Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * Copyright 2019 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 *
 22 */
 23
 24#include "amdgpu_ras_eeprom.h"
 25#include "amdgpu.h"
 26#include "amdgpu_ras.h"
 27#include <linux/bits.h>
 28#include "atom.h"
 29
 30#define EEPROM_I2C_TARGET_ADDR_VEGA20    	0xA0
 31#define EEPROM_I2C_TARGET_ADDR_ARCTURUS  	0xA8
 32#define EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342  	0xA0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34/*
 35 * The 2 macros bellow represent the actual size in bytes that
 36 * those entities occupy in the EEPROM memory.
 37 * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
 38 * uses uint64 to store 6b fields such as retired_page.
 39 */
 40#define EEPROM_TABLE_HEADER_SIZE 20
 41#define EEPROM_TABLE_RECORD_SIZE 24
 42
 43#define EEPROM_ADDRESS_SIZE 0x2
 44
 45/* Table hdr is 'AMDR' */
 46#define EEPROM_TABLE_HDR_VAL 0x414d4452
 47#define EEPROM_TABLE_VER 0x00010000
 48
 49/* Assume 2 Mbit size */
 50#define EEPROM_SIZE_BYTES 256000
 51#define EEPROM_PAGE__SIZE_BYTES 256
 52#define EEPROM_HDR_START 0
 53#define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE)
 54#define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE)
 55#define EEPROM_ADDR_MSB_MASK GENMASK(17, 8)
 56
 57#define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
 60				       uint16_t *i2c_addr)
 61{
 62	struct atom_context *atom_ctx = adev->mode_info.atom_context;
 
 
 
 63
 64	if (!i2c_addr || !atom_ctx)
 65		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66
 67	if (strnstr(atom_ctx->vbios_version,
 68	            "D342",
 69		    sizeof(atom_ctx->vbios_version)))
 70		*i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342;
 71	else
 72		*i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73
 74	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75}
 76
 77static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
 78				  uint16_t *i2c_addr)
 79{
 80	if (!i2c_addr)
 
 
 
 81		return false;
 82
 83	switch (adev->asic_type) {
 84	case CHIP_VEGA20:
 85		*i2c_addr = EEPROM_I2C_TARGET_ADDR_VEGA20;
 86		break;
 
 
 
 
 
 
 
 87
 88	case CHIP_ARCTURUS:
 89		return __get_eeprom_i2c_addr_arct(adev, i2c_addr);
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91	default:
 92		return false;
 93	}
 94
 95	return true;
 96}
 97
 98static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
 99					  unsigned char *buff)
 
100{
101	uint32_t *pp = (uint32_t *) buff;
102
103	pp[0] = cpu_to_le32(hdr->header);
104	pp[1] = cpu_to_le32(hdr->version);
105	pp[2] = cpu_to_le32(hdr->first_rec_offset);
106	pp[3] = cpu_to_le32(hdr->tbl_size);
107	pp[4] = cpu_to_le32(hdr->checksum);
108}
109
110static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
111					  unsigned char *buff)
 
112{
113	uint32_t *pp = (uint32_t *)buff;
114
115	hdr->header 	      = le32_to_cpu(pp[0]);
116	hdr->version 	      = le32_to_cpu(pp[1]);
117	hdr->first_rec_offset = le32_to_cpu(pp[2]);
118	hdr->tbl_size 	      = le32_to_cpu(pp[3]);
119	hdr->checksum 	      = le32_to_cpu(pp[4]);
120}
121
122static int __update_table_header(struct amdgpu_ras_eeprom_control *control,
123				 unsigned char *buff)
124{
125	int ret = 0;
126	struct amdgpu_device *adev = to_amdgpu_device(control);
127	struct i2c_msg msg = {
128			.addr	= 0,
129			.flags	= 0,
130			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
131			.buf	= buff,
132	};
133
 
 
134
135	*(uint16_t *)buff = EEPROM_HDR_START;
136	__encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138	msg.addr = control->i2c_address;
 
139
140	ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
141	if (ret < 1)
142		DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);
 
 
 
143
144	return ret;
 
 
 
145}
146
147static uint32_t  __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control)
 
 
148{
149	int i;
150	uint32_t tbl_sum = 0;
151
152	/* Header checksum, skip checksum field in the calculation */
153	for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++)
154		tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i);
155
156	return tbl_sum;
 
 
 
157}
158
159static uint32_t  __calc_recs_byte_sum(struct eeprom_table_record *records,
160				      int num)
161{
162	int i, j;
163	uint32_t tbl_sum = 0;
 
164
165	/* Records checksum */
166	for (i = 0; i < num; i++) {
167		struct eeprom_table_record *record = &records[i];
 
 
168
169		for (j = 0; j < sizeof(*record); j++) {
170			tbl_sum += *(((unsigned char *)record) + j);
171		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172	}
173
174	return tbl_sum;
175}
176
177static inline uint32_t  __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
178				  struct eeprom_table_record *records, int num)
179{
180	return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num);
181}
182
183/* Checksum = 256 -((sum of all table entries) mod 256) */
184static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
185				  struct eeprom_table_record *records, int num,
186				  uint32_t old_hdr_byte_sum)
187{
188	/*
189	 * This will update the table sum with new records.
190	 *
191	 * TODO: What happens when the EEPROM table is to be wrapped around
192	 * and old records from start will get overridden.
193	 */
194
195	/* need to recalculate updated header byte sum */
196	control->tbl_byte_sum -= old_hdr_byte_sum;
197	control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num);
 
 
 
198
199	control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256);
200}
201
202/* table sum mod 256 + checksum must equals 256 */
203static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
204			    struct eeprom_table_record *records, int num)
205{
206	control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
 
 
 
 
 
 
 
 
207
208	if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) {
209		DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum);
210		return false;
211	}
212
213	return true;
214}
215
216int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
 
 
217{
218	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
219	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
220	int ret = 0;
221
222	mutex_lock(&control->tbl_mutex);
223
224	hdr->header = EEPROM_TABLE_HDR_VAL;
225	hdr->version = EEPROM_TABLE_VER;
226	hdr->first_rec_offset = EEPROM_RECORD_START;
227	hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE;
 
 
 
 
 
 
 
 
228
229	control->tbl_byte_sum = 0;
230	__update_tbl_checksum(control, NULL, 0, 0);
231	control->next_addr = EEPROM_RECORD_START;
232
233	ret = __update_table_header(control, buff);
234
235	mutex_unlock(&control->tbl_mutex);
236
237	return ret;
 
 
 
238
 
 
 
 
 
 
 
 
 
239}
240
241int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
 
 
 
 
 
 
 
242{
243	int ret = 0;
244	struct amdgpu_device *adev = to_amdgpu_device(control);
245	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
246	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
247	struct i2c_msg msg = {
248			.addr	= 0,
249			.flags	= I2C_M_RD,
250			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
251			.buf	= buff,
252	};
253
254	/* Verify i2c adapter is initialized */
255	if (!adev->pm.smu_i2c.algo)
256		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
258	if (!__get_eeprom_i2c_addr(adev, &control->i2c_address))
259		return -EINVAL;
 
 
 
 
 
 
260
261	mutex_init(&control->tbl_mutex);
 
262
263	msg.addr = control->i2c_address;
264	/* Read/Create table header from EEPROM address 0 */
265	ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
266	if (ret < 1) {
267		DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
268		return ret;
269	}
270
271	__decode_table_header_from_buff(hdr, &buff[2]);
272
273	if (hdr->header == EEPROM_TABLE_HDR_VAL) {
274		control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) /
275				    EEPROM_TABLE_RECORD_SIZE;
276		control->tbl_byte_sum = __calc_hdr_byte_sum(control);
277		control->next_addr = EEPROM_RECORD_START;
278
279		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
280				 control->num_recs);
 
281
282	} else {
283		DRM_INFO("Creating new EEPROM table");
284
285		ret = amdgpu_ras_eeprom_reset_table(control);
286	}
287
288	return ret == 1 ? 0 : -EIO;
289}
290
291static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
292					  struct eeprom_table_record *record,
293					  unsigned char *buff)
 
294{
295	__le64 tmp = 0;
296	int i = 0;
297
298	/* Next are all record fields according to EEPROM page spec in LE foramt */
299	buff[i++] = record->err_type;
300
301	buff[i++] = record->bank;
302
303	tmp = cpu_to_le64(record->ts);
304	memcpy(buff + i, &tmp, 8);
305	i += 8;
306
307	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
308	memcpy(buff + i, &tmp, 6);
309	i += 6;
310
311	buff[i++] = record->mem_channel;
312	buff[i++] = record->mcumc_id;
313
314	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
315	memcpy(buff + i, &tmp, 6);
316}
317
318static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
319					    struct eeprom_table_record *record,
320					    unsigned char *buff)
 
321{
322	__le64 tmp = 0;
323	int i =  0;
324
325	/* Next are all record fields according to EEPROM page spec in LE foramt */
326	record->err_type = buff[i++];
327
328	record->bank = buff[i++];
329
330	memcpy(&tmp, buff + i, 8);
331	record->ts = le64_to_cpu(tmp);
332	i += 8;
333
334	memcpy(&tmp, buff + i, 6);
335	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
336	i += 6;
337
338	record->mem_channel = buff[i++];
339	record->mcumc_id = buff[i++];
340
341	memcpy(&tmp, buff + i,  6);
342	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
343}
344
345/*
346 * When reaching end of EEPROM memory jump back to 0 record address
347 * When next record access will go beyond EEPROM page boundary modify bits A17/A8
348 * in I2C selector to go to next page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349 */
350static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
 
351{
352	uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE;
 
 
353
354	/* When all EEPROM memory used jump back to 0 address */
355	if (next_address > EEPROM_SIZE_BYTES) {
356		DRM_INFO("Reached end of EEPROM memory, jumping to 0 "
357			 "and overriding old record");
358		return EEPROM_RECORD_START;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359	}
360
361	/*
362	 * To check if we overflow page boundary  compare next address with
363	 * current and see if bits 17/8 of the EEPROM address will change
364	 * If they do start from the next 256b page
365	 *
366	 * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2
367	 */
368	if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) {
369		DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx",
370				(next_address & EEPROM_ADDR_MSB_MASK));
371
372		return  (next_address & EEPROM_ADDR_MSB_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373	}
374
375	return curr_address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376}
377
378int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control,
379					    struct eeprom_table_record *records,
380					    bool write,
381					    int num)
382{
383	int i, ret = 0;
384	struct i2c_msg *msgs, *msg;
385	unsigned char *buffs, *buff;
386	struct eeprom_table_record *record;
387	struct amdgpu_device *adev = to_amdgpu_device(control);
 
 
 
 
388
389	if (adev->asic_type != CHIP_VEGA20 && adev->asic_type != CHIP_ARCTURUS)
390		return 0;
 
 
 
 
 
 
 
 
 
 
391
392	buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE,
393			 GFP_KERNEL);
394	if (!buffs)
395		return -ENOMEM;
396
397	mutex_lock(&control->tbl_mutex);
 
 
398
399	msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL);
400	if (!msgs) {
401		ret = -ENOMEM;
402		goto free_buff;
 
 
 
 
 
 
 
 
 
 
 
 
403	}
404
405	/* In case of overflow just start from beginning to not lose newest records */
406	if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES))
407		control->next_addr = EEPROM_RECORD_START;
 
 
 
 
 
 
 
 
 
 
 
 
 
408
 
 
 
 
 
 
 
 
 
 
409
410	/*
411	 * TODO Currently makes EEPROM writes for each record, this creates
412	 * internal fragmentation. Optimized the code to do full page write of
413	 * 256b
414	 */
415	for (i = 0; i < num; i++) {
416		buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
417		record = &records[i];
418		msg = &msgs[i];
419
420		control->next_addr = __correct_eeprom_dest_address(control->next_addr);
421
422		/*
423		 * Update bits 16,17 of EEPROM address in I2C address by setting them
424		 * to bits 1,2 of Device address byte
425		 */
426		msg->addr = control->i2c_address |
427			        ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15);
428		msg->flags	= write ? 0 : I2C_M_RD;
429		msg->len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE;
430		msg->buf	= buff;
431
432		/* Insert the EEPROM dest addess, bits 0-15 */
433		buff[0] = ((control->next_addr >> 8) & 0xff);
434		buff[1] = (control->next_addr & 0xff);
435
436		/* EEPROM table content is stored in LE format */
437		if (write)
438			__encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
439
440		/*
441		 * The destination EEPROM address might need to be corrected to account
442		 * for page or entire memory wrapping
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443		 */
444		control->next_addr += EEPROM_TABLE_RECORD_SIZE;
 
 
 
 
445	}
446
447	ret = i2c_transfer(&adev->pm.smu_i2c, msgs, num);
448	if (ret < 1) {
449		DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450
451		/* TODO Restore prev next EEPROM address ? */
452		goto free_msgs;
 
 
 
 
 
 
 
 
453	}
454
 
 
 
455
456	if (!write) {
457		for (i = 0; i < num; i++) {
458			buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
459			record = &records[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460
461			__decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
 
 
 
 
 
 
 
 
 
 
462		}
463	}
 
 
 
464
465	if (write) {
466		uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control);
467
468		/*
469		 * Update table header with size and CRC and account for table
470		 * wrap around where the assumption is that we treat it as empty
471		 * table
472		 *
473		 * TODO - Check the assumption is correct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474		 */
475		control->num_recs += num;
476		control->num_recs %= EEPROM_MAX_RECORD_NUM;
477		control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num;
478		if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES)
479			control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE +
480			control->num_recs * EEPROM_TABLE_RECORD_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
482		__update_tbl_checksum(control, records, num, old_hdr_byte_sum);
 
 
 
483
484		__update_table_header(control, buffs);
485	} else if (!__validate_tbl_checksum(control, records, num)) {
486		DRM_WARN("EEPROM Table checksum mismatch!");
487		/* TODO Uncomment when EEPROM read/write is relliable */
488		/* ret = -EIO; */
 
 
 
 
 
 
489	}
 
490
491free_msgs:
492	kfree(msgs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
494free_buff:
495	kfree(buffs);
 
 
 
 
 
496
497	mutex_unlock(&control->tbl_mutex);
 
 
 
 
498
499	return ret == num ? 0 : -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500}
501
502/* Used for testing if bugs encountered */
503#if 0
504void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
505{
506	int i;
507	struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);
 
 
508
509	if (!recs)
510		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511
512	for (i = 0; i < 1 ; i++) {
513		recs[i].address = 0xdeadbeef;
514		recs[i].retired_page = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515	}
 
516
517	if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) {
 
 
518
519		memset(recs, 0, sizeof(*recs) * 1);
 
 
 
 
520
521		control->next_addr = EEPROM_RECORD_START;
 
 
 
522
523		if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) {
524			for (i = 0; i < 1; i++)
525				DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
526					 recs[i].address, recs[i].retired_page);
527		} else
528			DRM_ERROR("Failed in reading from table");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529
530	} else
531		DRM_ERROR("Failed in writing to table");
532}
533#endif
v6.13.7
   1/*
   2 * Copyright 2019 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include "amdgpu_ras_eeprom.h"
  25#include "amdgpu.h"
  26#include "amdgpu_ras.h"
  27#include <linux/bits.h>
  28#include "atom.h"
  29#include "amdgpu_eeprom.h"
  30#include "amdgpu_atomfirmware.h"
  31#include <linux/debugfs.h>
  32#include <linux/uaccess.h>
  33
  34#include "amdgpu_reset.h"
  35
  36/* These are memory addresses as would be seen by one or more EEPROM
  37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
  38 * set of EEPROM devices. They form a continuous memory space.
  39 *
  40 * The I2C device address includes the device type identifier, 1010b,
  41 * which is a reserved value and indicates that this is an I2C EEPROM
  42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory
  43 * address, namely bits 18, 17, and 16. This makes up the 7 bit
  44 * address sent on the I2C bus with bit 0 being the direction bit,
  45 * which is not represented here, and sent by the hardware directly.
  46 *
  47 * For instance,
  48 *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
  49 *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
  50 *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
  51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
  52 * address memory in a device or a device on the I2C bus, depending on
  53 * the status of pins 1-3. See top of amdgpu_eeprom.c.
  54 *
  55 * The RAS table lives either at address 0 or address 40000h of EEPROM.
  56 */
  57#define EEPROM_I2C_MADDR_0      0x0
  58#define EEPROM_I2C_MADDR_4      0x40000
  59
  60/*
  61 * The 2 macros below represent the actual size in bytes that
  62 * those entities occupy in the EEPROM memory.
  63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
  64 * uses uint64 to store 6b fields such as retired_page.
  65 */
  66#define RAS_TABLE_HEADER_SIZE   20
  67#define RAS_TABLE_RECORD_SIZE   24
 
 
  68
  69/* Table hdr is 'AMDR' */
  70#define RAS_TABLE_HDR_VAL       0x414d4452
 
  71
  72/* Bad GPU tag ‘BADG’ */
  73#define RAS_TABLE_HDR_BAD       0x42414447
 
 
 
 
 
  74
  75/*
  76 * EEPROM Table structure v1
  77 * ---------------------------------
  78 * |                               |
  79 * |     EEPROM TABLE HEADER       |
  80 * |      ( size 20 Bytes )        |
  81 * |                               |
  82 * ---------------------------------
  83 * |                               |
  84 * |    BAD PAGE RECORD AREA       |
  85 * |                               |
  86 * ---------------------------------
  87 */
  88
  89/* Assume 2-Mbit size EEPROM and take up the whole space. */
  90#define RAS_TBL_SIZE_BYTES      (256 * 1024)
  91#define RAS_TABLE_START         0
  92#define RAS_HDR_START           RAS_TABLE_START
  93#define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
  94#define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
  95				 / RAS_TABLE_RECORD_SIZE)
  96
  97/*
  98 * EEPROM Table structrue v2.1
  99 * ---------------------------------
 100 * |                               |
 101 * |     EEPROM TABLE HEADER       |
 102 * |      ( size 20 Bytes )        |
 103 * |                               |
 104 * ---------------------------------
 105 * |                               |
 106 * |     EEPROM TABLE RAS INFO     |
 107 * | (available info size 4 Bytes) |
 108 * |  ( reserved size 252 Bytes )  |
 109 * |                               |
 110 * ---------------------------------
 111 * |                               |
 112 * |     BAD PAGE RECORD AREA      |
 113 * |                               |
 114 * ---------------------------------
 115 */
 116
 117/* EEPROM Table V2_1 */
 118#define RAS_TABLE_V2_1_INFO_SIZE       256
 119#define RAS_TABLE_V2_1_INFO_START      RAS_TABLE_HEADER_SIZE
 120#define RAS_RECORD_START_V2_1          (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
 121					RAS_TABLE_V2_1_INFO_SIZE)
 122#define RAS_MAX_RECORD_COUNT_V2_1      ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
 123					RAS_TABLE_V2_1_INFO_SIZE) \
 124					/ RAS_TABLE_RECORD_SIZE)
 125
 126/* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
 127 * offset off of RAS_TABLE_START.  That is, this is something you can
 128 * add to control->i2c_address, and then tell I2C layer to read
 129 * from/write to there. _N is the so called absolute index,
 130 * because it starts right after the table header.
 131 */
 132#define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
 133				     (_N) * RAS_TABLE_RECORD_SIZE)
 134
 135#define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
 136				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
 137
 138/* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
 139 * of "fri", return the absolute record index off of the end of
 140 * the table header.
 141 */
 142#define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
 143			      (_C)->ras_max_record_count)
 144
 145#define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
 146				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
 147
 148#define RAS_NUM_RECS_V2_1(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
 149				       RAS_TABLE_HEADER_SIZE - \
 150				       RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
 151
 152#define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
 153
 154static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
 155{
 156	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
 157	case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
 158	case IP_VERSION(11, 0, 7): /* Sienna cichlid */
 159	case IP_VERSION(13, 0, 0):
 160	case IP_VERSION(13, 0, 2): /* Aldebaran */
 161	case IP_VERSION(13, 0, 10):
 162		return true;
 163	case IP_VERSION(13, 0, 6):
 164	case IP_VERSION(13, 0, 14):
 165		return (adev->gmc.is_app_apu) ? false : true;
 166	default:
 167		return false;
 168	}
 169}
 170
 171static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
 172				  struct amdgpu_ras_eeprom_control *control)
 173{
 174	struct atom_context *atom_ctx = adev->mode_info.atom_context;
 175	u8 i2c_addr;
 176
 177	if (!control)
 178		return false;
 179
 180	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
 181		/* The address given by VBIOS is an 8-bit, wire-format
 182		 * address, i.e. the most significant byte.
 183		 *
 184		 * Normalize it to a 19-bit EEPROM address. Remove the
 185		 * device type identifier and make it a 7-bit address;
 186		 * then make it a 19-bit EEPROM address. See top of
 187		 * amdgpu_eeprom.c.
 188		 */
 189		i2c_addr = (i2c_addr & 0x0F) >> 1;
 190		control->i2c_address = ((u32) i2c_addr) << 16;
 191
 192		return true;
 193	}
 194
 195	switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
 196	case IP_VERSION(11, 0, 2):
 197		/* VEGA20 and ARCTURUS */
 198		if (adev->asic_type == CHIP_VEGA20)
 199			control->i2c_address = EEPROM_I2C_MADDR_0;
 200		else if (strnstr(atom_ctx->vbios_pn,
 201				 "D342",
 202				 sizeof(atom_ctx->vbios_pn)))
 203			control->i2c_address = EEPROM_I2C_MADDR_0;
 204		else
 205			control->i2c_address = EEPROM_I2C_MADDR_4;
 206		return true;
 207	case IP_VERSION(11, 0, 7):
 208		control->i2c_address = EEPROM_I2C_MADDR_0;
 209		return true;
 210	case IP_VERSION(13, 0, 2):
 211		if (strnstr(atom_ctx->vbios_pn, "D673",
 212			    sizeof(atom_ctx->vbios_pn)))
 213			control->i2c_address = EEPROM_I2C_MADDR_4;
 214		else
 215			control->i2c_address = EEPROM_I2C_MADDR_0;
 216		return true;
 217	case IP_VERSION(13, 0, 0):
 218		if (strnstr(atom_ctx->vbios_pn, "D707",
 219			    sizeof(atom_ctx->vbios_pn)))
 220			control->i2c_address = EEPROM_I2C_MADDR_0;
 221		else
 222			control->i2c_address = EEPROM_I2C_MADDR_4;
 223		return true;
 224	case IP_VERSION(13, 0, 6):
 225	case IP_VERSION(13, 0, 10):
 226	case IP_VERSION(13, 0, 14):
 227		control->i2c_address = EEPROM_I2C_MADDR_4;
 228		return true;
 229	default:
 230		return false;
 231	}
 
 
 232}
 233
 234static void
 235__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
 236			     unsigned char *buf)
 237{
 238	u32 *pp = (uint32_t *)buf;
 239
 240	pp[0] = cpu_to_le32(hdr->header);
 241	pp[1] = cpu_to_le32(hdr->version);
 242	pp[2] = cpu_to_le32(hdr->first_rec_offset);
 243	pp[3] = cpu_to_le32(hdr->tbl_size);
 244	pp[4] = cpu_to_le32(hdr->checksum);
 245}
 246
 247static void
 248__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
 249			       unsigned char *buf)
 250{
 251	u32 *pp = (uint32_t *)buf;
 252
 253	hdr->header	      = le32_to_cpu(pp[0]);
 254	hdr->version	      = le32_to_cpu(pp[1]);
 255	hdr->first_rec_offset = le32_to_cpu(pp[2]);
 256	hdr->tbl_size	      = le32_to_cpu(pp[3]);
 257	hdr->checksum	      = le32_to_cpu(pp[4]);
 258}
 259
 260static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
 
 261{
 262	u8 buf[RAS_TABLE_HEADER_SIZE];
 263	struct amdgpu_device *adev = to_amdgpu_device(control);
 264	int res;
 
 
 
 
 
 265
 266	memset(buf, 0, sizeof(buf));
 267	__encode_table_header_to_buf(&control->tbl_hdr, buf);
 268
 269	/* i2c may be unstable in gpu reset */
 270	down_read(&adev->reset_domain->sem);
 271	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
 272				  control->i2c_address +
 273				  control->ras_header_offset,
 274				  buf, RAS_TABLE_HEADER_SIZE);
 275	up_read(&adev->reset_domain->sem);
 276
 277	if (res < 0) {
 278		DRM_ERROR("Failed to write EEPROM table header:%d", res);
 279	} else if (res < RAS_TABLE_HEADER_SIZE) {
 280		DRM_ERROR("Short write:%d out of %d\n",
 281			  res, RAS_TABLE_HEADER_SIZE);
 282		res = -EIO;
 283	} else {
 284		res = 0;
 285	}
 286
 287	return res;
 288}
 289
 290static void
 291__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
 292			       unsigned char *buf)
 293{
 294	u32 *pp = (uint32_t *)buf;
 295	u32 tmp;
 296
 297	tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
 298	      (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
 299	      (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
 300	pp[0] = cpu_to_le32(tmp);
 301}
 302
 303static void
 304__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
 305				 unsigned char *buf)
 306{
 307	u32 *pp = (uint32_t *)buf;
 308	u32 tmp;
 
 
 
 
 309
 310	tmp = le32_to_cpu(pp[0]);
 311	rai->rma_status = tmp & 0xFF;
 312	rai->health_percent = (tmp >> 8) & 0xFF;
 313	rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
 314}
 315
 316static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
 
 317{
 318	struct amdgpu_device *adev = to_amdgpu_device(control);
 319	u8 *buf;
 320	int res;
 321
 322	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
 323	if (!buf) {
 324		DRM_ERROR("Failed to alloc buf to write table ras info\n");
 325		return -ENOMEM;
 326	}
 327
 328	__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
 329
 330	/* i2c may be unstable in gpu reset */
 331	down_read(&adev->reset_domain->sem);
 332	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
 333				  control->i2c_address +
 334				  control->ras_info_offset,
 335				  buf, RAS_TABLE_V2_1_INFO_SIZE);
 336	up_read(&adev->reset_domain->sem);
 337
 338	if (res < 0) {
 339		DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
 340	} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
 341		DRM_ERROR("Short write:%d out of %d\n",
 342			  res, RAS_TABLE_V2_1_INFO_SIZE);
 343		res = -EIO;
 344	} else {
 345		res = 0;
 346	}
 347
 348	kfree(buf);
 
 349
 350	return res;
 
 
 
 351}
 352
 353static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
 
 
 
 354{
 355	int ii;
 356	u8  *pp, csum;
 357	size_t sz;
 
 
 
 358
 359	/* Header checksum, skip checksum field in the calculation */
 360	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
 361	pp = (u8 *) &control->tbl_hdr;
 362	csum = 0;
 363	for (ii = 0; ii < sz; ii++, pp++)
 364		csum += *pp;
 365
 366	return csum;
 367}
 368
 369static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
 
 
 370{
 371	int ii;
 372	u8  *pp, csum;
 373	size_t sz;
 374
 375	sz = sizeof(control->tbl_rai);
 376	pp = (u8 *) &control->tbl_rai;
 377	csum = 0;
 378	for (ii = 0; ii < sz; ii++, pp++)
 379		csum += *pp;
 380
 381	return csum;
 
 
 
 
 
 382}
 383
 384static int amdgpu_ras_eeprom_correct_header_tag(
 385	struct amdgpu_ras_eeprom_control *control,
 386	uint32_t header)
 387{
 
 388	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
 389	u8 *hh;
 390	int res;
 391	u8 csum;
 392
 393	csum = -hdr->checksum;
 394
 395	hh = (void *) &hdr->header;
 396	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
 397	hh = (void *) &header;
 398	csum += hh[0] + hh[1] + hh[2] + hh[3];
 399	csum = -csum;
 400	mutex_lock(&control->ras_tbl_mutex);
 401	hdr->header = header;
 402	hdr->checksum = csum;
 403	res = __write_table_header(control);
 404	mutex_unlock(&control->ras_tbl_mutex);
 405
 406	return res;
 407}
 
 
 
 
 
 408
 409static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control)
 410{
 411	struct amdgpu_device *adev = to_amdgpu_device(control);
 412	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
 413
 414	switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) {
 415	case IP_VERSION(8, 10, 0):
 416	case IP_VERSION(12, 0, 0):
 417		hdr->version = RAS_TABLE_VER_V2_1;
 418		return;
 419	default:
 420		hdr->version = RAS_TABLE_VER_V1;
 421		return;
 422	}
 423}
 424
 425/**
 426 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
 427 * @control: pointer to control structure
 428 *
 429 * Reset the contents of the header of the RAS EEPROM table.
 430 * Return 0 on success, -errno on error.
 431 */
 432int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
 433{
 
 434	struct amdgpu_device *adev = to_amdgpu_device(control);
 
 435	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
 436	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
 437	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
 438	u8 csum;
 439	int res;
 440
 441	mutex_lock(&control->ras_tbl_mutex);
 442
 443	hdr->header = RAS_TABLE_HDR_VAL;
 444	amdgpu_ras_set_eeprom_table_version(control);
 445
 446	if (hdr->version == RAS_TABLE_VER_V2_1) {
 447		hdr->first_rec_offset = RAS_RECORD_START_V2_1;
 448		hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
 449				RAS_TABLE_V2_1_INFO_SIZE;
 450		rai->rma_status = GPU_HEALTH_USABLE;
 451		/**
 452		 * GPU health represented as a percentage.
 453		 * 0 means worst health, 100 means fully health.
 454		 */
 455		rai->health_percent = 100;
 456		/* ecc_page_threshold = 0 means disable bad page retirement */
 457		rai->ecc_page_threshold = con->bad_page_cnt_threshold;
 458	} else {
 459		hdr->first_rec_offset = RAS_RECORD_START;
 460		hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
 461	}
 462
 463	csum = __calc_hdr_byte_sum(control);
 464	if (hdr->version == RAS_TABLE_VER_V2_1)
 465		csum += __calc_ras_info_byte_sum(control);
 466	csum = -csum;
 467	hdr->checksum = csum;
 468	res = __write_table_header(control);
 469	if (!res && hdr->version > RAS_TABLE_VER_V1)
 470		res = __write_table_ras_info(control);
 471
 472	control->ras_num_recs = 0;
 473	control->ras_fri = 0;
 474
 475	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	control->bad_channel_bitmap = 0;
 478	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
 479	con->update_channel_flag = false;
 480
 481	amdgpu_ras_debugfs_set_ret_size(control);
 
 482
 483	mutex_unlock(&control->ras_tbl_mutex);
 
 484
 485	return res;
 486}
 487
 488static void
 489__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
 490			     struct eeprom_table_record *record,
 491			     unsigned char *buf)
 492{
 493	__le64 tmp = 0;
 494	int i = 0;
 495
 496	/* Next are all record fields according to EEPROM page spec in LE foramt */
 497	buf[i++] = record->err_type;
 498
 499	buf[i++] = record->bank;
 500
 501	tmp = cpu_to_le64(record->ts);
 502	memcpy(buf + i, &tmp, 8);
 503	i += 8;
 504
 505	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
 506	memcpy(buf + i, &tmp, 6);
 507	i += 6;
 508
 509	buf[i++] = record->mem_channel;
 510	buf[i++] = record->mcumc_id;
 511
 512	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
 513	memcpy(buf + i, &tmp, 6);
 514}
 515
 516static void
 517__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
 518			       struct eeprom_table_record *record,
 519			       unsigned char *buf)
 520{
 521	__le64 tmp = 0;
 522	int i =  0;
 523
 524	/* Next are all record fields according to EEPROM page spec in LE foramt */
 525	record->err_type = buf[i++];
 526
 527	record->bank = buf[i++];
 528
 529	memcpy(&tmp, buf + i, 8);
 530	record->ts = le64_to_cpu(tmp);
 531	i += 8;
 532
 533	memcpy(&tmp, buf + i, 6);
 534	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
 535	i += 6;
 536
 537	record->mem_channel = buf[i++];
 538	record->mcumc_id = buf[i++];
 539
 540	memcpy(&tmp, buf + i,  6);
 541	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
 542}
 543
 544bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
 545{
 546	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
 547
 548	if (!__is_ras_eeprom_supported(adev) ||
 549	    !amdgpu_bad_page_threshold)
 550		return false;
 551
 552	/* skip check eeprom table for VEGA20 Gaming */
 553	if (!con)
 554		return false;
 555	else
 556		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
 557			return false;
 558
 559	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
 560		if (amdgpu_bad_page_threshold == -1) {
 561			dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
 562				con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
 563			dev_warn(adev->dev,
 564				"But GPU can be operated due to bad_page_threshold = -1.\n");
 565			return false;
 566		} else {
 567			dev_warn(adev->dev, "This GPU is in BAD status.");
 568			dev_warn(adev->dev, "Please retire it or set a larger "
 569				 "threshold value when reloading driver.\n");
 570			return true;
 571		}
 572	}
 573
 574	return false;
 575}
 576
 577/**
 578 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
 579 * @control: pointer to control structure
 580 * @buf: pointer to buffer containing data to write
 581 * @fri: start writing at this index
 582 * @num: number of records to write
 583 *
 584 * The caller must hold the table mutex in @control.
 585 * Return 0 on success, -errno otherwise.
 586 */
 587static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
 588				     u8 *buf, const u32 fri, const u32 num)
 589{
 590	struct amdgpu_device *adev = to_amdgpu_device(control);
 591	u32 buf_size;
 592	int res;
 593
 594	/* i2c may be unstable in gpu reset */
 595	down_read(&adev->reset_domain->sem);
 596	buf_size = num * RAS_TABLE_RECORD_SIZE;
 597	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
 598				  control->i2c_address +
 599				  RAS_INDEX_TO_OFFSET(control, fri),
 600				  buf, buf_size);
 601	up_read(&adev->reset_domain->sem);
 602	if (res < 0) {
 603		DRM_ERROR("Writing %d EEPROM table records error:%d",
 604			  num, res);
 605	} else if (res < buf_size) {
 606		/* Short write, return error.
 607		 */
 608		DRM_ERROR("Wrote %d records out of %d",
 609			  res / RAS_TABLE_RECORD_SIZE, num);
 610		res = -EIO;
 611	} else {
 612		res = 0;
 613	}
 614
 615	return res;
 616}
 
 
 
 
 
 
 
 
 617
 618static int
 619amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
 620			       struct eeprom_table_record *record,
 621			       const u32 num)
 622{
 623	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
 624	u32 a, b, i;
 625	u8 *buf, *pp;
 626	int res;
 627
 628	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
 629	if (!buf)
 630		return -ENOMEM;
 631
 632	/* Encode all of them in one go.
 633	 */
 634	pp = buf;
 635	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
 636		__encode_table_record_to_buf(control, &record[i], pp);
 637
 638		/* update bad channel bitmap */
 639		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
 640		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
 641			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
 642			con->update_channel_flag = true;
 643		}
 644	}
 645
 646	/* a, first record index to write into.
 647	 * b, last record index to write into.
 648	 * a = first index to read (fri) + number of records in the table,
 649	 * b = a + @num - 1.
 650	 * Let N = control->ras_max_num_record_count, then we have,
 651	 * case 0: 0 <= a <= b < N,
 652	 *   just append @num records starting at a;
 653	 * case 1: 0 <= a < N <= b,
 654	 *   append (N - a) records starting at a, and
 655	 *   append the remainder,  b % N + 1, starting at 0.
 656	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
 657	 * case 2a: 0 <= a <= b < N
 658	 *   append num records starting at a; and fix fri if b overwrote it,
 659	 *   and since a <= b, if b overwrote it then a must've also,
 660	 *   and if b didn't overwrite it, then a didn't also.
 661	 * case 2b: 0 <= b < a < N
 662	 *   write num records starting at a, which wraps around 0=N
 663	 *   and overwrite fri unconditionally. Now from case 2a,
 664	 *   this means that b eclipsed fri to overwrite it and wrap
 665	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
 666	 *   set fri = b + 1 (mod N).
 667	 * Now, since fri is updated in every case, except the trivial case 0,
 668	 * the number of records present in the table after writing, is,
 669	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
 670	 * by adding an arbitrary multiple of N before taking the modulo N
 671	 * as shown below.
 672	 */
 673	a = control->ras_fri + control->ras_num_recs;
 674	b = a + num  - 1;
 675	if (b < control->ras_max_record_count) {
 676		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
 677	} else if (a < control->ras_max_record_count) {
 678		u32 g0, g1;
 679
 680		g0 = control->ras_max_record_count - a;
 681		g1 = b % control->ras_max_record_count + 1;
 682		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
 683		if (res)
 684			goto Out;
 685		res = __amdgpu_ras_eeprom_write(control,
 686						buf + g0 * RAS_TABLE_RECORD_SIZE,
 687						0, g1);
 688		if (res)
 689			goto Out;
 690		if (g1 > control->ras_fri)
 691			control->ras_fri = g1 % control->ras_max_record_count;
 692	} else {
 693		a %= control->ras_max_record_count;
 694		b %= control->ras_max_record_count;
 695
 696		if (a <= b) {
 697			/* Note that, b - a + 1 = num. */
 698			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
 699			if (res)
 700				goto Out;
 701			if (b >= control->ras_fri)
 702				control->ras_fri = (b + 1) % control->ras_max_record_count;
 703		} else {
 704			u32 g0, g1;
 705
 706			/* b < a, which means, we write from
 707			 * a to the end of the table, and from
 708			 * the start of the table to b.
 709			 */
 710			g0 = control->ras_max_record_count - a;
 711			g1 = b + 1;
 712			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
 713			if (res)
 714				goto Out;
 715			res = __amdgpu_ras_eeprom_write(control,
 716							buf + g0 * RAS_TABLE_RECORD_SIZE,
 717							0, g1);
 718			if (res)
 719				goto Out;
 720			control->ras_fri = g1 % control->ras_max_record_count;
 721		}
 722	}
 723	control->ras_num_recs = 1 + (control->ras_max_record_count + b
 724				     - control->ras_fri)
 725		% control->ras_max_record_count;
 726Out:
 727	kfree(buf);
 728	return res;
 729}
 730
 731static int
 732amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
 
 
 733{
 
 
 
 
 734	struct amdgpu_device *adev = to_amdgpu_device(control);
 735	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
 736	u8 *buf, *pp, csum;
 737	u32 buf_size;
 738	int res;
 739
 740	/* Modify the header if it exceeds.
 741	 */
 742	if (amdgpu_bad_page_threshold != 0 &&
 743	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
 744		dev_warn(adev->dev,
 745			"Saved bad pages %d reaches threshold value %d\n",
 746			control->ras_num_recs, ras->bad_page_cnt_threshold);
 747		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
 748		if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
 749			control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
 750			control->tbl_rai.health_percent = 0;
 751		}
 752
 753		if (amdgpu_bad_page_threshold != -1)
 754			ras->is_rma = true;
 
 
 755
 756		/* ignore the -ENOTSUPP return value */
 757		amdgpu_dpm_send_rma_reason(adev);
 758	}
 759
 760	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
 761		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
 762					    RAS_TABLE_V2_1_INFO_SIZE +
 763					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
 764	else
 765		control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
 766					    control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
 767	control->tbl_hdr.checksum = 0;
 768
 769	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
 770	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
 771	if (!buf) {
 772		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
 773			  control->tbl_hdr.tbl_size);
 774		res = -ENOMEM;
 775		goto Out;
 776	}
 777
 778	down_read(&adev->reset_domain->sem);
 779	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
 780				 control->i2c_address +
 781				 control->ras_record_offset,
 782				 buf, buf_size);
 783	up_read(&adev->reset_domain->sem);
 784	if (res < 0) {
 785		DRM_ERROR("EEPROM failed reading records:%d\n",
 786			  res);
 787		goto Out;
 788	} else if (res < buf_size) {
 789		DRM_ERROR("EEPROM read %d out of %d bytes\n",
 790			  res, buf_size);
 791		res = -EIO;
 792		goto Out;
 793	}
 794
 795	/**
 796	 * bad page records have been stored in eeprom,
 797	 * now calculate gpu health percent
 798	 */
 799	if (amdgpu_bad_page_threshold != 0 &&
 800	    control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
 801	    control->ras_num_recs < ras->bad_page_cnt_threshold)
 802		control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
 803						   control->ras_num_recs) * 100) /
 804						   ras->bad_page_cnt_threshold;
 805
 806	/* Recalc the checksum.
 
 
 
 807	 */
 808	csum = 0;
 809	for (pp = buf; pp < buf + buf_size; pp++)
 810		csum += *pp;
 811
 812	csum += __calc_hdr_byte_sum(control);
 813	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
 814		csum += __calc_ras_info_byte_sum(control);
 815	/* avoid sign extension when assigning to "checksum" */
 816	csum = -csum;
 817	control->tbl_hdr.checksum = csum;
 818	res = __write_table_header(control);
 819	if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
 820		res = __write_table_ras_info(control);
 821Out:
 822	kfree(buf);
 823	return res;
 824}
 825
 826/**
 827 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
 828 * @control: pointer to control structure
 829 * @record: array of records to append
 830 * @num: number of records in @record array
 831 *
 832 * Append @num records to the table, calculate the checksum and write
 833 * the table back to EEPROM. The maximum number of records that
 834 * can be appended is between 1 and control->ras_max_record_count,
 835 * regardless of how many records are already stored in the table.
 836 *
 837 * Return 0 on success or if EEPROM is not supported, -errno on error.
 838 */
 839int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
 840			     struct eeprom_table_record *record,
 841			     const u32 num)
 842{
 843	struct amdgpu_device *adev = to_amdgpu_device(control);
 844	int res;
 845
 846	if (!__is_ras_eeprom_supported(adev))
 847		return 0;
 848
 849	if (num == 0) {
 850		DRM_ERROR("will not append 0 records\n");
 851		return -EINVAL;
 852	} else if (num > control->ras_max_record_count) {
 853		DRM_ERROR("cannot append %d records than the size of table %d\n",
 854			  num, control->ras_max_record_count);
 855		return -EINVAL;
 856	}
 857
 858	mutex_lock(&control->ras_tbl_mutex);
 859
 860	res = amdgpu_ras_eeprom_append_table(control, record, num);
 861	if (!res)
 862		res = amdgpu_ras_eeprom_update_header(control);
 863	if (!res)
 864		amdgpu_ras_debugfs_set_ret_size(control);
 865
 866	mutex_unlock(&control->ras_tbl_mutex);
 867	return res;
 868}
 869
 870/**
 871 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
 872 * @control: pointer to control structure
 873 * @buf: pointer to buffer to read into
 874 * @fri: first record index, start reading at this index, absolute index
 875 * @num: number of records to read
 876 *
 877 * The caller must hold the table mutex in @control.
 878 * Return 0 on success, -errno otherwise.
 879 */
 880static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
 881				    u8 *buf, const u32 fri, const u32 num)
 882{
 883	struct amdgpu_device *adev = to_amdgpu_device(control);
 884	u32 buf_size;
 885	int res;
 886
 887	/* i2c may be unstable in gpu reset */
 888	down_read(&adev->reset_domain->sem);
 889	buf_size = num * RAS_TABLE_RECORD_SIZE;
 890	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
 891				 control->i2c_address +
 892				 RAS_INDEX_TO_OFFSET(control, fri),
 893				 buf, buf_size);
 894	up_read(&adev->reset_domain->sem);
 895	if (res < 0) {
 896		DRM_ERROR("Reading %d EEPROM table records error:%d",
 897			  num, res);
 898	} else if (res < buf_size) {
 899		/* Short read, return error.
 900		 */
 901		DRM_ERROR("Read %d records out of %d",
 902			  res / RAS_TABLE_RECORD_SIZE, num);
 903		res = -EIO;
 904	} else {
 905		res = 0;
 906	}
 907
 908	return res;
 909}
 910
 911/**
 912 * amdgpu_ras_eeprom_read -- read EEPROM
 913 * @control: pointer to control structure
 914 * @record: array of records to read into
 915 * @num: number of records in @record
 916 *
 917 * Reads num records from the RAS table in EEPROM and
 918 * writes the data into @record array.
 919 *
 920 * Returns 0 on success, -errno on error.
 921 */
 922int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
 923			   struct eeprom_table_record *record,
 924			   const u32 num)
 925{
 926	struct amdgpu_device *adev = to_amdgpu_device(control);
 927	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
 928	int i, res;
 929	u8 *buf, *pp;
 930	u32 g0, g1;
 931
 932	if (!__is_ras_eeprom_supported(adev))
 933		return 0;
 934
 935	if (num == 0) {
 936		DRM_ERROR("will not read 0 records\n");
 937		return -EINVAL;
 938	} else if (num > control->ras_num_recs) {
 939		DRM_ERROR("too many records to read:%d available:%d\n",
 940			  num, control->ras_num_recs);
 941		return -EINVAL;
 942	}
 943
 944	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
 945	if (!buf)
 946		return -ENOMEM;
 947
 948	/* Determine how many records to read, from the first record
 949	 * index, fri, to the end of the table, and from the beginning
 950	 * of the table, such that the total number of records is
 951	 * @num, and we handle wrap around when fri > 0 and
 952	 * fri + num > RAS_MAX_RECORD_COUNT.
 953	 *
 954	 * First we compute the index of the last element
 955	 * which would be fetched from each region,
 956	 * g0 is in [fri, fri + num - 1], and
 957	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
 958	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
 959	 * the last element to fetch, we set g0 to _the number_
 960	 * of elements to fetch, @num, since we know that the last
 961	 * indexed to be fetched does not exceed the table.
 962	 *
 963	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
 964	 * we set g0 to the number of elements to read
 965	 * until the end of the table, and g1 to the number of
 966	 * elements to read from the beginning of the table.
 967	 */
 968	g0 = control->ras_fri + num - 1;
 969	g1 = g0 % control->ras_max_record_count;
 970	if (g0 < control->ras_max_record_count) {
 971		g0 = num;
 972		g1 = 0;
 973	} else {
 974		g0 = control->ras_max_record_count - control->ras_fri;
 975		g1 += 1;
 976	}
 977
 978	mutex_lock(&control->ras_tbl_mutex);
 979	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
 980	if (res)
 981		goto Out;
 982	if (g1) {
 983		res = __amdgpu_ras_eeprom_read(control,
 984					       buf + g0 * RAS_TABLE_RECORD_SIZE,
 985					       0, g1);
 986		if (res)
 987			goto Out;
 988	}
 989
 990	res = 0;
 991
 992	/* Read up everything? Then transform.
 993	 */
 994	pp = buf;
 995	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
 996		__decode_table_record_from_buf(control, &record[i], pp);
 997
 998		/* update bad channel bitmap */
 999		if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
1000		    !(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
1001			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
1002			con->update_channel_flag = true;
1003		}
1004	}
1005Out:
1006	kfree(buf);
1007	mutex_unlock(&control->ras_tbl_mutex);
1008
1009	return res;
1010}
1011
1012uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
1013{
1014	/* get available eeprom table version first before eeprom table init */
1015	amdgpu_ras_set_eeprom_table_version(control);
1016
1017	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1018		return RAS_MAX_RECORD_COUNT_V2_1;
1019	else
1020		return RAS_MAX_RECORD_COUNT;
1021}
1022
1023static ssize_t
1024amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
1025				    size_t size, loff_t *pos)
1026{
1027	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1028	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1029	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1030	u8 data[50];
1031	int res;
1032
1033	if (!size)
1034		return size;
1035
1036	if (!ras || !control) {
1037		res = snprintf(data, sizeof(data), "Not supported\n");
1038	} else {
1039		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1040			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1041	}
1042
1043	if (*pos >= res)
1044		return 0;
1045
1046	res -= *pos;
1047	res = min_t(size_t, res, size);
1048
1049	if (copy_to_user(buf, &data[*pos], res))
1050		return -EFAULT;
1051
1052	*pos += res;
1053
1054	return res;
1055}
1056
1057const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1058	.owner = THIS_MODULE,
1059	.read = amdgpu_ras_debugfs_eeprom_size_read,
1060	.write = NULL,
1061	.llseek = default_llseek,
1062};
1063
1064static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
1065static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1066#define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1067static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
1068static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
1069#define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1070
1071static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1072	"ignore",
1073	"re",
1074	"ue",
1075};
1076
1077static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1078{
1079	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1080		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1081}
1082
1083void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1084{
1085	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1086					      eeprom_control);
1087	struct dentry *de = ras->de_ras_eeprom_table;
1088
1089	if (de)
1090		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1091}
1092
1093static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1094					     size_t size, loff_t *pos)
1095{
1096	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1097	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1098	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1099	const size_t orig_size = size;
1100	int res = -EFAULT;
1101	size_t data_len;
1102
1103	mutex_lock(&control->ras_tbl_mutex);
1104
1105	/* We want *pos - data_len > 0, which means there's
1106	 * bytes to be printed from data.
1107	 */
1108	data_len = strlen(tbl_hdr_str);
1109	if (*pos < data_len) {
1110		data_len -= *pos;
1111		data_len = min_t(size_t, data_len, size);
1112		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1113			goto Out;
1114		buf += data_len;
1115		size -= data_len;
1116		*pos += data_len;
1117	}
1118
1119	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1120	if (*pos < data_len && size > 0) {
1121		u8 data[tbl_hdr_fmt_size + 1];
1122		loff_t lpos;
1123
1124		snprintf(data, sizeof(data), tbl_hdr_fmt,
1125			 control->tbl_hdr.header,
1126			 control->tbl_hdr.version,
1127			 control->tbl_hdr.first_rec_offset,
1128			 control->tbl_hdr.tbl_size,
1129			 control->tbl_hdr.checksum);
1130
1131		data_len -= *pos;
1132		data_len = min_t(size_t, data_len, size);
1133		lpos = *pos - strlen(tbl_hdr_str);
1134		if (copy_to_user(buf, &data[lpos], data_len))
1135			goto Out;
1136		buf += data_len;
1137		size -= data_len;
1138		*pos += data_len;
1139	}
1140
1141	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1142	if (*pos < data_len && size > 0) {
1143		loff_t lpos;
1144
1145		data_len -= *pos;
1146		data_len = min_t(size_t, data_len, size);
1147		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1148		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1149			goto Out;
1150		buf += data_len;
1151		size -= data_len;
1152		*pos += data_len;
1153	}
1154
1155	data_len = amdgpu_ras_debugfs_table_size(control);
1156	if (*pos < data_len && size > 0) {
1157		u8 dare[RAS_TABLE_RECORD_SIZE];
1158		u8 data[rec_hdr_fmt_size + 1];
1159		struct eeprom_table_record record;
1160		int s, r;
1161
1162		/* Find the starting record index
1163		 */
1164		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1165			strlen(rec_hdr_str);
1166		s = s / rec_hdr_fmt_size;
1167		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1168			strlen(rec_hdr_str);
1169		r = r % rec_hdr_fmt_size;
1170
1171		for ( ; size > 0 && s < control->ras_num_recs; s++) {
1172			u32 ai = RAS_RI_TO_AI(control, s);
1173			/* Read a single record
1174			 */
1175			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1176			if (res)
1177				goto Out;
1178			__decode_table_record_from_buf(control, &record, dare);
1179			snprintf(data, sizeof(data), rec_hdr_fmt,
1180				 s,
1181				 RAS_INDEX_TO_OFFSET(control, ai),
1182				 record_err_type_str[record.err_type],
1183				 record.bank,
1184				 record.ts,
1185				 record.offset,
1186				 record.mem_channel,
1187				 record.mcumc_id,
1188				 record.retired_page);
1189
1190			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1191			if (copy_to_user(buf, &data[r], data_len)) {
1192				res = -EFAULT;
1193				goto Out;
1194			}
1195			buf += data_len;
1196			size -= data_len;
1197			*pos += data_len;
1198			r = 0;
1199		}
1200	}
1201	res = 0;
1202Out:
1203	mutex_unlock(&control->ras_tbl_mutex);
1204	return res < 0 ? res : orig_size - size;
1205}
1206
1207static ssize_t
1208amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1209				     size_t size, loff_t *pos)
1210{
1211	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1212	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1213	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1214	u8 data[81];
1215	int res;
1216
1217	if (!size)
1218		return size;
1219
1220	if (!ras || !control) {
1221		res = snprintf(data, sizeof(data), "Not supported\n");
1222		if (*pos >= res)
1223			return 0;
1224
1225		res -= *pos;
1226		res = min_t(size_t, res, size);
1227
1228		if (copy_to_user(buf, &data[*pos], res))
1229			return -EFAULT;
1230
1231		*pos += res;
1232
1233		return res;
1234	} else {
1235		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1236	}
1237}
1238
1239const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1240	.owner = THIS_MODULE,
1241	.read = amdgpu_ras_debugfs_eeprom_table_read,
1242	.write = NULL,
1243	.llseek = default_llseek,
1244};
1245
1246/**
1247 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1248 * @control: pointer to control structure
1249 *
1250 * Check the checksum of the stored in EEPROM RAS table.
1251 *
1252 * Return 0 if the checksum is correct,
1253 * positive if it is not correct, and
1254 * -errno on I/O error.
1255 */
1256static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1257{
1258	struct amdgpu_device *adev = to_amdgpu_device(control);
1259	int buf_size, res;
1260	u8  csum, *buf, *pp;
1261
1262	if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1263		buf_size = RAS_TABLE_HEADER_SIZE +
1264			   RAS_TABLE_V2_1_INFO_SIZE +
1265			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1266	else
1267		buf_size = RAS_TABLE_HEADER_SIZE +
1268			   control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1269
1270	buf = kzalloc(buf_size, GFP_KERNEL);
1271	if (!buf) {
1272		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1273		return -ENOMEM;
1274	}
1275
1276	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1277				 control->i2c_address +
1278				 control->ras_header_offset,
1279				 buf, buf_size);
1280	if (res < buf_size) {
1281		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1282		/* On partial reads, return -EIO.
1283		 */
1284		if (res >= 0)
1285			res = -EIO;
1286		goto Out;
1287	}
1288
1289	csum = 0;
1290	for (pp = buf; pp < buf + buf_size; pp++)
1291		csum += *pp;
1292Out:
1293	kfree(buf);
1294	return res < 0 ? res : csum;
1295}
1296
1297static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
 
 
1298{
1299	struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1300	struct amdgpu_device *adev = to_amdgpu_device(control);
1301	unsigned char *buf;
1302	int res;
1303
1304	buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1305	if (!buf) {
1306		DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1307		return -ENOMEM;
1308	}
1309
1310	/**
1311	 * EEPROM table V2_1 supports ras info,
1312	 * read EEPROM table ras info
1313	 */
1314	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1315				 control->i2c_address + control->ras_info_offset,
1316				 buf, RAS_TABLE_V2_1_INFO_SIZE);
1317	if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1318		DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1319		res = res >= 0 ? -EIO : res;
1320		goto Out;
1321	}
1322
1323	__decode_table_ras_info_from_buf(rai, buf);
1324
1325Out:
1326	kfree(buf);
1327	return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1328}
1329
1330int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
1331{
1332	struct amdgpu_device *adev = to_amdgpu_device(control);
1333	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1334	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1335	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1336	int res;
1337
1338	ras->is_rma = false;
1339
1340	if (!__is_ras_eeprom_supported(adev))
1341		return 0;
1342
1343	/* Verify i2c adapter is initialized */
1344	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1345		return -ENOENT;
1346
1347	if (!__get_eeprom_i2c_addr(adev, control))
1348		return -EINVAL;
1349
1350	control->ras_header_offset = RAS_HDR_START;
1351	control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1352	mutex_init(&control->ras_tbl_mutex);
1353
1354	/* Read the table header from EEPROM address */
1355	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1356				 control->i2c_address + control->ras_header_offset,
1357				 buf, RAS_TABLE_HEADER_SIZE);
1358	if (res < RAS_TABLE_HEADER_SIZE) {
1359		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1360		return res >= 0 ? -EIO : res;
1361	}
1362
1363	__decode_table_header_from_buf(hdr, buf);
1364
1365	if (hdr->version == RAS_TABLE_VER_V2_1) {
1366		control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1367		control->ras_record_offset = RAS_RECORD_START_V2_1;
1368		control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1369	} else {
1370		control->ras_num_recs = RAS_NUM_RECS(hdr);
1371		control->ras_record_offset = RAS_RECORD_START;
1372		control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1373	}
1374	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1375
1376	if (hdr->header == RAS_TABLE_HDR_VAL) {
1377		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1378				 control->ras_num_recs);
1379
1380		if (hdr->version == RAS_TABLE_VER_V2_1) {
1381			res = __read_table_ras_info(control);
1382			if (res)
1383				return res;
1384		}
1385
1386		res = __verify_ras_table_checksum(control);
1387		if (res)
1388			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1389				  res);
1390
1391		/* Warn if we are at 90% of the threshold or above
1392		 */
1393		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1394			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1395					control->ras_num_recs,
1396					ras->bad_page_cnt_threshold);
1397	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1398		   amdgpu_bad_page_threshold != 0) {
1399		if (hdr->version == RAS_TABLE_VER_V2_1) {
1400			res = __read_table_ras_info(control);
1401			if (res)
1402				return res;
1403		}
1404
1405		res = __verify_ras_table_checksum(control);
1406		if (res)
1407			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1408				  res);
1409		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1410			/* This means that, the threshold was increased since
1411			 * the last time the system was booted, and now,
1412			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1413			 * so that at least one more record can be saved,
1414			 * before the page count threshold is reached.
1415			 */
1416			dev_info(adev->dev,
1417				 "records:%d threshold:%d, resetting "
1418				 "RAS table header signature",
1419				 control->ras_num_recs,
1420				 ras->bad_page_cnt_threshold);
1421			res = amdgpu_ras_eeprom_correct_header_tag(control,
1422								   RAS_TABLE_HDR_VAL);
1423		} else {
1424			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1425				control->ras_num_recs, ras->bad_page_cnt_threshold);
1426			if (amdgpu_bad_page_threshold == -1) {
1427				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1428				res = 0;
1429			} else {
1430				ras->is_rma = true;
1431				dev_err(adev->dev,
1432					"RAS records:%d exceed threshold:%d, "
1433					"GPU will not be initialized. Replace this GPU or increase the threshold",
1434					control->ras_num_recs, ras->bad_page_cnt_threshold);
1435			}
1436		}
1437	} else {
1438		DRM_INFO("Creating a new EEPROM table");
1439
1440		res = amdgpu_ras_eeprom_reset_table(control);
1441	}
1442
1443	return res < 0 ? res : 0;
 
1444}