Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
 
  39#include "crypto.h"
 
 
  40
  41#define TIPC_TX_PROBE_LIM	msecs_to_jiffies(1000) /* > 1s */
  42#define TIPC_TX_LASTING_LIM	msecs_to_jiffies(120000) /* 2 mins */
  43#define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
  44#define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(180000) /* 3 mins */
 
  45#define TIPC_MAX_TFMS_DEF	10
  46#define TIPC_MAX_TFMS_LIM	1000
  47
  48/**
 
 
  49 * TIPC Key ids
  50 */
  51enum {
  52	KEY_UNUSED = 0,
  53	KEY_MIN,
  54	KEY_1 = KEY_MIN,
  55	KEY_2,
  56	KEY_3,
  57	KEY_MAX = KEY_3,
  58};
  59
  60/**
  61 * TIPC Crypto statistics
  62 */
  63enum {
  64	STAT_OK,
  65	STAT_NOK,
  66	STAT_ASYNC,
  67	STAT_ASYNC_OK,
  68	STAT_ASYNC_NOK,
  69	STAT_BADKEYS, /* tx only */
  70	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  71	STAT_NOKEYS,
  72	STAT_SWITCHES,
  73
  74	MAX_STATS,
  75};
  76
  77/* TIPC crypto statistics' header */
  78static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  79					"async_nok", "badmsgs", "nokeys",
  80					"switches"};
  81
  82/* Max TFMs number per key */
  83int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
 
 
  84
  85/**
  86 * struct tipc_key - TIPC keys' status indicator
  87 *
  88 *         7     6     5     4     3     2     1     0
  89 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  90 * key: | (reserved)|passive idx| active idx|pending idx|
  91 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  92 */
  93struct tipc_key {
  94#define KEY_BITS (2)
  95#define KEY_MASK ((1 << KEY_BITS) - 1)
  96	union {
  97		struct {
  98#if defined(__LITTLE_ENDIAN_BITFIELD)
  99			u8 pending:2,
 100			   active:2,
 101			   passive:2, /* rx only */
 102			   reserved:2;
 103#elif defined(__BIG_ENDIAN_BITFIELD)
 104			u8 reserved:2,
 105			   passive:2, /* rx only */
 106			   active:2,
 107			   pending:2;
 108#else
 109#error  "Please fix <asm/byteorder.h>"
 110#endif
 111		} __packed;
 112		u8 keys;
 113	};
 114};
 115
 116/**
 117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 
 
 118 */
 119struct tipc_tfm {
 120	struct crypto_aead *tfm;
 121	struct list_head list;
 122};
 123
 124/**
 125 * struct tipc_aead - TIPC AEAD key structure
 126 * @tfm_entry: per-cpu pointer to one entry in TFM list
 127 * @crypto: TIPC crypto owns this key
 128 * @cloned: reference to the source key in case cloning
 129 * @users: the number of the key users (TX/RX)
 130 * @salt: the key's SALT value
 131 * @authsize: authentication tag size (max = 16)
 132 * @mode: crypto mode is applied to the key
 133 * @hint[]: a hint for user key
 134 * @rcu: struct rcu_head
 
 
 135 * @seqno: the key seqno (cluster scope)
 136 * @refcnt: the key reference counter
 137 */
 138struct tipc_aead {
 139#define TIPC_AEAD_HINT_LEN (5)
 140	struct tipc_tfm * __percpu *tfm_entry;
 141	struct tipc_crypto *crypto;
 142	struct tipc_aead *cloned;
 143	atomic_t users;
 144	u32 salt;
 145	u8 authsize;
 146	u8 mode;
 147	char hint[TIPC_AEAD_HINT_LEN + 1];
 148	struct rcu_head rcu;
 
 
 149
 150	atomic64_t seqno ____cacheline_aligned;
 151	refcount_t refcnt ____cacheline_aligned;
 152
 153} ____cacheline_aligned;
 154
 155/**
 156 * struct tipc_crypto_stats - TIPC Crypto statistics
 
 157 */
 158struct tipc_crypto_stats {
 159	unsigned int stat[MAX_STATS];
 160};
 161
 162/**
 163 * struct tipc_crypto - TIPC TX/RX crypto structure
 164 * @net: struct net
 165 * @node: TIPC node (RX)
 166 * @aead: array of pointers to AEAD keys for encryption/decryption
 167 * @peer_rx_active: replicated peer RX active key index
 
 168 * @key: the key states
 169 * @working: the crypto is working or not
 
 
 
 
 
 170 * @stats: the crypto statistics
 
 171 * @sndnxt: the per-peer sndnxt (TX)
 172 * @timer1: general timer 1 (jiffies)
 173 * @timer2: general timer 1 (jiffies)
 
 
 
 
 
 174 * @lock: tipc_key lock
 175 */
 176struct tipc_crypto {
 177	struct net *net;
 178	struct tipc_node *node;
 179	struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
 180	atomic_t peer_rx_active;
 
 181	struct tipc_key key;
 182	u8 working:1;
 
 
 
 
 
 
 
 
 183	struct tipc_crypto_stats __percpu *stats;
 
 184
 185	atomic64_t sndnxt ____cacheline_aligned;
 186	unsigned long timer1;
 187	unsigned long timer2;
 
 
 
 
 
 
 
 
 
 188	spinlock_t lock; /* crypto lock */
 189
 190} ____cacheline_aligned;
 191
 192/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 193struct tipc_crypto_tx_ctx {
 194	struct tipc_aead *aead;
 195	struct tipc_bearer *bearer;
 196	struct tipc_media_addr dst;
 197};
 198
 199/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 200struct tipc_crypto_rx_ctx {
 201	struct tipc_aead *aead;
 202	struct tipc_bearer *bearer;
 203};
 204
 205static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 206static inline void tipc_aead_put(struct tipc_aead *aead);
 207static void tipc_aead_free(struct rcu_head *rp);
 208static int tipc_aead_users(struct tipc_aead __rcu *aead);
 209static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 210static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 211static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 212static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 213static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 214			  u8 mode);
 215static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 216static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 217				 unsigned int crypto_ctx_size,
 218				 u8 **iv, struct aead_request **req,
 219				 struct scatterlist **sg, int nsg);
 220static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 221			     struct tipc_bearer *b,
 222			     struct tipc_media_addr *dst,
 223			     struct tipc_node *__dnode);
 224static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
 225static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 226			     struct sk_buff *skb, struct tipc_bearer *b);
 227static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
 228static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 229static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 230			   u8 tx_key, struct sk_buff *skb,
 231			   struct tipc_crypto *__rx);
 232static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 233					     u8 new_passive,
 234					     u8 new_active,
 235					     u8 new_pending);
 236static int tipc_crypto_key_attach(struct tipc_crypto *c,
 237				  struct tipc_aead *aead, u8 pos);
 
 238static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 239static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 240						 struct tipc_crypto *rx,
 241						 struct sk_buff *skb);
 242static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
 243				  struct tipc_msg *hdr);
 244static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 
 
 
 
 245static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 246				     struct tipc_bearer *b,
 247				     struct sk_buff **skb, int err);
 248static void tipc_crypto_do_cmd(struct net *net, int cmd);
 249static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 250#ifdef TIPC_CRYPTO_DEBUG
 251static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 252				  char *buf);
 253#endif
 
 
 
 
 
 
 
 
 254
 255#define key_next(cur) ((cur) % KEY_MAX + 1)
 256
 257#define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
 258	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 259
 260#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
 261do {									\
 262	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
 263						lockdep_is_held(lock));	\
 264	rcu_assign_pointer((rcu_ptr), (ptr));				\
 265	tipc_aead_put(__tmp);						\
 266} while (0)
 267
 268#define tipc_crypto_key_detach(rcu_ptr, lock)				\
 269	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 270
 271/**
 272 * tipc_aead_key_validate - Validate a AEAD user key
 
 
 273 */
 274int tipc_aead_key_validate(struct tipc_aead_key *ukey)
 275{
 276	int keylen;
 277
 278	/* Check if algorithm exists */
 279	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 280		pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
 281		return -ENODEV;
 282	}
 283
 284	/* Currently, we only support the "gcm(aes)" cipher algorithm */
 285	if (strcmp(ukey->alg_name, "gcm(aes)"))
 
 286		return -ENOTSUPP;
 
 287
 288	/* Check if key size is correct */
 289	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 290	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 291		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 292		     keylen != TIPC_AES_GCM_KEY_SIZE_256))
 293		return -EINVAL;
 
 
 294
 295	return 0;
 296}
 297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 299{
 300	struct tipc_aead *tmp;
 301
 302	rcu_read_lock();
 303	tmp = rcu_dereference(aead);
 304	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 305		tmp = NULL;
 306	rcu_read_unlock();
 307
 308	return tmp;
 309}
 310
 311static inline void tipc_aead_put(struct tipc_aead *aead)
 312{
 313	if (aead && refcount_dec_and_test(&aead->refcnt))
 314		call_rcu(&aead->rcu, tipc_aead_free);
 315}
 316
 317/**
 318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 319 * @rp: rcu head pointer
 320 */
 321static void tipc_aead_free(struct rcu_head *rp)
 322{
 323	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 324	struct tipc_tfm *tfm_entry, *head, *tmp;
 325
 326	if (aead->cloned) {
 327		tipc_aead_put(aead->cloned);
 328	} else {
 329		head = *get_cpu_ptr(aead->tfm_entry);
 330		put_cpu_ptr(aead->tfm_entry);
 331		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 332			crypto_free_aead(tfm_entry->tfm);
 333			list_del(&tfm_entry->list);
 334			kfree(tfm_entry);
 335		}
 336		/* Free the head */
 337		crypto_free_aead(head->tfm);
 338		list_del(&head->list);
 339		kfree(head);
 340	}
 341	free_percpu(aead->tfm_entry);
 
 342	kfree(aead);
 343}
 344
 345static int tipc_aead_users(struct tipc_aead __rcu *aead)
 346{
 347	struct tipc_aead *tmp;
 348	int users = 0;
 349
 350	rcu_read_lock();
 351	tmp = rcu_dereference(aead);
 352	if (tmp)
 353		users = atomic_read(&tmp->users);
 354	rcu_read_unlock();
 355
 356	return users;
 357}
 358
 359static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 360{
 361	struct tipc_aead *tmp;
 362
 363	rcu_read_lock();
 364	tmp = rcu_dereference(aead);
 365	if (tmp)
 366		atomic_add_unless(&tmp->users, 1, lim);
 367	rcu_read_unlock();
 368}
 369
 370static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 371{
 372	struct tipc_aead *tmp;
 373
 374	rcu_read_lock();
 375	tmp = rcu_dereference(aead);
 376	if (tmp)
 377		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 378	rcu_read_unlock();
 379}
 380
 381static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 382{
 383	struct tipc_aead *tmp;
 384	int cur;
 385
 386	rcu_read_lock();
 387	tmp = rcu_dereference(aead);
 388	if (tmp) {
 389		do {
 390			cur = atomic_read(&tmp->users);
 391			if (cur == val)
 392				break;
 393		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 394	}
 395	rcu_read_unlock();
 396}
 397
 398/**
 399 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 
 400 */
 401static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 402{
 403	struct tipc_tfm **tfm_entry;
 404	struct crypto_aead *tfm;
 405
 406	tfm_entry = get_cpu_ptr(aead->tfm_entry);
 407	*tfm_entry = list_next_entry(*tfm_entry, list);
 408	tfm = (*tfm_entry)->tfm;
 409	put_cpu_ptr(tfm_entry);
 410
 411	return tfm;
 412}
 413
 414/**
 415 * tipc_aead_init - Initiate TIPC AEAD
 416 * @aead: returned new TIPC AEAD key handle pointer
 417 * @ukey: pointer to user key data
 418 * @mode: the key mode
 419 *
 420 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 421 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 422 * "net/tipc/max_tfms" first.
 423 * Also, all the other AEAD data are also initialized.
 424 *
 425 * Return: 0 if the initiation is successful, otherwise: < 0
 426 */
 427static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 428			  u8 mode)
 429{
 430	struct tipc_tfm *tfm_entry, *head;
 431	struct crypto_aead *tfm;
 432	struct tipc_aead *tmp;
 433	int keylen, err, cpu;
 434	int tfm_cnt = 0;
 435
 436	if (unlikely(*aead))
 437		return -EEXIST;
 438
 439	/* Allocate a new AEAD */
 440	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 441	if (unlikely(!tmp))
 442		return -ENOMEM;
 443
 444	/* The key consists of two parts: [AES-KEY][SALT] */
 445	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 446
 447	/* Allocate per-cpu TFM entry pointer */
 448	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 449	if (!tmp->tfm_entry) {
 450		kfree_sensitive(tmp);
 451		return -ENOMEM;
 452	}
 453
 454	/* Make a list of TFMs with the user key data */
 455	do {
 456		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 457		if (IS_ERR(tfm)) {
 458			err = PTR_ERR(tfm);
 459			break;
 460		}
 461
 462		if (unlikely(!tfm_cnt &&
 463			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 464			crypto_free_aead(tfm);
 465			err = -ENOTSUPP;
 466			break;
 467		}
 468
 469		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 470		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 471		if (unlikely(err)) {
 472			crypto_free_aead(tfm);
 473			break;
 474		}
 475
 476		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 477		if (unlikely(!tfm_entry)) {
 478			crypto_free_aead(tfm);
 479			err = -ENOMEM;
 480			break;
 481		}
 482		INIT_LIST_HEAD(&tfm_entry->list);
 483		tfm_entry->tfm = tfm;
 484
 485		/* First entry? */
 486		if (!tfm_cnt) {
 487			head = tfm_entry;
 488			for_each_possible_cpu(cpu) {
 489				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 490			}
 491		} else {
 492			list_add_tail(&tfm_entry->list, &head->list);
 493		}
 494
 495	} while (++tfm_cnt < sysctl_tipc_max_tfms);
 496
 497	/* Not any TFM is allocated? */
 498	if (!tfm_cnt) {
 499		free_percpu(tmp->tfm_entry);
 500		kfree_sensitive(tmp);
 501		return err;
 502	}
 503
 504	/* Copy some chars from the user key as a hint */
 505	memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
 506	tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
 507
 508	/* Initialize the other data */
 509	tmp->mode = mode;
 510	tmp->cloned = NULL;
 511	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 
 
 
 
 
 512	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 513	atomic_set(&tmp->users, 0);
 514	atomic64_set(&tmp->seqno, 0);
 515	refcount_set(&tmp->refcnt, 1);
 516
 517	*aead = tmp;
 518	return 0;
 519}
 520
 521/**
 522 * tipc_aead_clone - Clone a TIPC AEAD key
 523 * @dst: dest key for the cloning
 524 * @src: source key to clone from
 525 *
 526 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 527 * common for the keys.
 528 * A reference to the source is hold in the "cloned" pointer for the later
 529 * freeing purposes.
 530 *
 531 * Note: this must be done in cluster-key mode only!
 532 * Return: 0 in case of success, otherwise < 0
 533 */
 534static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 535{
 536	struct tipc_aead *aead;
 537	int cpu;
 538
 539	if (!src)
 540		return -ENOKEY;
 541
 542	if (src->mode != CLUSTER_KEY)
 543		return -EINVAL;
 544
 545	if (unlikely(*dst))
 546		return -EEXIST;
 547
 548	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 549	if (unlikely(!aead))
 550		return -ENOMEM;
 551
 552	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 553	if (unlikely(!aead->tfm_entry)) {
 554		kfree_sensitive(aead);
 555		return -ENOMEM;
 556	}
 557
 558	for_each_possible_cpu(cpu) {
 559		*per_cpu_ptr(aead->tfm_entry, cpu) =
 560				*per_cpu_ptr(src->tfm_entry, cpu);
 561	}
 562
 563	memcpy(aead->hint, src->hint, sizeof(src->hint));
 564	aead->mode = src->mode;
 565	aead->salt = src->salt;
 566	aead->authsize = src->authsize;
 567	atomic_set(&aead->users, 0);
 568	atomic64_set(&aead->seqno, 0);
 569	refcount_set(&aead->refcnt, 1);
 570
 571	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 572	aead->cloned = src;
 573
 574	*dst = aead;
 575	return 0;
 576}
 577
 578/**
 579 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 580 * @tfm: cipher handle to be registered with the request
 581 * @crypto_ctx_size: size of crypto context for callback
 582 * @iv: returned pointer to IV data
 583 * @req: returned pointer to AEAD request data
 584 * @sg: returned pointer to SG lists
 585 * @nsg: number of SG lists to be allocated
 586 *
 587 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 588 * lists, the memory layout is as follows:
 589 * crypto_ctx || iv || aead_req || sg[]
 590 *
 591 * Return: the pointer to the memory areas in case of success, otherwise NULL
 592 */
 593static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 594				 unsigned int crypto_ctx_size,
 595				 u8 **iv, struct aead_request **req,
 596				 struct scatterlist **sg, int nsg)
 597{
 598	unsigned int iv_size, req_size;
 599	unsigned int len;
 600	u8 *mem;
 601
 602	iv_size = crypto_aead_ivsize(tfm);
 603	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 604
 605	len = crypto_ctx_size;
 606	len += iv_size;
 607	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 608	len = ALIGN(len, crypto_tfm_ctx_alignment());
 609	len += req_size;
 610	len = ALIGN(len, __alignof__(struct scatterlist));
 611	len += nsg * sizeof(**sg);
 612
 613	mem = kmalloc(len, GFP_ATOMIC);
 614	if (!mem)
 615		return NULL;
 616
 617	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 618			      crypto_aead_alignmask(tfm) + 1);
 619	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 620						crypto_tfm_ctx_alignment());
 621	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 622					      __alignof__(struct scatterlist));
 623
 624	return (void *)mem;
 625}
 626
 627/**
 628 * tipc_aead_encrypt - Encrypt a message
 629 * @aead: TIPC AEAD key for the message encryption
 630 * @skb: the input/output skb
 631 * @b: TIPC bearer where the message will be delivered after the encryption
 632 * @dst: the destination media address
 633 * @__dnode: TIPC dest node if "known"
 634 *
 635 * Return:
 636 * 0                   : if the encryption has completed
 637 * -EINPROGRESS/-EBUSY : if a callback will be performed
 638 * < 0                 : the encryption has failed
 639 */
 640static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 641			     struct tipc_bearer *b,
 642			     struct tipc_media_addr *dst,
 643			     struct tipc_node *__dnode)
 644{
 645	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 646	struct tipc_crypto_tx_ctx *tx_ctx;
 647	struct aead_request *req;
 648	struct sk_buff *trailer;
 649	struct scatterlist *sg;
 650	struct tipc_ehdr *ehdr;
 651	int ehsz, len, tailen, nsg, rc;
 652	void *ctx;
 653	u32 salt;
 654	u8 *iv;
 655
 656	/* Make sure message len at least 4-byte aligned */
 657	len = ALIGN(skb->len, 4);
 658	tailen = len - skb->len + aead->authsize;
 659
 660	/* Expand skb tail for authentication tag:
 661	 * As for simplicity, we'd have made sure skb having enough tailroom
 662	 * for authentication tag @skb allocation. Even when skb is nonlinear
 663	 * but there is no frag_list, it should be still fine!
 664	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
 665	 */
 666#ifdef TIPC_CRYPTO_DEBUG
 667	SKB_LINEAR_ASSERT(skb);
 668	if (tailen > skb_tailroom(skb)) {
 669		pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
 670			skb_tailroom(skb), tailen);
 671	}
 672#endif
 673
 674	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
 675		nsg = 1;
 676		trailer = skb;
 677	} else {
 678		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
 679		 * e.g. by skb_fill_page_desc() to add another page to the skb
 680		 * with the wanted tailen... However, page skbs look not often,
 681		 * so take it easy now!
 682		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
 683		 */
 684		nsg = skb_cow_data(skb, tailen, &trailer);
 685		if (unlikely(nsg < 0)) {
 686			pr_err("TX: skb_cow_data() returned %d\n", nsg);
 687			return nsg;
 688		}
 689	}
 690
 691	pskb_put(skb, trailer, tailen);
 692
 693	/* Allocate memory for the AEAD operation */
 694	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 695	if (unlikely(!ctx))
 696		return -ENOMEM;
 697	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 698
 699	/* Map skb to the sg lists */
 700	sg_init_table(sg, nsg);
 701	rc = skb_to_sgvec(skb, sg, 0, skb->len);
 702	if (unlikely(rc < 0)) {
 703		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 704		goto exit;
 705	}
 706
 707	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 708	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
 709	 * the source address (or w0 of id), otherwise with the dest address
 710	 * if dest is known.
 711	 */
 712	ehdr = (struct tipc_ehdr *)skb->data;
 713	salt = aead->salt;
 714	if (aead->mode == CLUSTER_KEY)
 715		salt ^= ehdr->addr; /* __be32 */
 716	else if (__dnode)
 717		salt ^= tipc_node_get_addr(__dnode);
 718	memcpy(iv, &salt, 4);
 719	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 720
 721	/* Prepare request */
 722	ehsz = tipc_ehdr_size(ehdr);
 723	aead_request_set_tfm(req, tfm);
 724	aead_request_set_ad(req, ehsz);
 725	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 726
 727	/* Set callback function & data */
 728	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 729				  tipc_aead_encrypt_done, skb);
 730	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 731	tx_ctx->aead = aead;
 732	tx_ctx->bearer = b;
 733	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 734
 735	/* Hold bearer */
 736	if (unlikely(!tipc_bearer_hold(b))) {
 737		rc = -ENODEV;
 738		goto exit;
 739	}
 740
 741	/* Now, do encrypt */
 742	rc = crypto_aead_encrypt(req);
 743	if (rc == -EINPROGRESS || rc == -EBUSY)
 744		return rc;
 745
 746	tipc_bearer_put(b);
 747
 748exit:
 749	kfree(ctx);
 750	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 751	return rc;
 752}
 753
 754static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
 755{
 756	struct sk_buff *skb = base->data;
 757	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 758	struct tipc_bearer *b = tx_ctx->bearer;
 759	struct tipc_aead *aead = tx_ctx->aead;
 760	struct tipc_crypto *tx = aead->crypto;
 761	struct net *net = tx->net;
 762
 763	switch (err) {
 764	case 0:
 765		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 766		rcu_read_lock();
 767		if (likely(test_bit(0, &b->up)))
 768			b->media->send_msg(net, skb, b, &tx_ctx->dst);
 769		else
 770			kfree_skb(skb);
 771		rcu_read_unlock();
 772		break;
 773	case -EINPROGRESS:
 774		return;
 775	default:
 776		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 777		kfree_skb(skb);
 778		break;
 779	}
 780
 781	kfree(tx_ctx);
 782	tipc_bearer_put(b);
 783	tipc_aead_put(aead);
 784}
 785
 786/**
 787 * tipc_aead_decrypt - Decrypt an encrypted message
 788 * @net: struct net
 789 * @aead: TIPC AEAD for the message decryption
 790 * @skb: the input/output skb
 791 * @b: TIPC bearer where the message has been received
 792 *
 793 * Return:
 794 * 0                   : if the decryption has completed
 795 * -EINPROGRESS/-EBUSY : if a callback will be performed
 796 * < 0                 : the decryption has failed
 797 */
 798static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 799			     struct sk_buff *skb, struct tipc_bearer *b)
 800{
 801	struct tipc_crypto_rx_ctx *rx_ctx;
 802	struct aead_request *req;
 803	struct crypto_aead *tfm;
 804	struct sk_buff *unused;
 805	struct scatterlist *sg;
 806	struct tipc_ehdr *ehdr;
 807	int ehsz, nsg, rc;
 808	void *ctx;
 809	u32 salt;
 810	u8 *iv;
 811
 812	if (unlikely(!aead))
 813		return -ENOKEY;
 814
 815	/* Cow skb data if needed */
 816	if (likely(!skb_cloned(skb) &&
 817		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
 818		nsg = 1 + skb_shinfo(skb)->nr_frags;
 819	} else {
 820		nsg = skb_cow_data(skb, 0, &unused);
 821		if (unlikely(nsg < 0)) {
 822			pr_err("RX: skb_cow_data() returned %d\n", nsg);
 823			return nsg;
 824		}
 825	}
 826
 827	/* Allocate memory for the AEAD operation */
 828	tfm = tipc_aead_tfm_next(aead);
 829	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 830	if (unlikely(!ctx))
 831		return -ENOMEM;
 832	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 833
 834	/* Map skb to the sg lists */
 835	sg_init_table(sg, nsg);
 836	rc = skb_to_sgvec(skb, sg, 0, skb->len);
 837	if (unlikely(rc < 0)) {
 838		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 839		goto exit;
 840	}
 841
 842	/* Reconstruct IV: */
 843	ehdr = (struct tipc_ehdr *)skb->data;
 844	salt = aead->salt;
 845	if (aead->mode == CLUSTER_KEY)
 846		salt ^= ehdr->addr; /* __be32 */
 847	else if (ehdr->destined)
 848		salt ^= tipc_own_addr(net);
 849	memcpy(iv, &salt, 4);
 850	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 851
 852	/* Prepare request */
 853	ehsz = tipc_ehdr_size(ehdr);
 854	aead_request_set_tfm(req, tfm);
 855	aead_request_set_ad(req, ehsz);
 856	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 857
 858	/* Set callback function & data */
 859	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 860				  tipc_aead_decrypt_done, skb);
 861	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 862	rx_ctx->aead = aead;
 863	rx_ctx->bearer = b;
 864
 865	/* Hold bearer */
 866	if (unlikely(!tipc_bearer_hold(b))) {
 867		rc = -ENODEV;
 868		goto exit;
 869	}
 870
 871	/* Now, do decrypt */
 872	rc = crypto_aead_decrypt(req);
 873	if (rc == -EINPROGRESS || rc == -EBUSY)
 874		return rc;
 875
 876	tipc_bearer_put(b);
 877
 878exit:
 879	kfree(ctx);
 880	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 881	return rc;
 882}
 883
 884static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
 885{
 886	struct sk_buff *skb = base->data;
 887	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 888	struct tipc_bearer *b = rx_ctx->bearer;
 889	struct tipc_aead *aead = rx_ctx->aead;
 890	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 891	struct net *net = aead->crypto->net;
 892
 893	switch (err) {
 894	case 0:
 895		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 896		break;
 897	case -EINPROGRESS:
 898		return;
 899	default:
 900		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 901		break;
 902	}
 903
 904	kfree(rx_ctx);
 905	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 906	if (likely(skb)) {
 907		if (likely(test_bit(0, &b->up)))
 908			tipc_rcv(net, skb, b);
 909		else
 910			kfree_skb(skb);
 911	}
 912
 913	tipc_bearer_put(b);
 914}
 915
 916static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 917{
 918	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 919}
 920
 921/**
 922 * tipc_ehdr_validate - Validate an encryption message
 923 * @skb: the message buffer
 924 *
 925 * Returns "true" if this is a valid encryption message, otherwise "false"
 926 */
 927bool tipc_ehdr_validate(struct sk_buff *skb)
 928{
 929	struct tipc_ehdr *ehdr;
 930	int ehsz;
 931
 932	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
 933		return false;
 934
 935	ehdr = (struct tipc_ehdr *)skb->data;
 936	if (unlikely(ehdr->version != TIPC_EVERSION))
 937		return false;
 938	ehsz = tipc_ehdr_size(ehdr);
 939	if (unlikely(!pskb_may_pull(skb, ehsz)))
 940		return false;
 941	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
 942		return false;
 943	if (unlikely(!ehdr->tx_key))
 944		return false;
 945
 946	return true;
 947}
 948
 949/**
 950 * tipc_ehdr_build - Build TIPC encryption message header
 951 * @net: struct net
 952 * @aead: TX AEAD key to be used for the message encryption
 953 * @tx_key: key id used for the message encryption
 954 * @skb: input/output message skb
 955 * @__rx: RX crypto handle if dest is "known"
 956 *
 957 * Return: the header size if the building is successful, otherwise < 0
 958 */
 959static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 960			   u8 tx_key, struct sk_buff *skb,
 961			   struct tipc_crypto *__rx)
 962{
 963	struct tipc_msg *hdr = buf_msg(skb);
 964	struct tipc_ehdr *ehdr;
 965	u32 user = msg_user(hdr);
 966	u64 seqno;
 967	int ehsz;
 968
 969	/* Make room for encryption header */
 970	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 971	WARN_ON(skb_headroom(skb) < ehsz);
 972	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
 973
 974	/* Obtain a seqno first:
 975	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
 976	 * cluster key mode, otherwise it's better for a per-peer seqno!
 977	 */
 978	if (!__rx || aead->mode == CLUSTER_KEY)
 979		seqno = atomic64_inc_return(&aead->seqno);
 980	else
 981		seqno = atomic64_inc_return(&__rx->sndnxt);
 982
 983	/* Revoke the key if seqno is wrapped around */
 984	if (unlikely(!seqno))
 985		return tipc_crypto_key_revoke(net, tx_key);
 986
 987	/* Word 1-2 */
 988	ehdr->seqno = cpu_to_be64(seqno);
 989
 990	/* Words 0, 3- */
 991	ehdr->version = TIPC_EVERSION;
 992	ehdr->user = 0;
 993	ehdr->keepalive = 0;
 994	ehdr->tx_key = tx_key;
 995	ehdr->destined = (__rx) ? 1 : 0;
 996	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
 
 
 997	ehdr->reserved_1 = 0;
 998	ehdr->reserved_2 = 0;
 999
1000	switch (user) {
1001	case LINK_CONFIG:
1002		ehdr->user = LINK_CONFIG;
1003		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1004		break;
1005	default:
1006		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1007			ehdr->user = LINK_PROTOCOL;
1008			ehdr->keepalive = msg_is_keepalive(hdr);
1009		}
1010		ehdr->addr = hdr->hdr[3];
1011		break;
1012	}
1013
1014	return ehsz;
1015}
1016
1017static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1018					     u8 new_passive,
1019					     u8 new_active,
1020					     u8 new_pending)
1021{
1022#ifdef TIPC_CRYPTO_DEBUG
1023	struct tipc_key old = c->key;
1024	char buf[32];
1025#endif
1026
1027	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1028		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1029		      ((new_pending & KEY_MASK));
1030
1031#ifdef TIPC_CRYPTO_DEBUG
1032	pr_info("%s(%s): key changing %s ::%pS\n",
1033		(c->node) ? "RX" : "TX",
1034		(c->node) ? tipc_node_get_id_str(c->node) :
1035			    tipc_own_id_string(c->net),
1036		tipc_key_change_dump(old, c->key, buf),
1037		__builtin_return_address(0));
1038#endif
1039}
1040
1041/**
1042 * tipc_crypto_key_init - Initiate a new user / AEAD key
1043 * @c: TIPC crypto to which new key is attached
1044 * @ukey: the user key
1045 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
 
1046 *
1047 * A new TIPC AEAD key will be allocated and initiated with the specified user
1048 * key, then attached to the TIPC crypto.
1049 *
1050 * Return: new key id in case of success, otherwise: < 0
1051 */
1052int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1053			 u8 mode)
1054{
1055	struct tipc_aead *aead = NULL;
1056	int rc = 0;
1057
1058	/* Initiate with the new user key */
1059	rc = tipc_aead_init(&aead, ukey, mode);
1060
1061	/* Attach it to the crypto */
1062	if (likely(!rc)) {
1063		rc = tipc_crypto_key_attach(c, aead, 0);
1064		if (rc < 0)
1065			tipc_aead_free(&aead->rcu);
1066	}
1067
1068	pr_info("%s(%s): key initiating, rc %d!\n",
1069		(c->node) ? "RX" : "TX",
1070		(c->node) ? tipc_node_get_id_str(c->node) :
1071			    tipc_own_id_string(c->net),
1072		rc);
1073
1074	return rc;
1075}
1076
1077/**
1078 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1079 * @c: TIPC crypto to which the new AEAD key is attached
1080 * @aead: the new AEAD key pointer
1081 * @pos: desired slot in the crypto key array, = 0 if any!
 
1082 *
1083 * Return: new key id in case of success, otherwise: -EBUSY
1084 */
1085static int tipc_crypto_key_attach(struct tipc_crypto *c,
1086				  struct tipc_aead *aead, u8 pos)
 
1087{
1088	u8 new_pending, new_passive, new_key;
1089	struct tipc_key key;
1090	int rc = -EBUSY;
 
1091
1092	spin_lock_bh(&c->lock);
1093	key = c->key;
 
 
 
 
1094	if (key.active && key.passive)
1095		goto exit;
1096	if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1097		goto exit;
1098	if (key.pending) {
1099		if (pos)
1100			goto exit;
1101		if (tipc_aead_users(c->aead[key.pending]) > 0)
1102			goto exit;
 
1103		/* Replace it */
1104		new_pending = key.pending;
1105		new_passive = key.passive;
1106		new_key = new_pending;
1107	} else {
1108		if (pos) {
1109			if (key.active && pos != key_next(key.active)) {
1110				new_pending = key.pending;
1111				new_passive = pos;
1112				new_key = new_passive;
1113				goto attach;
1114			} else if (!key.active && !key.passive) {
1115				new_pending = pos;
1116				new_passive = key.passive;
1117				new_key = new_pending;
1118				goto attach;
1119			}
1120		}
1121		new_pending = key_next(key.active ?: key.passive);
1122		new_passive = key.passive;
1123		new_key = new_pending;
1124	}
1125
1126attach:
1127	aead->crypto = c;
1128	tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1129	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1130
 
 
1131	c->working = 1;
1132	c->timer1 = jiffies;
1133	c->timer2 = jiffies;
1134	rc = new_key;
1135
1136exit:
1137	spin_unlock_bh(&c->lock);
1138	return rc;
1139}
1140
1141void tipc_crypto_key_flush(struct tipc_crypto *c)
1142{
 
1143	int k;
1144
1145	spin_lock_bh(&c->lock);
1146	c->working = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	tipc_crypto_key_set_state(c, 0, 0, 0);
1148	for (k = KEY_MIN; k <= KEY_MAX; k++)
1149		tipc_crypto_key_detach(c->aead[k], &c->lock);
1150	atomic_set(&c->peer_rx_active, 0);
1151	atomic64_set(&c->sndnxt, 0);
1152	spin_unlock_bh(&c->lock);
1153}
1154
1155/**
1156 * tipc_crypto_key_try_align - Align RX keys if possible
1157 * @rx: RX crypto handle
1158 * @new_pending: new pending slot if aligned (= TX key from peer)
1159 *
1160 * Peer has used an unknown key slot, this only happens when peer has left and
1161 * rejoned, or we are newcomer.
1162 * That means, there must be no active key but a pending key at unaligned slot.
1163 * If so, we try to move the pending key to the new slot.
1164 * Note: A potential passive key can exist, it will be shifted correspondingly!
1165 *
1166 * Return: "true" if key is successfully aligned, otherwise "false"
1167 */
1168static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1169{
1170	struct tipc_aead *tmp1, *tmp2 = NULL;
1171	struct tipc_key key;
1172	bool aligned = false;
1173	u8 new_passive = 0;
1174	int x;
1175
1176	spin_lock(&rx->lock);
1177	key = rx->key;
1178	if (key.pending == new_pending) {
1179		aligned = true;
1180		goto exit;
1181	}
1182	if (key.active)
1183		goto exit;
1184	if (!key.pending)
1185		goto exit;
1186	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1187		goto exit;
1188
1189	/* Try to "isolate" this pending key first */
1190	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1191	if (!refcount_dec_if_one(&tmp1->refcnt))
1192		goto exit;
1193	rcu_assign_pointer(rx->aead[key.pending], NULL);
1194
1195	/* Move passive key if any */
1196	if (key.passive) {
1197		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1198		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1199		new_passive = (x <= 0) ? x + KEY_MAX : x;
1200	}
1201
1202	/* Re-allocate the key(s) */
1203	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1204	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1205	if (new_passive)
1206		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1207	refcount_set(&tmp1->refcnt, 1);
1208	aligned = true;
1209	pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
 
1210
1211exit:
1212	spin_unlock(&rx->lock);
1213	return aligned;
1214}
1215
1216/**
1217 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1218 * @tx: TX crypto handle
1219 * @rx: RX crypto handle (can be NULL)
1220 * @skb: the message skb which will be decrypted later
 
1221 *
1222 * This function looks up the existing TX keys and pick one which is suitable
1223 * for the message decryption, that must be a cluster key and not used before
1224 * on the same message (i.e. recursive).
1225 *
1226 * Return: the TX AEAD key handle in case of success, otherwise NULL
1227 */
1228static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1229						 struct tipc_crypto *rx,
1230						 struct sk_buff *skb)
 
1231{
1232	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1233	struct tipc_aead *aead = NULL;
1234	struct tipc_key key = tx->key;
1235	u8 k, i = 0;
1236
1237	/* Initialize data if not yet */
1238	if (!skb_cb->tx_clone_deferred) {
1239		skb_cb->tx_clone_deferred = 1;
1240		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1241	}
1242
1243	skb_cb->tx_clone_ctx.rx = rx;
1244	if (++skb_cb->tx_clone_ctx.recurs > 2)
1245		return NULL;
1246
1247	/* Pick one TX key */
1248	spin_lock(&tx->lock);
 
 
 
 
1249	do {
1250		k = (i == 0) ? key.pending :
1251			((i == 1) ? key.active : key.passive);
1252		if (!k)
1253			continue;
1254		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1255		if (!aead)
1256			continue;
1257		if (aead->mode != CLUSTER_KEY ||
1258		    aead == skb_cb->tx_clone_ctx.last) {
1259			aead = NULL;
1260			continue;
1261		}
1262		/* Ok, found one cluster key */
1263		skb_cb->tx_clone_ctx.last = aead;
1264		WARN_ON(skb->next);
1265		skb->next = skb_clone(skb, GFP_ATOMIC);
1266		if (unlikely(!skb->next))
1267			pr_warn("Failed to clone skb for next round if any\n");
1268		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1269		break;
1270	} while (++i < 3);
 
 
 
 
1271	spin_unlock(&tx->lock);
1272
1273	return aead;
1274}
1275
1276/**
1277 * tipc_crypto_key_synch: Synch own key data according to peer key status
1278 * @rx: RX crypto handle
1279 * @new_rx_active: latest RX active key from peer
1280 * @hdr: TIPCv2 message
1281 *
1282 * This function updates the peer node related data as the peer RX active key
1283 * has changed, so the number of TX keys' users on this node are increased and
1284 * decreased correspondingly.
1285 *
 
 
 
 
1286 * The "per-peer" sndnxt is also reset when the peer key has switched.
1287 */
1288static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1289				  struct tipc_msg *hdr)
1290{
1291	struct net *net = rx->net;
1292	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1293	u8 cur_rx_active;
 
 
 
1294
1295	/* TX might be even not ready yet */
1296	if (unlikely(!tx->key.active && !tx->key.pending))
1297		return;
 
 
 
1298
1299	cur_rx_active = atomic_read(&rx->peer_rx_active);
1300	if (likely(cur_rx_active == new_rx_active))
1301		return;
1302
1303	/* Make sure this message destined for this node */
1304	if (unlikely(msg_short(hdr) ||
1305		     msg_destnode(hdr) != tipc_own_addr(net)))
1306		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1307
1308	/* Peer RX active key has changed, try to update owns' & TX users */
1309	if (atomic_cmpxchg(&rx->peer_rx_active,
1310			   cur_rx_active,
1311			   new_rx_active) == cur_rx_active) {
1312		if (new_rx_active)
1313			tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1314		if (cur_rx_active)
1315			tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
 
 
1316
1317		atomic64_set(&rx->sndnxt, 0);
1318		/* Mark the point TX key users changed */
1319		tx->timer1 = jiffies;
1320
1321#ifdef TIPC_CRYPTO_DEBUG
1322		pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1323			tipc_own_id_string(net), cur_rx_active,
1324			new_rx_active, tipc_node_get_id_str(rx->node));
1325#endif
1326	}
1327}
1328
1329static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1330{
1331	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1332	struct tipc_key key;
1333
1334	spin_lock(&tx->lock);
1335	key = tx->key;
1336	WARN_ON(!key.active || tx_key != key.active);
1337
1338	/* Free the active key */
1339	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1340	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1341	spin_unlock(&tx->lock);
1342
1343	pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1344	return -EKEYREVOKED;
1345}
1346
1347int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1348		      struct tipc_node *node)
1349{
1350	struct tipc_crypto *c;
1351
1352	if (*crypto)
1353		return -EEXIST;
1354
1355	/* Allocate crypto */
1356	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1357	if (!c)
1358		return -ENOMEM;
1359
 
 
 
 
 
 
 
 
 
1360	/* Allocate statistic structure */
1361	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1362	if (!c->stats) {
 
 
1363		kfree_sensitive(c);
1364		return -ENOMEM;
1365	}
1366
1367	c->working = 0;
1368	c->net = net;
1369	c->node = node;
 
1370	tipc_crypto_key_set_state(c, 0, 0, 0);
 
1371	atomic_set(&c->peer_rx_active, 0);
1372	atomic64_set(&c->sndnxt, 0);
1373	c->timer1 = jiffies;
1374	c->timer2 = jiffies;
 
1375	spin_lock_init(&c->lock);
1376	*crypto = c;
 
 
 
 
 
 
 
1377
 
1378	return 0;
1379}
1380
1381void tipc_crypto_stop(struct tipc_crypto **crypto)
1382{
1383	struct tipc_crypto *c, *tx, *rx;
1384	bool is_rx;
1385	u8 k;
1386
1387	if (!*crypto)
1388		return;
1389
1390	rcu_read_lock();
1391	/* RX stopping? => decrease TX key users if any */
1392	is_rx = !!((*crypto)->node);
1393	if (is_rx) {
1394		rx = *crypto;
1395		tx = tipc_net(rx->net)->crypto_tx;
1396		k = atomic_read(&rx->peer_rx_active);
1397		if (k) {
1398			tipc_aead_users_dec(tx->aead[k], 0);
1399			/* Mark the point TX key users changed */
1400			tx->timer1 = jiffies;
1401		}
1402	}
1403
1404	/* Release AEAD keys */
1405	c = *crypto;
1406	for (k = KEY_MIN; k <= KEY_MAX; k++)
1407		tipc_aead_put(rcu_dereference(c->aead[k]));
1408	rcu_read_unlock();
1409
1410	pr_warn("%s(%s) has been purged, node left!\n",
1411		(is_rx) ? "RX" : "TX",
1412		(is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1413			  tipc_own_id_string((*crypto)->net));
1414
1415	/* Free this crypto statistics */
1416	free_percpu(c->stats);
1417
1418	*crypto = NULL;
1419	kfree_sensitive(c);
1420}
1421
1422void tipc_crypto_timeout(struct tipc_crypto *rx)
1423{
1424	struct tipc_net *tn = tipc_net(rx->net);
1425	struct tipc_crypto *tx = tn->crypto_tx;
1426	struct tipc_key key;
1427	u8 new_pending, new_passive;
1428	int cmd;
1429
1430	/* TX key activating:
1431	 * The pending key (users > 0) -> active
1432	 * The active key if any (users == 0) -> free
1433	 */
1434	spin_lock(&tx->lock);
1435	key = tx->key;
1436	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1437		goto s1;
1438	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1439		goto s1;
1440	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1441		goto s1;
1442
1443	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1444	if (key.active)
1445		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1446	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1447	pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1448		key.pending);
1449
1450s1:
1451	spin_unlock(&tx->lock);
1452
1453	/* RX key activating:
1454	 * The pending key (users > 0) -> active
1455	 * The active key if any -> passive, freed later
1456	 */
1457	spin_lock(&rx->lock);
1458	key = rx->key;
1459	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1460		goto s2;
1461
1462	new_pending = (key.passive &&
1463		       !tipc_aead_users(rx->aead[key.passive])) ?
1464				       key.passive : 0;
1465	new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1466	tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1467	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1468	pr_info("RX(%s): key %d is activated!\n",
1469		tipc_node_get_id_str(rx->node),	key.pending);
1470	goto s5;
1471
1472s2:
1473	/* RX key "faulty" switching:
1474	 * The faulty pending key (users < -30) -> passive
1475	 * The passive key (users = 0) -> pending
1476	 * Note: This only happens after RX deactivated - s3!
1477	 */
1478	key = rx->key;
1479	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1480		goto s3;
1481	if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1482		goto s3;
1483
1484	new_pending = key.passive;
1485	new_passive = key.pending;
1486	tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1487	goto s5;
1488
1489s3:
1490	/* RX key deactivating:
1491	 * The passive key if any -> pending
1492	 * The active key -> passive (users = 0) / pending
1493	 * The pending key if any -> passive (users = 0)
1494	 */
1495	key = rx->key;
1496	if (!key.active)
1497		goto s4;
1498	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
 
1499		goto s4;
1500
1501	new_pending = (key.passive) ?: key.active;
1502	new_passive = (key.passive) ? key.active : key.pending;
1503	tipc_aead_users_set(rx->aead[new_pending], 0);
1504	if (new_passive)
1505		tipc_aead_users_set(rx->aead[new_passive], 0);
1506	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1507	pr_info("RX(%s): key %d is deactivated!\n",
1508		tipc_node_get_id_str(rx->node), key.active);
1509	goto s5;
1510
1511s4:
1512	/* RX key passive -> freed: */
1513	key = rx->key;
1514	if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1515		goto s5;
1516	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
 
1517		goto s5;
1518
1519	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1520	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1521	pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1522		key.passive);
1523
1524s5:
1525	spin_unlock(&rx->lock);
1526
 
 
 
 
 
 
1527	/* Limit max_tfms & do debug commands if needed */
1528	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1529		return;
1530
1531	cmd = sysctl_tipc_max_tfms;
1532	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1533	tipc_crypto_do_cmd(rx->net, cmd);
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/**
1537 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1538 * @net: struct net
1539 * @skb: input/output message skb pointer
1540 * @b: bearer used for xmit later
1541 * @dst: destination media address
1542 * @__dnode: destination node for reference if any
1543 *
1544 * First, build an encryption message header on the top of the message, then
1545 * encrypt the original TIPC message by using the active or pending TX key.
 
1546 * If the encryption is successful, the encrypted skb is returned directly or
1547 * via the callback.
1548 * Otherwise, the skb is freed!
1549 *
1550 * Return:
1551 * 0                   : the encryption has succeeded (or no encryption)
1552 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1553 * -ENOKEK             : the encryption has failed due to no key
1554 * -EKEYREVOKED        : the encryption has failed due to key revoked
1555 * -ENOMEM             : the encryption has failed due to no memory
1556 * < 0                 : the encryption has failed due to other reasons
1557 */
1558int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1559		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1560		     struct tipc_node *__dnode)
1561{
1562	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1563	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1564	struct tipc_crypto_stats __percpu *stats = tx->stats;
 
1565	struct tipc_key key = tx->key;
1566	struct tipc_aead *aead = NULL;
1567	struct sk_buff *probe;
 
1568	int rc = -ENOKEY;
1569	u8 tx_key;
1570
1571	/* No encryption? */
1572	if (!tx->working)
1573		return 0;
1574
1575	/* Try with the pending key if available and:
1576	 * 1) This is the only choice (i.e. no active key) or;
1577	 * 2) Peer has switched to this key (unicast only) or;
1578	 * 3) It is time to do a pending key probe;
1579	 */
1580	if (unlikely(key.pending)) {
1581		tx_key = key.pending;
1582		if (!key.active)
1583			goto encrypt;
1584		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1585			goto encrypt;
1586		if (TIPC_SKB_CB(*skb)->probe)
 
 
1587			goto encrypt;
1588		if (!__rx &&
1589		    time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1590			tx->timer2 = jiffies;
1591			probe = skb_clone(*skb, GFP_ATOMIC);
1592			if (probe) {
1593				TIPC_SKB_CB(probe)->probe = 1;
1594				tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1595				if (probe)
1596					b->media->send_msg(net, probe, b, dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597			}
1598		}
1599	}
 
1600	/* Else, use the active key if any */
1601	if (likely(key.active)) {
1602		tx_key = key.active;
1603		goto encrypt;
1604	}
 
1605	goto exit;
1606
1607encrypt:
1608	aead = tipc_aead_get(tx->aead[tx_key]);
1609	if (unlikely(!aead))
1610		goto exit;
1611	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1612	if (likely(rc > 0))
1613		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1614
1615exit:
1616	switch (rc) {
1617	case 0:
1618		this_cpu_inc(stats->stat[STAT_OK]);
1619		break;
1620	case -EINPROGRESS:
1621	case -EBUSY:
1622		this_cpu_inc(stats->stat[STAT_ASYNC]);
1623		*skb = NULL;
1624		return rc;
1625	default:
1626		this_cpu_inc(stats->stat[STAT_NOK]);
1627		if (rc == -ENOKEY)
1628			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1629		else if (rc == -EKEYREVOKED)
1630			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1631		kfree_skb(*skb);
1632		*skb = NULL;
1633		break;
1634	}
1635
1636	tipc_aead_put(aead);
1637	return rc;
1638}
1639
1640/**
1641 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1642 * @net: struct net
1643 * @rx: RX crypto handle
1644 * @skb: input/output message skb pointer
1645 * @b: bearer where the message has been received
1646 *
1647 * If the decryption is successful, the decrypted skb is returned directly or
1648 * as the callback, the encryption header and auth tag will be trimed out
1649 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1650 * Otherwise, the skb will be freed!
1651 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1652 * cluster key(s) can be taken for decryption (- recursive).
1653 *
1654 * Return:
1655 * 0                   : the decryption has successfully completed
1656 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1657 * -ENOKEY             : the decryption has failed due to no key
1658 * -EBADMSG            : the decryption has failed due to bad message
1659 * -ENOMEM             : the decryption has failed due to no memory
1660 * < 0                 : the decryption has failed due to other reasons
1661 */
1662int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1663		    struct sk_buff **skb, struct tipc_bearer *b)
1664{
1665	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1666	struct tipc_crypto_stats __percpu *stats;
1667	struct tipc_aead *aead = NULL;
1668	struct tipc_key key;
1669	int rc = -ENOKEY;
1670	u8 tx_key = 0;
 
 
1671
1672	/* New peer?
1673	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1674	 */
1675	if (unlikely(!rx))
1676		goto pick_tx;
1677
1678	/* Pick RX key according to TX key, three cases are possible:
1679	 * 1) The current active key (likely) or;
1680	 * 2) The pending (new or deactivated) key (if any) or;
1681	 * 3) The passive or old active key (i.e. users > 0);
1682	 */
1683	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1684	key = rx->key;
1685	if (likely(tx_key == key.active))
 
1686		goto decrypt;
1687	if (tx_key == key.pending)
1688		goto decrypt;
1689	if (tx_key == key.passive) {
1690		rx->timer2 = jiffies;
1691		if (tipc_aead_users(rx->aead[key.passive]) > 0)
1692			goto decrypt;
1693	}
1694
1695	/* Unknown key, let's try to align RX key(s) */
1696	if (tipc_crypto_key_try_align(rx, tx_key))
1697		goto decrypt;
1698
1699pick_tx:
1700	/* No key suitable? Try to pick one from TX... */
1701	aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1702	if (aead)
1703		goto decrypt;
1704	goto exit;
1705
1706decrypt:
1707	rcu_read_lock();
1708	if (!aead)
1709		aead = tipc_aead_get(rx->aead[tx_key]);
1710	rc = tipc_aead_decrypt(net, aead, *skb, b);
1711	rcu_read_unlock();
1712
1713exit:
1714	stats = ((rx) ?: tx)->stats;
1715	switch (rc) {
1716	case 0:
1717		this_cpu_inc(stats->stat[STAT_OK]);
1718		break;
1719	case -EINPROGRESS:
1720	case -EBUSY:
1721		this_cpu_inc(stats->stat[STAT_ASYNC]);
1722		*skb = NULL;
1723		return rc;
1724	default:
1725		this_cpu_inc(stats->stat[STAT_NOK]);
1726		if (rc == -ENOKEY) {
1727			kfree_skb(*skb);
1728			*skb = NULL;
1729			if (rx)
 
 
 
 
 
 
 
 
 
 
1730				tipc_node_put(rx->node);
 
1731			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1732			return rc;
1733		} else if (rc == -EBADMSG) {
1734			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1735		}
1736		break;
1737	}
1738
1739	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1740	return rc;
1741}
1742
1743static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1744				     struct tipc_bearer *b,
1745				     struct sk_buff **skb, int err)
1746{
1747	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1748	struct tipc_crypto *rx = aead->crypto;
1749	struct tipc_aead *tmp = NULL;
1750	struct tipc_ehdr *ehdr;
1751	struct tipc_node *n;
1752	u8 rx_key_active;
1753	bool destined;
1754
1755	/* Is this completed by TX? */
1756	if (unlikely(!rx->node)) {
1757		rx = skb_cb->tx_clone_ctx.rx;
1758#ifdef TIPC_CRYPTO_DEBUG
1759		pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1760			(rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1761			(*skb)->next, skb_cb->flags);
1762		pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1763			skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1764			aead->crypto->aead[1], aead->crypto->aead[2],
1765			aead->crypto->aead[3]);
1766#endif
1767		if (unlikely(err)) {
1768			if (err == -EBADMSG && (*skb)->next)
1769				tipc_rcv(net, (*skb)->next, b);
1770			goto free_skb;
1771		}
1772
1773		if (likely((*skb)->next)) {
1774			kfree_skb((*skb)->next);
1775			(*skb)->next = NULL;
1776		}
1777		ehdr = (struct tipc_ehdr *)(*skb)->data;
1778		if (!rx) {
1779			WARN_ON(ehdr->user != LINK_CONFIG);
1780			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1781					     true);
1782			rx = tipc_node_crypto_rx(n);
1783			if (unlikely(!rx))
1784				goto free_skb;
1785		}
1786
1787		/* Skip cloning this time as we had a RX pending key */
1788		if (rx->key.pending)
1789			goto rcv;
1790		if (tipc_aead_clone(&tmp, aead) < 0)
1791			goto rcv;
1792		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
 
1793			tipc_aead_free(&tmp->rcu);
1794			goto rcv;
1795		}
1796		tipc_aead_put(aead);
1797		aead = tipc_aead_get(tmp);
1798	}
1799
1800	if (unlikely(err)) {
1801		tipc_aead_users_dec(aead, INT_MIN);
1802		goto free_skb;
1803	}
1804
1805	/* Set the RX key's user */
1806	tipc_aead_users_set(aead, 1);
1807
1808rcv:
1809	/* Mark this point, RX works */
1810	rx->timer1 = jiffies;
1811
 
1812	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1813	ehdr = (struct tipc_ehdr *)(*skb)->data;
1814	destined = ehdr->destined;
1815	rx_key_active = ehdr->rx_key_active;
 
 
 
 
1816	skb_pull(*skb, tipc_ehdr_size(ehdr));
1817	pskb_trim(*skb, (*skb)->len - aead->authsize);
 
1818
1819	/* Validate TIPCv2 message */
1820	if (unlikely(!tipc_msg_validate(skb))) {
1821		pr_err_ratelimited("Packet dropped after decryption!\n");
1822		goto free_skb;
1823	}
1824
1825	/* Update peer RX active key & TX users */
1826	if (destined)
1827		tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
 
 
1828
1829	/* Mark skb decrypted */
1830	skb_cb->decrypted = 1;
1831
1832	/* Clear clone cxt if any */
1833	if (likely(!skb_cb->tx_clone_deferred))
1834		goto exit;
1835	skb_cb->tx_clone_deferred = 0;
1836	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1837	goto exit;
1838
1839free_skb:
1840	kfree_skb(*skb);
1841	*skb = NULL;
1842
1843exit:
1844	tipc_aead_put(aead);
1845	if (rx)
1846		tipc_node_put(rx->node);
1847}
1848
1849static void tipc_crypto_do_cmd(struct net *net, int cmd)
1850{
1851	struct tipc_net *tn = tipc_net(net);
1852	struct tipc_crypto *tx = tn->crypto_tx, *rx;
1853	struct list_head *p;
1854	unsigned int stat;
1855	int i, j, cpu;
1856	char buf[200];
1857
1858	/* Currently only one command is supported */
1859	switch (cmd) {
1860	case 0xfff1:
1861		goto print_stats;
1862	default:
1863		return;
1864	}
1865
1866print_stats:
1867	/* Print a header */
1868	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1869
1870	/* Print key status */
1871	pr_info("Key status:\n");
1872	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1873		tipc_crypto_key_dump(tx, buf));
1874
1875	rcu_read_lock();
1876	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1877		rx = tipc_node_crypto_rx_by_list(p);
1878		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1879			tipc_crypto_key_dump(rx, buf));
1880	}
1881	rcu_read_unlock();
1882
1883	/* Print crypto statistics */
1884	for (i = 0, j = 0; i < MAX_STATS; i++)
1885		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1886	pr_info("\nCounter     %s", buf);
1887
1888	memset(buf, '-', 115);
1889	buf[115] = '\0';
1890	pr_info("%s\n", buf);
1891
1892	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1893	for_each_possible_cpu(cpu) {
1894		for (i = 0; i < MAX_STATS; i++) {
1895			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1896			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1897		}
1898		pr_info("%s", buf);
1899		j = scnprintf(buf, 200, "%12s", " ");
1900	}
1901
1902	rcu_read_lock();
1903	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1904		rx = tipc_node_crypto_rx_by_list(p);
1905		j = scnprintf(buf, 200, "RX(%7.7s) ",
1906			      tipc_node_get_id_str(rx->node));
1907		for_each_possible_cpu(cpu) {
1908			for (i = 0; i < MAX_STATS; i++) {
1909				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1910				j += scnprintf(buf + j, 200 - j, "|%11d ",
1911					       stat);
1912			}
1913			pr_info("%s", buf);
1914			j = scnprintf(buf, 200, "%12s", " ");
1915		}
1916	}
1917	rcu_read_unlock();
1918
1919	pr_info("\n======================== Done ========================\n");
1920}
1921
1922static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1923{
1924	struct tipc_key key = c->key;
1925	struct tipc_aead *aead;
1926	int k, i = 0;
1927	char *s;
1928
1929	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1930		if (k == key.passive)
1931			s = "PAS";
1932		else if (k == key.active)
1933			s = "ACT";
1934		else if (k == key.pending)
1935			s = "PEN";
1936		else
1937			s = "-";
 
 
 
 
 
 
 
 
 
 
1938		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1939
1940		rcu_read_lock();
1941		aead = rcu_dereference(c->aead[k]);
1942		if (aead)
1943			i += scnprintf(buf + i, 200 - i,
1944				       "{\"%s...\", \"%s\"}/%d:%d",
1945				       aead->hint,
1946				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
1947				       atomic_read(&aead->users),
1948				       refcount_read(&aead->refcnt));
1949		rcu_read_unlock();
1950		i += scnprintf(buf + i, 200 - i, "\n");
1951	}
1952
1953	if (c->node)
1954		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1955			       atomic_read(&c->peer_rx_active));
1956
1957	return buf;
1958}
1959
1960#ifdef TIPC_CRYPTO_DEBUG
1961static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1962				  char *buf)
1963{
1964	struct tipc_key *key = &old;
1965	int k, i = 0;
1966	char *s;
1967
1968	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1969again:
1970	i += scnprintf(buf + i, 32 - i, "[");
1971	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1972		if (k == key->passive)
1973			s = "pas";
1974		else if (k == key->active)
1975			s = "act";
1976		else if (k == key->pending)
1977			s = "pen";
1978		else
1979			s = "-";
1980		i += scnprintf(buf + i, 32 - i,
1981			       (k != KEY_MAX) ? "%s " : "%s", s);
1982	}
1983	if (key != &new) {
1984		i += scnprintf(buf + i, 32 - i, "] -> ");
1985		key = &new;
1986		goto again;
1987	}
1988	i += scnprintf(buf + i, 32 - i, "]");
1989	return buf;
1990}
1991#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
   4 *
   5 * Copyright (c) 2019, Ericsson AB
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions are met:
  10 *
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the names of the copyright holders nor the names of its
  17 *    contributors may be used to endorse or promote products derived from
  18 *    this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") version 2 as published by the Free
  22 * Software Foundation.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34 * POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#include <crypto/aead.h>
  38#include <crypto/aes.h>
  39#include <crypto/rng.h>
  40#include "crypto.h"
  41#include "msg.h"
  42#include "bcast.h"
  43
  44#define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
  45#define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
  46#define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
  47#define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
  48
  49#define TIPC_MAX_TFMS_DEF	10
  50#define TIPC_MAX_TFMS_LIM	1000
  51
  52#define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
  53
  54/*
  55 * TIPC Key ids
  56 */
  57enum {
  58	KEY_MASTER = 0,
  59	KEY_MIN = KEY_MASTER,
  60	KEY_1 = 1,
  61	KEY_2,
  62	KEY_3,
  63	KEY_MAX = KEY_3,
  64};
  65
  66/*
  67 * TIPC Crypto statistics
  68 */
  69enum {
  70	STAT_OK,
  71	STAT_NOK,
  72	STAT_ASYNC,
  73	STAT_ASYNC_OK,
  74	STAT_ASYNC_NOK,
  75	STAT_BADKEYS, /* tx only */
  76	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
  77	STAT_NOKEYS,
  78	STAT_SWITCHES,
  79
  80	MAX_STATS,
  81};
  82
  83/* TIPC crypto statistics' header */
  84static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
  85					"async_nok", "badmsgs", "nokeys",
  86					"switches"};
  87
  88/* Max TFMs number per key */
  89int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
  90/* Key exchange switch, default: on */
  91int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
  92
  93/*
  94 * struct tipc_key - TIPC keys' status indicator
  95 *
  96 *         7     6     5     4     3     2     1     0
  97 *      +-----+-----+-----+-----+-----+-----+-----+-----+
  98 * key: | (reserved)|passive idx| active idx|pending idx|
  99 *      +-----+-----+-----+-----+-----+-----+-----+-----+
 100 */
 101struct tipc_key {
 102#define KEY_BITS (2)
 103#define KEY_MASK ((1 << KEY_BITS) - 1)
 104	union {
 105		struct {
 106#if defined(__LITTLE_ENDIAN_BITFIELD)
 107			u8 pending:2,
 108			   active:2,
 109			   passive:2, /* rx only */
 110			   reserved:2;
 111#elif defined(__BIG_ENDIAN_BITFIELD)
 112			u8 reserved:2,
 113			   passive:2, /* rx only */
 114			   active:2,
 115			   pending:2;
 116#else
 117#error  "Please fix <asm/byteorder.h>"
 118#endif
 119		} __packed;
 120		u8 keys;
 121	};
 122};
 123
 124/**
 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
 126 * @tfm: cipher handle/key
 127 * @list: linked list of TFMs
 128 */
 129struct tipc_tfm {
 130	struct crypto_aead *tfm;
 131	struct list_head list;
 132};
 133
 134/**
 135 * struct tipc_aead - TIPC AEAD key structure
 136 * @tfm_entry: per-cpu pointer to one entry in TFM list
 137 * @crypto: TIPC crypto owns this key
 138 * @cloned: reference to the source key in case cloning
 139 * @users: the number of the key users (TX/RX)
 140 * @salt: the key's SALT value
 141 * @authsize: authentication tag size (max = 16)
 142 * @mode: crypto mode is applied to the key
 143 * @hint: a hint for user key
 144 * @rcu: struct rcu_head
 145 * @key: the aead key
 146 * @gen: the key's generation
 147 * @seqno: the key seqno (cluster scope)
 148 * @refcnt: the key reference counter
 149 */
 150struct tipc_aead {
 151#define TIPC_AEAD_HINT_LEN (5)
 152	struct tipc_tfm * __percpu *tfm_entry;
 153	struct tipc_crypto *crypto;
 154	struct tipc_aead *cloned;
 155	atomic_t users;
 156	u32 salt;
 157	u8 authsize;
 158	u8 mode;
 159	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
 160	struct rcu_head rcu;
 161	struct tipc_aead_key *key;
 162	u16 gen;
 163
 164	atomic64_t seqno ____cacheline_aligned;
 165	refcount_t refcnt ____cacheline_aligned;
 166
 167} ____cacheline_aligned;
 168
 169/**
 170 * struct tipc_crypto_stats - TIPC Crypto statistics
 171 * @stat: array of crypto statistics
 172 */
 173struct tipc_crypto_stats {
 174	unsigned int stat[MAX_STATS];
 175};
 176
 177/**
 178 * struct tipc_crypto - TIPC TX/RX crypto structure
 179 * @net: struct net
 180 * @node: TIPC node (RX)
 181 * @aead: array of pointers to AEAD keys for encryption/decryption
 182 * @peer_rx_active: replicated peer RX active key index
 183 * @key_gen: TX/RX key generation
 184 * @key: the key states
 185 * @skey_mode: session key's mode
 186 * @skey: received session key
 187 * @wq: common workqueue on TX crypto
 188 * @work: delayed work sched for TX/RX
 189 * @key_distr: key distributing state
 190 * @rekeying_intv: rekeying interval (in minutes)
 191 * @stats: the crypto statistics
 192 * @name: the crypto name
 193 * @sndnxt: the per-peer sndnxt (TX)
 194 * @timer1: general timer 1 (jiffies)
 195 * @timer2: general timer 2 (jiffies)
 196 * @working: the crypto is working or not
 197 * @key_master: flag indicates if master key exists
 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
 199 * @nokey: no key indication
 200 * @flags: combined flags field
 201 * @lock: tipc_key lock
 202 */
 203struct tipc_crypto {
 204	struct net *net;
 205	struct tipc_node *node;
 206	struct tipc_aead __rcu *aead[KEY_MAX + 1];
 207	atomic_t peer_rx_active;
 208	u16 key_gen;
 209	struct tipc_key key;
 210	u8 skey_mode;
 211	struct tipc_aead_key *skey;
 212	struct workqueue_struct *wq;
 213	struct delayed_work work;
 214#define KEY_DISTR_SCHED		1
 215#define KEY_DISTR_COMPL		2
 216	atomic_t key_distr;
 217	u32 rekeying_intv;
 218
 219	struct tipc_crypto_stats __percpu *stats;
 220	char name[48];
 221
 222	atomic64_t sndnxt ____cacheline_aligned;
 223	unsigned long timer1;
 224	unsigned long timer2;
 225	union {
 226		struct {
 227			u8 working:1;
 228			u8 key_master:1;
 229			u8 legacy_user:1;
 230			u8 nokey: 1;
 231		};
 232		u8 flags;
 233	};
 234	spinlock_t lock; /* crypto lock */
 235
 236} ____cacheline_aligned;
 237
 238/* struct tipc_crypto_tx_ctx - TX context for callbacks */
 239struct tipc_crypto_tx_ctx {
 240	struct tipc_aead *aead;
 241	struct tipc_bearer *bearer;
 242	struct tipc_media_addr dst;
 243};
 244
 245/* struct tipc_crypto_rx_ctx - RX context for callbacks */
 246struct tipc_crypto_rx_ctx {
 247	struct tipc_aead *aead;
 248	struct tipc_bearer *bearer;
 249};
 250
 251static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
 252static inline void tipc_aead_put(struct tipc_aead *aead);
 253static void tipc_aead_free(struct rcu_head *rp);
 254static int tipc_aead_users(struct tipc_aead __rcu *aead);
 255static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
 256static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
 257static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
 258static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
 259static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 260			  u8 mode);
 261static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
 262static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 263				 unsigned int crypto_ctx_size,
 264				 u8 **iv, struct aead_request **req,
 265				 struct scatterlist **sg, int nsg);
 266static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 267			     struct tipc_bearer *b,
 268			     struct tipc_media_addr *dst,
 269			     struct tipc_node *__dnode);
 270static void tipc_aead_encrypt_done(void *data, int err);
 271static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 272			     struct sk_buff *skb, struct tipc_bearer *b);
 273static void tipc_aead_decrypt_done(void *data, int err);
 274static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
 275static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
 276			   u8 tx_key, struct sk_buff *skb,
 277			   struct tipc_crypto *__rx);
 278static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
 279					     u8 new_passive,
 280					     u8 new_active,
 281					     u8 new_pending);
 282static int tipc_crypto_key_attach(struct tipc_crypto *c,
 283				  struct tipc_aead *aead, u8 pos,
 284				  bool master_key);
 285static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
 286static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
 287						 struct tipc_crypto *rx,
 288						 struct sk_buff *skb,
 289						 u8 tx_key);
 290static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
 291static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
 292static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
 293					 struct tipc_bearer *b,
 294					 struct tipc_media_addr *dst,
 295					 struct tipc_node *__dnode, u8 type);
 296static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
 297				     struct tipc_bearer *b,
 298				     struct sk_buff **skb, int err);
 299static void tipc_crypto_do_cmd(struct net *net, int cmd);
 300static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
 
 301static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
 302				  char *buf);
 303static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
 304				u16 gen, u8 mode, u32 dnode);
 305static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
 306static void tipc_crypto_work_tx(struct work_struct *work);
 307static void tipc_crypto_work_rx(struct work_struct *work);
 308static int tipc_aead_key_generate(struct tipc_aead_key *skey);
 309
 310#define is_tx(crypto) (!(crypto)->node)
 311#define is_rx(crypto) (!is_tx(crypto))
 312
 313#define key_next(cur) ((cur) % KEY_MAX + 1)
 314
 315#define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
 316	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
 317
 318#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
 319do {									\
 320	struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),	\
 321						lockdep_is_held(lock));	\
 322	rcu_assign_pointer((rcu_ptr), (ptr));				\
 323	tipc_aead_put(__tmp);						\
 324} while (0)
 325
 326#define tipc_crypto_key_detach(rcu_ptr, lock)				\
 327	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
 328
 329/**
 330 * tipc_aead_key_validate - Validate a AEAD user key
 331 * @ukey: pointer to user key data
 332 * @info: netlink info pointer
 333 */
 334int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
 335{
 336	int keylen;
 337
 338	/* Check if algorithm exists */
 339	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
 340		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
 341		return -ENODEV;
 342	}
 343
 344	/* Currently, we only support the "gcm(aes)" cipher algorithm */
 345	if (strcmp(ukey->alg_name, "gcm(aes)")) {
 346		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
 347		return -ENOTSUPP;
 348	}
 349
 350	/* Check if key size is correct */
 351	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 352	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
 353		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
 354		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
 355		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
 356		return -EKEYREJECTED;
 357	}
 358
 359	return 0;
 360}
 361
 362/**
 363 * tipc_aead_key_generate - Generate new session key
 364 * @skey: input/output key with new content
 365 *
 366 * Return: 0 in case of success, otherwise < 0
 367 */
 368static int tipc_aead_key_generate(struct tipc_aead_key *skey)
 369{
 370	int rc = 0;
 371
 372	/* Fill the key's content with a random value via RNG cipher */
 373	rc = crypto_get_default_rng();
 374	if (likely(!rc)) {
 375		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
 376					  skey->keylen);
 377		crypto_put_default_rng();
 378	}
 379
 380	return rc;
 381}
 382
 383static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
 384{
 385	struct tipc_aead *tmp;
 386
 387	rcu_read_lock();
 388	tmp = rcu_dereference(aead);
 389	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
 390		tmp = NULL;
 391	rcu_read_unlock();
 392
 393	return tmp;
 394}
 395
 396static inline void tipc_aead_put(struct tipc_aead *aead)
 397{
 398	if (aead && refcount_dec_and_test(&aead->refcnt))
 399		call_rcu(&aead->rcu, tipc_aead_free);
 400}
 401
 402/**
 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
 404 * @rp: rcu head pointer
 405 */
 406static void tipc_aead_free(struct rcu_head *rp)
 407{
 408	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
 409	struct tipc_tfm *tfm_entry, *head, *tmp;
 410
 411	if (aead->cloned) {
 412		tipc_aead_put(aead->cloned);
 413	} else {
 414		head = *get_cpu_ptr(aead->tfm_entry);
 415		put_cpu_ptr(aead->tfm_entry);
 416		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
 417			crypto_free_aead(tfm_entry->tfm);
 418			list_del(&tfm_entry->list);
 419			kfree(tfm_entry);
 420		}
 421		/* Free the head */
 422		crypto_free_aead(head->tfm);
 423		list_del(&head->list);
 424		kfree(head);
 425	}
 426	free_percpu(aead->tfm_entry);
 427	kfree_sensitive(aead->key);
 428	kfree(aead);
 429}
 430
 431static int tipc_aead_users(struct tipc_aead __rcu *aead)
 432{
 433	struct tipc_aead *tmp;
 434	int users = 0;
 435
 436	rcu_read_lock();
 437	tmp = rcu_dereference(aead);
 438	if (tmp)
 439		users = atomic_read(&tmp->users);
 440	rcu_read_unlock();
 441
 442	return users;
 443}
 444
 445static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
 446{
 447	struct tipc_aead *tmp;
 448
 449	rcu_read_lock();
 450	tmp = rcu_dereference(aead);
 451	if (tmp)
 452		atomic_add_unless(&tmp->users, 1, lim);
 453	rcu_read_unlock();
 454}
 455
 456static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
 457{
 458	struct tipc_aead *tmp;
 459
 460	rcu_read_lock();
 461	tmp = rcu_dereference(aead);
 462	if (tmp)
 463		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
 464	rcu_read_unlock();
 465}
 466
 467static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
 468{
 469	struct tipc_aead *tmp;
 470	int cur;
 471
 472	rcu_read_lock();
 473	tmp = rcu_dereference(aead);
 474	if (tmp) {
 475		do {
 476			cur = atomic_read(&tmp->users);
 477			if (cur == val)
 478				break;
 479		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
 480	}
 481	rcu_read_unlock();
 482}
 483
 484/**
 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
 486 * @aead: the AEAD key pointer
 487 */
 488static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
 489{
 490	struct tipc_tfm **tfm_entry;
 491	struct crypto_aead *tfm;
 492
 493	tfm_entry = get_cpu_ptr(aead->tfm_entry);
 494	*tfm_entry = list_next_entry(*tfm_entry, list);
 495	tfm = (*tfm_entry)->tfm;
 496	put_cpu_ptr(tfm_entry);
 497
 498	return tfm;
 499}
 500
 501/**
 502 * tipc_aead_init - Initiate TIPC AEAD
 503 * @aead: returned new TIPC AEAD key handle pointer
 504 * @ukey: pointer to user key data
 505 * @mode: the key mode
 506 *
 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
 509 * "net/tipc/max_tfms" first.
 510 * Also, all the other AEAD data are also initialized.
 511 *
 512 * Return: 0 if the initiation is successful, otherwise: < 0
 513 */
 514static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
 515			  u8 mode)
 516{
 517	struct tipc_tfm *tfm_entry, *head;
 518	struct crypto_aead *tfm;
 519	struct tipc_aead *tmp;
 520	int keylen, err, cpu;
 521	int tfm_cnt = 0;
 522
 523	if (unlikely(*aead))
 524		return -EEXIST;
 525
 526	/* Allocate a new AEAD */
 527	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 528	if (unlikely(!tmp))
 529		return -ENOMEM;
 530
 531	/* The key consists of two parts: [AES-KEY][SALT] */
 532	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
 533
 534	/* Allocate per-cpu TFM entry pointer */
 535	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
 536	if (!tmp->tfm_entry) {
 537		kfree_sensitive(tmp);
 538		return -ENOMEM;
 539	}
 540
 541	/* Make a list of TFMs with the user key data */
 542	do {
 543		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
 544		if (IS_ERR(tfm)) {
 545			err = PTR_ERR(tfm);
 546			break;
 547		}
 548
 549		if (unlikely(!tfm_cnt &&
 550			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
 551			crypto_free_aead(tfm);
 552			err = -ENOTSUPP;
 553			break;
 554		}
 555
 556		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
 557		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
 558		if (unlikely(err)) {
 559			crypto_free_aead(tfm);
 560			break;
 561		}
 562
 563		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
 564		if (unlikely(!tfm_entry)) {
 565			crypto_free_aead(tfm);
 566			err = -ENOMEM;
 567			break;
 568		}
 569		INIT_LIST_HEAD(&tfm_entry->list);
 570		tfm_entry->tfm = tfm;
 571
 572		/* First entry? */
 573		if (!tfm_cnt) {
 574			head = tfm_entry;
 575			for_each_possible_cpu(cpu) {
 576				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
 577			}
 578		} else {
 579			list_add_tail(&tfm_entry->list, &head->list);
 580		}
 581
 582	} while (++tfm_cnt < sysctl_tipc_max_tfms);
 583
 584	/* Not any TFM is allocated? */
 585	if (!tfm_cnt) {
 586		free_percpu(tmp->tfm_entry);
 587		kfree_sensitive(tmp);
 588		return err;
 589	}
 590
 591	/* Form a hex string of some last bytes as the key's hint */
 592	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
 593		TIPC_AEAD_HINT_LEN);
 594
 595	/* Initialize the other data */
 596	tmp->mode = mode;
 597	tmp->cloned = NULL;
 598	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
 599	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
 600	if (!tmp->key) {
 601		tipc_aead_free(&tmp->rcu);
 602		return -ENOMEM;
 603	}
 604	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
 605	atomic_set(&tmp->users, 0);
 606	atomic64_set(&tmp->seqno, 0);
 607	refcount_set(&tmp->refcnt, 1);
 608
 609	*aead = tmp;
 610	return 0;
 611}
 612
 613/**
 614 * tipc_aead_clone - Clone a TIPC AEAD key
 615 * @dst: dest key for the cloning
 616 * @src: source key to clone from
 617 *
 618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
 619 * common for the keys.
 620 * A reference to the source is hold in the "cloned" pointer for the later
 621 * freeing purposes.
 622 *
 623 * Note: this must be done in cluster-key mode only!
 624 * Return: 0 in case of success, otherwise < 0
 625 */
 626static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
 627{
 628	struct tipc_aead *aead;
 629	int cpu;
 630
 631	if (!src)
 632		return -ENOKEY;
 633
 634	if (src->mode != CLUSTER_KEY)
 635		return -EINVAL;
 636
 637	if (unlikely(*dst))
 638		return -EEXIST;
 639
 640	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
 641	if (unlikely(!aead))
 642		return -ENOMEM;
 643
 644	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
 645	if (unlikely(!aead->tfm_entry)) {
 646		kfree_sensitive(aead);
 647		return -ENOMEM;
 648	}
 649
 650	for_each_possible_cpu(cpu) {
 651		*per_cpu_ptr(aead->tfm_entry, cpu) =
 652				*per_cpu_ptr(src->tfm_entry, cpu);
 653	}
 654
 655	memcpy(aead->hint, src->hint, sizeof(src->hint));
 656	aead->mode = src->mode;
 657	aead->salt = src->salt;
 658	aead->authsize = src->authsize;
 659	atomic_set(&aead->users, 0);
 660	atomic64_set(&aead->seqno, 0);
 661	refcount_set(&aead->refcnt, 1);
 662
 663	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
 664	aead->cloned = src;
 665
 666	*dst = aead;
 667	return 0;
 668}
 669
 670/**
 671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
 672 * @tfm: cipher handle to be registered with the request
 673 * @crypto_ctx_size: size of crypto context for callback
 674 * @iv: returned pointer to IV data
 675 * @req: returned pointer to AEAD request data
 676 * @sg: returned pointer to SG lists
 677 * @nsg: number of SG lists to be allocated
 678 *
 679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
 680 * lists, the memory layout is as follows:
 681 * crypto_ctx || iv || aead_req || sg[]
 682 *
 683 * Return: the pointer to the memory areas in case of success, otherwise NULL
 684 */
 685static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
 686				 unsigned int crypto_ctx_size,
 687				 u8 **iv, struct aead_request **req,
 688				 struct scatterlist **sg, int nsg)
 689{
 690	unsigned int iv_size, req_size;
 691	unsigned int len;
 692	u8 *mem;
 693
 694	iv_size = crypto_aead_ivsize(tfm);
 695	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
 696
 697	len = crypto_ctx_size;
 698	len += iv_size;
 699	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
 700	len = ALIGN(len, crypto_tfm_ctx_alignment());
 701	len += req_size;
 702	len = ALIGN(len, __alignof__(struct scatterlist));
 703	len += nsg * sizeof(**sg);
 704
 705	mem = kmalloc(len, GFP_ATOMIC);
 706	if (!mem)
 707		return NULL;
 708
 709	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
 710			      crypto_aead_alignmask(tfm) + 1);
 711	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
 712						crypto_tfm_ctx_alignment());
 713	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
 714					      __alignof__(struct scatterlist));
 715
 716	return (void *)mem;
 717}
 718
 719/**
 720 * tipc_aead_encrypt - Encrypt a message
 721 * @aead: TIPC AEAD key for the message encryption
 722 * @skb: the input/output skb
 723 * @b: TIPC bearer where the message will be delivered after the encryption
 724 * @dst: the destination media address
 725 * @__dnode: TIPC dest node if "known"
 726 *
 727 * Return:
 728 * * 0                   : if the encryption has completed
 729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 730 * * < 0                 : the encryption has failed
 731 */
 732static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
 733			     struct tipc_bearer *b,
 734			     struct tipc_media_addr *dst,
 735			     struct tipc_node *__dnode)
 736{
 737	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
 738	struct tipc_crypto_tx_ctx *tx_ctx;
 739	struct aead_request *req;
 740	struct sk_buff *trailer;
 741	struct scatterlist *sg;
 742	struct tipc_ehdr *ehdr;
 743	int ehsz, len, tailen, nsg, rc;
 744	void *ctx;
 745	u32 salt;
 746	u8 *iv;
 747
 748	/* Make sure message len at least 4-byte aligned */
 749	len = ALIGN(skb->len, 4);
 750	tailen = len - skb->len + aead->authsize;
 751
 752	/* Expand skb tail for authentication tag:
 753	 * As for simplicity, we'd have made sure skb having enough tailroom
 754	 * for authentication tag @skb allocation. Even when skb is nonlinear
 755	 * but there is no frag_list, it should be still fine!
 756	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
 757	 */
 
 758	SKB_LINEAR_ASSERT(skb);
 759	if (tailen > skb_tailroom(skb)) {
 760		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
 761			 skb_tailroom(skb), tailen);
 762	}
 
 763
 764	nsg = skb_cow_data(skb, tailen, &trailer);
 765	if (unlikely(nsg < 0)) {
 766		pr_err("TX: skb_cow_data() returned %d\n", nsg);
 767		return nsg;
 
 
 
 
 
 
 
 
 
 
 
 768	}
 769
 770	pskb_put(skb, trailer, tailen);
 771
 772	/* Allocate memory for the AEAD operation */
 773	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
 774	if (unlikely(!ctx))
 775		return -ENOMEM;
 776	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 777
 778	/* Map skb to the sg lists */
 779	sg_init_table(sg, nsg);
 780	rc = skb_to_sgvec(skb, sg, 0, skb->len);
 781	if (unlikely(rc < 0)) {
 782		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
 783		goto exit;
 784	}
 785
 786	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
 787	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
 788	 * the source address (or w0 of id), otherwise with the dest address
 789	 * if dest is known.
 790	 */
 791	ehdr = (struct tipc_ehdr *)skb->data;
 792	salt = aead->salt;
 793	if (aead->mode == CLUSTER_KEY)
 794		salt ^= __be32_to_cpu(ehdr->addr);
 795	else if (__dnode)
 796		salt ^= tipc_node_get_addr(__dnode);
 797	memcpy(iv, &salt, 4);
 798	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 799
 800	/* Prepare request */
 801	ehsz = tipc_ehdr_size(ehdr);
 802	aead_request_set_tfm(req, tfm);
 803	aead_request_set_ad(req, ehsz);
 804	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
 805
 806	/* Set callback function & data */
 807	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 808				  tipc_aead_encrypt_done, skb);
 809	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
 810	tx_ctx->aead = aead;
 811	tx_ctx->bearer = b;
 812	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
 813
 814	/* Hold bearer */
 815	if (unlikely(!tipc_bearer_hold(b))) {
 816		rc = -ENODEV;
 817		goto exit;
 818	}
 819
 820	/* Now, do encrypt */
 821	rc = crypto_aead_encrypt(req);
 822	if (rc == -EINPROGRESS || rc == -EBUSY)
 823		return rc;
 824
 825	tipc_bearer_put(b);
 826
 827exit:
 828	kfree(ctx);
 829	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 830	return rc;
 831}
 832
 833static void tipc_aead_encrypt_done(void *data, int err)
 834{
 835	struct sk_buff *skb = data;
 836	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 837	struct tipc_bearer *b = tx_ctx->bearer;
 838	struct tipc_aead *aead = tx_ctx->aead;
 839	struct tipc_crypto *tx = aead->crypto;
 840	struct net *net = tx->net;
 841
 842	switch (err) {
 843	case 0:
 844		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
 845		rcu_read_lock();
 846		if (likely(test_bit(0, &b->up)))
 847			b->media->send_msg(net, skb, b, &tx_ctx->dst);
 848		else
 849			kfree_skb(skb);
 850		rcu_read_unlock();
 851		break;
 852	case -EINPROGRESS:
 853		return;
 854	default:
 855		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
 856		kfree_skb(skb);
 857		break;
 858	}
 859
 860	kfree(tx_ctx);
 861	tipc_bearer_put(b);
 862	tipc_aead_put(aead);
 863}
 864
 865/**
 866 * tipc_aead_decrypt - Decrypt an encrypted message
 867 * @net: struct net
 868 * @aead: TIPC AEAD for the message decryption
 869 * @skb: the input/output skb
 870 * @b: TIPC bearer where the message has been received
 871 *
 872 * Return:
 873 * * 0                   : if the decryption has completed
 874 * * -EINPROGRESS/-EBUSY : if a callback will be performed
 875 * * < 0                 : the decryption has failed
 876 */
 877static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
 878			     struct sk_buff *skb, struct tipc_bearer *b)
 879{
 880	struct tipc_crypto_rx_ctx *rx_ctx;
 881	struct aead_request *req;
 882	struct crypto_aead *tfm;
 883	struct sk_buff *unused;
 884	struct scatterlist *sg;
 885	struct tipc_ehdr *ehdr;
 886	int ehsz, nsg, rc;
 887	void *ctx;
 888	u32 salt;
 889	u8 *iv;
 890
 891	if (unlikely(!aead))
 892		return -ENOKEY;
 893
 894	nsg = skb_cow_data(skb, 0, &unused);
 895	if (unlikely(nsg < 0)) {
 896		pr_err("RX: skb_cow_data() returned %d\n", nsg);
 897		return nsg;
 
 
 
 
 
 
 898	}
 899
 900	/* Allocate memory for the AEAD operation */
 901	tfm = tipc_aead_tfm_next(aead);
 902	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
 903	if (unlikely(!ctx))
 904		return -ENOMEM;
 905	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
 906
 907	/* Map skb to the sg lists */
 908	sg_init_table(sg, nsg);
 909	rc = skb_to_sgvec(skb, sg, 0, skb->len);
 910	if (unlikely(rc < 0)) {
 911		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
 912		goto exit;
 913	}
 914
 915	/* Reconstruct IV: */
 916	ehdr = (struct tipc_ehdr *)skb->data;
 917	salt = aead->salt;
 918	if (aead->mode == CLUSTER_KEY)
 919		salt ^= __be32_to_cpu(ehdr->addr);
 920	else if (ehdr->destined)
 921		salt ^= tipc_own_addr(net);
 922	memcpy(iv, &salt, 4);
 923	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
 924
 925	/* Prepare request */
 926	ehsz = tipc_ehdr_size(ehdr);
 927	aead_request_set_tfm(req, tfm);
 928	aead_request_set_ad(req, ehsz);
 929	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
 930
 931	/* Set callback function & data */
 932	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 933				  tipc_aead_decrypt_done, skb);
 934	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
 935	rx_ctx->aead = aead;
 936	rx_ctx->bearer = b;
 937
 938	/* Hold bearer */
 939	if (unlikely(!tipc_bearer_hold(b))) {
 940		rc = -ENODEV;
 941		goto exit;
 942	}
 943
 944	/* Now, do decrypt */
 945	rc = crypto_aead_decrypt(req);
 946	if (rc == -EINPROGRESS || rc == -EBUSY)
 947		return rc;
 948
 949	tipc_bearer_put(b);
 950
 951exit:
 952	kfree(ctx);
 953	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
 954	return rc;
 955}
 956
 957static void tipc_aead_decrypt_done(void *data, int err)
 958{
 959	struct sk_buff *skb = data;
 960	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
 961	struct tipc_bearer *b = rx_ctx->bearer;
 962	struct tipc_aead *aead = rx_ctx->aead;
 963	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
 964	struct net *net = aead->crypto->net;
 965
 966	switch (err) {
 967	case 0:
 968		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
 969		break;
 970	case -EINPROGRESS:
 971		return;
 972	default:
 973		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
 974		break;
 975	}
 976
 977	kfree(rx_ctx);
 978	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
 979	if (likely(skb)) {
 980		if (likely(test_bit(0, &b->up)))
 981			tipc_rcv(net, skb, b);
 982		else
 983			kfree_skb(skb);
 984	}
 985
 986	tipc_bearer_put(b);
 987}
 988
 989static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
 990{
 991	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
 992}
 993
 994/**
 995 * tipc_ehdr_validate - Validate an encryption message
 996 * @skb: the message buffer
 997 *
 998 * Return: "true" if this is a valid encryption message, otherwise "false"
 999 */
1000bool tipc_ehdr_validate(struct sk_buff *skb)
1001{
1002	struct tipc_ehdr *ehdr;
1003	int ehsz;
1004
1005	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1006		return false;
1007
1008	ehdr = (struct tipc_ehdr *)skb->data;
1009	if (unlikely(ehdr->version != TIPC_EVERSION))
1010		return false;
1011	ehsz = tipc_ehdr_size(ehdr);
1012	if (unlikely(!pskb_may_pull(skb, ehsz)))
1013		return false;
1014	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1015		return false;
 
 
1016
1017	return true;
1018}
1019
1020/**
1021 * tipc_ehdr_build - Build TIPC encryption message header
1022 * @net: struct net
1023 * @aead: TX AEAD key to be used for the message encryption
1024 * @tx_key: key id used for the message encryption
1025 * @skb: input/output message skb
1026 * @__rx: RX crypto handle if dest is "known"
1027 *
1028 * Return: the header size if the building is successful, otherwise < 0
1029 */
1030static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1031			   u8 tx_key, struct sk_buff *skb,
1032			   struct tipc_crypto *__rx)
1033{
1034	struct tipc_msg *hdr = buf_msg(skb);
1035	struct tipc_ehdr *ehdr;
1036	u32 user = msg_user(hdr);
1037	u64 seqno;
1038	int ehsz;
1039
1040	/* Make room for encryption header */
1041	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1042	WARN_ON(skb_headroom(skb) < ehsz);
1043	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1044
1045	/* Obtain a seqno first:
1046	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1047	 * cluster key mode, otherwise it's better for a per-peer seqno!
1048	 */
1049	if (!__rx || aead->mode == CLUSTER_KEY)
1050		seqno = atomic64_inc_return(&aead->seqno);
1051	else
1052		seqno = atomic64_inc_return(&__rx->sndnxt);
1053
1054	/* Revoke the key if seqno is wrapped around */
1055	if (unlikely(!seqno))
1056		return tipc_crypto_key_revoke(net, tx_key);
1057
1058	/* Word 1-2 */
1059	ehdr->seqno = cpu_to_be64(seqno);
1060
1061	/* Words 0, 3- */
1062	ehdr->version = TIPC_EVERSION;
1063	ehdr->user = 0;
1064	ehdr->keepalive = 0;
1065	ehdr->tx_key = tx_key;
1066	ehdr->destined = (__rx) ? 1 : 0;
1067	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1068	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1069	ehdr->master_key = aead->crypto->key_master;
1070	ehdr->reserved_1 = 0;
1071	ehdr->reserved_2 = 0;
1072
1073	switch (user) {
1074	case LINK_CONFIG:
1075		ehdr->user = LINK_CONFIG;
1076		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1077		break;
1078	default:
1079		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1080			ehdr->user = LINK_PROTOCOL;
1081			ehdr->keepalive = msg_is_keepalive(hdr);
1082		}
1083		ehdr->addr = hdr->hdr[3];
1084		break;
1085	}
1086
1087	return ehsz;
1088}
1089
1090static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1091					     u8 new_passive,
1092					     u8 new_active,
1093					     u8 new_pending)
1094{
 
1095	struct tipc_key old = c->key;
1096	char buf[32];
 
1097
1098	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1099		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1100		      ((new_pending & KEY_MASK));
1101
1102	pr_debug("%s: key changing %s ::%pS\n", c->name,
1103		 tipc_key_change_dump(old, c->key, buf),
1104		 __builtin_return_address(0));
 
 
 
 
 
1105}
1106
1107/**
1108 * tipc_crypto_key_init - Initiate a new user / AEAD key
1109 * @c: TIPC crypto to which new key is attached
1110 * @ukey: the user key
1111 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1112 * @master_key: specify this is a cluster master key
1113 *
1114 * A new TIPC AEAD key will be allocated and initiated with the specified user
1115 * key, then attached to the TIPC crypto.
1116 *
1117 * Return: new key id in case of success, otherwise: < 0
1118 */
1119int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1120			 u8 mode, bool master_key)
1121{
1122	struct tipc_aead *aead = NULL;
1123	int rc = 0;
1124
1125	/* Initiate with the new user key */
1126	rc = tipc_aead_init(&aead, ukey, mode);
1127
1128	/* Attach it to the crypto */
1129	if (likely(!rc)) {
1130		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1131		if (rc < 0)
1132			tipc_aead_free(&aead->rcu);
1133	}
1134
 
 
 
 
 
 
1135	return rc;
1136}
1137
1138/**
1139 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1140 * @c: TIPC crypto to which the new AEAD key is attached
1141 * @aead: the new AEAD key pointer
1142 * @pos: desired slot in the crypto key array, = 0 if any!
1143 * @master_key: specify this is a cluster master key
1144 *
1145 * Return: new key id in case of success, otherwise: -EBUSY
1146 */
1147static int tipc_crypto_key_attach(struct tipc_crypto *c,
1148				  struct tipc_aead *aead, u8 pos,
1149				  bool master_key)
1150{
 
1151	struct tipc_key key;
1152	int rc = -EBUSY;
1153	u8 new_key;
1154
1155	spin_lock_bh(&c->lock);
1156	key = c->key;
1157	if (master_key) {
1158		new_key = KEY_MASTER;
1159		goto attach;
1160	}
1161	if (key.active && key.passive)
1162		goto exit;
 
 
1163	if (key.pending) {
 
 
1164		if (tipc_aead_users(c->aead[key.pending]) > 0)
1165			goto exit;
1166		/* if (pos): ok with replacing, will be aligned when needed */
1167		/* Replace it */
1168		new_key = key.pending;
 
 
1169	} else {
1170		if (pos) {
1171			if (key.active && pos != key_next(key.active)) {
1172				key.passive = pos;
1173				new_key = pos;
 
1174				goto attach;
1175			} else if (!key.active && !key.passive) {
1176				key.pending = pos;
1177				new_key = pos;
 
1178				goto attach;
1179			}
1180		}
1181		key.pending = key_next(key.active ?: key.passive);
1182		new_key = key.pending;
 
1183	}
1184
1185attach:
1186	aead->crypto = c;
1187	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1188	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1189	if (likely(c->key.keys != key.keys))
1190		tipc_crypto_key_set_state(c, key.passive, key.active,
1191					  key.pending);
1192	c->working = 1;
1193	c->nokey = 0;
1194	c->key_master |= master_key;
1195	rc = new_key;
1196
1197exit:
1198	spin_unlock_bh(&c->lock);
1199	return rc;
1200}
1201
1202void tipc_crypto_key_flush(struct tipc_crypto *c)
1203{
1204	struct tipc_crypto *tx, *rx;
1205	int k;
1206
1207	spin_lock_bh(&c->lock);
1208	if (is_rx(c)) {
1209		/* Try to cancel pending work */
1210		rx = c;
1211		tx = tipc_net(rx->net)->crypto_tx;
1212		if (cancel_delayed_work(&rx->work)) {
1213			kfree(rx->skey);
1214			rx->skey = NULL;
1215			atomic_xchg(&rx->key_distr, 0);
1216			tipc_node_put(rx->node);
1217		}
1218		/* RX stopping => decrease TX key users if any */
1219		k = atomic_xchg(&rx->peer_rx_active, 0);
1220		if (k) {
1221			tipc_aead_users_dec(tx->aead[k], 0);
1222			/* Mark the point TX key users changed */
1223			tx->timer1 = jiffies;
1224		}
1225	}
1226
1227	c->flags = 0;
1228	tipc_crypto_key_set_state(c, 0, 0, 0);
1229	for (k = KEY_MIN; k <= KEY_MAX; k++)
1230		tipc_crypto_key_detach(c->aead[k], &c->lock);
 
1231	atomic64_set(&c->sndnxt, 0);
1232	spin_unlock_bh(&c->lock);
1233}
1234
1235/**
1236 * tipc_crypto_key_try_align - Align RX keys if possible
1237 * @rx: RX crypto handle
1238 * @new_pending: new pending slot if aligned (= TX key from peer)
1239 *
1240 * Peer has used an unknown key slot, this only happens when peer has left and
1241 * rejoned, or we are newcomer.
1242 * That means, there must be no active key but a pending key at unaligned slot.
1243 * If so, we try to move the pending key to the new slot.
1244 * Note: A potential passive key can exist, it will be shifted correspondingly!
1245 *
1246 * Return: "true" if key is successfully aligned, otherwise "false"
1247 */
1248static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1249{
1250	struct tipc_aead *tmp1, *tmp2 = NULL;
1251	struct tipc_key key;
1252	bool aligned = false;
1253	u8 new_passive = 0;
1254	int x;
1255
1256	spin_lock(&rx->lock);
1257	key = rx->key;
1258	if (key.pending == new_pending) {
1259		aligned = true;
1260		goto exit;
1261	}
1262	if (key.active)
1263		goto exit;
1264	if (!key.pending)
1265		goto exit;
1266	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1267		goto exit;
1268
1269	/* Try to "isolate" this pending key first */
1270	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1271	if (!refcount_dec_if_one(&tmp1->refcnt))
1272		goto exit;
1273	rcu_assign_pointer(rx->aead[key.pending], NULL);
1274
1275	/* Move passive key if any */
1276	if (key.passive) {
1277		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1278		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1279		new_passive = (x <= 0) ? x + KEY_MAX : x;
1280	}
1281
1282	/* Re-allocate the key(s) */
1283	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1284	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1285	if (new_passive)
1286		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1287	refcount_set(&tmp1->refcnt, 1);
1288	aligned = true;
1289	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1290			    new_pending);
1291
1292exit:
1293	spin_unlock(&rx->lock);
1294	return aligned;
1295}
1296
1297/**
1298 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1299 * @tx: TX crypto handle
1300 * @rx: RX crypto handle (can be NULL)
1301 * @skb: the message skb which will be decrypted later
1302 * @tx_key: peer TX key id
1303 *
1304 * This function looks up the existing TX keys and pick one which is suitable
1305 * for the message decryption, that must be a cluster key and not used before
1306 * on the same message (i.e. recursive).
1307 *
1308 * Return: the TX AEAD key handle in case of success, otherwise NULL
1309 */
1310static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1311						 struct tipc_crypto *rx,
1312						 struct sk_buff *skb,
1313						 u8 tx_key)
1314{
1315	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1316	struct tipc_aead *aead = NULL;
1317	struct tipc_key key = tx->key;
1318	u8 k, i = 0;
1319
1320	/* Initialize data if not yet */
1321	if (!skb_cb->tx_clone_deferred) {
1322		skb_cb->tx_clone_deferred = 1;
1323		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1324	}
1325
1326	skb_cb->tx_clone_ctx.rx = rx;
1327	if (++skb_cb->tx_clone_ctx.recurs > 2)
1328		return NULL;
1329
1330	/* Pick one TX key */
1331	spin_lock(&tx->lock);
1332	if (tx_key == KEY_MASTER) {
1333		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1334		goto done;
1335	}
1336	do {
1337		k = (i == 0) ? key.pending :
1338			((i == 1) ? key.active : key.passive);
1339		if (!k)
1340			continue;
1341		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1342		if (!aead)
1343			continue;
1344		if (aead->mode != CLUSTER_KEY ||
1345		    aead == skb_cb->tx_clone_ctx.last) {
1346			aead = NULL;
1347			continue;
1348		}
1349		/* Ok, found one cluster key */
1350		skb_cb->tx_clone_ctx.last = aead;
1351		WARN_ON(skb->next);
1352		skb->next = skb_clone(skb, GFP_ATOMIC);
1353		if (unlikely(!skb->next))
1354			pr_warn("Failed to clone skb for next round if any\n");
 
1355		break;
1356	} while (++i < 3);
1357
1358done:
1359	if (likely(aead))
1360		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1361	spin_unlock(&tx->lock);
1362
1363	return aead;
1364}
1365
1366/**
1367 * tipc_crypto_key_synch: Synch own key data according to peer key status
1368 * @rx: RX crypto handle
1369 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
 
1370 *
1371 * This function updates the peer node related data as the peer RX active key
1372 * has changed, so the number of TX keys' users on this node are increased and
1373 * decreased correspondingly.
1374 *
1375 * It also considers if peer has no key, then we need to make own master key
1376 * (if any) taking over i.e. starting grace period and also trigger key
1377 * distributing process.
1378 *
1379 * The "per-peer" sndnxt is also reset when the peer key has switched.
1380 */
1381static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
 
1382{
1383	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1384	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1385	struct tipc_msg *hdr = buf_msg(skb);
1386	u32 self = tipc_own_addr(rx->net);
1387	u8 cur, new;
1388	unsigned long delay;
1389
1390	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1391	 * a peer has no master key.
1392	 */
1393	rx->key_master = ehdr->master_key;
1394	if (!rx->key_master)
1395		tx->legacy_user = 1;
1396
1397	/* For later cases, apply only if message is destined to this node */
1398	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1399		return;
1400
1401	/* Case 1: Peer has no keys, let's make master key take over */
1402	if (ehdr->rx_nokey) {
1403		/* Set or extend grace period */
1404		tx->timer2 = jiffies;
1405		/* Schedule key distributing for the peer if not yet */
1406		if (tx->key.keys &&
1407		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1408			get_random_bytes(&delay, 2);
1409			delay %= 5;
1410			delay = msecs_to_jiffies(500 * ++delay);
1411			if (queue_delayed_work(tx->wq, &rx->work, delay))
1412				tipc_node_get(rx->node);
1413		}
1414	} else {
1415		/* Cancel a pending key distributing if any */
1416		atomic_xchg(&rx->key_distr, 0);
1417	}
1418
1419	/* Case 2: Peer RX active key has changed, let's update own TX users */
1420	cur = atomic_read(&rx->peer_rx_active);
1421	new = ehdr->rx_key_active;
1422	if (tx->key.keys &&
1423	    cur != new &&
1424	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1425		if (new)
1426			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1427		if (cur)
1428			tipc_aead_users_dec(tx->aead[cur], 0);
1429
1430		atomic64_set(&rx->sndnxt, 0);
1431		/* Mark the point TX key users changed */
1432		tx->timer1 = jiffies;
1433
1434		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1435			 tx->name, cur, new, rx->name);
 
 
 
1436	}
1437}
1438
1439static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1440{
1441	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1442	struct tipc_key key;
1443
1444	spin_lock_bh(&tx->lock);
1445	key = tx->key;
1446	WARN_ON(!key.active || tx_key != key.active);
1447
1448	/* Free the active key */
1449	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1450	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1451	spin_unlock_bh(&tx->lock);
1452
1453	pr_warn("%s: key is revoked\n", tx->name);
1454	return -EKEYREVOKED;
1455}
1456
1457int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1458		      struct tipc_node *node)
1459{
1460	struct tipc_crypto *c;
1461
1462	if (*crypto)
1463		return -EEXIST;
1464
1465	/* Allocate crypto */
1466	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1467	if (!c)
1468		return -ENOMEM;
1469
1470	/* Allocate workqueue on TX */
1471	if (!node) {
1472		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1473		if (!c->wq) {
1474			kfree(c);
1475			return -ENOMEM;
1476		}
1477	}
1478
1479	/* Allocate statistic structure */
1480	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1481	if (!c->stats) {
1482		if (c->wq)
1483			destroy_workqueue(c->wq);
1484		kfree_sensitive(c);
1485		return -ENOMEM;
1486	}
1487
1488	c->flags = 0;
1489	c->net = net;
1490	c->node = node;
1491	get_random_bytes(&c->key_gen, 2);
1492	tipc_crypto_key_set_state(c, 0, 0, 0);
1493	atomic_set(&c->key_distr, 0);
1494	atomic_set(&c->peer_rx_active, 0);
1495	atomic64_set(&c->sndnxt, 0);
1496	c->timer1 = jiffies;
1497	c->timer2 = jiffies;
1498	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1499	spin_lock_init(&c->lock);
1500	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1501		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1502			       tipc_own_id_string(c->net));
1503
1504	if (is_rx(c))
1505		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1506	else
1507		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1508
1509	*crypto = c;
1510	return 0;
1511}
1512
1513void tipc_crypto_stop(struct tipc_crypto **crypto)
1514{
1515	struct tipc_crypto *c = *crypto;
 
1516	u8 k;
1517
1518	if (!c)
1519		return;
1520
1521	/* Flush any queued works & destroy wq */
1522	if (is_tx(c)) {
1523		c->rekeying_intv = 0;
1524		cancel_delayed_work_sync(&c->work);
1525		destroy_workqueue(c->wq);
 
 
 
 
 
 
 
1526	}
1527
1528	/* Release AEAD keys */
1529	rcu_read_lock();
1530	for (k = KEY_MIN; k <= KEY_MAX; k++)
1531		tipc_aead_put(rcu_dereference(c->aead[k]));
1532	rcu_read_unlock();
1533	pr_debug("%s: has been stopped\n", c->name);
 
 
 
 
1534
1535	/* Free this crypto statistics */
1536	free_percpu(c->stats);
1537
1538	*crypto = NULL;
1539	kfree_sensitive(c);
1540}
1541
1542void tipc_crypto_timeout(struct tipc_crypto *rx)
1543{
1544	struct tipc_net *tn = tipc_net(rx->net);
1545	struct tipc_crypto *tx = tn->crypto_tx;
1546	struct tipc_key key;
 
1547	int cmd;
1548
1549	/* TX pending: taking all users & stable -> active */
 
 
 
1550	spin_lock(&tx->lock);
1551	key = tx->key;
1552	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1553		goto s1;
1554	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1555		goto s1;
1556	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1557		goto s1;
1558
1559	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1560	if (key.active)
1561		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1562	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1563	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
 
1564
1565s1:
1566	spin_unlock(&tx->lock);
1567
1568	/* RX pending: having user -> active */
 
 
 
1569	spin_lock(&rx->lock);
1570	key = rx->key;
1571	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1572		goto s2;
1573
1574	if (key.active)
1575		key.passive = key.active;
1576	key.active = key.pending;
1577	rx->timer2 = jiffies;
1578	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1579	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1580	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
 
1581	goto s5;
1582
1583s2:
1584	/* RX pending: not working -> remove */
1585	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
 
 
 
 
 
 
 
1586		goto s3;
1587
1588	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1589	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1590	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1591	goto s5;
1592
1593s3:
1594	/* RX active: timed out or no user -> pending */
 
 
 
 
 
1595	if (!key.active)
1596		goto s4;
1597	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1598	    tipc_aead_users(rx->aead[key.active]) > 0)
1599		goto s4;
1600
1601	if (key.pending)
1602		key.passive = key.active;
1603	else
1604		key.pending = key.active;
1605	rx->timer2 = jiffies;
1606	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1607	tipc_aead_users_set(rx->aead[key.pending], 0);
1608	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1609	goto s5;
1610
1611s4:
1612	/* RX passive: outdated or not working -> free */
1613	if (!key.passive)
 
1614		goto s5;
1615	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1616	    tipc_aead_users(rx->aead[key.passive]) > -10)
1617		goto s5;
1618
1619	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1620	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1621	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
 
1622
1623s5:
1624	spin_unlock(&rx->lock);
1625
1626	/* Relax it here, the flag will be set again if it really is, but only
1627	 * when we are not in grace period for safety!
1628	 */
1629	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1630		tx->legacy_user = 0;
1631
1632	/* Limit max_tfms & do debug commands if needed */
1633	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1634		return;
1635
1636	cmd = sysctl_tipc_max_tfms;
1637	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1638	tipc_crypto_do_cmd(rx->net, cmd);
1639}
1640
1641static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1642					 struct tipc_bearer *b,
1643					 struct tipc_media_addr *dst,
1644					 struct tipc_node *__dnode, u8 type)
1645{
1646	struct sk_buff *skb;
1647
1648	skb = skb_clone(_skb, GFP_ATOMIC);
1649	if (skb) {
1650		TIPC_SKB_CB(skb)->xmit_type = type;
1651		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1652		if (skb)
1653			b->media->send_msg(net, skb, b, dst);
1654	}
1655}
1656
1657/**
1658 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1659 * @net: struct net
1660 * @skb: input/output message skb pointer
1661 * @b: bearer used for xmit later
1662 * @dst: destination media address
1663 * @__dnode: destination node for reference if any
1664 *
1665 * First, build an encryption message header on the top of the message, then
1666 * encrypt the original TIPC message by using the pending, master or active
1667 * key with this preference order.
1668 * If the encryption is successful, the encrypted skb is returned directly or
1669 * via the callback.
1670 * Otherwise, the skb is freed!
1671 *
1672 * Return:
1673 * * 0                   : the encryption has succeeded (or no encryption)
1674 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1675 * * -ENOKEK             : the encryption has failed due to no key
1676 * * -EKEYREVOKED        : the encryption has failed due to key revoked
1677 * * -ENOMEM             : the encryption has failed due to no memory
1678 * * < 0                 : the encryption has failed due to other reasons
1679 */
1680int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1681		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1682		     struct tipc_node *__dnode)
1683{
1684	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1685	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1686	struct tipc_crypto_stats __percpu *stats = tx->stats;
1687	struct tipc_msg *hdr = buf_msg(*skb);
1688	struct tipc_key key = tx->key;
1689	struct tipc_aead *aead = NULL;
1690	u32 user = msg_user(hdr);
1691	u32 type = msg_type(hdr);
1692	int rc = -ENOKEY;
1693	u8 tx_key = 0;
1694
1695	/* No encryption? */
1696	if (!tx->working)
1697		return 0;
1698
1699	/* Pending key if peer has active on it or probing time */
 
 
 
 
1700	if (unlikely(key.pending)) {
1701		tx_key = key.pending;
1702		if (!tx->key_master && !key.active)
1703			goto encrypt;
1704		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1705			goto encrypt;
1706		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1707			pr_debug("%s: probing for key[%d]\n", tx->name,
1708				 key.pending);
1709			goto encrypt;
1710		}
1711		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1712			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1713					      SKB_PROBING);
1714	}
1715
1716	/* Master key if this is a *vital* message or in grace period */
1717	if (tx->key_master) {
1718		tx_key = KEY_MASTER;
1719		if (!key.active)
1720			goto encrypt;
1721		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1722			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1723				 user, type);
1724			goto encrypt;
1725		}
1726		if (user == LINK_CONFIG ||
1727		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1728		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1729		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1730			if (__rx && __rx->key_master &&
1731			    !atomic_read(&__rx->peer_rx_active))
1732				goto encrypt;
1733			if (!__rx) {
1734				if (likely(!tx->legacy_user))
1735					goto encrypt;
1736				tipc_crypto_clone_msg(net, *skb, b, dst,
1737						      __dnode, SKB_GRACING);
1738			}
1739		}
1740	}
1741
1742	/* Else, use the active key if any */
1743	if (likely(key.active)) {
1744		tx_key = key.active;
1745		goto encrypt;
1746	}
1747
1748	goto exit;
1749
1750encrypt:
1751	aead = tipc_aead_get(tx->aead[tx_key]);
1752	if (unlikely(!aead))
1753		goto exit;
1754	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1755	if (likely(rc > 0))
1756		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1757
1758exit:
1759	switch (rc) {
1760	case 0:
1761		this_cpu_inc(stats->stat[STAT_OK]);
1762		break;
1763	case -EINPROGRESS:
1764	case -EBUSY:
1765		this_cpu_inc(stats->stat[STAT_ASYNC]);
1766		*skb = NULL;
1767		return rc;
1768	default:
1769		this_cpu_inc(stats->stat[STAT_NOK]);
1770		if (rc == -ENOKEY)
1771			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1772		else if (rc == -EKEYREVOKED)
1773			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1774		kfree_skb(*skb);
1775		*skb = NULL;
1776		break;
1777	}
1778
1779	tipc_aead_put(aead);
1780	return rc;
1781}
1782
1783/**
1784 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1785 * @net: struct net
1786 * @rx: RX crypto handle
1787 * @skb: input/output message skb pointer
1788 * @b: bearer where the message has been received
1789 *
1790 * If the decryption is successful, the decrypted skb is returned directly or
1791 * as the callback, the encryption header and auth tag will be trimed out
1792 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1793 * Otherwise, the skb will be freed!
1794 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1795 * cluster key(s) can be taken for decryption (- recursive).
1796 *
1797 * Return:
1798 * * 0                   : the decryption has successfully completed
1799 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1800 * * -ENOKEY             : the decryption has failed due to no key
1801 * * -EBADMSG            : the decryption has failed due to bad message
1802 * * -ENOMEM             : the decryption has failed due to no memory
1803 * * < 0                 : the decryption has failed due to other reasons
1804 */
1805int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1806		    struct sk_buff **skb, struct tipc_bearer *b)
1807{
1808	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1809	struct tipc_crypto_stats __percpu *stats;
1810	struct tipc_aead *aead = NULL;
1811	struct tipc_key key;
1812	int rc = -ENOKEY;
1813	u8 tx_key, n;
1814
1815	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1816
1817	/* New peer?
1818	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1819	 */
1820	if (unlikely(!rx || tx_key == KEY_MASTER))
1821		goto pick_tx;
1822
1823	/* Pick RX key according to TX key if any */
 
 
 
 
 
1824	key = rx->key;
1825	if (tx_key == key.active || tx_key == key.pending ||
1826	    tx_key == key.passive)
1827		goto decrypt;
 
 
 
 
 
 
 
1828
1829	/* Unknown key, let's try to align RX key(s) */
1830	if (tipc_crypto_key_try_align(rx, tx_key))
1831		goto decrypt;
1832
1833pick_tx:
1834	/* No key suitable? Try to pick one from TX... */
1835	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1836	if (aead)
1837		goto decrypt;
1838	goto exit;
1839
1840decrypt:
1841	rcu_read_lock();
1842	if (!aead)
1843		aead = tipc_aead_get(rx->aead[tx_key]);
1844	rc = tipc_aead_decrypt(net, aead, *skb, b);
1845	rcu_read_unlock();
1846
1847exit:
1848	stats = ((rx) ?: tx)->stats;
1849	switch (rc) {
1850	case 0:
1851		this_cpu_inc(stats->stat[STAT_OK]);
1852		break;
1853	case -EINPROGRESS:
1854	case -EBUSY:
1855		this_cpu_inc(stats->stat[STAT_ASYNC]);
1856		*skb = NULL;
1857		return rc;
1858	default:
1859		this_cpu_inc(stats->stat[STAT_NOK]);
1860		if (rc == -ENOKEY) {
1861			kfree_skb(*skb);
1862			*skb = NULL;
1863			if (rx) {
1864				/* Mark rx->nokey only if we dont have a
1865				 * pending received session key, nor a newer
1866				 * one i.e. in the next slot.
1867				 */
1868				n = key_next(tx_key);
1869				rx->nokey = !(rx->skey ||
1870					      rcu_access_pointer(rx->aead[n]));
1871				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1872						     rx->name, rx->nokey,
1873						     tx_key, rx->key.keys);
1874				tipc_node_put(rx->node);
1875			}
1876			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1877			return rc;
1878		} else if (rc == -EBADMSG) {
1879			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1880		}
1881		break;
1882	}
1883
1884	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1885	return rc;
1886}
1887
1888static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1889				     struct tipc_bearer *b,
1890				     struct sk_buff **skb, int err)
1891{
1892	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1893	struct tipc_crypto *rx = aead->crypto;
1894	struct tipc_aead *tmp = NULL;
1895	struct tipc_ehdr *ehdr;
1896	struct tipc_node *n;
 
 
1897
1898	/* Is this completed by TX? */
1899	if (unlikely(is_tx(aead->crypto))) {
1900		rx = skb_cb->tx_clone_ctx.rx;
1901		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1902			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1903			 (*skb)->next, skb_cb->flags);
1904		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1905			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1906			 aead->crypto->aead[1], aead->crypto->aead[2],
1907			 aead->crypto->aead[3]);
 
 
1908		if (unlikely(err)) {
1909			if (err == -EBADMSG && (*skb)->next)
1910				tipc_rcv(net, (*skb)->next, b);
1911			goto free_skb;
1912		}
1913
1914		if (likely((*skb)->next)) {
1915			kfree_skb((*skb)->next);
1916			(*skb)->next = NULL;
1917		}
1918		ehdr = (struct tipc_ehdr *)(*skb)->data;
1919		if (!rx) {
1920			WARN_ON(ehdr->user != LINK_CONFIG);
1921			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1922					     true);
1923			rx = tipc_node_crypto_rx(n);
1924			if (unlikely(!rx))
1925				goto free_skb;
1926		}
1927
1928		/* Ignore cloning if it was TX master key */
1929		if (ehdr->tx_key == KEY_MASTER)
1930			goto rcv;
1931		if (tipc_aead_clone(&tmp, aead) < 0)
1932			goto rcv;
1933		WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1934		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1935			tipc_aead_free(&tmp->rcu);
1936			goto rcv;
1937		}
1938		tipc_aead_put(aead);
1939		aead = tmp;
1940	}
1941
1942	if (unlikely(err)) {
1943		tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1944		goto free_skb;
1945	}
1946
1947	/* Set the RX key's user */
1948	tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1949
 
1950	/* Mark this point, RX works */
1951	rx->timer1 = jiffies;
1952
1953rcv:
1954	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1955	ehdr = (struct tipc_ehdr *)(*skb)->data;
1956
1957	/* Mark this point, RX passive still works */
1958	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1959		rx->timer2 = jiffies;
1960
1961	skb_reset_network_header(*skb);
1962	skb_pull(*skb, tipc_ehdr_size(ehdr));
1963	if (pskb_trim(*skb, (*skb)->len - aead->authsize))
1964		goto free_skb;
1965
1966	/* Validate TIPCv2 message */
1967	if (unlikely(!tipc_msg_validate(skb))) {
1968		pr_err_ratelimited("Packet dropped after decryption!\n");
1969		goto free_skb;
1970	}
1971
1972	/* Ok, everything's fine, try to synch own keys according to peers' */
1973	tipc_crypto_key_synch(rx, *skb);
1974
1975	/* Re-fetch skb cb as skb might be changed in tipc_msg_validate */
1976	skb_cb = TIPC_SKB_CB(*skb);
1977
1978	/* Mark skb decrypted */
1979	skb_cb->decrypted = 1;
1980
1981	/* Clear clone cxt if any */
1982	if (likely(!skb_cb->tx_clone_deferred))
1983		goto exit;
1984	skb_cb->tx_clone_deferred = 0;
1985	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1986	goto exit;
1987
1988free_skb:
1989	kfree_skb(*skb);
1990	*skb = NULL;
1991
1992exit:
1993	tipc_aead_put(aead);
1994	if (rx)
1995		tipc_node_put(rx->node);
1996}
1997
1998static void tipc_crypto_do_cmd(struct net *net, int cmd)
1999{
2000	struct tipc_net *tn = tipc_net(net);
2001	struct tipc_crypto *tx = tn->crypto_tx, *rx;
2002	struct list_head *p;
2003	unsigned int stat;
2004	int i, j, cpu;
2005	char buf[200];
2006
2007	/* Currently only one command is supported */
2008	switch (cmd) {
2009	case 0xfff1:
2010		goto print_stats;
2011	default:
2012		return;
2013	}
2014
2015print_stats:
2016	/* Print a header */
2017	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2018
2019	/* Print key status */
2020	pr_info("Key status:\n");
2021	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2022		tipc_crypto_key_dump(tx, buf));
2023
2024	rcu_read_lock();
2025	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2026		rx = tipc_node_crypto_rx_by_list(p);
2027		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2028			tipc_crypto_key_dump(rx, buf));
2029	}
2030	rcu_read_unlock();
2031
2032	/* Print crypto statistics */
2033	for (i = 0, j = 0; i < MAX_STATS; i++)
2034		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2035	pr_info("Counter     %s", buf);
2036
2037	memset(buf, '-', 115);
2038	buf[115] = '\0';
2039	pr_info("%s\n", buf);
2040
2041	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2042	for_each_possible_cpu(cpu) {
2043		for (i = 0; i < MAX_STATS; i++) {
2044			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2045			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2046		}
2047		pr_info("%s", buf);
2048		j = scnprintf(buf, 200, "%12s", " ");
2049	}
2050
2051	rcu_read_lock();
2052	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2053		rx = tipc_node_crypto_rx_by_list(p);
2054		j = scnprintf(buf, 200, "RX(%7.7s) ",
2055			      tipc_node_get_id_str(rx->node));
2056		for_each_possible_cpu(cpu) {
2057			for (i = 0; i < MAX_STATS; i++) {
2058				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2059				j += scnprintf(buf + j, 200 - j, "|%11d ",
2060					       stat);
2061			}
2062			pr_info("%s", buf);
2063			j = scnprintf(buf, 200, "%12s", " ");
2064		}
2065	}
2066	rcu_read_unlock();
2067
2068	pr_info("\n======================== Done ========================\n");
2069}
2070
2071static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2072{
2073	struct tipc_key key = c->key;
2074	struct tipc_aead *aead;
2075	int k, i = 0;
2076	char *s;
2077
2078	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2079		if (k == KEY_MASTER) {
2080			if (is_rx(c))
2081				continue;
2082			if (time_before(jiffies,
2083					c->timer2 + TIPC_TX_GRACE_PERIOD))
2084				s = "ACT";
2085			else
2086				s = "PAS";
2087		} else {
2088			if (k == key.passive)
2089				s = "PAS";
2090			else if (k == key.active)
2091				s = "ACT";
2092			else if (k == key.pending)
2093				s = "PEN";
2094			else
2095				s = "-";
2096		}
2097		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2098
2099		rcu_read_lock();
2100		aead = rcu_dereference(c->aead[k]);
2101		if (aead)
2102			i += scnprintf(buf + i, 200 - i,
2103				       "{\"0x...%s\", \"%s\"}/%d:%d",
2104				       aead->hint,
2105				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2106				       atomic_read(&aead->users),
2107				       refcount_read(&aead->refcnt));
2108		rcu_read_unlock();
2109		i += scnprintf(buf + i, 200 - i, "\n");
2110	}
2111
2112	if (is_rx(c))
2113		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2114			       atomic_read(&c->peer_rx_active));
2115
2116	return buf;
2117}
2118
 
2119static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2120				  char *buf)
2121{
2122	struct tipc_key *key = &old;
2123	int k, i = 0;
2124	char *s;
2125
2126	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2127again:
2128	i += scnprintf(buf + i, 32 - i, "[");
2129	for (k = KEY_1; k <= KEY_3; k++) {
2130		if (k == key->passive)
2131			s = "pas";
2132		else if (k == key->active)
2133			s = "act";
2134		else if (k == key->pending)
2135			s = "pen";
2136		else
2137			s = "-";
2138		i += scnprintf(buf + i, 32 - i,
2139			       (k != KEY_3) ? "%s " : "%s", s);
2140	}
2141	if (key != &new) {
2142		i += scnprintf(buf + i, 32 - i, "] -> ");
2143		key = &new;
2144		goto again;
2145	}
2146	i += scnprintf(buf + i, 32 - i, "]");
2147	return buf;
2148}
2149
2150/**
2151 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2152 * @net: the struct net
2153 * @skb: the receiving message buffer
2154 */
2155void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2156{
2157	struct tipc_crypto *rx;
2158	struct tipc_msg *hdr;
2159
2160	if (unlikely(skb_linearize(skb)))
2161		goto exit;
2162
2163	hdr = buf_msg(skb);
2164	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2165	if (unlikely(!rx))
2166		goto exit;
2167
2168	switch (msg_type(hdr)) {
2169	case KEY_DISTR_MSG:
2170		if (tipc_crypto_key_rcv(rx, hdr))
2171			goto exit;
2172		break;
2173	default:
2174		break;
2175	}
2176
2177	tipc_node_put(rx->node);
2178
2179exit:
2180	kfree_skb(skb);
2181}
2182
2183/**
2184 * tipc_crypto_key_distr - Distribute a TX key
2185 * @tx: the TX crypto
2186 * @key: the key's index
2187 * @dest: the destination tipc node, = NULL if distributing to all nodes
2188 *
2189 * Return: 0 in case of success, otherwise < 0
2190 */
2191int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2192			  struct tipc_node *dest)
2193{
2194	struct tipc_aead *aead;
2195	u32 dnode = tipc_node_get_addr(dest);
2196	int rc = -ENOKEY;
2197
2198	if (!sysctl_tipc_key_exchange_enabled)
2199		return 0;
2200
2201	if (key) {
2202		rcu_read_lock();
2203		aead = tipc_aead_get(tx->aead[key]);
2204		if (likely(aead)) {
2205			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2206						  aead->gen, aead->mode,
2207						  dnode);
2208			tipc_aead_put(aead);
2209		}
2210		rcu_read_unlock();
2211	}
2212
2213	return rc;
2214}
2215
2216/**
2217 * tipc_crypto_key_xmit - Send a session key
2218 * @net: the struct net
2219 * @skey: the session key to be sent
2220 * @gen: the key's generation
2221 * @mode: the key's mode
2222 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2223 *
2224 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2225 * as its data section, then xmit-ed through the uc/bc link.
2226 *
2227 * Return: 0 in case of success, otherwise < 0
2228 */
2229static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2230				u16 gen, u8 mode, u32 dnode)
2231{
2232	struct sk_buff_head pkts;
2233	struct tipc_msg *hdr;
2234	struct sk_buff *skb;
2235	u16 size, cong_link_cnt;
2236	u8 *data;
2237	int rc;
2238
2239	size = tipc_aead_key_size(skey);
2240	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2241	if (!skb)
2242		return -ENOMEM;
2243
2244	hdr = buf_msg(skb);
2245	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2246		      INT_H_SIZE, dnode);
2247	msg_set_size(hdr, INT_H_SIZE + size);
2248	msg_set_key_gen(hdr, gen);
2249	msg_set_key_mode(hdr, mode);
2250
2251	data = msg_data(hdr);
2252	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2253	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2254	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2255	       skey->keylen);
2256
2257	__skb_queue_head_init(&pkts);
2258	__skb_queue_tail(&pkts, skb);
2259	if (dnode)
2260		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2261	else
2262		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2263
2264	return rc;
2265}
2266
2267/**
2268 * tipc_crypto_key_rcv - Receive a session key
2269 * @rx: the RX crypto
2270 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2271 *
2272 * This function retrieves the session key in the message from peer, then
2273 * schedules a RX work to attach the key to the corresponding RX crypto.
2274 *
2275 * Return: "true" if the key has been scheduled for attaching, otherwise
2276 * "false".
2277 */
2278static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2279{
2280	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2281	struct tipc_aead_key *skey = NULL;
2282	u16 key_gen = msg_key_gen(hdr);
2283	u32 size = msg_data_sz(hdr);
2284	u8 *data = msg_data(hdr);
2285	unsigned int keylen;
2286
2287	/* Verify whether the size can exist in the packet */
2288	if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2289		pr_debug("%s: message data size is too small\n", rx->name);
2290		goto exit;
2291	}
2292
2293	keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2294
2295	/* Verify the supplied size values */
2296	if (unlikely(keylen > TIPC_AEAD_KEY_SIZE_MAX ||
2297		     size != keylen + sizeof(struct tipc_aead_key))) {
2298		pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2299		goto exit;
2300	}
2301
2302	spin_lock(&rx->lock);
2303	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2304		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2305		       rx->skey, key_gen, rx->key_gen);
2306		goto exit_unlock;
2307	}
2308
2309	/* Allocate memory for the key */
2310	skey = kmalloc(size, GFP_ATOMIC);
2311	if (unlikely(!skey)) {
2312		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2313		goto exit_unlock;
2314	}
2315
2316	/* Copy key from msg data */
2317	skey->keylen = keylen;
2318	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2319	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2320	       skey->keylen);
2321
2322	rx->key_gen = key_gen;
2323	rx->skey_mode = msg_key_mode(hdr);
2324	rx->skey = skey;
2325	rx->nokey = 0;
2326	mb(); /* for nokey flag */
2327
2328exit_unlock:
2329	spin_unlock(&rx->lock);
2330
2331exit:
2332	/* Schedule the key attaching on this crypto */
2333	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2334		return true;
2335
2336	return false;
2337}
2338
2339/**
2340 * tipc_crypto_work_rx - Scheduled RX works handler
2341 * @work: the struct RX work
2342 *
2343 * The function processes the previous scheduled works i.e. distributing TX key
2344 * or attaching a received session key on RX crypto.
2345 */
2346static void tipc_crypto_work_rx(struct work_struct *work)
2347{
2348	struct delayed_work *dwork = to_delayed_work(work);
2349	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2350	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2351	unsigned long delay = msecs_to_jiffies(5000);
2352	bool resched = false;
2353	u8 key;
2354	int rc;
2355
2356	/* Case 1: Distribute TX key to peer if scheduled */
2357	if (atomic_cmpxchg(&rx->key_distr,
2358			   KEY_DISTR_SCHED,
2359			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2360		/* Always pick the newest one for distributing */
2361		key = tx->key.pending ?: tx->key.active;
2362		rc = tipc_crypto_key_distr(tx, key, rx->node);
2363		if (unlikely(rc))
2364			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2365				tx->name, key, tipc_node_get_id_str(rx->node),
2366				rc);
2367
2368		/* Sched for key_distr releasing */
2369		resched = true;
2370	} else {
2371		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2372	}
2373
2374	/* Case 2: Attach a pending received session key from peer if any */
2375	if (rx->skey) {
2376		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2377		if (unlikely(rc < 0))
2378			pr_warn("%s: unable to attach received skey, err %d\n",
2379				rx->name, rc);
2380		switch (rc) {
2381		case -EBUSY:
2382		case -ENOMEM:
2383			/* Resched the key attaching */
2384			resched = true;
2385			break;
2386		default:
2387			synchronize_rcu();
2388			kfree(rx->skey);
2389			rx->skey = NULL;
2390			break;
2391		}
2392	}
2393
2394	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2395		return;
2396
2397	tipc_node_put(rx->node);
2398}
2399
2400/**
2401 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2402 * @tx: TX crypto
2403 * @changed: if the rekeying needs to be rescheduled with new interval
2404 * @new_intv: new rekeying interval (when "changed" = true)
2405 */
2406void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2407				u32 new_intv)
2408{
2409	unsigned long delay;
2410	bool now = false;
2411
2412	if (changed) {
2413		if (new_intv == TIPC_REKEYING_NOW)
2414			now = true;
2415		else
2416			tx->rekeying_intv = new_intv;
2417		cancel_delayed_work_sync(&tx->work);
2418	}
2419
2420	if (tx->rekeying_intv || now) {
2421		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2422		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2423	}
2424}
2425
2426/**
2427 * tipc_crypto_work_tx - Scheduled TX works handler
2428 * @work: the struct TX work
2429 *
2430 * The function processes the previous scheduled work, i.e. key rekeying, by
2431 * generating a new session key based on current one, then attaching it to the
2432 * TX crypto and finally distributing it to peers. It also re-schedules the
2433 * rekeying if needed.
2434 */
2435static void tipc_crypto_work_tx(struct work_struct *work)
2436{
2437	struct delayed_work *dwork = to_delayed_work(work);
2438	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2439	struct tipc_aead_key *skey = NULL;
2440	struct tipc_key key = tx->key;
2441	struct tipc_aead *aead;
2442	int rc = -ENOMEM;
2443
2444	if (unlikely(key.pending))
2445		goto resched;
2446
2447	/* Take current key as a template */
2448	rcu_read_lock();
2449	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2450	if (unlikely(!aead)) {
2451		rcu_read_unlock();
2452		/* At least one key should exist for securing */
2453		return;
2454	}
2455
2456	/* Lets duplicate it first */
2457	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2458	rcu_read_unlock();
2459
2460	/* Now, generate new key, initiate & distribute it */
2461	if (likely(skey)) {
2462		rc = tipc_aead_key_generate(skey) ?:
2463		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2464		if (likely(rc > 0))
2465			rc = tipc_crypto_key_distr(tx, rc, NULL);
2466		kfree_sensitive(skey);
2467	}
2468
2469	if (unlikely(rc))
2470		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2471
2472resched:
2473	/* Re-schedule rekeying if any */
2474	tipc_crypto_rekeying_sched(tx, false, 0);
2475}