Linux Audio

Check our new training course

Loading...
v5.9
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/amd-iommu.h>
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_dbgmgr.h"
  44#include "kfd_iommu.h"
 
  45
  46/*
  47 * List of struct kfd_process (field kfd_process).
  48 * Unique/indexed by mm_struct*
  49 */
  50DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  51static DEFINE_MUTEX(kfd_processes_mutex);
  52
  53DEFINE_SRCU(kfd_processes_srcu);
  54
  55/* For process termination handling */
  56static struct workqueue_struct *kfd_process_wq;
  57
  58/* Ordered, single-threaded workqueue for restoring evicted
  59 * processes. Restoring multiple processes concurrently under memory
  60 * pressure can lead to processes blocking each other from validating
  61 * their BOs and result in a live-lock situation where processes
  62 * remain evicted indefinitely.
  63 */
  64static struct workqueue_struct *kfd_restore_wq;
  65
  66static struct kfd_process *find_process(const struct task_struct *thread);
 
  67static void kfd_process_ref_release(struct kref *ref);
  68static struct kfd_process *create_process(const struct task_struct *thread);
  69static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  70
  71static void evict_process_worker(struct work_struct *work);
  72static void restore_process_worker(struct work_struct *work);
  73
 
 
  74struct kfd_procfs_tree {
  75	struct kobject *kobj;
  76};
  77
  78static struct kfd_procfs_tree procfs;
  79
  80/*
  81 * Structure for SDMA activity tracking
  82 */
  83struct kfd_sdma_activity_handler_workarea {
  84	struct work_struct sdma_activity_work;
  85	struct kfd_process_device *pdd;
  86	uint64_t sdma_activity_counter;
  87};
  88
  89struct temp_sdma_queue_list {
  90	uint64_t rptr;
  91	uint64_t sdma_val;
  92	unsigned int queue_id;
  93	struct list_head list;
  94};
  95
  96static void kfd_sdma_activity_worker(struct work_struct *work)
  97{
  98	struct kfd_sdma_activity_handler_workarea *workarea;
  99	struct kfd_process_device *pdd;
 100	uint64_t val;
 101	struct mm_struct *mm;
 102	struct queue *q;
 103	struct qcm_process_device *qpd;
 104	struct device_queue_manager *dqm;
 105	int ret = 0;
 106	struct temp_sdma_queue_list sdma_q_list;
 107	struct temp_sdma_queue_list *sdma_q, *next;
 108
 109	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 110				sdma_activity_work);
 111	if (!workarea)
 112		return;
 113
 114	pdd = workarea->pdd;
 115	if (!pdd)
 116		return;
 117	dqm = pdd->dev->dqm;
 118	qpd = &pdd->qpd;
 119	if (!dqm || !qpd)
 120		return;
 121	/*
 122	 * Total SDMA activity is current SDMA activity + past SDMA activity
 123	 * Past SDMA count is stored in pdd.
 124	 * To get the current activity counters for all active SDMA queues,
 125	 * we loop over all SDMA queues and get their counts from user-space.
 126	 *
 127	 * We cannot call get_user() with dqm_lock held as it can cause
 128	 * a circular lock dependency situation. To read the SDMA stats,
 129	 * we need to do the following:
 130	 *
 131	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 132	 *    with dqm_lock/dqm_unlock().
 133	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 134	 *    Save the SDMA count for each node and also add the count to the total
 135	 *    SDMA count counter.
 136	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 137	 *    from the qpd->queues_list.
 138	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 139	 *    If any node got deleted, its SDMA count would be captured in the sdma
 140	 *    past activity counter. So subtract the SDMA counter stored in step 2
 141	 *    for this node from the total SDMA count.
 142	 */
 143	INIT_LIST_HEAD(&sdma_q_list.list);
 144
 145	/*
 146	 * Create the temp list of all SDMA queues
 147	 */
 148	dqm_lock(dqm);
 149
 150	list_for_each_entry(q, &qpd->queues_list, list) {
 151		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 152		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 153			continue;
 154
 155		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 156		if (!sdma_q) {
 157			dqm_unlock(dqm);
 158			goto cleanup;
 159		}
 160
 161		INIT_LIST_HEAD(&sdma_q->list);
 162		sdma_q->rptr = (uint64_t)q->properties.read_ptr;
 163		sdma_q->queue_id = q->properties.queue_id;
 164		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 165	}
 166
 167	/*
 168	 * If the temp list is empty, then no SDMA queues nodes were found in
 169	 * qpd->queues_list. Return the past activity count as the total sdma
 170	 * count
 171	 */
 172	if (list_empty(&sdma_q_list.list)) {
 173		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 174		dqm_unlock(dqm);
 175		return;
 176	}
 177
 178	dqm_unlock(dqm);
 179
 180	/*
 181	 * Get the usage count for each SDMA queue in temp_list.
 182	 */
 183	mm = get_task_mm(pdd->process->lead_thread);
 184	if (!mm)
 185		goto cleanup;
 186
 187	kthread_use_mm(mm);
 188
 189	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 190		val = 0;
 191		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 192		if (ret) {
 193			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 194				 sdma_q->queue_id);
 195		} else {
 196			sdma_q->sdma_val = val;
 197			workarea->sdma_activity_counter += val;
 198		}
 199	}
 200
 201	kthread_unuse_mm(mm);
 202	mmput(mm);
 203
 204	/*
 205	 * Do a second iteration over qpd_queues_list to check if any SDMA
 206	 * nodes got deleted while fetching SDMA counter.
 207	 */
 208	dqm_lock(dqm);
 209
 210	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 211
 212	list_for_each_entry(q, &qpd->queues_list, list) {
 213		if (list_empty(&sdma_q_list.list))
 214			break;
 215
 216		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 217		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 218			continue;
 219
 220		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 221			if (((uint64_t)q->properties.read_ptr == sdma_q->rptr) &&
 222			     (sdma_q->queue_id == q->properties.queue_id)) {
 223				list_del(&sdma_q->list);
 224				kfree(sdma_q);
 225				break;
 226			}
 227		}
 228	}
 229
 230	dqm_unlock(dqm);
 231
 232	/*
 233	 * If temp list is not empty, it implies some queues got deleted
 234	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 235	 * count for each node from the total SDMA count.
 236	 */
 237	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 238		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 239		list_del(&sdma_q->list);
 240		kfree(sdma_q);
 241	}
 242
 243	return;
 244
 245cleanup:
 246	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 247		list_del(&sdma_q->list);
 248		kfree(sdma_q);
 249	}
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 253			       char *buffer)
 254{
 255	if (strcmp(attr->name, "pasid") == 0) {
 256		struct kfd_process *p = container_of(attr, struct kfd_process,
 257						     attr_pasid);
 258
 259		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 260	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 261		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 262							      attr_vram);
 263		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 264	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 265		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 266							      attr_sdma);
 267		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 268
 269		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 270					kfd_sdma_activity_worker);
 271
 272		sdma_activity_work_handler.pdd = pdd;
 
 273
 274		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 275
 276		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 
 277
 278		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 279				(sdma_activity_work_handler.sdma_activity_counter)/
 280				 SDMA_ACTIVITY_DIVISOR);
 281	} else {
 282		pr_err("Invalid attribute");
 283		return -EINVAL;
 284	}
 285
 286	return 0;
 287}
 288
 289static void kfd_procfs_kobj_release(struct kobject *kobj)
 290{
 291	kfree(kobj);
 292}
 293
 294static const struct sysfs_ops kfd_procfs_ops = {
 295	.show = kfd_procfs_show,
 296};
 297
 298static struct kobj_type procfs_type = {
 299	.release = kfd_procfs_kobj_release,
 300	.sysfs_ops = &kfd_procfs_ops,
 301};
 302
 303void kfd_procfs_init(void)
 304{
 305	int ret = 0;
 306
 307	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 308	if (!procfs.kobj)
 309		return;
 310
 311	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 312				   &kfd_device->kobj, "proc");
 313	if (ret) {
 314		pr_warn("Could not create procfs proc folder");
 315		/* If we fail to create the procfs, clean up */
 316		kfd_procfs_shutdown();
 317	}
 318}
 319
 320void kfd_procfs_shutdown(void)
 321{
 322	if (procfs.kobj) {
 323		kobject_del(procfs.kobj);
 324		kobject_put(procfs.kobj);
 325		procfs.kobj = NULL;
 326	}
 327}
 328
 329static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 330				     struct attribute *attr, char *buffer)
 331{
 332	struct queue *q = container_of(kobj, struct queue, kobj);
 333
 334	if (!strcmp(attr->name, "size"))
 335		return snprintf(buffer, PAGE_SIZE, "%llu",
 336				q->properties.queue_size);
 337	else if (!strcmp(attr->name, "type"))
 338		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 339	else if (!strcmp(attr->name, "gpuid"))
 340		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 341	else
 342		pr_err("Invalid attribute");
 343
 344	return 0;
 345}
 346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347static struct attribute attr_queue_size = {
 348	.name = "size",
 349	.mode = KFD_SYSFS_FILE_MODE
 350};
 351
 352static struct attribute attr_queue_type = {
 353	.name = "type",
 354	.mode = KFD_SYSFS_FILE_MODE
 355};
 356
 357static struct attribute attr_queue_gpuid = {
 358	.name = "gpuid",
 359	.mode = KFD_SYSFS_FILE_MODE
 360};
 361
 362static struct attribute *procfs_queue_attrs[] = {
 363	&attr_queue_size,
 364	&attr_queue_type,
 365	&attr_queue_gpuid,
 366	NULL
 367};
 
 368
 369static const struct sysfs_ops procfs_queue_ops = {
 370	.show = kfd_procfs_queue_show,
 371};
 372
 373static struct kobj_type procfs_queue_type = {
 374	.sysfs_ops = &procfs_queue_ops,
 375	.default_attrs = procfs_queue_attrs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376};
 377
 378int kfd_procfs_add_queue(struct queue *q)
 379{
 380	struct kfd_process *proc;
 381	int ret;
 382
 383	if (!q || !q->process)
 384		return -EINVAL;
 385	proc = q->process;
 386
 387	/* Create proc/<pid>/queues/<queue id> folder */
 388	if (!proc->kobj_queues)
 389		return -EFAULT;
 390	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 391			proc->kobj_queues, "%u", q->properties.queue_id);
 392	if (ret < 0) {
 393		pr_warn("Creating proc/<pid>/queues/%u failed",
 394			q->properties.queue_id);
 395		kobject_put(&q->kobj);
 396		return ret;
 397	}
 398
 399	return 0;
 400}
 401
 402static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr,
 403				 char *name)
 404{
 405	int ret = 0;
 406
 407	if (!p || !attr || !name)
 408		return -EINVAL;
 409
 410	attr->name = name;
 411	attr->mode = KFD_SYSFS_FILE_MODE;
 412	sysfs_attr_init(attr);
 413
 414	ret = sysfs_create_file(p->kobj, attr);
 
 
 
 415
 416	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417}
 418
 419static int kfd_procfs_add_sysfs_files(struct kfd_process *p)
 420{
 421	int ret = 0;
 422	struct kfd_process_device *pdd;
 
 423
 424	if (!p)
 425		return -EINVAL;
 426
 427	if (!p->kobj)
 428		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430	/*
 431	 * Create sysfs files for each GPU:
 432	 * - proc/<pid>/vram_<gpuid>
 433	 * - proc/<pid>/sdma_<gpuid>
 434	 */
 435	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 436		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 437			 pdd->dev->id);
 438		ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename);
 439		if (ret)
 440			pr_warn("Creating vram usage for gpu id %d failed",
 441				(int)pdd->dev->id);
 442
 443		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 444			 pdd->dev->id);
 445		ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename);
 446		if (ret)
 447			pr_warn("Creating sdma usage for gpu id %d failed",
 448				(int)pdd->dev->id);
 449	}
 450
 451	return ret;
 452}
 453
 454
 455void kfd_procfs_del_queue(struct queue *q)
 456{
 457	if (!q)
 458		return;
 459
 460	kobject_del(&q->kobj);
 461	kobject_put(&q->kobj);
 462}
 463
 464int kfd_process_create_wq(void)
 465{
 466	if (!kfd_process_wq)
 467		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 468	if (!kfd_restore_wq)
 469		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 
 470
 471	if (!kfd_process_wq || !kfd_restore_wq) {
 472		kfd_process_destroy_wq();
 473		return -ENOMEM;
 474	}
 475
 476	return 0;
 477}
 478
 479void kfd_process_destroy_wq(void)
 480{
 481	if (kfd_process_wq) {
 482		destroy_workqueue(kfd_process_wq);
 483		kfd_process_wq = NULL;
 484	}
 485	if (kfd_restore_wq) {
 486		destroy_workqueue(kfd_restore_wq);
 487		kfd_restore_wq = NULL;
 488	}
 489}
 490
 491static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 492			struct kfd_process_device *pdd)
 493{
 494	struct kfd_dev *dev = pdd->dev;
 
 
 
 
 
 495
 496	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm);
 497	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL);
 
 498}
 499
 500/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 501 *	This function should be only called right after the process
 502 *	is created and when kfd_processes_mutex is still being held
 503 *	to avoid concurrency. Because of that exclusiveness, we do
 504 *	not need to take p->mutex.
 505 */
 506static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 507				   uint64_t gpu_va, uint32_t size,
 508				   uint32_t flags, void **kptr)
 509{
 510	struct kfd_dev *kdev = pdd->dev;
 511	struct kgd_mem *mem = NULL;
 512	int handle;
 513	int err;
 514
 515	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 516						 pdd->vm, &mem, NULL, flags);
 
 517	if (err)
 518		goto err_alloc_mem;
 519
 520	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
 
 521	if (err)
 522		goto err_map_mem;
 523
 524	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
 525	if (err) {
 526		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 527		goto sync_memory_failed;
 528	}
 529
 530	/* Create an obj handle so kfd_process_device_remove_obj_handle
 531	 * will take care of the bo removal when the process finishes.
 532	 * We do not need to take p->mutex, because the process is just
 533	 * created and the ioctls have not had the chance to run.
 534	 */
 535	handle = kfd_process_device_create_obj_handle(pdd, mem);
 536
 537	if (handle < 0) {
 538		err = handle;
 539		goto free_gpuvm;
 540	}
 541
 542	if (kptr) {
 543		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
 544				(struct kgd_mem *)mem, kptr, NULL);
 545		if (err) {
 546			pr_debug("Map GTT BO to kernel failed\n");
 547			goto free_obj_handle;
 548		}
 549	}
 550
 551	return err;
 552
 553free_obj_handle:
 554	kfd_process_device_remove_obj_handle(pdd, handle);
 555free_gpuvm:
 556sync_memory_failed:
 557	kfd_process_free_gpuvm(mem, pdd);
 558	return err;
 559
 560err_map_mem:
 561	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL);
 
 562err_alloc_mem:
 
 563	*kptr = NULL;
 564	return err;
 565}
 566
 567/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 568 *	process for IB usage The memory reserved is for KFD to submit
 569 *	IB to AMDGPU from kernel.  If the memory is reserved
 570 *	successfully, ib_kaddr will have the CPU/kernel
 571 *	address. Check ib_kaddr before accessing the memory.
 572 */
 573static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 574{
 575	struct qcm_process_device *qpd = &pdd->qpd;
 576	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 577			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 578			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 579			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
 580	void *kaddr;
 581	int ret;
 582
 583	if (qpd->ib_kaddr || !qpd->ib_base)
 584		return 0;
 585
 586	/* ib_base is only set for dGPU */
 587	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 588				      &kaddr);
 589	if (ret)
 590		return ret;
 591
 
 592	qpd->ib_kaddr = kaddr;
 593
 594	return 0;
 595}
 596
 597struct kfd_process *kfd_create_process(struct file *filep)
 
 
 
 
 
 
 
 
 
 
 598{
 599	struct kfd_process *process;
 600	struct task_struct *thread = current;
 601	int ret;
 602
 603	if (!thread->mm)
 604		return ERR_PTR(-EINVAL);
 605
 606	/* Only the pthreads threading model is supported. */
 607	if (thread->group_leader->mm != thread->mm)
 
 608		return ERR_PTR(-EINVAL);
 
 609
 610	/*
 611	 * take kfd processes mutex before starting of process creation
 612	 * so there won't be a case where two threads of the same process
 613	 * create two kfd_process structures
 614	 */
 615	mutex_lock(&kfd_processes_mutex);
 616
 617	/* A prior open of /dev/kfd could have already created the process. */
 618	process = find_process(thread);
 
 
 
 
 
 
 
 
 619	if (process) {
 620		pr_debug("Process already found\n");
 621	} else {
 
 
 
 
 
 
 
 
 622		process = create_process(thread);
 623		if (IS_ERR(process))
 624			goto out;
 625
 626		ret = kfd_process_init_cwsr_apu(process, filep);
 627		if (ret) {
 628			process = ERR_PTR(ret);
 629			goto out;
 630		}
 631
 632		if (!procfs.kobj)
 633			goto out;
 634
 635		process->kobj = kfd_alloc_struct(process->kobj);
 636		if (!process->kobj) {
 637			pr_warn("Creating procfs kobject failed");
 638			goto out;
 639		}
 640		ret = kobject_init_and_add(process->kobj, &procfs_type,
 641					   procfs.kobj, "%d",
 642					   (int)process->lead_thread->pid);
 643		if (ret) {
 644			pr_warn("Creating procfs pid directory failed");
 645			kobject_put(process->kobj);
 646			goto out;
 647		}
 648
 649		process->attr_pasid.name = "pasid";
 650		process->attr_pasid.mode = KFD_SYSFS_FILE_MODE;
 651		sysfs_attr_init(&process->attr_pasid);
 652		ret = sysfs_create_file(process->kobj, &process->attr_pasid);
 653		if (ret)
 654			pr_warn("Creating pasid for pid %d failed",
 655					(int)process->lead_thread->pid);
 656
 657		process->kobj_queues = kobject_create_and_add("queues",
 658							process->kobj);
 659		if (!process->kobj_queues)
 660			pr_warn("Creating KFD proc/queues folder failed");
 661
 662		ret = kfd_procfs_add_sysfs_files(process);
 663		if (ret)
 664			pr_warn("Creating sysfs usage file for pid %d failed",
 665				(int)process->lead_thread->pid);
 
 666	}
 667out:
 668	if (!IS_ERR(process))
 669		kref_get(&process->ref);
 670	mutex_unlock(&kfd_processes_mutex);
 
 671
 672	return process;
 673}
 674
 675struct kfd_process *kfd_get_process(const struct task_struct *thread)
 676{
 677	struct kfd_process *process;
 678
 679	if (!thread->mm)
 680		return ERR_PTR(-EINVAL);
 681
 682	/* Only the pthreads threading model is supported. */
 683	if (thread->group_leader->mm != thread->mm)
 684		return ERR_PTR(-EINVAL);
 685
 686	process = find_process(thread);
 687	if (!process)
 688		return ERR_PTR(-EINVAL);
 689
 690	return process;
 691}
 692
 693static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 694{
 695	struct kfd_process *process;
 696
 697	hash_for_each_possible_rcu(kfd_processes_table, process,
 698					kfd_processes, (uintptr_t)mm)
 699		if (process->mm == mm)
 700			return process;
 701
 702	return NULL;
 703}
 704
 705static struct kfd_process *find_process(const struct task_struct *thread)
 
 706{
 707	struct kfd_process *p;
 708	int idx;
 709
 710	idx = srcu_read_lock(&kfd_processes_srcu);
 711	p = find_process_by_mm(thread->mm);
 
 
 712	srcu_read_unlock(&kfd_processes_srcu, idx);
 713
 714	return p;
 715}
 716
 717void kfd_unref_process(struct kfd_process *p)
 718{
 719	kref_put(&p->ref, kfd_process_ref_release);
 720}
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 723{
 724	struct kfd_process *p = pdd->process;
 725	void *mem;
 726	int id;
 
 727
 728	/*
 729	 * Remove all handles from idr and release appropriate
 730	 * local memory object
 731	 */
 732	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 733		struct kfd_process_device *peer_pdd;
 734
 735		list_for_each_entry(peer_pdd, &p->per_device_data,
 736				    per_device_list) {
 737			if (!peer_pdd->vm)
 
 738				continue;
 739			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 740				peer_pdd->dev->kgd, mem, peer_pdd->vm);
 741		}
 742
 743		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL);
 
 744		kfd_process_device_remove_obj_handle(pdd, id);
 745	}
 746}
 747
 748static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 
 
 
 
 749{
 750	struct kfd_process_device *pdd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751
 752	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
 753		kfd_process_device_free_bos(pdd);
 754}
 755
 756static void kfd_process_destroy_pdds(struct kfd_process *p)
 757{
 758	struct kfd_process_device *pdd, *temp;
 
 
 
 759
 760	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
 761				 per_device_list) {
 762		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
 763				pdd->dev->id, p->pasid);
 764
 
 
 
 765		if (pdd->drm_file) {
 766			amdgpu_amdkfd_gpuvm_release_process_vm(
 767					pdd->dev->kgd, pdd->vm);
 768			fput(pdd->drm_file);
 769		}
 770		else if (pdd->vm)
 771			amdgpu_amdkfd_gpuvm_destroy_process_vm(
 772				pdd->dev->kgd, pdd->vm);
 773
 774		list_del(&pdd->per_device_list);
 775
 776		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 777			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 778				get_order(KFD_CWSR_TBA_TMA_SIZE));
 779
 780		kfree(pdd->qpd.doorbell_bitmap);
 781		idr_destroy(&pdd->alloc_idr);
 782
 
 
 
 
 
 
 783		/*
 784		 * before destroying pdd, make sure to report availability
 785		 * for auto suspend
 786		 */
 787		if (pdd->runtime_inuse) {
 788			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
 789			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
 790			pdd->runtime_inuse = false;
 791		}
 792
 793		kfree(pdd);
 
 794	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795}
 796
 797/* No process locking is needed in this function, because the process
 798 * is not findable any more. We must assume that no other thread is
 799 * using it any more, otherwise we couldn't safely free the process
 800 * structure in the end.
 801 */
 802static void kfd_process_wq_release(struct work_struct *work)
 803{
 804	struct kfd_process *p = container_of(work, struct kfd_process,
 805					     release_work);
 806	struct kfd_process_device *pdd;
 807
 808	/* Remove the procfs files */
 809	if (p->kobj) {
 810		sysfs_remove_file(p->kobj, &p->attr_pasid);
 811		kobject_del(p->kobj_queues);
 812		kobject_put(p->kobj_queues);
 813		p->kobj_queues = NULL;
 814
 815		list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 816			sysfs_remove_file(p->kobj, &pdd->attr_vram);
 817			sysfs_remove_file(p->kobj, &pdd->attr_sdma);
 818		}
 819
 820		kobject_del(p->kobj);
 821		kobject_put(p->kobj);
 822		p->kobj = NULL;
 823	}
 
 
 
 
 824
 825	kfd_iommu_unbind_process(p);
 826
 
 827	kfd_process_free_outstanding_kfd_bos(p);
 
 828
 829	kfd_process_destroy_pdds(p);
 830	dma_fence_put(p->ef);
 831
 832	kfd_event_free_process(p);
 833
 834	kfd_pasid_free(p->pasid);
 835	kfd_free_process_doorbells(p);
 836
 837	mutex_destroy(&p->mutex);
 838
 839	put_task_struct(p->lead_thread);
 840
 841	kfree(p);
 842}
 843
 844static void kfd_process_ref_release(struct kref *ref)
 845{
 846	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
 847
 848	INIT_WORK(&p->release_work, kfd_process_wq_release);
 849	queue_work(kfd_process_wq, &p->release_work);
 850}
 851
 
 
 
 
 
 
 
 
 852static void kfd_process_free_notifier(struct mmu_notifier *mn)
 853{
 854	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
 855}
 856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857static void kfd_process_notifier_release(struct mmu_notifier *mn,
 858					struct mm_struct *mm)
 859{
 860	struct kfd_process *p;
 861	struct kfd_process_device *pdd = NULL;
 862
 863	/*
 864	 * The kfd_process structure can not be free because the
 865	 * mmu_notifier srcu is read locked
 866	 */
 867	p = container_of(mn, struct kfd_process, mmu_notifier);
 868	if (WARN_ON(p->mm != mm))
 869		return;
 870
 871	mutex_lock(&kfd_processes_mutex);
 
 
 
 
 
 
 
 
 
 
 
 872	hash_del_rcu(&p->kfd_processes);
 873	mutex_unlock(&kfd_processes_mutex);
 874	synchronize_srcu(&kfd_processes_srcu);
 875
 876	cancel_delayed_work_sync(&p->eviction_work);
 877	cancel_delayed_work_sync(&p->restore_work);
 878
 879	mutex_lock(&p->mutex);
 880
 881	/* Iterate over all process device data structures and if the
 882	 * pdd is in debug mode, we should first force unregistration,
 883	 * then we will be able to destroy the queues
 884	 */
 885	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 886		struct kfd_dev *dev = pdd->dev;
 887
 888		mutex_lock(kfd_get_dbgmgr_mutex());
 889		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
 890			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
 891				kfd_dbgmgr_destroy(dev->dbgmgr);
 892				dev->dbgmgr = NULL;
 893			}
 894		}
 895		mutex_unlock(kfd_get_dbgmgr_mutex());
 896	}
 897
 898	kfd_process_dequeue_from_all_devices(p);
 899	pqm_uninit(&p->pqm);
 
 
 
 
 
 
 
 
 
 
 900
 901	/* Indicate to other users that MM is no longer valid */
 902	p->mm = NULL;
 903	/* Signal the eviction fence after user mode queues are
 904	 * destroyed. This allows any BOs to be freed without
 905	 * triggering pointless evictions or waiting for fences.
 906	 */
 907	dma_fence_signal(p->ef);
 
 
 
 
 
 
 908
 909	mutex_unlock(&p->mutex);
 
 910
 911	mmu_notifier_put(&p->mmu_notifier);
 
 
 
 
 912}
 913
 914static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
 915	.release = kfd_process_notifier_release,
 916	.free_notifier = kfd_process_free_notifier,
 917};
 918
 919static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 920{
 921	unsigned long  offset;
 922	struct kfd_process_device *pdd;
 
 
 
 923
 924	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 925		struct kfd_dev *dev = pdd->dev;
 926		struct qcm_process_device *qpd = &pdd->qpd;
 927
 928		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
 929			continue;
 930
 931		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
 932		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
 933			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
 934			MAP_SHARED, offset);
 935
 936		if (IS_ERR_VALUE(qpd->tba_addr)) {
 937			int err = qpd->tba_addr;
 938
 939			pr_err("Failure to set tba address. error %d.\n", err);
 
 940			qpd->tba_addr = 0;
 941			qpd->cwsr_kaddr = NULL;
 942			return err;
 943		}
 944
 945		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 946
 947		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 948		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 949			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 950	}
 951
 
 
 952	return 0;
 953}
 954
 955static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
 956{
 957	struct kfd_dev *dev = pdd->dev;
 958	struct qcm_process_device *qpd = &pdd->qpd;
 959	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
 960			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
 961			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
 962	void *kaddr;
 963	int ret;
 964
 965	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
 966		return 0;
 967
 968	/* cwsr_base is only set for dGPU */
 969	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
 970				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
 971	if (ret)
 972		return ret;
 973
 
 974	qpd->cwsr_kaddr = kaddr;
 975	qpd->tba_addr = qpd->cwsr_base;
 976
 977	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 
 978
 979	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 980	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 981		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 982
 983	return 0;
 984}
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986/*
 987 * On return the kfd_process is fully operational and will be freed when the
 988 * mm is released
 989 */
 990static struct kfd_process *create_process(const struct task_struct *thread)
 991{
 992	struct kfd_process *process;
 
 993	int err = -ENOMEM;
 994
 995	process = kzalloc(sizeof(*process), GFP_KERNEL);
 996	if (!process)
 997		goto err_alloc_process;
 998
 999	kref_init(&process->ref);
1000	mutex_init(&process->mutex);
1001	process->mm = thread->mm;
1002	process->lead_thread = thread->group_leader;
1003	INIT_LIST_HEAD(&process->per_device_data);
 
1004	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1005	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1006	process->last_restore_timestamp = get_jiffies_64();
1007	kfd_event_init_process(process);
 
 
1008	process->is_32bit_user_mode = in_compat_syscall();
 
 
 
 
 
1009
1010	process->pasid = kfd_pasid_alloc();
1011	if (process->pasid == 0)
 
1012		goto err_alloc_pasid;
1013
1014	if (kfd_alloc_process_doorbells(process) < 0)
1015		goto err_alloc_doorbells;
1016
1017	err = pqm_init(&process->pqm, process);
1018	if (err != 0)
1019		goto err_process_pqm_init;
1020
1021	/* init process apertures*/
1022	err = kfd_init_apertures(process);
1023	if (err != 0)
1024		goto err_init_apertures;
1025
1026	/* Must be last, have to use release destruction after this */
1027	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
1028	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
 
1029	if (err)
1030		goto err_register_notifier;
1031
1032	get_task_struct(process->lead_thread);
1033	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1034			(uintptr_t)process->mm);
1035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	return process;
1037
1038err_register_notifier:
 
 
 
1039	kfd_process_free_outstanding_kfd_bos(process);
1040	kfd_process_destroy_pdds(process);
1041err_init_apertures:
1042	pqm_uninit(&process->pqm);
1043err_process_pqm_init:
1044	kfd_free_process_doorbells(process);
1045err_alloc_doorbells:
1046	kfd_pasid_free(process->pasid);
1047err_alloc_pasid:
 
 
1048	mutex_destroy(&process->mutex);
1049	kfree(process);
1050err_alloc_process:
1051	return ERR_PTR(err);
1052}
1053
1054static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1055			struct kfd_dev *dev)
1056{
1057	unsigned int i;
1058	int range_start = dev->shared_resources.non_cp_doorbells_start;
1059	int range_end = dev->shared_resources.non_cp_doorbells_end;
1060
1061	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1062		return 0;
1063
1064	qpd->doorbell_bitmap =
1065		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1066				     BITS_PER_BYTE), GFP_KERNEL);
1067	if (!qpd->doorbell_bitmap)
1068		return -ENOMEM;
1069
1070	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1071	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1072	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1073			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1074			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1075
1076	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1077		if (i >= range_start && i <= range_end) {
1078			set_bit(i, qpd->doorbell_bitmap);
1079			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1080				qpd->doorbell_bitmap);
1081		}
1082	}
1083
1084	return 0;
1085}
1086
1087struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1088							struct kfd_process *p)
1089{
1090	struct kfd_process_device *pdd = NULL;
1091
1092	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
1093		if (pdd->dev == dev)
1094			return pdd;
1095
1096	return NULL;
1097}
1098
1099struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1100							struct kfd_process *p)
1101{
1102	struct kfd_process_device *pdd = NULL;
1103
 
 
1104	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1105	if (!pdd)
1106		return NULL;
1107
1108	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1109		pr_err("Failed to init doorbell for process\n");
1110		kfree(pdd);
1111		return NULL;
1112	}
1113
1114	pdd->dev = dev;
1115	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1116	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1117	pdd->qpd.dqm = dev->dqm;
1118	pdd->qpd.pqm = &p->pqm;
1119	pdd->qpd.evicted = 0;
1120	pdd->qpd.mapped_gws_queue = false;
1121	pdd->process = p;
1122	pdd->bound = PDD_UNBOUND;
1123	pdd->already_dequeued = false;
1124	pdd->runtime_inuse = false;
1125	pdd->vram_usage = 0;
1126	pdd->sdma_past_activity_counter = 0;
1127	list_add(&pdd->per_device_list, &p->per_device_data);
 
 
 
 
 
 
 
 
1128
1129	/* Init idr used for memory handle translation */
1130	idr_init(&pdd->alloc_idr);
1131
1132	return pdd;
1133}
1134
1135/**
1136 * kfd_process_device_init_vm - Initialize a VM for a process-device
1137 *
1138 * @pdd: The process-device
1139 * @drm_file: Optional pointer to a DRM file descriptor
1140 *
1141 * If @drm_file is specified, it will be used to acquire the VM from
1142 * that file descriptor. If successful, the @pdd takes ownership of
1143 * the file descriptor.
1144 *
1145 * If @drm_file is NULL, a new VM is created.
1146 *
1147 * Returns 0 on success, -errno on failure.
1148 */
1149int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1150			       struct file *drm_file)
1151{
 
 
1152	struct kfd_process *p;
1153	struct kfd_dev *dev;
 
1154	int ret;
1155
1156	if (pdd->vm)
1157		return drm_file ? -EBUSY : 0;
 
 
 
 
 
 
 
 
1158
1159	p = pdd->process;
1160	dev = pdd->dev;
1161
1162	if (drm_file)
1163		ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1164			dev->kgd, drm_file, p->pasid,
1165			&pdd->vm, &p->kgd_process_info, &p->ef);
1166	else
1167		ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid,
1168			&pdd->vm, &p->kgd_process_info, &p->ef);
1169	if (ret) {
1170		pr_err("Failed to create process VM object\n");
1171		return ret;
1172	}
1173
1174	amdgpu_vm_set_task_info(pdd->vm);
 
 
 
1175
1176	ret = kfd_process_device_reserve_ib_mem(pdd);
1177	if (ret)
1178		goto err_reserve_ib_mem;
1179	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1180	if (ret)
1181		goto err_init_cwsr;
1182
 
 
 
 
1183	pdd->drm_file = drm_file;
1184
1185	return 0;
1186
 
 
1187err_init_cwsr:
 
1188err_reserve_ib_mem:
1189	kfd_process_device_free_bos(pdd);
1190	if (!drm_file)
1191		amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm);
1192	pdd->vm = NULL;
1193
1194	return ret;
1195}
1196
1197/*
1198 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1199 * to the device.
1200 * Unbinding occurs when the process dies or the device is removed.
1201 *
1202 * Assumes that the process lock is held.
1203 */
1204struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1205							struct kfd_process *p)
1206{
1207	struct kfd_process_device *pdd;
1208	int err;
1209
1210	pdd = kfd_get_process_device_data(dev, p);
1211	if (!pdd) {
1212		pr_err("Process device data doesn't exist\n");
1213		return ERR_PTR(-ENOMEM);
1214	}
1215
 
 
 
1216	/*
1217	 * signal runtime-pm system to auto resume and prevent
1218	 * further runtime suspend once device pdd is created until
1219	 * pdd is destroyed.
1220	 */
1221	if (!pdd->runtime_inuse) {
1222		err = pm_runtime_get_sync(dev->ddev->dev);
1223		if (err < 0) {
1224			pm_runtime_put_autosuspend(dev->ddev->dev);
1225			return ERR_PTR(err);
1226		}
1227	}
1228
1229	err = kfd_iommu_bind_process_to_device(pdd);
1230	if (err)
1231		goto out;
1232
1233	err = kfd_process_device_init_vm(pdd, NULL);
1234	if (err)
1235		goto out;
1236
1237	/*
1238	 * make sure that runtime_usage counter is incremented just once
1239	 * per pdd
1240	 */
1241	pdd->runtime_inuse = true;
1242
1243	return pdd;
1244
1245out:
1246	/* balance runpm reference count and exit with error */
1247	if (!pdd->runtime_inuse) {
1248		pm_runtime_mark_last_busy(dev->ddev->dev);
1249		pm_runtime_put_autosuspend(dev->ddev->dev);
1250	}
1251
1252	return ERR_PTR(err);
1253}
1254
1255struct kfd_process_device *kfd_get_first_process_device_data(
1256						struct kfd_process *p)
1257{
1258	return list_first_entry(&p->per_device_data,
1259				struct kfd_process_device,
1260				per_device_list);
1261}
1262
1263struct kfd_process_device *kfd_get_next_process_device_data(
1264						struct kfd_process *p,
1265						struct kfd_process_device *pdd)
1266{
1267	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
1268		return NULL;
1269	return list_next_entry(pdd, per_device_list);
1270}
1271
1272bool kfd_has_process_device_data(struct kfd_process *p)
1273{
1274	return !(list_empty(&p->per_device_data));
1275}
1276
1277/* Create specific handle mapped to mem from process local memory idr
1278 * Assumes that the process lock is held.
1279 */
1280int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1281					void *mem)
1282{
1283	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1284}
1285
1286/* Translate specific handle from process local memory idr
1287 * Assumes that the process lock is held.
1288 */
1289void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1290					int handle)
1291{
1292	if (handle < 0)
1293		return NULL;
1294
1295	return idr_find(&pdd->alloc_idr, handle);
1296}
1297
1298/* Remove specific handle from process local memory idr
1299 * Assumes that the process lock is held.
1300 */
1301void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1302					int handle)
1303{
1304	if (handle >= 0)
1305		idr_remove(&pdd->alloc_idr, handle);
1306}
1307
1308/* This increments the process->ref counter. */
1309struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
1310{
1311	struct kfd_process *p, *ret_p = NULL;
1312	unsigned int temp;
1313
1314	int idx = srcu_read_lock(&kfd_processes_srcu);
1315
1316	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1317		if (p->pasid == pasid) {
1318			kref_get(&p->ref);
1319			ret_p = p;
1320			break;
1321		}
1322	}
1323
1324	srcu_read_unlock(&kfd_processes_srcu, idx);
1325
1326	return ret_p;
1327}
1328
1329/* This increments the process->ref counter. */
1330struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1331{
1332	struct kfd_process *p;
1333
1334	int idx = srcu_read_lock(&kfd_processes_srcu);
1335
1336	p = find_process_by_mm(mm);
1337	if (p)
1338		kref_get(&p->ref);
1339
1340	srcu_read_unlock(&kfd_processes_srcu, idx);
1341
1342	return p;
1343}
1344
1345/* kfd_process_evict_queues - Evict all user queues of a process
1346 *
1347 * Eviction is reference-counted per process-device. This means multiple
1348 * evictions from different sources can be nested safely.
1349 */
1350int kfd_process_evict_queues(struct kfd_process *p)
1351{
1352	struct kfd_process_device *pdd;
1353	int r = 0;
 
1354	unsigned int n_evicted = 0;
1355
1356	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 
 
 
 
1357		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1358							    &pdd->qpd);
1359		if (r) {
1360			pr_err("Failed to evict process queues\n");
 
 
 
 
1361			goto fail;
1362		}
1363		n_evicted++;
 
 
1364	}
1365
1366	return r;
1367
1368fail:
1369	/* To keep state consistent, roll back partial eviction by
1370	 * restoring queues
1371	 */
1372	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
1373		if (n_evicted == 0)
1374			break;
 
 
 
1375		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1376							      &pdd->qpd))
1377			pr_err("Failed to restore queues\n");
 
1378
1379		n_evicted--;
1380	}
1381
1382	return r;
1383}
1384
1385/* kfd_process_restore_queues - Restore all user queues of a process */
1386int kfd_process_restore_queues(struct kfd_process *p)
1387{
1388	struct kfd_process_device *pdd;
1389	int r, ret = 0;
 
 
 
 
 
 
 
1390
1391	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
1392		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1393							      &pdd->qpd);
1394		if (r) {
1395			pr_err("Failed to restore process queues\n");
1396			if (!ret)
1397				ret = r;
1398		}
1399	}
1400
1401	return ret;
1402}
1403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404static void evict_process_worker(struct work_struct *work)
1405{
1406	int ret;
1407	struct kfd_process *p;
1408	struct delayed_work *dwork;
1409
1410	dwork = to_delayed_work(work);
1411
1412	/* Process termination destroys this worker thread. So during the
1413	 * lifetime of this thread, kfd_process p will be valid
1414	 */
1415	p = container_of(dwork, struct kfd_process, eviction_work);
1416	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1417		  "Eviction fence mismatch\n");
1418
1419	/* Narrow window of overlap between restore and evict work
1420	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1421	 * unreserves KFD BOs, it is possible to evicted again. But
1422	 * restore has few more steps of finish. So lets wait for any
1423	 * previous restore work to complete
1424	 */
1425	flush_delayed_work(&p->restore_work);
1426
1427	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1428	ret = kfd_process_evict_queues(p);
1429	if (!ret) {
1430		dma_fence_signal(p->ef);
1431		dma_fence_put(p->ef);
1432		p->ef = NULL;
1433		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1434				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
 
 
 
1435
1436		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1437	} else
1438		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1439}
1440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441static void restore_process_worker(struct work_struct *work)
1442{
1443	struct delayed_work *dwork;
1444	struct kfd_process *p;
1445	int ret = 0;
1446
1447	dwork = to_delayed_work(work);
1448
1449	/* Process termination destroys this worker thread. So during the
1450	 * lifetime of this thread, kfd_process p will be valid
1451	 */
1452	p = container_of(dwork, struct kfd_process, restore_work);
1453	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1454
1455	/* Setting last_restore_timestamp before successful restoration.
1456	 * Otherwise this would have to be set by KGD (restore_process_bos)
1457	 * before KFD BOs are unreserved. If not, the process can be evicted
1458	 * again before the timestamp is set.
1459	 * If restore fails, the timestamp will be set again in the next
1460	 * attempt. This would mean that the minimum GPU quanta would be
1461	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1462	 * functions)
1463	 */
1464
1465	p->last_restore_timestamp = get_jiffies_64();
1466	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1467						     &p->ef);
1468	if (ret) {
1469		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1470			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1471		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1472				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1473		WARN(!ret, "reschedule restore work failed\n");
1474		return;
1475	}
1476
1477	ret = kfd_process_restore_queues(p);
1478	if (!ret)
1479		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1480	else
1481		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1482}
1483
1484void kfd_suspend_all_processes(void)
1485{
1486	struct kfd_process *p;
1487	unsigned int temp;
1488	int idx = srcu_read_lock(&kfd_processes_srcu);
1489
 
1490	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1491		cancel_delayed_work_sync(&p->eviction_work);
1492		cancel_delayed_work_sync(&p->restore_work);
1493
1494		if (kfd_process_evict_queues(p))
1495			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1496		dma_fence_signal(p->ef);
1497		dma_fence_put(p->ef);
1498		p->ef = NULL;
1499	}
1500	srcu_read_unlock(&kfd_processes_srcu, idx);
1501}
1502
1503int kfd_resume_all_processes(void)
1504{
1505	struct kfd_process *p;
1506	unsigned int temp;
1507	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1508
1509	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1510		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1511			pr_err("Restore process %d failed during resume\n",
1512			       p->pasid);
1513			ret = -EFAULT;
1514		}
1515	}
1516	srcu_read_unlock(&kfd_processes_srcu, idx);
1517	return ret;
1518}
1519
1520int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1521			  struct vm_area_struct *vma)
1522{
1523	struct kfd_process_device *pdd;
1524	struct qcm_process_device *qpd;
1525
1526	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1527		pr_err("Incorrect CWSR mapping size.\n");
1528		return -EINVAL;
1529	}
1530
1531	pdd = kfd_get_process_device_data(dev, process);
1532	if (!pdd)
1533		return -EINVAL;
1534	qpd = &pdd->qpd;
1535
1536	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1537					get_order(KFD_CWSR_TBA_TMA_SIZE));
1538	if (!qpd->cwsr_kaddr) {
1539		pr_err("Error allocating per process CWSR buffer.\n");
 
1540		return -ENOMEM;
1541	}
1542
1543	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1544		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1545	/* Mapping pages to user process */
1546	return remap_pfn_range(vma, vma->vm_start,
1547			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1548			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1549}
1550
1551void kfd_flush_tlb(struct kfd_process_device *pdd)
 
1552{
1553	struct kfd_dev *dev = pdd->dev;
 
 
1554
1555	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1556		/* Nothing to flush until a VMID is assigned, which
1557		 * only happens when the first queue is created.
1558		 */
1559		if (pdd->qpd.vmid)
1560			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1561							pdd->qpd.vmid);
1562	} else {
1563		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1564						pdd->process->pasid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566}
1567
1568#if defined(CONFIG_DEBUG_FS)
1569
1570int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1571{
1572	struct kfd_process *p;
1573	unsigned int temp;
1574	int r = 0;
1575
1576	int idx = srcu_read_lock(&kfd_processes_srcu);
1577
1578	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1579		seq_printf(m, "Process %d PASID 0x%x:\n",
1580			   p->lead_thread->tgid, p->pasid);
1581
1582		mutex_lock(&p->mutex);
1583		r = pqm_debugfs_mqds(m, &p->pqm);
1584		mutex_unlock(&p->mutex);
1585
1586		if (r)
1587			break;
1588	}
1589
1590	srcu_read_unlock(&kfd_processes_srcu, idx);
1591
1592	return r;
1593}
1594
1595#endif
1596
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
 
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "kfd_smi_events.h"
  45#include "kfd_debug.h"
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread,
  68					bool ref);
  69static void kfd_process_ref_release(struct kref *ref);
  70static struct kfd_process *create_process(const struct task_struct *thread);
 
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
  75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  76
  77struct kfd_procfs_tree {
  78	struct kobject *kobj;
  79};
  80
  81static struct kfd_procfs_tree procfs;
  82
  83/*
  84 * Structure for SDMA activity tracking
  85 */
  86struct kfd_sdma_activity_handler_workarea {
  87	struct work_struct sdma_activity_work;
  88	struct kfd_process_device *pdd;
  89	uint64_t sdma_activity_counter;
  90};
  91
  92struct temp_sdma_queue_list {
  93	uint64_t __user *rptr;
  94	uint64_t sdma_val;
  95	unsigned int queue_id;
  96	struct list_head list;
  97};
  98
  99static void kfd_sdma_activity_worker(struct work_struct *work)
 100{
 101	struct kfd_sdma_activity_handler_workarea *workarea;
 102	struct kfd_process_device *pdd;
 103	uint64_t val;
 104	struct mm_struct *mm;
 105	struct queue *q;
 106	struct qcm_process_device *qpd;
 107	struct device_queue_manager *dqm;
 108	int ret = 0;
 109	struct temp_sdma_queue_list sdma_q_list;
 110	struct temp_sdma_queue_list *sdma_q, *next;
 111
 112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 113				sdma_activity_work);
 
 
 114
 115	pdd = workarea->pdd;
 116	if (!pdd)
 117		return;
 118	dqm = pdd->dev->dqm;
 119	qpd = &pdd->qpd;
 120	if (!dqm || !qpd)
 121		return;
 122	/*
 123	 * Total SDMA activity is current SDMA activity + past SDMA activity
 124	 * Past SDMA count is stored in pdd.
 125	 * To get the current activity counters for all active SDMA queues,
 126	 * we loop over all SDMA queues and get their counts from user-space.
 127	 *
 128	 * We cannot call get_user() with dqm_lock held as it can cause
 129	 * a circular lock dependency situation. To read the SDMA stats,
 130	 * we need to do the following:
 131	 *
 132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 133	 *    with dqm_lock/dqm_unlock().
 134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 135	 *    Save the SDMA count for each node and also add the count to the total
 136	 *    SDMA count counter.
 137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 138	 *    from the qpd->queues_list.
 139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 140	 *    If any node got deleted, its SDMA count would be captured in the sdma
 141	 *    past activity counter. So subtract the SDMA counter stored in step 2
 142	 *    for this node from the total SDMA count.
 143	 */
 144	INIT_LIST_HEAD(&sdma_q_list.list);
 145
 146	/*
 147	 * Create the temp list of all SDMA queues
 148	 */
 149	dqm_lock(dqm);
 150
 151	list_for_each_entry(q, &qpd->queues_list, list) {
 152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 154			continue;
 155
 156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 157		if (!sdma_q) {
 158			dqm_unlock(dqm);
 159			goto cleanup;
 160		}
 161
 162		INIT_LIST_HEAD(&sdma_q->list);
 163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 164		sdma_q->queue_id = q->properties.queue_id;
 165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 166	}
 167
 168	/*
 169	 * If the temp list is empty, then no SDMA queues nodes were found in
 170	 * qpd->queues_list. Return the past activity count as the total sdma
 171	 * count
 172	 */
 173	if (list_empty(&sdma_q_list.list)) {
 174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 175		dqm_unlock(dqm);
 176		return;
 177	}
 178
 179	dqm_unlock(dqm);
 180
 181	/*
 182	 * Get the usage count for each SDMA queue in temp_list.
 183	 */
 184	mm = get_task_mm(pdd->process->lead_thread);
 185	if (!mm)
 186		goto cleanup;
 187
 188	kthread_use_mm(mm);
 189
 190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 191		val = 0;
 192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 193		if (ret) {
 194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 195				 sdma_q->queue_id);
 196		} else {
 197			sdma_q->sdma_val = val;
 198			workarea->sdma_activity_counter += val;
 199		}
 200	}
 201
 202	kthread_unuse_mm(mm);
 203	mmput(mm);
 204
 205	/*
 206	 * Do a second iteration over qpd_queues_list to check if any SDMA
 207	 * nodes got deleted while fetching SDMA counter.
 208	 */
 209	dqm_lock(dqm);
 210
 211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 212
 213	list_for_each_entry(q, &qpd->queues_list, list) {
 214		if (list_empty(&sdma_q_list.list))
 215			break;
 216
 217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 219			continue;
 220
 221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 223			     (sdma_q->queue_id == q->properties.queue_id)) {
 224				list_del(&sdma_q->list);
 225				kfree(sdma_q);
 226				break;
 227			}
 228		}
 229	}
 230
 231	dqm_unlock(dqm);
 232
 233	/*
 234	 * If temp list is not empty, it implies some queues got deleted
 235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 236	 * count for each node from the total SDMA count.
 237	 */
 238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 240		list_del(&sdma_q->list);
 241		kfree(sdma_q);
 242	}
 243
 244	return;
 245
 246cleanup:
 247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 248		list_del(&sdma_q->list);
 249		kfree(sdma_q);
 250	}
 251}
 252
 253/**
 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 255 * by current process. Translates acquired wave count into number of compute units
 256 * that are occupied.
 257 *
 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 259 * handle encapsulates GPU device it is associated with, thereby allowing collection
 260 * of waves in flight, etc
 261 * @buffer: Handle of user provided buffer updated with wave count
 262 *
 263 * Return: Number of bytes written to user buffer or an error value
 264 */
 265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 266{
 267	int cu_cnt;
 268	int wave_cnt;
 269	int max_waves_per_cu;
 270	struct kfd_node *dev = NULL;
 271	struct kfd_process *proc = NULL;
 272	struct kfd_process_device *pdd = NULL;
 273	int i;
 274	struct kfd_cu_occupancy *cu_occupancy;
 275	u32 queue_format;
 276
 277	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 278	dev = pdd->dev;
 279	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 280		return -EINVAL;
 281
 282	cu_cnt = 0;
 283	proc = pdd->process;
 284	if (pdd->qpd.queue_count == 0) {
 285		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 286			 dev->id, proc->pasid);
 287		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 288	}
 289
 290	/* Collect wave count from device if it supports */
 291	wave_cnt = 0;
 292	max_waves_per_cu = 0;
 293
 294	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
 295	if (!cu_occupancy)
 296		return -ENOMEM;
 297
 298	/*
 299	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
 300	 * For AQL queues, because of cooperative dispatch we multiply the wave count
 301	 * by number of XCCs in the partition to get the total wave counts across all
 302	 * XCCs in the partition.
 303	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
 304	 */
 305	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
 306			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
 307
 308	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
 309		if (cu_occupancy[i].wave_cnt != 0 &&
 310		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
 311						cu_occupancy[i].doorbell_off,
 312						&queue_format)) {
 313			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
 314				wave_cnt += cu_occupancy[i].wave_cnt;
 315			else
 316				wave_cnt += (NUM_XCC(dev->xcc_mask) *
 317						cu_occupancy[i].wave_cnt);
 318		}
 319	}
 320
 321	/* Translate wave count to number of compute units */
 322	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 323	kfree(cu_occupancy);
 324	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 325}
 326
 327static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 328			       char *buffer)
 329{
 330	if (strcmp(attr->name, "pasid") == 0) {
 331		struct kfd_process *p = container_of(attr, struct kfd_process,
 332						     attr_pasid);
 333
 334		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 335	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 336		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 337							      attr_vram);
 338		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
 339	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 340		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 341							      attr_sdma);
 342		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 343
 344		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
 345				  kfd_sdma_activity_worker);
 346
 347		sdma_activity_work_handler.pdd = pdd;
 348		sdma_activity_work_handler.sdma_activity_counter = 0;
 349
 350		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 351
 352		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 353		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
 354
 355		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 356				(sdma_activity_work_handler.sdma_activity_counter)/
 357				 SDMA_ACTIVITY_DIVISOR);
 358	} else {
 359		pr_err("Invalid attribute");
 360		return -EINVAL;
 361	}
 362
 363	return 0;
 364}
 365
 366static void kfd_procfs_kobj_release(struct kobject *kobj)
 367{
 368	kfree(kobj);
 369}
 370
 371static const struct sysfs_ops kfd_procfs_ops = {
 372	.show = kfd_procfs_show,
 373};
 374
 375static const struct kobj_type procfs_type = {
 376	.release = kfd_procfs_kobj_release,
 377	.sysfs_ops = &kfd_procfs_ops,
 378};
 379
 380void kfd_procfs_init(void)
 381{
 382	int ret = 0;
 383
 384	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 385	if (!procfs.kobj)
 386		return;
 387
 388	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 389				   &kfd_device->kobj, "proc");
 390	if (ret) {
 391		pr_warn("Could not create procfs proc folder");
 392		/* If we fail to create the procfs, clean up */
 393		kfd_procfs_shutdown();
 394	}
 395}
 396
 397void kfd_procfs_shutdown(void)
 398{
 399	if (procfs.kobj) {
 400		kobject_del(procfs.kobj);
 401		kobject_put(procfs.kobj);
 402		procfs.kobj = NULL;
 403	}
 404}
 405
 406static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 407				     struct attribute *attr, char *buffer)
 408{
 409	struct queue *q = container_of(kobj, struct queue, kobj);
 410
 411	if (!strcmp(attr->name, "size"))
 412		return snprintf(buffer, PAGE_SIZE, "%llu",
 413				q->properties.queue_size);
 414	else if (!strcmp(attr->name, "type"))
 415		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 416	else if (!strcmp(attr->name, "gpuid"))
 417		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 418	else
 419		pr_err("Invalid attribute");
 420
 421	return 0;
 422}
 423
 424static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 425				     struct attribute *attr, char *buffer)
 426{
 427	if (strcmp(attr->name, "evicted_ms") == 0) {
 428		struct kfd_process_device *pdd = container_of(attr,
 429				struct kfd_process_device,
 430				attr_evict);
 431		uint64_t evict_jiffies;
 432
 433		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 434
 435		return snprintf(buffer,
 436				PAGE_SIZE,
 437				"%llu\n",
 438				jiffies64_to_msecs(evict_jiffies));
 439
 440	/* Sysfs handle that gets CU occupancy is per device */
 441	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 442		return kfd_get_cu_occupancy(attr, buffer);
 443	} else {
 444		pr_err("Invalid attribute");
 445	}
 446
 447	return 0;
 448}
 449
 450static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 451				       struct attribute *attr, char *buf)
 452{
 453	struct kfd_process_device *pdd;
 454
 455	if (!strcmp(attr->name, "faults")) {
 456		pdd = container_of(attr, struct kfd_process_device,
 457				   attr_faults);
 458		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 459	}
 460	if (!strcmp(attr->name, "page_in")) {
 461		pdd = container_of(attr, struct kfd_process_device,
 462				   attr_page_in);
 463		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 464	}
 465	if (!strcmp(attr->name, "page_out")) {
 466		pdd = container_of(attr, struct kfd_process_device,
 467				   attr_page_out);
 468		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 469	}
 470	return 0;
 471}
 472
 473static struct attribute attr_queue_size = {
 474	.name = "size",
 475	.mode = KFD_SYSFS_FILE_MODE
 476};
 477
 478static struct attribute attr_queue_type = {
 479	.name = "type",
 480	.mode = KFD_SYSFS_FILE_MODE
 481};
 482
 483static struct attribute attr_queue_gpuid = {
 484	.name = "gpuid",
 485	.mode = KFD_SYSFS_FILE_MODE
 486};
 487
 488static struct attribute *procfs_queue_attrs[] = {
 489	&attr_queue_size,
 490	&attr_queue_type,
 491	&attr_queue_gpuid,
 492	NULL
 493};
 494ATTRIBUTE_GROUPS(procfs_queue);
 495
 496static const struct sysfs_ops procfs_queue_ops = {
 497	.show = kfd_procfs_queue_show,
 498};
 499
 500static const struct kobj_type procfs_queue_type = {
 501	.sysfs_ops = &procfs_queue_ops,
 502	.default_groups = procfs_queue_groups,
 503};
 504
 505static const struct sysfs_ops procfs_stats_ops = {
 506	.show = kfd_procfs_stats_show,
 507};
 508
 509static const struct kobj_type procfs_stats_type = {
 510	.sysfs_ops = &procfs_stats_ops,
 511	.release = kfd_procfs_kobj_release,
 512};
 513
 514static const struct sysfs_ops sysfs_counters_ops = {
 515	.show = kfd_sysfs_counters_show,
 516};
 517
 518static const struct kobj_type sysfs_counters_type = {
 519	.sysfs_ops = &sysfs_counters_ops,
 520	.release = kfd_procfs_kobj_release,
 521};
 522
 523int kfd_procfs_add_queue(struct queue *q)
 524{
 525	struct kfd_process *proc;
 526	int ret;
 527
 528	if (!q || !q->process)
 529		return -EINVAL;
 530	proc = q->process;
 531
 532	/* Create proc/<pid>/queues/<queue id> folder */
 533	if (!proc->kobj_queues)
 534		return -EFAULT;
 535	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 536			proc->kobj_queues, "%u", q->properties.queue_id);
 537	if (ret < 0) {
 538		pr_warn("Creating proc/<pid>/queues/%u failed",
 539			q->properties.queue_id);
 540		kobject_put(&q->kobj);
 541		return ret;
 542	}
 543
 544	return 0;
 545}
 546
 547static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 548				 char *name)
 549{
 550	int ret;
 551
 552	if (!kobj || !attr || !name)
 553		return;
 554
 555	attr->name = name;
 556	attr->mode = KFD_SYSFS_FILE_MODE;
 557	sysfs_attr_init(attr);
 558
 559	ret = sysfs_create_file(kobj, attr);
 560	if (ret)
 561		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 562}
 563
 564static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 565{
 566	int ret;
 567	int i;
 568	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 569
 570	if (!p || !p->kobj)
 571		return;
 572
 573	/*
 574	 * Create sysfs files for each GPU:
 575	 * - proc/<pid>/stats_<gpuid>/
 576	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 577	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 578	 */
 579	for (i = 0; i < p->n_pdds; i++) {
 580		struct kfd_process_device *pdd = p->pdds[i];
 581
 582		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 583				"stats_%u", pdd->dev->id);
 584		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 585		if (!pdd->kobj_stats)
 586			return;
 587
 588		ret = kobject_init_and_add(pdd->kobj_stats,
 589					   &procfs_stats_type,
 590					   p->kobj,
 591					   stats_dir_filename);
 592
 593		if (ret) {
 594			pr_warn("Creating KFD proc/stats_%s folder failed",
 595				stats_dir_filename);
 596			kobject_put(pdd->kobj_stats);
 597			pdd->kobj_stats = NULL;
 598			return;
 599		}
 600
 601		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 602				      "evicted_ms");
 603		/* Add sysfs file to report compute unit occupancy */
 604		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 605			kfd_sysfs_create_file(pdd->kobj_stats,
 606					      &pdd->attr_cu_occupancy,
 607					      "cu_occupancy");
 608	}
 609}
 610
 611static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 612{
 613	int ret = 0;
 614	int i;
 615	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 616
 617	if (!p || !p->kobj)
 618		return;
 619
 620	/*
 621	 * Create sysfs files for each GPU which supports SVM
 622	 * - proc/<pid>/counters_<gpuid>/
 623	 * - proc/<pid>/counters_<gpuid>/faults
 624	 * - proc/<pid>/counters_<gpuid>/page_in
 625	 * - proc/<pid>/counters_<gpuid>/page_out
 626	 */
 627	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 628		struct kfd_process_device *pdd = p->pdds[i];
 629		struct kobject *kobj_counters;
 630
 631		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 632			"counters_%u", pdd->dev->id);
 633		kobj_counters = kfd_alloc_struct(kobj_counters);
 634		if (!kobj_counters)
 635			return;
 636
 637		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 638					   p->kobj, counters_dir_filename);
 639		if (ret) {
 640			pr_warn("Creating KFD proc/%s folder failed",
 641				counters_dir_filename);
 642			kobject_put(kobj_counters);
 643			return;
 644		}
 645
 646		pdd->kobj_counters = kobj_counters;
 647		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 648				      "faults");
 649		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 650				      "page_in");
 651		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 652				      "page_out");
 653	}
 654}
 655
 656static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 657{
 658	int i;
 659
 660	if (!p || !p->kobj)
 661		return;
 662
 663	/*
 664	 * Create sysfs files for each GPU:
 665	 * - proc/<pid>/vram_<gpuid>
 666	 * - proc/<pid>/sdma_<gpuid>
 667	 */
 668	for (i = 0; i < p->n_pdds; i++) {
 669		struct kfd_process_device *pdd = p->pdds[i];
 670
 671		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 672			 pdd->dev->id);
 673		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 674				      pdd->vram_filename);
 
 
 675
 676		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 677			 pdd->dev->id);
 678		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 679					    pdd->sdma_filename);
 
 
 680	}
 
 
 681}
 682
 
 683void kfd_procfs_del_queue(struct queue *q)
 684{
 685	if (!q)
 686		return;
 687
 688	kobject_del(&q->kobj);
 689	kobject_put(&q->kobj);
 690}
 691
 692int kfd_process_create_wq(void)
 693{
 694	if (!kfd_process_wq)
 695		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 696	if (!kfd_restore_wq)
 697		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
 698							 WQ_FREEZABLE);
 699
 700	if (!kfd_process_wq || !kfd_restore_wq) {
 701		kfd_process_destroy_wq();
 702		return -ENOMEM;
 703	}
 704
 705	return 0;
 706}
 707
 708void kfd_process_destroy_wq(void)
 709{
 710	if (kfd_process_wq) {
 711		destroy_workqueue(kfd_process_wq);
 712		kfd_process_wq = NULL;
 713	}
 714	if (kfd_restore_wq) {
 715		destroy_workqueue(kfd_restore_wq);
 716		kfd_restore_wq = NULL;
 717	}
 718}
 719
 720static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 721			struct kfd_process_device *pdd, void **kptr)
 722{
 723	struct kfd_node *dev = pdd->dev;
 724
 725	if (kptr && *kptr) {
 726		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 727		*kptr = NULL;
 728	}
 729
 730	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 731	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 732					       NULL);
 733}
 734
 735/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 736 *	This function should be only called right after the process
 737 *	is created and when kfd_processes_mutex is still being held
 738 *	to avoid concurrency. Because of that exclusiveness, we do
 739 *	not need to take p->mutex.
 740 */
 741static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 742				   uint64_t gpu_va, uint32_t size,
 743				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 744{
 745	struct kfd_node *kdev = pdd->dev;
 
 
 746	int err;
 747
 748	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 749						 pdd->drm_priv, mem, NULL,
 750						 flags, false);
 751	if (err)
 752		goto err_alloc_mem;
 753
 754	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 755			pdd->drm_priv);
 756	if (err)
 757		goto err_map_mem;
 758
 759	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 760	if (err) {
 761		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 762		goto sync_memory_failed;
 763	}
 764
 
 
 
 
 
 
 
 
 
 
 
 
 765	if (kptr) {
 766		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 767				(struct kgd_mem *)*mem, kptr, NULL);
 768		if (err) {
 769			pr_debug("Map GTT BO to kernel failed\n");
 770			goto sync_memory_failed;
 771		}
 772	}
 773
 774	return err;
 775
 
 
 
 776sync_memory_failed:
 777	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 
 778
 779err_map_mem:
 780	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 781					       NULL);
 782err_alloc_mem:
 783	*mem = NULL;
 784	*kptr = NULL;
 785	return err;
 786}
 787
 788/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 789 *	process for IB usage The memory reserved is for KFD to submit
 790 *	IB to AMDGPU from kernel.  If the memory is reserved
 791 *	successfully, ib_kaddr will have the CPU/kernel
 792 *	address. Check ib_kaddr before accessing the memory.
 793 */
 794static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 795{
 796	struct qcm_process_device *qpd = &pdd->qpd;
 797	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 798			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 799			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 800			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 801	struct kgd_mem *mem;
 802	void *kaddr;
 803	int ret;
 804
 805	if (qpd->ib_kaddr || !qpd->ib_base)
 806		return 0;
 807
 808	/* ib_base is only set for dGPU */
 809	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 810				      &mem, &kaddr);
 811	if (ret)
 812		return ret;
 813
 814	qpd->ib_mem = mem;
 815	qpd->ib_kaddr = kaddr;
 816
 817	return 0;
 818}
 819
 820static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 821{
 822	struct qcm_process_device *qpd = &pdd->qpd;
 823
 824	if (!qpd->ib_kaddr || !qpd->ib_base)
 825		return;
 826
 827	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 828}
 829
 830struct kfd_process *kfd_create_process(struct task_struct *thread)
 831{
 832	struct kfd_process *process;
 
 833	int ret;
 834
 835	if (!(thread->mm && mmget_not_zero(thread->mm)))
 836		return ERR_PTR(-EINVAL);
 837
 838	/* Only the pthreads threading model is supported. */
 839	if (thread->group_leader->mm != thread->mm) {
 840		mmput(thread->mm);
 841		return ERR_PTR(-EINVAL);
 842	}
 843
 844	/*
 845	 * take kfd processes mutex before starting of process creation
 846	 * so there won't be a case where two threads of the same process
 847	 * create two kfd_process structures
 848	 */
 849	mutex_lock(&kfd_processes_mutex);
 850
 851	if (kfd_is_locked()) {
 852		pr_debug("KFD is locked! Cannot create process");
 853		process = ERR_PTR(-EINVAL);
 854		goto out;
 855	}
 856
 857	/* A prior open of /dev/kfd could have already created the process.
 858	 * find_process will increase process kref in this case
 859	 */
 860	process = find_process(thread, true);
 861	if (process) {
 862		pr_debug("Process already found\n");
 863	} else {
 864		/* If the process just called exec(3), it is possible that the
 865		 * cleanup of the kfd_process (following the release of the mm
 866		 * of the old process image) is still in the cleanup work queue.
 867		 * Make sure to drain any job before trying to recreate any
 868		 * resource for this process.
 869		 */
 870		flush_workqueue(kfd_process_wq);
 871
 872		process = create_process(thread);
 873		if (IS_ERR(process))
 874			goto out;
 875
 
 
 
 
 
 
 876		if (!procfs.kobj)
 877			goto out;
 878
 879		process->kobj = kfd_alloc_struct(process->kobj);
 880		if (!process->kobj) {
 881			pr_warn("Creating procfs kobject failed");
 882			goto out;
 883		}
 884		ret = kobject_init_and_add(process->kobj, &procfs_type,
 885					   procfs.kobj, "%d",
 886					   (int)process->lead_thread->pid);
 887		if (ret) {
 888			pr_warn("Creating procfs pid directory failed");
 889			kobject_put(process->kobj);
 890			goto out;
 891		}
 892
 893		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 894				      "pasid");
 
 
 
 
 
 895
 896		process->kobj_queues = kobject_create_and_add("queues",
 897							process->kobj);
 898		if (!process->kobj_queues)
 899			pr_warn("Creating KFD proc/queues folder failed");
 900
 901		kfd_procfs_add_sysfs_stats(process);
 902		kfd_procfs_add_sysfs_files(process);
 903		kfd_procfs_add_sysfs_counters(process);
 904
 905		init_waitqueue_head(&process->wait_irq_drain);
 906	}
 907out:
 
 
 908	mutex_unlock(&kfd_processes_mutex);
 909	mmput(thread->mm);
 910
 911	return process;
 912}
 913
 914struct kfd_process *kfd_get_process(const struct task_struct *thread)
 915{
 916	struct kfd_process *process;
 917
 918	if (!thread->mm)
 919		return ERR_PTR(-EINVAL);
 920
 921	/* Only the pthreads threading model is supported. */
 922	if (thread->group_leader->mm != thread->mm)
 923		return ERR_PTR(-EINVAL);
 924
 925	process = find_process(thread, false);
 926	if (!process)
 927		return ERR_PTR(-EINVAL);
 928
 929	return process;
 930}
 931
 932static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 933{
 934	struct kfd_process *process;
 935
 936	hash_for_each_possible_rcu(kfd_processes_table, process,
 937					kfd_processes, (uintptr_t)mm)
 938		if (process->mm == mm)
 939			return process;
 940
 941	return NULL;
 942}
 943
 944static struct kfd_process *find_process(const struct task_struct *thread,
 945					bool ref)
 946{
 947	struct kfd_process *p;
 948	int idx;
 949
 950	idx = srcu_read_lock(&kfd_processes_srcu);
 951	p = find_process_by_mm(thread->mm);
 952	if (p && ref)
 953		kref_get(&p->ref);
 954	srcu_read_unlock(&kfd_processes_srcu, idx);
 955
 956	return p;
 957}
 958
 959void kfd_unref_process(struct kfd_process *p)
 960{
 961	kref_put(&p->ref, kfd_process_ref_release);
 962}
 963
 964/* This increments the process->ref counter. */
 965struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 966{
 967	struct task_struct *task = NULL;
 968	struct kfd_process *p    = NULL;
 969
 970	if (!pid) {
 971		task = current;
 972		get_task_struct(task);
 973	} else {
 974		task = get_pid_task(pid, PIDTYPE_PID);
 975	}
 976
 977	if (task) {
 978		p = find_process(task, true);
 979		put_task_struct(task);
 980	}
 981
 982	return p;
 983}
 984
 985static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 986{
 987	struct kfd_process *p = pdd->process;
 988	void *mem;
 989	int id;
 990	int i;
 991
 992	/*
 993	 * Remove all handles from idr and release appropriate
 994	 * local memory object
 995	 */
 996	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 
 997
 998		for (i = 0; i < p->n_pdds; i++) {
 999			struct kfd_process_device *peer_pdd = p->pdds[i];
1000
1001			if (!peer_pdd->drm_priv)
1002				continue;
1003			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005		}
1006
1007		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008						       pdd->drm_priv, NULL);
1009		kfd_process_device_remove_obj_handle(pdd, id);
1010	}
1011}
1012
1013/*
1014 * Just kunmap and unpin signal BO here. It will be freed in
1015 * kfd_process_free_outstanding_kfd_bos()
1016 */
1017static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018{
1019	struct kfd_process_device *pdd;
1020	struct kfd_node *kdev;
1021	void *mem;
1022
1023	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024	if (!kdev)
1025		return;
1026
1027	mutex_lock(&p->mutex);
1028
1029	pdd = kfd_get_process_device_data(kdev, p);
1030	if (!pdd)
1031		goto out;
1032
1033	mem = kfd_process_device_translate_handle(
1034		pdd, GET_IDR_HANDLE(p->signal_handle));
1035	if (!mem)
1036		goto out;
1037
1038	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039
1040out:
1041	mutex_unlock(&p->mutex);
1042}
1043
1044static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045{
1046	int i;
1047
1048	for (i = 0; i < p->n_pdds; i++)
1049		kfd_process_device_free_bos(p->pdds[i]);
1050}
1051
1052static void kfd_process_destroy_pdds(struct kfd_process *p)
1053{
1054	int i;
1055
1056	for (i = 0; i < p->n_pdds; i++) {
1057		struct kfd_process_device *pdd = p->pdds[i];
1058
 
 
1059		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1060				pdd->dev->id, p->pasid);
1061
1062		kfd_process_device_destroy_cwsr_dgpu(pdd);
1063		kfd_process_device_destroy_ib_mem(pdd);
1064
1065		if (pdd->drm_file) {
1066			amdgpu_amdkfd_gpuvm_release_process_vm(
1067					pdd->dev->adev, pdd->drm_priv);
1068			fput(pdd->drm_file);
1069		}
 
 
 
 
 
1070
1071		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1072			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1073				get_order(KFD_CWSR_TBA_TMA_SIZE));
1074
 
1075		idr_destroy(&pdd->alloc_idr);
1076
1077		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1078
1079		if (pdd->dev->kfd->shared_resources.enable_mes &&
1080			pdd->proc_ctx_cpu_ptr)
1081			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1082						   &pdd->proc_ctx_bo);
1083		/*
1084		 * before destroying pdd, make sure to report availability
1085		 * for auto suspend
1086		 */
1087		if (pdd->runtime_inuse) {
1088			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1089			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1090			pdd->runtime_inuse = false;
1091		}
1092
1093		kfree(pdd);
1094		p->pdds[i] = NULL;
1095	}
1096	p->n_pdds = 0;
1097}
1098
1099static void kfd_process_remove_sysfs(struct kfd_process *p)
1100{
1101	struct kfd_process_device *pdd;
1102	int i;
1103
1104	if (!p->kobj)
1105		return;
1106
1107	sysfs_remove_file(p->kobj, &p->attr_pasid);
1108	kobject_del(p->kobj_queues);
1109	kobject_put(p->kobj_queues);
1110	p->kobj_queues = NULL;
1111
1112	for (i = 0; i < p->n_pdds; i++) {
1113		pdd = p->pdds[i];
1114
1115		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1116		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1117
1118		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1119		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1120			sysfs_remove_file(pdd->kobj_stats,
1121					  &pdd->attr_cu_occupancy);
1122		kobject_del(pdd->kobj_stats);
1123		kobject_put(pdd->kobj_stats);
1124		pdd->kobj_stats = NULL;
1125	}
1126
1127	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1128		pdd = p->pdds[i];
1129
1130		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1131		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1132		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1133		kobject_del(pdd->kobj_counters);
1134		kobject_put(pdd->kobj_counters);
1135		pdd->kobj_counters = NULL;
1136	}
1137
1138	kobject_del(p->kobj);
1139	kobject_put(p->kobj);
1140	p->kobj = NULL;
1141}
1142
1143/* No process locking is needed in this function, because the process
1144 * is not findable any more. We must assume that no other thread is
1145 * using it any more, otherwise we couldn't safely free the process
1146 * structure in the end.
1147 */
1148static void kfd_process_wq_release(struct work_struct *work)
1149{
1150	struct kfd_process *p = container_of(work, struct kfd_process,
1151					     release_work);
1152	struct dma_fence *ef;
 
 
 
 
 
 
 
1153
1154	kfd_process_dequeue_from_all_devices(p);
1155	pqm_uninit(&p->pqm);
 
 
1156
1157	/* Signal the eviction fence after user mode queues are
1158	 * destroyed. This allows any BOs to be freed without
1159	 * triggering pointless evictions or waiting for fences.
1160	 */
1161	synchronize_rcu();
1162	ef = rcu_access_pointer(p->ef);
1163	if (ef)
1164		dma_fence_signal(ef);
1165
1166	kfd_process_remove_sysfs(p);
1167
1168	kfd_process_kunmap_signal_bo(p);
1169	kfd_process_free_outstanding_kfd_bos(p);
1170	svm_range_list_fini(p);
1171
1172	kfd_process_destroy_pdds(p);
1173	dma_fence_put(ef);
1174
1175	kfd_event_free_process(p);
1176
1177	kfd_pasid_free(p->pasid);
 
 
1178	mutex_destroy(&p->mutex);
1179
1180	put_task_struct(p->lead_thread);
1181
1182	kfree(p);
1183}
1184
1185static void kfd_process_ref_release(struct kref *ref)
1186{
1187	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1188
1189	INIT_WORK(&p->release_work, kfd_process_wq_release);
1190	queue_work(kfd_process_wq, &p->release_work);
1191}
1192
1193static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1194{
1195	/* This increments p->ref counter if kfd process p exists */
1196	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
1197
1198	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1199}
1200
1201static void kfd_process_free_notifier(struct mmu_notifier *mn)
1202{
1203	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1204}
1205
1206static void kfd_process_notifier_release_internal(struct kfd_process *p)
1207{
1208	int i;
1209
1210	cancel_delayed_work_sync(&p->eviction_work);
1211	cancel_delayed_work_sync(&p->restore_work);
1212
1213	for (i = 0; i < p->n_pdds; i++) {
1214		struct kfd_process_device *pdd = p->pdds[i];
1215
1216		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1217		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1218			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1219	}
1220
1221	/* Indicate to other users that MM is no longer valid */
1222	p->mm = NULL;
1223	kfd_dbg_trap_disable(p);
1224
1225	if (atomic_read(&p->debugged_process_count) > 0) {
1226		struct kfd_process *target;
1227		unsigned int temp;
1228		int idx = srcu_read_lock(&kfd_processes_srcu);
1229
1230		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1231			if (target->debugger_process && target->debugger_process == p) {
1232				mutex_lock_nested(&target->mutex, 1);
1233				kfd_dbg_trap_disable(target);
1234				mutex_unlock(&target->mutex);
1235				if (atomic_read(&p->debugged_process_count) == 0)
1236					break;
1237			}
1238		}
1239
1240		srcu_read_unlock(&kfd_processes_srcu, idx);
1241	}
1242
1243	mmu_notifier_put(&p->mmu_notifier);
1244}
1245
1246static void kfd_process_notifier_release(struct mmu_notifier *mn,
1247					struct mm_struct *mm)
1248{
1249	struct kfd_process *p;
 
1250
1251	/*
1252	 * The kfd_process structure can not be free because the
1253	 * mmu_notifier srcu is read locked
1254	 */
1255	p = container_of(mn, struct kfd_process, mmu_notifier);
1256	if (WARN_ON(p->mm != mm))
1257		return;
1258
1259	mutex_lock(&kfd_processes_mutex);
1260	/*
1261	 * Do early return if table is empty.
1262	 *
1263	 * This could potentially happen if this function is called concurrently
1264	 * by mmu_notifier and by kfd_cleanup_pocesses.
1265	 *
1266	 */
1267	if (hash_empty(kfd_processes_table)) {
1268		mutex_unlock(&kfd_processes_mutex);
1269		return;
1270	}
1271	hash_del_rcu(&p->kfd_processes);
1272	mutex_unlock(&kfd_processes_mutex);
1273	synchronize_srcu(&kfd_processes_srcu);
1274
1275	kfd_process_notifier_release_internal(p);
1276}
 
 
1277
1278static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1279	.release = kfd_process_notifier_release,
1280	.alloc_notifier = kfd_process_alloc_notifier,
1281	.free_notifier = kfd_process_free_notifier,
1282};
 
 
 
 
 
 
 
 
 
 
 
1283
1284/*
1285 * This code handles the case when driver is being unloaded before all
1286 * mm_struct are released.  We need to safely free the kfd_process and
1287 * avoid race conditions with mmu_notifier that might try to free them.
1288 *
1289 */
1290void kfd_cleanup_processes(void)
1291{
1292	struct kfd_process *p;
1293	struct hlist_node *p_temp;
1294	unsigned int temp;
1295	HLIST_HEAD(cleanup_list);
1296
1297	/*
1298	 * Move all remaining kfd_process from the process table to a
1299	 * temp list for processing.   Once done, callback from mmu_notifier
1300	 * release will not see the kfd_process in the table and do early return,
1301	 * avoiding double free issues.
1302	 */
1303	mutex_lock(&kfd_processes_mutex);
1304	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1305		hash_del_rcu(&p->kfd_processes);
1306		synchronize_srcu(&kfd_processes_srcu);
1307		hlist_add_head(&p->kfd_processes, &cleanup_list);
1308	}
1309	mutex_unlock(&kfd_processes_mutex);
1310
1311	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1312		kfd_process_notifier_release_internal(p);
1313
1314	/*
1315	 * Ensures that all outstanding free_notifier get called, triggering
1316	 * the release of the kfd_process struct.
1317	 */
1318	mmu_notifier_synchronize();
1319}
1320
1321int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 
 
 
 
 
1322{
1323	unsigned long  offset;
1324	int i;
1325
1326	if (p->has_cwsr)
1327		return 0;
1328
1329	for (i = 0; i < p->n_pdds; i++) {
1330		struct kfd_node *dev = p->pdds[i]->dev;
1331		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1332
1333		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1334			continue;
1335
1336		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1337		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1338			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1339			MAP_SHARED, offset);
1340
1341		if (IS_ERR_VALUE(qpd->tba_addr)) {
1342			int err = qpd->tba_addr;
1343
1344			dev_err(dev->adev->dev,
1345				"Failure to set tba address. error %d.\n", err);
1346			qpd->tba_addr = 0;
1347			qpd->cwsr_kaddr = NULL;
1348			return err;
1349		}
1350
1351		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1352
1353		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1354
1355		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358	}
1359
1360	p->has_cwsr = true;
1361
1362	return 0;
1363}
1364
1365static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1366{
1367	struct kfd_node *dev = pdd->dev;
1368	struct qcm_process_device *qpd = &pdd->qpd;
1369	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1370			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1371			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1372	struct kgd_mem *mem;
1373	void *kaddr;
1374	int ret;
1375
1376	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1377		return 0;
1378
1379	/* cwsr_base is only set for dGPU */
1380	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1381				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1382	if (ret)
1383		return ret;
1384
1385	qpd->cwsr_mem = mem;
1386	qpd->cwsr_kaddr = kaddr;
1387	qpd->tba_addr = qpd->cwsr_base;
1388
1389	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1390
1391	kfd_process_set_trap_debug_flag(&pdd->qpd,
1392					pdd->process->debug_trap_enabled);
1393
1394	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1395	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1396		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1397
1398	return 0;
1399}
1400
1401static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1402{
1403	struct kfd_node *dev = pdd->dev;
1404	struct qcm_process_device *qpd = &pdd->qpd;
1405
1406	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1407		return;
1408
1409	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1410}
1411
1412void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1413				  uint64_t tba_addr,
1414				  uint64_t tma_addr)
1415{
1416	if (qpd->cwsr_kaddr) {
1417		/* KFD trap handler is bound, record as second-level TBA/TMA
1418		 * in first-level TMA. First-level trap will jump to second.
1419		 */
1420		uint64_t *tma =
1421			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1422		tma[0] = tba_addr;
1423		tma[1] = tma_addr;
1424	} else {
1425		/* No trap handler bound, bind as first-level TBA/TMA. */
1426		qpd->tba_addr = tba_addr;
1427		qpd->tma_addr = tma_addr;
1428	}
1429}
1430
1431bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1432{
1433	int i;
1434
1435	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1436	 * boot time retry setting. Mixing processes with different
1437	 * XNACK/retry settings can hang the GPU.
1438	 *
1439	 * Different GPUs can have different noretry settings depending
1440	 * on HW bugs or limitations. We need to find at least one
1441	 * XNACK mode for this process that's compatible with all GPUs.
1442	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1443	 * built for XNACK-off. On GFXv9 it may perform slower.
1444	 *
1445	 * Therefore applications built for XNACK-off can always be
1446	 * supported and will be our fallback if any GPU does not
1447	 * support retry.
1448	 */
1449	for (i = 0; i < p->n_pdds; i++) {
1450		struct kfd_node *dev = p->pdds[i]->dev;
1451
1452		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1453		 * support the SVM APIs and don't need to be considered
1454		 * for the XNACK mode selection.
1455		 */
1456		if (!KFD_IS_SOC15(dev))
1457			continue;
1458		/* Aldebaran can always support XNACK because it can support
1459		 * per-process XNACK mode selection. But let the dev->noretry
1460		 * setting still influence the default XNACK mode.
1461		 */
1462		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1463			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1464				pr_debug("SRIOV platform xnack not supported\n");
1465				return false;
1466			}
1467			continue;
1468		}
1469
1470		/* GFXv10 and later GPUs do not support shader preemption
1471		 * during page faults. This can lead to poor QoS for queue
1472		 * management and memory-manager-related preemptions or
1473		 * even deadlocks.
1474		 */
1475		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1476			return false;
1477
1478		if (dev->kfd->noretry)
1479			return false;
1480	}
1481
1482	return true;
1483}
1484
1485void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1486				     bool enabled)
1487{
1488	if (qpd->cwsr_kaddr) {
1489		uint64_t *tma =
1490			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1491		tma[2] = enabled;
1492	}
1493}
1494
1495/*
1496 * On return the kfd_process is fully operational and will be freed when the
1497 * mm is released
1498 */
1499static struct kfd_process *create_process(const struct task_struct *thread)
1500{
1501	struct kfd_process *process;
1502	struct mmu_notifier *mn;
1503	int err = -ENOMEM;
1504
1505	process = kzalloc(sizeof(*process), GFP_KERNEL);
1506	if (!process)
1507		goto err_alloc_process;
1508
1509	kref_init(&process->ref);
1510	mutex_init(&process->mutex);
1511	process->mm = thread->mm;
1512	process->lead_thread = thread->group_leader;
1513	process->n_pdds = 0;
1514	process->queues_paused = false;
1515	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1516	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1517	process->last_restore_timestamp = get_jiffies_64();
1518	err = kfd_event_init_process(process);
1519	if (err)
1520		goto err_event_init;
1521	process->is_32bit_user_mode = in_compat_syscall();
1522	process->debug_trap_enabled = false;
1523	process->debugger_process = NULL;
1524	process->exception_enable_mask = 0;
1525	atomic_set(&process->debugged_process_count, 0);
1526	sema_init(&process->runtime_enable_sema, 0);
1527
1528	process->pasid = kfd_pasid_alloc();
1529	if (process->pasid == 0) {
1530		err = -ENOSPC;
1531		goto err_alloc_pasid;
1532	}
 
 
1533
1534	err = pqm_init(&process->pqm, process);
1535	if (err != 0)
1536		goto err_process_pqm_init;
1537
1538	/* init process apertures*/
1539	err = kfd_init_apertures(process);
1540	if (err != 0)
1541		goto err_init_apertures;
1542
1543	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1544	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1545
1546	err = svm_range_list_init(process);
1547	if (err)
1548		goto err_init_svm_range_list;
1549
1550	/* alloc_notifier needs to find the process in the hash table */
1551	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1552			(uintptr_t)process->mm);
1553
1554	/* Avoid free_notifier to start kfd_process_wq_release if
1555	 * mmu_notifier_get failed because of pending signal.
1556	 */
1557	kref_get(&process->ref);
1558
1559	/* MMU notifier registration must be the last call that can fail
1560	 * because after this point we cannot unwind the process creation.
1561	 * After this point, mmu_notifier_put will trigger the cleanup by
1562	 * dropping the last process reference in the free_notifier.
1563	 */
1564	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1565	if (IS_ERR(mn)) {
1566		err = PTR_ERR(mn);
1567		goto err_register_notifier;
1568	}
1569	BUG_ON(mn != &process->mmu_notifier);
1570
1571	kfd_unref_process(process);
1572	get_task_struct(process->lead_thread);
1573
1574	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1575
1576	return process;
1577
1578err_register_notifier:
1579	hash_del_rcu(&process->kfd_processes);
1580	svm_range_list_fini(process);
1581err_init_svm_range_list:
1582	kfd_process_free_outstanding_kfd_bos(process);
1583	kfd_process_destroy_pdds(process);
1584err_init_apertures:
1585	pqm_uninit(&process->pqm);
1586err_process_pqm_init:
 
 
1587	kfd_pasid_free(process->pasid);
1588err_alloc_pasid:
1589	kfd_event_free_process(process);
1590err_event_init:
1591	mutex_destroy(&process->mutex);
1592	kfree(process);
1593err_alloc_process:
1594	return ERR_PTR(err);
1595}
1596
1597struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598							struct kfd_process *p)
1599{
1600	int i;
1601
1602	for (i = 0; i < p->n_pdds; i++)
1603		if (p->pdds[i]->dev == dev)
1604			return p->pdds[i];
1605
1606	return NULL;
1607}
1608
1609struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1610							struct kfd_process *p)
1611{
1612	struct kfd_process_device *pdd = NULL;
1613
1614	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1615		return NULL;
1616	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1617	if (!pdd)
1618		return NULL;
1619
 
 
 
 
 
 
1620	pdd->dev = dev;
1621	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1622	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1623	pdd->qpd.dqm = dev->dqm;
1624	pdd->qpd.pqm = &p->pqm;
1625	pdd->qpd.evicted = 0;
1626	pdd->qpd.mapped_gws_queue = false;
1627	pdd->process = p;
1628	pdd->bound = PDD_UNBOUND;
1629	pdd->already_dequeued = false;
1630	pdd->runtime_inuse = false;
1631	atomic64_set(&pdd->vram_usage, 0);
1632	pdd->sdma_past_activity_counter = 0;
1633	pdd->user_gpu_id = dev->id;
1634	atomic64_set(&pdd->evict_duration_counter, 0);
1635
1636	p->pdds[p->n_pdds++] = pdd;
1637	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1638		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1639							pdd->dev->adev,
1640							false,
1641							0);
1642
1643	/* Init idr used for memory handle translation */
1644	idr_init(&pdd->alloc_idr);
1645
1646	return pdd;
1647}
1648
1649/**
1650 * kfd_process_device_init_vm - Initialize a VM for a process-device
1651 *
1652 * @pdd: The process-device
1653 * @drm_file: Optional pointer to a DRM file descriptor
1654 *
1655 * If @drm_file is specified, it will be used to acquire the VM from
1656 * that file descriptor. If successful, the @pdd takes ownership of
1657 * the file descriptor.
1658 *
1659 * If @drm_file is NULL, a new VM is created.
1660 *
1661 * Returns 0 on success, -errno on failure.
1662 */
1663int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1664			       struct file *drm_file)
1665{
1666	struct amdgpu_fpriv *drv_priv;
1667	struct amdgpu_vm *avm;
1668	struct kfd_process *p;
1669	struct dma_fence *ef;
1670	struct kfd_node *dev;
1671	int ret;
1672
1673	if (!drm_file)
1674		return -EINVAL;
1675
1676	if (pdd->drm_priv)
1677		return -EBUSY;
1678
1679	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1680	if (ret)
1681		return ret;
1682	avm = &drv_priv->vm;
1683
1684	p = pdd->process;
1685	dev = pdd->dev;
1686
1687	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1688						     &p->kgd_process_info,
1689						     p->ef ? NULL : &ef);
 
 
 
 
1690	if (ret) {
1691		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1692		return ret;
1693	}
1694
1695	if (!p->ef)
1696		RCU_INIT_POINTER(p->ef, ef);
1697
1698	pdd->drm_priv = drm_file->private_data;
1699
1700	ret = kfd_process_device_reserve_ib_mem(pdd);
1701	if (ret)
1702		goto err_reserve_ib_mem;
1703	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1704	if (ret)
1705		goto err_init_cwsr;
1706
1707	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1708	if (ret)
1709		goto err_set_pasid;
1710
1711	pdd->drm_file = drm_file;
1712
1713	return 0;
1714
1715err_set_pasid:
1716	kfd_process_device_destroy_cwsr_dgpu(pdd);
1717err_init_cwsr:
1718	kfd_process_device_destroy_ib_mem(pdd);
1719err_reserve_ib_mem:
1720	pdd->drm_priv = NULL;
1721	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
 
 
1722
1723	return ret;
1724}
1725
1726/*
1727 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1728 * to the device.
1729 * Unbinding occurs when the process dies or the device is removed.
1730 *
1731 * Assumes that the process lock is held.
1732 */
1733struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1734							struct kfd_process *p)
1735{
1736	struct kfd_process_device *pdd;
1737	int err;
1738
1739	pdd = kfd_get_process_device_data(dev, p);
1740	if (!pdd) {
1741		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1742		return ERR_PTR(-ENOMEM);
1743	}
1744
1745	if (!pdd->drm_priv)
1746		return ERR_PTR(-ENODEV);
1747
1748	/*
1749	 * signal runtime-pm system to auto resume and prevent
1750	 * further runtime suspend once device pdd is created until
1751	 * pdd is destroyed.
1752	 */
1753	if (!pdd->runtime_inuse) {
1754		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1755		if (err < 0) {
1756			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1757			return ERR_PTR(err);
1758		}
1759	}
1760
 
 
 
 
 
 
 
 
1761	/*
1762	 * make sure that runtime_usage counter is incremented just once
1763	 * per pdd
1764	 */
1765	pdd->runtime_inuse = true;
1766
1767	return pdd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768}
1769
1770/* Create specific handle mapped to mem from process local memory idr
1771 * Assumes that the process lock is held.
1772 */
1773int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1774					void *mem)
1775{
1776	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1777}
1778
1779/* Translate specific handle from process local memory idr
1780 * Assumes that the process lock is held.
1781 */
1782void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1783					int handle)
1784{
1785	if (handle < 0)
1786		return NULL;
1787
1788	return idr_find(&pdd->alloc_idr, handle);
1789}
1790
1791/* Remove specific handle from process local memory idr
1792 * Assumes that the process lock is held.
1793 */
1794void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1795					int handle)
1796{
1797	if (handle >= 0)
1798		idr_remove(&pdd->alloc_idr, handle);
1799}
1800
1801/* This increments the process->ref counter. */
1802struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1803{
1804	struct kfd_process *p, *ret_p = NULL;
1805	unsigned int temp;
1806
1807	int idx = srcu_read_lock(&kfd_processes_srcu);
1808
1809	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1810		if (p->pasid == pasid) {
1811			kref_get(&p->ref);
1812			ret_p = p;
1813			break;
1814		}
1815	}
1816
1817	srcu_read_unlock(&kfd_processes_srcu, idx);
1818
1819	return ret_p;
1820}
1821
1822/* This increments the process->ref counter. */
1823struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1824{
1825	struct kfd_process *p;
1826
1827	int idx = srcu_read_lock(&kfd_processes_srcu);
1828
1829	p = find_process_by_mm(mm);
1830	if (p)
1831		kref_get(&p->ref);
1832
1833	srcu_read_unlock(&kfd_processes_srcu, idx);
1834
1835	return p;
1836}
1837
1838/* kfd_process_evict_queues - Evict all user queues of a process
1839 *
1840 * Eviction is reference-counted per process-device. This means multiple
1841 * evictions from different sources can be nested safely.
1842 */
1843int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1844{
 
1845	int r = 0;
1846	int i;
1847	unsigned int n_evicted = 0;
1848
1849	for (i = 0; i < p->n_pdds; i++) {
1850		struct kfd_process_device *pdd = p->pdds[i];
1851		struct device *dev = pdd->dev->adev->dev;
1852
1853		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1854					     trigger);
1855
1856		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1857							    &pdd->qpd);
1858		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1859		 * we would like to set all the queues to be in evicted state to prevent
1860		 * them been add back since they actually not be saved right now.
1861		 */
1862		if (r && r != -EIO) {
1863			dev_err(dev, "Failed to evict process queues\n");
1864			goto fail;
1865		}
1866		n_evicted++;
1867
1868		pdd->dev->dqm->is_hws_hang = false;
1869	}
1870
1871	return r;
1872
1873fail:
1874	/* To keep state consistent, roll back partial eviction by
1875	 * restoring queues
1876	 */
1877	for (i = 0; i < p->n_pdds; i++) {
1878		struct kfd_process_device *pdd = p->pdds[i];
1879
1880		if (n_evicted == 0)
1881			break;
1882
1883		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1884
1885		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1886							      &pdd->qpd))
1887			dev_err(pdd->dev->adev->dev,
1888				"Failed to restore queues\n");
1889
1890		n_evicted--;
1891	}
1892
1893	return r;
1894}
1895
1896/* kfd_process_restore_queues - Restore all user queues of a process */
1897int kfd_process_restore_queues(struct kfd_process *p)
1898{
 
1899	int r, ret = 0;
1900	int i;
1901
1902	for (i = 0; i < p->n_pdds; i++) {
1903		struct kfd_process_device *pdd = p->pdds[i];
1904		struct device *dev = pdd->dev->adev->dev;
1905
1906		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1907
 
1908		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1909							      &pdd->qpd);
1910		if (r) {
1911			dev_err(dev, "Failed to restore process queues\n");
1912			if (!ret)
1913				ret = r;
1914		}
1915	}
1916
1917	return ret;
1918}
1919
1920int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1921{
1922	int i;
1923
1924	for (i = 0; i < p->n_pdds; i++)
1925		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1926			return i;
1927	return -EINVAL;
1928}
1929
1930int
1931kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1932			    uint32_t *gpuid, uint32_t *gpuidx)
1933{
1934	int i;
1935
1936	for (i = 0; i < p->n_pdds; i++)
1937		if (p->pdds[i] && p->pdds[i]->dev == node) {
1938			*gpuid = p->pdds[i]->user_gpu_id;
1939			*gpuidx = i;
1940			return 0;
1941		}
1942	return -EINVAL;
1943}
1944
1945static int signal_eviction_fence(struct kfd_process *p)
1946{
1947	struct dma_fence *ef;
1948	int ret;
1949
1950	rcu_read_lock();
1951	ef = dma_fence_get_rcu_safe(&p->ef);
1952	rcu_read_unlock();
1953	if (!ef)
1954		return -EINVAL;
1955
1956	ret = dma_fence_signal(ef);
1957	dma_fence_put(ef);
1958
1959	return ret;
1960}
1961
1962static void evict_process_worker(struct work_struct *work)
1963{
1964	int ret;
1965	struct kfd_process *p;
1966	struct delayed_work *dwork;
1967
1968	dwork = to_delayed_work(work);
1969
1970	/* Process termination destroys this worker thread. So during the
1971	 * lifetime of this thread, kfd_process p will be valid
1972	 */
1973	p = container_of(dwork, struct kfd_process, eviction_work);
 
 
 
 
 
 
 
 
 
 
1974
1975	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1976	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1977	if (!ret) {
1978		/* If another thread already signaled the eviction fence,
1979		 * they are responsible stopping the queues and scheduling
1980		 * the restore work.
1981		 */
1982		if (signal_eviction_fence(p) ||
1983		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
1984				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1985			kfd_process_restore_queues(p);
1986
1987		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1988	} else
1989		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1990}
1991
1992static int restore_process_helper(struct kfd_process *p)
1993{
1994	int ret = 0;
1995
1996	/* VMs may not have been acquired yet during debugging. */
1997	if (p->kgd_process_info) {
1998		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1999			p->kgd_process_info, &p->ef);
2000		if (ret)
2001			return ret;
2002	}
2003
2004	ret = kfd_process_restore_queues(p);
2005	if (!ret)
2006		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2007	else
2008		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2009
2010	return ret;
2011}
2012
2013static void restore_process_worker(struct work_struct *work)
2014{
2015	struct delayed_work *dwork;
2016	struct kfd_process *p;
2017	int ret = 0;
2018
2019	dwork = to_delayed_work(work);
2020
2021	/* Process termination destroys this worker thread. So during the
2022	 * lifetime of this thread, kfd_process p will be valid
2023	 */
2024	p = container_of(dwork, struct kfd_process, restore_work);
2025	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2026
2027	/* Setting last_restore_timestamp before successful restoration.
2028	 * Otherwise this would have to be set by KGD (restore_process_bos)
2029	 * before KFD BOs are unreserved. If not, the process can be evicted
2030	 * again before the timestamp is set.
2031	 * If restore fails, the timestamp will be set again in the next
2032	 * attempt. This would mean that the minimum GPU quanta would be
2033	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2034	 * functions)
2035	 */
2036
2037	p->last_restore_timestamp = get_jiffies_64();
2038
2039	ret = restore_process_helper(p);
2040	if (ret) {
2041		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2042			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2043		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2044				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2045			kfd_process_restore_queues(p);
 
2046	}
 
 
 
 
 
 
2047}
2048
2049void kfd_suspend_all_processes(void)
2050{
2051	struct kfd_process *p;
2052	unsigned int temp;
2053	int idx = srcu_read_lock(&kfd_processes_srcu);
2054
2055	WARN(debug_evictions, "Evicting all processes");
2056	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2057		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
 
 
 
2058			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2059		signal_eviction_fence(p);
 
 
2060	}
2061	srcu_read_unlock(&kfd_processes_srcu, idx);
2062}
2063
2064int kfd_resume_all_processes(void)
2065{
2066	struct kfd_process *p;
2067	unsigned int temp;
2068	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2069
2070	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2071		if (restore_process_helper(p)) {
2072			pr_err("Restore process %d failed during resume\n",
2073			       p->pasid);
2074			ret = -EFAULT;
2075		}
2076	}
2077	srcu_read_unlock(&kfd_processes_srcu, idx);
2078	return ret;
2079}
2080
2081int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2082			  struct vm_area_struct *vma)
2083{
2084	struct kfd_process_device *pdd;
2085	struct qcm_process_device *qpd;
2086
2087	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2088		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2089		return -EINVAL;
2090	}
2091
2092	pdd = kfd_get_process_device_data(dev, process);
2093	if (!pdd)
2094		return -EINVAL;
2095	qpd = &pdd->qpd;
2096
2097	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2098					get_order(KFD_CWSR_TBA_TMA_SIZE));
2099	if (!qpd->cwsr_kaddr) {
2100		dev_err(dev->adev->dev,
2101			"Error allocating per process CWSR buffer.\n");
2102		return -ENOMEM;
2103	}
2104
2105	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2106		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2107	/* Mapping pages to user process */
2108	return remap_pfn_range(vma, vma->vm_start,
2109			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2110			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2111}
2112
2113/* assumes caller holds process lock. */
2114int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2115{
2116	uint32_t irq_drain_fence[8];
2117	uint8_t node_id = 0;
2118	int r = 0;
2119
2120	if (!KFD_IS_SOC15(pdd->dev))
2121		return 0;
2122
2123	pdd->process->irq_drain_is_open = true;
2124
2125	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2126	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2127							KFD_IRQ_FENCE_CLIENTID;
2128	irq_drain_fence[3] = pdd->process->pasid;
2129
2130	/*
2131	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2132	 */
2133	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2134	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2135		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2136		irq_drain_fence[3] |= node_id << 16;
2137	}
2138
2139	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2140	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2141						     irq_drain_fence)) {
2142		pdd->process->irq_drain_is_open = false;
2143		return 0;
2144	}
2145
2146	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2147				     !READ_ONCE(pdd->process->irq_drain_is_open));
2148	if (r)
2149		pdd->process->irq_drain_is_open = false;
2150
2151	return r;
2152}
2153
2154void kfd_process_close_interrupt_drain(unsigned int pasid)
2155{
2156	struct kfd_process *p;
2157
2158	p = kfd_lookup_process_by_pasid(pasid);
2159
2160	if (!p)
2161		return;
2162
2163	WRITE_ONCE(p->irq_drain_is_open, false);
2164	wake_up_all(&p->wait_irq_drain);
2165	kfd_unref_process(p);
2166}
2167
2168struct send_exception_work_handler_workarea {
2169	struct work_struct work;
2170	struct kfd_process *p;
2171	unsigned int queue_id;
2172	uint64_t error_reason;
2173};
2174
2175static void send_exception_work_handler(struct work_struct *work)
2176{
2177	struct send_exception_work_handler_workarea *workarea;
2178	struct kfd_process *p;
2179	struct queue *q;
2180	struct mm_struct *mm;
2181	struct kfd_context_save_area_header __user *csa_header;
2182	uint64_t __user *err_payload_ptr;
2183	uint64_t cur_err;
2184	uint32_t ev_id;
2185
2186	workarea = container_of(work,
2187				struct send_exception_work_handler_workarea,
2188				work);
2189	p = workarea->p;
2190
2191	mm = get_task_mm(p->lead_thread);
2192
2193	if (!mm)
2194		return;
2195
2196	kthread_use_mm(mm);
2197
2198	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2199
2200	if (!q)
2201		goto out;
2202
2203	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2204
2205	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2206	get_user(cur_err, err_payload_ptr);
2207	cur_err |= workarea->error_reason;
2208	put_user(cur_err, err_payload_ptr);
2209	get_user(ev_id, &csa_header->err_event_id);
2210
2211	kfd_set_event(p, ev_id);
2212
2213out:
2214	kthread_unuse_mm(mm);
2215	mmput(mm);
2216}
2217
2218int kfd_send_exception_to_runtime(struct kfd_process *p,
2219			unsigned int queue_id,
2220			uint64_t error_reason)
2221{
2222	struct send_exception_work_handler_workarea worker;
2223
2224	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2225
2226	worker.p = p;
2227	worker.queue_id = queue_id;
2228	worker.error_reason = error_reason;
2229
2230	schedule_work(&worker.work);
2231	flush_work(&worker.work);
2232	destroy_work_on_stack(&worker.work);
2233
2234	return 0;
2235}
2236
2237struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2238{
2239	int i;
2240
2241	if (gpu_id) {
2242		for (i = 0; i < p->n_pdds; i++) {
2243			struct kfd_process_device *pdd = p->pdds[i];
2244
2245			if (pdd->user_gpu_id == gpu_id)
2246				return pdd;
2247		}
2248	}
2249	return NULL;
2250}
2251
2252int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2253{
2254	int i;
2255
2256	if (!actual_gpu_id)
2257		return 0;
2258
2259	for (i = 0; i < p->n_pdds; i++) {
2260		struct kfd_process_device *pdd = p->pdds[i];
2261
2262		if (pdd->dev->id == actual_gpu_id)
2263			return pdd->user_gpu_id;
2264	}
2265	return -EINVAL;
2266}
2267
2268#if defined(CONFIG_DEBUG_FS)
2269
2270int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2271{
2272	struct kfd_process *p;
2273	unsigned int temp;
2274	int r = 0;
2275
2276	int idx = srcu_read_lock(&kfd_processes_srcu);
2277
2278	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2279		seq_printf(m, "Process %d PASID 0x%x:\n",
2280			   p->lead_thread->tgid, p->pasid);
2281
2282		mutex_lock(&p->mutex);
2283		r = pqm_debugfs_mqds(m, &p->pqm);
2284		mutex_unlock(&p->mutex);
2285
2286		if (r)
2287			break;
2288	}
2289
2290	srcu_read_unlock(&kfd_processes_srcu, idx);
2291
2292	return r;
2293}
2294
2295#endif