Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.9
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
 
   4#include <endian.h>
   5#include <stdio.h>
   6#include <stdlib.h>
   7#include <string.h>
   8#include <fcntl.h>
   9#include <unistd.h>
  10#include <errno.h>
  11#include <sys/utsname.h>
  12#include <sys/param.h>
  13#include <sys/stat.h>
  14#include <linux/kernel.h>
  15#include <linux/err.h>
  16#include <linux/btf.h>
  17#include <gelf.h>
  18#include "btf.h"
  19#include "bpf.h"
  20#include "libbpf.h"
  21#include "libbpf_internal.h"
  22#include "hashmap.h"
  23
  24/* make sure libbpf doesn't use kernel-only integer typedefs */
  25#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	union {
  34		struct btf_header *hdr;
  35		void *data;
  36	};
  37	struct btf_type **types;
  38	const char *strings;
  39	void *nohdr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40	__u32 nr_types;
  41	__u32 types_size;
  42	__u32 data_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43	int fd;
 
 
  44	int ptr_sz;
  45};
  46
  47static inline __u64 ptr_to_u64(const void *ptr)
  48{
  49	return (__u64) (unsigned long) ptr;
  50}
  51
  52static int btf_add_type(struct btf *btf, struct btf_type *t)
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	if (btf->types_size - btf->nr_types < 2) {
  55		struct btf_type **new_types;
  56		__u32 expand_by, new_size;
  57
  58		if (btf->types_size == BTF_MAX_NR_TYPES)
  59			return -E2BIG;
  60
  61		expand_by = max(btf->types_size >> 2, 16U);
  62		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
 
  63
  64		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
  65		if (!new_types)
  66			return -ENOMEM;
 
 
 
 
 
 
 
 
 
  67
  68		if (btf->nr_types == 0)
  69			new_types[0] = &btf_void;
  70
  71		btf->types = new_types;
  72		btf->types_size = new_size;
  73	}
 
  74
  75	btf->types[++(btf->nr_types)] = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
 
 
 
 
 
 
 
 
 
  77	return 0;
  78}
  79
 
 
 
 
 
 
 
 
 
 
  80static int btf_parse_hdr(struct btf *btf)
  81{
  82	const struct btf_header *hdr = btf->hdr;
  83	__u32 meta_left;
  84
  85	if (btf->data_size < sizeof(struct btf_header)) {
  86		pr_debug("BTF header not found\n");
  87		return -EINVAL;
  88	}
  89
  90	if (hdr->magic != BTF_MAGIC) {
  91		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
  92		return -EINVAL;
  93	}
  94
  95	if (hdr->version != BTF_VERSION) {
  96		pr_debug("Unsupported BTF version:%u\n", hdr->version);
  97		return -ENOTSUP;
  98	}
  99
 100	if (hdr->flags) {
 101		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
 102		return -ENOTSUP;
 103	}
 104
 105	meta_left = btf->data_size - sizeof(*hdr);
 106	if (!meta_left) {
 107		pr_debug("BTF has no data\n");
 108		return -EINVAL;
 109	}
 110
 111	if (meta_left < hdr->type_off) {
 112		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
 
 113		return -EINVAL;
 114	}
 115
 116	if (meta_left < hdr->str_off) {
 117		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
 
 118		return -EINVAL;
 119	}
 120
 121	if (hdr->type_off >= hdr->str_off) {
 122		pr_debug("BTF type section offset >= string section offset. No type?\n");
 
 123		return -EINVAL;
 124	}
 125
 126	if (hdr->type_off & 0x02) {
 127		pr_debug("BTF type section is not aligned to 4 bytes\n");
 128		return -EINVAL;
 129	}
 130
 131	btf->nohdr_data = btf->hdr + 1;
 132
 133	return 0;
 134}
 135
 136static int btf_parse_str_sec(struct btf *btf)
 137{
 138	const struct btf_header *hdr = btf->hdr;
 139	const char *start = btf->nohdr_data + hdr->str_off;
 140	const char *end = start + btf->hdr->str_len;
 141
 142	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
 143	    start[0] || end[-1]) {
 
 
 
 
 
 144		pr_debug("Invalid BTF string section\n");
 145		return -EINVAL;
 146	}
 147
 148	btf->strings = start;
 149
 150	return 0;
 151}
 152
 153static int btf_type_size(struct btf_type *t)
 154{
 155	int base_size = sizeof(struct btf_type);
 156	__u16 vlen = btf_vlen(t);
 157
 158	switch (btf_kind(t)) {
 159	case BTF_KIND_FWD:
 160	case BTF_KIND_CONST:
 161	case BTF_KIND_VOLATILE:
 162	case BTF_KIND_RESTRICT:
 163	case BTF_KIND_PTR:
 164	case BTF_KIND_TYPEDEF:
 165	case BTF_KIND_FUNC:
 
 
 166		return base_size;
 167	case BTF_KIND_INT:
 168		return base_size + sizeof(__u32);
 169	case BTF_KIND_ENUM:
 170		return base_size + vlen * sizeof(struct btf_enum);
 
 
 171	case BTF_KIND_ARRAY:
 172		return base_size + sizeof(struct btf_array);
 173	case BTF_KIND_STRUCT:
 174	case BTF_KIND_UNION:
 175		return base_size + vlen * sizeof(struct btf_member);
 176	case BTF_KIND_FUNC_PROTO:
 177		return base_size + vlen * sizeof(struct btf_param);
 178	case BTF_KIND_VAR:
 179		return base_size + sizeof(struct btf_var);
 180	case BTF_KIND_DATASEC:
 181		return base_size + vlen * sizeof(struct btf_var_secinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182	default:
 183		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 184		return -EINVAL;
 185	}
 186}
 187
 188static int btf_parse_type_sec(struct btf *btf)
 189{
 190	struct btf_header *hdr = btf->hdr;
 191	void *nohdr_data = btf->nohdr_data;
 192	void *next_type = nohdr_data + hdr->type_off;
 193	void *end_type = nohdr_data + hdr->str_off;
 194
 195	while (next_type < end_type) {
 196		struct btf_type *t = next_type;
 197		int type_size;
 198		int err;
 199
 200		type_size = btf_type_size(t);
 201		if (type_size < 0)
 202			return type_size;
 
 
 
 
 
 
 
 
 
 
 
 
 203		next_type += type_size;
 204		err = btf_add_type(btf, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205		if (err)
 206			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	}
 
 
 208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209	return 0;
 210}
 211
 212__u32 btf__get_nr_types(const struct btf *btf)
 213{
 214	return btf->nr_types;
 215}
 216
 217const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 218{
 219	if (type_id > btf->nr_types)
 220		return NULL;
 
 
 
 
 
 
 
 
 
 
 221
 222	return btf->types[type_id];
 
 
 
 
 223}
 224
 225static int determine_ptr_size(const struct btf *btf)
 226{
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	const struct btf_type *t;
 228	const char *name;
 229	int i;
 230
 231	for (i = 1; i <= btf->nr_types; i++) {
 
 
 
 
 232		t = btf__type_by_id(btf, i);
 233		if (!btf_is_int(t))
 234			continue;
 235
 
 
 
 236		name = btf__name_by_offset(btf, t->name_off);
 237		if (!name)
 238			continue;
 239
 240		if (strcmp(name, "long int") == 0 ||
 241		    strcmp(name, "long unsigned int") == 0) {
 242			if (t->size != 4 && t->size != 8)
 243				continue;
 244			return t->size;
 245		}
 246	}
 247
 248	return -1;
 249}
 250
 251static size_t btf_ptr_sz(const struct btf *btf)
 252{
 253	if (!btf->ptr_sz)
 254		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 255	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 256}
 257
 258/* Return pointer size this BTF instance assumes. The size is heuristically
 259 * determined by looking for 'long' or 'unsigned long' integer type and
 260 * recording its size in bytes. If BTF type information doesn't have any such
 261 * type, this function returns 0. In the latter case, native architecture's
 262 * pointer size is assumed, so will be either 4 or 8, depending on
 263 * architecture that libbpf was compiled for. It's possible to override
 264 * guessed value by using btf__set_pointer_size() API.
 265 */
 266size_t btf__pointer_size(const struct btf *btf)
 267{
 268	if (!btf->ptr_sz)
 269		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 270
 271	if (btf->ptr_sz < 0)
 272		/* not enough BTF type info to guess */
 273		return 0;
 274
 275	return btf->ptr_sz;
 276}
 277
 278/* Override or set pointer size in bytes. Only values of 4 and 8 are
 279 * supported.
 280 */
 281int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 282{
 283	if (ptr_sz != 4 && ptr_sz != 8)
 284		return -EINVAL;
 285	btf->ptr_sz = ptr_sz;
 286	return 0;
 287}
 288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289static bool btf_type_is_void(const struct btf_type *t)
 290{
 291	return t == &btf_void || btf_is_fwd(t);
 292}
 293
 294static bool btf_type_is_void_or_null(const struct btf_type *t)
 295{
 296	return !t || btf_type_is_void(t);
 297}
 298
 299#define MAX_RESOLVE_DEPTH 32
 300
 301__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 302{
 303	const struct btf_array *array;
 304	const struct btf_type *t;
 305	__u32 nelems = 1;
 306	__s64 size = -1;
 307	int i;
 308
 309	t = btf__type_by_id(btf, type_id);
 310	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
 311	     i++) {
 312		switch (btf_kind(t)) {
 313		case BTF_KIND_INT:
 314		case BTF_KIND_STRUCT:
 315		case BTF_KIND_UNION:
 316		case BTF_KIND_ENUM:
 
 317		case BTF_KIND_DATASEC:
 
 318			size = t->size;
 319			goto done;
 320		case BTF_KIND_PTR:
 321			size = btf_ptr_sz(btf);
 322			goto done;
 323		case BTF_KIND_TYPEDEF:
 324		case BTF_KIND_VOLATILE:
 325		case BTF_KIND_CONST:
 326		case BTF_KIND_RESTRICT:
 327		case BTF_KIND_VAR:
 
 
 328			type_id = t->type;
 329			break;
 330		case BTF_KIND_ARRAY:
 331			array = btf_array(t);
 332			if (nelems && array->nelems > UINT32_MAX / nelems)
 333				return -E2BIG;
 334			nelems *= array->nelems;
 335			type_id = array->type;
 336			break;
 337		default:
 338			return -EINVAL;
 339		}
 340
 341		t = btf__type_by_id(btf, type_id);
 342	}
 343
 344done:
 345	if (size < 0)
 346		return -EINVAL;
 347	if (nelems && size > UINT32_MAX / nelems)
 348		return -E2BIG;
 349
 350	return nelems * size;
 351}
 352
 353int btf__align_of(const struct btf *btf, __u32 id)
 354{
 355	const struct btf_type *t = btf__type_by_id(btf, id);
 356	__u16 kind = btf_kind(t);
 357
 358	switch (kind) {
 359	case BTF_KIND_INT:
 360	case BTF_KIND_ENUM:
 
 
 361		return min(btf_ptr_sz(btf), (size_t)t->size);
 362	case BTF_KIND_PTR:
 363		return btf_ptr_sz(btf);
 364	case BTF_KIND_TYPEDEF:
 365	case BTF_KIND_VOLATILE:
 366	case BTF_KIND_CONST:
 367	case BTF_KIND_RESTRICT:
 
 368		return btf__align_of(btf, t->type);
 369	case BTF_KIND_ARRAY:
 370		return btf__align_of(btf, btf_array(t)->type);
 371	case BTF_KIND_STRUCT:
 372	case BTF_KIND_UNION: {
 373		const struct btf_member *m = btf_members(t);
 374		__u16 vlen = btf_vlen(t);
 375		int i, max_align = 1, align;
 376
 377		for (i = 0; i < vlen; i++, m++) {
 378			align = btf__align_of(btf, m->type);
 379			if (align <= 0)
 380				return align;
 381			max_align = max(max_align, align);
 
 
 
 
 
 
 
 382		}
 383
 
 
 
 
 
 
 384		return max_align;
 385	}
 386	default:
 387		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 388		return 0;
 389	}
 390}
 391
 392int btf__resolve_type(const struct btf *btf, __u32 type_id)
 393{
 394	const struct btf_type *t;
 395	int depth = 0;
 396
 397	t = btf__type_by_id(btf, type_id);
 398	while (depth < MAX_RESOLVE_DEPTH &&
 399	       !btf_type_is_void_or_null(t) &&
 400	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 401		type_id = t->type;
 402		t = btf__type_by_id(btf, type_id);
 403		depth++;
 404	}
 405
 406	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 407		return -EINVAL;
 408
 409	return type_id;
 410}
 411
 412__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 413{
 414	__u32 i;
 415
 416	if (!strcmp(type_name, "void"))
 417		return 0;
 418
 419	for (i = 1; i <= btf->nr_types; i++) {
 420		const struct btf_type *t = btf->types[i];
 421		const char *name = btf__name_by_offset(btf, t->name_off);
 422
 423		if (name && !strcmp(type_name, name))
 424			return i;
 425	}
 426
 427	return -ENOENT;
 428}
 429
 430__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 431			     __u32 kind)
 432{
 433	__u32 i;
 434
 435	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 436		return 0;
 437
 438	for (i = 1; i <= btf->nr_types; i++) {
 439		const struct btf_type *t = btf->types[i];
 440		const char *name;
 441
 442		if (btf_kind(t) != kind)
 443			continue;
 444		name = btf__name_by_offset(btf, t->name_off);
 445		if (name && !strcmp(type_name, name))
 446			return i;
 447	}
 448
 449	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452void btf__free(struct btf *btf)
 453{
 454	if (IS_ERR_OR_NULL(btf))
 455		return;
 456
 457	if (btf->fd >= 0)
 458		close(btf->fd);
 459
 460	free(btf->data);
 461	free(btf->types);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	free(btf);
 463}
 464
 465struct btf *btf__new(const void *data, __u32 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466{
 467	struct btf *btf;
 468	int err;
 469
 470	btf = calloc(1, sizeof(struct btf));
 471	if (!btf)
 472		return ERR_PTR(-ENOMEM);
 473
 
 
 
 474	btf->fd = -1;
 475
 476	btf->data = malloc(size);
 477	if (!btf->data) {
 
 
 
 
 
 
 478		err = -ENOMEM;
 479		goto done;
 480	}
 
 
 481
 482	memcpy(btf->data, data, size);
 483	btf->data_size = size;
 484
 485	err = btf_parse_hdr(btf);
 486	if (err)
 487		goto done;
 488
 
 
 
 489	err = btf_parse_str_sec(btf);
 
 
 490	if (err)
 491		goto done;
 492
 493	err = btf_parse_type_sec(btf);
 494
 495done:
 496	if (err) {
 497		btf__free(btf);
 498		return ERR_PTR(err);
 499	}
 500
 501	return btf;
 502}
 503
 504static bool btf_check_endianness(const GElf_Ehdr *ehdr)
 505{
 506#if __BYTE_ORDER == __LITTLE_ENDIAN
 507	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
 508#elif __BYTE_ORDER == __BIG_ENDIAN
 509	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
 510#else
 511# error "Unrecognized __BYTE_ORDER__"
 512#endif
 513}
 514
 515struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 516{
 517	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 518	int err = 0, fd = -1, idx = 0;
 519	struct btf *btf = NULL;
 520	Elf_Scn *scn = NULL;
 521	Elf *elf = NULL;
 522	GElf_Ehdr ehdr;
 523
 524	if (elf_version(EV_CURRENT) == EV_NONE) {
 525		pr_warn("failed to init libelf for %s\n", path);
 526		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 527	}
 528
 529	fd = open(path, O_RDONLY);
 530	if (fd < 0) {
 531		err = -errno;
 532		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 533		return ERR_PTR(err);
 534	}
 535
 536	err = -LIBBPF_ERRNO__FORMAT;
 
 
 
 
 
 
 537
 538	elf = elf_begin(fd, ELF_C_READ, NULL);
 539	if (!elf) {
 540		pr_warn("failed to open %s as ELF file\n", path);
 541		goto done;
 542	}
 543	if (!gelf_getehdr(elf, &ehdr)) {
 544		pr_warn("failed to get EHDR from %s\n", path);
 545		goto done;
 546	}
 547	if (!btf_check_endianness(&ehdr)) {
 548		pr_warn("non-native ELF endianness is not supported\n");
 549		goto done;
 
 
 550	}
 551	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
 
 552		pr_warn("failed to get e_shstrndx from %s\n", path);
 553		goto done;
 554	}
 555
 556	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 
 557		GElf_Shdr sh;
 558		char *name;
 559
 560		idx++;
 561		if (gelf_getshdr(scn, &sh) != &sh) {
 562			pr_warn("failed to get section(%d) header from %s\n",
 563				idx, path);
 564			goto done;
 565		}
 566		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
 567		if (!name) {
 568			pr_warn("failed to get section(%d) name from %s\n",
 569				idx, path);
 570			goto done;
 571		}
 572		if (strcmp(name, BTF_ELF_SEC) == 0) {
 573			btf_data = elf_getdata(scn, 0);
 574			if (!btf_data) {
 575				pr_warn("failed to get section(%d, %s) data from %s\n",
 576					idx, name, path);
 577				goto done;
 578			}
 579			continue;
 580		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 581			btf_ext_data = elf_getdata(scn, 0);
 582			if (!btf_ext_data) {
 583				pr_warn("failed to get section(%d, %s) data from %s\n",
 584					idx, name, path);
 585				goto done;
 586			}
 587			continue;
 
 
 
 
 
 
 588		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589	}
 590
 591	err = 0;
 
 
 
 
 
 592
 593	if (!btf_data) {
 594		err = -ENOENT;
 
 
 595		goto done;
 596	}
 597	btf = btf__new(btf_data->d_buf, btf_data->d_size);
 598	if (IS_ERR(btf))
 
 
 
 
 
 
 599		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	switch (gelf_getclass(elf)) {
 602	case ELFCLASS32:
 603		btf__set_pointer_size(btf, 4);
 604		break;
 605	case ELFCLASS64:
 606		btf__set_pointer_size(btf, 8);
 607		break;
 608	default:
 609		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 610		break;
 611	}
 612
 613	if (btf_ext && btf_ext_data) {
 614		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
 615					btf_ext_data->d_size);
 616		if (IS_ERR(*btf_ext))
 617			goto done;
 
 618	} else if (btf_ext) {
 619		*btf_ext = NULL;
 620	}
 621done:
 622	if (elf)
 623		elf_end(elf);
 624	close(fd);
 625
 626	if (err)
 627		return ERR_PTR(err);
 628	/*
 629	 * btf is always parsed before btf_ext, so no need to clean up
 630	 * btf_ext, if btf loading failed
 631	 */
 632	if (IS_ERR(btf))
 633		return btf;
 634	if (btf_ext && IS_ERR(*btf_ext)) {
 635		btf__free(btf);
 636		err = PTR_ERR(*btf_ext);
 637		return ERR_PTR(err);
 638	}
 639	return btf;
 
 640}
 641
 642struct btf *btf__parse_raw(const char *path)
 
 
 
 
 
 
 
 
 
 
 643{
 644	struct btf *btf = NULL;
 645	void *data = NULL;
 646	FILE *f = NULL;
 647	__u16 magic;
 648	int err = 0;
 649	long sz;
 650
 651	f = fopen(path, "rb");
 652	if (!f) {
 653		err = -errno;
 654		goto err_out;
 655	}
 656
 657	/* check BTF magic */
 658	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
 659		err = -EIO;
 660		goto err_out;
 661	}
 662	if (magic == __bswap_16(BTF_MAGIC)) {
 663		/* non-native endian raw BTF */
 664		pr_warn("non-native BTF endianness is not supported\n");
 665		err = -LIBBPF_ERRNO__ENDIAN;
 666		goto err_out;
 667	}
 668	if (magic != BTF_MAGIC) {
 669		/* definitely not a raw BTF */
 670		err = -EPROTO;
 671		goto err_out;
 672	}
 673
 674	/* get file size */
 675	if (fseek(f, 0, SEEK_END)) {
 676		err = -errno;
 677		goto err_out;
 678	}
 679	sz = ftell(f);
 680	if (sz < 0) {
 681		err = -errno;
 682		goto err_out;
 683	}
 684	/* rewind to the start */
 685	if (fseek(f, 0, SEEK_SET)) {
 686		err = -errno;
 687		goto err_out;
 688	}
 689
 690	/* pre-alloc memory and read all of BTF data */
 691	data = malloc(sz);
 692	if (!data) {
 693		err = -ENOMEM;
 694		goto err_out;
 695	}
 696	if (fread(data, 1, sz, f) < sz) {
 697		err = -EIO;
 698		goto err_out;
 699	}
 700
 701	/* finally parse BTF data */
 702	btf = btf__new(data, sz);
 703
 704err_out:
 705	free(data);
 706	if (f)
 707		fclose(f);
 708	return err ? ERR_PTR(err) : btf;
 709}
 710
 711struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
 
 
 
 
 
 
 
 
 
 
 712{
 713	struct btf *btf;
 
 714
 715	if (btf_ext)
 716		*btf_ext = NULL;
 717
 718	btf = btf__parse_raw(path);
 719	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
 
 720		return btf;
 721
 722	return btf__parse_elf(path, btf_ext);
 
 723}
 724
 725static int compare_vsi_off(const void *_a, const void *_b)
 726{
 727	const struct btf_var_secinfo *a = _a;
 728	const struct btf_var_secinfo *b = _b;
 729
 730	return a->offset - b->offset;
 731}
 732
 733static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
 734			     struct btf_type *t)
 735{
 736	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
 737	const char *name = btf__name_by_offset(btf, t->name_off);
 738	const struct btf_type *t_var;
 739	struct btf_var_secinfo *vsi;
 740	const struct btf_var *var;
 741	int ret;
 742
 743	if (!name) {
 744		pr_debug("No name found in string section for DATASEC kind.\n");
 745		return -ENOENT;
 746	}
 747
 748	/* .extern datasec size and var offsets were set correctly during
 749	 * extern collection step, so just skip straight to sorting variables
 750	 */
 751	if (t->size)
 752		goto sort_vars;
 
 
 
 
 753
 754	ret = bpf_object__section_size(obj, name, &size);
 755	if (ret || !size || (t->size && t->size != size)) {
 756		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
 757		return -ENOENT;
 
 
 
 
 
 
 758	}
 
 
 759
 760	t->size = size;
 761
 762	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
 763		t_var = btf__type_by_id(btf, vsi->type);
 764		var = btf_var(t_var);
 765
 766		if (!btf_is_var(t_var)) {
 767			pr_debug("Non-VAR type seen in section %s\n", name);
 768			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 769		}
 770
 771		if (var->linkage == BTF_VAR_STATIC)
 772			continue;
 
 
 773
 774		name = btf__name_by_offset(btf, t_var->name_off);
 775		if (!name) {
 776			pr_debug("No name found in string section for VAR kind\n");
 777			return -ENOENT;
 778		}
 779
 780		ret = bpf_object__variable_offset(obj, name, &off);
 781		if (ret) {
 782			pr_debug("No offset found in symbol table for VAR %s\n",
 783				 name);
 784			return -ENOENT;
 
 785		}
 
 
 
 
 
 786
 787		vsi->offset = off;
 
 
 
 
 788	}
 789
 790sort_vars:
 791	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
 792	return 0;
 793}
 794
 795int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
 796{
 797	int err = 0;
 798	__u32 i;
 799
 800	for (i = 1; i <= btf->nr_types; i++) {
 801		struct btf_type *t = btf->types[i];
 802
 803		/* Loader needs to fix up some of the things compiler
 804		 * couldn't get its hands on while emitting BTF. This
 805		 * is section size and global variable offset. We use
 806		 * the info from the ELF itself for this purpose.
 807		 */
 808		if (btf_is_datasec(t)) {
 809			err = btf_fixup_datasec(obj, btf, t);
 810			if (err)
 811				break;
 812		}
 813	}
 814
 815	return err;
 
 
 816}
 817
 818int btf__load(struct btf *btf)
 819{
 820	__u32 log_buf_size = 0;
 821	char *log_buf = NULL;
 822	int err = 0;
 823
 824	if (btf->fd >= 0)
 825		return -EEXIST;
 
 
 826
 827retry_load:
 828	if (log_buf_size) {
 829		log_buf = malloc(log_buf_size);
 830		if (!log_buf)
 831			return -ENOMEM;
 
 
 832
 833		*log_buf = 0;
 
 
 
 834	}
 835
 836	btf->fd = bpf_load_btf(btf->data, btf->data_size,
 837			       log_buf, log_buf_size, false);
 838	if (btf->fd < 0) {
 839		if (!log_buf || errno == ENOSPC) {
 840			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
 841					   log_buf_size << 1);
 842			free(log_buf);
 843			goto retry_load;
 844		}
 845
 846		err = -errno;
 847		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
 848		if (*log_buf)
 849			pr_warn("%s\n", log_buf);
 850		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 851	}
 
 852
 853done:
 854	free(log_buf);
 855	return err;
 856}
 857
 858int btf__fd(const struct btf *btf)
 859{
 860	return btf->fd;
 
 
 861}
 862
 863void btf__set_fd(struct btf *btf, int fd)
 864{
 865	btf->fd = fd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
 
 
 
 869{
 870	*size = btf->data_size;
 871	return btf->data;
 
 
 
 
 872}
 873
 874const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
 875{
 876	if (offset < btf->hdr->str_len)
 877		return &btf->strings[offset];
 878	else
 879		return NULL;
 880}
 881
 882int btf__get_from_id(__u32 id, struct btf **btf)
 883{
 884	struct bpf_btf_info btf_info = { 0 };
 885	__u32 len = sizeof(btf_info);
 886	__u32 last_size;
 887	int btf_fd;
 888	void *ptr;
 889	int err;
 890
 891	err = 0;
 892	*btf = NULL;
 893	btf_fd = bpf_btf_get_fd_by_id(id);
 894	if (btf_fd < 0)
 895		return 0;
 896
 897	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
 898	 * let's start with a sane default - 4KiB here - and resize it only if
 899	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
 900	 */
 901	btf_info.btf_size = 4096;
 902	last_size = btf_info.btf_size;
 903	ptr = malloc(last_size);
 904	if (!ptr) {
 905		err = -ENOMEM;
 906		goto exit_free;
 907	}
 908
 909	memset(ptr, 0, last_size);
 910	btf_info.btf = ptr_to_u64(ptr);
 911	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 912
 913	if (!err && btf_info.btf_size > last_size) {
 914		void *temp_ptr;
 915
 916		last_size = btf_info.btf_size;
 917		temp_ptr = realloc(ptr, last_size);
 918		if (!temp_ptr) {
 919			err = -ENOMEM;
 920			goto exit_free;
 921		}
 922		ptr = temp_ptr;
 923		memset(ptr, 0, last_size);
 
 
 924		btf_info.btf = ptr_to_u64(ptr);
 925		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 
 
 926	}
 927
 928	if (err || btf_info.btf_size > last_size) {
 929		err = errno;
 930		goto exit_free;
 931	}
 932
 933	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
 934	if (IS_ERR(*btf)) {
 935		err = PTR_ERR(*btf);
 936		*btf = NULL;
 937	}
 938
 939exit_free:
 940	close(btf_fd);
 941	free(ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	return err;
 944}
 945
 946int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
 947			 __u32 expected_key_size, __u32 expected_value_size,
 948			 __u32 *key_type_id, __u32 *value_type_id)
 
 
 
 
 949{
 950	const struct btf_type *container_type;
 951	const struct btf_member *key, *value;
 952	const size_t max_name = 256;
 953	char container_name[max_name];
 954	__s64 key_size, value_size;
 955	__s32 container_id;
 956
 957	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
 958	    max_name) {
 959		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
 960			map_name, map_name);
 961		return -EINVAL;
 962	}
 963
 964	container_id = btf__find_by_name(btf, container_name);
 965	if (container_id < 0) {
 966		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
 967			 map_name, container_name);
 968		return container_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969	}
 970
 971	container_type = btf__type_by_id(btf, container_id);
 972	if (!container_type) {
 973		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
 974			map_name, container_id);
 975		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	}
 977
 978	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
 979		pr_warn("map:%s container_name:%s is an invalid container struct\n",
 980			map_name, container_name);
 981		return -EINVAL;
 
 
 
 
 
 
 
 982	}
 983
 984	key = btf_members(container_type);
 985	value = key + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	key_size = btf__resolve_size(btf, key->type);
 988	if (key_size < 0) {
 989		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
 990		return key_size;
 
 
 
 
 
 
 991	}
 992
 993	if (expected_key_size != key_size) {
 994		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
 995			map_name, (__u32)key_size, expected_key_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	}
 998
 999	value_size = btf__resolve_size(btf, value->type);
1000	if (value_size < 0) {
1001		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1002		return value_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	}
1004
1005	if (expected_value_size != value_size) {
1006		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1007			map_name, (__u32)value_size, expected_value_size);
1008		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009	}
1010
1011	*key_type_id = key->type;
1012	*value_type_id = value->type;
 
 
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	return 0;
1015}
1016
1017struct btf_ext_sec_setup_param {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018	__u32 off;
1019	__u32 len;
1020	__u32 min_rec_size;
1021	struct btf_ext_info *ext_info;
1022	const char *desc;
1023};
1024
1025static int btf_ext_setup_info(struct btf_ext *btf_ext,
1026			      struct btf_ext_sec_setup_param *ext_sec)
 
 
 
 
 
 
 
1027{
1028	const struct btf_ext_info_sec *sinfo;
1029	struct btf_ext_info *ext_info;
1030	__u32 info_left, record_size;
1031	/* The start of the info sec (including the __u32 record_size). */
1032	void *info;
1033
1034	if (ext_sec->len == 0)
1035		return 0;
1036
1037	if (ext_sec->off & 0x03) {
1038		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
1039		     ext_sec->desc);
1040		return -EINVAL;
1041	}
1042
 
1043	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
1044	info_left = ext_sec->len;
1045
1046	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
1047		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
1048			 ext_sec->desc, ext_sec->off, ext_sec->len);
1049		return -EINVAL;
1050	}
1051
1052	/* At least a record size */
1053	if (info_left < sizeof(__u32)) {
1054		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
1055		return -EINVAL;
1056	}
1057
1058	/* The record size needs to meet the minimum standard */
1059	record_size = *(__u32 *)info;
 
 
 
1060	if (record_size < ext_sec->min_rec_size ||
 
1061	    record_size & 0x03) {
1062		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
1063			 ext_sec->desc, record_size);
1064		return -EINVAL;
1065	}
1066
1067	sinfo = info + sizeof(__u32);
1068	info_left -= sizeof(__u32);
1069
1070	/* If no records, return failure now so .BTF.ext won't be used. */
1071	if (!info_left) {
1072		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
1073		return -EINVAL;
1074	}
1075
1076	while (info_left) {
1077		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
1078		__u64 total_record_size;
1079		__u32 num_records;
1080
1081		if (info_left < sec_hdrlen) {
1082			pr_debug("%s section header is not found in .BTF.ext\n",
1083			     ext_sec->desc);
1084			return -EINVAL;
1085		}
1086
1087		num_records = sinfo->num_info;
1088		if (num_records == 0) {
1089			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1090			     ext_sec->desc);
1091			return -EINVAL;
1092		}
1093
1094		total_record_size = sec_hdrlen +
1095				    (__u64)num_records * record_size;
1096		if (info_left < total_record_size) {
1097			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
1098			     ext_sec->desc);
1099			return -EINVAL;
1100		}
1101
1102		info_left -= total_record_size;
1103		sinfo = (void *)sinfo + total_record_size;
 
1104	}
1105
1106	ext_info = ext_sec->ext_info;
1107	ext_info->len = ext_sec->len - sizeof(__u32);
1108	ext_info->rec_size = record_size;
1109	ext_info->info = info + sizeof(__u32);
 
1110
1111	return 0;
1112}
1113
1114static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
 
1115{
1116	struct btf_ext_sec_setup_param param = {
1117		.off = btf_ext->hdr->func_info_off,
1118		.len = btf_ext->hdr->func_info_len,
1119		.min_rec_size = sizeof(struct bpf_func_info_min),
1120		.ext_info = &btf_ext->func_info,
1121		.desc = "func_info"
1122	};
1123
1124	return btf_ext_setup_info(btf_ext, &param);
1125}
1126
1127static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
1128{
1129	struct btf_ext_sec_setup_param param = {
1130		.off = btf_ext->hdr->line_info_off,
1131		.len = btf_ext->hdr->line_info_len,
1132		.min_rec_size = sizeof(struct bpf_line_info_min),
1133		.ext_info = &btf_ext->line_info,
1134		.desc = "line_info",
1135	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	return btf_ext_setup_info(btf_ext, &param);
1138}
1139
1140static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
 
1141{
1142	struct btf_ext_sec_setup_param param = {
1143		.off = btf_ext->hdr->field_reloc_off,
1144		.len = btf_ext->hdr->field_reloc_len,
1145		.min_rec_size = sizeof(struct bpf_field_reloc),
1146		.ext_info = &btf_ext->field_reloc_info,
1147		.desc = "field_reloc",
1148	};
1149
1150	return btf_ext_setup_info(btf_ext, &param);
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
 
 
1154{
1155	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
 
 
 
 
1156
1157	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
1158	    data_size < hdr->hdr_len) {
1159		pr_debug("BTF.ext header not found");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160		return -EINVAL;
1161	}
1162
1163	if (hdr->magic != BTF_MAGIC) {
 
 
 
 
1164		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
1165		return -EINVAL;
1166	}
1167
1168	if (hdr->version != BTF_VERSION) {
 
1169		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
1170		return -ENOTSUP;
1171	}
1172
1173	if (hdr->flags) {
1174		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
1175		return -ENOTSUP;
1176	}
1177
1178	if (data_size == hdr->hdr_len) {
 
 
 
1179		pr_debug("BTF.ext has no data\n");
1180		return -EINVAL;
1181	}
1182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183	return 0;
1184}
1185
1186void btf_ext__free(struct btf_ext *btf_ext)
1187{
1188	if (IS_ERR_OR_NULL(btf_ext))
1189		return;
 
 
 
1190	free(btf_ext->data);
 
1191	free(btf_ext);
1192}
1193
1194struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
1195{
1196	struct btf_ext *btf_ext;
1197	int err;
1198
1199	err = btf_ext_parse_hdr(data, size);
1200	if (err)
1201		return ERR_PTR(err);
1202
1203	btf_ext = calloc(1, sizeof(struct btf_ext));
1204	if (!btf_ext)
1205		return ERR_PTR(-ENOMEM);
1206
1207	btf_ext->data_size = size;
1208	btf_ext->data = malloc(size);
1209	if (!btf_ext->data) {
1210		err = -ENOMEM;
1211		goto done;
1212	}
1213	memcpy(btf_ext->data, data, size);
1214
1215	if (btf_ext->hdr->hdr_len <
1216	    offsetofend(struct btf_ext_header, line_info_len))
1217		goto done;
1218	err = btf_ext_setup_func_info(btf_ext);
1219	if (err)
1220		goto done;
1221
1222	err = btf_ext_setup_line_info(btf_ext);
1223	if (err)
1224		goto done;
1225
1226	if (btf_ext->hdr->hdr_len <
1227	    offsetofend(struct btf_ext_header, field_reloc_len))
1228		goto done;
1229	err = btf_ext_setup_field_reloc(btf_ext);
1230	if (err)
1231		goto done;
1232
1233done:
1234	if (err) {
1235		btf_ext__free(btf_ext);
1236		return ERR_PTR(err);
1237	}
1238
1239	return btf_ext;
1240}
1241
1242const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1243{
1244	*size = btf_ext->data_size;
1245	return btf_ext->data;
1246}
1247
1248static int btf_ext_reloc_info(const struct btf *btf,
1249			      const struct btf_ext_info *ext_info,
1250			      const char *sec_name, __u32 insns_cnt,
1251			      void **info, __u32 *cnt)
1252{
1253	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1254	__u32 i, record_size, existing_len, records_len;
1255	struct btf_ext_info_sec *sinfo;
1256	const char *info_sec_name;
1257	__u64 remain_len;
1258	void *data;
1259
1260	record_size = ext_info->rec_size;
1261	sinfo = ext_info->info;
1262	remain_len = ext_info->len;
1263	while (remain_len > 0) {
1264		records_len = sinfo->num_info * record_size;
1265		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1266		if (strcmp(info_sec_name, sec_name)) {
1267			remain_len -= sec_hdrlen + records_len;
1268			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1269			continue;
1270		}
1271
1272		existing_len = (*cnt) * record_size;
1273		data = realloc(*info, existing_len + records_len);
1274		if (!data)
1275			return -ENOMEM;
 
1276
1277		memcpy(data + existing_len, sinfo->data, records_len);
1278		/* adjust insn_off only, the rest data will be passed
1279		 * to the kernel.
1280		 */
1281		for (i = 0; i < sinfo->num_info; i++) {
1282			__u32 *insn_off;
1283
1284			insn_off = data + existing_len + (i * record_size);
1285			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1286				insns_cnt;
1287		}
1288		*info = data;
1289		*cnt += sinfo->num_info;
1290		return 0;
1291	}
1292
1293	return -ENOENT;
 
1294}
1295
1296int btf_ext__reloc_func_info(const struct btf *btf,
1297			     const struct btf_ext *btf_ext,
1298			     const char *sec_name, __u32 insns_cnt,
1299			     void **func_info, __u32 *cnt)
1300{
1301	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1302				  insns_cnt, func_info, cnt);
1303}
1304
1305int btf_ext__reloc_line_info(const struct btf *btf,
1306			     const struct btf_ext *btf_ext,
1307			     const char *sec_name, __u32 insns_cnt,
1308			     void **line_info, __u32 *cnt)
1309{
1310	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1311				  insns_cnt, line_info, cnt);
 
 
1312}
1313
1314__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1315{
1316	return btf_ext->func_info.rec_size;
1317}
1318
1319__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1320{
1321	return btf_ext->line_info.rec_size;
 
 
 
 
1322}
1323
1324struct btf_dedup;
1325
1326static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1327				       const struct btf_dedup_opts *opts);
1328static void btf_dedup_free(struct btf_dedup *d);
 
1329static int btf_dedup_strings(struct btf_dedup *d);
1330static int btf_dedup_prim_types(struct btf_dedup *d);
1331static int btf_dedup_struct_types(struct btf_dedup *d);
1332static int btf_dedup_ref_types(struct btf_dedup *d);
 
1333static int btf_dedup_compact_types(struct btf_dedup *d);
1334static int btf_dedup_remap_types(struct btf_dedup *d);
1335
1336/*
1337 * Deduplicate BTF types and strings.
1338 *
1339 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1340 * section with all BTF type descriptors and string data. It overwrites that
1341 * memory in-place with deduplicated types and strings without any loss of
1342 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1343 * is provided, all the strings referenced from .BTF.ext section are honored
1344 * and updated to point to the right offsets after deduplication.
1345 *
1346 * If function returns with error, type/string data might be garbled and should
1347 * be discarded.
1348 *
1349 * More verbose and detailed description of both problem btf_dedup is solving,
1350 * as well as solution could be found at:
1351 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1352 *
1353 * Problem description and justification
1354 * =====================================
1355 *
1356 * BTF type information is typically emitted either as a result of conversion
1357 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1358 * unit contains information about a subset of all the types that are used
1359 * in an application. These subsets are frequently overlapping and contain a lot
1360 * of duplicated information when later concatenated together into a single
1361 * binary. This algorithm ensures that each unique type is represented by single
1362 * BTF type descriptor, greatly reducing resulting size of BTF data.
1363 *
1364 * Compilation unit isolation and subsequent duplication of data is not the only
1365 * problem. The same type hierarchy (e.g., struct and all the type that struct
1366 * references) in different compilation units can be represented in BTF to
1367 * various degrees of completeness (or, rather, incompleteness) due to
1368 * struct/union forward declarations.
1369 *
1370 * Let's take a look at an example, that we'll use to better understand the
1371 * problem (and solution). Suppose we have two compilation units, each using
1372 * same `struct S`, but each of them having incomplete type information about
1373 * struct's fields:
1374 *
1375 * // CU #1:
1376 * struct S;
1377 * struct A {
1378 *	int a;
1379 *	struct A* self;
1380 *	struct S* parent;
1381 * };
1382 * struct B;
1383 * struct S {
1384 *	struct A* a_ptr;
1385 *	struct B* b_ptr;
1386 * };
1387 *
1388 * // CU #2:
1389 * struct S;
1390 * struct A;
1391 * struct B {
1392 *	int b;
1393 *	struct B* self;
1394 *	struct S* parent;
1395 * };
1396 * struct S {
1397 *	struct A* a_ptr;
1398 *	struct B* b_ptr;
1399 * };
1400 *
1401 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1402 * more), but will know the complete type information about `struct A`. While
1403 * for CU #2, it will know full type information about `struct B`, but will
1404 * only know about forward declaration of `struct A` (in BTF terms, it will
1405 * have `BTF_KIND_FWD` type descriptor with name `B`).
1406 *
1407 * This compilation unit isolation means that it's possible that there is no
1408 * single CU with complete type information describing structs `S`, `A`, and
1409 * `B`. Also, we might get tons of duplicated and redundant type information.
1410 *
1411 * Additional complication we need to keep in mind comes from the fact that
1412 * types, in general, can form graphs containing cycles, not just DAGs.
1413 *
1414 * While algorithm does deduplication, it also merges and resolves type
1415 * information (unless disabled throught `struct btf_opts`), whenever possible.
1416 * E.g., in the example above with two compilation units having partial type
1417 * information for structs `A` and `B`, the output of algorithm will emit
1418 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1419 * (as well as type information for `int` and pointers), as if they were defined
1420 * in a single compilation unit as:
1421 *
1422 * struct A {
1423 *	int a;
1424 *	struct A* self;
1425 *	struct S* parent;
1426 * };
1427 * struct B {
1428 *	int b;
1429 *	struct B* self;
1430 *	struct S* parent;
1431 * };
1432 * struct S {
1433 *	struct A* a_ptr;
1434 *	struct B* b_ptr;
1435 * };
1436 *
1437 * Algorithm summary
1438 * =================
1439 *
1440 * Algorithm completes its work in 6 separate passes:
1441 *
1442 * 1. Strings deduplication.
1443 * 2. Primitive types deduplication (int, enum, fwd).
1444 * 3. Struct/union types deduplication.
1445 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 
1446 *    protos, and const/volatile/restrict modifiers).
1447 * 5. Types compaction.
1448 * 6. Types remapping.
1449 *
1450 * Algorithm determines canonical type descriptor, which is a single
1451 * representative type for each truly unique type. This canonical type is the
1452 * one that will go into final deduplicated BTF type information. For
1453 * struct/unions, it is also the type that algorithm will merge additional type
1454 * information into (while resolving FWDs), as it discovers it from data in
1455 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1456 * that type is canonical, or to some other type, if that type is equivalent
1457 * and was chosen as canonical representative. This mapping is stored in
1458 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1459 * FWD type got resolved to.
1460 *
1461 * To facilitate fast discovery of canonical types, we also maintain canonical
1462 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1463 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1464 * that match that signature. With sufficiently good choice of type signature
1465 * hashing function, we can limit number of canonical types for each unique type
1466 * signature to a very small number, allowing to find canonical type for any
1467 * duplicated type very quickly.
1468 *
1469 * Struct/union deduplication is the most critical part and algorithm for
1470 * deduplicating structs/unions is described in greater details in comments for
1471 * `btf_dedup_is_equiv` function.
1472 */
1473int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1474	       const struct btf_dedup_opts *opts)
1475{
1476	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1477	int err;
1478
 
 
 
 
1479	if (IS_ERR(d)) {
1480		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1481		return -EINVAL;
 
 
 
 
 
1482	}
1483
 
 
 
 
 
1484	err = btf_dedup_strings(d);
1485	if (err < 0) {
1486		pr_debug("btf_dedup_strings failed:%d\n", err);
1487		goto done;
1488	}
1489	err = btf_dedup_prim_types(d);
1490	if (err < 0) {
1491		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1492		goto done;
1493	}
1494	err = btf_dedup_struct_types(d);
1495	if (err < 0) {
1496		pr_debug("btf_dedup_struct_types failed:%d\n", err);
 
 
 
 
 
1497		goto done;
1498	}
1499	err = btf_dedup_ref_types(d);
1500	if (err < 0) {
1501		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1502		goto done;
1503	}
1504	err = btf_dedup_compact_types(d);
1505	if (err < 0) {
1506		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1507		goto done;
1508	}
1509	err = btf_dedup_remap_types(d);
1510	if (err < 0) {
1511		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1512		goto done;
1513	}
1514
1515done:
1516	btf_dedup_free(d);
1517	return err;
1518}
1519
1520#define BTF_UNPROCESSED_ID ((__u32)-1)
1521#define BTF_IN_PROGRESS_ID ((__u32)-2)
1522
1523struct btf_dedup {
1524	/* .BTF section to be deduped in-place */
1525	struct btf *btf;
1526	/*
1527	 * Optional .BTF.ext section. When provided, any strings referenced
1528	 * from it will be taken into account when deduping strings
1529	 */
1530	struct btf_ext *btf_ext;
1531	/*
1532	 * This is a map from any type's signature hash to a list of possible
1533	 * canonical representative type candidates. Hash collisions are
1534	 * ignored, so even types of various kinds can share same list of
1535	 * candidates, which is fine because we rely on subsequent
1536	 * btf_xxx_equal() checks to authoritatively verify type equality.
1537	 */
1538	struct hashmap *dedup_table;
1539	/* Canonical types map */
1540	__u32 *map;
1541	/* Hypothetical mapping, used during type graph equivalence checks */
1542	__u32 *hypot_map;
1543	__u32 *hypot_list;
1544	size_t hypot_cnt;
1545	size_t hypot_cap;
 
 
 
 
 
 
 
1546	/* Various option modifying behavior of algorithm */
1547	struct btf_dedup_opts opts;
 
 
1548};
1549
1550struct btf_str_ptr {
1551	const char *str;
1552	__u32 new_off;
1553	bool used;
1554};
1555
1556struct btf_str_ptrs {
1557	struct btf_str_ptr *ptrs;
1558	const char *data;
1559	__u32 cnt;
1560	__u32 cap;
1561};
1562
1563static long hash_combine(long h, long value)
1564{
1565	return h * 31 + value;
1566}
1567
1568#define for_each_dedup_cand(d, node, hash) \
1569	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1570
1571static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1572{
1573	return hashmap__append(d->dedup_table,
1574			       (void *)hash, (void *)(long)type_id);
1575}
1576
1577static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1578				   __u32 from_id, __u32 to_id)
1579{
1580	if (d->hypot_cnt == d->hypot_cap) {
1581		__u32 *new_list;
1582
1583		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
1584		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1585		if (!new_list)
1586			return -ENOMEM;
1587		d->hypot_list = new_list;
1588	}
1589	d->hypot_list[d->hypot_cnt++] = from_id;
1590	d->hypot_map[from_id] = to_id;
1591	return 0;
1592}
1593
1594static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1595{
1596	int i;
1597
1598	for (i = 0; i < d->hypot_cnt; i++)
1599		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1600	d->hypot_cnt = 0;
 
1601}
1602
1603static void btf_dedup_free(struct btf_dedup *d)
1604{
1605	hashmap__free(d->dedup_table);
1606	d->dedup_table = NULL;
1607
1608	free(d->map);
1609	d->map = NULL;
1610
1611	free(d->hypot_map);
1612	d->hypot_map = NULL;
1613
1614	free(d->hypot_list);
1615	d->hypot_list = NULL;
1616
1617	free(d);
1618}
1619
1620static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1621{
1622	return (size_t)key;
1623}
1624
1625static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1626{
1627	return 0;
1628}
1629
1630static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1631{
1632	return k1 == k2;
1633}
1634
1635static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1636				       const struct btf_dedup_opts *opts)
1637{
1638	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1639	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1640	int i, err = 0;
1641
1642	if (!d)
1643		return ERR_PTR(-ENOMEM);
1644
1645	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1646	/* dedup_table_size is now used only to force collisions in tests */
1647	if (opts && opts->dedup_table_size == 1)
1648		hash_fn = btf_dedup_collision_hash_fn;
1649
1650	d->btf = btf;
1651	d->btf_ext = btf_ext;
1652
1653	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1654	if (IS_ERR(d->dedup_table)) {
1655		err = PTR_ERR(d->dedup_table);
1656		d->dedup_table = NULL;
1657		goto done;
1658	}
1659
1660	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
 
1661	if (!d->map) {
1662		err = -ENOMEM;
1663		goto done;
1664	}
1665	/* special BTF "void" type is made canonical immediately */
1666	d->map[0] = 0;
1667	for (i = 1; i <= btf->nr_types; i++) {
1668		struct btf_type *t = d->btf->types[i];
1669
1670		/* VAR and DATASEC are never deduped and are self-canonical */
1671		if (btf_is_var(t) || btf_is_datasec(t))
1672			d->map[i] = i;
1673		else
1674			d->map[i] = BTF_UNPROCESSED_ID;
1675	}
1676
1677	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1678	if (!d->hypot_map) {
1679		err = -ENOMEM;
1680		goto done;
1681	}
1682	for (i = 0; i <= btf->nr_types; i++)
1683		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1684
1685done:
1686	if (err) {
1687		btf_dedup_free(d);
1688		return ERR_PTR(err);
1689	}
1690
1691	return d;
1692}
1693
1694typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1695
1696/*
1697 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1698 * string and pass pointer to it to a provided callback `fn`.
1699 */
1700static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1701{
1702	void *line_data_cur, *line_data_end;
1703	int i, j, r, rec_size;
1704	struct btf_type *t;
1705
1706	for (i = 1; i <= d->btf->nr_types; i++) {
1707		t = d->btf->types[i];
1708		r = fn(&t->name_off, ctx);
1709		if (r)
1710			return r;
1711
1712		switch (btf_kind(t)) {
1713		case BTF_KIND_STRUCT:
1714		case BTF_KIND_UNION: {
1715			struct btf_member *m = btf_members(t);
1716			__u16 vlen = btf_vlen(t);
1717
1718			for (j = 0; j < vlen; j++) {
1719				r = fn(&m->name_off, ctx);
1720				if (r)
1721					return r;
1722				m++;
1723			}
1724			break;
1725		}
1726		case BTF_KIND_ENUM: {
1727			struct btf_enum *m = btf_enum(t);
1728			__u16 vlen = btf_vlen(t);
1729
1730			for (j = 0; j < vlen; j++) {
1731				r = fn(&m->name_off, ctx);
1732				if (r)
1733					return r;
1734				m++;
1735			}
1736			break;
1737		}
1738		case BTF_KIND_FUNC_PROTO: {
1739			struct btf_param *m = btf_params(t);
1740			__u16 vlen = btf_vlen(t);
1741
1742			for (j = 0; j < vlen; j++) {
1743				r = fn(&m->name_off, ctx);
1744				if (r)
1745					return r;
1746				m++;
1747			}
1748			break;
1749		}
1750		default:
1751			break;
1752		}
1753	}
1754
1755	if (!d->btf_ext)
1756		return 0;
1757
1758	line_data_cur = d->btf_ext->line_info.info;
1759	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1760	rec_size = d->btf_ext->line_info.rec_size;
1761
1762	while (line_data_cur < line_data_end) {
1763		struct btf_ext_info_sec *sec = line_data_cur;
1764		struct bpf_line_info_min *line_info;
1765		__u32 num_info = sec->num_info;
1766
1767		r = fn(&sec->sec_name_off, ctx);
1768		if (r)
1769			return r;
1770
1771		line_data_cur += sizeof(struct btf_ext_info_sec);
1772		for (i = 0; i < num_info; i++) {
1773			line_info = line_data_cur;
1774			r = fn(&line_info->file_name_off, ctx);
1775			if (r)
1776				return r;
1777			r = fn(&line_info->line_off, ctx);
1778			if (r)
1779				return r;
1780			line_data_cur += rec_size;
1781		}
1782	}
1783
1784	return 0;
1785}
1786
1787static int str_sort_by_content(const void *a1, const void *a2)
1788{
1789	const struct btf_str_ptr *p1 = a1;
1790	const struct btf_str_ptr *p2 = a2;
1791
1792	return strcmp(p1->str, p2->str);
1793}
1794
1795static int str_sort_by_offset(const void *a1, const void *a2)
1796{
1797	const struct btf_str_ptr *p1 = a1;
1798	const struct btf_str_ptr *p2 = a2;
1799
1800	if (p1->str != p2->str)
1801		return p1->str < p2->str ? -1 : 1;
1802	return 0;
1803}
1804
1805static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1806{
1807	const struct btf_str_ptr *p = pelem;
1808
1809	if (str_ptr != p->str)
1810		return (const char *)str_ptr < p->str ? -1 : 1;
1811	return 0;
1812}
1813
1814static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1815{
1816	struct btf_str_ptrs *strs;
1817	struct btf_str_ptr *s;
 
 
1818
1819	if (*str_off_ptr == 0)
 
1820		return 0;
1821
1822	strs = ctx;
1823	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1824		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1825	if (!s)
1826		return -EINVAL;
1827	s->used = true;
1828	return 0;
1829}
1830
1831static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1832{
1833	struct btf_str_ptrs *strs;
1834	struct btf_str_ptr *s;
1835
1836	if (*str_off_ptr == 0)
1837		return 0;
 
1838
1839	strs = ctx;
1840	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1841		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1842	if (!s)
1843		return -EINVAL;
1844	*str_off_ptr = s->new_off;
1845	return 0;
1846}
1847
1848/*
1849 * Dedup string and filter out those that are not referenced from either .BTF
1850 * or .BTF.ext (if provided) sections.
1851 *
1852 * This is done by building index of all strings in BTF's string section,
1853 * then iterating over all entities that can reference strings (e.g., type
1854 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1855 * strings as used. After that all used strings are deduped and compacted into
1856 * sequential blob of memory and new offsets are calculated. Then all the string
1857 * references are iterated again and rewritten using new offsets.
1858 */
1859static int btf_dedup_strings(struct btf_dedup *d)
1860{
1861	const struct btf_header *hdr = d->btf->hdr;
1862	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1863	char *end = start + d->btf->hdr->str_len;
1864	char *p = start, *tmp_strs = NULL;
1865	struct btf_str_ptrs strs = {
1866		.cnt = 0,
1867		.cap = 0,
1868		.ptrs = NULL,
1869		.data = start,
1870	};
1871	int i, j, err = 0, grp_idx;
1872	bool grp_used;
1873
1874	/* build index of all strings */
1875	while (p < end) {
1876		if (strs.cnt + 1 > strs.cap) {
1877			struct btf_str_ptr *new_ptrs;
1878
1879			strs.cap += max(strs.cnt / 2, 16U);
1880			new_ptrs = realloc(strs.ptrs,
1881					   sizeof(strs.ptrs[0]) * strs.cap);
1882			if (!new_ptrs) {
1883				err = -ENOMEM;
1884				goto done;
1885			}
1886			strs.ptrs = new_ptrs;
1887		}
1888
1889		strs.ptrs[strs.cnt].str = p;
1890		strs.ptrs[strs.cnt].used = false;
1891
1892		p += strlen(p) + 1;
1893		strs.cnt++;
1894	}
1895
1896	/* temporary storage for deduplicated strings */
1897	tmp_strs = malloc(d->btf->hdr->str_len);
1898	if (!tmp_strs) {
1899		err = -ENOMEM;
1900		goto done;
1901	}
1902
1903	/* mark all used strings */
1904	strs.ptrs[0].used = true;
1905	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1906	if (err)
1907		goto done;
1908
1909	/* sort strings by context, so that we can identify duplicates */
1910	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1911
1912	/*
1913	 * iterate groups of equal strings and if any instance in a group was
1914	 * referenced, emit single instance and remember new offset
1915	 */
1916	p = tmp_strs;
1917	grp_idx = 0;
1918	grp_used = strs.ptrs[0].used;
1919	/* iterate past end to avoid code duplication after loop */
1920	for (i = 1; i <= strs.cnt; i++) {
1921		/*
1922		 * when i == strs.cnt, we want to skip string comparison and go
1923		 * straight to handling last group of strings (otherwise we'd
1924		 * need to handle last group after the loop w/ duplicated code)
1925		 */
1926		if (i < strs.cnt &&
1927		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1928			grp_used = grp_used || strs.ptrs[i].used;
1929			continue;
1930		}
1931
1932		/*
1933		 * this check would have been required after the loop to handle
1934		 * last group of strings, but due to <= condition in a loop
1935		 * we avoid that duplication
1936		 */
1937		if (grp_used) {
1938			int new_off = p - tmp_strs;
1939			__u32 len = strlen(strs.ptrs[grp_idx].str);
1940
1941			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1942			for (j = grp_idx; j < i; j++)
1943				strs.ptrs[j].new_off = new_off;
1944			p += len + 1;
1945		}
1946
1947		if (i < strs.cnt) {
1948			grp_idx = i;
1949			grp_used = strs.ptrs[i].used;
1950		}
1951	}
1952
1953	/* replace original strings with deduped ones */
1954	d->btf->hdr->str_len = p - tmp_strs;
1955	memmove(start, tmp_strs, d->btf->hdr->str_len);
1956	end = start + d->btf->hdr->str_len;
1957
1958	/* restore original order for further binary search lookups */
1959	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1960
1961	/* remap string offsets */
1962	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1963	if (err)
1964		goto done;
1965
1966	d->btf->hdr->str_len = end - start;
 
 
 
 
 
 
 
 
 
 
1967
1968done:
1969	free(tmp_strs);
1970	free(strs.ptrs);
1971	return err;
1972}
1973
1974static long btf_hash_common(struct btf_type *t)
1975{
1976	long h;
1977
1978	h = hash_combine(0, t->name_off);
1979	h = hash_combine(h, t->info);
1980	h = hash_combine(h, t->size);
1981	return h;
1982}
1983
1984static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1985{
1986	return t1->name_off == t2->name_off &&
1987	       t1->info == t2->info &&
1988	       t1->size == t2->size;
1989}
1990
1991/* Calculate type signature hash of INT. */
1992static long btf_hash_int(struct btf_type *t)
1993{
1994	__u32 info = *(__u32 *)(t + 1);
1995	long h;
1996
1997	h = btf_hash_common(t);
1998	h = hash_combine(h, info);
1999	return h;
2000}
2001
2002/* Check structural equality of two INTs. */
2003static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
2004{
2005	__u32 info1, info2;
2006
2007	if (!btf_equal_common(t1, t2))
2008		return false;
2009	info1 = *(__u32 *)(t1 + 1);
2010	info2 = *(__u32 *)(t2 + 1);
2011	return info1 == info2;
2012}
2013
2014/* Calculate type signature hash of ENUM. */
2015static long btf_hash_enum(struct btf_type *t)
2016{
2017	long h;
2018
2019	/* don't hash vlen and enum members to support enum fwd resolving */
2020	h = hash_combine(0, t->name_off);
2021	h = hash_combine(h, t->info & ~0xffff);
2022	h = hash_combine(h, t->size);
2023	return h;
2024}
2025
2026/* Check structural equality of two ENUMs. */
2027static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
2028{
2029	const struct btf_enum *m1, *m2;
2030	__u16 vlen;
2031	int i;
2032
2033	if (!btf_equal_common(t1, t2))
2034		return false;
2035
2036	vlen = btf_vlen(t1);
2037	m1 = btf_enum(t1);
2038	m2 = btf_enum(t2);
2039	for (i = 0; i < vlen; i++) {
2040		if (m1->name_off != m2->name_off || m1->val != m2->val)
2041			return false;
2042		m1++;
2043		m2++;
2044	}
2045	return true;
2046}
2047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048static inline bool btf_is_enum_fwd(struct btf_type *t)
2049{
2050	return btf_is_enum(t) && btf_vlen(t) == 0;
2051}
2052
2053static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
2054{
2055	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
2056		return btf_equal_enum(t1, t2);
2057	/* ignore vlen when comparing */
 
 
 
 
 
2058	return t1->name_off == t2->name_off &&
2059	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
2060	       t1->size == t2->size;
2061}
2062
2063/*
2064 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
2065 * as referenced type IDs equivalence is established separately during type
2066 * graph equivalence check algorithm.
2067 */
2068static long btf_hash_struct(struct btf_type *t)
2069{
2070	const struct btf_member *member = btf_members(t);
2071	__u32 vlen = btf_vlen(t);
2072	long h = btf_hash_common(t);
2073	int i;
2074
2075	for (i = 0; i < vlen; i++) {
2076		h = hash_combine(h, member->name_off);
2077		h = hash_combine(h, member->offset);
2078		/* no hashing of referenced type ID, it can be unresolved yet */
2079		member++;
2080	}
2081	return h;
2082}
2083
2084/*
2085 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2086 * IDs. This check is performed during type graph equivalence check and
2087 * referenced types equivalence is checked separately.
2088 */
2089static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
2090{
2091	const struct btf_member *m1, *m2;
2092	__u16 vlen;
2093	int i;
2094
2095	if (!btf_equal_common(t1, t2))
2096		return false;
2097
2098	vlen = btf_vlen(t1);
2099	m1 = btf_members(t1);
2100	m2 = btf_members(t2);
2101	for (i = 0; i < vlen; i++) {
2102		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
2103			return false;
2104		m1++;
2105		m2++;
2106	}
2107	return true;
2108}
2109
2110/*
2111 * Calculate type signature hash of ARRAY, including referenced type IDs,
2112 * under assumption that they were already resolved to canonical type IDs and
2113 * are not going to change.
2114 */
2115static long btf_hash_array(struct btf_type *t)
2116{
2117	const struct btf_array *info = btf_array(t);
2118	long h = btf_hash_common(t);
2119
2120	h = hash_combine(h, info->type);
2121	h = hash_combine(h, info->index_type);
2122	h = hash_combine(h, info->nelems);
2123	return h;
2124}
2125
2126/*
2127 * Check exact equality of two ARRAYs, taking into account referenced
2128 * type IDs, under assumption that they were already resolved to canonical
2129 * type IDs and are not going to change.
2130 * This function is called during reference types deduplication to compare
2131 * ARRAY to potential canonical representative.
2132 */
2133static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
2134{
2135	const struct btf_array *info1, *info2;
2136
2137	if (!btf_equal_common(t1, t2))
2138		return false;
2139
2140	info1 = btf_array(t1);
2141	info2 = btf_array(t2);
2142	return info1->type == info2->type &&
2143	       info1->index_type == info2->index_type &&
2144	       info1->nelems == info2->nelems;
2145}
2146
2147/*
2148 * Check structural compatibility of two ARRAYs, ignoring referenced type
2149 * IDs. This check is performed during type graph equivalence check and
2150 * referenced types equivalence is checked separately.
2151 */
2152static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
2153{
2154	if (!btf_equal_common(t1, t2))
2155		return false;
2156
2157	return btf_array(t1)->nelems == btf_array(t2)->nelems;
2158}
2159
2160/*
2161 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
2162 * under assumption that they were already resolved to canonical type IDs and
2163 * are not going to change.
2164 */
2165static long btf_hash_fnproto(struct btf_type *t)
2166{
2167	const struct btf_param *member = btf_params(t);
2168	__u16 vlen = btf_vlen(t);
2169	long h = btf_hash_common(t);
2170	int i;
2171
2172	for (i = 0; i < vlen; i++) {
2173		h = hash_combine(h, member->name_off);
2174		h = hash_combine(h, member->type);
2175		member++;
2176	}
2177	return h;
2178}
2179
2180/*
2181 * Check exact equality of two FUNC_PROTOs, taking into account referenced
2182 * type IDs, under assumption that they were already resolved to canonical
2183 * type IDs and are not going to change.
2184 * This function is called during reference types deduplication to compare
2185 * FUNC_PROTO to potential canonical representative.
2186 */
2187static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
2188{
2189	const struct btf_param *m1, *m2;
2190	__u16 vlen;
2191	int i;
2192
2193	if (!btf_equal_common(t1, t2))
2194		return false;
2195
2196	vlen = btf_vlen(t1);
2197	m1 = btf_params(t1);
2198	m2 = btf_params(t2);
2199	for (i = 0; i < vlen; i++) {
2200		if (m1->name_off != m2->name_off || m1->type != m2->type)
2201			return false;
2202		m1++;
2203		m2++;
2204	}
2205	return true;
2206}
2207
2208/*
2209 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2210 * IDs. This check is performed during type graph equivalence check and
2211 * referenced types equivalence is checked separately.
2212 */
2213static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
2214{
2215	const struct btf_param *m1, *m2;
2216	__u16 vlen;
2217	int i;
2218
2219	/* skip return type ID */
2220	if (t1->name_off != t2->name_off || t1->info != t2->info)
2221		return false;
2222
2223	vlen = btf_vlen(t1);
2224	m1 = btf_params(t1);
2225	m2 = btf_params(t2);
2226	for (i = 0; i < vlen; i++) {
2227		if (m1->name_off != m2->name_off)
2228			return false;
2229		m1++;
2230		m2++;
2231	}
2232	return true;
2233}
2234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235/*
2236 * Deduplicate primitive types, that can't reference other types, by calculating
2237 * their type signature hash and comparing them with any possible canonical
2238 * candidate. If no canonical candidate matches, type itself is marked as
2239 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2240 */
2241static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2242{
2243	struct btf_type *t = d->btf->types[type_id];
2244	struct hashmap_entry *hash_entry;
2245	struct btf_type *cand;
2246	/* if we don't find equivalent type, then we are canonical */
2247	__u32 new_id = type_id;
2248	__u32 cand_id;
2249	long h;
2250
2251	switch (btf_kind(t)) {
2252	case BTF_KIND_CONST:
2253	case BTF_KIND_VOLATILE:
2254	case BTF_KIND_RESTRICT:
2255	case BTF_KIND_PTR:
2256	case BTF_KIND_TYPEDEF:
2257	case BTF_KIND_ARRAY:
2258	case BTF_KIND_STRUCT:
2259	case BTF_KIND_UNION:
2260	case BTF_KIND_FUNC:
2261	case BTF_KIND_FUNC_PROTO:
2262	case BTF_KIND_VAR:
2263	case BTF_KIND_DATASEC:
 
 
2264		return 0;
2265
2266	case BTF_KIND_INT:
2267		h = btf_hash_int(t);
2268		for_each_dedup_cand(d, hash_entry, h) {
2269			cand_id = (__u32)(long)hash_entry->value;
2270			cand = d->btf->types[cand_id];
2271			if (btf_equal_int(t, cand)) {
2272				new_id = cand_id;
2273				break;
2274			}
2275		}
2276		break;
2277
2278	case BTF_KIND_ENUM:
 
2279		h = btf_hash_enum(t);
2280		for_each_dedup_cand(d, hash_entry, h) {
2281			cand_id = (__u32)(long)hash_entry->value;
2282			cand = d->btf->types[cand_id];
2283			if (btf_equal_enum(t, cand)) {
2284				new_id = cand_id;
2285				break;
2286			}
2287			if (d->opts.dont_resolve_fwds)
2288				continue;
2289			if (btf_compat_enum(t, cand)) {
2290				if (btf_is_enum_fwd(t)) {
2291					/* resolve fwd to full enum */
2292					new_id = cand_id;
2293					break;
2294				}
2295				/* resolve canonical enum fwd to full enum */
2296				d->map[cand_id] = type_id;
2297			}
2298		}
2299		break;
2300
2301	case BTF_KIND_FWD:
 
2302		h = btf_hash_common(t);
2303		for_each_dedup_cand(d, hash_entry, h) {
2304			cand_id = (__u32)(long)hash_entry->value;
2305			cand = d->btf->types[cand_id];
2306			if (btf_equal_common(t, cand)) {
2307				new_id = cand_id;
2308				break;
2309			}
2310		}
2311		break;
2312
2313	default:
2314		return -EINVAL;
2315	}
2316
2317	d->map[type_id] = new_id;
2318	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2319		return -ENOMEM;
2320
2321	return 0;
2322}
2323
2324static int btf_dedup_prim_types(struct btf_dedup *d)
2325{
2326	int i, err;
2327
2328	for (i = 1; i <= d->btf->nr_types; i++) {
2329		err = btf_dedup_prim_type(d, i);
2330		if (err)
2331			return err;
2332	}
2333	return 0;
2334}
2335
2336/*
2337 * Check whether type is already mapped into canonical one (could be to itself).
2338 */
2339static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2340{
2341	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2342}
2343
2344/*
2345 * Resolve type ID into its canonical type ID, if any; otherwise return original
2346 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2347 * STRUCT/UNION link and resolve it into canonical type ID as well.
2348 */
2349static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2350{
2351	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2352		type_id = d->map[type_id];
2353	return type_id;
2354}
2355
2356/*
2357 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2358 * type ID.
2359 */
2360static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2361{
2362	__u32 orig_type_id = type_id;
2363
2364	if (!btf_is_fwd(d->btf->types[type_id]))
2365		return type_id;
2366
2367	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2368		type_id = d->map[type_id];
2369
2370	if (!btf_is_fwd(d->btf->types[type_id]))
2371		return type_id;
2372
2373	return orig_type_id;
2374}
2375
2376
2377static inline __u16 btf_fwd_kind(struct btf_type *t)
2378{
2379	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2380}
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382/*
2383 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2384 * call it "candidate graph" in this description for brevity) to a type graph
2385 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2386 * here, though keep in mind that not all types in canonical graph are
2387 * necessarily canonical representatives themselves, some of them might be
2388 * duplicates or its uniqueness might not have been established yet).
2389 * Returns:
2390 *  - >0, if type graphs are equivalent;
2391 *  -  0, if not equivalent;
2392 *  - <0, on error.
2393 *
2394 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2395 * equivalence of BTF types at each step. If at any point BTF types in candidate
2396 * and canonical graphs are not compatible structurally, whole graphs are
2397 * incompatible. If types are structurally equivalent (i.e., all information
2398 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2399 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2400 * If a type references other types, then those referenced types are checked
2401 * for equivalence recursively.
2402 *
2403 * During DFS traversal, if we find that for current `canon_id` type we
2404 * already have some mapping in hypothetical map, we check for two possible
2405 * situations:
2406 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2407 *     happen when type graphs have cycles. In this case we assume those two
2408 *     types are equivalent.
2409 *   - `canon_id` is mapped to different type. This is contradiction in our
2410 *     hypothetical mapping, because same graph in canonical graph corresponds
2411 *     to two different types in candidate graph, which for equivalent type
2412 *     graphs shouldn't happen. This condition terminates equivalence check
2413 *     with negative result.
2414 *
2415 * If type graphs traversal exhausts types to check and find no contradiction,
2416 * then type graphs are equivalent.
2417 *
2418 * When checking types for equivalence, there is one special case: FWD types.
2419 * If FWD type resolution is allowed and one of the types (either from canonical
2420 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2421 * flag) and their names match, hypothetical mapping is updated to point from
2422 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2423 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2424 *
2425 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2426 * if there are two exactly named (or anonymous) structs/unions that are
2427 * compatible structurally, one of which has FWD field, while other is concrete
2428 * STRUCT/UNION, but according to C sources they are different structs/unions
2429 * that are referencing different types with the same name. This is extremely
2430 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2431 * this logic is causing problems.
2432 *
2433 * Doing FWD resolution means that both candidate and/or canonical graphs can
2434 * consists of portions of the graph that come from multiple compilation units.
2435 * This is due to the fact that types within single compilation unit are always
2436 * deduplicated and FWDs are already resolved, if referenced struct/union
2437 * definiton is available. So, if we had unresolved FWD and found corresponding
2438 * STRUCT/UNION, they will be from different compilation units. This
2439 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2440 * type graph will likely have at least two different BTF types that describe
2441 * same type (e.g., most probably there will be two different BTF types for the
2442 * same 'int' primitive type) and could even have "overlapping" parts of type
2443 * graph that describe same subset of types.
2444 *
2445 * This in turn means that our assumption that each type in canonical graph
2446 * must correspond to exactly one type in candidate graph might not hold
2447 * anymore and will make it harder to detect contradictions using hypothetical
2448 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2449 * resolution only in canonical graph. FWDs in candidate graphs are never
2450 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2451 * that can occur:
2452 *   - Both types in canonical and candidate graphs are FWDs. If they are
2453 *     structurally equivalent, then they can either be both resolved to the
2454 *     same STRUCT/UNION or not resolved at all. In both cases they are
2455 *     equivalent and there is no need to resolve FWD on candidate side.
2456 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2457 *     so nothing to resolve as well, algorithm will check equivalence anyway.
2458 *   - Type in canonical graph is FWD, while type in candidate is concrete
2459 *     STRUCT/UNION. In this case candidate graph comes from single compilation
2460 *     unit, so there is exactly one BTF type for each unique C type. After
2461 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2462 *     in canonical graph mapping to single BTF type in candidate graph, but
2463 *     because hypothetical mapping maps from canonical to candidate types, it's
2464 *     alright, and we still maintain the property of having single `canon_id`
2465 *     mapping to single `cand_id` (there could be two different `canon_id`
2466 *     mapped to the same `cand_id`, but it's not contradictory).
2467 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2468 *     graph is FWD. In this case we are just going to check compatibility of
2469 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2470 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2471 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2472 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2473 *     canonical graph.
2474 */
2475static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2476			      __u32 canon_id)
2477{
2478	struct btf_type *cand_type;
2479	struct btf_type *canon_type;
2480	__u32 hypot_type_id;
2481	__u16 cand_kind;
2482	__u16 canon_kind;
2483	int i, eq;
2484
2485	/* if both resolve to the same canonical, they must be equivalent */
2486	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2487		return 1;
2488
2489	canon_id = resolve_fwd_id(d, canon_id);
2490
2491	hypot_type_id = d->hypot_map[canon_id];
2492	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2493		return hypot_type_id == cand_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494
2495	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2496		return -ENOMEM;
2497
2498	cand_type = d->btf->types[cand_id];
2499	canon_type = d->btf->types[canon_id];
2500	cand_kind = btf_kind(cand_type);
2501	canon_kind = btf_kind(canon_type);
2502
2503	if (cand_type->name_off != canon_type->name_off)
2504		return 0;
2505
2506	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2507	if (!d->opts.dont_resolve_fwds
2508	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2509	    && cand_kind != canon_kind) {
2510		__u16 real_kind;
2511		__u16 fwd_kind;
2512
2513		if (cand_kind == BTF_KIND_FWD) {
2514			real_kind = canon_kind;
2515			fwd_kind = btf_fwd_kind(cand_type);
2516		} else {
2517			real_kind = cand_kind;
2518			fwd_kind = btf_fwd_kind(canon_type);
 
 
 
2519		}
2520		return fwd_kind == real_kind;
2521	}
2522
2523	if (cand_kind != canon_kind)
2524		return 0;
2525
2526	switch (cand_kind) {
2527	case BTF_KIND_INT:
2528		return btf_equal_int(cand_type, canon_type);
2529
2530	case BTF_KIND_ENUM:
2531		if (d->opts.dont_resolve_fwds)
2532			return btf_equal_enum(cand_type, canon_type);
2533		else
2534			return btf_compat_enum(cand_type, canon_type);
2535
2536	case BTF_KIND_FWD:
 
2537		return btf_equal_common(cand_type, canon_type);
2538
2539	case BTF_KIND_CONST:
2540	case BTF_KIND_VOLATILE:
2541	case BTF_KIND_RESTRICT:
2542	case BTF_KIND_PTR:
2543	case BTF_KIND_TYPEDEF:
2544	case BTF_KIND_FUNC:
 
2545		if (cand_type->info != canon_type->info)
2546			return 0;
2547		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2548
2549	case BTF_KIND_ARRAY: {
2550		const struct btf_array *cand_arr, *canon_arr;
2551
2552		if (!btf_compat_array(cand_type, canon_type))
2553			return 0;
2554		cand_arr = btf_array(cand_type);
2555		canon_arr = btf_array(canon_type);
2556		eq = btf_dedup_is_equiv(d,
2557			cand_arr->index_type, canon_arr->index_type);
2558		if (eq <= 0)
2559			return eq;
2560		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2561	}
2562
2563	case BTF_KIND_STRUCT:
2564	case BTF_KIND_UNION: {
2565		const struct btf_member *cand_m, *canon_m;
2566		__u16 vlen;
2567
2568		if (!btf_shallow_equal_struct(cand_type, canon_type))
2569			return 0;
2570		vlen = btf_vlen(cand_type);
2571		cand_m = btf_members(cand_type);
2572		canon_m = btf_members(canon_type);
2573		for (i = 0; i < vlen; i++) {
2574			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2575			if (eq <= 0)
2576				return eq;
2577			cand_m++;
2578			canon_m++;
2579		}
2580
2581		return 1;
2582	}
2583
2584	case BTF_KIND_FUNC_PROTO: {
2585		const struct btf_param *cand_p, *canon_p;
2586		__u16 vlen;
2587
2588		if (!btf_compat_fnproto(cand_type, canon_type))
2589			return 0;
2590		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2591		if (eq <= 0)
2592			return eq;
2593		vlen = btf_vlen(cand_type);
2594		cand_p = btf_params(cand_type);
2595		canon_p = btf_params(canon_type);
2596		for (i = 0; i < vlen; i++) {
2597			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2598			if (eq <= 0)
2599				return eq;
2600			cand_p++;
2601			canon_p++;
2602		}
2603		return 1;
2604	}
2605
2606	default:
2607		return -EINVAL;
2608	}
2609	return 0;
2610}
2611
2612/*
2613 * Use hypothetical mapping, produced by successful type graph equivalence
2614 * check, to augment existing struct/union canonical mapping, where possible.
2615 *
2616 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2617 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2618 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2619 * we are recording the mapping anyway. As opposed to carefulness required
2620 * for struct/union correspondence mapping (described below), for FWD resolution
2621 * it's not important, as by the time that FWD type (reference type) will be
2622 * deduplicated all structs/unions will be deduped already anyway.
2623 *
2624 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2625 * not required for correctness. It needs to be done carefully to ensure that
2626 * struct/union from candidate's type graph is not mapped into corresponding
2627 * struct/union from canonical type graph that itself hasn't been resolved into
2628 * canonical representative. The only guarantee we have is that canonical
2629 * struct/union was determined as canonical and that won't change. But any
2630 * types referenced through that struct/union fields could have been not yet
2631 * resolved, so in case like that it's too early to establish any kind of
2632 * correspondence between structs/unions.
2633 *
2634 * No canonical correspondence is derived for primitive types (they are already
2635 * deduplicated completely already anyway) or reference types (they rely on
2636 * stability of struct/union canonical relationship for equivalence checks).
2637 */
2638static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2639{
2640	__u32 cand_type_id, targ_type_id;
2641	__u16 t_kind, c_kind;
2642	__u32 t_id, c_id;
2643	int i;
2644
2645	for (i = 0; i < d->hypot_cnt; i++) {
2646		cand_type_id = d->hypot_list[i];
2647		targ_type_id = d->hypot_map[cand_type_id];
2648		t_id = resolve_type_id(d, targ_type_id);
2649		c_id = resolve_type_id(d, cand_type_id);
2650		t_kind = btf_kind(d->btf->types[t_id]);
2651		c_kind = btf_kind(d->btf->types[c_id]);
2652		/*
2653		 * Resolve FWD into STRUCT/UNION.
2654		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2655		 * mapped to canonical representative (as opposed to
2656		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2657		 * eventually that struct is going to be mapped and all resolved
2658		 * FWDs will automatically resolve to correct canonical
2659		 * representative. This will happen before ref type deduping,
2660		 * which critically depends on stability of these mapping. This
2661		 * stability is not a requirement for STRUCT/UNION equivalence
2662		 * checks, though.
2663		 */
 
 
 
 
 
 
 
 
2664		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2665			d->map[c_id] = t_id;
2666		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
 
 
 
 
 
 
 
 
 
2667			d->map[t_id] = c_id;
2668
2669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2670		    c_kind != BTF_KIND_FWD &&
2671		    is_type_mapped(d, c_id) &&
2672		    !is_type_mapped(d, t_id)) {
2673			/*
2674			 * as a perf optimization, we can map struct/union
2675			 * that's part of type graph we just verified for
2676			 * equivalence. We can do that for struct/union that has
2677			 * canonical representative only, though.
2678			 */
2679			d->map[t_id] = c_id;
2680		}
2681	}
2682}
2683
2684/*
2685 * Deduplicate struct/union types.
2686 *
2687 * For each struct/union type its type signature hash is calculated, taking
2688 * into account type's name, size, number, order and names of fields, but
2689 * ignoring type ID's referenced from fields, because they might not be deduped
2690 * completely until after reference types deduplication phase. This type hash
2691 * is used to iterate over all potential canonical types, sharing same hash.
2692 * For each canonical candidate we check whether type graphs that they form
2693 * (through referenced types in fields and so on) are equivalent using algorithm
2694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2698 * potentially map other structs/unions to their canonical representatives,
2699 * if such relationship hasn't yet been established. This speeds up algorithm
2700 * by eliminating some of the duplicate work.
2701 *
2702 * If no matching canonical representative was found, struct/union is marked
2703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2704 * for further look ups.
2705 */
2706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2707{
2708	struct btf_type *cand_type, *t;
2709	struct hashmap_entry *hash_entry;
2710	/* if we don't find equivalent type, then we are canonical */
2711	__u32 new_id = type_id;
2712	__u16 kind;
2713	long h;
2714
2715	/* already deduped or is in process of deduping (loop detected) */
2716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2717		return 0;
2718
2719	t = d->btf->types[type_id];
2720	kind = btf_kind(t);
2721
2722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2723		return 0;
2724
2725	h = btf_hash_struct(t);
2726	for_each_dedup_cand(d, hash_entry, h) {
2727		__u32 cand_id = (__u32)(long)hash_entry->value;
2728		int eq;
2729
2730		/*
2731		 * Even though btf_dedup_is_equiv() checks for
2732		 * btf_shallow_equal_struct() internally when checking two
2733		 * structs (unions) for equivalence, we need to guard here
2734		 * from picking matching FWD type as a dedup candidate.
2735		 * This can happen due to hash collision. In such case just
2736		 * relying on btf_dedup_is_equiv() would lead to potentially
2737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2738		 * FWD and compatible STRUCT/UNION are considered equivalent.
2739		 */
2740		cand_type = d->btf->types[cand_id];
2741		if (!btf_shallow_equal_struct(t, cand_type))
2742			continue;
2743
2744		btf_dedup_clear_hypot_map(d);
2745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2746		if (eq < 0)
2747			return eq;
2748		if (!eq)
2749			continue;
2750		new_id = cand_id;
2751		btf_dedup_merge_hypot_map(d);
 
 
 
2752		break;
2753	}
2754
2755	d->map[type_id] = new_id;
2756	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2757		return -ENOMEM;
2758
2759	return 0;
2760}
2761
2762static int btf_dedup_struct_types(struct btf_dedup *d)
2763{
2764	int i, err;
2765
2766	for (i = 1; i <= d->btf->nr_types; i++) {
2767		err = btf_dedup_struct_type(d, i);
2768		if (err)
2769			return err;
2770	}
2771	return 0;
2772}
2773
2774/*
2775 * Deduplicate reference type.
2776 *
2777 * Once all primitive and struct/union types got deduplicated, we can easily
2778 * deduplicate all other (reference) BTF types. This is done in two steps:
2779 *
2780 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2781 * resolution can be done either immediately for primitive or struct/union types
2782 * (because they were deduped in previous two phases) or recursively for
2783 * reference types. Recursion will always terminate at either primitive or
2784 * struct/union type, at which point we can "unwind" chain of reference types
2785 * one by one. There is no danger of encountering cycles because in C type
2786 * system the only way to form type cycle is through struct/union, so any chain
2787 * of reference types, even those taking part in a type cycle, will inevitably
2788 * reach struct/union at some point.
2789 *
2790 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2791 * becomes "stable", in the sense that no further deduplication will cause
2792 * any changes to it. With that, it's now possible to calculate type's signature
2793 * hash (this time taking into account referenced type IDs) and loop over all
2794 * potential canonical representatives. If no match was found, current type
2795 * will become canonical representative of itself and will be added into
2796 * btf_dedup->dedup_table as another possible canonical representative.
2797 */
2798static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2799{
2800	struct hashmap_entry *hash_entry;
2801	__u32 new_id = type_id, cand_id;
2802	struct btf_type *t, *cand;
2803	/* if we don't find equivalent type, then we are representative type */
2804	int ref_type_id;
2805	long h;
2806
2807	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2808		return -ELOOP;
2809	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2810		return resolve_type_id(d, type_id);
2811
2812	t = d->btf->types[type_id];
2813	d->map[type_id] = BTF_IN_PROGRESS_ID;
2814
2815	switch (btf_kind(t)) {
2816	case BTF_KIND_CONST:
2817	case BTF_KIND_VOLATILE:
2818	case BTF_KIND_RESTRICT:
2819	case BTF_KIND_PTR:
2820	case BTF_KIND_TYPEDEF:
2821	case BTF_KIND_FUNC:
 
2822		ref_type_id = btf_dedup_ref_type(d, t->type);
2823		if (ref_type_id < 0)
2824			return ref_type_id;
2825		t->type = ref_type_id;
2826
2827		h = btf_hash_common(t);
2828		for_each_dedup_cand(d, hash_entry, h) {
2829			cand_id = (__u32)(long)hash_entry->value;
2830			cand = d->btf->types[cand_id];
2831			if (btf_equal_common(t, cand)) {
2832				new_id = cand_id;
2833				break;
2834			}
2835		}
2836		break;
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838	case BTF_KIND_ARRAY: {
2839		struct btf_array *info = btf_array(t);
2840
2841		ref_type_id = btf_dedup_ref_type(d, info->type);
2842		if (ref_type_id < 0)
2843			return ref_type_id;
2844		info->type = ref_type_id;
2845
2846		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2847		if (ref_type_id < 0)
2848			return ref_type_id;
2849		info->index_type = ref_type_id;
2850
2851		h = btf_hash_array(t);
2852		for_each_dedup_cand(d, hash_entry, h) {
2853			cand_id = (__u32)(long)hash_entry->value;
2854			cand = d->btf->types[cand_id];
2855			if (btf_equal_array(t, cand)) {
2856				new_id = cand_id;
2857				break;
2858			}
2859		}
2860		break;
2861	}
2862
2863	case BTF_KIND_FUNC_PROTO: {
2864		struct btf_param *param;
2865		__u16 vlen;
2866		int i;
2867
2868		ref_type_id = btf_dedup_ref_type(d, t->type);
2869		if (ref_type_id < 0)
2870			return ref_type_id;
2871		t->type = ref_type_id;
2872
2873		vlen = btf_vlen(t);
2874		param = btf_params(t);
2875		for (i = 0; i < vlen; i++) {
2876			ref_type_id = btf_dedup_ref_type(d, param->type);
2877			if (ref_type_id < 0)
2878				return ref_type_id;
2879			param->type = ref_type_id;
2880			param++;
2881		}
2882
2883		h = btf_hash_fnproto(t);
2884		for_each_dedup_cand(d, hash_entry, h) {
2885			cand_id = (__u32)(long)hash_entry->value;
2886			cand = d->btf->types[cand_id];
2887			if (btf_equal_fnproto(t, cand)) {
2888				new_id = cand_id;
2889				break;
2890			}
2891		}
2892		break;
2893	}
2894
2895	default:
2896		return -EINVAL;
2897	}
2898
2899	d->map[type_id] = new_id;
2900	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2901		return -ENOMEM;
2902
2903	return new_id;
2904}
2905
2906static int btf_dedup_ref_types(struct btf_dedup *d)
2907{
2908	int i, err;
2909
2910	for (i = 1; i <= d->btf->nr_types; i++) {
2911		err = btf_dedup_ref_type(d, i);
2912		if (err < 0)
2913			return err;
2914	}
2915	/* we won't need d->dedup_table anymore */
2916	hashmap__free(d->dedup_table);
2917	d->dedup_table = NULL;
2918	return 0;
2919}
2920
2921/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922 * Compact types.
2923 *
2924 * After we established for each type its corresponding canonical representative
2925 * type, we now can eliminate types that are not canonical and leave only
2926 * canonical ones layed out sequentially in memory by copying them over
2927 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2928 * a map from original type ID to a new compacted type ID, which will be used
2929 * during next phase to "fix up" type IDs, referenced from struct/union and
2930 * reference types.
2931 */
2932static int btf_dedup_compact_types(struct btf_dedup *d)
2933{
2934	struct btf_type **new_types;
2935	__u32 next_type_id = 1;
2936	char *types_start, *p;
2937	int i, len;
 
2938
2939	/* we are going to reuse hypot_map to store compaction remapping */
2940	d->hypot_map[0] = 0;
2941	for (i = 1; i <= d->btf->nr_types; i++)
2942		d->hypot_map[i] = BTF_UNPROCESSED_ID;
 
 
 
2943
2944	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2945	p = types_start;
2946
2947	for (i = 1; i <= d->btf->nr_types; i++) {
2948		if (d->map[i] != i)
2949			continue;
2950
2951		len = btf_type_size(d->btf->types[i]);
 
2952		if (len < 0)
2953			return len;
2954
2955		memmove(p, d->btf->types[i], len);
2956		d->hypot_map[i] = next_type_id;
2957		d->btf->types[next_type_id] = (struct btf_type *)p;
2958		p += len;
2959		next_type_id++;
2960	}
2961
2962	/* shrink struct btf's internal types index and update btf_header */
2963	d->btf->nr_types = next_type_id - 1;
2964	d->btf->types_size = d->btf->nr_types;
2965	d->btf->hdr->type_len = p - types_start;
2966	new_types = realloc(d->btf->types,
2967			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2968	if (!new_types)
2969		return -ENOMEM;
2970	d->btf->types = new_types;
2971
2972	/* make sure string section follows type information without gaps */
2973	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2974	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2975	d->btf->strings = p;
2976	p += d->btf->hdr->str_len;
2977
2978	d->btf->data_size = p - (char *)d->btf->data;
2979	return 0;
2980}
2981
2982/*
2983 * Figure out final (deduplicated and compacted) type ID for provided original
2984 * `type_id` by first resolving it into corresponding canonical type ID and
2985 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2986 * which is populated during compaction phase.
2987 */
2988static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2989{
 
2990	__u32 resolved_type_id, new_type_id;
2991
2992	resolved_type_id = resolve_type_id(d, type_id);
2993	new_type_id = d->hypot_map[resolved_type_id];
2994	if (new_type_id > BTF_MAX_NR_TYPES)
2995		return -EINVAL;
2996	return new_type_id;
 
 
2997}
2998
2999/*
3000 * Remap referenced type IDs into deduped type IDs.
3001 *
3002 * After BTF types are deduplicated and compacted, their final type IDs may
3003 * differ from original ones. The map from original to a corresponding
3004 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
3005 * compaction phase. During remapping phase we are rewriting all type IDs
3006 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
3007 * their final deduped type IDs.
3008 */
3009static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
3010{
3011	struct btf_type *t = d->btf->types[type_id];
3012	int i, r;
3013
3014	switch (btf_kind(t)) {
3015	case BTF_KIND_INT:
3016	case BTF_KIND_ENUM:
3017		break;
3018
3019	case BTF_KIND_FWD:
3020	case BTF_KIND_CONST:
3021	case BTF_KIND_VOLATILE:
3022	case BTF_KIND_RESTRICT:
3023	case BTF_KIND_PTR:
3024	case BTF_KIND_TYPEDEF:
3025	case BTF_KIND_FUNC:
3026	case BTF_KIND_VAR:
3027		r = btf_dedup_remap_type_id(d, t->type);
3028		if (r < 0)
3029			return r;
3030		t->type = r;
3031		break;
3032
3033	case BTF_KIND_ARRAY: {
3034		struct btf_array *arr_info = btf_array(t);
3035
3036		r = btf_dedup_remap_type_id(d, arr_info->type);
3037		if (r < 0)
3038			return r;
3039		arr_info->type = r;
3040		r = btf_dedup_remap_type_id(d, arr_info->index_type);
3041		if (r < 0)
3042			return r;
3043		arr_info->index_type = r;
3044		break;
3045	}
3046
3047	case BTF_KIND_STRUCT:
3048	case BTF_KIND_UNION: {
3049		struct btf_member *member = btf_members(t);
3050		__u16 vlen = btf_vlen(t);
3051
3052		for (i = 0; i < vlen; i++) {
3053			r = btf_dedup_remap_type_id(d, member->type);
3054			if (r < 0)
3055				return r;
3056			member->type = r;
3057			member++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058		}
3059		break;
 
3060	}
3061
3062	case BTF_KIND_FUNC_PROTO: {
3063		struct btf_param *param = btf_params(t);
3064		__u16 vlen = btf_vlen(t);
 
3065
3066		r = btf_dedup_remap_type_id(d, t->type);
3067		if (r < 0)
3068			return r;
3069		t->type = r;
3070
3071		for (i = 0; i < vlen; i++) {
3072			r = btf_dedup_remap_type_id(d, param->type);
3073			if (r < 0)
3074				return r;
3075			param->type = r;
3076			param++;
3077		}
3078		break;
3079	}
3080
3081	case BTF_KIND_DATASEC: {
3082		struct btf_var_secinfo *var = btf_var_secinfos(t);
3083		__u16 vlen = btf_vlen(t);
3084
3085		for (i = 0; i < vlen; i++) {
3086			r = btf_dedup_remap_type_id(d, var->type);
3087			if (r < 0)
3088				return r;
3089			var->type = r;
3090			var++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091		}
3092		break;
3093	}
3094
3095	default:
3096		return -EINVAL;
 
 
 
 
 
 
 
3097	}
3098
3099	return 0;
3100}
3101
3102static int btf_dedup_remap_types(struct btf_dedup *d)
3103{
3104	int i, r;
 
 
3105
3106	for (i = 1; i <= d->btf->nr_types; i++) {
3107		r = btf_dedup_remap_type(d, i);
3108		if (r < 0)
3109			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111	return 0;
3112}
3113
3114/*
3115 * Probe few well-known locations for vmlinux kernel image and try to load BTF
3116 * data out of it to use for target BTF.
3117 */
3118struct btf *libbpf_find_kernel_btf(void)
 
 
 
 
3119{
3120	struct {
3121		const char *path_fmt;
3122		bool raw_btf;
3123	} locations[] = {
3124		/* try canonical vmlinux BTF through sysfs first */
3125		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
3126		/* fall back to trying to find vmlinux ELF on disk otherwise */
3127		{ "/boot/vmlinux-%1$s" },
3128		{ "/lib/modules/%1$s/vmlinux-%1$s" },
3129		{ "/lib/modules/%1$s/build/vmlinux" },
3130		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
3131		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
3132		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
3133		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
3134	};
3135	char path[PATH_MAX + 1];
3136	struct utsname buf;
3137	struct btf *btf;
3138	int i;
3139
3140	uname(&buf);
 
 
 
 
3141
3142	for (i = 0; i < ARRAY_SIZE(locations); i++) {
3143		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
 
 
 
 
 
 
3144
3145		if (access(path, R_OK))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
3147
3148		if (locations[i].raw_btf)
3149			btf = btf__parse_raw(path);
3150		else
3151			btf = btf__parse_elf(path, NULL);
3152
3153		pr_debug("loading kernel BTF '%s': %ld\n",
3154			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
3155		if (IS_ERR(btf))
 
 
 
 
 
3156			continue;
 
 
 
3157
3158		return btf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3159	}
 
 
3160
3161	pr_warn("failed to find valid kernel BTF\n");
3162	return ERR_PTR(-ESRCH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3163}
v6.13.7
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25#include "str_error.h"
 
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	/* raw BTF data in native endianness */
  34	void *raw_data;
  35	/* raw BTF data in non-native endianness */
  36	void *raw_data_swapped;
  37	__u32 raw_size;
  38	/* whether target endianness differs from the native one */
  39	bool swapped_endian;
  40
  41	/*
  42	 * When BTF is loaded from an ELF or raw memory it is stored
  43	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  44	 * point inside that memory region to their respective parts of BTF
  45	 * representation:
  46	 *
  47	 * +--------------------------------+
  48	 * |  Header  |  Types  |  Strings  |
  49	 * +--------------------------------+
  50	 * ^          ^         ^
  51	 * |          |         |
  52	 * hdr        |         |
  53	 * types_data-+         |
  54	 * strs_data------------+
  55	 *
  56	 * If BTF data is later modified, e.g., due to types added or
  57	 * removed, BTF deduplication performed, etc, this contiguous
  58	 * representation is broken up into three independently allocated
  59	 * memory regions to be able to modify them independently.
  60	 * raw_data is nulled out at that point, but can be later allocated
  61	 * and cached again if user calls btf__raw_data(), at which point
  62	 * raw_data will contain a contiguous copy of header, types, and
  63	 * strings:
  64	 *
  65	 * +----------+  +---------+  +-----------+
  66	 * |  Header  |  |  Types  |  |  Strings  |
  67	 * +----------+  +---------+  +-----------+
  68	 * ^             ^            ^
  69	 * |             |            |
  70	 * hdr           |            |
  71	 * types_data----+            |
  72	 * strset__data(strs_set)-----+
  73	 *
  74	 *               +----------+---------+-----------+
  75	 *               |  Header  |  Types  |  Strings  |
  76	 * raw_data----->+----------+---------+-----------+
  77	 */
  78	struct btf_header *hdr;
  79
  80	void *types_data;
  81	size_t types_data_cap; /* used size stored in hdr->type_len */
  82
  83	/* type ID to `struct btf_type *` lookup index
  84	 * type_offs[0] corresponds to the first non-VOID type:
  85	 *   - for base BTF it's type [1];
  86	 *   - for split BTF it's the first non-base BTF type.
  87	 */
  88	__u32 *type_offs;
  89	size_t type_offs_cap;
  90	/* number of types in this BTF instance:
  91	 *   - doesn't include special [0] void type;
  92	 *   - for split BTF counts number of types added on top of base BTF.
  93	 */
  94	__u32 nr_types;
  95	/* if not NULL, points to the base BTF on top of which the current
  96	 * split BTF is based
  97	 */
  98	struct btf *base_btf;
  99	/* BTF type ID of the first type in this BTF instance:
 100	 *   - for base BTF it's equal to 1;
 101	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 102	 */
 103	int start_id;
 104	/* logical string offset of this BTF instance:
 105	 *   - for base BTF it's equal to 0;
 106	 *   - for split BTF it's equal to total size of base BTF's string section size.
 107	 */
 108	int start_str_off;
 109
 110	/* only one of strs_data or strs_set can be non-NULL, depending on
 111	 * whether BTF is in a modifiable state (strs_set is used) or not
 112	 * (strs_data points inside raw_data)
 113	 */
 114	void *strs_data;
 115	/* a set of unique strings */
 116	struct strset *strs_set;
 117	/* whether strings are already deduplicated */
 118	bool strs_deduped;
 119
 120	/* whether base_btf should be freed in btf_free for this instance */
 121	bool owns_base;
 122
 123	/* BTF object FD, if loaded into kernel */
 124	int fd;
 125
 126	/* Pointer size (in bytes) for a target architecture of this BTF */
 127	int ptr_sz;
 128};
 129
 130static inline __u64 ptr_to_u64(const void *ptr)
 131{
 132	return (__u64) (unsigned long) ptr;
 133}
 134
 135/* Ensure given dynamically allocated memory region pointed to by *data* with
 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 137 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 138 * are already used. At most *max_cnt* elements can be ever allocated.
 139 * If necessary, memory is reallocated and all existing data is copied over,
 140 * new pointer to the memory region is stored at *data, new memory region
 141 * capacity (in number of elements) is stored in *cap.
 142 * On success, memory pointer to the beginning of unused memory is returned.
 143 * On error, NULL is returned.
 144 */
 145void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 146		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 147{
 148	size_t new_cnt;
 149	void *new_data;
 
 150
 151	if (cur_cnt + add_cnt <= *cap_cnt)
 152		return *data + cur_cnt * elem_sz;
 153
 154	/* requested more than the set limit */
 155	if (cur_cnt + add_cnt > max_cnt)
 156		return NULL;
 157
 158	new_cnt = *cap_cnt;
 159	new_cnt += new_cnt / 4;		  /* expand by 25% */
 160	if (new_cnt < 16)		  /* but at least 16 elements */
 161		new_cnt = 16;
 162	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 163		new_cnt = max_cnt;
 164	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 165		new_cnt = cur_cnt + add_cnt;
 166
 167	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 168	if (!new_data)
 169		return NULL;
 170
 171	/* zero out newly allocated portion of memory */
 172	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 173
 174	*data = new_data;
 175	*cap_cnt = new_cnt;
 176	return new_data + cur_cnt * elem_sz;
 177}
 178
 179/* Ensure given dynamically allocated memory region has enough allocated space
 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 181 */
 182int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 183{
 184	void *p;
 185
 186	if (need_cnt <= *cap_cnt)
 187		return 0;
 188
 189	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 190	if (!p)
 191		return -ENOMEM;
 192
 193	return 0;
 194}
 195
 196static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 197{
 198	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 199			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 200}
 201
 202static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 203{
 204	__u32 *p;
 205
 206	p = btf_add_type_offs_mem(btf, 1);
 207	if (!p)
 208		return -ENOMEM;
 209
 210	*p = type_off;
 211	return 0;
 212}
 213
 214static void btf_bswap_hdr(struct btf_header *h)
 215{
 216	h->magic = bswap_16(h->magic);
 217	h->hdr_len = bswap_32(h->hdr_len);
 218	h->type_off = bswap_32(h->type_off);
 219	h->type_len = bswap_32(h->type_len);
 220	h->str_off = bswap_32(h->str_off);
 221	h->str_len = bswap_32(h->str_len);
 222}
 223
 224static int btf_parse_hdr(struct btf *btf)
 225{
 226	struct btf_header *hdr = btf->hdr;
 227	__u32 meta_left;
 228
 229	if (btf->raw_size < sizeof(struct btf_header)) {
 230		pr_debug("BTF header not found\n");
 231		return -EINVAL;
 232	}
 233
 234	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 235		btf->swapped_endian = true;
 236		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 237			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 238				bswap_32(hdr->hdr_len));
 239			return -ENOTSUP;
 240		}
 241		btf_bswap_hdr(hdr);
 242	} else if (hdr->magic != BTF_MAGIC) {
 243		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 
 
 
 
 
 
 
 
 244		return -EINVAL;
 245	}
 246
 247	if (btf->raw_size < hdr->hdr_len) {
 248		pr_debug("BTF header len %u larger than data size %u\n",
 249			 hdr->hdr_len, btf->raw_size);
 250		return -EINVAL;
 251	}
 252
 253	meta_left = btf->raw_size - hdr->hdr_len;
 254	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 255		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 256		return -EINVAL;
 257	}
 258
 259	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 260		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 261			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 262		return -EINVAL;
 263	}
 264
 265	if (hdr->type_off % 4) {
 266		pr_debug("BTF type section is not aligned to 4 bytes\n");
 267		return -EINVAL;
 268	}
 269
 
 
 270	return 0;
 271}
 272
 273static int btf_parse_str_sec(struct btf *btf)
 274{
 275	const struct btf_header *hdr = btf->hdr;
 276	const char *start = btf->strs_data;
 277	const char *end = start + btf->hdr->str_len;
 278
 279	if (btf->base_btf && hdr->str_len == 0)
 280		return 0;
 281	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	if (!btf->base_btf && start[0]) {
 286		pr_debug("Invalid BTF string section\n");
 287		return -EINVAL;
 288	}
 
 
 
 289	return 0;
 290}
 291
 292static int btf_type_size(const struct btf_type *t)
 293{
 294	const int base_size = sizeof(struct btf_type);
 295	__u16 vlen = btf_vlen(t);
 296
 297	switch (btf_kind(t)) {
 298	case BTF_KIND_FWD:
 299	case BTF_KIND_CONST:
 300	case BTF_KIND_VOLATILE:
 301	case BTF_KIND_RESTRICT:
 302	case BTF_KIND_PTR:
 303	case BTF_KIND_TYPEDEF:
 304	case BTF_KIND_FUNC:
 305	case BTF_KIND_FLOAT:
 306	case BTF_KIND_TYPE_TAG:
 307		return base_size;
 308	case BTF_KIND_INT:
 309		return base_size + sizeof(__u32);
 310	case BTF_KIND_ENUM:
 311		return base_size + vlen * sizeof(struct btf_enum);
 312	case BTF_KIND_ENUM64:
 313		return base_size + vlen * sizeof(struct btf_enum64);
 314	case BTF_KIND_ARRAY:
 315		return base_size + sizeof(struct btf_array);
 316	case BTF_KIND_STRUCT:
 317	case BTF_KIND_UNION:
 318		return base_size + vlen * sizeof(struct btf_member);
 319	case BTF_KIND_FUNC_PROTO:
 320		return base_size + vlen * sizeof(struct btf_param);
 321	case BTF_KIND_VAR:
 322		return base_size + sizeof(struct btf_var);
 323	case BTF_KIND_DATASEC:
 324		return base_size + vlen * sizeof(struct btf_var_secinfo);
 325	case BTF_KIND_DECL_TAG:
 326		return base_size + sizeof(struct btf_decl_tag);
 327	default:
 328		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 329		return -EINVAL;
 330	}
 331}
 332
 333static void btf_bswap_type_base(struct btf_type *t)
 334{
 335	t->name_off = bswap_32(t->name_off);
 336	t->info = bswap_32(t->info);
 337	t->type = bswap_32(t->type);
 338}
 339
 340static int btf_bswap_type_rest(struct btf_type *t)
 341{
 342	struct btf_var_secinfo *v;
 343	struct btf_enum64 *e64;
 344	struct btf_member *m;
 345	struct btf_array *a;
 346	struct btf_param *p;
 347	struct btf_enum *e;
 348	__u16 vlen = btf_vlen(t);
 349	int i;
 350
 351	switch (btf_kind(t)) {
 352	case BTF_KIND_FWD:
 353	case BTF_KIND_CONST:
 354	case BTF_KIND_VOLATILE:
 355	case BTF_KIND_RESTRICT:
 356	case BTF_KIND_PTR:
 357	case BTF_KIND_TYPEDEF:
 358	case BTF_KIND_FUNC:
 359	case BTF_KIND_FLOAT:
 360	case BTF_KIND_TYPE_TAG:
 361		return 0;
 362	case BTF_KIND_INT:
 363		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 364		return 0;
 365	case BTF_KIND_ENUM:
 366		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 367			e->name_off = bswap_32(e->name_off);
 368			e->val = bswap_32(e->val);
 369		}
 370		return 0;
 371	case BTF_KIND_ENUM64:
 372		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 373			e64->name_off = bswap_32(e64->name_off);
 374			e64->val_lo32 = bswap_32(e64->val_lo32);
 375			e64->val_hi32 = bswap_32(e64->val_hi32);
 376		}
 377		return 0;
 378	case BTF_KIND_ARRAY:
 379		a = btf_array(t);
 380		a->type = bswap_32(a->type);
 381		a->index_type = bswap_32(a->index_type);
 382		a->nelems = bswap_32(a->nelems);
 383		return 0;
 384	case BTF_KIND_STRUCT:
 385	case BTF_KIND_UNION:
 386		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 387			m->name_off = bswap_32(m->name_off);
 388			m->type = bswap_32(m->type);
 389			m->offset = bswap_32(m->offset);
 390		}
 391		return 0;
 392	case BTF_KIND_FUNC_PROTO:
 393		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 394			p->name_off = bswap_32(p->name_off);
 395			p->type = bswap_32(p->type);
 396		}
 397		return 0;
 398	case BTF_KIND_VAR:
 399		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 400		return 0;
 401	case BTF_KIND_DATASEC:
 402		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 403			v->type = bswap_32(v->type);
 404			v->offset = bswap_32(v->offset);
 405			v->size = bswap_32(v->size);
 406		}
 407		return 0;
 408	case BTF_KIND_DECL_TAG:
 409		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 410		return 0;
 411	default:
 412		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 413		return -EINVAL;
 414	}
 415}
 416
 417static int btf_parse_type_sec(struct btf *btf)
 418{
 419	struct btf_header *hdr = btf->hdr;
 420	void *next_type = btf->types_data;
 421	void *end_type = next_type + hdr->type_len;
 422	int err, type_size;
 423
 424	while (next_type + sizeof(struct btf_type) <= end_type) {
 425		if (btf->swapped_endian)
 426			btf_bswap_type_base(next_type);
 
 427
 428		type_size = btf_type_size(next_type);
 429		if (type_size < 0)
 430			return type_size;
 431		if (next_type + type_size > end_type) {
 432			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 433			return -EINVAL;
 434		}
 435
 436		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 437			return -EINVAL;
 438
 439		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 440		if (err)
 441			return err;
 442
 443		next_type += type_size;
 444		btf->nr_types++;
 445	}
 446
 447	if (next_type != end_type) {
 448		pr_warn("BTF types data is malformed\n");
 449		return -EINVAL;
 450	}
 451
 452	return 0;
 453}
 454
 455static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 456{
 457	const char *s;
 458
 459	s = btf__str_by_offset(btf, str_off);
 460	if (!s) {
 461		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 462		return -EINVAL;
 463	}
 464
 465	return 0;
 466}
 467
 468static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 469{
 470	const struct btf_type *t;
 471
 472	t = btf__type_by_id(btf, id);
 473	if (!t) {
 474		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 475		return -EINVAL;
 476	}
 477
 478	return 0;
 479}
 480
 481static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 482{
 483	__u32 kind = btf_kind(t);
 484	int err, i, n;
 485
 486	err = btf_validate_str(btf, t->name_off, "type name", id);
 487	if (err)
 488		return err;
 489
 490	switch (kind) {
 491	case BTF_KIND_UNKN:
 492	case BTF_KIND_INT:
 493	case BTF_KIND_FWD:
 494	case BTF_KIND_FLOAT:
 495		break;
 496	case BTF_KIND_PTR:
 497	case BTF_KIND_TYPEDEF:
 498	case BTF_KIND_VOLATILE:
 499	case BTF_KIND_CONST:
 500	case BTF_KIND_RESTRICT:
 501	case BTF_KIND_VAR:
 502	case BTF_KIND_DECL_TAG:
 503	case BTF_KIND_TYPE_TAG:
 504		err = btf_validate_id(btf, t->type, id);
 505		if (err)
 506			return err;
 507		break;
 508	case BTF_KIND_ARRAY: {
 509		const struct btf_array *a = btf_array(t);
 510
 511		err = btf_validate_id(btf, a->type, id);
 512		err = err ?: btf_validate_id(btf, a->index_type, id);
 513		if (err)
 514			return err;
 515		break;
 516	}
 517	case BTF_KIND_STRUCT:
 518	case BTF_KIND_UNION: {
 519		const struct btf_member *m = btf_members(t);
 520
 521		n = btf_vlen(t);
 522		for (i = 0; i < n; i++, m++) {
 523			err = btf_validate_str(btf, m->name_off, "field name", id);
 524			err = err ?: btf_validate_id(btf, m->type, id);
 525			if (err)
 526				return err;
 527		}
 528		break;
 529	}
 530	case BTF_KIND_ENUM: {
 531		const struct btf_enum *m = btf_enum(t);
 532
 533		n = btf_vlen(t);
 534		for (i = 0; i < n; i++, m++) {
 535			err = btf_validate_str(btf, m->name_off, "enum name", id);
 536			if (err)
 537				return err;
 538		}
 539		break;
 540	}
 541	case BTF_KIND_ENUM64: {
 542		const struct btf_enum64 *m = btf_enum64(t);
 543
 544		n = btf_vlen(t);
 545		for (i = 0; i < n; i++, m++) {
 546			err = btf_validate_str(btf, m->name_off, "enum name", id);
 547			if (err)
 548				return err;
 549		}
 550		break;
 551	}
 552	case BTF_KIND_FUNC: {
 553		const struct btf_type *ft;
 554
 555		err = btf_validate_id(btf, t->type, id);
 556		if (err)
 557			return err;
 558		ft = btf__type_by_id(btf, t->type);
 559		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 560			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 561			return -EINVAL;
 562		}
 563		break;
 564	}
 565	case BTF_KIND_FUNC_PROTO: {
 566		const struct btf_param *m = btf_params(t);
 567
 568		n = btf_vlen(t);
 569		for (i = 0; i < n; i++, m++) {
 570			err = btf_validate_str(btf, m->name_off, "param name", id);
 571			err = err ?: btf_validate_id(btf, m->type, id);
 572			if (err)
 573				return err;
 574		}
 575		break;
 576	}
 577	case BTF_KIND_DATASEC: {
 578		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 579
 580		n = btf_vlen(t);
 581		for (i = 0; i < n; i++, m++) {
 582			err = btf_validate_id(btf, m->type, id);
 583			if (err)
 584				return err;
 585		}
 586		break;
 587	}
 588	default:
 589		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 590		return -EINVAL;
 591	}
 592	return 0;
 593}
 594
 595/* Validate basic sanity of BTF. It's intentionally less thorough than
 596 * kernel's validation and validates only properties of BTF that libbpf relies
 597 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 598 */
 599static int btf_sanity_check(const struct btf *btf)
 600{
 601	const struct btf_type *t;
 602	__u32 i, n = btf__type_cnt(btf);
 603	int err;
 604
 605	for (i = btf->start_id; i < n; i++) {
 606		t = btf_type_by_id(btf, i);
 607		err = btf_validate_type(btf, t, i);
 608		if (err)
 609			return err;
 610	}
 611	return 0;
 612}
 613
 614__u32 btf__type_cnt(const struct btf *btf)
 615{
 616	return btf->start_id + btf->nr_types;
 617}
 618
 619const struct btf *btf__base_btf(const struct btf *btf)
 620{
 621	return btf->base_btf;
 622}
 623
 624/* internal helper returning non-const pointer to a type */
 625struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 626{
 627	if (type_id == 0)
 628		return &btf_void;
 629	if (type_id < btf->start_id)
 630		return btf_type_by_id(btf->base_btf, type_id);
 631	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 632}
 633
 634const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 635{
 636	if (type_id >= btf->start_id + btf->nr_types)
 637		return errno = EINVAL, NULL;
 638	return btf_type_by_id((struct btf *)btf, type_id);
 639}
 640
 641static int determine_ptr_size(const struct btf *btf)
 642{
 643	static const char * const long_aliases[] = {
 644		"long",
 645		"long int",
 646		"int long",
 647		"unsigned long",
 648		"long unsigned",
 649		"unsigned long int",
 650		"unsigned int long",
 651		"long unsigned int",
 652		"long int unsigned",
 653		"int unsigned long",
 654		"int long unsigned",
 655	};
 656	const struct btf_type *t;
 657	const char *name;
 658	int i, j, n;
 659
 660	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 661		return btf->base_btf->ptr_sz;
 662
 663	n = btf__type_cnt(btf);
 664	for (i = 1; i < n; i++) {
 665		t = btf__type_by_id(btf, i);
 666		if (!btf_is_int(t))
 667			continue;
 668
 669		if (t->size != 4 && t->size != 8)
 670			continue;
 671
 672		name = btf__name_by_offset(btf, t->name_off);
 673		if (!name)
 674			continue;
 675
 676		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 677			if (strcmp(name, long_aliases[j]) == 0)
 678				return t->size;
 
 
 679		}
 680	}
 681
 682	return -1;
 683}
 684
 685static size_t btf_ptr_sz(const struct btf *btf)
 686{
 687	if (!btf->ptr_sz)
 688		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 689	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 690}
 691
 692/* Return pointer size this BTF instance assumes. The size is heuristically
 693 * determined by looking for 'long' or 'unsigned long' integer type and
 694 * recording its size in bytes. If BTF type information doesn't have any such
 695 * type, this function returns 0. In the latter case, native architecture's
 696 * pointer size is assumed, so will be either 4 or 8, depending on
 697 * architecture that libbpf was compiled for. It's possible to override
 698 * guessed value by using btf__set_pointer_size() API.
 699 */
 700size_t btf__pointer_size(const struct btf *btf)
 701{
 702	if (!btf->ptr_sz)
 703		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 704
 705	if (btf->ptr_sz < 0)
 706		/* not enough BTF type info to guess */
 707		return 0;
 708
 709	return btf->ptr_sz;
 710}
 711
 712/* Override or set pointer size in bytes. Only values of 4 and 8 are
 713 * supported.
 714 */
 715int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 716{
 717	if (ptr_sz != 4 && ptr_sz != 8)
 718		return libbpf_err(-EINVAL);
 719	btf->ptr_sz = ptr_sz;
 720	return 0;
 721}
 722
 723static bool is_host_big_endian(void)
 724{
 725#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 726	return false;
 727#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 728	return true;
 729#else
 730# error "Unrecognized __BYTE_ORDER__"
 731#endif
 732}
 733
 734enum btf_endianness btf__endianness(const struct btf *btf)
 735{
 736	if (is_host_big_endian())
 737		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 738	else
 739		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 740}
 741
 742int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 743{
 744	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 745		return libbpf_err(-EINVAL);
 746
 747	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 748	if (!btf->swapped_endian) {
 749		free(btf->raw_data_swapped);
 750		btf->raw_data_swapped = NULL;
 751	}
 752	return 0;
 753}
 754
 755static bool btf_type_is_void(const struct btf_type *t)
 756{
 757	return t == &btf_void || btf_is_fwd(t);
 758}
 759
 760static bool btf_type_is_void_or_null(const struct btf_type *t)
 761{
 762	return !t || btf_type_is_void(t);
 763}
 764
 765#define MAX_RESOLVE_DEPTH 32
 766
 767__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 768{
 769	const struct btf_array *array;
 770	const struct btf_type *t;
 771	__u32 nelems = 1;
 772	__s64 size = -1;
 773	int i;
 774
 775	t = btf__type_by_id(btf, type_id);
 776	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 
 777		switch (btf_kind(t)) {
 778		case BTF_KIND_INT:
 779		case BTF_KIND_STRUCT:
 780		case BTF_KIND_UNION:
 781		case BTF_KIND_ENUM:
 782		case BTF_KIND_ENUM64:
 783		case BTF_KIND_DATASEC:
 784		case BTF_KIND_FLOAT:
 785			size = t->size;
 786			goto done;
 787		case BTF_KIND_PTR:
 788			size = btf_ptr_sz(btf);
 789			goto done;
 790		case BTF_KIND_TYPEDEF:
 791		case BTF_KIND_VOLATILE:
 792		case BTF_KIND_CONST:
 793		case BTF_KIND_RESTRICT:
 794		case BTF_KIND_VAR:
 795		case BTF_KIND_DECL_TAG:
 796		case BTF_KIND_TYPE_TAG:
 797			type_id = t->type;
 798			break;
 799		case BTF_KIND_ARRAY:
 800			array = btf_array(t);
 801			if (nelems && array->nelems > UINT32_MAX / nelems)
 802				return libbpf_err(-E2BIG);
 803			nelems *= array->nelems;
 804			type_id = array->type;
 805			break;
 806		default:
 807			return libbpf_err(-EINVAL);
 808		}
 809
 810		t = btf__type_by_id(btf, type_id);
 811	}
 812
 813done:
 814	if (size < 0)
 815		return libbpf_err(-EINVAL);
 816	if (nelems && size > UINT32_MAX / nelems)
 817		return libbpf_err(-E2BIG);
 818
 819	return nelems * size;
 820}
 821
 822int btf__align_of(const struct btf *btf, __u32 id)
 823{
 824	const struct btf_type *t = btf__type_by_id(btf, id);
 825	__u16 kind = btf_kind(t);
 826
 827	switch (kind) {
 828	case BTF_KIND_INT:
 829	case BTF_KIND_ENUM:
 830	case BTF_KIND_ENUM64:
 831	case BTF_KIND_FLOAT:
 832		return min(btf_ptr_sz(btf), (size_t)t->size);
 833	case BTF_KIND_PTR:
 834		return btf_ptr_sz(btf);
 835	case BTF_KIND_TYPEDEF:
 836	case BTF_KIND_VOLATILE:
 837	case BTF_KIND_CONST:
 838	case BTF_KIND_RESTRICT:
 839	case BTF_KIND_TYPE_TAG:
 840		return btf__align_of(btf, t->type);
 841	case BTF_KIND_ARRAY:
 842		return btf__align_of(btf, btf_array(t)->type);
 843	case BTF_KIND_STRUCT:
 844	case BTF_KIND_UNION: {
 845		const struct btf_member *m = btf_members(t);
 846		__u16 vlen = btf_vlen(t);
 847		int i, max_align = 1, align;
 848
 849		for (i = 0; i < vlen; i++, m++) {
 850			align = btf__align_of(btf, m->type);
 851			if (align <= 0)
 852				return libbpf_err(align);
 853			max_align = max(max_align, align);
 854
 855			/* if field offset isn't aligned according to field
 856			 * type's alignment, then struct must be packed
 857			 */
 858			if (btf_member_bitfield_size(t, i) == 0 &&
 859			    (m->offset % (8 * align)) != 0)
 860				return 1;
 861		}
 862
 863		/* if struct/union size isn't a multiple of its alignment,
 864		 * then struct must be packed
 865		 */
 866		if ((t->size % max_align) != 0)
 867			return 1;
 868
 869		return max_align;
 870	}
 871	default:
 872		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 873		return errno = EINVAL, 0;
 874	}
 875}
 876
 877int btf__resolve_type(const struct btf *btf, __u32 type_id)
 878{
 879	const struct btf_type *t;
 880	int depth = 0;
 881
 882	t = btf__type_by_id(btf, type_id);
 883	while (depth < MAX_RESOLVE_DEPTH &&
 884	       !btf_type_is_void_or_null(t) &&
 885	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 886		type_id = t->type;
 887		t = btf__type_by_id(btf, type_id);
 888		depth++;
 889	}
 890
 891	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 892		return libbpf_err(-EINVAL);
 893
 894	return type_id;
 895}
 896
 897__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 898{
 899	__u32 i, nr_types = btf__type_cnt(btf);
 900
 901	if (!strcmp(type_name, "void"))
 902		return 0;
 903
 904	for (i = 1; i < nr_types; i++) {
 905		const struct btf_type *t = btf__type_by_id(btf, i);
 906		const char *name = btf__name_by_offset(btf, t->name_off);
 907
 908		if (name && !strcmp(type_name, name))
 909			return i;
 910	}
 911
 912	return libbpf_err(-ENOENT);
 913}
 914
 915static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 916				   const char *type_name, __u32 kind)
 917{
 918	__u32 i, nr_types = btf__type_cnt(btf);
 919
 920	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 921		return 0;
 922
 923	for (i = start_id; i < nr_types; i++) {
 924		const struct btf_type *t = btf__type_by_id(btf, i);
 925		const char *name;
 926
 927		if (btf_kind(t) != kind)
 928			continue;
 929		name = btf__name_by_offset(btf, t->name_off);
 930		if (name && !strcmp(type_name, name))
 931			return i;
 932	}
 933
 934	return libbpf_err(-ENOENT);
 935}
 936
 937__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 938				 __u32 kind)
 939{
 940	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 941}
 942
 943__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 944			     __u32 kind)
 945{
 946	return btf_find_by_name_kind(btf, 1, type_name, kind);
 947}
 948
 949static bool btf_is_modifiable(const struct btf *btf)
 950{
 951	return (void *)btf->hdr != btf->raw_data;
 952}
 953
 954void btf__free(struct btf *btf)
 955{
 956	if (IS_ERR_OR_NULL(btf))
 957		return;
 958
 959	if (btf->fd >= 0)
 960		close(btf->fd);
 961
 962	if (btf_is_modifiable(btf)) {
 963		/* if BTF was modified after loading, it will have a split
 964		 * in-memory representation for header, types, and strings
 965		 * sections, so we need to free all of them individually. It
 966		 * might still have a cached contiguous raw data present,
 967		 * which will be unconditionally freed below.
 968		 */
 969		free(btf->hdr);
 970		free(btf->types_data);
 971		strset__free(btf->strs_set);
 972	}
 973	free(btf->raw_data);
 974	free(btf->raw_data_swapped);
 975	free(btf->type_offs);
 976	if (btf->owns_base)
 977		btf__free(btf->base_btf);
 978	free(btf);
 979}
 980
 981static struct btf *btf_new_empty(struct btf *base_btf)
 982{
 983	struct btf *btf;
 984
 985	btf = calloc(1, sizeof(*btf));
 986	if (!btf)
 987		return ERR_PTR(-ENOMEM);
 988
 989	btf->nr_types = 0;
 990	btf->start_id = 1;
 991	btf->start_str_off = 0;
 992	btf->fd = -1;
 993	btf->ptr_sz = sizeof(void *);
 994	btf->swapped_endian = false;
 995
 996	if (base_btf) {
 997		btf->base_btf = base_btf;
 998		btf->start_id = btf__type_cnt(base_btf);
 999		btf->start_str_off = base_btf->hdr->str_len;
1000		btf->swapped_endian = base_btf->swapped_endian;
1001	}
1002
1003	/* +1 for empty string at offset 0 */
1004	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1005	btf->raw_data = calloc(1, btf->raw_size);
1006	if (!btf->raw_data) {
1007		free(btf);
1008		return ERR_PTR(-ENOMEM);
1009	}
1010
1011	btf->hdr = btf->raw_data;
1012	btf->hdr->hdr_len = sizeof(struct btf_header);
1013	btf->hdr->magic = BTF_MAGIC;
1014	btf->hdr->version = BTF_VERSION;
1015
1016	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1017	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1018	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1019
1020	return btf;
1021}
1022
1023struct btf *btf__new_empty(void)
1024{
1025	return libbpf_ptr(btf_new_empty(NULL));
1026}
1027
1028struct btf *btf__new_empty_split(struct btf *base_btf)
1029{
1030	return libbpf_ptr(btf_new_empty(base_btf));
1031}
1032
1033static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1034{
1035	struct btf *btf;
1036	int err;
1037
1038	btf = calloc(1, sizeof(struct btf));
1039	if (!btf)
1040		return ERR_PTR(-ENOMEM);
1041
1042	btf->nr_types = 0;
1043	btf->start_id = 1;
1044	btf->start_str_off = 0;
1045	btf->fd = -1;
1046
1047	if (base_btf) {
1048		btf->base_btf = base_btf;
1049		btf->start_id = btf__type_cnt(base_btf);
1050		btf->start_str_off = base_btf->hdr->str_len;
1051	}
1052
1053	btf->raw_data = malloc(size);
1054	if (!btf->raw_data) {
1055		err = -ENOMEM;
1056		goto done;
1057	}
1058	memcpy(btf->raw_data, data, size);
1059	btf->raw_size = size;
1060
1061	btf->hdr = btf->raw_data;
 
 
1062	err = btf_parse_hdr(btf);
1063	if (err)
1064		goto done;
1065
1066	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1067	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1068
1069	err = btf_parse_str_sec(btf);
1070	err = err ?: btf_parse_type_sec(btf);
1071	err = err ?: btf_sanity_check(btf);
1072	if (err)
1073		goto done;
1074
 
 
1075done:
1076	if (err) {
1077		btf__free(btf);
1078		return ERR_PTR(err);
1079	}
1080
1081	return btf;
1082}
1083
1084struct btf *btf__new(const void *data, __u32 size)
1085{
1086	return libbpf_ptr(btf_new(data, size, NULL));
 
 
 
 
 
 
1087}
1088
1089struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1090{
1091	return libbpf_ptr(btf_new(data, size, base_btf));
1092}
 
 
 
 
 
 
 
 
 
1093
1094struct btf_elf_secs {
1095	Elf_Data *btf_data;
1096	Elf_Data *btf_ext_data;
1097	Elf_Data *btf_base_data;
1098};
 
1099
1100static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1101{
1102	Elf_Scn *scn = NULL;
1103	Elf_Data *data;
1104	GElf_Ehdr ehdr;
1105	size_t shstrndx;
1106	int idx = 0;
1107
 
 
 
 
 
1108	if (!gelf_getehdr(elf, &ehdr)) {
1109		pr_warn("failed to get EHDR from %s\n", path);
1110		goto err;
1111	}
1112
1113	if (elf_getshdrstrndx(elf, &shstrndx)) {
1114		pr_warn("failed to get section names section index for %s\n",
1115			path);
1116		goto err;
1117	}
1118
1119	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1120		pr_warn("failed to get e_shstrndx from %s\n", path);
1121		goto err;
1122	}
1123
1124	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1125		Elf_Data **field;
1126		GElf_Shdr sh;
1127		char *name;
1128
1129		idx++;
1130		if (gelf_getshdr(scn, &sh) != &sh) {
1131			pr_warn("failed to get section(%d) header from %s\n",
1132				idx, path);
1133			goto err;
1134		}
1135		name = elf_strptr(elf, shstrndx, sh.sh_name);
1136		if (!name) {
1137			pr_warn("failed to get section(%d) name from %s\n",
1138				idx, path);
1139			goto err;
1140		}
1141
1142		if (strcmp(name, BTF_ELF_SEC) == 0)
1143			field = &secs->btf_data;
1144		else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1145			field = &secs->btf_ext_data;
1146		else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1147			field = &secs->btf_base_data;
1148		else
 
 
 
 
 
 
 
1149			continue;
1150
1151		data = elf_getdata(scn, 0);
1152		if (!data) {
1153			pr_warn("failed to get section(%d, %s) data from %s\n",
1154				idx, name, path);
1155			goto err;
1156		}
1157		*field = data;
1158	}
1159
1160	return 0;
1161
1162err:
1163	return -LIBBPF_ERRNO__FORMAT;
1164}
1165
1166static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1167				 struct btf_ext **btf_ext)
1168{
1169	struct btf_elf_secs secs = {};
1170	struct btf *dist_base_btf = NULL;
1171	struct btf *btf = NULL;
1172	int err = 0, fd = -1;
1173	Elf *elf = NULL;
1174
1175	if (elf_version(EV_CURRENT) == EV_NONE) {
1176		pr_warn("failed to init libelf for %s\n", path);
1177		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1178	}
1179
1180	fd = open(path, O_RDONLY | O_CLOEXEC);
1181	if (fd < 0) {
1182		err = -errno;
1183		pr_warn("failed to open %s: %s\n", path, errstr(err));
1184		return ERR_PTR(err);
1185	}
1186
1187	elf = elf_begin(fd, ELF_C_READ, NULL);
1188	if (!elf) {
1189		err = -LIBBPF_ERRNO__FORMAT;
1190		pr_warn("failed to open %s as ELF file\n", path);
1191		goto done;
1192	}
1193
1194	err = btf_find_elf_sections(elf, path, &secs);
1195	if (err)
1196		goto done;
1197
1198	if (!secs.btf_data) {
1199		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1200		err = -ENODATA;
1201		goto done;
1202	}
1203
1204	if (secs.btf_base_data) {
1205		dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1206					NULL);
1207		if (IS_ERR(dist_base_btf)) {
1208			err = PTR_ERR(dist_base_btf);
1209			dist_base_btf = NULL;
1210			goto done;
1211		}
1212	}
1213
1214	btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1215		      dist_base_btf ?: base_btf);
1216	if (IS_ERR(btf)) {
1217		err = PTR_ERR(btf);
1218		goto done;
1219	}
1220	if (dist_base_btf && base_btf) {
1221		err = btf__relocate(btf, base_btf);
1222		if (err)
1223			goto done;
1224		btf__free(dist_base_btf);
1225		dist_base_btf = NULL;
1226	}
1227
1228	if (dist_base_btf)
1229		btf->owns_base = true;
1230
1231	switch (gelf_getclass(elf)) {
1232	case ELFCLASS32:
1233		btf__set_pointer_size(btf, 4);
1234		break;
1235	case ELFCLASS64:
1236		btf__set_pointer_size(btf, 8);
1237		break;
1238	default:
1239		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1240		break;
1241	}
1242
1243	if (btf_ext && secs.btf_ext_data) {
1244		*btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1245		if (IS_ERR(*btf_ext)) {
1246			err = PTR_ERR(*btf_ext);
1247			goto done;
1248		}
1249	} else if (btf_ext) {
1250		*btf_ext = NULL;
1251	}
1252done:
1253	if (elf)
1254		elf_end(elf);
1255	close(fd);
1256
1257	if (!err)
 
 
 
 
 
 
1258		return btf;
1259
1260	if (btf_ext)
1261		btf_ext__free(*btf_ext);
1262	btf__free(dist_base_btf);
1263	btf__free(btf);
1264
1265	return ERR_PTR(err);
1266}
1267
1268struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1269{
1270	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1271}
1272
1273struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1274{
1275	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1276}
1277
1278static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1279{
1280	struct btf *btf = NULL;
1281	void *data = NULL;
1282	FILE *f = NULL;
1283	__u16 magic;
1284	int err = 0;
1285	long sz;
1286
1287	f = fopen(path, "rbe");
1288	if (!f) {
1289		err = -errno;
1290		goto err_out;
1291	}
1292
1293	/* check BTF magic */
1294	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1295		err = -EIO;
1296		goto err_out;
1297	}
1298	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
 
 
 
 
 
 
1299		/* definitely not a raw BTF */
1300		err = -EPROTO;
1301		goto err_out;
1302	}
1303
1304	/* get file size */
1305	if (fseek(f, 0, SEEK_END)) {
1306		err = -errno;
1307		goto err_out;
1308	}
1309	sz = ftell(f);
1310	if (sz < 0) {
1311		err = -errno;
1312		goto err_out;
1313	}
1314	/* rewind to the start */
1315	if (fseek(f, 0, SEEK_SET)) {
1316		err = -errno;
1317		goto err_out;
1318	}
1319
1320	/* pre-alloc memory and read all of BTF data */
1321	data = malloc(sz);
1322	if (!data) {
1323		err = -ENOMEM;
1324		goto err_out;
1325	}
1326	if (fread(data, 1, sz, f) < sz) {
1327		err = -EIO;
1328		goto err_out;
1329	}
1330
1331	/* finally parse BTF data */
1332	btf = btf_new(data, sz, base_btf);
1333
1334err_out:
1335	free(data);
1336	if (f)
1337		fclose(f);
1338	return err ? ERR_PTR(err) : btf;
1339}
1340
1341struct btf *btf__parse_raw(const char *path)
1342{
1343	return libbpf_ptr(btf_parse_raw(path, NULL));
1344}
1345
1346struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1347{
1348	return libbpf_ptr(btf_parse_raw(path, base_btf));
1349}
1350
1351static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1352{
1353	struct btf *btf;
1354	int err;
1355
1356	if (btf_ext)
1357		*btf_ext = NULL;
1358
1359	btf = btf_parse_raw(path, base_btf);
1360	err = libbpf_get_error(btf);
1361	if (!err)
1362		return btf;
1363	if (err != -EPROTO)
1364		return ERR_PTR(err);
1365	return btf_parse_elf(path, base_btf, btf_ext);
1366}
1367
1368struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1369{
1370	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
 
 
 
1371}
1372
1373struct btf *btf__parse_split(const char *path, struct btf *base_btf)
 
1374{
1375	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1376}
 
 
 
 
1377
1378static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
 
 
 
1379
1380int btf_load_into_kernel(struct btf *btf,
1381			 char *log_buf, size_t log_sz, __u32 log_level,
1382			 int token_fd)
1383{
1384	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1385	__u32 buf_sz = 0, raw_size;
1386	char *buf = NULL, *tmp;
1387	void *raw_data;
1388	int err = 0;
1389
1390	if (btf->fd >= 0)
1391		return libbpf_err(-EEXIST);
1392	if (log_sz && !log_buf)
1393		return libbpf_err(-EINVAL);
1394
1395	/* cache native raw data representation */
1396	raw_data = btf_get_raw_data(btf, &raw_size, false);
1397	if (!raw_data) {
1398		err = -ENOMEM;
1399		goto done;
1400	}
1401	btf->raw_size = raw_size;
1402	btf->raw_data = raw_data;
1403
1404retry_load:
1405	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1406	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1407	 * retry, using either auto-allocated or custom log_buf. This way
1408	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1409	 * for successful load and no need for log_buf.
1410	 */
1411	if (log_level) {
1412		/* if caller didn't provide custom log_buf, we'll keep
1413		 * allocating our own progressively bigger buffers for BTF
1414		 * verification log
1415		 */
1416		if (!log_buf) {
1417			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1418			tmp = realloc(buf, buf_sz);
1419			if (!tmp) {
1420				err = -ENOMEM;
1421				goto done;
1422			}
1423			buf = tmp;
1424			buf[0] = '\0';
1425		}
1426
1427		opts.log_buf = log_buf ? log_buf : buf;
1428		opts.log_size = log_buf ? log_sz : buf_sz;
1429		opts.log_level = log_level;
1430	}
1431
1432	opts.token_fd = token_fd;
1433	if (token_fd)
1434		opts.btf_flags |= BPF_F_TOKEN_FD;
 
 
1435
1436	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1437	if (btf->fd < 0) {
1438		/* time to turn on verbose mode and try again */
1439		if (log_level == 0) {
1440			log_level = 1;
1441			goto retry_load;
1442		}
1443		/* only retry if caller didn't provide custom log_buf, but
1444		 * make sure we can never overflow buf_sz
1445		 */
1446		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1447			goto retry_load;
1448
1449		err = -errno;
1450		pr_warn("BTF loading error: %s\n", errstr(err));
1451		/* don't print out contents of custom log_buf */
1452		if (!log_buf && buf[0])
1453			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1454	}
1455
1456done:
1457	free(buf);
1458	return libbpf_err(err);
1459}
1460
1461int btf__load_into_kernel(struct btf *btf)
1462{
1463	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1464}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465
1466int btf__fd(const struct btf *btf)
1467{
1468	return btf->fd;
1469}
1470
1471void btf__set_fd(struct btf *btf, int fd)
1472{
1473	btf->fd = fd;
1474}
 
1475
1476static const void *btf_strs_data(const struct btf *btf)
1477{
1478	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1479}
1480
1481static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1482{
1483	struct btf_header *hdr = btf->hdr;
1484	struct btf_type *t;
1485	void *data, *p;
1486	__u32 data_sz;
1487	int i;
1488
1489	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1490	if (data) {
1491		*size = btf->raw_size;
1492		return data;
1493	}
1494
1495	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1496	data = calloc(1, data_sz);
1497	if (!data)
1498		return NULL;
1499	p = data;
 
 
 
 
1500
1501	memcpy(p, hdr, hdr->hdr_len);
1502	if (swap_endian)
1503		btf_bswap_hdr(p);
1504	p += hdr->hdr_len;
1505
1506	memcpy(p, btf->types_data, hdr->type_len);
1507	if (swap_endian) {
1508		for (i = 0; i < btf->nr_types; i++) {
1509			t = p + btf->type_offs[i];
1510			/* btf_bswap_type_rest() relies on native t->info, so
1511			 * we swap base type info after we swapped all the
1512			 * additional information
1513			 */
1514			if (btf_bswap_type_rest(t))
1515				goto err_out;
1516			btf_bswap_type_base(t);
1517		}
1518	}
1519	p += hdr->type_len;
1520
1521	memcpy(p, btf_strs_data(btf), hdr->str_len);
1522	p += hdr->str_len;
 
 
1523
1524	*size = data_sz;
1525	return data;
1526err_out:
1527	free(data);
1528	return NULL;
1529}
1530
1531const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1532{
1533	struct btf *btf = (struct btf *)btf_ro;
1534	__u32 data_sz;
1535	void *data;
1536
1537	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1538	if (!data)
1539		return errno = ENOMEM, NULL;
1540
1541	btf->raw_size = data_sz;
1542	if (btf->swapped_endian)
1543		btf->raw_data_swapped = data;
1544	else
1545		btf->raw_data = data;
1546	*size = data_sz;
1547	return data;
1548}
1549
1550__attribute__((alias("btf__raw_data")))
1551const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1552
1553const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1554{
1555	if (offset < btf->start_str_off)
1556		return btf__str_by_offset(btf->base_btf, offset);
1557	else if (offset - btf->start_str_off < btf->hdr->str_len)
1558		return btf_strs_data(btf) + (offset - btf->start_str_off);
1559	else
1560		return errno = EINVAL, NULL;
1561}
1562
1563const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1564{
1565	return btf__str_by_offset(btf, offset);
 
 
 
1566}
1567
1568struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1569{
1570	struct bpf_btf_info btf_info;
1571	__u32 len = sizeof(btf_info);
1572	__u32 last_size;
1573	struct btf *btf;
1574	void *ptr;
1575	int err;
1576
1577	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
 
 
 
 
 
 
1578	 * let's start with a sane default - 4KiB here - and resize it only if
1579	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1580	 */
1581	last_size = 4096;
 
1582	ptr = malloc(last_size);
1583	if (!ptr)
1584		return ERR_PTR(-ENOMEM);
 
 
1585
1586	memset(&btf_info, 0, sizeof(btf_info));
1587	btf_info.btf = ptr_to_u64(ptr);
1588	btf_info.btf_size = last_size;
1589	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1590
1591	if (!err && btf_info.btf_size > last_size) {
1592		void *temp_ptr;
1593
1594		last_size = btf_info.btf_size;
1595		temp_ptr = realloc(ptr, last_size);
1596		if (!temp_ptr) {
1597			btf = ERR_PTR(-ENOMEM);
1598			goto exit_free;
1599		}
1600		ptr = temp_ptr;
1601
1602		len = sizeof(btf_info);
1603		memset(&btf_info, 0, sizeof(btf_info));
1604		btf_info.btf = ptr_to_u64(ptr);
1605		btf_info.btf_size = last_size;
1606
1607		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1608	}
1609
1610	if (err || btf_info.btf_size > last_size) {
1611		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1612		goto exit_free;
1613	}
1614
1615	btf = btf_new(ptr, btf_info.btf_size, base_btf);
 
 
 
 
1616
1617exit_free:
 
1618	free(ptr);
1619	return btf;
1620}
1621
1622struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1623{
1624	struct btf *btf;
1625	int btf_fd;
1626
1627	btf_fd = bpf_btf_get_fd_by_id(id);
1628	if (btf_fd < 0)
1629		return libbpf_err_ptr(-errno);
1630
1631	btf = btf_get_from_fd(btf_fd, base_btf);
1632	close(btf_fd);
1633
1634	return libbpf_ptr(btf);
1635}
1636
1637struct btf *btf__load_from_kernel_by_id(__u32 id)
1638{
1639	return btf__load_from_kernel_by_id_split(id, NULL);
1640}
1641
1642static void btf_invalidate_raw_data(struct btf *btf)
1643{
1644	if (btf->raw_data) {
1645		free(btf->raw_data);
1646		btf->raw_data = NULL;
1647	}
1648	if (btf->raw_data_swapped) {
1649		free(btf->raw_data_swapped);
1650		btf->raw_data_swapped = NULL;
1651	}
1652}
1653
1654/* Ensure BTF is ready to be modified (by splitting into a three memory
1655 * regions for header, types, and strings). Also invalidate cached
1656 * raw_data, if any.
1657 */
1658static int btf_ensure_modifiable(struct btf *btf)
1659{
1660	void *hdr, *types;
1661	struct strset *set = NULL;
1662	int err = -ENOMEM;
1663
1664	if (btf_is_modifiable(btf)) {
1665		/* any BTF modification invalidates raw_data */
1666		btf_invalidate_raw_data(btf);
1667		return 0;
1668	}
1669
1670	/* split raw data into three memory regions */
1671	hdr = malloc(btf->hdr->hdr_len);
1672	types = malloc(btf->hdr->type_len);
1673	if (!hdr || !types)
1674		goto err_out;
1675
1676	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1677	memcpy(types, btf->types_data, btf->hdr->type_len);
1678
1679	/* build lookup index for all strings */
1680	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1681	if (IS_ERR(set)) {
1682		err = PTR_ERR(set);
1683		goto err_out;
1684	}
1685
1686	/* only when everything was successful, update internal state */
1687	btf->hdr = hdr;
1688	btf->types_data = types;
1689	btf->types_data_cap = btf->hdr->type_len;
1690	btf->strs_data = NULL;
1691	btf->strs_set = set;
1692	/* if BTF was created from scratch, all strings are guaranteed to be
1693	 * unique and deduplicated
1694	 */
1695	if (btf->hdr->str_len == 0)
1696		btf->strs_deduped = true;
1697	if (!btf->base_btf && btf->hdr->str_len == 1)
1698		btf->strs_deduped = true;
1699
1700	/* invalidate raw_data representation */
1701	btf_invalidate_raw_data(btf);
1702
1703	return 0;
1704
1705err_out:
1706	strset__free(set);
1707	free(hdr);
1708	free(types);
1709	return err;
1710}
1711
1712/* Find an offset in BTF string section that corresponds to a given string *s*.
1713 * Returns:
1714 *   - >0 offset into string section, if string is found;
1715 *   - -ENOENT, if string is not in the string section;
1716 *   - <0, on any other error.
1717 */
1718int btf__find_str(struct btf *btf, const char *s)
1719{
1720	int off;
 
 
 
 
 
1721
1722	if (btf->base_btf) {
1723		off = btf__find_str(btf->base_btf, s);
1724		if (off != -ENOENT)
1725			return off;
 
1726	}
1727
1728	/* BTF needs to be in a modifiable state to build string lookup index */
1729	if (btf_ensure_modifiable(btf))
1730		return libbpf_err(-ENOMEM);
1731
1732	off = strset__find_str(btf->strs_set, s);
1733	if (off < 0)
1734		return libbpf_err(off);
1735
1736	return btf->start_str_off + off;
1737}
1738
1739/* Add a string s to the BTF string section.
1740 * Returns:
1741 *   - > 0 offset into string section, on success;
1742 *   - < 0, on error.
1743 */
1744int btf__add_str(struct btf *btf, const char *s)
1745{
1746	int off;
1747
1748	if (btf->base_btf) {
1749		off = btf__find_str(btf->base_btf, s);
1750		if (off != -ENOENT)
1751			return off;
1752	}
1753
1754	if (btf_ensure_modifiable(btf))
1755		return libbpf_err(-ENOMEM);
1756
1757	off = strset__add_str(btf->strs_set, s);
1758	if (off < 0)
1759		return libbpf_err(off);
1760
1761	btf->hdr->str_len = strset__data_size(btf->strs_set);
1762
1763	return btf->start_str_off + off;
1764}
1765
1766static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1767{
1768	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1769			      btf->hdr->type_len, UINT_MAX, add_sz);
1770}
1771
1772static void btf_type_inc_vlen(struct btf_type *t)
1773{
1774	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1775}
1776
1777static int btf_commit_type(struct btf *btf, int data_sz)
1778{
1779	int err;
1780
1781	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1782	if (err)
1783		return libbpf_err(err);
1784
1785	btf->hdr->type_len += data_sz;
1786	btf->hdr->str_off += data_sz;
1787	btf->nr_types++;
1788	return btf->start_id + btf->nr_types - 1;
1789}
1790
1791struct btf_pipe {
1792	const struct btf *src;
1793	struct btf *dst;
1794	struct hashmap *str_off_map; /* map string offsets from src to dst */
1795};
1796
1797static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1798{
1799	long mapped_off;
1800	int off, err;
1801
1802	if (!*str_off) /* nothing to do for empty strings */
1803		return 0;
1804
1805	if (p->str_off_map &&
1806	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1807		*str_off = mapped_off;
1808		return 0;
1809	}
1810
1811	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1812	if (off < 0)
1813		return off;
1814
1815	/* Remember string mapping from src to dst.  It avoids
1816	 * performing expensive string comparisons.
1817	 */
1818	if (p->str_off_map) {
1819		err = hashmap__append(p->str_off_map, *str_off, off);
1820		if (err)
1821			return err;
1822	}
1823
1824	*str_off = off;
1825	return 0;
1826}
1827
1828static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1829{
1830	struct btf_field_iter it;
1831	struct btf_type *t;
1832	__u32 *str_off;
1833	int sz, err;
1834
1835	sz = btf_type_size(src_type);
1836	if (sz < 0)
1837		return libbpf_err(sz);
1838
1839	/* deconstruct BTF, if necessary, and invalidate raw_data */
1840	if (btf_ensure_modifiable(p->dst))
1841		return libbpf_err(-ENOMEM);
1842
1843	t = btf_add_type_mem(p->dst, sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	memcpy(t, src_type, sz);
1848
1849	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1850	if (err)
1851		return libbpf_err(err);
1852
1853	while ((str_off = btf_field_iter_next(&it))) {
1854		err = btf_rewrite_str(p, str_off);
1855		if (err)
1856			return libbpf_err(err);
1857	}
1858
1859	return btf_commit_type(p->dst, sz);
1860}
1861
1862int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1863{
1864	struct btf_pipe p = { .src = src_btf, .dst = btf };
1865
1866	return btf_add_type(&p, src_type);
1867}
1868
1869static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1870static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1871
1872int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1873{
1874	struct btf_pipe p = { .src = src_btf, .dst = btf };
1875	int data_sz, sz, cnt, i, err, old_strs_len;
1876	__u32 *off;
1877	void *t;
1878
1879	/* appending split BTF isn't supported yet */
1880	if (src_btf->base_btf)
1881		return libbpf_err(-ENOTSUP);
1882
1883	/* deconstruct BTF, if necessary, and invalidate raw_data */
1884	if (btf_ensure_modifiable(btf))
1885		return libbpf_err(-ENOMEM);
1886
1887	/* remember original strings section size if we have to roll back
1888	 * partial strings section changes
1889	 */
1890	old_strs_len = btf->hdr->str_len;
1891
1892	data_sz = src_btf->hdr->type_len;
1893	cnt = btf__type_cnt(src_btf) - 1;
1894
1895	/* pre-allocate enough memory for new types */
1896	t = btf_add_type_mem(btf, data_sz);
1897	if (!t)
1898		return libbpf_err(-ENOMEM);
1899
1900	/* pre-allocate enough memory for type offset index for new types */
1901	off = btf_add_type_offs_mem(btf, cnt);
1902	if (!off)
1903		return libbpf_err(-ENOMEM);
1904
1905	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1906	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1907	if (IS_ERR(p.str_off_map))
1908		return libbpf_err(-ENOMEM);
1909
1910	/* bulk copy types data for all types from src_btf */
1911	memcpy(t, src_btf->types_data, data_sz);
1912
1913	for (i = 0; i < cnt; i++) {
1914		struct btf_field_iter it;
1915		__u32 *type_id, *str_off;
1916
1917		sz = btf_type_size(t);
1918		if (sz < 0) {
1919			/* unlikely, has to be corrupted src_btf */
1920			err = sz;
1921			goto err_out;
1922		}
1923
1924		/* fill out type ID to type offset mapping for lookups by type ID */
1925		*off = t - btf->types_data;
1926
1927		/* add, dedup, and remap strings referenced by this BTF type */
1928		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1929		if (err)
1930			goto err_out;
1931		while ((str_off = btf_field_iter_next(&it))) {
1932			err = btf_rewrite_str(&p, str_off);
1933			if (err)
1934				goto err_out;
1935		}
1936
1937		/* remap all type IDs referenced from this BTF type */
1938		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
1939		if (err)
1940			goto err_out;
1941
1942		while ((type_id = btf_field_iter_next(&it))) {
1943			if (!*type_id) /* nothing to do for VOID references */
1944				continue;
1945
1946			/* we haven't updated btf's type count yet, so
1947			 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1948			 * add to all newly added BTF types
1949			 */
1950			*type_id += btf->start_id + btf->nr_types - 1;
1951		}
1952
1953		/* go to next type data and type offset index entry */
1954		t += sz;
1955		off++;
1956	}
1957
1958	/* Up until now any of the copied type data was effectively invisible,
1959	 * so if we exited early before this point due to error, BTF would be
1960	 * effectively unmodified. There would be extra internal memory
1961	 * pre-allocated, but it would not be available for querying.  But now
1962	 * that we've copied and rewritten all the data successfully, we can
1963	 * update type count and various internal offsets and sizes to
1964	 * "commit" the changes and made them visible to the outside world.
1965	 */
1966	btf->hdr->type_len += data_sz;
1967	btf->hdr->str_off += data_sz;
1968	btf->nr_types += cnt;
1969
1970	hashmap__free(p.str_off_map);
1971
1972	/* return type ID of the first added BTF type */
1973	return btf->start_id + btf->nr_types - cnt;
1974err_out:
1975	/* zero out preallocated memory as if it was just allocated with
1976	 * libbpf_add_mem()
1977	 */
1978	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1979	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1980
1981	/* and now restore original strings section size; types data size
1982	 * wasn't modified, so doesn't need restoring, see big comment above
1983	 */
1984	btf->hdr->str_len = old_strs_len;
1985
1986	hashmap__free(p.str_off_map);
1987
1988	return libbpf_err(err);
1989}
1990
1991/*
1992 * Append new BTF_KIND_INT type with:
1993 *   - *name* - non-empty, non-NULL type name;
1994 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1995 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1996 * Returns:
1997 *   - >0, type ID of newly added BTF type;
1998 *   - <0, on error.
1999 */
2000int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2001{
2002	struct btf_type *t;
2003	int sz, name_off;
2004
2005	/* non-empty name */
2006	if (!name || !name[0])
2007		return libbpf_err(-EINVAL);
2008	/* byte_sz must be power of 2 */
2009	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2010		return libbpf_err(-EINVAL);
2011	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2012		return libbpf_err(-EINVAL);
2013
2014	/* deconstruct BTF, if necessary, and invalidate raw_data */
2015	if (btf_ensure_modifiable(btf))
2016		return libbpf_err(-ENOMEM);
2017
2018	sz = sizeof(struct btf_type) + sizeof(int);
2019	t = btf_add_type_mem(btf, sz);
2020	if (!t)
2021		return libbpf_err(-ENOMEM);
2022
2023	/* if something goes wrong later, we might end up with an extra string,
2024	 * but that shouldn't be a problem, because BTF can't be constructed
2025	 * completely anyway and will most probably be just discarded
2026	 */
2027	name_off = btf__add_str(btf, name);
2028	if (name_off < 0)
2029		return name_off;
2030
2031	t->name_off = name_off;
2032	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2033	t->size = byte_sz;
2034	/* set INT info, we don't allow setting legacy bit offset/size */
2035	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2036
2037	return btf_commit_type(btf, sz);
2038}
2039
2040/*
2041 * Append new BTF_KIND_FLOAT type with:
2042 *   - *name* - non-empty, non-NULL type name;
2043 *   - *sz* - size of the type, in bytes;
2044 * Returns:
2045 *   - >0, type ID of newly added BTF type;
2046 *   - <0, on error.
2047 */
2048int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2049{
2050	struct btf_type *t;
2051	int sz, name_off;
2052
2053	/* non-empty name */
2054	if (!name || !name[0])
2055		return libbpf_err(-EINVAL);
2056
2057	/* byte_sz must be one of the explicitly allowed values */
2058	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2059	    byte_sz != 16)
2060		return libbpf_err(-EINVAL);
2061
2062	if (btf_ensure_modifiable(btf))
2063		return libbpf_err(-ENOMEM);
2064
2065	sz = sizeof(struct btf_type);
2066	t = btf_add_type_mem(btf, sz);
2067	if (!t)
2068		return libbpf_err(-ENOMEM);
2069
2070	name_off = btf__add_str(btf, name);
2071	if (name_off < 0)
2072		return name_off;
2073
2074	t->name_off = name_off;
2075	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2076	t->size = byte_sz;
2077
2078	return btf_commit_type(btf, sz);
2079}
2080
2081/* it's completely legal to append BTF types with type IDs pointing forward to
2082 * types that haven't been appended yet, so we only make sure that id looks
2083 * sane, we can't guarantee that ID will always be valid
2084 */
2085static int validate_type_id(int id)
2086{
2087	if (id < 0 || id > BTF_MAX_NR_TYPES)
2088		return -EINVAL;
2089	return 0;
2090}
2091
2092/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2093static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2094{
2095	struct btf_type *t;
2096	int sz, name_off = 0;
2097
2098	if (validate_type_id(ref_type_id))
2099		return libbpf_err(-EINVAL);
2100
2101	if (btf_ensure_modifiable(btf))
2102		return libbpf_err(-ENOMEM);
2103
2104	sz = sizeof(struct btf_type);
2105	t = btf_add_type_mem(btf, sz);
2106	if (!t)
2107		return libbpf_err(-ENOMEM);
2108
2109	if (name && name[0]) {
2110		name_off = btf__add_str(btf, name);
2111		if (name_off < 0)
2112			return name_off;
2113	}
2114
2115	t->name_off = name_off;
2116	t->info = btf_type_info(kind, 0, 0);
2117	t->type = ref_type_id;
2118
2119	return btf_commit_type(btf, sz);
2120}
2121
2122/*
2123 * Append new BTF_KIND_PTR type with:
2124 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2125 * Returns:
2126 *   - >0, type ID of newly added BTF type;
2127 *   - <0, on error.
2128 */
2129int btf__add_ptr(struct btf *btf, int ref_type_id)
2130{
2131	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2132}
2133
2134/*
2135 * Append new BTF_KIND_ARRAY type with:
2136 *   - *index_type_id* - type ID of the type describing array index;
2137 *   - *elem_type_id* - type ID of the type describing array element;
2138 *   - *nr_elems* - the size of the array;
2139 * Returns:
2140 *   - >0, type ID of newly added BTF type;
2141 *   - <0, on error.
2142 */
2143int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2144{
2145	struct btf_type *t;
2146	struct btf_array *a;
2147	int sz;
2148
2149	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2150		return libbpf_err(-EINVAL);
2151
2152	if (btf_ensure_modifiable(btf))
2153		return libbpf_err(-ENOMEM);
2154
2155	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2156	t = btf_add_type_mem(btf, sz);
2157	if (!t)
2158		return libbpf_err(-ENOMEM);
2159
2160	t->name_off = 0;
2161	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2162	t->size = 0;
2163
2164	a = btf_array(t);
2165	a->type = elem_type_id;
2166	a->index_type = index_type_id;
2167	a->nelems = nr_elems;
2168
2169	return btf_commit_type(btf, sz);
2170}
2171
2172/* generic STRUCT/UNION append function */
2173static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2174{
2175	struct btf_type *t;
2176	int sz, name_off = 0;
2177
2178	if (btf_ensure_modifiable(btf))
2179		return libbpf_err(-ENOMEM);
2180
2181	sz = sizeof(struct btf_type);
2182	t = btf_add_type_mem(btf, sz);
2183	if (!t)
2184		return libbpf_err(-ENOMEM);
2185
2186	if (name && name[0]) {
2187		name_off = btf__add_str(btf, name);
2188		if (name_off < 0)
2189			return name_off;
2190	}
2191
2192	/* start out with vlen=0 and no kflag; this will be adjusted when
2193	 * adding each member
2194	 */
2195	t->name_off = name_off;
2196	t->info = btf_type_info(kind, 0, 0);
2197	t->size = bytes_sz;
2198
2199	return btf_commit_type(btf, sz);
2200}
2201
2202/*
2203 * Append new BTF_KIND_STRUCT type with:
2204 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2205 *   - *byte_sz* - size of the struct, in bytes;
2206 *
2207 * Struct initially has no fields in it. Fields can be added by
2208 * btf__add_field() right after btf__add_struct() succeeds.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2215{
2216	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2217}
2218
2219/*
2220 * Append new BTF_KIND_UNION type with:
2221 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2222 *   - *byte_sz* - size of the union, in bytes;
2223 *
2224 * Union initially has no fields in it. Fields can be added by
2225 * btf__add_field() right after btf__add_union() succeeds. All fields
2226 * should have *bit_offset* of 0.
2227 *
2228 * Returns:
2229 *   - >0, type ID of newly added BTF type;
2230 *   - <0, on error.
2231 */
2232int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2233{
2234	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2235}
2236
2237static struct btf_type *btf_last_type(struct btf *btf)
2238{
2239	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2240}
2241
2242/*
2243 * Append new field for the current STRUCT/UNION type with:
2244 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2245 *   - *type_id* - type ID for the type describing field type;
2246 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2247 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2248 * Returns:
2249 *   -  0, on success;
2250 *   - <0, on error.
2251 */
2252int btf__add_field(struct btf *btf, const char *name, int type_id,
2253		   __u32 bit_offset, __u32 bit_size)
2254{
2255	struct btf_type *t;
2256	struct btf_member *m;
2257	bool is_bitfield;
2258	int sz, name_off = 0;
2259
2260	/* last type should be union/struct */
2261	if (btf->nr_types == 0)
2262		return libbpf_err(-EINVAL);
2263	t = btf_last_type(btf);
2264	if (!btf_is_composite(t))
2265		return libbpf_err(-EINVAL);
2266
2267	if (validate_type_id(type_id))
2268		return libbpf_err(-EINVAL);
2269	/* best-effort bit field offset/size enforcement */
2270	is_bitfield = bit_size || (bit_offset % 8 != 0);
2271	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2272		return libbpf_err(-EINVAL);
2273
2274	/* only offset 0 is allowed for unions */
2275	if (btf_is_union(t) && bit_offset)
2276		return libbpf_err(-EINVAL);
2277
2278	/* decompose and invalidate raw data */
2279	if (btf_ensure_modifiable(btf))
2280		return libbpf_err(-ENOMEM);
2281
2282	sz = sizeof(struct btf_member);
2283	m = btf_add_type_mem(btf, sz);
2284	if (!m)
2285		return libbpf_err(-ENOMEM);
2286
2287	if (name && name[0]) {
2288		name_off = btf__add_str(btf, name);
2289		if (name_off < 0)
2290			return name_off;
2291	}
2292
2293	m->name_off = name_off;
2294	m->type = type_id;
2295	m->offset = bit_offset | (bit_size << 24);
2296
2297	/* btf_add_type_mem can invalidate t pointer */
2298	t = btf_last_type(btf);
2299	/* update parent type's vlen and kflag */
2300	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2301
2302	btf->hdr->type_len += sz;
2303	btf->hdr->str_off += sz;
2304	return 0;
2305}
2306
2307static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2308			       bool is_signed, __u8 kind)
2309{
2310	struct btf_type *t;
2311	int sz, name_off = 0;
2312
2313	/* byte_sz must be power of 2 */
2314	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2315		return libbpf_err(-EINVAL);
2316
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	if (name && name[0]) {
2326		name_off = btf__add_str(btf, name);
2327		if (name_off < 0)
2328			return name_off;
2329	}
2330
2331	/* start out with vlen=0; it will be adjusted when adding enum values */
2332	t->name_off = name_off;
2333	t->info = btf_type_info(kind, 0, is_signed);
2334	t->size = byte_sz;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_ENUM type with:
2341 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2342 *   - *byte_sz* - size of the enum, in bytes.
2343 *
2344 * Enum initially has no enum values in it (and corresponds to enum forward
2345 * declaration). Enumerator values can be added by btf__add_enum_value()
2346 * immediately after btf__add_enum() succeeds.
2347 *
2348 * Returns:
2349 *   - >0, type ID of newly added BTF type;
2350 *   - <0, on error.
2351 */
2352int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2353{
2354	/*
2355	 * set the signedness to be unsigned, it will change to signed
2356	 * if any later enumerator is negative.
2357	 */
2358	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2359}
2360
2361/*
2362 * Append new enum value for the current ENUM type with:
2363 *   - *name* - name of the enumerator value, can't be NULL or empty;
2364 *   - *value* - integer value corresponding to enum value *name*;
2365 * Returns:
2366 *   -  0, on success;
2367 *   - <0, on error.
2368 */
2369int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2370{
2371	struct btf_type *t;
2372	struct btf_enum *v;
2373	int sz, name_off;
2374
2375	/* last type should be BTF_KIND_ENUM */
2376	if (btf->nr_types == 0)
2377		return libbpf_err(-EINVAL);
2378	t = btf_last_type(btf);
2379	if (!btf_is_enum(t))
2380		return libbpf_err(-EINVAL);
2381
2382	/* non-empty name */
2383	if (!name || !name[0])
2384		return libbpf_err(-EINVAL);
2385	if (value < INT_MIN || value > UINT_MAX)
2386		return libbpf_err(-E2BIG);
2387
2388	/* decompose and invalidate raw data */
2389	if (btf_ensure_modifiable(btf))
2390		return libbpf_err(-ENOMEM);
2391
2392	sz = sizeof(struct btf_enum);
2393	v = btf_add_type_mem(btf, sz);
2394	if (!v)
2395		return libbpf_err(-ENOMEM);
2396
2397	name_off = btf__add_str(btf, name);
2398	if (name_off < 0)
2399		return name_off;
2400
2401	v->name_off = name_off;
2402	v->val = value;
2403
2404	/* update parent type's vlen */
2405	t = btf_last_type(btf);
2406	btf_type_inc_vlen(t);
2407
2408	/* if negative value, set signedness to signed */
2409	if (value < 0)
2410		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_ENUM64 type with:
2419 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2420 *   - *byte_sz* - size of the enum, in bytes.
2421 *   - *is_signed* - whether the enum values are signed or not;
2422 *
2423 * Enum initially has no enum values in it (and corresponds to enum forward
2424 * declaration). Enumerator values can be added by btf__add_enum64_value()
2425 * immediately after btf__add_enum64() succeeds.
2426 *
2427 * Returns:
2428 *   - >0, type ID of newly added BTF type;
2429 *   - <0, on error.
2430 */
2431int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2432		    bool is_signed)
2433{
2434	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2435				   BTF_KIND_ENUM64);
2436}
2437
2438/*
2439 * Append new enum value for the current ENUM64 type with:
2440 *   - *name* - name of the enumerator value, can't be NULL or empty;
2441 *   - *value* - integer value corresponding to enum value *name*;
2442 * Returns:
2443 *   -  0, on success;
2444 *   - <0, on error.
2445 */
2446int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2447{
2448	struct btf_enum64 *v;
2449	struct btf_type *t;
2450	int sz, name_off;
2451
2452	/* last type should be BTF_KIND_ENUM64 */
2453	if (btf->nr_types == 0)
2454		return libbpf_err(-EINVAL);
2455	t = btf_last_type(btf);
2456	if (!btf_is_enum64(t))
2457		return libbpf_err(-EINVAL);
2458
2459	/* non-empty name */
2460	if (!name || !name[0])
2461		return libbpf_err(-EINVAL);
2462
2463	/* decompose and invalidate raw data */
2464	if (btf_ensure_modifiable(btf))
2465		return libbpf_err(-ENOMEM);
2466
2467	sz = sizeof(struct btf_enum64);
2468	v = btf_add_type_mem(btf, sz);
2469	if (!v)
2470		return libbpf_err(-ENOMEM);
2471
2472	name_off = btf__add_str(btf, name);
2473	if (name_off < 0)
2474		return name_off;
2475
2476	v->name_off = name_off;
2477	v->val_lo32 = (__u32)value;
2478	v->val_hi32 = value >> 32;
2479
2480	/* update parent type's vlen */
2481	t = btf_last_type(btf);
2482	btf_type_inc_vlen(t);
2483
2484	btf->hdr->type_len += sz;
2485	btf->hdr->str_off += sz;
2486	return 0;
2487}
2488
2489/*
2490 * Append new BTF_KIND_FWD type with:
2491 *   - *name*, non-empty/non-NULL name;
2492 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2493 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2494 * Returns:
2495 *   - >0, type ID of newly added BTF type;
2496 *   - <0, on error.
2497 */
2498int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2499{
2500	if (!name || !name[0])
2501		return libbpf_err(-EINVAL);
2502
2503	switch (fwd_kind) {
2504	case BTF_FWD_STRUCT:
2505	case BTF_FWD_UNION: {
2506		struct btf_type *t;
2507		int id;
2508
2509		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2510		if (id <= 0)
2511			return id;
2512		t = btf_type_by_id(btf, id);
2513		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2514		return id;
2515	}
2516	case BTF_FWD_ENUM:
2517		/* enum forward in BTF currently is just an enum with no enum
2518		 * values; we also assume a standard 4-byte size for it
2519		 */
2520		return btf__add_enum(btf, name, sizeof(int));
2521	default:
2522		return libbpf_err(-EINVAL);
2523	}
2524}
2525
2526/*
2527 * Append new BTF_KING_TYPEDEF type with:
2528 *   - *name*, non-empty/non-NULL name;
2529 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2530 * Returns:
2531 *   - >0, type ID of newly added BTF type;
2532 *   - <0, on error.
2533 */
2534int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2535{
2536	if (!name || !name[0])
2537		return libbpf_err(-EINVAL);
2538
2539	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2540}
2541
2542/*
2543 * Append new BTF_KIND_VOLATILE type with:
2544 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2545 * Returns:
2546 *   - >0, type ID of newly added BTF type;
2547 *   - <0, on error.
2548 */
2549int btf__add_volatile(struct btf *btf, int ref_type_id)
2550{
2551	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2552}
2553
2554/*
2555 * Append new BTF_KIND_CONST type with:
2556 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2557 * Returns:
2558 *   - >0, type ID of newly added BTF type;
2559 *   - <0, on error.
2560 */
2561int btf__add_const(struct btf *btf, int ref_type_id)
2562{
2563	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2564}
2565
2566/*
2567 * Append new BTF_KIND_RESTRICT type with:
2568 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2569 * Returns:
2570 *   - >0, type ID of newly added BTF type;
2571 *   - <0, on error.
2572 */
2573int btf__add_restrict(struct btf *btf, int ref_type_id)
2574{
2575	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2576}
2577
2578/*
2579 * Append new BTF_KIND_TYPE_TAG type with:
2580 *   - *value*, non-empty/non-NULL tag value;
2581 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2582 * Returns:
2583 *   - >0, type ID of newly added BTF type;
2584 *   - <0, on error.
2585 */
2586int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2587{
2588	if (!value || !value[0])
2589		return libbpf_err(-EINVAL);
2590
2591	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2592}
2593
2594/*
2595 * Append new BTF_KIND_FUNC type with:
2596 *   - *name*, non-empty/non-NULL name;
2597 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2598 * Returns:
2599 *   - >0, type ID of newly added BTF type;
2600 *   - <0, on error.
2601 */
2602int btf__add_func(struct btf *btf, const char *name,
2603		  enum btf_func_linkage linkage, int proto_type_id)
2604{
2605	int id;
2606
2607	if (!name || !name[0])
2608		return libbpf_err(-EINVAL);
2609	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2610	    linkage != BTF_FUNC_EXTERN)
2611		return libbpf_err(-EINVAL);
2612
2613	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2614	if (id > 0) {
2615		struct btf_type *t = btf_type_by_id(btf, id);
2616
2617		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2618	}
2619	return libbpf_err(id);
2620}
2621
2622/*
2623 * Append new BTF_KIND_FUNC_PROTO with:
2624 *   - *ret_type_id* - type ID for return result of a function.
2625 *
2626 * Function prototype initially has no arguments, but they can be added by
2627 * btf__add_func_param() one by one, immediately after
2628 * btf__add_func_proto() succeeded.
2629 *
2630 * Returns:
2631 *   - >0, type ID of newly added BTF type;
2632 *   - <0, on error.
2633 */
2634int btf__add_func_proto(struct btf *btf, int ret_type_id)
2635{
2636	struct btf_type *t;
2637	int sz;
2638
2639	if (validate_type_id(ret_type_id))
2640		return libbpf_err(-EINVAL);
2641
2642	if (btf_ensure_modifiable(btf))
2643		return libbpf_err(-ENOMEM);
2644
2645	sz = sizeof(struct btf_type);
2646	t = btf_add_type_mem(btf, sz);
2647	if (!t)
2648		return libbpf_err(-ENOMEM);
2649
2650	/* start out with vlen=0; this will be adjusted when adding enum
2651	 * values, if necessary
2652	 */
2653	t->name_off = 0;
2654	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2655	t->type = ret_type_id;
2656
2657	return btf_commit_type(btf, sz);
2658}
2659
2660/*
2661 * Append new function parameter for current FUNC_PROTO type with:
2662 *   - *name* - parameter name, can be NULL or empty;
2663 *   - *type_id* - type ID describing the type of the parameter.
2664 * Returns:
2665 *   -  0, on success;
2666 *   - <0, on error.
2667 */
2668int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2669{
2670	struct btf_type *t;
2671	struct btf_param *p;
2672	int sz, name_off = 0;
2673
2674	if (validate_type_id(type_id))
2675		return libbpf_err(-EINVAL);
2676
2677	/* last type should be BTF_KIND_FUNC_PROTO */
2678	if (btf->nr_types == 0)
2679		return libbpf_err(-EINVAL);
2680	t = btf_last_type(btf);
2681	if (!btf_is_func_proto(t))
2682		return libbpf_err(-EINVAL);
2683
2684	/* decompose and invalidate raw data */
2685	if (btf_ensure_modifiable(btf))
2686		return libbpf_err(-ENOMEM);
2687
2688	sz = sizeof(struct btf_param);
2689	p = btf_add_type_mem(btf, sz);
2690	if (!p)
2691		return libbpf_err(-ENOMEM);
2692
2693	if (name && name[0]) {
2694		name_off = btf__add_str(btf, name);
2695		if (name_off < 0)
2696			return name_off;
2697	}
2698
2699	p->name_off = name_off;
2700	p->type = type_id;
2701
2702	/* update parent type's vlen */
2703	t = btf_last_type(btf);
2704	btf_type_inc_vlen(t);
2705
2706	btf->hdr->type_len += sz;
2707	btf->hdr->str_off += sz;
2708	return 0;
2709}
2710
2711/*
2712 * Append new BTF_KIND_VAR type with:
2713 *   - *name* - non-empty/non-NULL name;
2714 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2715 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2716 *   - *type_id* - type ID of the type describing the type of the variable.
2717 * Returns:
2718 *   - >0, type ID of newly added BTF type;
2719 *   - <0, on error.
2720 */
2721int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2722{
2723	struct btf_type *t;
2724	struct btf_var *v;
2725	int sz, name_off;
2726
2727	/* non-empty name */
2728	if (!name || !name[0])
2729		return libbpf_err(-EINVAL);
2730	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2731	    linkage != BTF_VAR_GLOBAL_EXTERN)
2732		return libbpf_err(-EINVAL);
2733	if (validate_type_id(type_id))
2734		return libbpf_err(-EINVAL);
2735
2736	/* deconstruct BTF, if necessary, and invalidate raw_data */
2737	if (btf_ensure_modifiable(btf))
2738		return libbpf_err(-ENOMEM);
2739
2740	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2741	t = btf_add_type_mem(btf, sz);
2742	if (!t)
2743		return libbpf_err(-ENOMEM);
2744
2745	name_off = btf__add_str(btf, name);
2746	if (name_off < 0)
2747		return name_off;
2748
2749	t->name_off = name_off;
2750	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2751	t->type = type_id;
2752
2753	v = btf_var(t);
2754	v->linkage = linkage;
2755
2756	return btf_commit_type(btf, sz);
2757}
2758
2759/*
2760 * Append new BTF_KIND_DATASEC type with:
2761 *   - *name* - non-empty/non-NULL name;
2762 *   - *byte_sz* - data section size, in bytes.
2763 *
2764 * Data section is initially empty. Variables info can be added with
2765 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2766 *
2767 * Returns:
2768 *   - >0, type ID of newly added BTF type;
2769 *   - <0, on error.
2770 */
2771int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2772{
2773	struct btf_type *t;
2774	int sz, name_off;
2775
2776	/* non-empty name */
2777	if (!name || !name[0])
2778		return libbpf_err(-EINVAL);
2779
2780	if (btf_ensure_modifiable(btf))
2781		return libbpf_err(-ENOMEM);
2782
2783	sz = sizeof(struct btf_type);
2784	t = btf_add_type_mem(btf, sz);
2785	if (!t)
2786		return libbpf_err(-ENOMEM);
2787
2788	name_off = btf__add_str(btf, name);
2789	if (name_off < 0)
2790		return name_off;
2791
2792	/* start with vlen=0, which will be update as var_secinfos are added */
2793	t->name_off = name_off;
2794	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2795	t->size = byte_sz;
2796
2797	return btf_commit_type(btf, sz);
2798}
2799
2800/*
2801 * Append new data section variable information entry for current DATASEC type:
2802 *   - *var_type_id* - type ID, describing type of the variable;
2803 *   - *offset* - variable offset within data section, in bytes;
2804 *   - *byte_sz* - variable size, in bytes.
2805 *
2806 * Returns:
2807 *   -  0, on success;
2808 *   - <0, on error.
2809 */
2810int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2811{
2812	struct btf_type *t;
2813	struct btf_var_secinfo *v;
2814	int sz;
2815
2816	/* last type should be BTF_KIND_DATASEC */
2817	if (btf->nr_types == 0)
2818		return libbpf_err(-EINVAL);
2819	t = btf_last_type(btf);
2820	if (!btf_is_datasec(t))
2821		return libbpf_err(-EINVAL);
2822
2823	if (validate_type_id(var_type_id))
2824		return libbpf_err(-EINVAL);
2825
2826	/* decompose and invalidate raw data */
2827	if (btf_ensure_modifiable(btf))
2828		return libbpf_err(-ENOMEM);
2829
2830	sz = sizeof(struct btf_var_secinfo);
2831	v = btf_add_type_mem(btf, sz);
2832	if (!v)
2833		return libbpf_err(-ENOMEM);
2834
2835	v->type = var_type_id;
2836	v->offset = offset;
2837	v->size = byte_sz;
2838
2839	/* update parent type's vlen */
2840	t = btf_last_type(btf);
2841	btf_type_inc_vlen(t);
2842
2843	btf->hdr->type_len += sz;
2844	btf->hdr->str_off += sz;
2845	return 0;
2846}
2847
2848/*
2849 * Append new BTF_KIND_DECL_TAG type with:
2850 *   - *value* - non-empty/non-NULL string;
2851 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2852 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2853 *     member or function argument index;
2854 * Returns:
2855 *   - >0, type ID of newly added BTF type;
2856 *   - <0, on error.
2857 */
2858int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2859		 int component_idx)
2860{
2861	struct btf_type *t;
2862	int sz, value_off;
2863
2864	if (!value || !value[0] || component_idx < -1)
2865		return libbpf_err(-EINVAL);
2866
2867	if (validate_type_id(ref_type_id))
2868		return libbpf_err(-EINVAL);
2869
2870	if (btf_ensure_modifiable(btf))
2871		return libbpf_err(-ENOMEM);
2872
2873	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2874	t = btf_add_type_mem(btf, sz);
2875	if (!t)
2876		return libbpf_err(-ENOMEM);
2877
2878	value_off = btf__add_str(btf, value);
2879	if (value_off < 0)
2880		return value_off;
2881
2882	t->name_off = value_off;
2883	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2884	t->type = ref_type_id;
2885	btf_decl_tag(t)->component_idx = component_idx;
2886
2887	return btf_commit_type(btf, sz);
2888}
2889
2890struct btf_ext_sec_info_param {
2891	__u32 off;
2892	__u32 len;
2893	__u32 min_rec_size;
2894	struct btf_ext_info *ext_info;
2895	const char *desc;
2896};
2897
2898/*
2899 * Parse a single info subsection of the BTF.ext info data:
2900 *  - validate subsection structure and elements
2901 *  - save info subsection start and sizing details in struct btf_ext
2902 *  - endian-independent operation, for calling before byte-swapping
2903 */
2904static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
2905				  struct btf_ext_sec_info_param *ext_sec,
2906				  bool is_native)
2907{
2908	const struct btf_ext_info_sec *sinfo;
2909	struct btf_ext_info *ext_info;
2910	__u32 info_left, record_size;
2911	size_t sec_cnt = 0;
2912	void *info;
2913
2914	if (ext_sec->len == 0)
2915		return 0;
2916
2917	if (ext_sec->off & 0x03) {
2918		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2919		     ext_sec->desc);
2920		return -EINVAL;
2921	}
2922
2923	/* The start of the info sec (including the __u32 record_size). */
2924	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2925	info_left = ext_sec->len;
2926
2927	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2928		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2929			 ext_sec->desc, ext_sec->off, ext_sec->len);
2930		return -EINVAL;
2931	}
2932
2933	/* At least a record size */
2934	if (info_left < sizeof(__u32)) {
2935		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2936		return -EINVAL;
2937	}
2938
2939	/* The record size needs to meet either the minimum standard or, when
2940	 * handling non-native endianness data, the exact standard so as
2941	 * to allow safe byte-swapping.
2942	 */
2943	record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
2944	if (record_size < ext_sec->min_rec_size ||
2945	    (!is_native && record_size != ext_sec->min_rec_size) ||
2946	    record_size & 0x03) {
2947		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2948			 ext_sec->desc, record_size);
2949		return -EINVAL;
2950	}
2951
2952	sinfo = info + sizeof(__u32);
2953	info_left -= sizeof(__u32);
2954
2955	/* If no records, return failure now so .BTF.ext won't be used. */
2956	if (!info_left) {
2957		pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
2958		return -EINVAL;
2959	}
2960
2961	while (info_left) {
2962		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2963		__u64 total_record_size;
2964		__u32 num_records;
2965
2966		if (info_left < sec_hdrlen) {
2967			pr_debug("%s section header is not found in .BTF.ext\n",
2968			     ext_sec->desc);
2969			return -EINVAL;
2970		}
2971
2972		num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
2973		if (num_records == 0) {
2974			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2975			     ext_sec->desc);
2976			return -EINVAL;
2977		}
2978
2979		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
 
2980		if (info_left < total_record_size) {
2981			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2982			     ext_sec->desc);
2983			return -EINVAL;
2984		}
2985
2986		info_left -= total_record_size;
2987		sinfo = (void *)sinfo + total_record_size;
2988		sec_cnt++;
2989	}
2990
2991	ext_info = ext_sec->ext_info;
2992	ext_info->len = ext_sec->len - sizeof(__u32);
2993	ext_info->rec_size = record_size;
2994	ext_info->info = info + sizeof(__u32);
2995	ext_info->sec_cnt = sec_cnt;
2996
2997	return 0;
2998}
2999
3000/* Parse all info secs in the BTF.ext info data */
3001static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3002{
3003	struct btf_ext_sec_info_param func_info = {
3004		.off = btf_ext->hdr->func_info_off,
3005		.len = btf_ext->hdr->func_info_len,
3006		.min_rec_size = sizeof(struct bpf_func_info_min),
3007		.ext_info = &btf_ext->func_info,
3008		.desc = "func_info"
3009	};
3010	struct btf_ext_sec_info_param line_info = {
 
 
 
 
 
 
3011		.off = btf_ext->hdr->line_info_off,
3012		.len = btf_ext->hdr->line_info_len,
3013		.min_rec_size = sizeof(struct bpf_line_info_min),
3014		.ext_info = &btf_ext->line_info,
3015		.desc = "line_info",
3016	};
3017	struct btf_ext_sec_info_param core_relo = {
3018		.off = btf_ext->hdr->core_relo_off,
3019		.len = btf_ext->hdr->core_relo_len,
3020		.min_rec_size = sizeof(struct bpf_core_relo),
3021		.ext_info = &btf_ext->core_relo_info,
3022		.desc = "core_relo",
3023	};
3024	int err;
3025
3026	err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3027	if (err)
3028		return err;
3029
3030	err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3031	if (err)
3032		return err;
3033
3034	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3035		return 0; /* skip core relos parsing */
3036
3037	err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3038	if (err)
3039		return err;
3040
3041	return 0;
3042}
3043
3044/* Swap byte-order of BTF.ext header with any endianness */
3045static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3046{
3047	bool is_native = h->magic == BTF_MAGIC;
3048	__u32 hdr_len;
 
 
 
 
 
3049
3050	hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3051
3052	h->magic = bswap_16(h->magic);
3053	h->hdr_len = bswap_32(h->hdr_len);
3054	h->func_info_off = bswap_32(h->func_info_off);
3055	h->func_info_len = bswap_32(h->func_info_len);
3056	h->line_info_off = bswap_32(h->line_info_off);
3057	h->line_info_len = bswap_32(h->line_info_len);
3058
3059	if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3060		return;
3061
3062	h->core_relo_off = bswap_32(h->core_relo_off);
3063	h->core_relo_len = bswap_32(h->core_relo_len);
3064}
3065
3066/* Swap byte-order of generic info subsection */
3067static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3068				   info_rec_bswap_fn bswap_fn)
3069{
3070	struct btf_ext_info_sec *sec;
3071	__u32 info_left, rec_size, *rs;
3072
3073	if (len == 0)
3074		return;
3075
3076	rs = info;				/* info record size */
3077	rec_size = is_native ? *rs : bswap_32(*rs);
3078	*rs = bswap_32(*rs);
3079
3080	sec = info + sizeof(__u32);		/* info sec #1 */
3081	info_left = len - sizeof(__u32);
3082	while (info_left) {
3083		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3084		__u32 i, num_recs;
3085		void *p;
3086
3087		num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3088		sec->sec_name_off = bswap_32(sec->sec_name_off);
3089		sec->num_info = bswap_32(sec->num_info);
3090		p = sec->data;			/* info rec #1 */
3091		for (i = 0; i < num_recs; i++, p += rec_size)
3092			bswap_fn(p);
3093		sec = p;
3094		info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3095	}
3096}
3097
3098/*
3099 * Swap byte-order of all info data in a BTF.ext section
3100 *  - requires BTF.ext hdr in native endianness
3101 */
3102static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3103{
3104	const bool is_native = btf_ext->swapped_endian;
3105	const struct btf_ext_header *h = data;
3106	void *info;
3107
3108	/* Swap func_info subsection byte-order */
3109	info = data + h->hdr_len + h->func_info_off;
3110	btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3111			       (info_rec_bswap_fn)bpf_func_info_bswap);
3112
3113	/* Swap line_info subsection byte-order */
3114	info = data + h->hdr_len + h->line_info_off;
3115	btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3116			       (info_rec_bswap_fn)bpf_line_info_bswap);
3117
3118	/* Swap core_relo subsection byte-order (if present) */
3119	if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3120		return;
3121
3122	info = data + h->hdr_len + h->core_relo_off;
3123	btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3124			       (info_rec_bswap_fn)bpf_core_relo_bswap);
3125}
3126
3127/* Parse hdr data and info sections: check and convert to native endianness */
3128static int btf_ext_parse(struct btf_ext *btf_ext)
3129{
3130	__u32 hdr_len, data_size = btf_ext->data_size;
3131	struct btf_ext_header *hdr = btf_ext->hdr;
3132	bool swapped_endian = false;
3133	int err;
3134
3135	if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3136		pr_debug("BTF.ext header too short\n");
3137		return -EINVAL;
3138	}
3139
3140	hdr_len = hdr->hdr_len;
3141	if (hdr->magic == bswap_16(BTF_MAGIC)) {
3142		swapped_endian = true;
3143		hdr_len = bswap_32(hdr_len);
3144	} else if (hdr->magic != BTF_MAGIC) {
3145		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3146		return -EINVAL;
3147	}
3148
3149	/* Ensure known version of structs, current BTF_VERSION == 1 */
3150	if (hdr->version != 1) {
3151		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3152		return -ENOTSUP;
3153	}
3154
3155	if (hdr->flags) {
3156		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3157		return -ENOTSUP;
3158	}
3159
3160	if (data_size < hdr_len) {
3161		pr_debug("BTF.ext header not found\n");
3162		return -EINVAL;
3163	} else if (data_size == hdr_len) {
3164		pr_debug("BTF.ext has no data\n");
3165		return -EINVAL;
3166	}
3167
3168	/* Verify mandatory hdr info details present */
3169	if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3170		pr_warn("BTF.ext header missing func_info, line_info\n");
3171		return -EINVAL;
3172	}
3173
3174	/* Keep hdr native byte-order in memory for introspection */
3175	if (swapped_endian)
3176		btf_ext_bswap_hdr(btf_ext->hdr);
3177
3178	/* Validate info subsections and cache key metadata */
3179	err = btf_ext_parse_info(btf_ext, !swapped_endian);
3180	if (err)
3181		return err;
3182
3183	/* Keep infos native byte-order in memory for introspection */
3184	if (swapped_endian)
3185		btf_ext_bswap_info(btf_ext, btf_ext->data);
3186
3187	/*
3188	 * Set btf_ext->swapped_endian only after all header and info data has
3189	 * been swapped, helping bswap functions determine if their data are
3190	 * in native byte-order when called.
3191	 */
3192	btf_ext->swapped_endian = swapped_endian;
3193	return 0;
3194}
3195
3196void btf_ext__free(struct btf_ext *btf_ext)
3197{
3198	if (IS_ERR_OR_NULL(btf_ext))
3199		return;
3200	free(btf_ext->func_info.sec_idxs);
3201	free(btf_ext->line_info.sec_idxs);
3202	free(btf_ext->core_relo_info.sec_idxs);
3203	free(btf_ext->data);
3204	free(btf_ext->data_swapped);
3205	free(btf_ext);
3206}
3207
3208struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3209{
3210	struct btf_ext *btf_ext;
3211	int err;
3212
 
 
 
 
3213	btf_ext = calloc(1, sizeof(struct btf_ext));
3214	if (!btf_ext)
3215		return libbpf_err_ptr(-ENOMEM);
3216
3217	btf_ext->data_size = size;
3218	btf_ext->data = malloc(size);
3219	if (!btf_ext->data) {
3220		err = -ENOMEM;
3221		goto done;
3222	}
3223	memcpy(btf_ext->data, data, size);
3224
3225	err = btf_ext_parse(btf_ext);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226
3227done:
3228	if (err) {
3229		btf_ext__free(btf_ext);
3230		return libbpf_err_ptr(err);
3231	}
3232
3233	return btf_ext;
3234}
3235
3236static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3237{
3238	struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3239	const __u32 data_sz = btf_ext->data_size;
 
 
 
 
 
 
 
 
 
 
 
 
3240	void *data;
3241
3242	/* Return native data (always present) or swapped data if present */
3243	if (!swap_endian)
3244		return btf_ext->data;
3245	else if (btf_ext->data_swapped)
3246		return btf_ext->data_swapped;
3247
3248	/* Recreate missing swapped data, then cache and return */
3249	data = calloc(1, data_sz);
3250	if (!data)
3251		return NULL;
3252	memcpy(data, btf_ext->data, data_sz);
3253
3254	btf_ext_bswap_info(btf_ext, data);
3255	btf_ext_bswap_hdr(data);
3256	btf_ext->data_swapped = data;
3257	return data;
3258}
3259
3260const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3261{
3262	void *data;
 
 
 
3263
3264	data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3265	if (!data)
3266		return errno = ENOMEM, NULL;
 
 
 
 
 
3267
3268	*size = btf_ext->data_size;
3269	return data;
3270}
3271
3272__attribute__((alias("btf_ext__raw_data")))
3273const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
 
 
 
 
 
 
3274
3275enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
 
 
 
3276{
3277	if (is_host_big_endian())
3278		return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3279	else
3280		return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3281}
3282
3283int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3284{
3285	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3286		return libbpf_err(-EINVAL);
3287
3288	btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3289
3290	if (!btf_ext->swapped_endian) {
3291		free(btf_ext->data_swapped);
3292		btf_ext->data_swapped = NULL;
3293	}
3294	return 0;
3295}
3296
3297struct btf_dedup;
3298
3299static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
 
3300static void btf_dedup_free(struct btf_dedup *d);
3301static int btf_dedup_prep(struct btf_dedup *d);
3302static int btf_dedup_strings(struct btf_dedup *d);
3303static int btf_dedup_prim_types(struct btf_dedup *d);
3304static int btf_dedup_struct_types(struct btf_dedup *d);
3305static int btf_dedup_ref_types(struct btf_dedup *d);
3306static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3307static int btf_dedup_compact_types(struct btf_dedup *d);
3308static int btf_dedup_remap_types(struct btf_dedup *d);
3309
3310/*
3311 * Deduplicate BTF types and strings.
3312 *
3313 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3314 * section with all BTF type descriptors and string data. It overwrites that
3315 * memory in-place with deduplicated types and strings without any loss of
3316 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3317 * is provided, all the strings referenced from .BTF.ext section are honored
3318 * and updated to point to the right offsets after deduplication.
3319 *
3320 * If function returns with error, type/string data might be garbled and should
3321 * be discarded.
3322 *
3323 * More verbose and detailed description of both problem btf_dedup is solving,
3324 * as well as solution could be found at:
3325 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3326 *
3327 * Problem description and justification
3328 * =====================================
3329 *
3330 * BTF type information is typically emitted either as a result of conversion
3331 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3332 * unit contains information about a subset of all the types that are used
3333 * in an application. These subsets are frequently overlapping and contain a lot
3334 * of duplicated information when later concatenated together into a single
3335 * binary. This algorithm ensures that each unique type is represented by single
3336 * BTF type descriptor, greatly reducing resulting size of BTF data.
3337 *
3338 * Compilation unit isolation and subsequent duplication of data is not the only
3339 * problem. The same type hierarchy (e.g., struct and all the type that struct
3340 * references) in different compilation units can be represented in BTF to
3341 * various degrees of completeness (or, rather, incompleteness) due to
3342 * struct/union forward declarations.
3343 *
3344 * Let's take a look at an example, that we'll use to better understand the
3345 * problem (and solution). Suppose we have two compilation units, each using
3346 * same `struct S`, but each of them having incomplete type information about
3347 * struct's fields:
3348 *
3349 * // CU #1:
3350 * struct S;
3351 * struct A {
3352 *	int a;
3353 *	struct A* self;
3354 *	struct S* parent;
3355 * };
3356 * struct B;
3357 * struct S {
3358 *	struct A* a_ptr;
3359 *	struct B* b_ptr;
3360 * };
3361 *
3362 * // CU #2:
3363 * struct S;
3364 * struct A;
3365 * struct B {
3366 *	int b;
3367 *	struct B* self;
3368 *	struct S* parent;
3369 * };
3370 * struct S {
3371 *	struct A* a_ptr;
3372 *	struct B* b_ptr;
3373 * };
3374 *
3375 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3376 * more), but will know the complete type information about `struct A`. While
3377 * for CU #2, it will know full type information about `struct B`, but will
3378 * only know about forward declaration of `struct A` (in BTF terms, it will
3379 * have `BTF_KIND_FWD` type descriptor with name `B`).
3380 *
3381 * This compilation unit isolation means that it's possible that there is no
3382 * single CU with complete type information describing structs `S`, `A`, and
3383 * `B`. Also, we might get tons of duplicated and redundant type information.
3384 *
3385 * Additional complication we need to keep in mind comes from the fact that
3386 * types, in general, can form graphs containing cycles, not just DAGs.
3387 *
3388 * While algorithm does deduplication, it also merges and resolves type
3389 * information (unless disabled throught `struct btf_opts`), whenever possible.
3390 * E.g., in the example above with two compilation units having partial type
3391 * information for structs `A` and `B`, the output of algorithm will emit
3392 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3393 * (as well as type information for `int` and pointers), as if they were defined
3394 * in a single compilation unit as:
3395 *
3396 * struct A {
3397 *	int a;
3398 *	struct A* self;
3399 *	struct S* parent;
3400 * };
3401 * struct B {
3402 *	int b;
3403 *	struct B* self;
3404 *	struct S* parent;
3405 * };
3406 * struct S {
3407 *	struct A* a_ptr;
3408 *	struct B* b_ptr;
3409 * };
3410 *
3411 * Algorithm summary
3412 * =================
3413 *
3414 * Algorithm completes its work in 7 separate passes:
3415 *
3416 * 1. Strings deduplication.
3417 * 2. Primitive types deduplication (int, enum, fwd).
3418 * 3. Struct/union types deduplication.
3419 * 4. Resolve unambiguous forward declarations.
3420 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3421 *    protos, and const/volatile/restrict modifiers).
3422 * 6. Types compaction.
3423 * 7. Types remapping.
3424 *
3425 * Algorithm determines canonical type descriptor, which is a single
3426 * representative type for each truly unique type. This canonical type is the
3427 * one that will go into final deduplicated BTF type information. For
3428 * struct/unions, it is also the type that algorithm will merge additional type
3429 * information into (while resolving FWDs), as it discovers it from data in
3430 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3431 * that type is canonical, or to some other type, if that type is equivalent
3432 * and was chosen as canonical representative. This mapping is stored in
3433 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3434 * FWD type got resolved to.
3435 *
3436 * To facilitate fast discovery of canonical types, we also maintain canonical
3437 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3438 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3439 * that match that signature. With sufficiently good choice of type signature
3440 * hashing function, we can limit number of canonical types for each unique type
3441 * signature to a very small number, allowing to find canonical type for any
3442 * duplicated type very quickly.
3443 *
3444 * Struct/union deduplication is the most critical part and algorithm for
3445 * deduplicating structs/unions is described in greater details in comments for
3446 * `btf_dedup_is_equiv` function.
3447 */
3448int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
 
3449{
3450	struct btf_dedup *d;
3451	int err;
3452
3453	if (!OPTS_VALID(opts, btf_dedup_opts))
3454		return libbpf_err(-EINVAL);
3455
3456	d = btf_dedup_new(btf, opts);
3457	if (IS_ERR(d)) {
3458		pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3459		return libbpf_err(-EINVAL);
3460	}
3461
3462	if (btf_ensure_modifiable(btf)) {
3463		err = -ENOMEM;
3464		goto done;
3465	}
3466
3467	err = btf_dedup_prep(d);
3468	if (err) {
3469		pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3470		goto done;
3471	}
3472	err = btf_dedup_strings(d);
3473	if (err < 0) {
3474		pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3475		goto done;
3476	}
3477	err = btf_dedup_prim_types(d);
3478	if (err < 0) {
3479		pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3480		goto done;
3481	}
3482	err = btf_dedup_struct_types(d);
3483	if (err < 0) {
3484		pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3485		goto done;
3486	}
3487	err = btf_dedup_resolve_fwds(d);
3488	if (err < 0) {
3489		pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3490		goto done;
3491	}
3492	err = btf_dedup_ref_types(d);
3493	if (err < 0) {
3494		pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3495		goto done;
3496	}
3497	err = btf_dedup_compact_types(d);
3498	if (err < 0) {
3499		pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3500		goto done;
3501	}
3502	err = btf_dedup_remap_types(d);
3503	if (err < 0) {
3504		pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3505		goto done;
3506	}
3507
3508done:
3509	btf_dedup_free(d);
3510	return libbpf_err(err);
3511}
3512
3513#define BTF_UNPROCESSED_ID ((__u32)-1)
3514#define BTF_IN_PROGRESS_ID ((__u32)-2)
3515
3516struct btf_dedup {
3517	/* .BTF section to be deduped in-place */
3518	struct btf *btf;
3519	/*
3520	 * Optional .BTF.ext section. When provided, any strings referenced
3521	 * from it will be taken into account when deduping strings
3522	 */
3523	struct btf_ext *btf_ext;
3524	/*
3525	 * This is a map from any type's signature hash to a list of possible
3526	 * canonical representative type candidates. Hash collisions are
3527	 * ignored, so even types of various kinds can share same list of
3528	 * candidates, which is fine because we rely on subsequent
3529	 * btf_xxx_equal() checks to authoritatively verify type equality.
3530	 */
3531	struct hashmap *dedup_table;
3532	/* Canonical types map */
3533	__u32 *map;
3534	/* Hypothetical mapping, used during type graph equivalence checks */
3535	__u32 *hypot_map;
3536	__u32 *hypot_list;
3537	size_t hypot_cnt;
3538	size_t hypot_cap;
3539	/* Whether hypothetical mapping, if successful, would need to adjust
3540	 * already canonicalized types (due to a new forward declaration to
3541	 * concrete type resolution). In such case, during split BTF dedup
3542	 * candidate type would still be considered as different, because base
3543	 * BTF is considered to be immutable.
3544	 */
3545	bool hypot_adjust_canon;
3546	/* Various option modifying behavior of algorithm */
3547	struct btf_dedup_opts opts;
3548	/* temporary strings deduplication state */
3549	struct strset *strs_set;
3550};
3551
3552static unsigned long hash_combine(unsigned long h, unsigned long value)
 
 
 
 
 
 
 
 
 
 
 
 
 
3553{
3554	return h * 31 + value;
3555}
3556
3557#define for_each_dedup_cand(d, node, hash) \
3558	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3559
3560static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3561{
3562	return hashmap__append(d->dedup_table, hash, type_id);
 
3563}
3564
3565static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3566				   __u32 from_id, __u32 to_id)
3567{
3568	if (d->hypot_cnt == d->hypot_cap) {
3569		__u32 *new_list;
3570
3571		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3572		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3573		if (!new_list)
3574			return -ENOMEM;
3575		d->hypot_list = new_list;
3576	}
3577	d->hypot_list[d->hypot_cnt++] = from_id;
3578	d->hypot_map[from_id] = to_id;
3579	return 0;
3580}
3581
3582static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3583{
3584	int i;
3585
3586	for (i = 0; i < d->hypot_cnt; i++)
3587		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3588	d->hypot_cnt = 0;
3589	d->hypot_adjust_canon = false;
3590}
3591
3592static void btf_dedup_free(struct btf_dedup *d)
3593{
3594	hashmap__free(d->dedup_table);
3595	d->dedup_table = NULL;
3596
3597	free(d->map);
3598	d->map = NULL;
3599
3600	free(d->hypot_map);
3601	d->hypot_map = NULL;
3602
3603	free(d->hypot_list);
3604	d->hypot_list = NULL;
3605
3606	free(d);
3607}
3608
3609static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3610{
3611	return key;
3612}
3613
3614static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3615{
3616	return 0;
3617}
3618
3619static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3620{
3621	return k1 == k2;
3622}
3623
3624static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
 
3625{
3626	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3627	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3628	int i, err = 0, type_cnt;
3629
3630	if (!d)
3631		return ERR_PTR(-ENOMEM);
3632
3633	if (OPTS_GET(opts, force_collisions, false))
 
 
3634		hash_fn = btf_dedup_collision_hash_fn;
3635
3636	d->btf = btf;
3637	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3638
3639	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3640	if (IS_ERR(d->dedup_table)) {
3641		err = PTR_ERR(d->dedup_table);
3642		d->dedup_table = NULL;
3643		goto done;
3644	}
3645
3646	type_cnt = btf__type_cnt(btf);
3647	d->map = malloc(sizeof(__u32) * type_cnt);
3648	if (!d->map) {
3649		err = -ENOMEM;
3650		goto done;
3651	}
3652	/* special BTF "void" type is made canonical immediately */
3653	d->map[0] = 0;
3654	for (i = 1; i < type_cnt; i++) {
3655		struct btf_type *t = btf_type_by_id(d->btf, i);
3656
3657		/* VAR and DATASEC are never deduped and are self-canonical */
3658		if (btf_is_var(t) || btf_is_datasec(t))
3659			d->map[i] = i;
3660		else
3661			d->map[i] = BTF_UNPROCESSED_ID;
3662	}
3663
3664	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3665	if (!d->hypot_map) {
3666		err = -ENOMEM;
3667		goto done;
3668	}
3669	for (i = 0; i < type_cnt; i++)
3670		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3671
3672done:
3673	if (err) {
3674		btf_dedup_free(d);
3675		return ERR_PTR(err);
3676	}
3677
3678	return d;
3679}
3680
 
 
3681/*
3682 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3683 * string and pass pointer to it to a provided callback `fn`.
3684 */
3685static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3686{
3687	int i, r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3688
3689	for (i = 0; i < d->btf->nr_types; i++) {
3690		struct btf_field_iter it;
3691		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3692		__u32 *str_off;
 
 
 
 
3693
3694		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3695		if (r)
3696			return r;
3697
3698		while ((str_off = btf_field_iter_next(&it))) {
3699			r = fn(str_off, ctx);
 
 
3700			if (r)
3701				return r;
 
 
 
 
3702		}
3703	}
3704
3705	if (!d->btf_ext)
3706		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707
3708	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3709	if (r)
3710		return r;
3711
 
 
3712	return 0;
3713}
3714
3715static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3716{
3717	struct btf_dedup *d = ctx;
3718	__u32 str_off = *str_off_ptr;
3719	const char *s;
3720	int off, err;
3721
3722	/* don't touch empty string or string in main BTF */
3723	if (str_off == 0 || str_off < d->btf->start_str_off)
3724		return 0;
3725
3726	s = btf__str_by_offset(d->btf, str_off);
3727	if (d->btf->base_btf) {
3728		err = btf__find_str(d->btf->base_btf, s);
3729		if (err >= 0) {
3730			*str_off_ptr = err;
3731			return 0;
3732		}
3733		if (err != -ENOENT)
3734			return err;
3735	}
 
 
 
3736
3737	off = strset__add_str(d->strs_set, s);
3738	if (off < 0)
3739		return off;
3740
3741	*str_off_ptr = d->btf->start_str_off + off;
 
 
 
 
 
3742	return 0;
3743}
3744
3745/*
3746 * Dedup string and filter out those that are not referenced from either .BTF
3747 * or .BTF.ext (if provided) sections.
3748 *
3749 * This is done by building index of all strings in BTF's string section,
3750 * then iterating over all entities that can reference strings (e.g., type
3751 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3752 * strings as used. After that all used strings are deduped and compacted into
3753 * sequential blob of memory and new offsets are calculated. Then all the string
3754 * references are iterated again and rewritten using new offsets.
3755 */
3756static int btf_dedup_strings(struct btf_dedup *d)
3757{
3758	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3759
3760	if (d->btf->strs_deduped)
3761		return 0;
 
3762
3763	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3764	if (IS_ERR(d->strs_set)) {
3765		err = PTR_ERR(d->strs_set);
3766		goto err_out;
 
3767	}
3768
3769	if (!d->btf->base_btf) {
3770		/* insert empty string; we won't be looking it up during strings
3771		 * dedup, but it's good to have it for generic BTF string lookups
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3772		 */
3773		err = strset__add_str(d->strs_set, "");
3774		if (err < 0)
3775			goto err_out;
 
 
 
 
 
 
 
 
 
 
 
3776	}
3777
 
 
 
 
 
 
 
 
3778	/* remap string offsets */
3779	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3780	if (err)
3781		goto err_out;
3782
3783	/* replace BTF string data and hash with deduped ones */
3784	strset__free(d->btf->strs_set);
3785	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3786	d->btf->strs_set = d->strs_set;
3787	d->strs_set = NULL;
3788	d->btf->strs_deduped = true;
3789	return 0;
3790
3791err_out:
3792	strset__free(d->strs_set);
3793	d->strs_set = NULL;
3794
 
 
 
3795	return err;
3796}
3797
3798static long btf_hash_common(struct btf_type *t)
3799{
3800	long h;
3801
3802	h = hash_combine(0, t->name_off);
3803	h = hash_combine(h, t->info);
3804	h = hash_combine(h, t->size);
3805	return h;
3806}
3807
3808static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3809{
3810	return t1->name_off == t2->name_off &&
3811	       t1->info == t2->info &&
3812	       t1->size == t2->size;
3813}
3814
3815/* Calculate type signature hash of INT or TAG. */
3816static long btf_hash_int_decl_tag(struct btf_type *t)
3817{
3818	__u32 info = *(__u32 *)(t + 1);
3819	long h;
3820
3821	h = btf_hash_common(t);
3822	h = hash_combine(h, info);
3823	return h;
3824}
3825
3826/* Check structural equality of two INTs or TAGs. */
3827static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3828{
3829	__u32 info1, info2;
3830
3831	if (!btf_equal_common(t1, t2))
3832		return false;
3833	info1 = *(__u32 *)(t1 + 1);
3834	info2 = *(__u32 *)(t2 + 1);
3835	return info1 == info2;
3836}
3837
3838/* Calculate type signature hash of ENUM/ENUM64. */
3839static long btf_hash_enum(struct btf_type *t)
3840{
3841	long h;
3842
3843	/* don't hash vlen, enum members and size to support enum fwd resolving */
3844	h = hash_combine(0, t->name_off);
 
 
3845	return h;
3846}
3847
3848static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
 
3849{
3850	const struct btf_enum *m1, *m2;
3851	__u16 vlen;
3852	int i;
3853
 
 
 
3854	vlen = btf_vlen(t1);
3855	m1 = btf_enum(t1);
3856	m2 = btf_enum(t2);
3857	for (i = 0; i < vlen; i++) {
3858		if (m1->name_off != m2->name_off || m1->val != m2->val)
3859			return false;
3860		m1++;
3861		m2++;
3862	}
3863	return true;
3864}
3865
3866static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3867{
3868	const struct btf_enum64 *m1, *m2;
3869	__u16 vlen;
3870	int i;
3871
3872	vlen = btf_vlen(t1);
3873	m1 = btf_enum64(t1);
3874	m2 = btf_enum64(t2);
3875	for (i = 0; i < vlen; i++) {
3876		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3877		    m1->val_hi32 != m2->val_hi32)
3878			return false;
3879		m1++;
3880		m2++;
3881	}
3882	return true;
3883}
3884
3885/* Check structural equality of two ENUMs or ENUM64s. */
3886static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3887{
3888	if (!btf_equal_common(t1, t2))
3889		return false;
3890
3891	/* t1 & t2 kinds are identical because of btf_equal_common */
3892	if (btf_kind(t1) == BTF_KIND_ENUM)
3893		return btf_equal_enum_members(t1, t2);
3894	else
3895		return btf_equal_enum64_members(t1, t2);
3896}
3897
3898static inline bool btf_is_enum_fwd(struct btf_type *t)
3899{
3900	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3901}
3902
3903static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3904{
3905	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3906		return btf_equal_enum(t1, t2);
3907	/* At this point either t1 or t2 or both are forward declarations, thus:
3908	 * - skip comparing vlen because it is zero for forward declarations;
3909	 * - skip comparing size to allow enum forward declarations
3910	 *   to be compatible with enum64 full declarations;
3911	 * - skip comparing kind for the same reason.
3912	 */
3913	return t1->name_off == t2->name_off &&
3914	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
 
3915}
3916
3917/*
3918 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3919 * as referenced type IDs equivalence is established separately during type
3920 * graph equivalence check algorithm.
3921 */
3922static long btf_hash_struct(struct btf_type *t)
3923{
3924	const struct btf_member *member = btf_members(t);
3925	__u32 vlen = btf_vlen(t);
3926	long h = btf_hash_common(t);
3927	int i;
3928
3929	for (i = 0; i < vlen; i++) {
3930		h = hash_combine(h, member->name_off);
3931		h = hash_combine(h, member->offset);
3932		/* no hashing of referenced type ID, it can be unresolved yet */
3933		member++;
3934	}
3935	return h;
3936}
3937
3938/*
3939 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3940 * type IDs. This check is performed during type graph equivalence check and
3941 * referenced types equivalence is checked separately.
3942 */
3943static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3944{
3945	const struct btf_member *m1, *m2;
3946	__u16 vlen;
3947	int i;
3948
3949	if (!btf_equal_common(t1, t2))
3950		return false;
3951
3952	vlen = btf_vlen(t1);
3953	m1 = btf_members(t1);
3954	m2 = btf_members(t2);
3955	for (i = 0; i < vlen; i++) {
3956		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3957			return false;
3958		m1++;
3959		m2++;
3960	}
3961	return true;
3962}
3963
3964/*
3965 * Calculate type signature hash of ARRAY, including referenced type IDs,
3966 * under assumption that they were already resolved to canonical type IDs and
3967 * are not going to change.
3968 */
3969static long btf_hash_array(struct btf_type *t)
3970{
3971	const struct btf_array *info = btf_array(t);
3972	long h = btf_hash_common(t);
3973
3974	h = hash_combine(h, info->type);
3975	h = hash_combine(h, info->index_type);
3976	h = hash_combine(h, info->nelems);
3977	return h;
3978}
3979
3980/*
3981 * Check exact equality of two ARRAYs, taking into account referenced
3982 * type IDs, under assumption that they were already resolved to canonical
3983 * type IDs and are not going to change.
3984 * This function is called during reference types deduplication to compare
3985 * ARRAY to potential canonical representative.
3986 */
3987static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3988{
3989	const struct btf_array *info1, *info2;
3990
3991	if (!btf_equal_common(t1, t2))
3992		return false;
3993
3994	info1 = btf_array(t1);
3995	info2 = btf_array(t2);
3996	return info1->type == info2->type &&
3997	       info1->index_type == info2->index_type &&
3998	       info1->nelems == info2->nelems;
3999}
4000
4001/*
4002 * Check structural compatibility of two ARRAYs, ignoring referenced type
4003 * IDs. This check is performed during type graph equivalence check and
4004 * referenced types equivalence is checked separately.
4005 */
4006static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4007{
4008	if (!btf_equal_common(t1, t2))
4009		return false;
4010
4011	return btf_array(t1)->nelems == btf_array(t2)->nelems;
4012}
4013
4014/*
4015 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4016 * under assumption that they were already resolved to canonical type IDs and
4017 * are not going to change.
4018 */
4019static long btf_hash_fnproto(struct btf_type *t)
4020{
4021	const struct btf_param *member = btf_params(t);
4022	__u16 vlen = btf_vlen(t);
4023	long h = btf_hash_common(t);
4024	int i;
4025
4026	for (i = 0; i < vlen; i++) {
4027		h = hash_combine(h, member->name_off);
4028		h = hash_combine(h, member->type);
4029		member++;
4030	}
4031	return h;
4032}
4033
4034/*
4035 * Check exact equality of two FUNC_PROTOs, taking into account referenced
4036 * type IDs, under assumption that they were already resolved to canonical
4037 * type IDs and are not going to change.
4038 * This function is called during reference types deduplication to compare
4039 * FUNC_PROTO to potential canonical representative.
4040 */
4041static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4042{
4043	const struct btf_param *m1, *m2;
4044	__u16 vlen;
4045	int i;
4046
4047	if (!btf_equal_common(t1, t2))
4048		return false;
4049
4050	vlen = btf_vlen(t1);
4051	m1 = btf_params(t1);
4052	m2 = btf_params(t2);
4053	for (i = 0; i < vlen; i++) {
4054		if (m1->name_off != m2->name_off || m1->type != m2->type)
4055			return false;
4056		m1++;
4057		m2++;
4058	}
4059	return true;
4060}
4061
4062/*
4063 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4064 * IDs. This check is performed during type graph equivalence check and
4065 * referenced types equivalence is checked separately.
4066 */
4067static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4068{
4069	const struct btf_param *m1, *m2;
4070	__u16 vlen;
4071	int i;
4072
4073	/* skip return type ID */
4074	if (t1->name_off != t2->name_off || t1->info != t2->info)
4075		return false;
4076
4077	vlen = btf_vlen(t1);
4078	m1 = btf_params(t1);
4079	m2 = btf_params(t2);
4080	for (i = 0; i < vlen; i++) {
4081		if (m1->name_off != m2->name_off)
4082			return false;
4083		m1++;
4084		m2++;
4085	}
4086	return true;
4087}
4088
4089/* Prepare split BTF for deduplication by calculating hashes of base BTF's
4090 * types and initializing the rest of the state (canonical type mapping) for
4091 * the fixed base BTF part.
4092 */
4093static int btf_dedup_prep(struct btf_dedup *d)
4094{
4095	struct btf_type *t;
4096	int type_id;
4097	long h;
4098
4099	if (!d->btf->base_btf)
4100		return 0;
4101
4102	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4103		t = btf_type_by_id(d->btf, type_id);
4104
4105		/* all base BTF types are self-canonical by definition */
4106		d->map[type_id] = type_id;
4107
4108		switch (btf_kind(t)) {
4109		case BTF_KIND_VAR:
4110		case BTF_KIND_DATASEC:
4111			/* VAR and DATASEC are never hash/deduplicated */
4112			continue;
4113		case BTF_KIND_CONST:
4114		case BTF_KIND_VOLATILE:
4115		case BTF_KIND_RESTRICT:
4116		case BTF_KIND_PTR:
4117		case BTF_KIND_FWD:
4118		case BTF_KIND_TYPEDEF:
4119		case BTF_KIND_FUNC:
4120		case BTF_KIND_FLOAT:
4121		case BTF_KIND_TYPE_TAG:
4122			h = btf_hash_common(t);
4123			break;
4124		case BTF_KIND_INT:
4125		case BTF_KIND_DECL_TAG:
4126			h = btf_hash_int_decl_tag(t);
4127			break;
4128		case BTF_KIND_ENUM:
4129		case BTF_KIND_ENUM64:
4130			h = btf_hash_enum(t);
4131			break;
4132		case BTF_KIND_STRUCT:
4133		case BTF_KIND_UNION:
4134			h = btf_hash_struct(t);
4135			break;
4136		case BTF_KIND_ARRAY:
4137			h = btf_hash_array(t);
4138			break;
4139		case BTF_KIND_FUNC_PROTO:
4140			h = btf_hash_fnproto(t);
4141			break;
4142		default:
4143			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4144			return -EINVAL;
4145		}
4146		if (btf_dedup_table_add(d, h, type_id))
4147			return -ENOMEM;
4148	}
4149
4150	return 0;
4151}
4152
4153/*
4154 * Deduplicate primitive types, that can't reference other types, by calculating
4155 * their type signature hash and comparing them with any possible canonical
4156 * candidate. If no canonical candidate matches, type itself is marked as
4157 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4158 */
4159static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4160{
4161	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4162	struct hashmap_entry *hash_entry;
4163	struct btf_type *cand;
4164	/* if we don't find equivalent type, then we are canonical */
4165	__u32 new_id = type_id;
4166	__u32 cand_id;
4167	long h;
4168
4169	switch (btf_kind(t)) {
4170	case BTF_KIND_CONST:
4171	case BTF_KIND_VOLATILE:
4172	case BTF_KIND_RESTRICT:
4173	case BTF_KIND_PTR:
4174	case BTF_KIND_TYPEDEF:
4175	case BTF_KIND_ARRAY:
4176	case BTF_KIND_STRUCT:
4177	case BTF_KIND_UNION:
4178	case BTF_KIND_FUNC:
4179	case BTF_KIND_FUNC_PROTO:
4180	case BTF_KIND_VAR:
4181	case BTF_KIND_DATASEC:
4182	case BTF_KIND_DECL_TAG:
4183	case BTF_KIND_TYPE_TAG:
4184		return 0;
4185
4186	case BTF_KIND_INT:
4187		h = btf_hash_int_decl_tag(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_int_tag(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
4198	case BTF_KIND_ENUM:
4199	case BTF_KIND_ENUM64:
4200		h = btf_hash_enum(t);
4201		for_each_dedup_cand(d, hash_entry, h) {
4202			cand_id = hash_entry->value;
4203			cand = btf_type_by_id(d->btf, cand_id);
4204			if (btf_equal_enum(t, cand)) {
4205				new_id = cand_id;
4206				break;
4207			}
 
 
4208			if (btf_compat_enum(t, cand)) {
4209				if (btf_is_enum_fwd(t)) {
4210					/* resolve fwd to full enum */
4211					new_id = cand_id;
4212					break;
4213				}
4214				/* resolve canonical enum fwd to full enum */
4215				d->map[cand_id] = type_id;
4216			}
4217		}
4218		break;
4219
4220	case BTF_KIND_FWD:
4221	case BTF_KIND_FLOAT:
4222		h = btf_hash_common(t);
4223		for_each_dedup_cand(d, hash_entry, h) {
4224			cand_id = hash_entry->value;
4225			cand = btf_type_by_id(d->btf, cand_id);
4226			if (btf_equal_common(t, cand)) {
4227				new_id = cand_id;
4228				break;
4229			}
4230		}
4231		break;
4232
4233	default:
4234		return -EINVAL;
4235	}
4236
4237	d->map[type_id] = new_id;
4238	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4239		return -ENOMEM;
4240
4241	return 0;
4242}
4243
4244static int btf_dedup_prim_types(struct btf_dedup *d)
4245{
4246	int i, err;
4247
4248	for (i = 0; i < d->btf->nr_types; i++) {
4249		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4250		if (err)
4251			return err;
4252	}
4253	return 0;
4254}
4255
4256/*
4257 * Check whether type is already mapped into canonical one (could be to itself).
4258 */
4259static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4260{
4261	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4262}
4263
4264/*
4265 * Resolve type ID into its canonical type ID, if any; otherwise return original
4266 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4267 * STRUCT/UNION link and resolve it into canonical type ID as well.
4268 */
4269static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4270{
4271	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4272		type_id = d->map[type_id];
4273	return type_id;
4274}
4275
4276/*
4277 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4278 * type ID.
4279 */
4280static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4281{
4282	__u32 orig_type_id = type_id;
4283
4284	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4285		return type_id;
4286
4287	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4288		type_id = d->map[type_id];
4289
4290	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4291		return type_id;
4292
4293	return orig_type_id;
4294}
4295
4296
4297static inline __u16 btf_fwd_kind(struct btf_type *t)
4298{
4299	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4300}
4301
4302/* Check if given two types are identical ARRAY definitions */
4303static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4304{
4305	struct btf_type *t1, *t2;
4306
4307	t1 = btf_type_by_id(d->btf, id1);
4308	t2 = btf_type_by_id(d->btf, id2);
4309	if (!btf_is_array(t1) || !btf_is_array(t2))
4310		return false;
4311
4312	return btf_equal_array(t1, t2);
4313}
4314
4315/* Check if given two types are identical STRUCT/UNION definitions */
4316static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4317{
4318	const struct btf_member *m1, *m2;
4319	struct btf_type *t1, *t2;
4320	int n, i;
4321
4322	t1 = btf_type_by_id(d->btf, id1);
4323	t2 = btf_type_by_id(d->btf, id2);
4324
4325	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4326		return false;
4327
4328	if (!btf_shallow_equal_struct(t1, t2))
4329		return false;
4330
4331	m1 = btf_members(t1);
4332	m2 = btf_members(t2);
4333	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4334		if (m1->type != m2->type &&
4335		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4336		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4337			return false;
4338	}
4339	return true;
4340}
4341
4342/*
4343 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4344 * call it "candidate graph" in this description for brevity) to a type graph
4345 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4346 * here, though keep in mind that not all types in canonical graph are
4347 * necessarily canonical representatives themselves, some of them might be
4348 * duplicates or its uniqueness might not have been established yet).
4349 * Returns:
4350 *  - >0, if type graphs are equivalent;
4351 *  -  0, if not equivalent;
4352 *  - <0, on error.
4353 *
4354 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4355 * equivalence of BTF types at each step. If at any point BTF types in candidate
4356 * and canonical graphs are not compatible structurally, whole graphs are
4357 * incompatible. If types are structurally equivalent (i.e., all information
4358 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4359 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4360 * If a type references other types, then those referenced types are checked
4361 * for equivalence recursively.
4362 *
4363 * During DFS traversal, if we find that for current `canon_id` type we
4364 * already have some mapping in hypothetical map, we check for two possible
4365 * situations:
4366 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4367 *     happen when type graphs have cycles. In this case we assume those two
4368 *     types are equivalent.
4369 *   - `canon_id` is mapped to different type. This is contradiction in our
4370 *     hypothetical mapping, because same graph in canonical graph corresponds
4371 *     to two different types in candidate graph, which for equivalent type
4372 *     graphs shouldn't happen. This condition terminates equivalence check
4373 *     with negative result.
4374 *
4375 * If type graphs traversal exhausts types to check and find no contradiction,
4376 * then type graphs are equivalent.
4377 *
4378 * When checking types for equivalence, there is one special case: FWD types.
4379 * If FWD type resolution is allowed and one of the types (either from canonical
4380 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4381 * flag) and their names match, hypothetical mapping is updated to point from
4382 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4383 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4384 *
4385 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4386 * if there are two exactly named (or anonymous) structs/unions that are
4387 * compatible structurally, one of which has FWD field, while other is concrete
4388 * STRUCT/UNION, but according to C sources they are different structs/unions
4389 * that are referencing different types with the same name. This is extremely
4390 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4391 * this logic is causing problems.
4392 *
4393 * Doing FWD resolution means that both candidate and/or canonical graphs can
4394 * consists of portions of the graph that come from multiple compilation units.
4395 * This is due to the fact that types within single compilation unit are always
4396 * deduplicated and FWDs are already resolved, if referenced struct/union
4397 * definition is available. So, if we had unresolved FWD and found corresponding
4398 * STRUCT/UNION, they will be from different compilation units. This
4399 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4400 * type graph will likely have at least two different BTF types that describe
4401 * same type (e.g., most probably there will be two different BTF types for the
4402 * same 'int' primitive type) and could even have "overlapping" parts of type
4403 * graph that describe same subset of types.
4404 *
4405 * This in turn means that our assumption that each type in canonical graph
4406 * must correspond to exactly one type in candidate graph might not hold
4407 * anymore and will make it harder to detect contradictions using hypothetical
4408 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4409 * resolution only in canonical graph. FWDs in candidate graphs are never
4410 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4411 * that can occur:
4412 *   - Both types in canonical and candidate graphs are FWDs. If they are
4413 *     structurally equivalent, then they can either be both resolved to the
4414 *     same STRUCT/UNION or not resolved at all. In both cases they are
4415 *     equivalent and there is no need to resolve FWD on candidate side.
4416 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4417 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4418 *   - Type in canonical graph is FWD, while type in candidate is concrete
4419 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4420 *     unit, so there is exactly one BTF type for each unique C type. After
4421 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4422 *     in canonical graph mapping to single BTF type in candidate graph, but
4423 *     because hypothetical mapping maps from canonical to candidate types, it's
4424 *     alright, and we still maintain the property of having single `canon_id`
4425 *     mapping to single `cand_id` (there could be two different `canon_id`
4426 *     mapped to the same `cand_id`, but it's not contradictory).
4427 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4428 *     graph is FWD. In this case we are just going to check compatibility of
4429 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4430 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4431 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4432 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4433 *     canonical graph.
4434 */
4435static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4436			      __u32 canon_id)
4437{
4438	struct btf_type *cand_type;
4439	struct btf_type *canon_type;
4440	__u32 hypot_type_id;
4441	__u16 cand_kind;
4442	__u16 canon_kind;
4443	int i, eq;
4444
4445	/* if both resolve to the same canonical, they must be equivalent */
4446	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4447		return 1;
4448
4449	canon_id = resolve_fwd_id(d, canon_id);
4450
4451	hypot_type_id = d->hypot_map[canon_id];
4452	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4453		if (hypot_type_id == cand_id)
4454			return 1;
4455		/* In some cases compiler will generate different DWARF types
4456		 * for *identical* array type definitions and use them for
4457		 * different fields within the *same* struct. This breaks type
4458		 * equivalence check, which makes an assumption that candidate
4459		 * types sub-graph has a consistent and deduped-by-compiler
4460		 * types within a single CU. So work around that by explicitly
4461		 * allowing identical array types here.
4462		 */
4463		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4464			return 1;
4465		/* It turns out that similar situation can happen with
4466		 * struct/union sometimes, sigh... Handle the case where
4467		 * structs/unions are exactly the same, down to the referenced
4468		 * type IDs. Anything more complicated (e.g., if referenced
4469		 * types are different, but equivalent) is *way more*
4470		 * complicated and requires a many-to-many equivalence mapping.
4471		 */
4472		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4473			return 1;
4474		return 0;
4475	}
4476
4477	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4478		return -ENOMEM;
4479
4480	cand_type = btf_type_by_id(d->btf, cand_id);
4481	canon_type = btf_type_by_id(d->btf, canon_id);
4482	cand_kind = btf_kind(cand_type);
4483	canon_kind = btf_kind(canon_type);
4484
4485	if (cand_type->name_off != canon_type->name_off)
4486		return 0;
4487
4488	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4489	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
 
4490	    && cand_kind != canon_kind) {
4491		__u16 real_kind;
4492		__u16 fwd_kind;
4493
4494		if (cand_kind == BTF_KIND_FWD) {
4495			real_kind = canon_kind;
4496			fwd_kind = btf_fwd_kind(cand_type);
4497		} else {
4498			real_kind = cand_kind;
4499			fwd_kind = btf_fwd_kind(canon_type);
4500			/* we'd need to resolve base FWD to STRUCT/UNION */
4501			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4502				d->hypot_adjust_canon = true;
4503		}
4504		return fwd_kind == real_kind;
4505	}
4506
4507	if (cand_kind != canon_kind)
4508		return 0;
4509
4510	switch (cand_kind) {
4511	case BTF_KIND_INT:
4512		return btf_equal_int_tag(cand_type, canon_type);
4513
4514	case BTF_KIND_ENUM:
4515	case BTF_KIND_ENUM64:
4516		return btf_compat_enum(cand_type, canon_type);
 
 
4517
4518	case BTF_KIND_FWD:
4519	case BTF_KIND_FLOAT:
4520		return btf_equal_common(cand_type, canon_type);
4521
4522	case BTF_KIND_CONST:
4523	case BTF_KIND_VOLATILE:
4524	case BTF_KIND_RESTRICT:
4525	case BTF_KIND_PTR:
4526	case BTF_KIND_TYPEDEF:
4527	case BTF_KIND_FUNC:
4528	case BTF_KIND_TYPE_TAG:
4529		if (cand_type->info != canon_type->info)
4530			return 0;
4531		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4532
4533	case BTF_KIND_ARRAY: {
4534		const struct btf_array *cand_arr, *canon_arr;
4535
4536		if (!btf_compat_array(cand_type, canon_type))
4537			return 0;
4538		cand_arr = btf_array(cand_type);
4539		canon_arr = btf_array(canon_type);
4540		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
 
4541		if (eq <= 0)
4542			return eq;
4543		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4544	}
4545
4546	case BTF_KIND_STRUCT:
4547	case BTF_KIND_UNION: {
4548		const struct btf_member *cand_m, *canon_m;
4549		__u16 vlen;
4550
4551		if (!btf_shallow_equal_struct(cand_type, canon_type))
4552			return 0;
4553		vlen = btf_vlen(cand_type);
4554		cand_m = btf_members(cand_type);
4555		canon_m = btf_members(canon_type);
4556		for (i = 0; i < vlen; i++) {
4557			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4558			if (eq <= 0)
4559				return eq;
4560			cand_m++;
4561			canon_m++;
4562		}
4563
4564		return 1;
4565	}
4566
4567	case BTF_KIND_FUNC_PROTO: {
4568		const struct btf_param *cand_p, *canon_p;
4569		__u16 vlen;
4570
4571		if (!btf_compat_fnproto(cand_type, canon_type))
4572			return 0;
4573		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4574		if (eq <= 0)
4575			return eq;
4576		vlen = btf_vlen(cand_type);
4577		cand_p = btf_params(cand_type);
4578		canon_p = btf_params(canon_type);
4579		for (i = 0; i < vlen; i++) {
4580			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4581			if (eq <= 0)
4582				return eq;
4583			cand_p++;
4584			canon_p++;
4585		}
4586		return 1;
4587	}
4588
4589	default:
4590		return -EINVAL;
4591	}
4592	return 0;
4593}
4594
4595/*
4596 * Use hypothetical mapping, produced by successful type graph equivalence
4597 * check, to augment existing struct/union canonical mapping, where possible.
4598 *
4599 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4600 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4601 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4602 * we are recording the mapping anyway. As opposed to carefulness required
4603 * for struct/union correspondence mapping (described below), for FWD resolution
4604 * it's not important, as by the time that FWD type (reference type) will be
4605 * deduplicated all structs/unions will be deduped already anyway.
4606 *
4607 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4608 * not required for correctness. It needs to be done carefully to ensure that
4609 * struct/union from candidate's type graph is not mapped into corresponding
4610 * struct/union from canonical type graph that itself hasn't been resolved into
4611 * canonical representative. The only guarantee we have is that canonical
4612 * struct/union was determined as canonical and that won't change. But any
4613 * types referenced through that struct/union fields could have been not yet
4614 * resolved, so in case like that it's too early to establish any kind of
4615 * correspondence between structs/unions.
4616 *
4617 * No canonical correspondence is derived for primitive types (they are already
4618 * deduplicated completely already anyway) or reference types (they rely on
4619 * stability of struct/union canonical relationship for equivalence checks).
4620 */
4621static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4622{
4623	__u32 canon_type_id, targ_type_id;
4624	__u16 t_kind, c_kind;
4625	__u32 t_id, c_id;
4626	int i;
4627
4628	for (i = 0; i < d->hypot_cnt; i++) {
4629		canon_type_id = d->hypot_list[i];
4630		targ_type_id = d->hypot_map[canon_type_id];
4631		t_id = resolve_type_id(d, targ_type_id);
4632		c_id = resolve_type_id(d, canon_type_id);
4633		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4634		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4635		/*
4636		 * Resolve FWD into STRUCT/UNION.
4637		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4638		 * mapped to canonical representative (as opposed to
4639		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4640		 * eventually that struct is going to be mapped and all resolved
4641		 * FWDs will automatically resolve to correct canonical
4642		 * representative. This will happen before ref type deduping,
4643		 * which critically depends on stability of these mapping. This
4644		 * stability is not a requirement for STRUCT/UNION equivalence
4645		 * checks, though.
4646		 */
4647
4648		/* if it's the split BTF case, we still need to point base FWD
4649		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4650		 * will be resolved against base FWD. If we don't point base
4651		 * canonical FWD to the resolved STRUCT/UNION, then all the
4652		 * FWDs in split BTF won't be correctly resolved to a proper
4653		 * STRUCT/UNION.
4654		 */
4655		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4656			d->map[c_id] = t_id;
4657
4658		/* if graph equivalence determined that we'd need to adjust
4659		 * base canonical types, then we need to only point base FWDs
4660		 * to STRUCTs/UNIONs and do no more modifications. For all
4661		 * other purposes the type graphs were not equivalent.
4662		 */
4663		if (d->hypot_adjust_canon)
4664			continue;
4665
4666		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4667			d->map[t_id] = c_id;
4668
4669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4670		    c_kind != BTF_KIND_FWD &&
4671		    is_type_mapped(d, c_id) &&
4672		    !is_type_mapped(d, t_id)) {
4673			/*
4674			 * as a perf optimization, we can map struct/union
4675			 * that's part of type graph we just verified for
4676			 * equivalence. We can do that for struct/union that has
4677			 * canonical representative only, though.
4678			 */
4679			d->map[t_id] = c_id;
4680		}
4681	}
4682}
4683
4684/*
4685 * Deduplicate struct/union types.
4686 *
4687 * For each struct/union type its type signature hash is calculated, taking
4688 * into account type's name, size, number, order and names of fields, but
4689 * ignoring type ID's referenced from fields, because they might not be deduped
4690 * completely until after reference types deduplication phase. This type hash
4691 * is used to iterate over all potential canonical types, sharing same hash.
4692 * For each canonical candidate we check whether type graphs that they form
4693 * (through referenced types in fields and so on) are equivalent using algorithm
4694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4698 * potentially map other structs/unions to their canonical representatives,
4699 * if such relationship hasn't yet been established. This speeds up algorithm
4700 * by eliminating some of the duplicate work.
4701 *
4702 * If no matching canonical representative was found, struct/union is marked
4703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4704 * for further look ups.
4705 */
4706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4707{
4708	struct btf_type *cand_type, *t;
4709	struct hashmap_entry *hash_entry;
4710	/* if we don't find equivalent type, then we are canonical */
4711	__u32 new_id = type_id;
4712	__u16 kind;
4713	long h;
4714
4715	/* already deduped or is in process of deduping (loop detected) */
4716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4717		return 0;
4718
4719	t = btf_type_by_id(d->btf, type_id);
4720	kind = btf_kind(t);
4721
4722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4723		return 0;
4724
4725	h = btf_hash_struct(t);
4726	for_each_dedup_cand(d, hash_entry, h) {
4727		__u32 cand_id = hash_entry->value;
4728		int eq;
4729
4730		/*
4731		 * Even though btf_dedup_is_equiv() checks for
4732		 * btf_shallow_equal_struct() internally when checking two
4733		 * structs (unions) for equivalence, we need to guard here
4734		 * from picking matching FWD type as a dedup candidate.
4735		 * This can happen due to hash collision. In such case just
4736		 * relying on btf_dedup_is_equiv() would lead to potentially
4737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4738		 * FWD and compatible STRUCT/UNION are considered equivalent.
4739		 */
4740		cand_type = btf_type_by_id(d->btf, cand_id);
4741		if (!btf_shallow_equal_struct(t, cand_type))
4742			continue;
4743
4744		btf_dedup_clear_hypot_map(d);
4745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4746		if (eq < 0)
4747			return eq;
4748		if (!eq)
4749			continue;
 
4750		btf_dedup_merge_hypot_map(d);
4751		if (d->hypot_adjust_canon) /* not really equivalent */
4752			continue;
4753		new_id = cand_id;
4754		break;
4755	}
4756
4757	d->map[type_id] = new_id;
4758	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4759		return -ENOMEM;
4760
4761	return 0;
4762}
4763
4764static int btf_dedup_struct_types(struct btf_dedup *d)
4765{
4766	int i, err;
4767
4768	for (i = 0; i < d->btf->nr_types; i++) {
4769		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4770		if (err)
4771			return err;
4772	}
4773	return 0;
4774}
4775
4776/*
4777 * Deduplicate reference type.
4778 *
4779 * Once all primitive and struct/union types got deduplicated, we can easily
4780 * deduplicate all other (reference) BTF types. This is done in two steps:
4781 *
4782 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4783 * resolution can be done either immediately for primitive or struct/union types
4784 * (because they were deduped in previous two phases) or recursively for
4785 * reference types. Recursion will always terminate at either primitive or
4786 * struct/union type, at which point we can "unwind" chain of reference types
4787 * one by one. There is no danger of encountering cycles because in C type
4788 * system the only way to form type cycle is through struct/union, so any chain
4789 * of reference types, even those taking part in a type cycle, will inevitably
4790 * reach struct/union at some point.
4791 *
4792 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4793 * becomes "stable", in the sense that no further deduplication will cause
4794 * any changes to it. With that, it's now possible to calculate type's signature
4795 * hash (this time taking into account referenced type IDs) and loop over all
4796 * potential canonical representatives. If no match was found, current type
4797 * will become canonical representative of itself and will be added into
4798 * btf_dedup->dedup_table as another possible canonical representative.
4799 */
4800static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4801{
4802	struct hashmap_entry *hash_entry;
4803	__u32 new_id = type_id, cand_id;
4804	struct btf_type *t, *cand;
4805	/* if we don't find equivalent type, then we are representative type */
4806	int ref_type_id;
4807	long h;
4808
4809	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4810		return -ELOOP;
4811	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4812		return resolve_type_id(d, type_id);
4813
4814	t = btf_type_by_id(d->btf, type_id);
4815	d->map[type_id] = BTF_IN_PROGRESS_ID;
4816
4817	switch (btf_kind(t)) {
4818	case BTF_KIND_CONST:
4819	case BTF_KIND_VOLATILE:
4820	case BTF_KIND_RESTRICT:
4821	case BTF_KIND_PTR:
4822	case BTF_KIND_TYPEDEF:
4823	case BTF_KIND_FUNC:
4824	case BTF_KIND_TYPE_TAG:
4825		ref_type_id = btf_dedup_ref_type(d, t->type);
4826		if (ref_type_id < 0)
4827			return ref_type_id;
4828		t->type = ref_type_id;
4829
4830		h = btf_hash_common(t);
4831		for_each_dedup_cand(d, hash_entry, h) {
4832			cand_id = hash_entry->value;
4833			cand = btf_type_by_id(d->btf, cand_id);
4834			if (btf_equal_common(t, cand)) {
4835				new_id = cand_id;
4836				break;
4837			}
4838		}
4839		break;
4840
4841	case BTF_KIND_DECL_TAG:
4842		ref_type_id = btf_dedup_ref_type(d, t->type);
4843		if (ref_type_id < 0)
4844			return ref_type_id;
4845		t->type = ref_type_id;
4846
4847		h = btf_hash_int_decl_tag(t);
4848		for_each_dedup_cand(d, hash_entry, h) {
4849			cand_id = hash_entry->value;
4850			cand = btf_type_by_id(d->btf, cand_id);
4851			if (btf_equal_int_tag(t, cand)) {
4852				new_id = cand_id;
4853				break;
4854			}
4855		}
4856		break;
4857
4858	case BTF_KIND_ARRAY: {
4859		struct btf_array *info = btf_array(t);
4860
4861		ref_type_id = btf_dedup_ref_type(d, info->type);
4862		if (ref_type_id < 0)
4863			return ref_type_id;
4864		info->type = ref_type_id;
4865
4866		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4867		if (ref_type_id < 0)
4868			return ref_type_id;
4869		info->index_type = ref_type_id;
4870
4871		h = btf_hash_array(t);
4872		for_each_dedup_cand(d, hash_entry, h) {
4873			cand_id = hash_entry->value;
4874			cand = btf_type_by_id(d->btf, cand_id);
4875			if (btf_equal_array(t, cand)) {
4876				new_id = cand_id;
4877				break;
4878			}
4879		}
4880		break;
4881	}
4882
4883	case BTF_KIND_FUNC_PROTO: {
4884		struct btf_param *param;
4885		__u16 vlen;
4886		int i;
4887
4888		ref_type_id = btf_dedup_ref_type(d, t->type);
4889		if (ref_type_id < 0)
4890			return ref_type_id;
4891		t->type = ref_type_id;
4892
4893		vlen = btf_vlen(t);
4894		param = btf_params(t);
4895		for (i = 0; i < vlen; i++) {
4896			ref_type_id = btf_dedup_ref_type(d, param->type);
4897			if (ref_type_id < 0)
4898				return ref_type_id;
4899			param->type = ref_type_id;
4900			param++;
4901		}
4902
4903		h = btf_hash_fnproto(t);
4904		for_each_dedup_cand(d, hash_entry, h) {
4905			cand_id = hash_entry->value;
4906			cand = btf_type_by_id(d->btf, cand_id);
4907			if (btf_equal_fnproto(t, cand)) {
4908				new_id = cand_id;
4909				break;
4910			}
4911		}
4912		break;
4913	}
4914
4915	default:
4916		return -EINVAL;
4917	}
4918
4919	d->map[type_id] = new_id;
4920	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4921		return -ENOMEM;
4922
4923	return new_id;
4924}
4925
4926static int btf_dedup_ref_types(struct btf_dedup *d)
4927{
4928	int i, err;
4929
4930	for (i = 0; i < d->btf->nr_types; i++) {
4931		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4932		if (err < 0)
4933			return err;
4934	}
4935	/* we won't need d->dedup_table anymore */
4936	hashmap__free(d->dedup_table);
4937	d->dedup_table = NULL;
4938	return 0;
4939}
4940
4941/*
4942 * Collect a map from type names to type ids for all canonical structs
4943 * and unions. If the same name is shared by several canonical types
4944 * use a special value 0 to indicate this fact.
4945 */
4946static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4947{
4948	__u32 nr_types = btf__type_cnt(d->btf);
4949	struct btf_type *t;
4950	__u32 type_id;
4951	__u16 kind;
4952	int err;
4953
4954	/*
4955	 * Iterate over base and split module ids in order to get all
4956	 * available structs in the map.
4957	 */
4958	for (type_id = 1; type_id < nr_types; ++type_id) {
4959		t = btf_type_by_id(d->btf, type_id);
4960		kind = btf_kind(t);
4961
4962		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4963			continue;
4964
4965		/* Skip non-canonical types */
4966		if (type_id != d->map[type_id])
4967			continue;
4968
4969		err = hashmap__add(names_map, t->name_off, type_id);
4970		if (err == -EEXIST)
4971			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4972
4973		if (err)
4974			return err;
4975	}
4976
4977	return 0;
4978}
4979
4980static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4981{
4982	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4983	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4984	__u16 cand_kind, kind = btf_kind(t);
4985	struct btf_type *cand_t;
4986	uintptr_t cand_id;
4987
4988	if (kind != BTF_KIND_FWD)
4989		return 0;
4990
4991	/* Skip if this FWD already has a mapping */
4992	if (type_id != d->map[type_id])
4993		return 0;
4994
4995	if (!hashmap__find(names_map, t->name_off, &cand_id))
4996		return 0;
4997
4998	/* Zero is a special value indicating that name is not unique */
4999	if (!cand_id)
5000		return 0;
5001
5002	cand_t = btf_type_by_id(d->btf, cand_id);
5003	cand_kind = btf_kind(cand_t);
5004	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5005	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5006		return 0;
5007
5008	d->map[type_id] = cand_id;
5009
5010	return 0;
5011}
5012
5013/*
5014 * Resolve unambiguous forward declarations.
5015 *
5016 * The lion's share of all FWD declarations is resolved during
5017 * `btf_dedup_struct_types` phase when different type graphs are
5018 * compared against each other. However, if in some compilation unit a
5019 * FWD declaration is not a part of a type graph compared against
5020 * another type graph that declaration's canonical type would not be
5021 * changed. Example:
5022 *
5023 * CU #1:
5024 *
5025 * struct foo;
5026 * struct foo *some_global;
5027 *
5028 * CU #2:
5029 *
5030 * struct foo { int u; };
5031 * struct foo *another_global;
5032 *
5033 * After `btf_dedup_struct_types` the BTF looks as follows:
5034 *
5035 * [1] STRUCT 'foo' size=4 vlen=1 ...
5036 * [2] INT 'int' size=4 ...
5037 * [3] PTR '(anon)' type_id=1
5038 * [4] FWD 'foo' fwd_kind=struct
5039 * [5] PTR '(anon)' type_id=4
5040 *
5041 * This pass assumes that such FWD declarations should be mapped to
5042 * structs or unions with identical name in case if the name is not
5043 * ambiguous.
5044 */
5045static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5046{
5047	int i, err;
5048	struct hashmap *names_map;
5049
5050	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5051	if (IS_ERR(names_map))
5052		return PTR_ERR(names_map);
5053
5054	err = btf_dedup_fill_unique_names_map(d, names_map);
5055	if (err < 0)
5056		goto exit;
5057
5058	for (i = 0; i < d->btf->nr_types; i++) {
5059		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5060		if (err < 0)
5061			break;
5062	}
5063
5064exit:
5065	hashmap__free(names_map);
5066	return err;
5067}
5068
5069/*
5070 * Compact types.
5071 *
5072 * After we established for each type its corresponding canonical representative
5073 * type, we now can eliminate types that are not canonical and leave only
5074 * canonical ones layed out sequentially in memory by copying them over
5075 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5076 * a map from original type ID to a new compacted type ID, which will be used
5077 * during next phase to "fix up" type IDs, referenced from struct/union and
5078 * reference types.
5079 */
5080static int btf_dedup_compact_types(struct btf_dedup *d)
5081{
5082	__u32 *new_offs;
5083	__u32 next_type_id = d->btf->start_id;
5084	const struct btf_type *t;
5085	void *p;
5086	int i, id, len;
5087
5088	/* we are going to reuse hypot_map to store compaction remapping */
5089	d->hypot_map[0] = 0;
5090	/* base BTF types are not renumbered */
5091	for (id = 1; id < d->btf->start_id; id++)
5092		d->hypot_map[id] = id;
5093	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5094		d->hypot_map[id] = BTF_UNPROCESSED_ID;
5095
5096	p = d->btf->types_data;
 
5097
5098	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5099		if (d->map[id] != id)
5100			continue;
5101
5102		t = btf__type_by_id(d->btf, id);
5103		len = btf_type_size(t);
5104		if (len < 0)
5105			return len;
5106
5107		memmove(p, t, len);
5108		d->hypot_map[id] = next_type_id;
5109		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5110		p += len;
5111		next_type_id++;
5112	}
5113
5114	/* shrink struct btf's internal types index and update btf_header */
5115	d->btf->nr_types = next_type_id - d->btf->start_id;
5116	d->btf->type_offs_cap = d->btf->nr_types;
5117	d->btf->hdr->type_len = p - d->btf->types_data;
5118	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5119				       sizeof(*new_offs));
5120	if (d->btf->type_offs_cap && !new_offs)
5121		return -ENOMEM;
5122	d->btf->type_offs = new_offs;
5123	d->btf->hdr->str_off = d->btf->hdr->type_len;
5124	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
 
 
 
 
 
 
5125	return 0;
5126}
5127
5128/*
5129 * Figure out final (deduplicated and compacted) type ID for provided original
5130 * `type_id` by first resolving it into corresponding canonical type ID and
5131 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5132 * which is populated during compaction phase.
5133 */
5134static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5135{
5136	struct btf_dedup *d = ctx;
5137	__u32 resolved_type_id, new_type_id;
5138
5139	resolved_type_id = resolve_type_id(d, *type_id);
5140	new_type_id = d->hypot_map[resolved_type_id];
5141	if (new_type_id > BTF_MAX_NR_TYPES)
5142		return -EINVAL;
5143
5144	*type_id = new_type_id;
5145	return 0;
5146}
5147
5148/*
5149 * Remap referenced type IDs into deduped type IDs.
5150 *
5151 * After BTF types are deduplicated and compacted, their final type IDs may
5152 * differ from original ones. The map from original to a corresponding
5153 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5154 * compaction phase. During remapping phase we are rewriting all type IDs
5155 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5156 * their final deduped type IDs.
5157 */
5158static int btf_dedup_remap_types(struct btf_dedup *d)
5159{
 
5160	int i, r;
5161
5162	for (i = 0; i < d->btf->nr_types; i++) {
5163		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5164		struct btf_field_iter it;
5165		__u32 *type_id;
5166
5167		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5168		if (r)
 
 
 
 
 
 
 
 
5169			return r;
 
 
5170
5171		while ((type_id = btf_field_iter_next(&it))) {
5172			__u32 resolved_id, new_id;
5173
5174			resolved_id = resolve_type_id(d, *type_id);
5175			new_id = d->hypot_map[resolved_id];
5176			if (new_id > BTF_MAX_NR_TYPES)
5177				return -EINVAL;
5178
5179			*type_id = new_id;
5180		}
 
 
5181	}
5182
5183	if (!d->btf_ext)
5184		return 0;
 
 
5185
5186	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5187	if (r)
5188		return r;
5189
5190	return 0;
5191}
5192
5193/*
5194 * Probe few well-known locations for vmlinux kernel image and try to load BTF
5195 * data out of it to use for target BTF.
5196 */
5197struct btf *btf__load_vmlinux_btf(void)
5198{
5199	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5200	/* fall back locations, trying to find vmlinux on disk */
5201	const char *locations[] = {
5202		"/boot/vmlinux-%1$s",
5203		"/lib/modules/%1$s/vmlinux-%1$s",
5204		"/lib/modules/%1$s/build/vmlinux",
5205		"/usr/lib/modules/%1$s/kernel/vmlinux",
5206		"/usr/lib/debug/boot/vmlinux-%1$s",
5207		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
5208		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
5209	};
5210	char path[PATH_MAX + 1];
5211	struct utsname buf;
5212	struct btf *btf;
5213	int i, err;
5214
5215	/* is canonical sysfs location accessible? */
5216	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5217		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5218			sysfs_btf_path);
5219	} else {
5220		btf = btf__parse(sysfs_btf_path, NULL);
5221		if (!btf) {
5222			err = -errno;
5223			pr_warn("failed to read kernel BTF from '%s': %s\n",
5224				sysfs_btf_path, errstr(err));
5225			return libbpf_err_ptr(err);
5226		}
5227		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5228		return btf;
5229	}
5230
5231	/* try fallback locations */
5232	uname(&buf);
5233	for (i = 0; i < ARRAY_SIZE(locations); i++) {
5234		snprintf(path, PATH_MAX, locations[i], buf.release);
5235
5236		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5237			continue;
 
 
5238
5239		btf = btf__parse(path, NULL);
5240		err = libbpf_get_error(btf);
5241		pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5242		if (err)
5243			continue;
5244
5245		return btf;
 
5246	}
5247
5248	pr_warn("failed to find valid kernel BTF\n");
5249	return libbpf_err_ptr(-ESRCH);
5250}
5251
5252struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
5253
5254struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5255{
5256	char path[80];
5257
5258	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5259	return btf__parse_split(path, vmlinux_btf);
5260}
5261
5262int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5263{
5264	const struct btf_ext_info *seg;
5265	struct btf_ext_info_sec *sec;
5266	int i, err;
5267
5268	seg = &btf_ext->func_info;
5269	for_each_btf_ext_sec(seg, sec) {
5270		struct bpf_func_info_min *rec;
5271
5272		for_each_btf_ext_rec(seg, sec, i, rec) {
5273			err = visit(&rec->type_id, ctx);
5274			if (err < 0)
5275				return err;
5276		}
 
5277	}
5278
5279	seg = &btf_ext->core_relo_info;
5280	for_each_btf_ext_sec(seg, sec) {
5281		struct bpf_core_relo *rec;
5282
5283		for_each_btf_ext_rec(seg, sec, i, rec) {
5284			err = visit(&rec->type_id, ctx);
5285			if (err < 0)
5286				return err;
5287		}
5288	}
5289
5290	return 0;
5291}
5292
5293int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5294{
5295	const struct btf_ext_info *seg;
5296	struct btf_ext_info_sec *sec;
5297	int i, err;
5298
5299	seg = &btf_ext->func_info;
5300	for_each_btf_ext_sec(seg, sec) {
5301		err = visit(&sec->sec_name_off, ctx);
5302		if (err)
5303			return err;
5304	}
5305
5306	seg = &btf_ext->line_info;
5307	for_each_btf_ext_sec(seg, sec) {
5308		struct bpf_line_info_min *rec;
5309
5310		err = visit(&sec->sec_name_off, ctx);
5311		if (err)
5312			return err;
5313
5314		for_each_btf_ext_rec(seg, sec, i, rec) {
5315			err = visit(&rec->file_name_off, ctx);
5316			if (err)
5317				return err;
5318			err = visit(&rec->line_off, ctx);
5319			if (err)
5320				return err;
5321		}
5322	}
5323
5324	seg = &btf_ext->core_relo_info;
5325	for_each_btf_ext_sec(seg, sec) {
5326		struct bpf_core_relo *rec;
5327
5328		err = visit(&sec->sec_name_off, ctx);
5329		if (err)
5330			return err;
5331
5332		for_each_btf_ext_rec(seg, sec, i, rec) {
5333			err = visit(&rec->access_str_off, ctx);
5334			if (err)
5335				return err;
5336		}
5337	}
5338
5339	return 0;
5340}
5341
5342struct btf_distill {
5343	struct btf_pipe pipe;
5344	int *id_map;
5345	unsigned int split_start_id;
5346	unsigned int split_start_str;
5347	int diff_id;
5348};
5349
5350static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5351{
5352	struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5353	struct btf_field_iter it;
5354	__u32 *id;
5355	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5356
5357	err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5358	if (err)
5359		return err;
5360	while ((id = btf_field_iter_next(&it))) {
5361		struct btf_type *base_t;
5362
5363		if (!*id)
5364			continue;
5365		/* split BTF id, not needed */
5366		if (*id >= dist->split_start_id)
5367			continue;
5368		/* already added ? */
5369		if (dist->id_map[*id] > 0)
5370			continue;
5371
5372		/* only a subset of base BTF types should be referenced from
5373		 * split BTF; ensure nothing unexpected is referenced.
5374		 */
5375		base_t = btf_type_by_id(dist->pipe.src, *id);
5376		switch (btf_kind(base_t)) {
5377		case BTF_KIND_INT:
5378		case BTF_KIND_FLOAT:
5379		case BTF_KIND_FWD:
5380		case BTF_KIND_ARRAY:
5381		case BTF_KIND_STRUCT:
5382		case BTF_KIND_UNION:
5383		case BTF_KIND_TYPEDEF:
5384		case BTF_KIND_ENUM:
5385		case BTF_KIND_ENUM64:
5386		case BTF_KIND_PTR:
5387		case BTF_KIND_CONST:
5388		case BTF_KIND_RESTRICT:
5389		case BTF_KIND_VOLATILE:
5390		case BTF_KIND_FUNC_PROTO:
5391		case BTF_KIND_TYPE_TAG:
5392			dist->id_map[*id] = *id;
5393			break;
5394		default:
5395			pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5396				*id, btf_kind(base_t));
5397			return -EINVAL;
5398		}
5399		/* If a base type is used, ensure types it refers to are
5400		 * marked as used also; so for example if we find a PTR to INT
5401		 * we need both the PTR and INT.
5402		 *
5403		 * The only exception is named struct/unions, since distilled
5404		 * base BTF composite types have no members.
5405		 */
5406		if (btf_is_composite(base_t) && base_t->name_off)
5407			continue;
5408		err = btf_add_distilled_type_ids(dist, *id);
5409		if (err)
5410			return err;
5411	}
5412	return 0;
5413}
5414
5415static int btf_add_distilled_types(struct btf_distill *dist)
5416{
5417	bool adding_to_base = dist->pipe.dst->start_id == 1;
5418	int id = btf__type_cnt(dist->pipe.dst);
5419	struct btf_type *t;
5420	int i, err = 0;
5421
 
 
 
 
5422
5423	/* Add types for each of the required references to either distilled
5424	 * base or split BTF, depending on type characteristics.
5425	 */
5426	for (i = 1; i < dist->split_start_id; i++) {
5427		const char *name;
5428		int kind;
5429
5430		if (!dist->id_map[i])
5431			continue;
5432		t = btf_type_by_id(dist->pipe.src, i);
5433		kind = btf_kind(t);
5434		name = btf__name_by_offset(dist->pipe.src, t->name_off);
5435
5436		switch (kind) {
5437		case BTF_KIND_INT:
5438		case BTF_KIND_FLOAT:
5439		case BTF_KIND_FWD:
5440			/* Named int, float, fwd are added to base. */
5441			if (!adding_to_base)
5442				continue;
5443			err = btf_add_type(&dist->pipe, t);
5444			break;
5445		case BTF_KIND_STRUCT:
5446		case BTF_KIND_UNION:
5447			/* Named struct/union are added to base as 0-vlen
5448			 * struct/union of same size.  Anonymous struct/unions
5449			 * are added to split BTF as-is.
5450			 */
5451			if (adding_to_base) {
5452				if (!t->name_off)
5453					continue;
5454				err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5455			} else {
5456				if (t->name_off)
5457					continue;
5458				err = btf_add_type(&dist->pipe, t);
5459			}
5460			break;
5461		case BTF_KIND_ENUM:
5462		case BTF_KIND_ENUM64:
5463			/* Named enum[64]s are added to base as a sized
5464			 * enum; relocation will match with appropriately-named
5465			 * and sized enum or enum64.
5466			 *
5467			 * Anonymous enums are added to split BTF as-is.
5468			 */
5469			if (adding_to_base) {
5470				if (!t->name_off)
5471					continue;
5472				err = btf__add_enum(dist->pipe.dst, name, t->size);
5473			} else {
5474				if (t->name_off)
5475					continue;
5476				err = btf_add_type(&dist->pipe, t);
5477			}
5478			break;
5479		case BTF_KIND_ARRAY:
5480		case BTF_KIND_TYPEDEF:
5481		case BTF_KIND_PTR:
5482		case BTF_KIND_CONST:
5483		case BTF_KIND_RESTRICT:
5484		case BTF_KIND_VOLATILE:
5485		case BTF_KIND_FUNC_PROTO:
5486		case BTF_KIND_TYPE_TAG:
5487			/* All other types are added to split BTF. */
5488			if (adding_to_base)
5489				continue;
5490			err = btf_add_type(&dist->pipe, t);
5491			break;
5492		default:
5493			pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5494				name, i, kind);
5495			return -EINVAL;
5496
5497		}
5498		if (err < 0)
5499			break;
5500		dist->id_map[i] = id++;
5501	}
5502	return err;
5503}
5504
5505/* Split BTF ids without a mapping will be shifted downwards since distilled
5506 * base BTF is smaller than the original base BTF.  For those that have a
5507 * mapping (either to base or updated split BTF), update the id based on
5508 * that mapping.
5509 */
5510static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5511{
5512	struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5513	struct btf_field_iter it;
5514	__u32 *id;
5515	int err;
5516
5517	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5518	if (err)
5519		return err;
5520	while ((id = btf_field_iter_next(&it))) {
5521		if (dist->id_map[*id])
5522			*id = dist->id_map[*id];
5523		else if (*id >= dist->split_start_id)
5524			*id -= dist->diff_id;
5525	}
5526	return 0;
5527}
5528
5529/* Create updated split BTF with distilled base BTF; distilled base BTF
5530 * consists of BTF information required to clarify the types that split
5531 * BTF refers to, omitting unneeded details.  Specifically it will contain
5532 * base types and memberless definitions of named structs, unions and enumerated
5533 * types. Associated reference types like pointers, arrays and anonymous
5534 * structs, unions and enumerated types will be added to split BTF.
5535 * Size is recorded for named struct/unions to help guide matching to the
5536 * target base BTF during later relocation.
5537 *
5538 * The only case where structs, unions or enumerated types are fully represented
5539 * is when they are anonymous; in such cases, the anonymous type is added to
5540 * split BTF in full.
5541 *
5542 * We return newly-created split BTF where the split BTF refers to a newly-created
5543 * distilled base BTF. Both must be freed separately by the caller.
5544 */
5545int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5546		      struct btf **new_split_btf)
5547{
5548	struct btf *new_base = NULL, *new_split = NULL;
5549	const struct btf *old_base;
5550	unsigned int n = btf__type_cnt(src_btf);
5551	struct btf_distill dist = {};
5552	struct btf_type *t;
5553	int i, err = 0;
5554
5555	/* src BTF must be split BTF. */
5556	old_base = btf__base_btf(src_btf);
5557	if (!new_base_btf || !new_split_btf || !old_base)
5558		return libbpf_err(-EINVAL);
5559
5560	new_base = btf__new_empty();
5561	if (!new_base)
5562		return libbpf_err(-ENOMEM);
5563
5564	btf__set_endianness(new_base, btf__endianness(src_btf));
5565
5566	dist.id_map = calloc(n, sizeof(*dist.id_map));
5567	if (!dist.id_map) {
5568		err = -ENOMEM;
5569		goto done;
5570	}
5571	dist.pipe.src = src_btf;
5572	dist.pipe.dst = new_base;
5573	dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5574	if (IS_ERR(dist.pipe.str_off_map)) {
5575		err = -ENOMEM;
5576		goto done;
5577	}
5578	dist.split_start_id = btf__type_cnt(old_base);
5579	dist.split_start_str = old_base->hdr->str_len;
5580
5581	/* Pass over src split BTF; generate the list of base BTF type ids it
5582	 * references; these will constitute our distilled BTF set to be
5583	 * distributed over base and split BTF as appropriate.
5584	 */
5585	for (i = src_btf->start_id; i < n; i++) {
5586		err = btf_add_distilled_type_ids(&dist, i);
5587		if (err < 0)
5588			goto done;
5589	}
5590	/* Next add types for each of the required references to base BTF and split BTF
5591	 * in turn.
5592	 */
5593	err = btf_add_distilled_types(&dist);
5594	if (err < 0)
5595		goto done;
5596
5597	/* Create new split BTF with distilled base BTF as its base; the final
5598	 * state is split BTF with distilled base BTF that represents enough
5599	 * about its base references to allow it to be relocated with the base
5600	 * BTF available.
5601	 */
5602	new_split = btf__new_empty_split(new_base);
5603	if (!new_split) {
5604		err = -errno;
5605		goto done;
5606	}
5607	dist.pipe.dst = new_split;
5608	/* First add all split types */
5609	for (i = src_btf->start_id; i < n; i++) {
5610		t = btf_type_by_id(src_btf, i);
5611		err = btf_add_type(&dist.pipe, t);
5612		if (err < 0)
5613			goto done;
5614	}
5615	/* Now add distilled types to split BTF that are not added to base. */
5616	err = btf_add_distilled_types(&dist);
5617	if (err < 0)
5618		goto done;
5619
5620	/* All split BTF ids will be shifted downwards since there are less base
5621	 * BTF ids in distilled base BTF.
5622	 */
5623	dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5624
5625	n = btf__type_cnt(new_split);
5626	/* Now update base/split BTF ids. */
5627	for (i = 1; i < n; i++) {
5628		err = btf_update_distilled_type_ids(&dist, i);
5629		if (err < 0)
5630			break;
5631	}
5632done:
5633	free(dist.id_map);
5634	hashmap__free(dist.pipe.str_off_map);
5635	if (err) {
5636		btf__free(new_split);
5637		btf__free(new_base);
5638		return libbpf_err(err);
5639	}
5640	*new_base_btf = new_base;
5641	*new_split_btf = new_split;
5642
5643	return 0;
5644}
5645
5646const struct btf_header *btf_header(const struct btf *btf)
5647{
5648	return btf->hdr;
5649}
5650
5651void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5652{
5653	btf->base_btf = (struct btf *)base_btf;
5654	btf->start_id = btf__type_cnt(base_btf);
5655	btf->start_str_off = base_btf->hdr->str_len;
5656}
5657
5658int btf__relocate(struct btf *btf, const struct btf *base_btf)
5659{
5660	int err = btf_relocate(btf, base_btf, NULL);
5661
5662	if (!err)
5663		btf->owns_base = false;
5664	return libbpf_err(err);
5665}