074			return ret;
1075
1076		/* set trigger source and polarity (default to rising edge) */
1077		extsel = ret;
1078		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1079	}
1080
1081	spin_lock_irqsave(&adc->lock, flags);
1082	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1083	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1084	val |= exten << adc->cfg->regs->exten.shift;
1085	val |= extsel << adc->cfg->regs->extsel.shift;
1086	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1087	spin_unlock_irqrestore(&adc->lock, flags);
1088
1089	return 0;
1090}
1091
1092static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1093				  const struct iio_chan_spec *chan,
1094				  unsigned int type)
1095{
1096	struct stm32_adc *adc = iio_priv(indio_dev);
1097
1098	adc->trigger_polarity = type;
1099
1100	return 0;
1101}
1102
1103static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1104				  const struct iio_chan_spec *chan)
1105{
1106	struct stm32_adc *adc = iio_priv(indio_dev);
1107
1108	return adc->trigger_polarity;
1109}
1110
1111static const char * const stm32_trig_pol_items[] = {
1112	"rising-edge", "falling-edge", "both-edges",
1113};
1114
1115static const struct iio_enum stm32_adc_trig_pol = {
1116	.items = stm32_trig_pol_items,
1117	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1118	.get = stm32_adc_get_trig_pol,
1119	.set = stm32_adc_set_trig_pol,
1120};
1121
1122/**
1123 * stm32_adc_single_conv() - Performs a single conversion
1124 * @indio_dev: IIO device
1125 * @chan: IIO channel
1126 * @res: conversion result
1127 *
1128 * The function performs a single conversion on a given channel:
1129 * - Apply sampling time settings
1130 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1131 * - Use SW trigger
1132 * - Start conversion, then wait for interrupt completion.
1133 */
1134static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1135				 const struct iio_chan_spec *chan,
1136				 int *res)
1137{
1138	struct stm32_adc *adc = iio_priv(indio_dev);
1139	struct device *dev = indio_dev->dev.parent;
1140	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1141	long timeout;
1142	u32 val;
1143	int ret;
1144
1145	reinit_completion(&adc->completion);
1146
1147	adc->bufi = 0;
1148
1149	ret = pm_runtime_get_sync(dev);
1150	if (ret < 0) {
1151		pm_runtime_put_noidle(dev);
1152		return ret;
1153	}
1154
1155	/* Apply sampling time settings */
1156	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1157	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1158
1159	/* Program chan number in regular sequence (SQ1) */
1160	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1161	val &= ~regs->sqr[1].mask;
1162	val |= chan->channel << regs->sqr[1].shift;
1163	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1164
1165	/* Set regular sequence len (0 for 1 conversion) */
1166	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1167
1168	/* Trigger detection disabled (conversion can be launched in SW) */
1169	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1170
1171	stm32_adc_conv_irq_enable(adc);
1172
1173	adc->cfg->start_conv(indio_dev, false);
1174
1175	timeout = wait_for_completion_interruptible_timeout(
1176					&adc->completion, STM32_ADC_TIMEOUT);
1177	if (timeout == 0) {
1178		ret = -ETIMEDOUT;
1179	} else if (timeout < 0) {
1180		ret = timeout;
1181	} else {
1182		*res = adc->buffer[0];
1183		ret = IIO_VAL_INT;
1184	}
1185
1186	adc->cfg->stop_conv(indio_dev);
1187
1188	stm32_adc_conv_irq_disable(adc);
1189
1190	pm_runtime_mark_last_busy(dev);
1191	pm_runtime_put_autosuspend(dev);
1192
1193	return ret;
1194}
1195
1196static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1197			      struct iio_chan_spec const *chan,
1198			      int *val, int *val2, long mask)
1199{
1200	struct stm32_adc *adc = iio_priv(indio_dev);
1201	int ret;
1202
1203	switch (mask) {
1204	case IIO_CHAN_INFO_RAW:
 
1205		ret = iio_device_claim_direct_mode(indio_dev);
1206		if (ret)
1207			return ret;
1208		if (chan->type == IIO_VOLTAGE)
1209			ret = stm32_adc_single_conv(indio_dev, chan, val);
1210		else
1211			ret = -EINVAL;
 
 
 
 
1212		iio_device_release_direct_mode(indio_dev);
1213		return ret;
1214
1215	case IIO_CHAN_INFO_SCALE:
1216		if (chan->differential) {
1217			*val = adc->common->vref_mv * 2;
1218			*val2 = chan->scan_type.realbits;
1219		} else {
1220			*val = adc->common->vref_mv;
1221			*val2 = chan->scan_type.realbits;
1222		}
1223		return IIO_VAL_FRACTIONAL_LOG2;
1224
1225	case IIO_CHAN_INFO_OFFSET:
1226		if (chan->differential)
1227			/* ADC_full_scale / 2 */
1228			*val = -((1 << chan->scan_type.realbits) / 2);
1229		else
1230			*val = 0;
1231		return IIO_VAL_INT;
1232
1233	default:
1234		return -EINVAL;
1235	}
1236}
1237
 
 
 
 
 
 
 
1238static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1239{
1240	struct iio_dev *indio_dev = data;
1241	struct stm32_adc *adc = iio_priv(indio_dev);
1242	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1243	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1244
1245	if (status & regs->isr_ovr.mask)
 
 
 
 
 
 
 
 
1246		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
 
 
1247
1248	return IRQ_HANDLED;
1249}
1250
1251static irqreturn_t stm32_adc_isr(int irq, void *data)
1252{
1253	struct iio_dev *indio_dev = data;
1254	struct stm32_adc *adc = iio_priv(indio_dev);
1255	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1256	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1257
1258	if (status & regs->isr_ovr.mask) {
1259		/*
1260		 * Overrun occurred on regular conversions: data for wrong
1261		 * channel may be read. Unconditionally disable interrupts
1262		 * to stop processing data and print error message.
1263		 * Restarting the capture can be done by disabling, then
1264		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1265		 */
1266		stm32_adc_ovr_irq_disable(adc);
1267		stm32_adc_conv_irq_disable(adc);
1268		return IRQ_WAKE_THREAD;
1269	}
1270
1271	if (status & regs->isr_eoc.mask) {
1272		/* Reading DR also clears EOC status flag */
1273		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1274		if (iio_buffer_enabled(indio_dev)) {
1275			adc->bufi++;
1276			if (adc->bufi >= adc->num_conv) {
1277				stm32_adc_conv_irq_disable(adc);
1278				iio_trigger_poll(indio_dev->trig);
1279			}
1280		} else {
1281			complete(&adc->completion);
1282		}
1283		return IRQ_HANDLED;
1284	}
1285
1286	return IRQ_NONE;
1287}
1288
1289/**
1290 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1291 * @indio_dev: IIO device
1292 * @trig: new trigger
1293 *
1294 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1295 * driver, -EINVAL otherwise.
1296 */
1297static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1298				      struct iio_trigger *trig)
1299{
1300	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1301}
1302
1303static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1304{
1305	struct stm32_adc *adc = iio_priv(indio_dev);
1306	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1307	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1308
1309	/*
1310	 * dma cyclic transfers are used, buffer is split into two periods.
1311	 * There should be :
1312	 * - always one buffer (period) dma is working on
1313	 * - one buffer (period) driver can push with iio_trigger_poll().
1314	 */
1315	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1316	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1317
1318	return 0;
1319}
1320
1321static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1322				      const unsigned long *scan_mask)
1323{
1324	struct stm32_adc *adc = iio_priv(indio_dev);
1325	struct device *dev = indio_dev->dev.parent;
1326	int ret;
1327
1328	ret = pm_runtime_get_sync(dev);
1329	if (ret < 0) {
1330		pm_runtime_put_noidle(dev);
1331		return ret;
1332	}
1333
1334	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1335
1336	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1337	pm_runtime_mark_last_busy(dev);
1338	pm_runtime_put_autosuspend(dev);
1339
1340	return ret;
1341}
1342
1343static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1344			      const struct of_phandle_args *iiospec)
1345{
1346	int i;
1347
1348	for (i = 0; i < indio_dev->num_channels; i++)
1349		if (indio_dev->channels[i].channel == iiospec->args[0])
1350			return i;
1351
1352	return -EINVAL;
1353}
1354
1355/**
1356 * stm32_adc_debugfs_reg_access - read or write register value
1357 * @indio_dev: IIO device structure
1358 * @reg: register offset
1359 * @writeval: value to write
1360 * @readval: value to read
1361 *
1362 * To read a value from an ADC register:
1363 *   echo [ADC reg offset] > direct_reg_access
1364 *   cat direct_reg_access
1365 *
1366 * To write a value in a ADC register:
1367 *   echo [ADC_reg_offset] [value] > direct_reg_access
1368 */
1369static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1370					unsigned reg, unsigned writeval,
1371					unsigned *readval)
1372{
1373	struct stm32_adc *adc = iio_priv(indio_dev);
1374	struct device *dev = indio_dev->dev.parent;
1375	int ret;
1376
1377	ret = pm_runtime_get_sync(dev);
1378	if (ret < 0) {
1379		pm_runtime_put_noidle(dev);
1380		return ret;
1381	}
1382
1383	if (!readval)
1384		stm32_adc_writel(adc, reg, writeval);
1385	else
1386		*readval = stm32_adc_readl(adc, reg);
1387
1388	pm_runtime_mark_last_busy(dev);
1389	pm_runtime_put_autosuspend(dev);
1390
1391	return 0;
1392}
1393
1394static const struct iio_info stm32_adc_iio_info = {
1395	.read_raw = stm32_adc_read_raw,
1396	.validate_trigger = stm32_adc_validate_trigger,
1397	.hwfifo_set_watermark = stm32_adc_set_watermark,
1398	.update_scan_mode = stm32_adc_update_scan_mode,
1399	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1400	.of_xlate = stm32_adc_of_xlate,
1401};
1402
1403static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1404{
1405	struct dma_tx_state state;
1406	enum dma_status status;
1407
1408	status = dmaengine_tx_status(adc->dma_chan,
1409				     adc->dma_chan->cookie,
1410				     &state);
1411	if (status == DMA_IN_PROGRESS) {
1412		/* Residue is size in bytes from end of buffer */
1413		unsigned int i = adc->rx_buf_sz - state.residue;
1414		unsigned int size;
1415
1416		/* Return available bytes */
1417		if (i >= adc->bufi)
1418			size = i - adc->bufi;
1419		else
1420			size = adc->rx_buf_sz + i - adc->bufi;
1421
1422		return size;
1423	}
1424
1425	return 0;
1426}
1427
1428static void stm32_adc_dma_buffer_done(void *data)
1429{
1430	struct iio_dev *indio_dev = data;
1431	struct stm32_adc *adc = iio_priv(indio_dev);
1432	int residue = stm32_adc_dma_residue(adc);
1433
1434	/*
1435	 * In DMA mode the trigger services of IIO are not used
1436	 * (e.g. no call to iio_trigger_poll).
1437	 * Calling irq handler associated to the hardware trigger is not
1438	 * relevant as the conversions have already been done. Data
1439	 * transfers are performed directly in DMA callback instead.
1440	 * This implementation avoids to call trigger irq handler that
1441	 * may sleep, in an atomic context (DMA irq handler context).
1442	 */
1443	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1444
1445	while (residue >= indio_dev->scan_bytes) {
1446		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1447
1448		iio_push_to_buffers(indio_dev, buffer);
1449
1450		residue -= indio_dev->scan_bytes;
1451		adc->bufi += indio_dev->scan_bytes;
1452		if (adc->bufi >= adc->rx_buf_sz)
1453			adc->bufi = 0;
1454	}
1455}
1456
1457static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1458{
1459	struct stm32_adc *adc = iio_priv(indio_dev);
1460	struct dma_async_tx_descriptor *desc;
1461	dma_cookie_t cookie;
1462	int ret;
1463
1464	if (!adc->dma_chan)
1465		return 0;
1466
1467	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1468		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1469
1470	/* Prepare a DMA cyclic transaction */
1471	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1472					 adc->rx_dma_buf,
1473					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1474					 DMA_DEV_TO_MEM,
1475					 DMA_PREP_INTERRUPT);
1476	if (!desc)
1477		return -EBUSY;
1478
1479	desc->callback = stm32_adc_dma_buffer_done;
1480	desc->callback_param = indio_dev;
1481
1482	cookie = dmaengine_submit(desc);
1483	ret = dma_submit_error(cookie);
1484	if (ret) {
1485		dmaengine_terminate_sync(adc->dma_chan);
1486		return ret;
1487	}
1488
1489	/* Issue pending DMA requests */
1490	dma_async_issue_pending(adc->dma_chan);
1491
1492	return 0;
1493}
1494
1495static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1496{
1497	struct stm32_adc *adc = iio_priv(indio_dev);
1498	struct device *dev = indio_dev->dev.parent;
1499	int ret;
1500
1501	ret = pm_runtime_get_sync(dev);
1502	if (ret < 0) {
1503		pm_runtime_put_noidle(dev);
1504		return ret;
1505	}
1506
1507	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1508	if (ret) {
1509		dev_err(&indio_dev->dev, "Can't set trigger\n");
1510		goto err_pm_put;
1511	}
1512
1513	ret = stm32_adc_dma_start(indio_dev);
1514	if (ret) {
1515		dev_err(&indio_dev->dev, "Can't start dma\n");
1516		goto err_clr_trig;
1517	}
1518
1519	/* Reset adc buffer index */
1520	adc->bufi = 0;
1521
1522	stm32_adc_ovr_irq_enable(adc);
1523
1524	if (!adc->dma_chan)
1525		stm32_adc_conv_irq_enable(adc);
1526
1527	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1528
1529	return 0;
1530
1531err_clr_trig:
1532	stm32_adc_set_trig(indio_dev, NULL);
1533err_pm_put:
1534	pm_runtime_mark_last_busy(dev);
1535	pm_runtime_put_autosuspend(dev);
1536
1537	return ret;
1538}
1539
1540static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1541{
1542	struct stm32_adc *adc = iio_priv(indio_dev);
1543	struct device *dev = indio_dev->dev.parent;
1544
1545	adc->cfg->stop_conv(indio_dev);
1546	if (!adc->dma_chan)
1547		stm32_adc_conv_irq_disable(adc);
1548
1549	stm32_adc_ovr_irq_disable(adc);
1550
1551	if (adc->dma_chan)
1552		dmaengine_terminate_sync(adc->dma_chan);
1553
1554	if (stm32_adc_set_trig(indio_dev, NULL))
1555		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1556
1557	pm_runtime_mark_last_busy(dev);
1558	pm_runtime_put_autosuspend(dev);
1559
1560	return 0;
1561}
1562
1563static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1564	.postenable = &stm32_adc_buffer_postenable,
1565	.predisable = &stm32_adc_buffer_predisable,
1566};
1567
1568static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1569{
1570	struct iio_poll_func *pf = p;
1571	struct iio_dev *indio_dev = pf->indio_dev;
1572	struct stm32_adc *adc = iio_priv(indio_dev);
1573
1574	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1575
1576	if (!adc->dma_chan) {
1577		/* reset buffer index */
1578		adc->bufi = 0;
1579		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1580						   pf->timestamp);
1581	} else {
1582		int residue = stm32_adc_dma_residue(adc);
1583
1584		while (residue >= indio_dev->scan_bytes) {
1585			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1586
1587			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1588							   pf->timestamp);
1589			residue -= indio_dev->scan_bytes;
1590			adc->bufi += indio_dev->scan_bytes;
1591			if (adc->bufi >= adc->rx_buf_sz)
1592				adc->bufi = 0;
1593		}
1594	}
1595
1596	iio_trigger_notify_done(indio_dev->trig);
1597
1598	/* re-enable eoc irq */
1599	if (!adc->dma_chan)
1600		stm32_adc_conv_irq_enable(adc);
1601
1602	return IRQ_HANDLED;
1603}
1604
1605static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1606	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1607	{
1608		.name = "trigger_polarity_available",
1609		.shared = IIO_SHARED_BY_ALL,
1610		.read = iio_enum_available_read,
1611		.private = (uintptr_t)&stm32_adc_trig_pol,
1612	},
1613	{},
1614};
1615
1616static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617{
1618	struct device_node *node = indio_dev->dev.of_node;
1619	struct stm32_adc *adc = iio_priv(indio_dev);
1620	unsigned int i;
1621	u32 res;
1622
1623	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1624		res = adc->cfg->adc_info->resolutions[0];
1625
1626	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1627		if (res == adc->cfg->adc_info->resolutions[i])
1628			break;
1629	if (i >= adc->cfg->adc_info->num_res) {
1630		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1631		return -EINVAL;
1632	}
1633
1634	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1635	adc->res = i;
1636
1637	return 0;
1638}
1639
1640static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1641{
1642	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1643	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1644	unsigned int smp, r = smpr->reg;
 
 
 
 
 
 
 
 
1645
1646	/* Determine sampling time (ADC clock cycles) */
1647	period_ns = NSEC_PER_SEC / adc->common->rate;
1648	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1649		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1650			break;
1651	if (smp > STM32_ADC_MAX_SMP)
1652		smp = STM32_ADC_MAX_SMP;
1653
1654	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1655	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1656}
1657
1658static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1659				    struct iio_chan_spec *chan, u32 vinp,
1660				    u32 vinn, int scan_index, bool differential)
1661{
1662	struct stm32_adc *adc = iio_priv(indio_dev);
1663	char *name = adc->chan_name[vinp];
1664
1665	chan->type = IIO_VOLTAGE;
1666	chan->channel = vinp;
1667	if (differential) {
1668		chan->differential = 1;
1669		chan->channel2 = vinn;
1670		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1671	} else {
1672		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1673	}
1674	chan->datasheet_name = name;
1675	chan->scan_index = scan_index;
1676	chan->indexed = 1;
1677	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
 
 
 
1678	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1679					 BIT(IIO_CHAN_INFO_OFFSET);
1680	chan->scan_type.sign = 'u';
1681	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1682	chan->scan_type.storagebits = 16;
1683	chan->ext_info = stm32_adc_ext_info;
1684
1685	/* pre-build selected channels mask */
1686	adc->pcsel |= BIT(chan->channel);
1687	if (differential) {
1688		/* pre-build diff channels mask */
1689		adc->difsel |= BIT(chan->channel);
1690		/* Also add negative input to pre-selected channels */
1691		adc->pcsel |= BIT(chan->channel2);
1692	}
1693}
1694
1695static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1696{
1697	struct device_node *node = indio_dev->dev.of_node;
1698	struct stm32_adc *adc = iio_priv(indio_dev);
1699	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1700	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1701	struct property *prop;
1702	const __be32 *cur;
1703	struct iio_chan_spec *channels;
1704	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1705	u32 val, smp = 0;
1706
1707	ret = of_property_count_u32_elems(node, "st,adc-channels");
1708	if (ret > adc_info->max_channels) {
1709		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1710		return -EINVAL;
1711	} else if (ret > 0) {
1712		num_channels += ret;
1713	}
1714
1715	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1716					      sizeof(*diff));
1717	if (ret > adc_info->max_channels) {
1718		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1719		return -EINVAL;
1720	} else if (ret > 0) {
1721		int size = ret * sizeof(*diff) / sizeof(u32);
1722
1723		num_diff = ret;
1724		num_channels += ret;
1725		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1726						 (u32 *)diff, size);
1727		if (ret)
1728			return ret;
1729	}
1730
1731	if (!num_channels) {
1732		dev_err(&indio_dev->dev, "No channels configured\n");
1733		return -ENODATA;
 
 
 
 
 
 
 
 
 
 
 
1734	}
1735
1736	/* Optional sample time is provided either for each, or all channels */
1737	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1738	if (ret > 1 && ret != num_channels) {
1739		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1740		return -EINVAL;
1741	}
1742
1743	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1744				sizeof(struct iio_chan_spec), GFP_KERNEL);
1745	if (!channels)
1746		return -ENOMEM;
1747
1748	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1749		if (val >= adc_info->max_channels) {
1750			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1751			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752		}
1753
1754		/* Channel can't be configured both as single-ended & diff */
1755		for (i = 0; i < num_diff; i++) {
1756			if (val == diff[i].vinp) {
1757				dev_err(&indio_dev->dev,
1758					"channel %d miss-configured\n",	val);
 
1759				return -EINVAL;
1760			}
 
 
 
 
 
1761		}
1762		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1763					0, scan_index, false);
1764		scan_index++;
1765	}
 
 
 
 
 
 
1766
1767	for (i = 0; i < num_diff; i++) {
1768		if (diff[i].vinp >= adc_info->max_channels ||
1769		    diff[i].vinn >= adc_info->max_channels) {
1770			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1771				diff[i].vinp, diff[i].vinn);
1772			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1773		}
1774		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1775					diff[i].vinp, diff[i].vinn, scan_index,
1776					true);
1777		scan_index++;
 
 
 
1778	}
1779
1780	for (i = 0; i < scan_index; i++) {
1781		/*
1782		 * Using of_property_read_u32_index(), smp value will only be
1783		 * modified if valid u32 value can be decoded. This allows to
1784		 * get either no value, 1 shared value for all indexes, or one
1785		 * value per channel.
 
1786		 */
1787		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1788					   i, &smp);
 
1789		/* Prepare sampling time settings */
1790		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1791	}
1792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793	indio_dev->num_channels = scan_index;
1794	indio_dev->channels = channels;
1795
1796	return 0;
1797}
1798
1799static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1800{
1801	struct stm32_adc *adc = iio_priv(indio_dev);
1802	struct dma_slave_config config;
1803	int ret;
1804
1805	adc->dma_chan = dma_request_chan(dev, "rx");
1806	if (IS_ERR(adc->dma_chan)) {
1807		ret = PTR_ERR(adc->dma_chan);
1808		if (ret != -ENODEV) {
1809			if (ret != -EPROBE_DEFER)
1810				dev_err(dev,
1811					"DMA channel request failed with %d\n",
1812					ret);
1813			return ret;
1814		}
1815
1816		/* DMA is optional: fall back to IRQ mode */
1817		adc->dma_chan = NULL;
1818		return 0;
1819	}
1820
1821	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1822					 STM32_DMA_BUFFER_SIZE,
1823					 &adc->rx_dma_buf, GFP_KERNEL);
1824	if (!adc->rx_buf) {
1825		ret = -ENOMEM;
1826		goto err_release;
1827	}
1828
1829	/* Configure DMA channel to read data register */
1830	memset(&config, 0, sizeof(config));
1831	config.src_addr = (dma_addr_t)adc->common->phys_base;
1832	config.src_addr += adc->offset + adc->cfg->regs->dr;
1833	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1834
1835	ret = dmaengine_slave_config(adc->dma_chan, &config);
1836	if (ret)
1837		goto err_free;
1838
1839	return 0;
1840
1841err_free:
1842	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1843			  adc->rx_buf, adc->rx_dma_buf);
1844err_release:
1845	dma_release_channel(adc->dma_chan);
1846
1847	return ret;
1848}
1849
1850static int stm32_adc_probe(struct platform_device *pdev)
1851{
1852	struct iio_dev *indio_dev;
1853	struct device *dev = &pdev->dev;
1854	irqreturn_t (*handler)(int irq, void *p) = NULL;
1855	struct stm32_adc *adc;
 
1856	int ret;
1857
1858	if (!pdev->dev.of_node)
1859		return -ENODEV;
1860
1861	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1862	if (!indio_dev)
1863		return -ENOMEM;
1864
1865	adc = iio_priv(indio_dev);
1866	adc->common = dev_get_drvdata(pdev->dev.parent);
1867	spin_lock_init(&adc->lock);
1868	init_completion(&adc->completion);
1869	adc->cfg = (const struct stm32_adc_cfg *)
1870		of_match_device(dev->driver->of_match_table, dev)->data;
1871
1872	indio_dev->name = dev_name(&pdev->dev);
1873	indio_dev->dev.of_node = pdev->dev.of_node;
1874	indio_dev->info = &stm32_adc_iio_info;
1875	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1876
1877	platform_set_drvdata(pdev, indio_dev);
1878
1879	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1880	if (ret != 0) {
1881		dev_err(&pdev->dev, "missing reg property\n");
1882		return -EINVAL;
1883	}
1884
1885	adc->irq = platform_get_irq(pdev, 0);
1886	if (adc->irq < 0)
1887		return adc->irq;
1888
1889	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1890					stm32_adc_threaded_isr,
1891					0, pdev->name, indio_dev);
1892	if (ret) {
1893		dev_err(&pdev->dev, "failed to request IRQ\n");
1894		return ret;
1895	}
1896
1897	adc->clk = devm_clk_get(&pdev->dev, NULL);
1898	if (IS_ERR(adc->clk)) {
1899		ret = PTR_ERR(adc->clk);
1900		if (ret == -ENOENT && !adc->cfg->clk_required) {
1901			adc->clk = NULL;
1902		} else {
1903			dev_err(&pdev->dev, "Can't get clock\n");
1904			return ret;
1905		}
1906	}
1907
1908	ret = stm32_adc_of_get_resolution(indio_dev);
1909	if (ret < 0)
1910		return ret;
1911
1912	ret = stm32_adc_chan_of_init(indio_dev);
1913	if (ret < 0)
1914		return ret;
1915
1916	ret = stm32_adc_dma_request(dev, indio_dev);
1917	if (ret < 0)
1918		return ret;
1919
1920	if (!adc->dma_chan)
 
 
 
 
1921		handler = &stm32_adc_trigger_handler;
 
 
 
 
 
 
1922
1923	ret = iio_triggered_buffer_setup(indio_dev,
1924					 &iio_pollfunc_store_time, handler,
1925					 &stm32_adc_buffer_setup_ops);
1926	if (ret) {
1927		dev_err(&pdev->dev, "buffer setup failed\n");
1928		goto err_dma_disable;
1929	}
1930
1931	/* Get stm32-adc-core PM online */
1932	pm_runtime_get_noresume(dev);
1933	pm_runtime_set_active(dev);
1934	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1935	pm_runtime_use_autosuspend(dev);
1936	pm_runtime_enable(dev);
1937
1938	ret = stm32_adc_hw_start(dev);
1939	if (ret)
1940		goto err_buffer_cleanup;
1941
1942	ret = iio_device_register(indio_dev);
1943	if (ret) {
1944		dev_err(&pdev->dev, "iio dev register failed\n");
1945		goto err_hw_stop;
1946	}
1947
1948	pm_runtime_mark_last_busy(dev);
1949	pm_runtime_put_autosuspend(dev);
1950
 
 
 
1951	return 0;
1952
1953err_hw_stop:
1954	stm32_adc_hw_stop(dev);
1955
1956err_buffer_cleanup:
1957	pm_runtime_disable(dev);
1958	pm_runtime_set_suspended(dev);
1959	pm_runtime_put_noidle(dev);
1960	iio_triggered_buffer_cleanup(indio_dev);
1961
1962err_dma_disable:
1963	if (adc->dma_chan) {
1964		dma_free_coherent(adc->dma_chan->device->dev,
1965				  STM32_DMA_BUFFER_SIZE,
1966				  adc->rx_buf, adc->rx_dma_buf);
1967		dma_release_channel(adc->dma_chan);
1968	}
1969
1970	return ret;
1971}
1972
1973static int stm32_adc_remove(struct platform_device *pdev)
1974{
1975	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1976	struct stm32_adc *adc = iio_priv(indio_dev);
1977
1978	pm_runtime_get_sync(&pdev->dev);
 
1979	iio_device_unregister(indio_dev);
1980	stm32_adc_hw_stop(&pdev->dev);
1981	pm_runtime_disable(&pdev->dev);
1982	pm_runtime_set_suspended(&pdev->dev);
1983	pm_runtime_put_noidle(&pdev->dev);
1984	iio_triggered_buffer_cleanup(indio_dev);
1985	if (adc->dma_chan) {
1986		dma_free_coherent(adc->dma_chan->device->dev,
1987				  STM32_DMA_BUFFER_SIZE,
1988				  adc->rx_buf, adc->rx_dma_buf);
1989		dma_release_channel(adc->dma_chan);
1990	}
1991
1992	return 0;
1993}
1994
1995#if defined(CONFIG_PM_SLEEP)
1996static int stm32_adc_suspend(struct device *dev)
1997{
1998	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1999
2000	if (iio_buffer_enabled(indio_dev))
2001		stm32_adc_buffer_predisable(indio_dev);
2002
2003	return pm_runtime_force_suspend(dev);
2004}
2005
2006static int stm32_adc_resume(struct device *dev)
2007{
2008	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2009	int ret;
2010
2011	ret = pm_runtime_force_resume(dev);
2012	if (ret < 0)
2013		return ret;
2014
2015	if (!iio_buffer_enabled(indio_dev))
2016		return 0;
2017
2018	ret = stm32_adc_update_scan_mode(indio_dev,
2019					 indio_dev->active_scan_mask);
2020	if (ret < 0)
2021		return ret;
2022
2023	return stm32_adc_buffer_postenable(indio_dev);
2024}
2025#endif
2026
2027#if defined(CONFIG_PM)
2028static int stm32_adc_runtime_suspend(struct device *dev)
2029{
2030	return stm32_adc_hw_stop(dev);
2031}
2032
2033static int stm32_adc_runtime_resume(struct device *dev)
2034{
2035	return stm32_adc_hw_start(dev);
2036}
2037#endif
2038
2039static const struct dev_pm_ops stm32_adc_pm_ops = {
2040	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2041	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2042			   NULL)
2043};
2044
2045static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2046	.regs = &stm32f4_adc_regspec,
2047	.adc_info = &stm32f4_adc_info,
2048	.trigs = stm32f4_adc_trigs,
2049	.clk_required = true,
2050	.start_conv = stm32f4_adc_start_conv,
2051	.stop_conv = stm32f4_adc_stop_conv,
2052	.smp_cycles = stm32f4_adc_smp_cycles,
 
2053};
2054
 
 
 
2055static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2056	.regs = &stm32h7_adc_regspec,
2057	.adc_info = &stm32h7_adc_info,
2058	.trigs = stm32h7_adc_trigs,
 
 
 
2059	.start_conv = stm32h7_adc_start_conv,
2060	.stop_conv = stm32h7_adc_stop_conv,
2061	.prepare = stm32h7_adc_prepare,
2062	.unprepare = stm32h7_adc_unprepare,
2063	.smp_cycles = stm32h7_adc_smp_cycles,
 
 
2064};
2065
 
 
 
2066static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2067	.regs = &stm32h7_adc_regspec,
2068	.adc_info = &stm32h7_adc_info,
2069	.trigs = stm32h7_adc_trigs,
2070	.has_vregready = true,
 
 
 
2071	.start_conv = stm32h7_adc_start_conv,
2072	.stop_conv = stm32h7_adc_stop_conv,
2073	.prepare = stm32h7_adc_prepare,
2074	.unprepare = stm32h7_adc_unprepare,
2075	.smp_cycles = stm32h7_adc_smp_cycles,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076};
2077
2078static const struct of_device_id stm32_adc_of_match[] = {
2079	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2080	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2081	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2082	{},
 
2083};
2084MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2085
2086static struct platform_driver stm32_adc_driver = {
2087	.probe = stm32_adc_probe,
2088	.remove = stm32_adc_remove,
2089	.driver = {
2090		.name = "stm32-adc",
2091		.of_match_table = stm32_adc_of_match,
2092		.pm = &stm32_adc_pm_ops,
2093	},
2094};
2095module_platform_driver(stm32_adc_driver);
2096
2097MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2098MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2099MODULE_LICENSE("GPL v2");
2100MODULE_ALIAS("platform:stm32-adc");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of STM32 ADC driver
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/debugfs.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/iio/iio.h>
  15#include <linux/iio/buffer.h>
  16#include <linux/iio/timer/stm32-lptim-trigger.h>
  17#include <linux/iio/timer/stm32-timer-trigger.h>
  18#include <linux/iio/trigger.h>
  19#include <linux/iio/trigger_consumer.h>
  20#include <linux/iio/triggered_buffer.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/iopoll.h>
  24#include <linux/module.h>
  25#include <linux/mod_devicetable.h>
  26#include <linux/nvmem-consumer.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/property.h>
 
  30
  31#include "stm32-adc-core.h"
  32
  33/* Number of linear calibration shadow registers / LINCALRDYW control bits */
  34#define STM32H7_LINCALFACT_NUM		6
  35
  36/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
  37#define STM32H7_BOOST_CLKRATE		20000000UL
  38
  39#define STM32_ADC_CH_MAX		20	/* max number of channels */
  40#define STM32_ADC_CH_SZ			16	/* max channel name size */
  41#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
  42#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
  43#define STM32_ADC_TIMEOUT_US		100000
  44#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
  45#define STM32_ADC_HW_STOP_DELAY_MS	100
  46#define STM32_ADC_VREFINT_VOLTAGE	3300
  47
  48#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
  49
  50/* External trigger enable */
  51enum stm32_adc_exten {
  52	STM32_EXTEN_SWTRIG,
  53	STM32_EXTEN_HWTRIG_RISING_EDGE,
  54	STM32_EXTEN_HWTRIG_FALLING_EDGE,
  55	STM32_EXTEN_HWTRIG_BOTH_EDGES,
  56};
  57
  58/* extsel - trigger mux selection value */
  59enum stm32_adc_extsel {
  60	STM32_EXT0,
  61	STM32_EXT1,
  62	STM32_EXT2,
  63	STM32_EXT3,
  64	STM32_EXT4,
  65	STM32_EXT5,
  66	STM32_EXT6,
  67	STM32_EXT7,
  68	STM32_EXT8,
  69	STM32_EXT9,
  70	STM32_EXT10,
  71	STM32_EXT11,
  72	STM32_EXT12,
  73	STM32_EXT13,
  74	STM32_EXT14,
  75	STM32_EXT15,
  76	STM32_EXT16,
  77	STM32_EXT17,
  78	STM32_EXT18,
  79	STM32_EXT19,
  80	STM32_EXT20,
  81};
  82
  83enum stm32_adc_int_ch {
  84	STM32_ADC_INT_CH_NONE = -1,
  85	STM32_ADC_INT_CH_VDDCORE,
  86	STM32_ADC_INT_CH_VDDCPU,
  87	STM32_ADC_INT_CH_VDDQ_DDR,
  88	STM32_ADC_INT_CH_VREFINT,
  89	STM32_ADC_INT_CH_VBAT,
  90	STM32_ADC_INT_CH_NB,
  91};
  92
  93/**
  94 * struct stm32_adc_ic - ADC internal channels
  95 * @name:	name of the internal channel
  96 * @idx:	internal channel enum index
  97 */
  98struct stm32_adc_ic {
  99	const char *name;
 100	u32 idx;
 101};
 102
 103static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
 104	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
 105	{ "vddcpu", STM32_ADC_INT_CH_VDDCPU },
 106	{ "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR },
 107	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
 108	{ "vbat", STM32_ADC_INT_CH_VBAT },
 109};
 110
 111/**
 112 * struct stm32_adc_trig_info - ADC trigger info
 113 * @name:		name of the trigger, corresponding to its source
 114 * @extsel:		trigger selection
 115 */
 116struct stm32_adc_trig_info {
 117	const char *name;
 118	enum stm32_adc_extsel extsel;
 119};
 120
 121/**
 122 * struct stm32_adc_calib - optional adc calibration data
 
 
 123 * @lincalfact: Linearity calibration factor
 124 * @lincal_saved: Indicates that linear calibration factors are saved
 125 */
 126struct stm32_adc_calib {
 
 
 127	u32			lincalfact[STM32H7_LINCALFACT_NUM];
 128	bool			lincal_saved;
 129};
 130
 131/**
 132 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 133 * @reg:		register offset
 134 * @mask:		bitfield mask
 135 * @shift:		left shift
 136 */
 137struct stm32_adc_regs {
 138	int reg;
 139	int mask;
 140	int shift;
 141};
 142
 143/**
 144 * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
 145 * @vrefint_cal:	vrefint calibration value from nvmem
 146 * @vrefint_data:	vrefint actual value
 147 */
 148struct stm32_adc_vrefint {
 149	u32 vrefint_cal;
 150	u32 vrefint_data;
 151};
 152
 153/**
 154 * struct stm32_adc_regspec - stm32 registers definition
 155 * @dr:			data register offset
 156 * @ier_eoc:		interrupt enable register & eocie bitfield
 157 * @ier_ovr:		interrupt enable register & overrun bitfield
 158 * @isr_eoc:		interrupt status register & eoc bitfield
 159 * @isr_ovr:		interrupt status register & overrun bitfield
 160 * @sqr:		reference to sequence registers array
 161 * @exten:		trigger control register & bitfield
 162 * @extsel:		trigger selection register & bitfield
 163 * @res:		resolution selection register & bitfield
 164 * @difsel:		differential mode selection register & bitfield
 165 * @smpr:		smpr1 & smpr2 registers offset array
 166 * @smp_bits:		smpr1 & smpr2 index and bitfields
 167 * @or_vddcore:		option register & vddcore bitfield
 168 * @or_vddcpu:		option register & vddcpu bitfield
 169 * @or_vddq_ddr:	option register & vddq_ddr bitfield
 170 * @ccr_vbat:		common register & vbat bitfield
 171 * @ccr_vref:		common register & vrefint bitfield
 172 */
 173struct stm32_adc_regspec {
 174	const u32 dr;
 175	const struct stm32_adc_regs ier_eoc;
 176	const struct stm32_adc_regs ier_ovr;
 177	const struct stm32_adc_regs isr_eoc;
 178	const struct stm32_adc_regs isr_ovr;
 179	const struct stm32_adc_regs *sqr;
 180	const struct stm32_adc_regs exten;
 181	const struct stm32_adc_regs extsel;
 182	const struct stm32_adc_regs res;
 183	const struct stm32_adc_regs difsel;
 184	const u32 smpr[2];
 185	const struct stm32_adc_regs *smp_bits;
 186	const struct stm32_adc_regs or_vddcore;
 187	const struct stm32_adc_regs or_vddcpu;
 188	const struct stm32_adc_regs or_vddq_ddr;
 189	const struct stm32_adc_regs ccr_vbat;
 190	const struct stm32_adc_regs ccr_vref;
 191};
 192
 193struct stm32_adc;
 194
 195/**
 196 * struct stm32_adc_cfg - stm32 compatible configuration data
 197 * @regs:		registers descriptions
 198 * @adc_info:		per instance input channels definitions
 199 * @trigs:		external trigger sources
 200 * @clk_required:	clock is required
 201 * @has_vregready:	vregready status flag presence
 202 * @has_boostmode:	boost mode support flag
 203 * @has_linearcal:	linear calibration support flag
 204 * @has_presel:		channel preselection support flag
 205 * @prepare:		optional prepare routine (power-up, enable)
 206 * @start_conv:		routine to start conversions
 207 * @stop_conv:		routine to stop conversions
 208 * @unprepare:		optional unprepare routine (disable, power-down)
 209 * @irq_clear:		routine to clear irqs
 210 * @smp_cycles:		programmable sampling time (ADC clock cycles)
 211 * @ts_int_ch:		pointer to array of internal channels minimum sampling time in ns
 212 */
 213struct stm32_adc_cfg {
 214	const struct stm32_adc_regspec	*regs;
 215	const struct stm32_adc_info	*adc_info;
 216	struct stm32_adc_trig_info	*trigs;
 217	bool clk_required;
 218	bool has_vregready;
 219	bool has_boostmode;
 220	bool has_linearcal;
 221	bool has_presel;
 222	int (*prepare)(struct iio_dev *);
 223	void (*start_conv)(struct iio_dev *, bool dma);
 224	void (*stop_conv)(struct iio_dev *);
 225	void (*unprepare)(struct iio_dev *);
 226	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
 227	const unsigned int *smp_cycles;
 228	const unsigned int *ts_int_ch;
 229};
 230
 231/**
 232 * struct stm32_adc - private data of each ADC IIO instance
 233 * @common:		reference to ADC block common data
 234 * @offset:		ADC instance register offset in ADC block
 235 * @cfg:		compatible configuration data
 236 * @completion:		end of single conversion completion
 237 * @buffer:		data buffer + 8 bytes for timestamp if enabled
 238 * @clk:		clock for this adc instance
 239 * @irq:		interrupt for this adc instance
 240 * @lock:		spinlock
 241 * @bufi:		data buffer index
 242 * @num_conv:		expected number of scan conversions
 243 * @res:		data resolution (e.g. RES bitfield value)
 244 * @trigger_polarity:	external trigger polarity (e.g. exten)
 245 * @dma_chan:		dma channel
 246 * @rx_buf:		dma rx buffer cpu address
 247 * @rx_dma_buf:		dma rx buffer bus address
 248 * @rx_buf_sz:		dma rx buffer size
 249 * @difsel:		bitmask to set single-ended/differential channel
 250 * @pcsel:		bitmask to preselect channels on some devices
 251 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
 252 * @cal:		optional calibration data on some devices
 253 * @vrefint:		internal reference voltage data
 254 * @chan_name:		channel name array
 255 * @num_diff:		number of differential channels
 256 * @int_ch:		internal channel indexes array
 257 * @nsmps:		number of channels with optional sample time
 258 */
 259struct stm32_adc {
 260	struct stm32_adc_common	*common;
 261	u32			offset;
 262	const struct stm32_adc_cfg	*cfg;
 263	struct completion	completion;
 264	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
 265	struct clk		*clk;
 266	int			irq;
 267	spinlock_t		lock;		/* interrupt lock */
 268	unsigned int		bufi;
 269	unsigned int		num_conv;
 270	u32			res;
 271	u32			trigger_polarity;
 272	struct dma_chan		*dma_chan;
 273	u8			*rx_buf;
 274	dma_addr_t		rx_dma_buf;
 275	unsigned int		rx_buf_sz;
 276	u32			difsel;
 277	u32			pcsel;
 278	u32			smpr_val[2];
 279	struct stm32_adc_calib	cal;
 280	struct stm32_adc_vrefint vrefint;
 281	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
 282	u32			num_diff;
 283	int			int_ch[STM32_ADC_INT_CH_NB];
 284	int			nsmps;
 285};
 286
 287struct stm32_adc_diff_channel {
 288	u32 vinp;
 289	u32 vinn;
 290};
 291
 292/**
 293 * struct stm32_adc_info - stm32 ADC, per instance config data
 294 * @max_channels:	Number of channels
 295 * @resolutions:	available resolutions
 296 * @num_res:		number of available resolutions
 297 */
 298struct stm32_adc_info {
 299	int max_channels;
 300	const unsigned int *resolutions;
 301	const unsigned int num_res;
 302};
 303
 304static const unsigned int stm32f4_adc_resolutions[] = {
 305	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 306	12, 10, 8, 6,
 307};
 308
 309/* stm32f4 can have up to 16 channels */
 310static const struct stm32_adc_info stm32f4_adc_info = {
 311	.max_channels = 16,
 312	.resolutions = stm32f4_adc_resolutions,
 313	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 314};
 315
 316static const unsigned int stm32h7_adc_resolutions[] = {
 317	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 318	16, 14, 12, 10, 8,
 319};
 320
 321/* stm32h7 can have up to 20 channels */
 322static const struct stm32_adc_info stm32h7_adc_info = {
 323	.max_channels = STM32_ADC_CH_MAX,
 324	.resolutions = stm32h7_adc_resolutions,
 325	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 326};
 327
 328/* stm32mp13 can have up to 19 channels */
 329static const struct stm32_adc_info stm32mp13_adc_info = {
 330	.max_channels = 19,
 331	.resolutions = stm32f4_adc_resolutions,
 332	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 333};
 334
 335/*
 336 * stm32f4_sq - describe regular sequence registers
 337 * - L: sequence len (register & bit field)
 338 * - SQ1..SQ16: sequence entries (register & bit field)
 339 */
 340static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 341	/* L: len bit field description to be kept as first element */
 342	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 343	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 344	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 345	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 346	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 347	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 348	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 349	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 350	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 351	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 352	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 353	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 354	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 355	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 356	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 357	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 358	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 359	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 360};
 361
 362/* STM32F4 external trigger sources for all instances */
 363static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 364	{ TIM1_CH1, STM32_EXT0 },
 365	{ TIM1_CH2, STM32_EXT1 },
 366	{ TIM1_CH3, STM32_EXT2 },
 367	{ TIM2_CH2, STM32_EXT3 },
 368	{ TIM2_CH3, STM32_EXT4 },
 369	{ TIM2_CH4, STM32_EXT5 },
 370	{ TIM2_TRGO, STM32_EXT6 },
 371	{ TIM3_CH1, STM32_EXT7 },
 372	{ TIM3_TRGO, STM32_EXT8 },
 373	{ TIM4_CH4, STM32_EXT9 },
 374	{ TIM5_CH1, STM32_EXT10 },
 375	{ TIM5_CH2, STM32_EXT11 },
 376	{ TIM5_CH3, STM32_EXT12 },
 377	{ TIM8_CH1, STM32_EXT13 },
 378	{ TIM8_TRGO, STM32_EXT14 },
 379	{}, /* sentinel */
 380};
 381
 382/*
 383 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 384 * Sorted so it can be indexed by channel number.
 385 */
 386static const struct stm32_adc_regs stm32f4_smp_bits[] = {
 387	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
 388	{ 1, GENMASK(2, 0), 0 },
 389	{ 1, GENMASK(5, 3), 3 },
 390	{ 1, GENMASK(8, 6), 6 },
 391	{ 1, GENMASK(11, 9), 9 },
 392	{ 1, GENMASK(14, 12), 12 },
 393	{ 1, GENMASK(17, 15), 15 },
 394	{ 1, GENMASK(20, 18), 18 },
 395	{ 1, GENMASK(23, 21), 21 },
 396	{ 1, GENMASK(26, 24), 24 },
 397	{ 1, GENMASK(29, 27), 27 },
 398	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
 399	{ 0, GENMASK(2, 0), 0 },
 400	{ 0, GENMASK(5, 3), 3 },
 401	{ 0, GENMASK(8, 6), 6 },
 402	{ 0, GENMASK(11, 9), 9 },
 403	{ 0, GENMASK(14, 12), 12 },
 404	{ 0, GENMASK(17, 15), 15 },
 405	{ 0, GENMASK(20, 18), 18 },
 406	{ 0, GENMASK(23, 21), 21 },
 407	{ 0, GENMASK(26, 24), 24 },
 408};
 409
 410/* STM32F4 programmable sampling time (ADC clock cycles) */
 411static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 412	3, 15, 28, 56, 84, 112, 144, 480,
 413};
 414
 415static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 416	.dr = STM32F4_ADC_DR,
 417	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 418	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
 419	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 420	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
 421	.sqr = stm32f4_sq,
 422	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 423	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 424		    STM32F4_EXTSEL_SHIFT },
 425	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 426	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
 427	.smp_bits = stm32f4_smp_bits,
 428};
 429
 430static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 431	/* L: len bit field description to be kept as first element */
 432	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 433	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 434	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 435	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 436	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 437	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 438	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 439	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 440	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 441	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 442	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 443	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 444	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 445	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 446	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 447	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 448	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 449	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 450};
 451
 452/* STM32H7 external trigger sources for all instances */
 453static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 454	{ TIM1_CH1, STM32_EXT0 },
 455	{ TIM1_CH2, STM32_EXT1 },
 456	{ TIM1_CH3, STM32_EXT2 },
 457	{ TIM2_CH2, STM32_EXT3 },
 458	{ TIM3_TRGO, STM32_EXT4 },
 459	{ TIM4_CH4, STM32_EXT5 },
 460	{ TIM8_TRGO, STM32_EXT7 },
 461	{ TIM8_TRGO2, STM32_EXT8 },
 462	{ TIM1_TRGO, STM32_EXT9 },
 463	{ TIM1_TRGO2, STM32_EXT10 },
 464	{ TIM2_TRGO, STM32_EXT11 },
 465	{ TIM4_TRGO, STM32_EXT12 },
 466	{ TIM6_TRGO, STM32_EXT13 },
 467	{ TIM15_TRGO, STM32_EXT14 },
 468	{ TIM3_CH4, STM32_EXT15 },
 469	{ LPTIM1_OUT, STM32_EXT18 },
 470	{ LPTIM2_OUT, STM32_EXT19 },
 471	{ LPTIM3_OUT, STM32_EXT20 },
 472	{},
 473};
 474
 475/*
 476 * stm32h7_smp_bits - describe sampling time register index & bit fields
 477 * Sorted so it can be indexed by channel number.
 478 */
 479static const struct stm32_adc_regs stm32h7_smp_bits[] = {
 480	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
 481	{ 0, GENMASK(2, 0), 0 },
 482	{ 0, GENMASK(5, 3), 3 },
 483	{ 0, GENMASK(8, 6), 6 },
 484	{ 0, GENMASK(11, 9), 9 },
 485	{ 0, GENMASK(14, 12), 12 },
 486	{ 0, GENMASK(17, 15), 15 },
 487	{ 0, GENMASK(20, 18), 18 },
 488	{ 0, GENMASK(23, 21), 21 },
 489	{ 0, GENMASK(26, 24), 24 },
 490	{ 0, GENMASK(29, 27), 27 },
 491	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
 492	{ 1, GENMASK(2, 0), 0 },
 493	{ 1, GENMASK(5, 3), 3 },
 494	{ 1, GENMASK(8, 6), 6 },
 495	{ 1, GENMASK(11, 9), 9 },
 496	{ 1, GENMASK(14, 12), 12 },
 497	{ 1, GENMASK(17, 15), 15 },
 498	{ 1, GENMASK(20, 18), 18 },
 499	{ 1, GENMASK(23, 21), 21 },
 500	{ 1, GENMASK(26, 24), 24 },
 501	{ 1, GENMASK(29, 27), 27 },
 502};
 503
 504/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
 505static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 506	1, 2, 8, 16, 32, 64, 387, 810,
 507};
 508
 509static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 510	.dr = STM32H7_ADC_DR,
 511	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 512	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
 513	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 514	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
 515	.sqr = stm32h7_sq,
 516	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 517	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 518		    STM32H7_EXTSEL_SHIFT },
 519	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 520	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
 521	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 522	.smp_bits = stm32h7_smp_bits,
 523};
 524
 525/* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */
 526static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 527	2, 6, 12, 24, 47, 92, 247, 640,
 528};
 529
 530static const struct stm32_adc_regspec stm32mp13_adc_regspec = {
 531	.dr = STM32H7_ADC_DR,
 532	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 533	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
 534	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 535	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
 536	.sqr = stm32h7_sq,
 537	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 538	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 539		    STM32H7_EXTSEL_SHIFT },
 540	.res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT },
 541	.difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK},
 542	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 543	.smp_bits = stm32h7_smp_bits,
 544	.or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 },
 545	.or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 },
 546	.or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 },
 547	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
 548	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
 549};
 550
 551static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
 552	.dr = STM32H7_ADC_DR,
 553	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 554	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
 555	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 556	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
 557	.sqr = stm32h7_sq,
 558	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 559	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 560		    STM32H7_EXTSEL_SHIFT },
 561	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 562	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
 563	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 564	.smp_bits = stm32h7_smp_bits,
 565	.or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
 566	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
 567	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
 568};
 569
 570/*
 571 * STM32 ADC registers access routines
 572 * @adc: stm32 adc instance
 573 * @reg: reg offset in adc instance
 574 *
 575 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 576 * for adc1, adc2 and adc3.
 577 */
 578static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 579{
 580	return readl_relaxed(adc->common->base + adc->offset + reg);
 581}
 582
 583#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
 584
 585#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 586	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 587			   cond, sleep_us, timeout_us)
 588
 589static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 590{
 591	return readw_relaxed(adc->common->base + adc->offset + reg);
 592}
 593
 594static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 595{
 596	writel_relaxed(val, adc->common->base + adc->offset + reg);
 597}
 598
 599static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 600{
 601	unsigned long flags;
 602
 603	spin_lock_irqsave(&adc->lock, flags);
 604	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 605	spin_unlock_irqrestore(&adc->lock, flags);
 606}
 607
 608static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
 609{
 610	spin_lock(&adc->common->lock);
 611	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
 612		       adc->common->base + reg);
 613	spin_unlock(&adc->common->lock);
 614}
 615
 616static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 617{
 618	unsigned long flags;
 619
 620	spin_lock_irqsave(&adc->lock, flags);
 621	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 622	spin_unlock_irqrestore(&adc->lock, flags);
 623}
 624
 625static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
 626{
 627	spin_lock(&adc->common->lock);
 628	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
 629		       adc->common->base + reg);
 630	spin_unlock(&adc->common->lock);
 631}
 632
 633/**
 634 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 635 * @adc: stm32 adc instance
 636 */
 637static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 638{
 639	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 640			   adc->cfg->regs->ier_eoc.mask);
 641};
 642
 643/**
 644 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 645 * @adc: stm32 adc instance
 646 */
 647static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 648{
 649	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 650			   adc->cfg->regs->ier_eoc.mask);
 651}
 652
 653static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
 654{
 655	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
 656			   adc->cfg->regs->ier_ovr.mask);
 657}
 658
 659static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
 660{
 661	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
 662			   adc->cfg->regs->ier_ovr.mask);
 663}
 664
 665static void stm32_adc_set_res(struct stm32_adc *adc)
 666{
 667	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 668	u32 val;
 669
 670	val = stm32_adc_readl(adc, res->reg);
 671	val = (val & ~res->mask) | (adc->res << res->shift);
 672	stm32_adc_writel(adc, res->reg, val);
 673}
 674
 675static int stm32_adc_hw_stop(struct device *dev)
 676{
 677	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 678	struct stm32_adc *adc = iio_priv(indio_dev);
 679
 680	if (adc->cfg->unprepare)
 681		adc->cfg->unprepare(indio_dev);
 682
 683	clk_disable_unprepare(adc->clk);
 
 684
 685	return 0;
 686}
 687
 688static int stm32_adc_hw_start(struct device *dev)
 689{
 690	struct iio_dev *indio_dev = dev_get_drvdata(dev);
 691	struct stm32_adc *adc = iio_priv(indio_dev);
 692	int ret;
 693
 694	ret = clk_prepare_enable(adc->clk);
 695	if (ret)
 696		return ret;
 
 
 697
 698	stm32_adc_set_res(adc);
 699
 700	if (adc->cfg->prepare) {
 701		ret = adc->cfg->prepare(indio_dev);
 702		if (ret)
 703			goto err_clk_dis;
 704	}
 705
 706	return 0;
 707
 708err_clk_dis:
 709	clk_disable_unprepare(adc->clk);
 
 710
 711	return ret;
 712}
 713
 714static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
 715{
 716	struct stm32_adc *adc = iio_priv(indio_dev);
 717	u32 i;
 718
 719	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
 720		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
 721			continue;
 722
 723		switch (i) {
 724		case STM32_ADC_INT_CH_VDDCORE:
 725			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
 726			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg,
 727					   adc->cfg->regs->or_vddcore.mask);
 728			break;
 729		case STM32_ADC_INT_CH_VDDCPU:
 730			dev_dbg(&indio_dev->dev, "Enable VDDCPU\n");
 731			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg,
 732					   adc->cfg->regs->or_vddcpu.mask);
 733			break;
 734		case STM32_ADC_INT_CH_VDDQ_DDR:
 735			dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n");
 736			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
 737					   adc->cfg->regs->or_vddq_ddr.mask);
 738			break;
 739		case STM32_ADC_INT_CH_VREFINT:
 740			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
 741			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
 742						  adc->cfg->regs->ccr_vref.mask);
 743			break;
 744		case STM32_ADC_INT_CH_VBAT:
 745			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
 746			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
 747						  adc->cfg->regs->ccr_vbat.mask);
 748			break;
 749		}
 750	}
 751}
 752
 753static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
 754{
 755	u32 i;
 756
 757	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
 758		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
 759			continue;
 760
 761		switch (i) {
 762		case STM32_ADC_INT_CH_VDDCORE:
 763			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg,
 764					   adc->cfg->regs->or_vddcore.mask);
 765			break;
 766		case STM32_ADC_INT_CH_VDDCPU:
 767			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg,
 768					   adc->cfg->regs->or_vddcpu.mask);
 769			break;
 770		case STM32_ADC_INT_CH_VDDQ_DDR:
 771			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
 772					   adc->cfg->regs->or_vddq_ddr.mask);
 773			break;
 774		case STM32_ADC_INT_CH_VREFINT:
 775			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
 776						  adc->cfg->regs->ccr_vref.mask);
 777			break;
 778		case STM32_ADC_INT_CH_VBAT:
 779			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
 780						  adc->cfg->regs->ccr_vbat.mask);
 781			break;
 782		}
 783	}
 784}
 785
 786/**
 787 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 788 * @indio_dev: IIO device instance
 789 * @dma: use dma to transfer conversion result
 790 *
 791 * Start conversions for regular channels.
 792 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 793 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 794 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 795 */
 796static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 797{
 798	struct stm32_adc *adc = iio_priv(indio_dev);
 799
 800	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 801
 802	if (dma)
 803		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 804				   STM32F4_DMA | STM32F4_DDS);
 805
 806	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 807
 808	/* Wait for Power-up time (tSTAB from datasheet) */
 809	usleep_range(2, 3);
 810
 811	/* Software start ? (e.g. trigger detection disabled ?) */
 812	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 813		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 814}
 815
 816static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
 817{
 818	struct stm32_adc *adc = iio_priv(indio_dev);
 819
 820	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 821	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 822
 823	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 824	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 825			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 826}
 827
 828static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
 829{
 830	struct stm32_adc *adc = iio_priv(indio_dev);
 831
 832	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
 833}
 834
 835static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 836{
 837	struct stm32_adc *adc = iio_priv(indio_dev);
 838	enum stm32h7_adc_dmngt dmngt;
 839	unsigned long flags;
 840	u32 val;
 841
 842	if (dma)
 843		dmngt = STM32H7_DMNGT_DMA_CIRC;
 844	else
 845		dmngt = STM32H7_DMNGT_DR_ONLY;
 846
 847	spin_lock_irqsave(&adc->lock, flags);
 848	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 849	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 850	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 851	spin_unlock_irqrestore(&adc->lock, flags);
 852
 853	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 854}
 855
 856static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
 857{
 858	struct stm32_adc *adc = iio_priv(indio_dev);
 859	int ret;
 860	u32 val;
 861
 862	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 863
 864	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 865					   !(val & (STM32H7_ADSTART)),
 866					   100, STM32_ADC_TIMEOUT_US);
 867	if (ret)
 868		dev_warn(&indio_dev->dev, "stop failed\n");
 869
 870	/* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */
 871	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 872}
 873
 874static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
 875{
 876	struct stm32_adc *adc = iio_priv(indio_dev);
 877	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
 878	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
 879}
 880
 881static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma)
 882{
 883	struct stm32_adc *adc = iio_priv(indio_dev);
 884
 885	if (dma)
 886		stm32_adc_set_bits(adc, STM32H7_ADC_CFGR,
 887				   STM32MP13_DMAEN | STM32MP13_DMACFG);
 888
 889	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 890}
 891
 892static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
 893{
 894	struct stm32_adc *adc = iio_priv(indio_dev);
 895	int ret;
 896	u32 val;
 897
 898	/* Exit deep power down, then enable ADC voltage regulator */
 899	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 900	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 901
 902	if (adc->cfg->has_boostmode &&
 903	    adc->common->rate > STM32H7_BOOST_CLKRATE)
 904		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 905
 906	/* Wait for startup time */
 907	if (!adc->cfg->has_vregready) {
 908		usleep_range(10, 20);
 909		return 0;
 910	}
 911
 912	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 913					   val & STM32MP1_VREGREADY, 100,
 914					   STM32_ADC_TIMEOUT_US);
 915	if (ret) {
 916		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 917		dev_err(&indio_dev->dev, "Failed to exit power down\n");
 918	}
 919
 920	return ret;
 921}
 922
 923static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 924{
 925	if (adc->cfg->has_boostmode)
 926		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 927
 928	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 929	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 930}
 931
 932static int stm32h7_adc_enable(struct iio_dev *indio_dev)
 933{
 934	struct stm32_adc *adc = iio_priv(indio_dev);
 935	int ret;
 936	u32 val;
 937
 938	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 939
 940	/* Poll for ADRDY to be set (after adc startup time) */
 941	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 942					   val & STM32H7_ADRDY,
 943					   100, STM32_ADC_TIMEOUT_US);
 944	if (ret) {
 945		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 946		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 947	} else {
 948		/* Clear ADRDY by writing one */
 949		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 950	}
 951
 952	return ret;
 953}
 954
 955static void stm32h7_adc_disable(struct iio_dev *indio_dev)
 956{
 957	struct stm32_adc *adc = iio_priv(indio_dev);
 958	int ret;
 959	u32 val;
 960
 961	if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
 962		return;
 963
 964	/* Disable ADC and wait until it's effectively disabled */
 965	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 966	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 967					   !(val & STM32H7_ADEN), 100,
 968					   STM32_ADC_TIMEOUT_US);
 969	if (ret)
 970		dev_warn(&indio_dev->dev, "Failed to disable\n");
 971}
 972
 973/**
 974 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 975 * @indio_dev: IIO device instance
 976 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
 977 */
 978static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
 979{
 980	struct stm32_adc *adc = iio_priv(indio_dev);
 981	int i, ret;
 982	u32 lincalrdyw_mask, val;
 983
 984	/* Read linearity calibration */
 985	lincalrdyw_mask = STM32H7_LINCALRDYW6;
 986	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 987		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 988		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 989
 990		/* Poll: wait calib data to be ready in CALFACT2 register */
 991		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 992						   !(val & lincalrdyw_mask),
 993						   100, STM32_ADC_TIMEOUT_US);
 994		if (ret) {
 995			dev_err(&indio_dev->dev, "Failed to read calfact\n");
 996			return ret;
 997		}
 998
 999		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1000		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
1001		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
1002
1003		lincalrdyw_mask >>= 1;
1004	}
1005	adc->cal.lincal_saved = true;
 
 
 
 
 
 
 
1006
1007	return 0;
1008}
1009
1010/**
1011 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
1012 * @indio_dev: IIO device instance
1013 * Note: ADC must be enabled, with no on-going conversions.
1014 */
1015static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
1016{
1017	struct stm32_adc *adc = iio_priv(indio_dev);
1018	int i, ret;
1019	u32 lincalrdyw_mask, val;
1020
 
 
 
 
1021	lincalrdyw_mask = STM32H7_LINCALRDYW6;
1022	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
1023		/*
1024		 * Write saved calibration data to shadow registers:
1025		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
1026		 * data write. Then poll to wait for complete transfer.
1027		 */
1028		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
1029		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
1030		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1031		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1032						   val & lincalrdyw_mask,
1033						   100, STM32_ADC_TIMEOUT_US);
1034		if (ret) {
1035			dev_err(&indio_dev->dev, "Failed to write calfact\n");
1036			return ret;
1037		}
1038
1039		/*
1040		 * Read back calibration data, has two effects:
1041		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
1042		 *   for next time calibration needs to be restored.
1043		 * - BTW, bit clear triggers a read, then check data has been
1044		 *   correctly written.
1045		 */
1046		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1047		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1048						   !(val & lincalrdyw_mask),
1049						   100, STM32_ADC_TIMEOUT_US);
1050		if (ret) {
1051			dev_err(&indio_dev->dev, "Failed to read calfact\n");
1052			return ret;
1053		}
1054		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1055		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
1056			dev_err(&indio_dev->dev, "calfact not consistent\n");
1057			return -EIO;
1058		}
1059
1060		lincalrdyw_mask >>= 1;
1061	}
1062
1063	return 0;
1064}
1065
1066/*
1067 * Fixed timeout value for ADC calibration.
1068 * worst cases:
1069 * - low clock frequency
1070 * - maximum prescalers
1071 * Calibration requires:
1072 * - 131,072 ADC clock cycle for the linear calibration
1073 * - 20 ADC clock cycle for the offset calibration
1074 *
1075 * Set to 100ms for now
1076 */
1077#define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1078
1079/**
1080 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1081 * @indio_dev: IIO device instance
1082 * @do_lincal: linear calibration request flag
1083 * Note: Must be called once ADC is out of power down.
1084 *
1085 * Run offset calibration unconditionally.
1086 * Run linear calibration if requested & supported.
1087 */
1088static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal)
1089{
1090	struct stm32_adc *adc = iio_priv(indio_dev);
1091	int ret;
1092	u32 msk = STM32H7_ADCALDIF;
1093	u32 val;
1094
1095	if (adc->cfg->has_linearcal && do_lincal)
1096		msk |= STM32H7_ADCALLIN;
1097	/* ADC must be disabled for calibration */
1098	stm32h7_adc_disable(indio_dev);
1099
1100	/*
1101	 * Select calibration mode:
1102	 * - Offset calibration for single ended inputs
1103	 * - No linearity calibration (do it later, before reading it)
1104	 */
1105	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
 
1106
1107	/* Start calibration, then wait for completion */
1108	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1109	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1110					   !(val & STM32H7_ADCAL), 100,
1111					   STM32H7_ADC_CALIB_TIMEOUT_US);
1112	if (ret) {
1113		dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret);
1114		goto out;
1115	}
1116
1117	/*
1118	 * Select calibration mode, then start calibration:
1119	 * - Offset calibration for differential input
1120	 * - Linearity calibration (needs to be done only once for single/diff)
1121	 *   will run simultaneously with offset calibration.
1122	 */
1123	stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk);
 
1124	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1125	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1126					   !(val & STM32H7_ADCAL), 100,
1127					   STM32H7_ADC_CALIB_TIMEOUT_US);
1128	if (ret) {
1129		dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n",
1130			(msk & STM32H7_ADCALLIN) ? "+linear" : "", ret);
1131		goto out;
1132	}
1133
1134out:
1135	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
 
1136
1137	return ret;
1138}
1139
1140/**
1141 * stm32h7_adc_check_selfcalib() - Check linear calibration status
1142 * @indio_dev: IIO device instance
1143 *
1144 * Used to check if linear calibration has been done.
1145 * Return true if linear calibration factors are already saved in private data
1146 * or if a linear calibration has been done at boot stage.
1147 */
1148static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev)
1149{
1150	struct stm32_adc *adc = iio_priv(indio_dev);
1151	u32 val;
1152
1153	if (adc->cal.lincal_saved)
1154		return true;
1155
1156	/*
1157	 * Check if linear calibration factors are available in ADC registers,
1158	 * by checking that all LINCALRDYWx bits are set.
1159	 */
1160	val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK;
1161	if (val == STM32H7_LINCALRDYW_MASK)
1162		return true;
1163
1164	return false;
1165}
1166
1167/**
1168 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1169 * @indio_dev: IIO device instance
1170 * Leave power down mode.
1171 * Configure channels as single ended or differential before enabling ADC.
1172 * Enable ADC.
1173 * Restore calibration data.
1174 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1175 * - Only one input is selected for single ended (e.g. 'vinp')
1176 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1177 */
1178static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1179{
1180	struct stm32_adc *adc = iio_priv(indio_dev);
1181	int lincal_done = false;
1182	int ret;
1183
1184	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1185	if (ret)
1186		return ret;
1187
1188	if (adc->cfg->has_linearcal)
1189		lincal_done = stm32h7_adc_check_selfcalib(indio_dev);
1190
1191	/* Always run offset calibration. Run linear calibration only once */
1192	ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done);
1193	if (ret < 0)
1194		goto pwr_dwn;
 
1195
1196	stm32_adc_int_ch_enable(indio_dev);
1197
1198	stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel);
1199
1200	ret = stm32h7_adc_enable(indio_dev);
1201	if (ret)
1202		goto ch_disable;
1203
1204	if (adc->cfg->has_linearcal) {
1205		if (!adc->cal.lincal_saved)
1206			ret = stm32h7_adc_read_selfcalib(indio_dev);
1207		else
1208			ret = stm32h7_adc_restore_selfcalib(indio_dev);
 
 
1209
1210		if (ret)
1211			goto disable;
1212	}
1213
1214	if (adc->cfg->has_presel)
1215		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1216
1217	return 0;
1218
1219disable:
1220	stm32h7_adc_disable(indio_dev);
1221ch_disable:
1222	stm32_adc_int_ch_disable(adc);
1223pwr_dwn:
1224	stm32h7_adc_enter_pwr_down(adc);
1225
1226	return ret;
1227}
1228
1229static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1230{
1231	struct stm32_adc *adc = iio_priv(indio_dev);
1232
1233	if (adc->cfg->has_presel)
1234		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1235	stm32h7_adc_disable(indio_dev);
1236	stm32_adc_int_ch_disable(adc);
1237	stm32h7_adc_enter_pwr_down(adc);
1238}
1239
1240/**
1241 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1242 * @indio_dev: IIO device
1243 * @scan_mask: channels to be converted
1244 *
1245 * Conversion sequence :
1246 * Apply sampling time settings for all channels.
1247 * Configure ADC scan sequence based on selected channels in scan_mask.
1248 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1249 * program sequence len.
1250 */
1251static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1252				   const unsigned long *scan_mask)
1253{
1254	struct stm32_adc *adc = iio_priv(indio_dev);
1255	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1256	const struct iio_chan_spec *chan;
1257	u32 val, bit;
1258	int i = 0;
1259
1260	/* Apply sampling time settings */
1261	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1262	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1263
1264	for_each_set_bit(bit, scan_mask, iio_get_masklength(indio_dev)) {
1265		chan = indio_dev->channels + bit;
1266		/*
1267		 * Assign one channel per SQ entry in regular
1268		 * sequence, starting with SQ1.
1269		 */
1270		i++;
1271		if (i > STM32_ADC_MAX_SQ)
1272			return -EINVAL;
1273
1274		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1275			__func__, chan->channel, i);
1276
1277		val = stm32_adc_readl(adc, sqr[i].reg);
1278		val &= ~sqr[i].mask;
1279		val |= chan->channel << sqr[i].shift;
1280		stm32_adc_writel(adc, sqr[i].reg, val);
1281	}
1282
1283	if (!i)
1284		return -EINVAL;
1285
1286	/* Sequence len */
1287	val = stm32_adc_readl(adc, sqr[0].reg);
1288	val &= ~sqr[0].mask;
1289	val |= ((i - 1) << sqr[0].shift);
1290	stm32_adc_writel(adc, sqr[0].reg, val);
1291
1292	return 0;
1293}
1294
1295/**
1296 * stm32_adc_get_trig_extsel() - Get external trigger selection
1297 * @indio_dev: IIO device structure
1298 * @trig: trigger
1299 *
1300 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1301 */
1302static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1303				     struct iio_trigger *trig)
1304{
1305	struct stm32_adc *adc = iio_priv(indio_dev);
1306	int i;
1307
1308	/* lookup triggers registered by stm32 timer trigger driver */
1309	for (i = 0; adc->cfg->trigs[i].name; i++) {
1310		/**
1311		 * Checking both stm32 timer trigger type and trig name
1312		 * should be safe against arbitrary trigger names.
1313		 */
1314		if ((is_stm32_timer_trigger(trig) ||
1315		     is_stm32_lptim_trigger(trig)) &&
1316		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1317			return adc->cfg->trigs[i].extsel;
1318		}
1319	}
1320
1321	return -EINVAL;
1322}
1323
1324/**
1325 * stm32_adc_set_trig() - Set a regular trigger
1326 * @indio_dev: IIO device
1327 * @trig: IIO trigger
1328 *
1329 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1330 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1331 * - if HW trigger enabled, set source & polarity
1332 */
1333static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1334			      struct iio_trigger *trig)
1335{
1336	struct stm32_adc *adc = iio_priv(indio_dev);
1337	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1338	unsigned long flags;
1339	int ret;
1340
1341	if (trig) {
1342		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1343		if (ret < 0)
1344			return ret;
1345
1346		/* set trigger source and polarity (default to rising edge) */
1347		extsel = ret;
1348		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1349	}
1350
1351	spin_lock_irqsave(&adc->lock, flags);
1352	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1353	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1354	val |= exten << adc->cfg->regs->exten.shift;
1355	val |= extsel << adc->cfg->regs->extsel.shift;
1356	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1357	spin_unlock_irqrestore(&adc->lock, flags);
1358
1359	return 0;
1360}
1361
1362static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1363				  const struct iio_chan_spec *chan,
1364				  unsigned int type)
1365{
1366	struct stm32_adc *adc = iio_priv(indio_dev);
1367
1368	adc->trigger_polarity = type;
1369
1370	return 0;
1371}
1372
1373static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1374				  const struct iio_chan_spec *chan)
1375{
1376	struct stm32_adc *adc = iio_priv(indio_dev);
1377
1378	return adc->trigger_polarity;
1379}
1380
1381static const char * const stm32_trig_pol_items[] = {
1382	"rising-edge", "falling-edge", "both-edges",
1383};
1384
1385static const struct iio_enum stm32_adc_trig_pol = {
1386	.items = stm32_trig_pol_items,
1387	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1388	.get = stm32_adc_get_trig_pol,
1389	.set = stm32_adc_set_trig_pol,
1390};
1391
1392/**
1393 * stm32_adc_single_conv() - Performs a single conversion
1394 * @indio_dev: IIO device
1395 * @chan: IIO channel
1396 * @res: conversion result
1397 *
1398 * The function performs a single conversion on a given channel:
1399 * - Apply sampling time settings
1400 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1401 * - Use SW trigger
1402 * - Start conversion, then wait for interrupt completion.
1403 */
1404static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1405				 const struct iio_chan_spec *chan,
1406				 int *res)
1407{
1408	struct stm32_adc *adc = iio_priv(indio_dev);
1409	struct device *dev = indio_dev->dev.parent;
1410	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1411	long time_left;
1412	u32 val;
1413	int ret;
1414
1415	reinit_completion(&adc->completion);
1416
1417	adc->bufi = 0;
1418
1419	ret = pm_runtime_resume_and_get(dev);
1420	if (ret < 0)
 
1421		return ret;
 
1422
1423	/* Apply sampling time settings */
1424	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1425	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1426
1427	/* Program chan number in regular sequence (SQ1) */
1428	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1429	val &= ~regs->sqr[1].mask;
1430	val |= chan->channel << regs->sqr[1].shift;
1431	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1432
1433	/* Set regular sequence len (0 for 1 conversion) */
1434	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1435
1436	/* Trigger detection disabled (conversion can be launched in SW) */
1437	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1438
1439	stm32_adc_conv_irq_enable(adc);
1440
1441	adc->cfg->start_conv(indio_dev, false);
1442
1443	time_left = wait_for_completion_interruptible_timeout(
1444					&adc->completion, STM32_ADC_TIMEOUT);
1445	if (time_left == 0) {
1446		ret = -ETIMEDOUT;
1447	} else if (time_left < 0) {
1448		ret = time_left;
1449	} else {
1450		*res = adc->buffer[0];
1451		ret = IIO_VAL_INT;
1452	}
1453
1454	adc->cfg->stop_conv(indio_dev);
1455
1456	stm32_adc_conv_irq_disable(adc);
1457
1458	pm_runtime_mark_last_busy(dev);
1459	pm_runtime_put_autosuspend(dev);
1460
1461	return ret;
1462}
1463
1464static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1465			      struct iio_chan_spec const *chan,
1466			      int *val, int *val2, long mask)
1467{
1468	struct stm32_adc *adc = iio_priv(indio_dev);
1469	int ret;
1470
1471	switch (mask) {
1472	case IIO_CHAN_INFO_RAW:
1473	case IIO_CHAN_INFO_PROCESSED:
1474		ret = iio_device_claim_direct_mode(indio_dev);
1475		if (ret)
1476			return ret;
1477		if (chan->type == IIO_VOLTAGE)
1478			ret = stm32_adc_single_conv(indio_dev, chan, val);
1479		else
1480			ret = -EINVAL;
1481
1482		if (mask == IIO_CHAN_INFO_PROCESSED)
1483			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1484
1485		iio_device_release_direct_mode(indio_dev);
1486		return ret;
1487
1488	case IIO_CHAN_INFO_SCALE:
1489		if (chan->differential) {
1490			*val = adc->common->vref_mv * 2;
1491			*val2 = chan->scan_type.realbits;
1492		} else {
1493			*val = adc->common->vref_mv;
1494			*val2 = chan->scan_type.realbits;
1495		}
1496		return IIO_VAL_FRACTIONAL_LOG2;
1497
1498	case IIO_CHAN_INFO_OFFSET:
1499		if (chan->differential)
1500			/* ADC_full_scale / 2 */
1501			*val = -((1 << chan->scan_type.realbits) / 2);
1502		else
1503			*val = 0;
1504		return IIO_VAL_INT;
1505
1506	default:
1507		return -EINVAL;
1508	}
1509}
1510
1511static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1512{
1513	struct stm32_adc *adc = iio_priv(indio_dev);
1514
1515	adc->cfg->irq_clear(indio_dev, msk);
1516}
1517
1518static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1519{
1520	struct iio_dev *indio_dev = data;
1521	struct stm32_adc *adc = iio_priv(indio_dev);
1522	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1523	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1524
1525	/* Check ovr status right now, as ovr mask should be already disabled */
1526	if (status & regs->isr_ovr.mask) {
1527		/*
1528		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1529		 * This requires to stop ADC first. OVR bit state in ISR,
1530		 * is propaged to CSR register by hardware.
1531		 */
1532		adc->cfg->stop_conv(indio_dev);
1533		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1534		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1535		return IRQ_HANDLED;
1536	}
1537
1538	return IRQ_NONE;
1539}
1540
1541static irqreturn_t stm32_adc_isr(int irq, void *data)
1542{
1543	struct iio_dev *indio_dev = data;
1544	struct stm32_adc *adc = iio_priv(indio_dev);
1545	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1546	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1547
1548	if (status & regs->isr_ovr.mask) {
1549		/*
1550		 * Overrun occurred on regular conversions: data for wrong
1551		 * channel may be read. Unconditionally disable interrupts
1552		 * to stop processing data and print error message.
1553		 * Restarting the capture can be done by disabling, then
1554		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1555		 */
1556		stm32_adc_ovr_irq_disable(adc);
1557		stm32_adc_conv_irq_disable(adc);
1558		return IRQ_WAKE_THREAD;
1559	}
1560
1561	if (status & regs->isr_eoc.mask) {
1562		/* Reading DR also clears EOC status flag */
1563		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1564		if (iio_buffer_enabled(indio_dev)) {
1565			adc->bufi++;
1566			if (adc->bufi >= adc->num_conv) {
1567				stm32_adc_conv_irq_disable(adc);
1568				iio_trigger_poll(indio_dev->trig);
1569			}
1570		} else {
1571			complete(&adc->completion);
1572		}
1573		return IRQ_HANDLED;
1574	}
1575
1576	return IRQ_NONE;
1577}
1578
1579/**
1580 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1581 * @indio_dev: IIO device
1582 * @trig: new trigger
1583 *
1584 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1585 * driver, -EINVAL otherwise.
1586 */
1587static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1588				      struct iio_trigger *trig)
1589{
1590	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1591}
1592
1593static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1594{
1595	struct stm32_adc *adc = iio_priv(indio_dev);
1596	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1597	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1598
1599	/*
1600	 * dma cyclic transfers are used, buffer is split into two periods.
1601	 * There should be :
1602	 * - always one buffer (period) dma is working on
1603	 * - one buffer (period) driver can push data.
1604	 */
1605	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1606	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1607
1608	return 0;
1609}
1610
1611static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1612				      const unsigned long *scan_mask)
1613{
1614	struct stm32_adc *adc = iio_priv(indio_dev);
1615	struct device *dev = indio_dev->dev.parent;
1616	int ret;
1617
1618	ret = pm_runtime_resume_and_get(dev);
1619	if (ret < 0)
 
1620		return ret;
 
1621
1622	adc->num_conv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1623
1624	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1625	pm_runtime_mark_last_busy(dev);
1626	pm_runtime_put_autosuspend(dev);
1627
1628	return ret;
1629}
1630
1631static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
1632				  const struct fwnode_reference_args *iiospec)
1633{
1634	int i;
1635
1636	for (i = 0; i < indio_dev->num_channels; i++)
1637		if (indio_dev->channels[i].channel == iiospec->args[0])
1638			return i;
1639
1640	return -EINVAL;
1641}
1642
1643/**
1644 * stm32_adc_debugfs_reg_access - read or write register value
1645 * @indio_dev: IIO device structure
1646 * @reg: register offset
1647 * @writeval: value to write
1648 * @readval: value to read
1649 *
1650 * To read a value from an ADC register:
1651 *   echo [ADC reg offset] > direct_reg_access
1652 *   cat direct_reg_access
1653 *
1654 * To write a value in a ADC register:
1655 *   echo [ADC_reg_offset] [value] > direct_reg_access
1656 */
1657static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1658					unsigned reg, unsigned writeval,
1659					unsigned *readval)
1660{
1661	struct stm32_adc *adc = iio_priv(indio_dev);
1662	struct device *dev = indio_dev->dev.parent;
1663	int ret;
1664
1665	ret = pm_runtime_resume_and_get(dev);
1666	if (ret < 0)
 
1667		return ret;
 
1668
1669	if (!readval)
1670		stm32_adc_writel(adc, reg, writeval);
1671	else
1672		*readval = stm32_adc_readl(adc, reg);
1673
1674	pm_runtime_mark_last_busy(dev);
1675	pm_runtime_put_autosuspend(dev);
1676
1677	return 0;
1678}
1679
1680static const struct iio_info stm32_adc_iio_info = {
1681	.read_raw = stm32_adc_read_raw,
1682	.validate_trigger = stm32_adc_validate_trigger,
1683	.hwfifo_set_watermark = stm32_adc_set_watermark,
1684	.update_scan_mode = stm32_adc_update_scan_mode,
1685	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1686	.fwnode_xlate = stm32_adc_fwnode_xlate,
1687};
1688
1689static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1690{
1691	struct dma_tx_state state;
1692	enum dma_status status;
1693
1694	status = dmaengine_tx_status(adc->dma_chan,
1695				     adc->dma_chan->cookie,
1696				     &state);
1697	if (status == DMA_IN_PROGRESS) {
1698		/* Residue is size in bytes from end of buffer */
1699		unsigned int i = adc->rx_buf_sz - state.residue;
1700		unsigned int size;
1701
1702		/* Return available bytes */
1703		if (i >= adc->bufi)
1704			size = i - adc->bufi;
1705		else
1706			size = adc->rx_buf_sz + i - adc->bufi;
1707
1708		return size;
1709	}
1710
1711	return 0;
1712}
1713
1714static void stm32_adc_dma_buffer_done(void *data)
1715{
1716	struct iio_dev *indio_dev = data;
1717	struct stm32_adc *adc = iio_priv(indio_dev);
1718	int residue = stm32_adc_dma_residue(adc);
1719
1720	/*
1721	 * In DMA mode the trigger services of IIO are not used
1722	 * (e.g. no call to iio_trigger_poll).
1723	 * Calling irq handler associated to the hardware trigger is not
1724	 * relevant as the conversions have already been done. Data
1725	 * transfers are performed directly in DMA callback instead.
1726	 * This implementation avoids to call trigger irq handler that
1727	 * may sleep, in an atomic context (DMA irq handler context).
1728	 */
1729	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1730
1731	while (residue >= indio_dev->scan_bytes) {
1732		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1733
1734		iio_push_to_buffers(indio_dev, buffer);
1735
1736		residue -= indio_dev->scan_bytes;
1737		adc->bufi += indio_dev->scan_bytes;
1738		if (adc->bufi >= adc->rx_buf_sz)
1739			adc->bufi = 0;
1740	}
1741}
1742
1743static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1744{
1745	struct stm32_adc *adc = iio_priv(indio_dev);
1746	struct dma_async_tx_descriptor *desc;
1747	dma_cookie_t cookie;
1748	int ret;
1749
1750	if (!adc->dma_chan)
1751		return 0;
1752
1753	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1754		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1755
1756	/* Prepare a DMA cyclic transaction */
1757	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1758					 adc->rx_dma_buf,
1759					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1760					 DMA_DEV_TO_MEM,
1761					 DMA_PREP_INTERRUPT);
1762	if (!desc)
1763		return -EBUSY;
1764
1765	desc->callback = stm32_adc_dma_buffer_done;
1766	desc->callback_param = indio_dev;
1767
1768	cookie = dmaengine_submit(desc);
1769	ret = dma_submit_error(cookie);
1770	if (ret) {
1771		dmaengine_terminate_sync(adc->dma_chan);
1772		return ret;
1773	}
1774
1775	/* Issue pending DMA requests */
1776	dma_async_issue_pending(adc->dma_chan);
1777
1778	return 0;
1779}
1780
1781static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1782{
1783	struct stm32_adc *adc = iio_priv(indio_dev);
1784	struct device *dev = indio_dev->dev.parent;
1785	int ret;
1786
1787	ret = pm_runtime_resume_and_get(dev);
1788	if (ret < 0)
 
1789		return ret;
 
1790
1791	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1792	if (ret) {
1793		dev_err(&indio_dev->dev, "Can't set trigger\n");
1794		goto err_pm_put;
1795	}
1796
1797	ret = stm32_adc_dma_start(indio_dev);
1798	if (ret) {
1799		dev_err(&indio_dev->dev, "Can't start dma\n");
1800		goto err_clr_trig;
1801	}
1802
1803	/* Reset adc buffer index */
1804	adc->bufi = 0;
1805
1806	stm32_adc_ovr_irq_enable(adc);
1807
1808	if (!adc->dma_chan)
1809		stm32_adc_conv_irq_enable(adc);
1810
1811	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1812
1813	return 0;
1814
1815err_clr_trig:
1816	stm32_adc_set_trig(indio_dev, NULL);
1817err_pm_put:
1818	pm_runtime_mark_last_busy(dev);
1819	pm_runtime_put_autosuspend(dev);
1820
1821	return ret;
1822}
1823
1824static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1825{
1826	struct stm32_adc *adc = iio_priv(indio_dev);
1827	struct device *dev = indio_dev->dev.parent;
1828
1829	adc->cfg->stop_conv(indio_dev);
1830	if (!adc->dma_chan)
1831		stm32_adc_conv_irq_disable(adc);
1832
1833	stm32_adc_ovr_irq_disable(adc);
1834
1835	if (adc->dma_chan)
1836		dmaengine_terminate_sync(adc->dma_chan);
1837
1838	if (stm32_adc_set_trig(indio_dev, NULL))
1839		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1840
1841	pm_runtime_mark_last_busy(dev);
1842	pm_runtime_put_autosuspend(dev);
1843
1844	return 0;
1845}
1846
1847static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1848	.postenable = &stm32_adc_buffer_postenable,
1849	.predisable = &stm32_adc_buffer_predisable,
1850};
1851
1852static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1853{
1854	struct iio_poll_func *pf = p;
1855	struct iio_dev *indio_dev = pf->indio_dev;
1856	struct stm32_adc *adc = iio_priv(indio_dev);
1857
1858	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1859
1860	/* reset buffer index */
1861	adc->bufi = 0;
1862	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1863					   pf->timestamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864	iio_trigger_notify_done(indio_dev->trig);
1865
1866	/* re-enable eoc irq */
1867	stm32_adc_conv_irq_enable(adc);
 
1868
1869	return IRQ_HANDLED;
1870}
1871
1872static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1873	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1874	{
1875		.name = "trigger_polarity_available",
1876		.shared = IIO_SHARED_BY_ALL,
1877		.read = iio_enum_available_read,
1878		.private = (uintptr_t)&stm32_adc_trig_pol,
1879	},
1880	{},
1881};
1882
1883static void stm32_adc_debugfs_init(struct iio_dev *indio_dev)
1884{
1885	struct stm32_adc *adc = iio_priv(indio_dev);
1886	struct dentry *d = iio_get_debugfs_dentry(indio_dev);
1887	struct stm32_adc_calib *cal = &adc->cal;
1888	char buf[16];
1889	unsigned int i;
1890
1891	if (!adc->cfg->has_linearcal)
1892		return;
1893
1894	for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) {
1895		snprintf(buf, sizeof(buf), "lincalfact%d", i + 1);
1896		debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]);
1897	}
1898}
1899
1900static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
1901{
1902	struct device *dev = &indio_dev->dev;
1903	struct stm32_adc *adc = iio_priv(indio_dev);
1904	unsigned int i;
1905	u32 res;
1906
1907	if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
1908		res = adc->cfg->adc_info->resolutions[0];
1909
1910	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1911		if (res == adc->cfg->adc_info->resolutions[i])
1912			break;
1913	if (i >= adc->cfg->adc_info->num_res) {
1914		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1915		return -EINVAL;
1916	}
1917
1918	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1919	adc->res = i;
1920
1921	return 0;
1922}
1923
1924static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1925{
1926	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1927	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1928	unsigned int i, smp, r = smpr->reg;
1929
1930	/*
1931	 * For internal channels, ensure that the sampling time cannot
1932	 * be lower than the one specified in the datasheet
1933	 */
1934	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
1935		if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE)
1936			smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]);
1937
1938	/* Determine sampling time (ADC clock cycles) */
1939	period_ns = NSEC_PER_SEC / adc->common->rate;
1940	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1941		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1942			break;
1943	if (smp > STM32_ADC_MAX_SMP)
1944		smp = STM32_ADC_MAX_SMP;
1945
1946	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1947	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1948}
1949
1950static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1951				    struct iio_chan_spec *chan, u32 vinp,
1952				    u32 vinn, int scan_index, bool differential)
1953{
1954	struct stm32_adc *adc = iio_priv(indio_dev);
1955	char *name = adc->chan_name[vinp];
1956
1957	chan->type = IIO_VOLTAGE;
1958	chan->channel = vinp;
1959	if (differential) {
1960		chan->differential = 1;
1961		chan->channel2 = vinn;
1962		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1963	} else {
1964		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1965	}
1966	chan->datasheet_name = name;
1967	chan->scan_index = scan_index;
1968	chan->indexed = 1;
1969	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1970		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1971	else
1972		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1973	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1974					 BIT(IIO_CHAN_INFO_OFFSET);
1975	chan->scan_type.sign = 'u';
1976	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1977	chan->scan_type.storagebits = 16;
1978	chan->ext_info = stm32_adc_ext_info;
1979
1980	/* pre-build selected channels mask */
1981	adc->pcsel |= BIT(chan->channel);
1982	if (differential) {
1983		/* pre-build diff channels mask */
1984		adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask;
1985		/* Also add negative input to pre-selected channels */
1986		adc->pcsel |= BIT(chan->channel2);
1987	}
1988}
1989
1990static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1991{
1992	struct device *dev = &indio_dev->dev;
 
1993	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1994	int num_channels = 0, ret;
 
 
 
 
 
1995
1996	dev_dbg(&indio_dev->dev, "using legacy channel config\n");
 
 
 
 
 
 
1997
1998	ret = device_property_count_u32(dev, "st,adc-channels");
 
1999	if (ret > adc_info->max_channels) {
2000		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
2001		return -EINVAL;
2002	} else if (ret > 0) {
 
 
 
2003		num_channels += ret;
 
 
 
 
2004	}
2005
2006	/*
2007	 * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
2008	 * to get the *real* number of channels.
2009	 */
2010	ret = device_property_count_u32(dev, "st,adc-diff-channels");
2011	if (ret > 0) {
2012		ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
2013		if (ret > adc_info->max_channels) {
2014			dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
2015			return -EINVAL;
2016		} else if (ret > 0) {
2017			adc->num_diff = ret;
2018			num_channels += ret;
2019		}
2020	}
2021
2022	/* Optional sample time is provided either for each, or all channels */
2023	adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
2024	if (adc->nsmps > 1 && adc->nsmps != num_channels) {
2025		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
2026		return -EINVAL;
2027	}
2028
2029	return num_channels;
2030}
 
 
2031
2032static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
2033				      struct stm32_adc *adc,
2034				      struct iio_chan_spec *channels,
2035				      int nchans)
2036{
2037	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2038	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
2039	struct device *dev = &indio_dev->dev;
2040	u32 num_diff = adc->num_diff;
2041	int num_se = nchans - num_diff;
2042	int size = num_diff * sizeof(*diff) / sizeof(u32);
2043	int scan_index = 0, ret, i, c;
2044	u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
2045
2046	if (num_diff) {
2047		ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
2048						     (u32 *)diff, size);
2049		if (ret) {
2050			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
2051			return ret;
2052		}
2053
 
2054		for (i = 0; i < num_diff; i++) {
2055			if (diff[i].vinp >= adc_info->max_channels ||
2056			    diff[i].vinn >= adc_info->max_channels) {
2057				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2058					diff[i].vinp, diff[i].vinn);
2059				return -EINVAL;
2060			}
2061
2062			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2063						diff[i].vinp, diff[i].vinn,
2064						scan_index, true);
2065			scan_index++;
2066		}
 
 
 
2067	}
2068	if (num_se > 0) {
2069		ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se);
2070		if (ret) {
2071			dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret);
2072			return ret;
2073		}
2074
2075		for (c = 0; c < num_se; c++) {
2076			if (chans[c] >= adc_info->max_channels) {
2077				dev_err(&indio_dev->dev, "Invalid channel %d\n",
2078					chans[c]);
2079				return -EINVAL;
2080			}
2081
2082			/* Channel can't be configured both as single-ended & diff */
2083			for (i = 0; i < num_diff; i++) {
2084				if (chans[c] == diff[i].vinp) {
2085					dev_err(&indio_dev->dev, "channel %d misconfigured\n",
2086						chans[c]);
2087					return -EINVAL;
2088				}
2089			}
2090			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2091						chans[c], 0, scan_index, false);
2092			scan_index++;
2093		}
2094	}
2095
2096	if (adc->nsmps > 0) {
2097		ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
2098						     smps, adc->nsmps);
2099		if (ret)
2100			return ret;
2101	}
2102
2103	for (i = 0; i < scan_index; i++) {
2104		/*
2105		 * This check is used with the above logic so that smp value
2106		 * will only be modified if valid u32 value can be decoded. This
2107		 * allows to get either no value, 1 shared value for all indexes,
2108		 * or one value per channel. The point is to have the same
2109		 * behavior as 'of_property_read_u32_index()'.
2110		 */
2111		if (i < adc->nsmps)
2112			smp = smps[i];
2113
2114		/* Prepare sampling time settings */
2115		stm32_adc_smpr_init(adc, channels[i].channel, smp);
2116	}
2117
2118	return scan_index;
2119}
2120
2121static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
2122				     int chan)
2123{
2124	struct stm32_adc *adc = iio_priv(indio_dev);
2125	u16 vrefint;
2126	int i, ret;
2127
2128	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
2129		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
2130			/* Check internal channel availability */
2131			switch (i) {
2132			case STM32_ADC_INT_CH_VDDCORE:
2133				if (!adc->cfg->regs->or_vddcore.reg)
2134					dev_warn(&indio_dev->dev,
2135						 "%s channel not available\n", ch_name);
2136				break;
2137			case STM32_ADC_INT_CH_VDDCPU:
2138				if (!adc->cfg->regs->or_vddcpu.reg)
2139					dev_warn(&indio_dev->dev,
2140						 "%s channel not available\n", ch_name);
2141				break;
2142			case STM32_ADC_INT_CH_VDDQ_DDR:
2143				if (!adc->cfg->regs->or_vddq_ddr.reg)
2144					dev_warn(&indio_dev->dev,
2145						 "%s channel not available\n", ch_name);
2146				break;
2147			case STM32_ADC_INT_CH_VREFINT:
2148				if (!adc->cfg->regs->ccr_vref.reg)
2149					dev_warn(&indio_dev->dev,
2150						 "%s channel not available\n", ch_name);
2151				break;
2152			case STM32_ADC_INT_CH_VBAT:
2153				if (!adc->cfg->regs->ccr_vbat.reg)
2154					dev_warn(&indio_dev->dev,
2155						 "%s channel not available\n", ch_name);
2156				break;
2157			}
2158
2159			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
2160				adc->int_ch[i] = chan;
2161				break;
2162			}
2163
2164			/* Get calibration data for vrefint channel */
2165			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
2166			if (ret && ret != -ENOENT) {
2167				return dev_err_probe(indio_dev->dev.parent, ret,
2168						     "nvmem access error\n");
2169			}
2170			if (ret == -ENOENT) {
2171				dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
2172				return ret;
2173			} else if (!vrefint) {
2174				dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
2175				return -ENOENT;
2176			}
2177			adc->int_ch[i] = chan;
2178			adc->vrefint.vrefint_cal = vrefint;
2179		}
2180	}
2181
2182	return 0;
2183}
2184
2185static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2186				       struct stm32_adc *adc,
2187				       struct iio_chan_spec *channels)
2188{
2189	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2190	struct device *dev = &indio_dev->dev;
2191	const char *name;
2192	int val, scan_index = 0, ret;
2193	bool differential;
2194	u32 vin[2];
2195
2196	device_for_each_child_node_scoped(dev, child) {
2197		ret = fwnode_property_read_u32(child, "reg", &val);
2198		if (ret)
2199			return dev_err_probe(dev, ret,
2200					     "Missing channel index\n");
2201
2202		ret = fwnode_property_read_string(child, "label", &name);
2203		/* label is optional */
2204		if (!ret) {
2205			if (strlen(name) >= STM32_ADC_CH_SZ)
2206				return dev_err_probe(dev, -EINVAL,
2207						     "Label %s exceeds %d characters\n",
2208						     name, STM32_ADC_CH_SZ);
2209
2210			strscpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2211			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2212			if (ret == -ENOENT)
2213				continue;
2214			else if (ret)
2215				return ret;
2216		} else if (ret != -EINVAL) {
2217			return dev_err_probe(dev, ret, "Invalid label\n");
2218		}
2219
2220		if (val >= adc_info->max_channels)
2221			return dev_err_probe(dev, -EINVAL,
2222					     "Invalid channel %d\n", val);
2223
2224		differential = false;
2225		ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
2226		/* diff-channels is optional */
2227		if (!ret) {
2228			differential = true;
2229			if (vin[0] != val || vin[1] >= adc_info->max_channels)
2230				return dev_err_probe(dev, -EINVAL,
2231						     "Invalid channel in%d-in%d\n",
2232						     vin[0], vin[1]);
2233		} else if (ret != -EINVAL) {
2234			return dev_err_probe(dev, ret,
2235					     "Invalid diff-channels property\n");
2236		}
2237
2238		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2239					vin[1], scan_index, differential);
2240
2241		val = 0;
2242		ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
2243		/* st,min-sample-time-ns is optional */
2244		if (ret && ret != -EINVAL)
2245			return dev_err_probe(dev, ret,
2246					     "Invalid st,min-sample-time-ns property\n");
2247
2248		stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2249		if (differential)
2250			stm32_adc_smpr_init(adc, vin[1], val);
2251
2252		scan_index++;
2253	}
2254
2255	return scan_index;
2256}
2257
2258static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
2259{
2260	struct stm32_adc *adc = iio_priv(indio_dev);
2261	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2262	struct iio_chan_spec *channels;
2263	int scan_index = 0, num_channels = 0, ret, i;
2264	bool legacy = false;
2265
2266	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2267		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2268
2269	num_channels = device_get_child_node_count(&indio_dev->dev);
2270	/* If no channels have been found, fallback to channels legacy properties. */
2271	if (!num_channels) {
2272		legacy = true;
2273
2274		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2275		if (!ret) {
2276			dev_err(indio_dev->dev.parent, "No channel found\n");
2277			return -ENODATA;
2278		} else if (ret < 0) {
2279			return ret;
2280		}
2281
2282		num_channels = ret;
2283	}
2284
2285	if (num_channels > adc_info->max_channels) {
2286		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2287			num_channels, adc_info->max_channels);
2288		return -EINVAL;
2289	}
2290
2291	if (timestamping)
2292		num_channels++;
2293
2294	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2295				sizeof(struct iio_chan_spec), GFP_KERNEL);
2296	if (!channels)
2297		return -ENOMEM;
2298
2299	if (legacy)
2300		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
2301						 timestamping ? num_channels - 1 : num_channels);
2302	else
2303		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2304	if (ret < 0)
2305		return ret;
2306	scan_index = ret;
2307
2308	if (timestamping) {
2309		struct iio_chan_spec *timestamp = &channels[scan_index];
2310
2311		timestamp->type = IIO_TIMESTAMP;
2312		timestamp->channel = -1;
2313		timestamp->scan_index = scan_index;
2314		timestamp->scan_type.sign = 's';
2315		timestamp->scan_type.realbits = 64;
2316		timestamp->scan_type.storagebits = 64;
2317
2318		scan_index++;
2319	}
2320
2321	indio_dev->num_channels = scan_index;
2322	indio_dev->channels = channels;
2323
2324	return 0;
2325}
2326
2327static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2328{
2329	struct stm32_adc *adc = iio_priv(indio_dev);
2330	struct dma_slave_config config;
2331	int ret;
2332
2333	adc->dma_chan = dma_request_chan(dev, "rx");
2334	if (IS_ERR(adc->dma_chan)) {
2335		ret = PTR_ERR(adc->dma_chan);
2336		if (ret != -ENODEV)
2337			return dev_err_probe(dev, ret,
2338					     "DMA channel request failed with\n");
 
 
 
 
2339
2340		/* DMA is optional: fall back to IRQ mode */
2341		adc->dma_chan = NULL;
2342		return 0;
2343	}
2344
2345	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2346					 STM32_DMA_BUFFER_SIZE,
2347					 &adc->rx_dma_buf, GFP_KERNEL);
2348	if (!adc->rx_buf) {
2349		ret = -ENOMEM;
2350		goto err_release;
2351	}
2352
2353	/* Configure DMA channel to read data register */
2354	memset(&config, 0, sizeof(config));
2355	config.src_addr = (dma_addr_t)adc->common->phys_base;
2356	config.src_addr += adc->offset + adc->cfg->regs->dr;
2357	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2358
2359	ret = dmaengine_slave_config(adc->dma_chan, &config);
2360	if (ret)
2361		goto err_free;
2362
2363	return 0;
2364
2365err_free:
2366	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2367			  adc->rx_buf, adc->rx_dma_buf);
2368err_release:
2369	dma_release_channel(adc->dma_chan);
2370
2371	return ret;
2372}
2373
2374static int stm32_adc_probe(struct platform_device *pdev)
2375{
2376	struct iio_dev *indio_dev;
2377	struct device *dev = &pdev->dev;
2378	irqreturn_t (*handler)(int irq, void *p) = NULL;
2379	struct stm32_adc *adc;
2380	bool timestamping = false;
2381	int ret;
2382
 
 
 
2383	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2384	if (!indio_dev)
2385		return -ENOMEM;
2386
2387	adc = iio_priv(indio_dev);
2388	adc->common = dev_get_drvdata(pdev->dev.parent);
2389	spin_lock_init(&adc->lock);
2390	init_completion(&adc->completion);
2391	adc->cfg = device_get_match_data(dev);
 
2392
2393	indio_dev->name = dev_name(&pdev->dev);
2394	device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
2395	indio_dev->info = &stm32_adc_iio_info;
2396	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2397
2398	platform_set_drvdata(pdev, indio_dev);
2399
2400	ret = device_property_read_u32(dev, "reg", &adc->offset);
2401	if (ret != 0) {
2402		dev_err(&pdev->dev, "missing reg property\n");
2403		return -EINVAL;
2404	}
2405
2406	adc->irq = platform_get_irq(pdev, 0);
2407	if (adc->irq < 0)
2408		return adc->irq;
2409
2410	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2411					stm32_adc_threaded_isr,
2412					0, pdev->name, indio_dev);
2413	if (ret) {
2414		dev_err(&pdev->dev, "failed to request IRQ\n");
2415		return ret;
2416	}
2417
2418	adc->clk = devm_clk_get(&pdev->dev, NULL);
2419	if (IS_ERR(adc->clk)) {
2420		ret = PTR_ERR(adc->clk);
2421		if (ret == -ENOENT && !adc->cfg->clk_required) {
2422			adc->clk = NULL;
2423		} else {
2424			dev_err(&pdev->dev, "Can't get clock\n");
2425			return ret;
2426		}
2427	}
2428
2429	ret = stm32_adc_fw_get_resolution(indio_dev);
 
 
 
 
2430	if (ret < 0)
2431		return ret;
2432
2433	ret = stm32_adc_dma_request(dev, indio_dev);
2434	if (ret < 0)
2435		return ret;
2436
2437	if (!adc->dma_chan) {
2438		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2439		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2440		 * runs in the IRQ thread to push out buffer along with timestamp.
2441		 */
2442		handler = &stm32_adc_trigger_handler;
2443		timestamping = true;
2444	}
2445
2446	ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
2447	if (ret < 0)
2448		goto err_dma_disable;
2449
2450	ret = iio_triggered_buffer_setup(indio_dev,
2451					 &iio_pollfunc_store_time, handler,
2452					 &stm32_adc_buffer_setup_ops);
2453	if (ret) {
2454		dev_err(&pdev->dev, "buffer setup failed\n");
2455		goto err_dma_disable;
2456	}
2457
2458	/* Get stm32-adc-core PM online */
2459	pm_runtime_get_noresume(dev);
2460	pm_runtime_set_active(dev);
2461	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2462	pm_runtime_use_autosuspend(dev);
2463	pm_runtime_enable(dev);
2464
2465	ret = stm32_adc_hw_start(dev);
2466	if (ret)
2467		goto err_buffer_cleanup;
2468
2469	ret = iio_device_register(indio_dev);
2470	if (ret) {
2471		dev_err(&pdev->dev, "iio dev register failed\n");
2472		goto err_hw_stop;
2473	}
2474
2475	pm_runtime_mark_last_busy(dev);
2476	pm_runtime_put_autosuspend(dev);
2477
2478	if (IS_ENABLED(CONFIG_DEBUG_FS))
2479		stm32_adc_debugfs_init(indio_dev);
2480
2481	return 0;
2482
2483err_hw_stop:
2484	stm32_adc_hw_stop(dev);
2485
2486err_buffer_cleanup:
2487	pm_runtime_disable(dev);
2488	pm_runtime_set_suspended(dev);
2489	pm_runtime_put_noidle(dev);
2490	iio_triggered_buffer_cleanup(indio_dev);
2491
2492err_dma_disable:
2493	if (adc->dma_chan) {
2494		dma_free_coherent(adc->dma_chan->device->dev,
2495				  STM32_DMA_BUFFER_SIZE,
2496				  adc->rx_buf, adc->rx_dma_buf);
2497		dma_release_channel(adc->dma_chan);
2498	}
2499
2500	return ret;
2501}
2502
2503static void stm32_adc_remove(struct platform_device *pdev)
2504{
2505	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2506	struct stm32_adc *adc = iio_priv(indio_dev);
2507
2508	pm_runtime_get_sync(&pdev->dev);
2509	/* iio_device_unregister() also removes debugfs entries */
2510	iio_device_unregister(indio_dev);
2511	stm32_adc_hw_stop(&pdev->dev);
2512	pm_runtime_disable(&pdev->dev);
2513	pm_runtime_set_suspended(&pdev->dev);
2514	pm_runtime_put_noidle(&pdev->dev);
2515	iio_triggered_buffer_cleanup(indio_dev);
2516	if (adc->dma_chan) {
2517		dma_free_coherent(adc->dma_chan->device->dev,
2518				  STM32_DMA_BUFFER_SIZE,
2519				  adc->rx_buf, adc->rx_dma_buf);
2520		dma_release_channel(adc->dma_chan);
2521	}
 
 
2522}
2523
 
2524static int stm32_adc_suspend(struct device *dev)
2525{
2526	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2527
2528	if (iio_buffer_enabled(indio_dev))
2529		stm32_adc_buffer_predisable(indio_dev);
2530
2531	return pm_runtime_force_suspend(dev);
2532}
2533
2534static int stm32_adc_resume(struct device *dev)
2535{
2536	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2537	int ret;
2538
2539	ret = pm_runtime_force_resume(dev);
2540	if (ret < 0)
2541		return ret;
2542
2543	if (!iio_buffer_enabled(indio_dev))
2544		return 0;
2545
2546	ret = stm32_adc_update_scan_mode(indio_dev,
2547					 indio_dev->active_scan_mask);
2548	if (ret < 0)
2549		return ret;
2550
2551	return stm32_adc_buffer_postenable(indio_dev);
2552}
 
2553
 
2554static int stm32_adc_runtime_suspend(struct device *dev)
2555{
2556	return stm32_adc_hw_stop(dev);
2557}
2558
2559static int stm32_adc_runtime_resume(struct device *dev)
2560{
2561	return stm32_adc_hw_start(dev);
2562}
 
2563
2564static const struct dev_pm_ops stm32_adc_pm_ops = {
2565	SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2566	RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2567		       NULL)
2568};
2569
2570static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2571	.regs = &stm32f4_adc_regspec,
2572	.adc_info = &stm32f4_adc_info,
2573	.trigs = stm32f4_adc_trigs,
2574	.clk_required = true,
2575	.start_conv = stm32f4_adc_start_conv,
2576	.stop_conv = stm32f4_adc_stop_conv,
2577	.smp_cycles = stm32f4_adc_smp_cycles,
2578	.irq_clear = stm32f4_adc_irq_clear,
2579};
2580
2581static const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 };
2582static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB);
2583
2584static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2585	.regs = &stm32h7_adc_regspec,
2586	.adc_info = &stm32h7_adc_info,
2587	.trigs = stm32h7_adc_trigs,
2588	.has_boostmode = true,
2589	.has_linearcal = true,
2590	.has_presel = true,
2591	.start_conv = stm32h7_adc_start_conv,
2592	.stop_conv = stm32h7_adc_stop_conv,
2593	.prepare = stm32h7_adc_prepare,
2594	.unprepare = stm32h7_adc_unprepare,
2595	.smp_cycles = stm32h7_adc_smp_cycles,
2596	.irq_clear = stm32h7_adc_irq_clear,
2597	.ts_int_ch = stm32_adc_min_ts_h7,
2598};
2599
2600static const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 };
2601static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB);
2602
2603static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2604	.regs = &stm32mp1_adc_regspec,
2605	.adc_info = &stm32h7_adc_info,
2606	.trigs = stm32h7_adc_trigs,
2607	.has_vregready = true,
2608	.has_boostmode = true,
2609	.has_linearcal = true,
2610	.has_presel = true,
2611	.start_conv = stm32h7_adc_start_conv,
2612	.stop_conv = stm32h7_adc_stop_conv,
2613	.prepare = stm32h7_adc_prepare,
2614	.unprepare = stm32h7_adc_unprepare,
2615	.smp_cycles = stm32h7_adc_smp_cycles,
2616	.irq_clear = stm32h7_adc_irq_clear,
2617	.ts_int_ch = stm32_adc_min_ts_mp1,
2618};
2619
2620static const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 };
2621static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB);
2622
2623static const struct stm32_adc_cfg stm32mp13_adc_cfg = {
2624	.regs = &stm32mp13_adc_regspec,
2625	.adc_info = &stm32mp13_adc_info,
2626	.trigs = stm32h7_adc_trigs,
2627	.start_conv = stm32mp13_adc_start_conv,
2628	.stop_conv = stm32h7_adc_stop_conv,
2629	.prepare = stm32h7_adc_prepare,
2630	.unprepare = stm32h7_adc_unprepare,
2631	.smp_cycles = stm32mp13_adc_smp_cycles,
2632	.irq_clear = stm32h7_adc_irq_clear,
2633	.ts_int_ch = stm32_adc_min_ts_mp13,
2634};
2635
2636static const struct of_device_id stm32_adc_of_match[] = {
2637	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2638	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2639	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2640	{ .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg },
2641	{ }
2642};
2643MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2644
2645static struct platform_driver stm32_adc_driver = {
2646	.probe = stm32_adc_probe,
2647	.remove = stm32_adc_remove,
2648	.driver = {
2649		.name = "stm32-adc",
2650		.of_match_table = stm32_adc_of_match,
2651		.pm = pm_ptr(&stm32_adc_pm_ops),
2652	},
2653};
2654module_platform_driver(stm32_adc_driver);
2655
2656MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2657MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2658MODULE_LICENSE("GPL v2");
2659MODULE_ALIAS("platform:stm32-adc");