Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/sched/task.h>
  26#include <linux/dynamic_debug.h>
  27#include <drm/ttm/ttm_tt.h>
  28#include <drm/drm_exec.h>
  29
  30#include "amdgpu_sync.h"
  31#include "amdgpu_object.h"
  32#include "amdgpu_vm.h"
  33#include "amdgpu_hmm.h"
  34#include "amdgpu.h"
  35#include "amdgpu_xgmi.h"
  36#include "kfd_priv.h"
  37#include "kfd_svm.h"
  38#include "kfd_migrate.h"
  39#include "kfd_smi_events.h"
  40
  41#ifdef dev_fmt
  42#undef dev_fmt
  43#endif
  44#define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
  45
  46#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
  47
  48/* Long enough to ensure no retry fault comes after svm range is restored and
  49 * page table is updated.
  50 */
  51#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
  52#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
  53#define dynamic_svm_range_dump(svms) \
  54	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
  55#else
  56#define dynamic_svm_range_dump(svms) \
  57	do { if (0) svm_range_debug_dump(svms); } while (0)
  58#endif
  59
  60/* Giant svm range split into smaller ranges based on this, it is decided using
  61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
  62 * power of 2MB.
  63 */
  64static uint64_t max_svm_range_pages;
  65
  66struct criu_svm_metadata {
  67	struct list_head list;
  68	struct kfd_criu_svm_range_priv_data data;
  69};
  70
  71static void svm_range_evict_svm_bo_worker(struct work_struct *work);
  72static bool
  73svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
  74				    const struct mmu_notifier_range *range,
  75				    unsigned long cur_seq);
  76static int
  77svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
  78		   uint64_t *bo_s, uint64_t *bo_l);
  79static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
  80	.invalidate = svm_range_cpu_invalidate_pagetables,
  81};
  82
  83/**
  84 * svm_range_unlink - unlink svm_range from lists and interval tree
  85 * @prange: svm range structure to be removed
  86 *
  87 * Remove the svm_range from the svms and svm_bo lists and the svms
  88 * interval tree.
  89 *
  90 * Context: The caller must hold svms->lock
  91 */
  92static void svm_range_unlink(struct svm_range *prange)
  93{
  94	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
  95		 prange, prange->start, prange->last);
  96
  97	if (prange->svm_bo) {
  98		spin_lock(&prange->svm_bo->list_lock);
  99		list_del(&prange->svm_bo_list);
 100		spin_unlock(&prange->svm_bo->list_lock);
 101	}
 102
 103	list_del(&prange->list);
 104	if (prange->it_node.start != 0 && prange->it_node.last != 0)
 105		interval_tree_remove(&prange->it_node, &prange->svms->objects);
 106}
 107
 108static void
 109svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
 110{
 111	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
 112		 prange, prange->start, prange->last);
 113
 114	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
 115				     prange->start << PAGE_SHIFT,
 116				     prange->npages << PAGE_SHIFT,
 117				     &svm_range_mn_ops);
 118}
 119
 120/**
 121 * svm_range_add_to_svms - add svm range to svms
 122 * @prange: svm range structure to be added
 123 *
 124 * Add the svm range to svms interval tree and link list
 125 *
 126 * Context: The caller must hold svms->lock
 127 */
 128static void svm_range_add_to_svms(struct svm_range *prange)
 129{
 130	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
 131		 prange, prange->start, prange->last);
 132
 133	list_move_tail(&prange->list, &prange->svms->list);
 134	prange->it_node.start = prange->start;
 135	prange->it_node.last = prange->last;
 136	interval_tree_insert(&prange->it_node, &prange->svms->objects);
 137}
 138
 139static void svm_range_remove_notifier(struct svm_range *prange)
 140{
 141	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
 142		 prange->svms, prange,
 143		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
 144		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
 145
 146	if (prange->notifier.interval_tree.start != 0 &&
 147	    prange->notifier.interval_tree.last != 0)
 148		mmu_interval_notifier_remove(&prange->notifier);
 149}
 150
 151static bool
 152svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
 153{
 154	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
 155	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
 156}
 157
 158static int
 159svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
 160		      unsigned long offset, unsigned long npages,
 161		      unsigned long *hmm_pfns, uint32_t gpuidx)
 162{
 163	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
 164	dma_addr_t *addr = prange->dma_addr[gpuidx];
 165	struct device *dev = adev->dev;
 166	struct page *page;
 167	int i, r;
 168
 169	if (!addr) {
 170		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
 171		if (!addr)
 172			return -ENOMEM;
 173		prange->dma_addr[gpuidx] = addr;
 174	}
 175
 176	addr += offset;
 177	for (i = 0; i < npages; i++) {
 178		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
 179			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
 180
 181		page = hmm_pfn_to_page(hmm_pfns[i]);
 182		if (is_zone_device_page(page)) {
 183			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
 184
 185			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
 186				   bo_adev->vm_manager.vram_base_offset -
 187				   bo_adev->kfd.pgmap.range.start;
 188			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
 189			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
 190			continue;
 191		}
 192		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
 193		r = dma_mapping_error(dev, addr[i]);
 194		if (r) {
 195			dev_err(dev, "failed %d dma_map_page\n", r);
 196			return r;
 197		}
 198		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
 199				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
 200	}
 201
 202	return 0;
 203}
 204
 205static int
 206svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
 207		  unsigned long offset, unsigned long npages,
 208		  unsigned long *hmm_pfns)
 209{
 210	struct kfd_process *p;
 211	uint32_t gpuidx;
 212	int r;
 213
 214	p = container_of(prange->svms, struct kfd_process, svms);
 215
 216	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
 217		struct kfd_process_device *pdd;
 218
 219		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
 220		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
 221		if (!pdd) {
 222			pr_debug("failed to find device idx %d\n", gpuidx);
 223			return -EINVAL;
 224		}
 225
 226		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
 227					  hmm_pfns, gpuidx);
 228		if (r)
 229			break;
 230	}
 231
 232	return r;
 233}
 234
 235void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
 236			 unsigned long offset, unsigned long npages)
 237{
 238	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
 239	int i;
 240
 241	if (!dma_addr)
 242		return;
 243
 244	for (i = offset; i < offset + npages; i++) {
 245		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
 246			continue;
 247		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
 248		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
 249		dma_addr[i] = 0;
 250	}
 251}
 252
 253void svm_range_dma_unmap(struct svm_range *prange)
 254{
 255	struct kfd_process_device *pdd;
 256	dma_addr_t *dma_addr;
 257	struct device *dev;
 258	struct kfd_process *p;
 259	uint32_t gpuidx;
 260
 261	p = container_of(prange->svms, struct kfd_process, svms);
 262
 263	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
 264		dma_addr = prange->dma_addr[gpuidx];
 265		if (!dma_addr)
 266			continue;
 267
 268		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
 269		if (!pdd) {
 270			pr_debug("failed to find device idx %d\n", gpuidx);
 271			continue;
 272		}
 273		dev = &pdd->dev->adev->pdev->dev;
 274
 275		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
 276	}
 277}
 278
 279static void svm_range_free(struct svm_range *prange, bool do_unmap)
 280{
 281	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
 282	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
 283	uint32_t gpuidx;
 284
 285	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
 286		 prange->start, prange->last);
 287
 288	svm_range_vram_node_free(prange);
 289	if (do_unmap)
 290		svm_range_dma_unmap(prange);
 291
 292	if (do_unmap && !p->xnack_enabled) {
 293		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
 294		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
 295					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
 296	}
 297
 298	/* free dma_addr array for each gpu */
 299	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
 300		if (prange->dma_addr[gpuidx]) {
 301			kvfree(prange->dma_addr[gpuidx]);
 302			prange->dma_addr[gpuidx] = NULL;
 303		}
 304	}
 305
 306	mutex_destroy(&prange->lock);
 307	mutex_destroy(&prange->migrate_mutex);
 308	kfree(prange);
 309}
 310
 311static void
 312svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
 313				 int32_t *prefetch_loc, uint8_t *granularity,
 314				 uint32_t *flags)
 315{
 316	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
 317	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
 318	*granularity = svms->default_granularity;
 319	*flags =
 320		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
 321}
 322
 323static struct
 324svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
 325			 uint64_t last, bool update_mem_usage)
 326{
 327	uint64_t size = last - start + 1;
 328	struct svm_range *prange;
 329	struct kfd_process *p;
 330
 331	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
 332	if (!prange)
 333		return NULL;
 334
 335	p = container_of(svms, struct kfd_process, svms);
 336	if (!p->xnack_enabled && update_mem_usage &&
 337	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
 338				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
 339		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
 340		kfree(prange);
 341		return NULL;
 342	}
 343	prange->npages = size;
 344	prange->svms = svms;
 345	prange->start = start;
 346	prange->last = last;
 347	INIT_LIST_HEAD(&prange->list);
 348	INIT_LIST_HEAD(&prange->update_list);
 349	INIT_LIST_HEAD(&prange->svm_bo_list);
 350	INIT_LIST_HEAD(&prange->deferred_list);
 351	INIT_LIST_HEAD(&prange->child_list);
 352	atomic_set(&prange->invalid, 0);
 353	prange->validate_timestamp = 0;
 354	prange->vram_pages = 0;
 355	mutex_init(&prange->migrate_mutex);
 356	mutex_init(&prange->lock);
 357
 358	if (p->xnack_enabled)
 359		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
 360			    MAX_GPU_INSTANCE);
 361
 362	svm_range_set_default_attributes(svms, &prange->preferred_loc,
 363					 &prange->prefetch_loc,
 364					 &prange->granularity, &prange->flags);
 365
 366	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
 367
 368	return prange;
 369}
 370
 371static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
 372{
 373	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
 374		return false;
 375
 376	return true;
 377}
 378
 379static void svm_range_bo_release(struct kref *kref)
 380{
 381	struct svm_range_bo *svm_bo;
 382
 383	svm_bo = container_of(kref, struct svm_range_bo, kref);
 384	pr_debug("svm_bo 0x%p\n", svm_bo);
 385
 386	spin_lock(&svm_bo->list_lock);
 387	while (!list_empty(&svm_bo->range_list)) {
 388		struct svm_range *prange =
 389				list_first_entry(&svm_bo->range_list,
 390						struct svm_range, svm_bo_list);
 391		/* list_del_init tells a concurrent svm_range_vram_node_new when
 392		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
 393		 */
 394		list_del_init(&prange->svm_bo_list);
 395		spin_unlock(&svm_bo->list_lock);
 396
 397		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
 398			 prange->start, prange->last);
 399		mutex_lock(&prange->lock);
 400		prange->svm_bo = NULL;
 401		/* prange should not hold vram page now */
 402		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
 403		mutex_unlock(&prange->lock);
 404
 405		spin_lock(&svm_bo->list_lock);
 406	}
 407	spin_unlock(&svm_bo->list_lock);
 408
 409	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
 410		struct kfd_process_device *pdd;
 411		struct kfd_process *p;
 412		struct mm_struct *mm;
 413
 414		mm = svm_bo->eviction_fence->mm;
 415		/*
 416		 * The forked child process takes svm_bo device pages ref, svm_bo could be
 417		 * released after parent process is gone.
 418		 */
 419		p = kfd_lookup_process_by_mm(mm);
 420		if (p) {
 421			pdd = kfd_get_process_device_data(svm_bo->node, p);
 422			if (pdd)
 423				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
 424			kfd_unref_process(p);
 425		}
 426		mmput(mm);
 427	}
 428
 429	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
 430		/* We're not in the eviction worker. Signal the fence. */
 431		dma_fence_signal(&svm_bo->eviction_fence->base);
 432	dma_fence_put(&svm_bo->eviction_fence->base);
 433	amdgpu_bo_unref(&svm_bo->bo);
 434	kfree(svm_bo);
 435}
 436
 437static void svm_range_bo_wq_release(struct work_struct *work)
 438{
 439	struct svm_range_bo *svm_bo;
 440
 441	svm_bo = container_of(work, struct svm_range_bo, release_work);
 442	svm_range_bo_release(&svm_bo->kref);
 443}
 444
 445static void svm_range_bo_release_async(struct kref *kref)
 446{
 447	struct svm_range_bo *svm_bo;
 448
 449	svm_bo = container_of(kref, struct svm_range_bo, kref);
 450	pr_debug("svm_bo 0x%p\n", svm_bo);
 451	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
 452	schedule_work(&svm_bo->release_work);
 453}
 454
 455void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
 456{
 457	kref_put(&svm_bo->kref, svm_range_bo_release_async);
 458}
 459
 460static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
 461{
 462	if (svm_bo)
 463		kref_put(&svm_bo->kref, svm_range_bo_release);
 464}
 465
 466static bool
 467svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
 468{
 469	mutex_lock(&prange->lock);
 470	if (!prange->svm_bo) {
 471		mutex_unlock(&prange->lock);
 472		return false;
 473	}
 474	if (prange->ttm_res) {
 475		/* We still have a reference, all is well */
 476		mutex_unlock(&prange->lock);
 477		return true;
 478	}
 479	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
 480		/*
 481		 * Migrate from GPU to GPU, remove range from source svm_bo->node
 482		 * range list, and return false to allocate svm_bo from destination
 483		 * node.
 484		 */
 485		if (prange->svm_bo->node != node) {
 486			mutex_unlock(&prange->lock);
 487
 488			spin_lock(&prange->svm_bo->list_lock);
 489			list_del_init(&prange->svm_bo_list);
 490			spin_unlock(&prange->svm_bo->list_lock);
 491
 492			svm_range_bo_unref(prange->svm_bo);
 493			return false;
 494		}
 495		if (READ_ONCE(prange->svm_bo->evicting)) {
 496			struct dma_fence *f;
 497			struct svm_range_bo *svm_bo;
 498			/* The BO is getting evicted,
 499			 * we need to get a new one
 500			 */
 501			mutex_unlock(&prange->lock);
 502			svm_bo = prange->svm_bo;
 503			f = dma_fence_get(&svm_bo->eviction_fence->base);
 504			svm_range_bo_unref(prange->svm_bo);
 505			/* wait for the fence to avoid long spin-loop
 506			 * at list_empty_careful
 507			 */
 508			dma_fence_wait(f, false);
 509			dma_fence_put(f);
 510		} else {
 511			/* The BO was still around and we got
 512			 * a new reference to it
 513			 */
 514			mutex_unlock(&prange->lock);
 515			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
 516				 prange->svms, prange->start, prange->last);
 517
 518			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
 519			return true;
 520		}
 521
 522	} else {
 523		mutex_unlock(&prange->lock);
 524	}
 525
 526	/* We need a new svm_bo. Spin-loop to wait for concurrent
 527	 * svm_range_bo_release to finish removing this range from
 528	 * its range list and set prange->svm_bo to null. After this,
 529	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
 530	 */
 531	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
 532		cond_resched();
 533
 534	return false;
 535}
 536
 537static struct svm_range_bo *svm_range_bo_new(void)
 538{
 539	struct svm_range_bo *svm_bo;
 540
 541	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
 542	if (!svm_bo)
 543		return NULL;
 544
 545	kref_init(&svm_bo->kref);
 546	INIT_LIST_HEAD(&svm_bo->range_list);
 547	spin_lock_init(&svm_bo->list_lock);
 548
 549	return svm_bo;
 550}
 551
 552int
 553svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
 554			bool clear)
 555{
 556	struct kfd_process_device *pdd;
 557	struct amdgpu_bo_param bp;
 558	struct svm_range_bo *svm_bo;
 559	struct amdgpu_bo_user *ubo;
 560	struct amdgpu_bo *bo;
 561	struct kfd_process *p;
 562	struct mm_struct *mm;
 563	int r;
 564
 565	p = container_of(prange->svms, struct kfd_process, svms);
 566	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
 567		 prange->start, prange->last);
 568
 569	if (svm_range_validate_svm_bo(node, prange))
 570		return 0;
 571
 572	svm_bo = svm_range_bo_new();
 573	if (!svm_bo) {
 574		pr_debug("failed to alloc svm bo\n");
 575		return -ENOMEM;
 576	}
 577	mm = get_task_mm(p->lead_thread);
 578	if (!mm) {
 579		pr_debug("failed to get mm\n");
 580		kfree(svm_bo);
 581		return -ESRCH;
 582	}
 583	svm_bo->node = node;
 584	svm_bo->eviction_fence =
 585		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
 586					   mm,
 587					   svm_bo);
 588	mmput(mm);
 589	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
 590	svm_bo->evicting = 0;
 591	memset(&bp, 0, sizeof(bp));
 592	bp.size = prange->npages * PAGE_SIZE;
 593	bp.byte_align = PAGE_SIZE;
 594	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
 595	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
 596	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
 597	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
 598	bp.type = ttm_bo_type_device;
 599	bp.resv = NULL;
 600	if (node->xcp)
 601		bp.xcp_id_plus1 = node->xcp->id + 1;
 602
 603	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
 604	if (r) {
 605		pr_debug("failed %d to create bo\n", r);
 606		goto create_bo_failed;
 607	}
 608	bo = &ubo->bo;
 609
 610	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
 611		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
 612		 bp.xcp_id_plus1 - 1);
 613
 614	r = amdgpu_bo_reserve(bo, true);
 615	if (r) {
 616		pr_debug("failed %d to reserve bo\n", r);
 617		goto reserve_bo_failed;
 618	}
 619
 620	if (clear) {
 621		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
 622		if (r) {
 623			pr_debug("failed %d to sync bo\n", r);
 624			amdgpu_bo_unreserve(bo);
 625			goto reserve_bo_failed;
 626		}
 627	}
 628
 629	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
 630	if (r) {
 631		pr_debug("failed %d to reserve bo\n", r);
 632		amdgpu_bo_unreserve(bo);
 633		goto reserve_bo_failed;
 634	}
 635	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
 636
 637	amdgpu_bo_unreserve(bo);
 638
 639	svm_bo->bo = bo;
 640	prange->svm_bo = svm_bo;
 641	prange->ttm_res = bo->tbo.resource;
 642	prange->offset = 0;
 643
 644	spin_lock(&svm_bo->list_lock);
 645	list_add(&prange->svm_bo_list, &svm_bo->range_list);
 646	spin_unlock(&svm_bo->list_lock);
 647
 648	pdd = svm_range_get_pdd_by_node(prange, node);
 649	if (pdd)
 650		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
 651
 652	return 0;
 653
 654reserve_bo_failed:
 655	amdgpu_bo_unref(&bo);
 656create_bo_failed:
 657	dma_fence_put(&svm_bo->eviction_fence->base);
 658	kfree(svm_bo);
 659	prange->ttm_res = NULL;
 660
 661	return r;
 662}
 663
 664void svm_range_vram_node_free(struct svm_range *prange)
 665{
 666	/* serialize prange->svm_bo unref */
 667	mutex_lock(&prange->lock);
 668	/* prange->svm_bo has not been unref */
 669	if (prange->ttm_res) {
 670		prange->ttm_res = NULL;
 671		mutex_unlock(&prange->lock);
 672		svm_range_bo_unref(prange->svm_bo);
 673	} else
 674		mutex_unlock(&prange->lock);
 675}
 676
 677struct kfd_node *
 678svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
 679{
 680	struct kfd_process *p;
 681	struct kfd_process_device *pdd;
 682
 683	p = container_of(prange->svms, struct kfd_process, svms);
 684	pdd = kfd_process_device_data_by_id(p, gpu_id);
 685	if (!pdd) {
 686		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
 687		return NULL;
 688	}
 689
 690	return pdd->dev;
 691}
 692
 693struct kfd_process_device *
 694svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
 695{
 696	struct kfd_process *p;
 697
 698	p = container_of(prange->svms, struct kfd_process, svms);
 699
 700	return kfd_get_process_device_data(node, p);
 701}
 702
 703static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
 704{
 705	struct ttm_operation_ctx ctx = { false, false };
 706
 707	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
 708
 709	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 710}
 711
 712static int
 713svm_range_check_attr(struct kfd_process *p,
 714		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
 715{
 716	uint32_t i;
 717
 718	for (i = 0; i < nattr; i++) {
 719		uint32_t val = attrs[i].value;
 720		int gpuidx = MAX_GPU_INSTANCE;
 721
 722		switch (attrs[i].type) {
 723		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
 724			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
 725			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
 726				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
 727			break;
 728		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
 729			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
 730				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
 731			break;
 732		case KFD_IOCTL_SVM_ATTR_ACCESS:
 733		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
 734		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
 735			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
 736			break;
 737		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
 738			break;
 739		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
 740			break;
 741		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
 742			break;
 743		default:
 744			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
 745			return -EINVAL;
 746		}
 747
 748		if (gpuidx < 0) {
 749			pr_debug("no GPU 0x%x found\n", val);
 750			return -EINVAL;
 751		} else if (gpuidx < MAX_GPU_INSTANCE &&
 752			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
 753			pr_debug("GPU 0x%x not supported\n", val);
 754			return -EINVAL;
 755		}
 756	}
 757
 758	return 0;
 759}
 760
 761static void
 762svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
 763		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
 764		      bool *update_mapping)
 765{
 766	uint32_t i;
 767	int gpuidx;
 768
 769	for (i = 0; i < nattr; i++) {
 770		switch (attrs[i].type) {
 771		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
 772			prange->preferred_loc = attrs[i].value;
 773			break;
 774		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
 775			prange->prefetch_loc = attrs[i].value;
 776			break;
 777		case KFD_IOCTL_SVM_ATTR_ACCESS:
 778		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
 779		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
 780			if (!p->xnack_enabled)
 781				*update_mapping = true;
 782
 783			gpuidx = kfd_process_gpuidx_from_gpuid(p,
 784							       attrs[i].value);
 785			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
 786				bitmap_clear(prange->bitmap_access, gpuidx, 1);
 787				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
 788			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
 789				bitmap_set(prange->bitmap_access, gpuidx, 1);
 790				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
 791			} else {
 792				bitmap_clear(prange->bitmap_access, gpuidx, 1);
 793				bitmap_set(prange->bitmap_aip, gpuidx, 1);
 794			}
 795			break;
 796		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
 797			*update_mapping = true;
 798			prange->flags |= attrs[i].value;
 799			break;
 800		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
 801			*update_mapping = true;
 802			prange->flags &= ~attrs[i].value;
 803			break;
 804		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
 805			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
 806			break;
 807		default:
 808			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
 809		}
 810	}
 811}
 812
 813static bool
 814svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
 815			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
 816{
 817	uint32_t i;
 818	int gpuidx;
 819
 820	for (i = 0; i < nattr; i++) {
 821		switch (attrs[i].type) {
 822		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
 823			if (prange->preferred_loc != attrs[i].value)
 824				return false;
 825			break;
 826		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
 827			/* Prefetch should always trigger a migration even
 828			 * if the value of the attribute didn't change.
 829			 */
 830			return false;
 831		case KFD_IOCTL_SVM_ATTR_ACCESS:
 832		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
 833		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
 834			gpuidx = kfd_process_gpuidx_from_gpuid(p,
 835							       attrs[i].value);
 836			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
 837				if (test_bit(gpuidx, prange->bitmap_access) ||
 838				    test_bit(gpuidx, prange->bitmap_aip))
 839					return false;
 840			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
 841				if (!test_bit(gpuidx, prange->bitmap_access))
 842					return false;
 843			} else {
 844				if (!test_bit(gpuidx, prange->bitmap_aip))
 845					return false;
 846			}
 847			break;
 848		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
 849			if ((prange->flags & attrs[i].value) != attrs[i].value)
 850				return false;
 851			break;
 852		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
 853			if ((prange->flags & attrs[i].value) != 0)
 854				return false;
 855			break;
 856		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
 857			if (prange->granularity != attrs[i].value)
 858				return false;
 859			break;
 860		default:
 861			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
 862		}
 863	}
 864
 865	return true;
 866}
 867
 868/**
 869 * svm_range_debug_dump - print all range information from svms
 870 * @svms: svm range list header
 871 *
 872 * debug output svm range start, end, prefetch location from svms
 873 * interval tree and link list
 874 *
 875 * Context: The caller must hold svms->lock
 876 */
 877static void svm_range_debug_dump(struct svm_range_list *svms)
 878{
 879	struct interval_tree_node *node;
 880	struct svm_range *prange;
 881
 882	pr_debug("dump svms 0x%p list\n", svms);
 883	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
 884
 885	list_for_each_entry(prange, &svms->list, list) {
 886		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
 887			 prange, prange->start, prange->npages,
 888			 prange->start + prange->npages - 1,
 889			 prange->actual_loc);
 890	}
 891
 892	pr_debug("dump svms 0x%p interval tree\n", svms);
 893	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
 894	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
 895	while (node) {
 896		prange = container_of(node, struct svm_range, it_node);
 897		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
 898			 prange, prange->start, prange->npages,
 899			 prange->start + prange->npages - 1,
 900			 prange->actual_loc);
 901		node = interval_tree_iter_next(node, 0, ~0ULL);
 902	}
 903}
 904
 905static void *
 906svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
 907		     uint64_t offset, uint64_t *vram_pages)
 908{
 909	unsigned char *src = (unsigned char *)psrc + offset;
 910	unsigned char *dst;
 911	uint64_t i;
 912
 913	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
 914	if (!dst)
 915		return NULL;
 916
 917	if (!vram_pages) {
 918		memcpy(dst, src, num_elements * size);
 919		return (void *)dst;
 920	}
 921
 922	*vram_pages = 0;
 923	for (i = 0; i < num_elements; i++) {
 924		dma_addr_t *temp;
 925		temp = (dma_addr_t *)dst + i;
 926		*temp = *((dma_addr_t *)src + i);
 927		if (*temp&SVM_RANGE_VRAM_DOMAIN)
 928			(*vram_pages)++;
 929	}
 930
 931	return (void *)dst;
 932}
 933
 934static int
 935svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
 936{
 937	int i;
 938
 939	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
 940		if (!src->dma_addr[i])
 941			continue;
 942		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
 943					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
 944		if (!dst->dma_addr[i])
 945			return -ENOMEM;
 946	}
 947
 948	return 0;
 949}
 950
 951static int
 952svm_range_split_array(void *ppnew, void *ppold, size_t size,
 953		      uint64_t old_start, uint64_t old_n,
 954		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
 955{
 956	unsigned char *new, *old, *pold;
 957	uint64_t d;
 958
 959	if (!ppold)
 960		return 0;
 961	pold = *(unsigned char **)ppold;
 962	if (!pold)
 963		return 0;
 964
 965	d = (new_start - old_start) * size;
 966	/* get dma addr array for new range and calculte its vram page number */
 967	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
 968	if (!new)
 969		return -ENOMEM;
 970	d = (new_start == old_start) ? new_n * size : 0;
 971	old = svm_range_copy_array(pold, size, old_n, d, NULL);
 972	if (!old) {
 973		kvfree(new);
 974		return -ENOMEM;
 975	}
 976	kvfree(pold);
 977	*(void **)ppold = old;
 978	*(void **)ppnew = new;
 979
 980	return 0;
 981}
 982
 983static int
 984svm_range_split_pages(struct svm_range *new, struct svm_range *old,
 985		      uint64_t start, uint64_t last)
 986{
 987	uint64_t npages = last - start + 1;
 988	int i, r;
 989
 990	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
 991		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
 992					  sizeof(*old->dma_addr[i]), old->start,
 993					  npages, new->start, new->npages,
 994					  old->actual_loc ? &new->vram_pages : NULL);
 995		if (r)
 996			return r;
 997	}
 998	if (old->actual_loc)
 999		old->vram_pages -= new->vram_pages;
1000
1001	return 0;
1002}
1003
1004static int
1005svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006		      uint64_t start, uint64_t last)
1007{
1008	uint64_t npages = last - start + 1;
1009
1010	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011		 new->svms, new, new->start, start, last);
1012
1013	if (new->start == old->start) {
1014		new->offset = old->offset;
1015		old->offset += new->npages;
1016	} else {
1017		new->offset = old->offset + npages;
1018	}
1019
1020	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021	new->ttm_res = old->ttm_res;
1022
1023	spin_lock(&new->svm_bo->list_lock);
1024	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025	spin_unlock(&new->svm_bo->list_lock);
1026
1027	return 0;
1028}
1029
1030/**
1031 * svm_range_split_adjust - split range and adjust
1032 *
1033 * @new: new range
1034 * @old: the old range
1035 * @start: the old range adjust to start address in pages
1036 * @last: the old range adjust to last address in pages
1037 *
1038 * Copy system memory dma_addr or vram ttm_res in old range to new
1039 * range from new_start up to size new->npages, the remaining old range is from
1040 * start to last
1041 *
1042 * Return:
1043 * 0 - OK, -ENOMEM - out of memory
1044 */
1045static int
1046svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047		      uint64_t start, uint64_t last)
1048{
1049	int r;
1050
1051	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052		 new->svms, new->start, old->start, old->last, start, last);
1053
1054	if (new->start < old->start ||
1055	    new->last > old->last) {
1056		WARN_ONCE(1, "invalid new range start or last\n");
1057		return -EINVAL;
1058	}
1059
1060	r = svm_range_split_pages(new, old, start, last);
1061	if (r)
1062		return r;
1063
1064	if (old->actual_loc && old->ttm_res) {
1065		r = svm_range_split_nodes(new, old, start, last);
1066		if (r)
1067			return r;
1068	}
1069
1070	old->npages = last - start + 1;
1071	old->start = start;
1072	old->last = last;
1073	new->flags = old->flags;
1074	new->preferred_loc = old->preferred_loc;
1075	new->prefetch_loc = old->prefetch_loc;
1076	new->actual_loc = old->actual_loc;
1077	new->granularity = old->granularity;
1078	new->mapped_to_gpu = old->mapped_to_gpu;
1079	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082
1083	return 0;
1084}
1085
1086/**
1087 * svm_range_split - split a range in 2 ranges
1088 *
1089 * @prange: the svm range to split
1090 * @start: the remaining range start address in pages
1091 * @last: the remaining range last address in pages
1092 * @new: the result new range generated
1093 *
1094 * Two cases only:
1095 * case 1: if start == prange->start
1096 *         prange ==> prange[start, last]
1097 *         new range [last + 1, prange->last]
1098 *
1099 * case 2: if last == prange->last
1100 *         prange ==> prange[start, last]
1101 *         new range [prange->start, start - 1]
1102 *
1103 * Return:
1104 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105 */
1106static int
1107svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108		struct svm_range **new)
1109{
1110	uint64_t old_start = prange->start;
1111	uint64_t old_last = prange->last;
1112	struct svm_range_list *svms;
1113	int r = 0;
1114
1115	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116		 old_start, old_last, start, last);
1117
1118	if (old_start != start && old_last != last)
1119		return -EINVAL;
1120	if (start < old_start || last > old_last)
1121		return -EINVAL;
1122
1123	svms = prange->svms;
1124	if (old_start == start)
1125		*new = svm_range_new(svms, last + 1, old_last, false);
1126	else
1127		*new = svm_range_new(svms, old_start, start - 1, false);
1128	if (!*new)
1129		return -ENOMEM;
1130
1131	r = svm_range_split_adjust(*new, prange, start, last);
1132	if (r) {
1133		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134			 r, old_start, old_last, start, last);
1135		svm_range_free(*new, false);
1136		*new = NULL;
1137	}
1138
1139	return r;
1140}
1141
1142static int
1143svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144		     struct list_head *insert_list, struct list_head *remap_list)
1145{
1146	struct svm_range *tail = NULL;
1147	int r = svm_range_split(prange, prange->start, new_last, &tail);
1148
1149	if (!r) {
1150		list_add(&tail->list, insert_list);
1151		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152			list_add(&tail->update_list, remap_list);
1153	}
1154	return r;
1155}
1156
1157static int
1158svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159		     struct list_head *insert_list, struct list_head *remap_list)
1160{
1161	struct svm_range *head = NULL;
1162	int r = svm_range_split(prange, new_start, prange->last, &head);
1163
1164	if (!r) {
1165		list_add(&head->list, insert_list);
1166		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167			list_add(&head->update_list, remap_list);
1168	}
1169	return r;
1170}
1171
1172static void
1173svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1174		    struct svm_range *pchild, enum svm_work_list_ops op)
1175{
1176	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177		 pchild, pchild->start, pchild->last, prange, op);
1178
1179	pchild->work_item.mm = mm;
1180	pchild->work_item.op = op;
1181	list_add_tail(&pchild->child_list, &prange->child_list);
1182}
1183
1184static bool
1185svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186{
1187	return (node_a->adev == node_b->adev ||
1188		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189}
1190
1191static uint64_t
1192svm_range_get_pte_flags(struct kfd_node *node,
1193			struct svm_range *prange, int domain)
1194{
1195	struct kfd_node *bo_node;
1196	uint32_t flags = prange->flags;
1197	uint32_t mapping_flags = 0;
1198	uint64_t pte_flags;
1199	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1200	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1201	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1202	unsigned int mtype_local;
1203
1204	if (domain == SVM_RANGE_VRAM_DOMAIN)
1205		bo_node = prange->svm_bo->node;
1206
1207	switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1208	case IP_VERSION(9, 4, 1):
1209		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1210			if (bo_node == node) {
1211				mapping_flags |= coherent ?
1212					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1213			} else {
1214				mapping_flags |= coherent ?
1215					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1216				if (svm_nodes_in_same_hive(node, bo_node))
1217					snoop = true;
1218			}
1219		} else {
1220			mapping_flags |= coherent ?
1221				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1222		}
1223		break;
1224	case IP_VERSION(9, 4, 2):
1225		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1226			if (bo_node == node) {
1227				mapping_flags |= coherent ?
1228					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1229				if (node->adev->gmc.xgmi.connected_to_cpu)
1230					snoop = true;
1231			} else {
1232				mapping_flags |= coherent ?
1233					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1234				if (svm_nodes_in_same_hive(node, bo_node))
1235					snoop = true;
1236			}
1237		} else {
1238			mapping_flags |= coherent ?
1239				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1240		}
1241		break;
1242	case IP_VERSION(9, 4, 3):
1243	case IP_VERSION(9, 4, 4):
1244		if (ext_coherent)
1245			mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1246		else
1247			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1248				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1249		snoop = true;
1250		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1251			/* local HBM region close to partition */
1252			if (bo_node->adev == node->adev &&
1253			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1254				mapping_flags |= mtype_local;
1255			/* local HBM region far from partition or remote XGMI GPU
1256			 * with regular system scope coherence
1257			 */
1258			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1259				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1260			/* PCIe P2P or extended system scope coherence */
1261			else
1262				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1263		/* system memory accessed by the APU */
1264		} else if (node->adev->flags & AMD_IS_APU) {
1265			/* On NUMA systems, locality is determined per-page
1266			 * in amdgpu_gmc_override_vm_pte_flags
1267			 */
1268			if (num_possible_nodes() <= 1)
1269				mapping_flags |= mtype_local;
1270			else
1271				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1272		/* system memory accessed by the dGPU */
1273		} else {
1274			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1275		}
1276		break;
1277	case IP_VERSION(12, 0, 0):
1278	case IP_VERSION(12, 0, 1):
1279		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1280			if (bo_node != node)
1281				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1282		} else {
1283			mapping_flags |= coherent ?
1284				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1285		}
1286		break;
1287	default:
1288		mapping_flags |= coherent ?
1289			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1290	}
1291
1292	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1293
1294	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1295		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1296	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1297		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1298
1299	pte_flags = AMDGPU_PTE_VALID;
1300	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1301	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1302	if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1303		pte_flags |= AMDGPU_PTE_IS_PTE;
1304
1305	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1306	return pte_flags;
1307}
1308
1309static int
1310svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1311			 uint64_t start, uint64_t last,
1312			 struct dma_fence **fence)
1313{
1314	uint64_t init_pte_value = 0;
1315
1316	pr_debug("[0x%llx 0x%llx]\n", start, last);
1317
1318	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1319				      last, init_pte_value, 0, 0, NULL, NULL,
1320				      fence);
1321}
1322
1323static int
1324svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1325			  unsigned long last, uint32_t trigger)
1326{
1327	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1328	struct kfd_process_device *pdd;
1329	struct dma_fence *fence = NULL;
1330	struct kfd_process *p;
1331	uint32_t gpuidx;
1332	int r = 0;
1333
1334	if (!prange->mapped_to_gpu) {
1335		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1336			 prange, prange->start, prange->last);
1337		return 0;
1338	}
1339
1340	if (prange->start == start && prange->last == last) {
1341		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1342		prange->mapped_to_gpu = false;
1343	}
1344
1345	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1346		  MAX_GPU_INSTANCE);
1347	p = container_of(prange->svms, struct kfd_process, svms);
1348
1349	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1350		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1351		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1352		if (!pdd) {
1353			pr_debug("failed to find device idx %d\n", gpuidx);
1354			return -EINVAL;
1355		}
1356
1357		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1358					     start, last, trigger);
1359
1360		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1361					     drm_priv_to_vm(pdd->drm_priv),
1362					     start, last, &fence);
1363		if (r)
1364			break;
1365
1366		if (fence) {
1367			r = dma_fence_wait(fence, false);
1368			dma_fence_put(fence);
1369			fence = NULL;
1370			if (r)
1371				break;
1372		}
1373		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1374	}
1375
1376	return r;
1377}
1378
1379static int
1380svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1381		     unsigned long offset, unsigned long npages, bool readonly,
1382		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1383		     struct dma_fence **fence, bool flush_tlb)
1384{
1385	struct amdgpu_device *adev = pdd->dev->adev;
1386	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1387	uint64_t pte_flags;
1388	unsigned long last_start;
1389	int last_domain;
1390	int r = 0;
1391	int64_t i, j;
1392
1393	last_start = prange->start + offset;
1394
1395	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1396		 last_start, last_start + npages - 1, readonly);
1397
1398	for (i = offset; i < offset + npages; i++) {
1399		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1400		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1401
1402		/* Collect all pages in the same address range and memory domain
1403		 * that can be mapped with a single call to update mapping.
1404		 */
1405		if (i < offset + npages - 1 &&
1406		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1407			continue;
1408
1409		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1410			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1411
1412		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1413		if (readonly)
1414			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1415
1416		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1417			 prange->svms, last_start, prange->start + i,
1418			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1419			 pte_flags);
1420
1421		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1422		 * different memory partition based on fpfn/lpfn, we should use
1423		 * same vm_manager.vram_base_offset regardless memory partition.
1424		 */
1425		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1426					   NULL, last_start, prange->start + i,
1427					   pte_flags,
1428					   (last_start - prange->start) << PAGE_SHIFT,
1429					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1430					   NULL, dma_addr, &vm->last_update);
1431
1432		for (j = last_start - prange->start; j <= i; j++)
1433			dma_addr[j] |= last_domain;
1434
1435		if (r) {
1436			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1437			goto out;
1438		}
1439		last_start = prange->start + i + 1;
1440	}
1441
1442	r = amdgpu_vm_update_pdes(adev, vm, false);
1443	if (r) {
1444		pr_debug("failed %d to update directories 0x%lx\n", r,
1445			 prange->start);
1446		goto out;
1447	}
1448
1449	if (fence)
1450		*fence = dma_fence_get(vm->last_update);
1451
1452out:
1453	return r;
1454}
1455
1456static int
1457svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1458		      unsigned long npages, bool readonly,
1459		      unsigned long *bitmap, bool wait, bool flush_tlb)
1460{
1461	struct kfd_process_device *pdd;
1462	struct amdgpu_device *bo_adev = NULL;
1463	struct kfd_process *p;
1464	struct dma_fence *fence = NULL;
1465	uint32_t gpuidx;
1466	int r = 0;
1467
1468	if (prange->svm_bo && prange->ttm_res)
1469		bo_adev = prange->svm_bo->node->adev;
1470
1471	p = container_of(prange->svms, struct kfd_process, svms);
1472	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1473		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1474		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1475		if (!pdd) {
1476			pr_debug("failed to find device idx %d\n", gpuidx);
1477			return -EINVAL;
1478		}
1479
1480		pdd = kfd_bind_process_to_device(pdd->dev, p);
1481		if (IS_ERR(pdd))
1482			return -EINVAL;
1483
1484		if (bo_adev && pdd->dev->adev != bo_adev &&
1485		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1486			pr_debug("cannot map to device idx %d\n", gpuidx);
1487			continue;
1488		}
1489
1490		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1491					 prange->dma_addr[gpuidx],
1492					 bo_adev, wait ? &fence : NULL,
1493					 flush_tlb);
1494		if (r)
1495			break;
1496
1497		if (fence) {
1498			r = dma_fence_wait(fence, false);
1499			dma_fence_put(fence);
1500			fence = NULL;
1501			if (r) {
1502				pr_debug("failed %d to dma fence wait\n", r);
1503				break;
1504			}
1505		}
1506
1507		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1508	}
1509
1510	return r;
1511}
1512
1513struct svm_validate_context {
1514	struct kfd_process *process;
1515	struct svm_range *prange;
1516	bool intr;
1517	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1518	struct drm_exec exec;
1519};
1520
1521static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1522{
1523	struct kfd_process_device *pdd;
1524	struct amdgpu_vm *vm;
1525	uint32_t gpuidx;
1526	int r;
1527
1528	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1529	drm_exec_until_all_locked(&ctx->exec) {
1530		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1531			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1532			if (!pdd) {
1533				pr_debug("failed to find device idx %d\n", gpuidx);
1534				r = -EINVAL;
1535				goto unreserve_out;
1536			}
1537			vm = drm_priv_to_vm(pdd->drm_priv);
1538
1539			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1540			drm_exec_retry_on_contention(&ctx->exec);
1541			if (unlikely(r)) {
1542				pr_debug("failed %d to reserve bo\n", r);
1543				goto unreserve_out;
1544			}
1545		}
1546	}
1547
1548	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1549		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1550		if (!pdd) {
1551			pr_debug("failed to find device idx %d\n", gpuidx);
1552			r = -EINVAL;
1553			goto unreserve_out;
1554		}
1555
1556		r = amdgpu_vm_validate(pdd->dev->adev,
1557				       drm_priv_to_vm(pdd->drm_priv), NULL,
1558				       svm_range_bo_validate, NULL);
1559		if (r) {
1560			pr_debug("failed %d validate pt bos\n", r);
1561			goto unreserve_out;
1562		}
1563	}
1564
1565	return 0;
1566
1567unreserve_out:
1568	drm_exec_fini(&ctx->exec);
1569	return r;
1570}
1571
1572static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1573{
1574	drm_exec_fini(&ctx->exec);
1575}
1576
1577static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1578{
1579	struct kfd_process_device *pdd;
1580
1581	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1582	if (!pdd)
1583		return NULL;
1584
1585	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1586}
1587
1588/*
1589 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1590 *
1591 * To prevent concurrent destruction or change of range attributes, the
1592 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1593 * because that would block concurrent evictions and lead to deadlocks. To
1594 * serialize concurrent migrations or validations of the same range, the
1595 * prange->migrate_mutex must be held.
1596 *
1597 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1598 * eviction fence.
1599 *
1600 * The following sequence ensures race-free validation and GPU mapping:
1601 *
1602 * 1. Reserve page table (and SVM BO if range is in VRAM)
1603 * 2. hmm_range_fault to get page addresses (if system memory)
1604 * 3. DMA-map pages (if system memory)
1605 * 4-a. Take notifier lock
1606 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1607 * 4-c. Check that the range was not split or otherwise invalidated
1608 * 4-d. Update GPU page table
1609 * 4.e. Release notifier lock
1610 * 5. Release page table (and SVM BO) reservation
1611 */
1612static int svm_range_validate_and_map(struct mm_struct *mm,
1613				      unsigned long map_start, unsigned long map_last,
1614				      struct svm_range *prange, int32_t gpuidx,
1615				      bool intr, bool wait, bool flush_tlb)
1616{
1617	struct svm_validate_context *ctx;
1618	unsigned long start, end, addr;
1619	struct kfd_process *p;
1620	void *owner;
1621	int32_t idx;
1622	int r = 0;
1623
1624	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1625	if (!ctx)
1626		return -ENOMEM;
1627	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1628	ctx->prange = prange;
1629	ctx->intr = intr;
1630
1631	if (gpuidx < MAX_GPU_INSTANCE) {
1632		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1633		bitmap_set(ctx->bitmap, gpuidx, 1);
1634	} else if (ctx->process->xnack_enabled) {
1635		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1636
1637		/* If prefetch range to GPU, or GPU retry fault migrate range to
1638		 * GPU, which has ACCESS attribute to the range, create mapping
1639		 * on that GPU.
1640		 */
1641		if (prange->actual_loc) {
1642			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1643							prange->actual_loc);
1644			if (gpuidx < 0) {
1645				WARN_ONCE(1, "failed get device by id 0x%x\n",
1646					 prange->actual_loc);
1647				r = -EINVAL;
1648				goto free_ctx;
1649			}
1650			if (test_bit(gpuidx, prange->bitmap_access))
1651				bitmap_set(ctx->bitmap, gpuidx, 1);
1652		}
1653
1654		/*
1655		 * If prange is already mapped or with always mapped flag,
1656		 * update mapping on GPUs with ACCESS attribute
1657		 */
1658		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1659			if (prange->mapped_to_gpu ||
1660			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1661				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1662		}
1663	} else {
1664		bitmap_or(ctx->bitmap, prange->bitmap_access,
1665			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1666	}
1667
1668	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1669		r = 0;
1670		goto free_ctx;
1671	}
1672
1673	if (prange->actual_loc && !prange->ttm_res) {
1674		/* This should never happen. actual_loc gets set by
1675		 * svm_migrate_ram_to_vram after allocating a BO.
1676		 */
1677		WARN_ONCE(1, "VRAM BO missing during validation\n");
1678		r = -EINVAL;
1679		goto free_ctx;
1680	}
1681
1682	r = svm_range_reserve_bos(ctx, intr);
1683	if (r)
1684		goto free_ctx;
1685
1686	p = container_of(prange->svms, struct kfd_process, svms);
1687	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1688						MAX_GPU_INSTANCE));
1689	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1690		if (kfd_svm_page_owner(p, idx) != owner) {
1691			owner = NULL;
1692			break;
1693		}
1694	}
1695
1696	start = map_start << PAGE_SHIFT;
1697	end = (map_last + 1) << PAGE_SHIFT;
1698	for (addr = start; !r && addr < end; ) {
1699		struct hmm_range *hmm_range = NULL;
1700		unsigned long map_start_vma;
1701		unsigned long map_last_vma;
1702		struct vm_area_struct *vma;
1703		unsigned long next = 0;
1704		unsigned long offset;
1705		unsigned long npages;
1706		bool readonly;
1707
1708		vma = vma_lookup(mm, addr);
1709		if (vma) {
1710			readonly = !(vma->vm_flags & VM_WRITE);
1711
1712			next = min(vma->vm_end, end);
1713			npages = (next - addr) >> PAGE_SHIFT;
1714			WRITE_ONCE(p->svms.faulting_task, current);
1715			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1716						       readonly, owner, NULL,
1717						       &hmm_range);
1718			WRITE_ONCE(p->svms.faulting_task, NULL);
1719			if (r)
1720				pr_debug("failed %d to get svm range pages\n", r);
1721		} else {
1722			r = -EFAULT;
1723		}
1724
1725		if (!r) {
1726			offset = (addr >> PAGE_SHIFT) - prange->start;
1727			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1728					      hmm_range->hmm_pfns);
1729			if (r)
1730				pr_debug("failed %d to dma map range\n", r);
1731		}
1732
1733		svm_range_lock(prange);
1734
1735		/* Free backing memory of hmm_range if it was initialized
1736		 * Overrride return value to TRY AGAIN only if prior returns
1737		 * were successful
1738		 */
1739		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1740			pr_debug("hmm update the range, need validate again\n");
1741			r = -EAGAIN;
1742		}
1743
1744		if (!r && !list_empty(&prange->child_list)) {
1745			pr_debug("range split by unmap in parallel, validate again\n");
1746			r = -EAGAIN;
1747		}
1748
1749		if (!r) {
1750			map_start_vma = max(map_start, prange->start + offset);
1751			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1752			if (map_start_vma <= map_last_vma) {
1753				offset = map_start_vma - prange->start;
1754				npages = map_last_vma - map_start_vma + 1;
1755				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1756							  ctx->bitmap, wait, flush_tlb);
1757			}
1758		}
1759
1760		if (!r && next == end)
1761			prange->mapped_to_gpu = true;
1762
1763		svm_range_unlock(prange);
1764
1765		addr = next;
1766	}
1767
1768	svm_range_unreserve_bos(ctx);
1769	if (!r)
1770		prange->validate_timestamp = ktime_get_boottime();
1771
1772free_ctx:
1773	kfree(ctx);
1774
1775	return r;
1776}
1777
1778/**
1779 * svm_range_list_lock_and_flush_work - flush pending deferred work
1780 *
1781 * @svms: the svm range list
1782 * @mm: the mm structure
1783 *
1784 * Context: Returns with mmap write lock held, pending deferred work flushed
1785 *
1786 */
1787void
1788svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1789				   struct mm_struct *mm)
1790{
1791retry_flush_work:
1792	flush_work(&svms->deferred_list_work);
1793	mmap_write_lock(mm);
1794
1795	if (list_empty(&svms->deferred_range_list))
1796		return;
1797	mmap_write_unlock(mm);
1798	pr_debug("retry flush\n");
1799	goto retry_flush_work;
1800}
1801
1802static void svm_range_restore_work(struct work_struct *work)
1803{
1804	struct delayed_work *dwork = to_delayed_work(work);
1805	struct amdkfd_process_info *process_info;
1806	struct svm_range_list *svms;
1807	struct svm_range *prange;
1808	struct kfd_process *p;
1809	struct mm_struct *mm;
1810	int evicted_ranges;
1811	int invalid;
1812	int r;
1813
1814	svms = container_of(dwork, struct svm_range_list, restore_work);
1815	evicted_ranges = atomic_read(&svms->evicted_ranges);
1816	if (!evicted_ranges)
1817		return;
1818
1819	pr_debug("restore svm ranges\n");
1820
1821	p = container_of(svms, struct kfd_process, svms);
1822	process_info = p->kgd_process_info;
1823
1824	/* Keep mm reference when svm_range_validate_and_map ranges */
1825	mm = get_task_mm(p->lead_thread);
1826	if (!mm) {
1827		pr_debug("svms 0x%p process mm gone\n", svms);
1828		return;
1829	}
1830
1831	mutex_lock(&process_info->lock);
1832	svm_range_list_lock_and_flush_work(svms, mm);
1833	mutex_lock(&svms->lock);
1834
1835	evicted_ranges = atomic_read(&svms->evicted_ranges);
1836
1837	list_for_each_entry(prange, &svms->list, list) {
1838		invalid = atomic_read(&prange->invalid);
1839		if (!invalid)
1840			continue;
1841
1842		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1843			 prange->svms, prange, prange->start, prange->last,
1844			 invalid);
1845
1846		/*
1847		 * If range is migrating, wait for migration is done.
1848		 */
1849		mutex_lock(&prange->migrate_mutex);
1850
1851		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1852					       MAX_GPU_INSTANCE, false, true, false);
1853		if (r)
1854			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1855				 prange->start);
1856
1857		mutex_unlock(&prange->migrate_mutex);
1858		if (r)
1859			goto out_reschedule;
1860
1861		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1862			goto out_reschedule;
1863	}
1864
1865	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1866	    evicted_ranges)
1867		goto out_reschedule;
1868
1869	evicted_ranges = 0;
1870
1871	r = kgd2kfd_resume_mm(mm);
1872	if (r) {
1873		/* No recovery from this failure. Probably the CP is
1874		 * hanging. No point trying again.
1875		 */
1876		pr_debug("failed %d to resume KFD\n", r);
1877	}
1878
1879	pr_debug("restore svm ranges successfully\n");
1880
1881out_reschedule:
1882	mutex_unlock(&svms->lock);
1883	mmap_write_unlock(mm);
1884	mutex_unlock(&process_info->lock);
1885
1886	/* If validation failed, reschedule another attempt */
1887	if (evicted_ranges) {
1888		pr_debug("reschedule to restore svm range\n");
1889		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1890			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1891
1892		kfd_smi_event_queue_restore_rescheduled(mm);
1893	}
1894	mmput(mm);
1895}
1896
1897/**
1898 * svm_range_evict - evict svm range
1899 * @prange: svm range structure
1900 * @mm: current process mm_struct
1901 * @start: starting process queue number
1902 * @last: last process queue number
1903 * @event: mmu notifier event when range is evicted or migrated
1904 *
1905 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1906 * return to let CPU evict the buffer and proceed CPU pagetable update.
1907 *
1908 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1909 * If invalidation happens while restore work is running, restore work will
1910 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1911 * the queues.
1912 */
1913static int
1914svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1915		unsigned long start, unsigned long last,
1916		enum mmu_notifier_event event)
1917{
1918	struct svm_range_list *svms = prange->svms;
1919	struct svm_range *pchild;
1920	struct kfd_process *p;
1921	int r = 0;
1922
1923	p = container_of(svms, struct kfd_process, svms);
1924
1925	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1926		 svms, prange->start, prange->last, start, last);
1927
1928	if (!p->xnack_enabled ||
1929	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1930		int evicted_ranges;
1931		bool mapped = prange->mapped_to_gpu;
1932
1933		list_for_each_entry(pchild, &prange->child_list, child_list) {
1934			if (!pchild->mapped_to_gpu)
1935				continue;
1936			mapped = true;
1937			mutex_lock_nested(&pchild->lock, 1);
1938			if (pchild->start <= last && pchild->last >= start) {
1939				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1940					 pchild->start, pchild->last);
1941				atomic_inc(&pchild->invalid);
1942			}
1943			mutex_unlock(&pchild->lock);
1944		}
1945
1946		if (!mapped)
1947			return r;
1948
1949		if (prange->start <= last && prange->last >= start)
1950			atomic_inc(&prange->invalid);
1951
1952		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1953		if (evicted_ranges != 1)
1954			return r;
1955
1956		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1957			 prange->svms, prange->start, prange->last);
1958
1959		/* First eviction, stop the queues */
1960		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1961		if (r)
1962			pr_debug("failed to quiesce KFD\n");
1963
1964		pr_debug("schedule to restore svm %p ranges\n", svms);
1965		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1966			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1967	} else {
1968		unsigned long s, l;
1969		uint32_t trigger;
1970
1971		if (event == MMU_NOTIFY_MIGRATE)
1972			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1973		else
1974			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1975
1976		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1977			 prange->svms, start, last);
1978		list_for_each_entry(pchild, &prange->child_list, child_list) {
1979			mutex_lock_nested(&pchild->lock, 1);
1980			s = max(start, pchild->start);
1981			l = min(last, pchild->last);
1982			if (l >= s)
1983				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1984			mutex_unlock(&pchild->lock);
1985		}
1986		s = max(start, prange->start);
1987		l = min(last, prange->last);
1988		if (l >= s)
1989			svm_range_unmap_from_gpus(prange, s, l, trigger);
1990	}
1991
1992	return r;
1993}
1994
1995static struct svm_range *svm_range_clone(struct svm_range *old)
1996{
1997	struct svm_range *new;
1998
1999	new = svm_range_new(old->svms, old->start, old->last, false);
2000	if (!new)
2001		return NULL;
2002	if (svm_range_copy_dma_addrs(new, old)) {
2003		svm_range_free(new, false);
2004		return NULL;
2005	}
2006	if (old->svm_bo) {
2007		new->ttm_res = old->ttm_res;
2008		new->offset = old->offset;
2009		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2010		spin_lock(&new->svm_bo->list_lock);
2011		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2012		spin_unlock(&new->svm_bo->list_lock);
2013	}
2014	new->flags = old->flags;
2015	new->preferred_loc = old->preferred_loc;
2016	new->prefetch_loc = old->prefetch_loc;
2017	new->actual_loc = old->actual_loc;
2018	new->granularity = old->granularity;
2019	new->mapped_to_gpu = old->mapped_to_gpu;
2020	new->vram_pages = old->vram_pages;
2021	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2022	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2023	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2024
2025	return new;
2026}
2027
2028void svm_range_set_max_pages(struct amdgpu_device *adev)
2029{
2030	uint64_t max_pages;
2031	uint64_t pages, _pages;
2032	uint64_t min_pages = 0;
2033	int i, id;
2034
2035	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2036		if (adev->kfd.dev->nodes[i]->xcp)
2037			id = adev->kfd.dev->nodes[i]->xcp->id;
2038		else
2039			id = -1;
2040		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2041		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2042		pages = rounddown_pow_of_two(pages);
2043		min_pages = min_not_zero(min_pages, pages);
2044	}
2045
2046	do {
2047		max_pages = READ_ONCE(max_svm_range_pages);
2048		_pages = min_not_zero(max_pages, min_pages);
2049	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2050}
2051
2052static int
2053svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2054		    uint64_t max_pages, struct list_head *insert_list,
2055		    struct list_head *update_list)
2056{
2057	struct svm_range *prange;
2058	uint64_t l;
2059
2060	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2061		 max_pages, start, last);
2062
2063	while (last >= start) {
2064		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2065
2066		prange = svm_range_new(svms, start, l, true);
2067		if (!prange)
2068			return -ENOMEM;
2069		list_add(&prange->list, insert_list);
2070		list_add(&prange->update_list, update_list);
2071
2072		start = l + 1;
2073	}
2074	return 0;
2075}
2076
2077/**
2078 * svm_range_add - add svm range and handle overlap
2079 * @p: the range add to this process svms
2080 * @start: page size aligned
2081 * @size: page size aligned
2082 * @nattr: number of attributes
2083 * @attrs: array of attributes
2084 * @update_list: output, the ranges need validate and update GPU mapping
2085 * @insert_list: output, the ranges need insert to svms
2086 * @remove_list: output, the ranges are replaced and need remove from svms
2087 * @remap_list: output, remap unaligned svm ranges
2088 *
2089 * Check if the virtual address range has overlap with any existing ranges,
2090 * split partly overlapping ranges and add new ranges in the gaps. All changes
2091 * should be applied to the range_list and interval tree transactionally. If
2092 * any range split or allocation fails, the entire update fails. Therefore any
2093 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2094 * unchanged.
2095 *
2096 * If the transaction succeeds, the caller can update and insert clones and
2097 * new ranges, then free the originals.
2098 *
2099 * Otherwise the caller can free the clones and new ranges, while the old
2100 * svm_ranges remain unchanged.
2101 *
2102 * Context: Process context, caller must hold svms->lock
2103 *
2104 * Return:
2105 * 0 - OK, otherwise error code
2106 */
2107static int
2108svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2109	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2110	      struct list_head *update_list, struct list_head *insert_list,
2111	      struct list_head *remove_list, struct list_head *remap_list)
2112{
2113	unsigned long last = start + size - 1UL;
2114	struct svm_range_list *svms = &p->svms;
2115	struct interval_tree_node *node;
2116	struct svm_range *prange;
2117	struct svm_range *tmp;
2118	struct list_head new_list;
2119	int r = 0;
2120
2121	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2122
2123	INIT_LIST_HEAD(update_list);
2124	INIT_LIST_HEAD(insert_list);
2125	INIT_LIST_HEAD(remove_list);
2126	INIT_LIST_HEAD(&new_list);
2127	INIT_LIST_HEAD(remap_list);
2128
2129	node = interval_tree_iter_first(&svms->objects, start, last);
2130	while (node) {
2131		struct interval_tree_node *next;
2132		unsigned long next_start;
2133
2134		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2135			 node->last);
2136
2137		prange = container_of(node, struct svm_range, it_node);
2138		next = interval_tree_iter_next(node, start, last);
2139		next_start = min(node->last, last) + 1;
2140
2141		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2142		    prange->mapped_to_gpu) {
2143			/* nothing to do */
2144		} else if (node->start < start || node->last > last) {
2145			/* node intersects the update range and its attributes
2146			 * will change. Clone and split it, apply updates only
2147			 * to the overlapping part
2148			 */
2149			struct svm_range *old = prange;
2150
2151			prange = svm_range_clone(old);
2152			if (!prange) {
2153				r = -ENOMEM;
2154				goto out;
2155			}
2156
2157			list_add(&old->update_list, remove_list);
2158			list_add(&prange->list, insert_list);
2159			list_add(&prange->update_list, update_list);
2160
2161			if (node->start < start) {
2162				pr_debug("change old range start\n");
2163				r = svm_range_split_head(prange, start,
2164							 insert_list, remap_list);
2165				if (r)
2166					goto out;
2167			}
2168			if (node->last > last) {
2169				pr_debug("change old range last\n");
2170				r = svm_range_split_tail(prange, last,
2171							 insert_list, remap_list);
2172				if (r)
2173					goto out;
2174			}
2175		} else {
2176			/* The node is contained within start..last,
2177			 * just update it
2178			 */
2179			list_add(&prange->update_list, update_list);
2180		}
2181
2182		/* insert a new node if needed */
2183		if (node->start > start) {
2184			r = svm_range_split_new(svms, start, node->start - 1,
2185						READ_ONCE(max_svm_range_pages),
2186						&new_list, update_list);
2187			if (r)
2188				goto out;
2189		}
2190
2191		node = next;
2192		start = next_start;
2193	}
2194
2195	/* add a final range at the end if needed */
2196	if (start <= last)
2197		r = svm_range_split_new(svms, start, last,
2198					READ_ONCE(max_svm_range_pages),
2199					&new_list, update_list);
2200
2201out:
2202	if (r) {
2203		list_for_each_entry_safe(prange, tmp, insert_list, list)
2204			svm_range_free(prange, false);
2205		list_for_each_entry_safe(prange, tmp, &new_list, list)
2206			svm_range_free(prange, true);
2207	} else {
2208		list_splice(&new_list, insert_list);
2209	}
2210
2211	return r;
2212}
2213
2214static void
2215svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2216					    struct svm_range *prange)
2217{
2218	unsigned long start;
2219	unsigned long last;
2220
2221	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2222	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2223
2224	if (prange->start == start && prange->last == last)
2225		return;
2226
2227	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2228		  prange->svms, prange, start, last, prange->start,
2229		  prange->last);
2230
2231	if (start != 0 && last != 0) {
2232		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2233		svm_range_remove_notifier(prange);
2234	}
2235	prange->it_node.start = prange->start;
2236	prange->it_node.last = prange->last;
2237
2238	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2239	svm_range_add_notifier_locked(mm, prange);
2240}
2241
2242static void
2243svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2244			 struct mm_struct *mm)
2245{
2246	switch (prange->work_item.op) {
2247	case SVM_OP_NULL:
2248		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2249			 svms, prange, prange->start, prange->last);
2250		break;
2251	case SVM_OP_UNMAP_RANGE:
2252		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2253			 svms, prange, prange->start, prange->last);
2254		svm_range_unlink(prange);
2255		svm_range_remove_notifier(prange);
2256		svm_range_free(prange, true);
2257		break;
2258	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2259		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2260			 svms, prange, prange->start, prange->last);
2261		svm_range_update_notifier_and_interval_tree(mm, prange);
2262		break;
2263	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2264		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2265			 svms, prange, prange->start, prange->last);
2266		svm_range_update_notifier_and_interval_tree(mm, prange);
2267		/* TODO: implement deferred validation and mapping */
2268		break;
2269	case SVM_OP_ADD_RANGE:
2270		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2271			 prange->start, prange->last);
2272		svm_range_add_to_svms(prange);
2273		svm_range_add_notifier_locked(mm, prange);
2274		break;
2275	case SVM_OP_ADD_RANGE_AND_MAP:
2276		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2277			 prange, prange->start, prange->last);
2278		svm_range_add_to_svms(prange);
2279		svm_range_add_notifier_locked(mm, prange);
2280		/* TODO: implement deferred validation and mapping */
2281		break;
2282	default:
2283		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2284			 prange->work_item.op);
2285	}
2286}
2287
2288static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2289{
2290	struct kfd_process_device *pdd;
2291	struct kfd_process *p;
2292	uint32_t i;
2293
2294	p = container_of(svms, struct kfd_process, svms);
2295
2296	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2297		pdd = p->pdds[i];
2298		if (!pdd)
2299			continue;
2300
2301		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2302
2303		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2304				pdd->dev->adev->irq.retry_cam_enabled ?
2305				&pdd->dev->adev->irq.ih :
2306				&pdd->dev->adev->irq.ih1);
2307
2308		if (pdd->dev->adev->irq.retry_cam_enabled)
2309			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2310				&pdd->dev->adev->irq.ih_soft);
2311
2312
2313		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2314	}
2315}
2316
2317static void svm_range_deferred_list_work(struct work_struct *work)
2318{
2319	struct svm_range_list *svms;
2320	struct svm_range *prange;
2321	struct mm_struct *mm;
2322
2323	svms = container_of(work, struct svm_range_list, deferred_list_work);
2324	pr_debug("enter svms 0x%p\n", svms);
2325
2326	spin_lock(&svms->deferred_list_lock);
2327	while (!list_empty(&svms->deferred_range_list)) {
2328		prange = list_first_entry(&svms->deferred_range_list,
2329					  struct svm_range, deferred_list);
2330		spin_unlock(&svms->deferred_list_lock);
2331
2332		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2333			 prange->start, prange->last, prange->work_item.op);
2334
2335		mm = prange->work_item.mm;
2336
2337		mmap_write_lock(mm);
2338
2339		/* Remove from deferred_list must be inside mmap write lock, for
2340		 * two race cases:
2341		 * 1. unmap_from_cpu may change work_item.op and add the range
2342		 *    to deferred_list again, cause use after free bug.
2343		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2344		 *    lock and continue because deferred_list is empty, but
2345		 *    deferred_list work is actually waiting for mmap lock.
2346		 */
2347		spin_lock(&svms->deferred_list_lock);
2348		list_del_init(&prange->deferred_list);
2349		spin_unlock(&svms->deferred_list_lock);
2350
2351		mutex_lock(&svms->lock);
2352		mutex_lock(&prange->migrate_mutex);
2353		while (!list_empty(&prange->child_list)) {
2354			struct svm_range *pchild;
2355
2356			pchild = list_first_entry(&prange->child_list,
2357						struct svm_range, child_list);
2358			pr_debug("child prange 0x%p op %d\n", pchild,
2359				 pchild->work_item.op);
2360			list_del_init(&pchild->child_list);
2361			svm_range_handle_list_op(svms, pchild, mm);
2362		}
2363		mutex_unlock(&prange->migrate_mutex);
2364
2365		svm_range_handle_list_op(svms, prange, mm);
2366		mutex_unlock(&svms->lock);
2367		mmap_write_unlock(mm);
2368
2369		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2370		 * last mm refcount, schedule release work to avoid circular locking
2371		 */
2372		mmput_async(mm);
2373
2374		spin_lock(&svms->deferred_list_lock);
2375	}
2376	spin_unlock(&svms->deferred_list_lock);
2377	pr_debug("exit svms 0x%p\n", svms);
2378}
2379
2380void
2381svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2382			struct mm_struct *mm, enum svm_work_list_ops op)
2383{
2384	spin_lock(&svms->deferred_list_lock);
2385	/* if prange is on the deferred list */
2386	if (!list_empty(&prange->deferred_list)) {
2387		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2388		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2389		if (op != SVM_OP_NULL &&
2390		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2391			prange->work_item.op = op;
2392	} else {
2393		prange->work_item.op = op;
2394
2395		/* Pairs with mmput in deferred_list_work */
2396		mmget(mm);
2397		prange->work_item.mm = mm;
2398		list_add_tail(&prange->deferred_list,
2399			      &prange->svms->deferred_range_list);
2400		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2401			 prange, prange->start, prange->last, op);
2402	}
2403	spin_unlock(&svms->deferred_list_lock);
2404}
2405
2406void schedule_deferred_list_work(struct svm_range_list *svms)
2407{
2408	spin_lock(&svms->deferred_list_lock);
2409	if (!list_empty(&svms->deferred_range_list))
2410		schedule_work(&svms->deferred_list_work);
2411	spin_unlock(&svms->deferred_list_lock);
2412}
2413
2414static void
2415svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2416		      struct svm_range *prange, unsigned long start,
2417		      unsigned long last)
2418{
2419	struct svm_range *head;
2420	struct svm_range *tail;
2421
2422	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2423		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2424			 prange->start, prange->last);
2425		return;
2426	}
2427	if (start > prange->last || last < prange->start)
2428		return;
2429
2430	head = tail = prange;
2431	if (start > prange->start)
2432		svm_range_split(prange, prange->start, start - 1, &tail);
2433	if (last < tail->last)
2434		svm_range_split(tail, last + 1, tail->last, &head);
2435
2436	if (head != prange && tail != prange) {
2437		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2438		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2439	} else if (tail != prange) {
2440		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2441	} else if (head != prange) {
2442		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2443	} else if (parent != prange) {
2444		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2445	}
2446}
2447
2448static void
2449svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2450			 unsigned long start, unsigned long last)
2451{
2452	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2453	struct svm_range_list *svms;
2454	struct svm_range *pchild;
2455	struct kfd_process *p;
2456	unsigned long s, l;
2457	bool unmap_parent;
2458	uint32_t i;
2459
2460	if (atomic_read(&prange->queue_refcount)) {
2461		int r;
2462
2463		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2464			prange->start << PAGE_SHIFT);
2465		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2466		if (r)
2467			pr_debug("failed %d to quiesce KFD queues\n", r);
2468	}
2469
2470	p = kfd_lookup_process_by_mm(mm);
2471	if (!p)
2472		return;
2473	svms = &p->svms;
2474
2475	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2476		 prange, prange->start, prange->last, start, last);
2477
2478	/* calculate time stamps that are used to decide which page faults need be
2479	 * dropped or handled before unmap pages from gpu vm
2480	 */
2481	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2482		struct kfd_process_device *pdd;
2483		struct amdgpu_device *adev;
2484		struct amdgpu_ih_ring *ih;
2485		uint32_t checkpoint_wptr;
2486
2487		pdd = p->pdds[i];
2488		if (!pdd)
2489			continue;
2490
2491		adev = pdd->dev->adev;
2492
2493		/* Check and drain ih1 ring if cam not available */
2494		if (adev->irq.ih1.ring_size) {
2495			ih = &adev->irq.ih1;
2496			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2497			if (ih->rptr != checkpoint_wptr) {
2498				svms->checkpoint_ts[i] =
2499					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2500				continue;
2501			}
2502		}
2503
2504		/* check if dev->irq.ih_soft is not empty */
2505		ih = &adev->irq.ih_soft;
2506		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2507		if (ih->rptr != checkpoint_wptr)
2508			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2509	}
2510
2511	unmap_parent = start <= prange->start && last >= prange->last;
2512
2513	list_for_each_entry(pchild, &prange->child_list, child_list) {
2514		mutex_lock_nested(&pchild->lock, 1);
2515		s = max(start, pchild->start);
2516		l = min(last, pchild->last);
2517		if (l >= s)
2518			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2519		svm_range_unmap_split(mm, prange, pchild, start, last);
2520		mutex_unlock(&pchild->lock);
2521	}
2522	s = max(start, prange->start);
2523	l = min(last, prange->last);
2524	if (l >= s)
2525		svm_range_unmap_from_gpus(prange, s, l, trigger);
2526	svm_range_unmap_split(mm, prange, prange, start, last);
2527
2528	if (unmap_parent)
2529		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2530	else
2531		svm_range_add_list_work(svms, prange, mm,
2532					SVM_OP_UPDATE_RANGE_NOTIFIER);
2533	schedule_deferred_list_work(svms);
2534
2535	kfd_unref_process(p);
2536}
2537
2538/**
2539 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2540 * @mni: mmu_interval_notifier struct
2541 * @range: mmu_notifier_range struct
2542 * @cur_seq: value to pass to mmu_interval_set_seq()
2543 *
2544 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2545 * is from migration, or CPU page invalidation callback.
2546 *
2547 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2548 * work thread, and split prange if only part of prange is unmapped.
2549 *
2550 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2551 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2552 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2553 * update GPU mapping to recover.
2554 *
2555 * Context: mmap lock, notifier_invalidate_start lock are held
2556 *          for invalidate event, prange lock is held if this is from migration
2557 */
2558static bool
2559svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2560				    const struct mmu_notifier_range *range,
2561				    unsigned long cur_seq)
2562{
2563	struct svm_range *prange;
2564	unsigned long start;
2565	unsigned long last;
2566
2567	if (range->event == MMU_NOTIFY_RELEASE)
2568		return true;
2569	if (!mmget_not_zero(mni->mm))
2570		return true;
2571
2572	start = mni->interval_tree.start;
2573	last = mni->interval_tree.last;
2574	start = max(start, range->start) >> PAGE_SHIFT;
2575	last = min(last, range->end - 1) >> PAGE_SHIFT;
2576	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2577		 start, last, range->start >> PAGE_SHIFT,
2578		 (range->end - 1) >> PAGE_SHIFT,
2579		 mni->interval_tree.start >> PAGE_SHIFT,
2580		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2581
2582	prange = container_of(mni, struct svm_range, notifier);
2583
2584	svm_range_lock(prange);
2585	mmu_interval_set_seq(mni, cur_seq);
2586
2587	switch (range->event) {
2588	case MMU_NOTIFY_UNMAP:
2589		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2590		break;
2591	default:
2592		svm_range_evict(prange, mni->mm, start, last, range->event);
2593		break;
2594	}
2595
2596	svm_range_unlock(prange);
2597	mmput(mni->mm);
2598
2599	return true;
2600}
2601
2602/**
2603 * svm_range_from_addr - find svm range from fault address
2604 * @svms: svm range list header
2605 * @addr: address to search range interval tree, in pages
2606 * @parent: parent range if range is on child list
2607 *
2608 * Context: The caller must hold svms->lock
2609 *
2610 * Return: the svm_range found or NULL
2611 */
2612struct svm_range *
2613svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2614		    struct svm_range **parent)
2615{
2616	struct interval_tree_node *node;
2617	struct svm_range *prange;
2618	struct svm_range *pchild;
2619
2620	node = interval_tree_iter_first(&svms->objects, addr, addr);
2621	if (!node)
2622		return NULL;
2623
2624	prange = container_of(node, struct svm_range, it_node);
2625	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2626		 addr, prange->start, prange->last, node->start, node->last);
2627
2628	if (addr >= prange->start && addr <= prange->last) {
2629		if (parent)
2630			*parent = prange;
2631		return prange;
2632	}
2633	list_for_each_entry(pchild, &prange->child_list, child_list)
2634		if (addr >= pchild->start && addr <= pchild->last) {
2635			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2636				 addr, pchild->start, pchild->last);
2637			if (parent)
2638				*parent = prange;
2639			return pchild;
2640		}
2641
2642	return NULL;
2643}
2644
2645/* svm_range_best_restore_location - decide the best fault restore location
2646 * @prange: svm range structure
2647 * @adev: the GPU on which vm fault happened
2648 *
2649 * This is only called when xnack is on, to decide the best location to restore
2650 * the range mapping after GPU vm fault. Caller uses the best location to do
2651 * migration if actual loc is not best location, then update GPU page table
2652 * mapping to the best location.
2653 *
2654 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2655 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2656 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2657 *    if range actual loc is cpu, best_loc is cpu
2658 *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2659 *    range actual loc.
2660 * Otherwise, GPU no access, best_loc is -1.
2661 *
2662 * Return:
2663 * -1 means vm fault GPU no access
2664 * 0 for CPU or GPU id
2665 */
2666static int32_t
2667svm_range_best_restore_location(struct svm_range *prange,
2668				struct kfd_node *node,
2669				int32_t *gpuidx)
2670{
2671	struct kfd_node *bo_node, *preferred_node;
2672	struct kfd_process *p;
2673	uint32_t gpuid;
2674	int r;
2675
2676	p = container_of(prange->svms, struct kfd_process, svms);
2677
2678	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2679	if (r < 0) {
2680		pr_debug("failed to get gpuid from kgd\n");
2681		return -1;
2682	}
2683
2684	if (node->adev->flags & AMD_IS_APU)
2685		return 0;
2686
2687	if (prange->preferred_loc == gpuid ||
2688	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2689		return prange->preferred_loc;
2690	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2691		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2692		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2693			return prange->preferred_loc;
2694		/* fall through */
2695	}
2696
2697	if (test_bit(*gpuidx, prange->bitmap_access))
2698		return gpuid;
2699
2700	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2701		if (!prange->actual_loc)
2702			return 0;
2703
2704		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2705		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2706			return prange->actual_loc;
2707		else
2708			return 0;
2709	}
2710
2711	return -1;
2712}
2713
2714static int
2715svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2716			       unsigned long *start, unsigned long *last,
2717			       bool *is_heap_stack)
2718{
2719	struct vm_area_struct *vma;
2720	struct interval_tree_node *node;
2721	struct rb_node *rb_node;
2722	unsigned long start_limit, end_limit;
2723
2724	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2725	if (!vma) {
2726		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2727		return -EFAULT;
2728	}
2729
2730	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2731
2732	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2733		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2734	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2735		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2736
2737	/* First range that starts after the fault address */
2738	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2739	if (node) {
2740		end_limit = min(end_limit, node->start);
2741		/* Last range that ends before the fault address */
2742		rb_node = rb_prev(&node->rb);
2743	} else {
2744		/* Last range must end before addr because
2745		 * there was no range after addr
2746		 */
2747		rb_node = rb_last(&p->svms.objects.rb_root);
2748	}
2749	if (rb_node) {
2750		node = container_of(rb_node, struct interval_tree_node, rb);
2751		if (node->last >= addr) {
2752			WARN(1, "Overlap with prev node and page fault addr\n");
2753			return -EFAULT;
2754		}
2755		start_limit = max(start_limit, node->last + 1);
2756	}
2757
2758	*start = start_limit;
2759	*last = end_limit - 1;
2760
2761	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2762		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2763		 *start, *last, *is_heap_stack);
2764
2765	return 0;
2766}
2767
2768static int
2769svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2770			   uint64_t *bo_s, uint64_t *bo_l)
2771{
2772	struct amdgpu_bo_va_mapping *mapping;
2773	struct interval_tree_node *node;
2774	struct amdgpu_bo *bo = NULL;
2775	unsigned long userptr;
2776	uint32_t i;
2777	int r;
2778
2779	for (i = 0; i < p->n_pdds; i++) {
2780		struct amdgpu_vm *vm;
2781
2782		if (!p->pdds[i]->drm_priv)
2783			continue;
2784
2785		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2786		r = amdgpu_bo_reserve(vm->root.bo, false);
2787		if (r)
2788			return r;
2789
2790		/* Check userptr by searching entire vm->va interval tree */
2791		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2792		while (node) {
2793			mapping = container_of((struct rb_node *)node,
2794					       struct amdgpu_bo_va_mapping, rb);
2795			bo = mapping->bo_va->base.bo;
2796
2797			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2798							 start << PAGE_SHIFT,
2799							 last << PAGE_SHIFT,
2800							 &userptr)) {
2801				node = interval_tree_iter_next(node, 0, ~0ULL);
2802				continue;
2803			}
2804
2805			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2806				 start, last);
2807			if (bo_s && bo_l) {
2808				*bo_s = userptr >> PAGE_SHIFT;
2809				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2810			}
2811			amdgpu_bo_unreserve(vm->root.bo);
2812			return -EADDRINUSE;
2813		}
2814		amdgpu_bo_unreserve(vm->root.bo);
2815	}
2816	return 0;
2817}
2818
2819static struct
2820svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2821						struct kfd_process *p,
2822						struct mm_struct *mm,
2823						int64_t addr)
2824{
2825	struct svm_range *prange = NULL;
2826	unsigned long start, last;
2827	uint32_t gpuid, gpuidx;
2828	bool is_heap_stack;
2829	uint64_t bo_s = 0;
2830	uint64_t bo_l = 0;
2831	int r;
2832
2833	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2834					   &is_heap_stack))
2835		return NULL;
2836
2837	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2838	if (r != -EADDRINUSE)
2839		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2840
2841	if (r == -EADDRINUSE) {
2842		if (addr >= bo_s && addr <= bo_l)
2843			return NULL;
2844
2845		/* Create one page svm range if 2MB range overlapping */
2846		start = addr;
2847		last = addr;
2848	}
2849
2850	prange = svm_range_new(&p->svms, start, last, true);
2851	if (!prange) {
2852		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2853		return NULL;
2854	}
2855	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2856		pr_debug("failed to get gpuid from kgd\n");
2857		svm_range_free(prange, true);
2858		return NULL;
2859	}
2860
2861	if (is_heap_stack)
2862		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2863
2864	svm_range_add_to_svms(prange);
2865	svm_range_add_notifier_locked(mm, prange);
2866
2867	return prange;
2868}
2869
2870/* svm_range_skip_recover - decide if prange can be recovered
2871 * @prange: svm range structure
2872 *
2873 * GPU vm retry fault handle skip recover the range for cases:
2874 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2875 *    deferred list work will drain the stale fault before free the prange.
2876 * 2. prange is on deferred list to add interval notifier after split, or
2877 * 3. prange is child range, it is split from parent prange, recover later
2878 *    after interval notifier is added.
2879 *
2880 * Return: true to skip recover, false to recover
2881 */
2882static bool svm_range_skip_recover(struct svm_range *prange)
2883{
2884	struct svm_range_list *svms = prange->svms;
2885
2886	spin_lock(&svms->deferred_list_lock);
2887	if (list_empty(&prange->deferred_list) &&
2888	    list_empty(&prange->child_list)) {
2889		spin_unlock(&svms->deferred_list_lock);
2890		return false;
2891	}
2892	spin_unlock(&svms->deferred_list_lock);
2893
2894	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2895		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2896			 svms, prange, prange->start, prange->last);
2897		return true;
2898	}
2899	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2900	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2901		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2902			 svms, prange, prange->start, prange->last);
2903		return true;
2904	}
2905	return false;
2906}
2907
2908static void
2909svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2910		      int32_t gpuidx)
2911{
2912	struct kfd_process_device *pdd;
2913
2914	/* fault is on different page of same range
2915	 * or fault is skipped to recover later
2916	 * or fault is on invalid virtual address
2917	 */
2918	if (gpuidx == MAX_GPU_INSTANCE) {
2919		uint32_t gpuid;
2920		int r;
2921
2922		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2923		if (r < 0)
2924			return;
2925	}
2926
2927	/* fault is recovered
2928	 * or fault cannot recover because GPU no access on the range
2929	 */
2930	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2931	if (pdd)
2932		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2933}
2934
2935static bool
2936svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2937{
2938	unsigned long requested = VM_READ;
2939
2940	if (write_fault)
2941		requested |= VM_WRITE;
2942
2943	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2944		vma->vm_flags);
2945	return (vma->vm_flags & requested) == requested;
2946}
2947
2948int
2949svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2950			uint32_t vmid, uint32_t node_id,
2951			uint64_t addr, uint64_t ts, bool write_fault)
2952{
2953	unsigned long start, last, size;
2954	struct mm_struct *mm = NULL;
2955	struct svm_range_list *svms;
2956	struct svm_range *prange;
2957	struct kfd_process *p;
2958	ktime_t timestamp = ktime_get_boottime();
2959	struct kfd_node *node;
2960	int32_t best_loc;
2961	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2962	bool write_locked = false;
2963	struct vm_area_struct *vma;
2964	bool migration = false;
2965	int r = 0;
2966
2967	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2968		pr_debug("device does not support SVM\n");
2969		return -EFAULT;
2970	}
2971
2972	p = kfd_lookup_process_by_pasid(pasid);
2973	if (!p) {
2974		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2975		return 0;
2976	}
2977	svms = &p->svms;
2978
2979	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2980
2981	if (atomic_read(&svms->drain_pagefaults)) {
2982		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2983		r = 0;
2984		goto out;
2985	}
2986
2987	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2988	if (!node) {
2989		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2990			 vmid);
2991		r = -EFAULT;
2992		goto out;
2993	}
2994
2995	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2996		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2997		r = -EFAULT;
2998		goto out;
2999	}
3000
3001	/* check if this page fault time stamp is before svms->checkpoint_ts */
3002	if (svms->checkpoint_ts[gpuidx] != 0) {
3003		if (amdgpu_ih_ts_after(ts,  svms->checkpoint_ts[gpuidx])) {
3004			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3005			r = 0;
3006			goto out;
3007		} else
3008			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3009			 * to zero to avoid following ts wrap around give wrong comparing
3010			 */
3011			svms->checkpoint_ts[gpuidx] = 0;
3012	}
3013
3014	if (!p->xnack_enabled) {
3015		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3016		r = -EFAULT;
3017		goto out;
3018	}
3019
3020	/* p->lead_thread is available as kfd_process_wq_release flush the work
3021	 * before releasing task ref.
3022	 */
3023	mm = get_task_mm(p->lead_thread);
3024	if (!mm) {
3025		pr_debug("svms 0x%p failed to get mm\n", svms);
3026		r = 0;
3027		goto out;
3028	}
3029
3030	mmap_read_lock(mm);
3031retry_write_locked:
3032	mutex_lock(&svms->lock);
3033	prange = svm_range_from_addr(svms, addr, NULL);
3034	if (!prange) {
3035		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3036			 svms, addr);
3037		if (!write_locked) {
3038			/* Need the write lock to create new range with MMU notifier.
3039			 * Also flush pending deferred work to make sure the interval
3040			 * tree is up to date before we add a new range
3041			 */
3042			mutex_unlock(&svms->lock);
3043			mmap_read_unlock(mm);
3044			mmap_write_lock(mm);
3045			write_locked = true;
3046			goto retry_write_locked;
3047		}
3048		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3049		if (!prange) {
3050			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3051				 svms, addr);
3052			mmap_write_downgrade(mm);
3053			r = -EFAULT;
3054			goto out_unlock_svms;
3055		}
3056	}
3057	if (write_locked)
3058		mmap_write_downgrade(mm);
3059
3060	mutex_lock(&prange->migrate_mutex);
3061
3062	if (svm_range_skip_recover(prange)) {
3063		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3064		r = 0;
3065		goto out_unlock_range;
3066	}
3067
3068	/* skip duplicate vm fault on different pages of same range */
3069	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3070				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3071		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3072			 svms, prange->start, prange->last);
3073		r = 0;
3074		goto out_unlock_range;
3075	}
3076
3077	/* __do_munmap removed VMA, return success as we are handling stale
3078	 * retry fault.
3079	 */
3080	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3081	if (!vma) {
3082		pr_debug("address 0x%llx VMA is removed\n", addr);
3083		r = 0;
3084		goto out_unlock_range;
3085	}
3086
3087	if (!svm_fault_allowed(vma, write_fault)) {
3088		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3089			write_fault ? "write" : "read");
3090		r = -EPERM;
3091		goto out_unlock_range;
3092	}
3093
3094	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3095	if (best_loc == -1) {
3096		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3097			 svms, prange->start, prange->last);
3098		r = -EACCES;
3099		goto out_unlock_range;
3100	}
3101
3102	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3103		 svms, prange->start, prange->last, best_loc,
3104		 prange->actual_loc);
3105
3106	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3107				       write_fault, timestamp);
3108
3109	/* Align migration range start and size to granularity size */
3110	size = 1UL << prange->granularity;
3111	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3112	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3113	if (prange->actual_loc != 0 || best_loc != 0) {
3114		if (best_loc) {
3115			r = svm_migrate_to_vram(prange, best_loc, start, last,
3116					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3117			if (r) {
3118				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3119					 r, addr);
3120				/* Fallback to system memory if migration to
3121				 * VRAM failed
3122				 */
3123				if (prange->actual_loc && prange->actual_loc != best_loc)
3124					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3125						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3126				else
3127					r = 0;
3128			}
3129		} else {
3130			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3131					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3132		}
3133		if (r) {
3134			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3135				 r, svms, start, last);
3136			goto out_migrate_fail;
3137		} else {
3138			migration = true;
3139		}
3140	}
3141
3142	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3143				       false, false);
3144	if (r)
3145		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3146			 r, svms, start, last);
3147
3148out_migrate_fail:
3149	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3150				     migration);
3151
3152out_unlock_range:
3153	mutex_unlock(&prange->migrate_mutex);
3154out_unlock_svms:
3155	mutex_unlock(&svms->lock);
3156	mmap_read_unlock(mm);
3157
3158	svm_range_count_fault(node, p, gpuidx);
3159
3160	mmput(mm);
3161out:
3162	kfd_unref_process(p);
3163
3164	if (r == -EAGAIN) {
3165		pr_debug("recover vm fault later\n");
3166		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3167		r = 0;
3168	}
3169	return r;
3170}
3171
3172int
3173svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3174{
3175	struct svm_range *prange, *pchild;
3176	uint64_t reserved_size = 0;
3177	uint64_t size;
3178	int r = 0;
3179
3180	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3181
3182	mutex_lock(&p->svms.lock);
3183
3184	list_for_each_entry(prange, &p->svms.list, list) {
3185		svm_range_lock(prange);
3186		list_for_each_entry(pchild, &prange->child_list, child_list) {
3187			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3188			if (xnack_enabled) {
3189				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3190					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3191			} else {
3192				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3193					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3194				if (r)
3195					goto out_unlock;
3196				reserved_size += size;
3197			}
3198		}
3199
3200		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3201		if (xnack_enabled) {
3202			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3203					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3204		} else {
3205			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3206					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3207			if (r)
3208				goto out_unlock;
3209			reserved_size += size;
3210		}
3211out_unlock:
3212		svm_range_unlock(prange);
3213		if (r)
3214			break;
3215	}
3216
3217	if (r)
3218		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3219					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3220	else
3221		/* Change xnack mode must be inside svms lock, to avoid race with
3222		 * svm_range_deferred_list_work unreserve memory in parallel.
3223		 */
3224		p->xnack_enabled = xnack_enabled;
3225
3226	mutex_unlock(&p->svms.lock);
3227	return r;
3228}
3229
3230void svm_range_list_fini(struct kfd_process *p)
3231{
3232	struct svm_range *prange;
3233	struct svm_range *next;
3234
3235	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3236
3237	cancel_delayed_work_sync(&p->svms.restore_work);
3238
3239	/* Ensure list work is finished before process is destroyed */
3240	flush_work(&p->svms.deferred_list_work);
3241
3242	/*
3243	 * Ensure no retry fault comes in afterwards, as page fault handler will
3244	 * not find kfd process and take mm lock to recover fault.
3245	 * stop kfd page fault handing, then wait pending page faults got drained
3246	 */
3247	atomic_set(&p->svms.drain_pagefaults, 1);
3248	svm_range_drain_retry_fault(&p->svms);
3249
3250	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3251		svm_range_unlink(prange);
3252		svm_range_remove_notifier(prange);
3253		svm_range_free(prange, true);
3254	}
3255
3256	mutex_destroy(&p->svms.lock);
3257
3258	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3259}
3260
3261int svm_range_list_init(struct kfd_process *p)
3262{
3263	struct svm_range_list *svms = &p->svms;
3264	int i;
3265
3266	svms->objects = RB_ROOT_CACHED;
3267	mutex_init(&svms->lock);
3268	INIT_LIST_HEAD(&svms->list);
3269	atomic_set(&svms->evicted_ranges, 0);
3270	atomic_set(&svms->drain_pagefaults, 0);
3271	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3272	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3273	INIT_LIST_HEAD(&svms->deferred_range_list);
3274	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3275	spin_lock_init(&svms->deferred_list_lock);
3276
3277	for (i = 0; i < p->n_pdds; i++)
3278		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3279			bitmap_set(svms->bitmap_supported, i, 1);
3280
3281	 /* Value of default granularity cannot exceed 0x1B, the
3282	  * number of pages supported by a 4-level paging table
3283	  */
3284	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3285	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3286
3287	return 0;
3288}
3289
3290/**
3291 * svm_range_check_vm - check if virtual address range mapped already
3292 * @p: current kfd_process
3293 * @start: range start address, in pages
3294 * @last: range last address, in pages
3295 * @bo_s: mapping start address in pages if address range already mapped
3296 * @bo_l: mapping last address in pages if address range already mapped
3297 *
3298 * The purpose is to avoid virtual address ranges already allocated by
3299 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3300 * It looks for each pdd in the kfd_process.
3301 *
3302 * Context: Process context
3303 *
3304 * Return 0 - OK, if the range is not mapped.
3305 * Otherwise error code:
3306 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3307 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3308 * a signal. Release all buffer reservations and return to user-space.
3309 */
3310static int
3311svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3312		   uint64_t *bo_s, uint64_t *bo_l)
3313{
3314	struct amdgpu_bo_va_mapping *mapping;
3315	struct interval_tree_node *node;
3316	uint32_t i;
3317	int r;
3318
3319	for (i = 0; i < p->n_pdds; i++) {
3320		struct amdgpu_vm *vm;
3321
3322		if (!p->pdds[i]->drm_priv)
3323			continue;
3324
3325		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3326		r = amdgpu_bo_reserve(vm->root.bo, false);
3327		if (r)
3328			return r;
3329
3330		node = interval_tree_iter_first(&vm->va, start, last);
3331		if (node) {
3332			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3333				 start, last);
3334			mapping = container_of((struct rb_node *)node,
3335					       struct amdgpu_bo_va_mapping, rb);
3336			if (bo_s && bo_l) {
3337				*bo_s = mapping->start;
3338				*bo_l = mapping->last;
3339			}
3340			amdgpu_bo_unreserve(vm->root.bo);
3341			return -EADDRINUSE;
3342		}
3343		amdgpu_bo_unreserve(vm->root.bo);
3344	}
3345
3346	return 0;
3347}
3348
3349/**
3350 * svm_range_is_valid - check if virtual address range is valid
3351 * @p: current kfd_process
3352 * @start: range start address, in pages
3353 * @size: range size, in pages
3354 *
3355 * Valid virtual address range means it belongs to one or more VMAs
3356 *
3357 * Context: Process context
3358 *
3359 * Return:
3360 *  0 - OK, otherwise error code
3361 */
3362static int
3363svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3364{
3365	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3366	struct vm_area_struct *vma;
3367	unsigned long end;
3368	unsigned long start_unchg = start;
3369
3370	start <<= PAGE_SHIFT;
3371	end = start + (size << PAGE_SHIFT);
3372	do {
3373		vma = vma_lookup(p->mm, start);
3374		if (!vma || (vma->vm_flags & device_vma))
3375			return -EFAULT;
3376		start = min(end, vma->vm_end);
3377	} while (start < end);
3378
3379	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3380				  NULL);
3381}
3382
3383/**
3384 * svm_range_best_prefetch_location - decide the best prefetch location
3385 * @prange: svm range structure
3386 *
3387 * For xnack off:
3388 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3389 * can be CPU or GPU.
3390 *
3391 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3392 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3393 * the best prefetch location is always CPU, because GPU can not have coherent
3394 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3395 *
3396 * For xnack on:
3397 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3398 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3399 *
3400 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3401 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3402 * prefetch location is always CPU.
3403 *
3404 * Context: Process context
3405 *
3406 * Return:
3407 * 0 for CPU or GPU id
3408 */
3409static uint32_t
3410svm_range_best_prefetch_location(struct svm_range *prange)
3411{
3412	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3413	uint32_t best_loc = prange->prefetch_loc;
3414	struct kfd_process_device *pdd;
3415	struct kfd_node *bo_node;
3416	struct kfd_process *p;
3417	uint32_t gpuidx;
3418
3419	p = container_of(prange->svms, struct kfd_process, svms);
3420
3421	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3422		goto out;
3423
3424	bo_node = svm_range_get_node_by_id(prange, best_loc);
3425	if (!bo_node) {
3426		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3427		best_loc = 0;
3428		goto out;
3429	}
3430
3431	if (bo_node->adev->flags & AMD_IS_APU) {
3432		best_loc = 0;
3433		goto out;
3434	}
3435
3436	if (p->xnack_enabled)
3437		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3438	else
3439		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3440			  MAX_GPU_INSTANCE);
3441
3442	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3443		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3444		if (!pdd) {
3445			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3446			continue;
3447		}
3448
3449		if (pdd->dev->adev == bo_node->adev)
3450			continue;
3451
3452		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3453			best_loc = 0;
3454			break;
3455		}
3456	}
3457
3458out:
3459	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3460		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3461		 best_loc);
3462
3463	return best_loc;
3464}
3465
3466/* svm_range_trigger_migration - start page migration if prefetch loc changed
3467 * @mm: current process mm_struct
3468 * @prange: svm range structure
3469 * @migrated: output, true if migration is triggered
3470 *
3471 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3472 * from ram to vram.
3473 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3474 * from vram to ram.
3475 *
3476 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3477 * and restore work:
3478 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3479 *    stops all queues, schedule restore work
3480 * 2. svm_range_restore_work wait for migration is done by
3481 *    a. svm_range_validate_vram takes prange->migrate_mutex
3482 *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3483 * 3. restore work update mappings of GPU, resume all queues.
3484 *
3485 * Context: Process context
3486 *
3487 * Return:
3488 * 0 - OK, otherwise - error code of migration
3489 */
3490static int
3491svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3492			    bool *migrated)
3493{
3494	uint32_t best_loc;
3495	int r = 0;
3496
3497	*migrated = false;
3498	best_loc = svm_range_best_prefetch_location(prange);
3499
3500	/* when best_loc is a gpu node and same as prange->actual_loc
3501	 * we still need do migration as prange->actual_loc !=0 does
3502	 * not mean all pages in prange are vram. hmm migrate will pick
3503	 * up right pages during migration.
3504	 */
3505	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3506	    (best_loc == 0 && prange->actual_loc == 0))
3507		return 0;
3508
3509	if (!best_loc) {
3510		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3511					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3512		*migrated = !r;
3513		return r;
3514	}
3515
3516	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3517				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3518	*migrated = !r;
3519
3520	return 0;
3521}
3522
3523int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3524{
3525	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3526	 * signaled yet and we're under the protection of the fence->lock.
3527	 * After the fence is signaled in svm_range_bo_release, we cannot get
3528	 * here any more.
3529	 *
3530	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3531	 */
3532	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3533		WRITE_ONCE(fence->svm_bo->evicting, 1);
3534		schedule_work(&fence->svm_bo->eviction_work);
3535	}
3536
3537	return 0;
3538}
3539
3540static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3541{
3542	struct svm_range_bo *svm_bo;
3543	struct mm_struct *mm;
3544	int r = 0;
3545
3546	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3547
3548	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3549		mm = svm_bo->eviction_fence->mm;
3550	} else {
3551		svm_range_bo_unref(svm_bo);
3552		return;
3553	}
3554
3555	mmap_read_lock(mm);
3556	spin_lock(&svm_bo->list_lock);
3557	while (!list_empty(&svm_bo->range_list) && !r) {
3558		struct svm_range *prange =
3559				list_first_entry(&svm_bo->range_list,
3560						struct svm_range, svm_bo_list);
3561		int retries = 3;
3562
3563		list_del_init(&prange->svm_bo_list);
3564		spin_unlock(&svm_bo->list_lock);
3565
3566		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3567			 prange->start, prange->last);
3568
3569		mutex_lock(&prange->migrate_mutex);
3570		do {
3571			/* migrate all vram pages in this prange to sys ram
3572			 * after that prange->actual_loc should be zero
3573			 */
3574			r = svm_migrate_vram_to_ram(prange, mm,
3575					prange->start, prange->last,
3576					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3577		} while (!r && prange->actual_loc && --retries);
3578
3579		if (!r && prange->actual_loc)
3580			pr_info_once("Migration failed during eviction");
3581
3582		if (!prange->actual_loc) {
3583			mutex_lock(&prange->lock);
3584			prange->svm_bo = NULL;
3585			mutex_unlock(&prange->lock);
3586		}
3587		mutex_unlock(&prange->migrate_mutex);
3588
3589		spin_lock(&svm_bo->list_lock);
3590	}
3591	spin_unlock(&svm_bo->list_lock);
3592	mmap_read_unlock(mm);
3593	mmput(mm);
3594
3595	dma_fence_signal(&svm_bo->eviction_fence->base);
3596
3597	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3598	 * has been called in svm_migrate_vram_to_ram
3599	 */
3600	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3601	svm_range_bo_unref(svm_bo);
3602}
3603
3604static int
3605svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3606		   uint64_t start, uint64_t size, uint32_t nattr,
3607		   struct kfd_ioctl_svm_attribute *attrs)
3608{
3609	struct amdkfd_process_info *process_info = p->kgd_process_info;
3610	struct list_head update_list;
3611	struct list_head insert_list;
3612	struct list_head remove_list;
3613	struct list_head remap_list;
3614	struct svm_range_list *svms;
3615	struct svm_range *prange;
3616	struct svm_range *next;
3617	bool update_mapping = false;
3618	bool flush_tlb;
3619	int r, ret = 0;
3620
3621	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3622		 p->pasid, &p->svms, start, start + size - 1, size);
3623
3624	r = svm_range_check_attr(p, nattr, attrs);
3625	if (r)
3626		return r;
3627
3628	svms = &p->svms;
3629
3630	mutex_lock(&process_info->lock);
3631
3632	svm_range_list_lock_and_flush_work(svms, mm);
3633
3634	r = svm_range_is_valid(p, start, size);
3635	if (r) {
3636		pr_debug("invalid range r=%d\n", r);
3637		mmap_write_unlock(mm);
3638		goto out;
3639	}
3640
3641	mutex_lock(&svms->lock);
3642
3643	/* Add new range and split existing ranges as needed */
3644	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3645			  &insert_list, &remove_list, &remap_list);
3646	if (r) {
3647		mutex_unlock(&svms->lock);
3648		mmap_write_unlock(mm);
3649		goto out;
3650	}
3651	/* Apply changes as a transaction */
3652	list_for_each_entry_safe(prange, next, &insert_list, list) {
3653		svm_range_add_to_svms(prange);
3654		svm_range_add_notifier_locked(mm, prange);
3655	}
3656	list_for_each_entry(prange, &update_list, update_list) {
3657		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3658		/* TODO: unmap ranges from GPU that lost access */
3659	}
3660	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3661		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3662			 prange->svms, prange, prange->start,
3663			 prange->last);
3664		svm_range_unlink(prange);
3665		svm_range_remove_notifier(prange);
3666		svm_range_free(prange, false);
3667	}
3668
3669	mmap_write_downgrade(mm);
3670	/* Trigger migrations and revalidate and map to GPUs as needed. If
3671	 * this fails we may be left with partially completed actions. There
3672	 * is no clean way of rolling back to the previous state in such a
3673	 * case because the rollback wouldn't be guaranteed to work either.
3674	 */
3675	list_for_each_entry(prange, &update_list, update_list) {
3676		bool migrated;
3677
3678		mutex_lock(&prange->migrate_mutex);
3679
3680		r = svm_range_trigger_migration(mm, prange, &migrated);
3681		if (r)
3682			goto out_unlock_range;
3683
3684		if (migrated && (!p->xnack_enabled ||
3685		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3686		    prange->mapped_to_gpu) {
3687			pr_debug("restore_work will update mappings of GPUs\n");
3688			mutex_unlock(&prange->migrate_mutex);
3689			continue;
3690		}
3691
3692		if (!migrated && !update_mapping) {
3693			mutex_unlock(&prange->migrate_mutex);
3694			continue;
3695		}
3696
3697		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3698
3699		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3700					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3701		if (r)
3702			pr_debug("failed %d to map svm range\n", r);
3703
3704out_unlock_range:
3705		mutex_unlock(&prange->migrate_mutex);
3706		if (r)
3707			ret = r;
3708	}
3709
3710	list_for_each_entry(prange, &remap_list, update_list) {
3711		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3712			 prange, prange->start, prange->last);
3713		mutex_lock(&prange->migrate_mutex);
3714		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3715					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3716		if (r)
3717			pr_debug("failed %d on remap svm range\n", r);
3718		mutex_unlock(&prange->migrate_mutex);
3719		if (r)
3720			ret = r;
3721	}
3722
3723	dynamic_svm_range_dump(svms);
3724
3725	mutex_unlock(&svms->lock);
3726	mmap_read_unlock(mm);
3727out:
3728	mutex_unlock(&process_info->lock);
3729
3730	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3731		 &p->svms, start, start + size - 1, r);
3732
3733	return ret ? ret : r;
3734}
3735
3736static int
3737svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3738		   uint64_t start, uint64_t size, uint32_t nattr,
3739		   struct kfd_ioctl_svm_attribute *attrs)
3740{
3741	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3742	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3743	bool get_preferred_loc = false;
3744	bool get_prefetch_loc = false;
3745	bool get_granularity = false;
3746	bool get_accessible = false;
3747	bool get_flags = false;
3748	uint64_t last = start + size - 1UL;
3749	uint8_t granularity = 0xff;
3750	struct interval_tree_node *node;
3751	struct svm_range_list *svms;
3752	struct svm_range *prange;
3753	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3754	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3755	uint32_t flags_and = 0xffffffff;
3756	uint32_t flags_or = 0;
3757	int gpuidx;
3758	uint32_t i;
3759	int r = 0;
3760
3761	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3762		 start + size - 1, nattr);
3763
3764	/* Flush pending deferred work to avoid racing with deferred actions from
3765	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3766	 * can still race with get_attr because we don't hold the mmap lock. But that
3767	 * would be a race condition in the application anyway, and undefined
3768	 * behaviour is acceptable in that case.
3769	 */
3770	flush_work(&p->svms.deferred_list_work);
3771
3772	mmap_read_lock(mm);
3773	r = svm_range_is_valid(p, start, size);
3774	mmap_read_unlock(mm);
3775	if (r) {
3776		pr_debug("invalid range r=%d\n", r);
3777		return r;
3778	}
3779
3780	for (i = 0; i < nattr; i++) {
3781		switch (attrs[i].type) {
3782		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3783			get_preferred_loc = true;
3784			break;
3785		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3786			get_prefetch_loc = true;
3787			break;
3788		case KFD_IOCTL_SVM_ATTR_ACCESS:
3789			get_accessible = true;
3790			break;
3791		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3792		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3793			get_flags = true;
3794			break;
3795		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3796			get_granularity = true;
3797			break;
3798		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3799		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3800			fallthrough;
3801		default:
3802			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3803			return -EINVAL;
3804		}
3805	}
3806
3807	svms = &p->svms;
3808
3809	mutex_lock(&svms->lock);
3810
3811	node = interval_tree_iter_first(&svms->objects, start, last);
3812	if (!node) {
3813		pr_debug("range attrs not found return default values\n");
3814		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3815						 &granularity, &flags_and);
3816		flags_or = flags_and;
3817		if (p->xnack_enabled)
3818			bitmap_copy(bitmap_access, svms->bitmap_supported,
3819				    MAX_GPU_INSTANCE);
3820		else
3821			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3822		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3823		goto fill_values;
3824	}
3825	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3826	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3827
3828	while (node) {
3829		struct interval_tree_node *next;
3830
3831		prange = container_of(node, struct svm_range, it_node);
3832		next = interval_tree_iter_next(node, start, last);
3833
3834		if (get_preferred_loc) {
3835			if (prange->preferred_loc ==
3836					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3837			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3838			     location != prange->preferred_loc)) {
3839				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3840				get_preferred_loc = false;
3841			} else {
3842				location = prange->preferred_loc;
3843			}
3844		}
3845		if (get_prefetch_loc) {
3846			if (prange->prefetch_loc ==
3847					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3848			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3849			     prefetch_loc != prange->prefetch_loc)) {
3850				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3851				get_prefetch_loc = false;
3852			} else {
3853				prefetch_loc = prange->prefetch_loc;
3854			}
3855		}
3856		if (get_accessible) {
3857			bitmap_and(bitmap_access, bitmap_access,
3858				   prange->bitmap_access, MAX_GPU_INSTANCE);
3859			bitmap_and(bitmap_aip, bitmap_aip,
3860				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3861		}
3862		if (get_flags) {
3863			flags_and &= prange->flags;
3864			flags_or |= prange->flags;
3865		}
3866
3867		if (get_granularity && prange->granularity < granularity)
3868			granularity = prange->granularity;
3869
3870		node = next;
3871	}
3872fill_values:
3873	mutex_unlock(&svms->lock);
3874
3875	for (i = 0; i < nattr; i++) {
3876		switch (attrs[i].type) {
3877		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3878			attrs[i].value = location;
3879			break;
3880		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3881			attrs[i].value = prefetch_loc;
3882			break;
3883		case KFD_IOCTL_SVM_ATTR_ACCESS:
3884			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3885							       attrs[i].value);
3886			if (gpuidx < 0) {
3887				pr_debug("invalid gpuid %x\n", attrs[i].value);
3888				return -EINVAL;
3889			}
3890			if (test_bit(gpuidx, bitmap_access))
3891				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3892			else if (test_bit(gpuidx, bitmap_aip))
3893				attrs[i].type =
3894					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3895			else
3896				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3897			break;
3898		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3899			attrs[i].value = flags_and;
3900			break;
3901		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3902			attrs[i].value = ~flags_or;
3903			break;
3904		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3905			attrs[i].value = (uint32_t)granularity;
3906			break;
3907		}
3908	}
3909
3910	return 0;
3911}
3912
3913int kfd_criu_resume_svm(struct kfd_process *p)
3914{
3915	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3916	int nattr_common = 4, nattr_accessibility = 1;
3917	struct criu_svm_metadata *criu_svm_md = NULL;
3918	struct svm_range_list *svms = &p->svms;
3919	struct criu_svm_metadata *next = NULL;
3920	uint32_t set_flags = 0xffffffff;
3921	int i, j, num_attrs, ret = 0;
3922	uint64_t set_attr_size;
3923	struct mm_struct *mm;
3924
3925	if (list_empty(&svms->criu_svm_metadata_list)) {
3926		pr_debug("No SVM data from CRIU restore stage 2\n");
3927		return ret;
3928	}
3929
3930	mm = get_task_mm(p->lead_thread);
3931	if (!mm) {
3932		pr_err("failed to get mm for the target process\n");
3933		return -ESRCH;
3934	}
3935
3936	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3937
3938	i = j = 0;
3939	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3940		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3941			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3942
3943		for (j = 0; j < num_attrs; j++) {
3944			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3945				 i, j, criu_svm_md->data.attrs[j].type,
3946				 i, j, criu_svm_md->data.attrs[j].value);
3947			switch (criu_svm_md->data.attrs[j].type) {
3948			/* During Checkpoint operation, the query for
3949			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3950			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3951			 * not used by the range which was checkpointed. Care
3952			 * must be taken to not restore with an invalid value
3953			 * otherwise the gpuidx value will be invalid and
3954			 * set_attr would eventually fail so just replace those
3955			 * with another dummy attribute such as
3956			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3957			 */
3958			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3959				if (criu_svm_md->data.attrs[j].value ==
3960				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3961					criu_svm_md->data.attrs[j].type =
3962						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3963					criu_svm_md->data.attrs[j].value = 0;
3964				}
3965				break;
3966			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3967				set_flags = criu_svm_md->data.attrs[j].value;
3968				break;
3969			default:
3970				break;
3971			}
3972		}
3973
3974		/* CLR_FLAGS is not available via get_attr during checkpoint but
3975		 * it needs to be inserted before restoring the ranges so
3976		 * allocate extra space for it before calling set_attr
3977		 */
3978		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3979						(num_attrs + 1);
3980		set_attr_new = krealloc(set_attr, set_attr_size,
3981					    GFP_KERNEL);
3982		if (!set_attr_new) {
3983			ret = -ENOMEM;
3984			goto exit;
3985		}
3986		set_attr = set_attr_new;
3987
3988		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3989					sizeof(struct kfd_ioctl_svm_attribute));
3990		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3991		set_attr[num_attrs].value = ~set_flags;
3992
3993		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3994					 criu_svm_md->data.size, num_attrs + 1,
3995					 set_attr);
3996		if (ret) {
3997			pr_err("CRIU: failed to set range attributes\n");
3998			goto exit;
3999		}
4000
4001		i++;
4002	}
4003exit:
4004	kfree(set_attr);
4005	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4006		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4007						criu_svm_md->data.start_addr);
4008		kfree(criu_svm_md);
4009	}
4010
4011	mmput(mm);
4012	return ret;
4013
4014}
4015
4016int kfd_criu_restore_svm(struct kfd_process *p,
4017			 uint8_t __user *user_priv_ptr,
4018			 uint64_t *priv_data_offset,
4019			 uint64_t max_priv_data_size)
4020{
4021	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4022	int nattr_common = 4, nattr_accessibility = 1;
4023	struct criu_svm_metadata *criu_svm_md = NULL;
4024	struct svm_range_list *svms = &p->svms;
4025	uint32_t num_devices;
4026	int ret = 0;
4027
4028	num_devices = p->n_pdds;
4029	/* Handle one SVM range object at a time, also the number of gpus are
4030	 * assumed to be same on the restore node, checking must be done while
4031	 * evaluating the topology earlier
4032	 */
4033
4034	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4035		(nattr_common + nattr_accessibility * num_devices);
4036	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4037
4038	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4039								svm_attrs_size;
4040
4041	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4042	if (!criu_svm_md) {
4043		pr_err("failed to allocate memory to store svm metadata\n");
4044		return -ENOMEM;
4045	}
4046	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4047		ret = -EINVAL;
4048		goto exit;
4049	}
4050
4051	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4052			     svm_priv_data_size);
4053	if (ret) {
4054		ret = -EFAULT;
4055		goto exit;
4056	}
4057	*priv_data_offset += svm_priv_data_size;
4058
4059	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4060
4061	return 0;
4062
4063
4064exit:
4065	kfree(criu_svm_md);
4066	return ret;
4067}
4068
4069int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4070		       uint64_t *svm_priv_data_size)
4071{
4072	uint64_t total_size, accessibility_size, common_attr_size;
4073	int nattr_common = 4, nattr_accessibility = 1;
4074	int num_devices = p->n_pdds;
4075	struct svm_range_list *svms;
4076	struct svm_range *prange;
4077	uint32_t count = 0;
4078
4079	*svm_priv_data_size = 0;
4080
4081	svms = &p->svms;
4082	if (!svms)
4083		return -EINVAL;
4084
4085	mutex_lock(&svms->lock);
4086	list_for_each_entry(prange, &svms->list, list) {
4087		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4088			 prange, prange->start, prange->npages,
4089			 prange->start + prange->npages - 1);
4090		count++;
4091	}
4092	mutex_unlock(&svms->lock);
4093
4094	*num_svm_ranges = count;
4095	/* Only the accessbility attributes need to be queried for all the gpus
4096	 * individually, remaining ones are spanned across the entire process
4097	 * regardless of the various gpu nodes. Of the remaining attributes,
4098	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4099	 *
4100	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4101	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4102	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4103	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4104	 *
4105	 * ** ACCESSBILITY ATTRIBUTES **
4106	 * (Considered as one, type is altered during query, value is gpuid)
4107	 * KFD_IOCTL_SVM_ATTR_ACCESS
4108	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4109	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4110	 */
4111	if (*num_svm_ranges > 0) {
4112		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4113			nattr_common;
4114		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4115			nattr_accessibility * num_devices;
4116
4117		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4118			common_attr_size + accessibility_size;
4119
4120		*svm_priv_data_size = *num_svm_ranges * total_size;
4121	}
4122
4123	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4124		 *svm_priv_data_size);
4125	return 0;
4126}
4127
4128int kfd_criu_checkpoint_svm(struct kfd_process *p,
4129			    uint8_t __user *user_priv_data,
4130			    uint64_t *priv_data_offset)
4131{
4132	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4133	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4134	uint64_t svm_priv_data_size, query_attr_size = 0;
4135	int index, nattr_common = 4, ret = 0;
4136	struct svm_range_list *svms;
4137	int num_devices = p->n_pdds;
4138	struct svm_range *prange;
4139	struct mm_struct *mm;
4140
4141	svms = &p->svms;
4142	if (!svms)
4143		return -EINVAL;
4144
4145	mm = get_task_mm(p->lead_thread);
4146	if (!mm) {
4147		pr_err("failed to get mm for the target process\n");
4148		return -ESRCH;
4149	}
4150
4151	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4152				(nattr_common + num_devices);
4153
4154	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4155	if (!query_attr) {
4156		ret = -ENOMEM;
4157		goto exit;
4158	}
4159
4160	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4161	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4162	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4163	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4164
4165	for (index = 0; index < num_devices; index++) {
4166		struct kfd_process_device *pdd = p->pdds[index];
4167
4168		query_attr[index + nattr_common].type =
4169			KFD_IOCTL_SVM_ATTR_ACCESS;
4170		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4171	}
4172
4173	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4174
4175	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4176	if (!svm_priv) {
4177		ret = -ENOMEM;
4178		goto exit_query;
4179	}
4180
4181	index = 0;
4182	list_for_each_entry(prange, &svms->list, list) {
4183
4184		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4185		svm_priv->start_addr = prange->start;
4186		svm_priv->size = prange->npages;
4187		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4188		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4189			 prange, prange->start, prange->npages,
4190			 prange->start + prange->npages - 1,
4191			 prange->npages * PAGE_SIZE);
4192
4193		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4194					 svm_priv->size,
4195					 (nattr_common + num_devices),
4196					 svm_priv->attrs);
4197		if (ret) {
4198			pr_err("CRIU: failed to obtain range attributes\n");
4199			goto exit_priv;
4200		}
4201
4202		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4203				 svm_priv_data_size)) {
4204			pr_err("Failed to copy svm priv to user\n");
4205			ret = -EFAULT;
4206			goto exit_priv;
4207		}
4208
4209		*priv_data_offset += svm_priv_data_size;
4210
4211	}
4212
4213
4214exit_priv:
4215	kfree(svm_priv);
4216exit_query:
4217	kfree(query_attr);
4218exit:
4219	mmput(mm);
4220	return ret;
4221}
4222
4223int
4224svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4225	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4226{
4227	struct mm_struct *mm = current->mm;
4228	int r;
4229
4230	start >>= PAGE_SHIFT;
4231	size >>= PAGE_SHIFT;
4232
4233	switch (op) {
4234	case KFD_IOCTL_SVM_OP_SET_ATTR:
4235		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4236		break;
4237	case KFD_IOCTL_SVM_OP_GET_ATTR:
4238		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4239		break;
4240	default:
4241		r = EINVAL;
4242		break;
4243	}
4244
4245	return r;
4246}