Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/coredump.h>
28#include <linux/sched/task.h>
29#include <linux/sched/debug.h>
30#include <linux/swap.h>
31#include <linux/timex.h>
32#include <linux/jiffies.h>
33#include <linux/cpuset.h>
34#include <linux/export.h>
35#include <linux/notifier.h>
36#include <linux/memcontrol.h>
37#include <linux/mempolicy.h>
38#include <linux/security.h>
39#include <linux/ptrace.h>
40#include <linux/freezer.h>
41#include <linux/ftrace.h>
42#include <linux/ratelimit.h>
43#include <linux/kthread.h>
44#include <linux/init.h>
45#include <linux/mmu_notifier.h>
46
47#include <asm/tlb.h>
48#include "internal.h"
49#include "slab.h"
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/oom.h>
53
54int sysctl_panic_on_oom;
55int sysctl_oom_kill_allocating_task;
56int sysctl_oom_dump_tasks = 1;
57
58/*
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
62 *
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 * and mark_oom_victim
65 */
66DEFINE_MUTEX(oom_lock);
67
68static inline bool is_memcg_oom(struct oom_control *oc)
69{
70 return oc->memcg != NULL;
71}
72
73#ifdef CONFIG_NUMA
74/**
75 * oom_cpuset_eligible() - check task eligiblity for kill
76 * @start: task struct of which task to consider
77 * @oc: pointer to struct oom_control
78 *
79 * Task eligibility is determined by whether or not a candidate task, @tsk,
80 * shares the same mempolicy nodes as current if it is bound by such a policy
81 * and whether or not it has the same set of allowed cpuset nodes.
82 *
83 * This function is assuming oom-killer context and 'current' has triggered
84 * the oom-killer.
85 */
86static bool oom_cpuset_eligible(struct task_struct *start,
87 struct oom_control *oc)
88{
89 struct task_struct *tsk;
90 bool ret = false;
91 const nodemask_t *mask = oc->nodemask;
92
93 if (is_memcg_oom(oc))
94 return true;
95
96 rcu_read_lock();
97 for_each_thread(start, tsk) {
98 if (mask) {
99 /*
100 * If this is a mempolicy constrained oom, tsk's
101 * cpuset is irrelevant. Only return true if its
102 * mempolicy intersects current, otherwise it may be
103 * needlessly killed.
104 */
105 ret = mempolicy_nodemask_intersects(tsk, mask);
106 } else {
107 /*
108 * This is not a mempolicy constrained oom, so only
109 * check the mems of tsk's cpuset.
110 */
111 ret = cpuset_mems_allowed_intersects(current, tsk);
112 }
113 if (ret)
114 break;
115 }
116 rcu_read_unlock();
117
118 return ret;
119}
120#else
121static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122{
123 return true;
124}
125#endif /* CONFIG_NUMA */
126
127/*
128 * The process p may have detached its own ->mm while exiting or through
129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
130 * pointer. Return p, or any of its subthreads with a valid ->mm, with
131 * task_lock() held.
132 */
133struct task_struct *find_lock_task_mm(struct task_struct *p)
134{
135 struct task_struct *t;
136
137 rcu_read_lock();
138
139 for_each_thread(p, t) {
140 task_lock(t);
141 if (likely(t->mm))
142 goto found;
143 task_unlock(t);
144 }
145 t = NULL;
146found:
147 rcu_read_unlock();
148
149 return t;
150}
151
152/*
153 * order == -1 means the oom kill is required by sysrq, otherwise only
154 * for display purposes.
155 */
156static inline bool is_sysrq_oom(struct oom_control *oc)
157{
158 return oc->order == -1;
159}
160
161/* return true if the task is not adequate as candidate victim task. */
162static bool oom_unkillable_task(struct task_struct *p)
163{
164 if (is_global_init(p))
165 return true;
166 if (p->flags & PF_KTHREAD)
167 return true;
168 return false;
169}
170
171/*
172 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
173 * than all user memory (LRU pages)
174 */
175static bool is_dump_unreclaim_slabs(void)
176{
177 unsigned long nr_lru;
178
179 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
180 global_node_page_state(NR_INACTIVE_ANON) +
181 global_node_page_state(NR_ACTIVE_FILE) +
182 global_node_page_state(NR_INACTIVE_FILE) +
183 global_node_page_state(NR_ISOLATED_ANON) +
184 global_node_page_state(NR_ISOLATED_FILE) +
185 global_node_page_state(NR_UNEVICTABLE);
186
187 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
188}
189
190/**
191 * oom_badness - heuristic function to determine which candidate task to kill
192 * @p: task struct of which task we should calculate
193 * @totalpages: total present RAM allowed for page allocation
194 *
195 * The heuristic for determining which task to kill is made to be as simple and
196 * predictable as possible. The goal is to return the highest value for the
197 * task consuming the most memory to avoid subsequent oom failures.
198 */
199long oom_badness(struct task_struct *p, unsigned long totalpages)
200{
201 long points;
202 long adj;
203
204 if (oom_unkillable_task(p))
205 return LONG_MIN;
206
207 p = find_lock_task_mm(p);
208 if (!p)
209 return LONG_MIN;
210
211 /*
212 * Do not even consider tasks which are explicitly marked oom
213 * unkillable or have been already oom reaped or the are in
214 * the middle of vfork
215 */
216 adj = (long)p->signal->oom_score_adj;
217 if (adj == OOM_SCORE_ADJ_MIN ||
218 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
219 in_vfork(p)) {
220 task_unlock(p);
221 return LONG_MIN;
222 }
223
224 /*
225 * The baseline for the badness score is the proportion of RAM that each
226 * task's rss, pagetable and swap space use.
227 */
228 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
229 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
230 task_unlock(p);
231
232 /* Normalize to oom_score_adj units */
233 adj *= totalpages / 1000;
234 points += adj;
235
236 return points;
237}
238
239static const char * const oom_constraint_text[] = {
240 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
241 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
242 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
243 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
244};
245
246/*
247 * Determine the type of allocation constraint.
248 */
249static enum oom_constraint constrained_alloc(struct oom_control *oc)
250{
251 struct zone *zone;
252 struct zoneref *z;
253 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
254 bool cpuset_limited = false;
255 int nid;
256
257 if (is_memcg_oom(oc)) {
258 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
259 return CONSTRAINT_MEMCG;
260 }
261
262 /* Default to all available memory */
263 oc->totalpages = totalram_pages() + total_swap_pages;
264
265 if (!IS_ENABLED(CONFIG_NUMA))
266 return CONSTRAINT_NONE;
267
268 if (!oc->zonelist)
269 return CONSTRAINT_NONE;
270 /*
271 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
272 * to kill current.We have to random task kill in this case.
273 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
274 */
275 if (oc->gfp_mask & __GFP_THISNODE)
276 return CONSTRAINT_NONE;
277
278 /*
279 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
280 * the page allocator means a mempolicy is in effect. Cpuset policy
281 * is enforced in get_page_from_freelist().
282 */
283 if (oc->nodemask &&
284 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
285 oc->totalpages = total_swap_pages;
286 for_each_node_mask(nid, *oc->nodemask)
287 oc->totalpages += node_present_pages(nid);
288 return CONSTRAINT_MEMORY_POLICY;
289 }
290
291 /* Check this allocation failure is caused by cpuset's wall function */
292 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
293 highest_zoneidx, oc->nodemask)
294 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
295 cpuset_limited = true;
296
297 if (cpuset_limited) {
298 oc->totalpages = total_swap_pages;
299 for_each_node_mask(nid, cpuset_current_mems_allowed)
300 oc->totalpages += node_present_pages(nid);
301 return CONSTRAINT_CPUSET;
302 }
303 return CONSTRAINT_NONE;
304}
305
306static int oom_evaluate_task(struct task_struct *task, void *arg)
307{
308 struct oom_control *oc = arg;
309 long points;
310
311 if (oom_unkillable_task(task))
312 goto next;
313
314 /* p may not have freeable memory in nodemask */
315 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
316 goto next;
317
318 /*
319 * This task already has access to memory reserves and is being killed.
320 * Don't allow any other task to have access to the reserves unless
321 * the task has MMF_OOM_SKIP because chances that it would release
322 * any memory is quite low.
323 */
324 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
325 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
326 goto next;
327 goto abort;
328 }
329
330 /*
331 * If task is allocating a lot of memory and has been marked to be
332 * killed first if it triggers an oom, then select it.
333 */
334 if (oom_task_origin(task)) {
335 points = LONG_MAX;
336 goto select;
337 }
338
339 points = oom_badness(task, oc->totalpages);
340 if (points == LONG_MIN || points < oc->chosen_points)
341 goto next;
342
343select:
344 if (oc->chosen)
345 put_task_struct(oc->chosen);
346 get_task_struct(task);
347 oc->chosen = task;
348 oc->chosen_points = points;
349next:
350 return 0;
351abort:
352 if (oc->chosen)
353 put_task_struct(oc->chosen);
354 oc->chosen = (void *)-1UL;
355 return 1;
356}
357
358/*
359 * Simple selection loop. We choose the process with the highest number of
360 * 'points'. In case scan was aborted, oc->chosen is set to -1.
361 */
362static void select_bad_process(struct oom_control *oc)
363{
364 oc->chosen_points = LONG_MIN;
365
366 if (is_memcg_oom(oc))
367 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
368 else {
369 struct task_struct *p;
370
371 rcu_read_lock();
372 for_each_process(p)
373 if (oom_evaluate_task(p, oc))
374 break;
375 rcu_read_unlock();
376 }
377}
378
379static int dump_task(struct task_struct *p, void *arg)
380{
381 struct oom_control *oc = arg;
382 struct task_struct *task;
383
384 if (oom_unkillable_task(p))
385 return 0;
386
387 /* p may not have freeable memory in nodemask */
388 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
389 return 0;
390
391 task = find_lock_task_mm(p);
392 if (!task) {
393 /*
394 * This is a kthread or all of p's threads have already
395 * detached their mm's. There's no need to report
396 * them; they can't be oom killed anyway.
397 */
398 return 0;
399 }
400
401 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
402 task->pid, from_kuid(&init_user_ns, task_uid(task)),
403 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
404 mm_pgtables_bytes(task->mm),
405 get_mm_counter(task->mm, MM_SWAPENTS),
406 task->signal->oom_score_adj, task->comm);
407 task_unlock(task);
408
409 return 0;
410}
411
412/**
413 * dump_tasks - dump current memory state of all system tasks
414 * @oc: pointer to struct oom_control
415 *
416 * Dumps the current memory state of all eligible tasks. Tasks not in the same
417 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
418 * are not shown.
419 * State information includes task's pid, uid, tgid, vm size, rss,
420 * pgtables_bytes, swapents, oom_score_adj value, and name.
421 */
422static void dump_tasks(struct oom_control *oc)
423{
424 pr_info("Tasks state (memory values in pages):\n");
425 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
426
427 if (is_memcg_oom(oc))
428 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
429 else {
430 struct task_struct *p;
431
432 rcu_read_lock();
433 for_each_process(p)
434 dump_task(p, oc);
435 rcu_read_unlock();
436 }
437}
438
439static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
440{
441 /* one line summary of the oom killer context. */
442 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
443 oom_constraint_text[oc->constraint],
444 nodemask_pr_args(oc->nodemask));
445 cpuset_print_current_mems_allowed();
446 mem_cgroup_print_oom_context(oc->memcg, victim);
447 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
448 from_kuid(&init_user_ns, task_uid(victim)));
449}
450
451static void dump_header(struct oom_control *oc, struct task_struct *p)
452{
453 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
454 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
455 current->signal->oom_score_adj);
456 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
457 pr_warn("COMPACTION is disabled!!!\n");
458
459 dump_stack();
460 if (is_memcg_oom(oc))
461 mem_cgroup_print_oom_meminfo(oc->memcg);
462 else {
463 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
464 if (is_dump_unreclaim_slabs())
465 dump_unreclaimable_slab();
466 }
467 if (sysctl_oom_dump_tasks)
468 dump_tasks(oc);
469 if (p)
470 dump_oom_summary(oc, p);
471}
472
473/*
474 * Number of OOM victims in flight
475 */
476static atomic_t oom_victims = ATOMIC_INIT(0);
477static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
478
479static bool oom_killer_disabled __read_mostly;
480
481#define K(x) ((x) << (PAGE_SHIFT-10))
482
483/*
484 * task->mm can be NULL if the task is the exited group leader. So to
485 * determine whether the task is using a particular mm, we examine all the
486 * task's threads: if one of those is using this mm then this task was also
487 * using it.
488 */
489bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
490{
491 struct task_struct *t;
492
493 for_each_thread(p, t) {
494 struct mm_struct *t_mm = READ_ONCE(t->mm);
495 if (t_mm)
496 return t_mm == mm;
497 }
498 return false;
499}
500
501#ifdef CONFIG_MMU
502/*
503 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
504 * victim (if that is possible) to help the OOM killer to move on.
505 */
506static struct task_struct *oom_reaper_th;
507static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
508static struct task_struct *oom_reaper_list;
509static DEFINE_SPINLOCK(oom_reaper_lock);
510
511bool __oom_reap_task_mm(struct mm_struct *mm)
512{
513 struct vm_area_struct *vma;
514 bool ret = true;
515
516 /*
517 * Tell all users of get_user/copy_from_user etc... that the content
518 * is no longer stable. No barriers really needed because unmapping
519 * should imply barriers already and the reader would hit a page fault
520 * if it stumbled over a reaped memory.
521 */
522 set_bit(MMF_UNSTABLE, &mm->flags);
523
524 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
525 if (!can_madv_lru_vma(vma))
526 continue;
527
528 /*
529 * Only anonymous pages have a good chance to be dropped
530 * without additional steps which we cannot afford as we
531 * are OOM already.
532 *
533 * We do not even care about fs backed pages because all
534 * which are reclaimable have already been reclaimed and
535 * we do not want to block exit_mmap by keeping mm ref
536 * count elevated without a good reason.
537 */
538 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
539 struct mmu_notifier_range range;
540 struct mmu_gather tlb;
541
542 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
543 vma, mm, vma->vm_start,
544 vma->vm_end);
545 tlb_gather_mmu(&tlb, mm, range.start, range.end);
546 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
547 tlb_finish_mmu(&tlb, range.start, range.end);
548 ret = false;
549 continue;
550 }
551 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
552 mmu_notifier_invalidate_range_end(&range);
553 tlb_finish_mmu(&tlb, range.start, range.end);
554 }
555 }
556
557 return ret;
558}
559
560/*
561 * Reaps the address space of the give task.
562 *
563 * Returns true on success and false if none or part of the address space
564 * has been reclaimed and the caller should retry later.
565 */
566static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567{
568 bool ret = true;
569
570 if (!mmap_read_trylock(mm)) {
571 trace_skip_task_reaping(tsk->pid);
572 return false;
573 }
574
575 /*
576 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
577 * work on the mm anymore. The check for MMF_OOM_SKIP must run
578 * under mmap_lock for reading because it serializes against the
579 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580 */
581 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
582 trace_skip_task_reaping(tsk->pid);
583 goto out_unlock;
584 }
585
586 trace_start_task_reaping(tsk->pid);
587
588 /* failed to reap part of the address space. Try again later */
589 ret = __oom_reap_task_mm(mm);
590 if (!ret)
591 goto out_finish;
592
593 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
594 task_pid_nr(tsk), tsk->comm,
595 K(get_mm_counter(mm, MM_ANONPAGES)),
596 K(get_mm_counter(mm, MM_FILEPAGES)),
597 K(get_mm_counter(mm, MM_SHMEMPAGES)));
598out_finish:
599 trace_finish_task_reaping(tsk->pid);
600out_unlock:
601 mmap_read_unlock(mm);
602
603 return ret;
604}
605
606#define MAX_OOM_REAP_RETRIES 10
607static void oom_reap_task(struct task_struct *tsk)
608{
609 int attempts = 0;
610 struct mm_struct *mm = tsk->signal->oom_mm;
611
612 /* Retry the mmap_read_trylock(mm) a few times */
613 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
614 schedule_timeout_idle(HZ/10);
615
616 if (attempts <= MAX_OOM_REAP_RETRIES ||
617 test_bit(MMF_OOM_SKIP, &mm->flags))
618 goto done;
619
620 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
621 task_pid_nr(tsk), tsk->comm);
622 sched_show_task(tsk);
623 debug_show_all_locks();
624
625done:
626 tsk->oom_reaper_list = NULL;
627
628 /*
629 * Hide this mm from OOM killer because it has been either reaped or
630 * somebody can't call mmap_write_unlock(mm).
631 */
632 set_bit(MMF_OOM_SKIP, &mm->flags);
633
634 /* Drop a reference taken by wake_oom_reaper */
635 put_task_struct(tsk);
636}
637
638static int oom_reaper(void *unused)
639{
640 while (true) {
641 struct task_struct *tsk = NULL;
642
643 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
644 spin_lock(&oom_reaper_lock);
645 if (oom_reaper_list != NULL) {
646 tsk = oom_reaper_list;
647 oom_reaper_list = tsk->oom_reaper_list;
648 }
649 spin_unlock(&oom_reaper_lock);
650
651 if (tsk)
652 oom_reap_task(tsk);
653 }
654
655 return 0;
656}
657
658static void wake_oom_reaper(struct task_struct *tsk)
659{
660 /* mm is already queued? */
661 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
662 return;
663
664 get_task_struct(tsk);
665
666 spin_lock(&oom_reaper_lock);
667 tsk->oom_reaper_list = oom_reaper_list;
668 oom_reaper_list = tsk;
669 spin_unlock(&oom_reaper_lock);
670 trace_wake_reaper(tsk->pid);
671 wake_up(&oom_reaper_wait);
672}
673
674static int __init oom_init(void)
675{
676 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
677 return 0;
678}
679subsys_initcall(oom_init)
680#else
681static inline void wake_oom_reaper(struct task_struct *tsk)
682{
683}
684#endif /* CONFIG_MMU */
685
686/**
687 * mark_oom_victim - mark the given task as OOM victim
688 * @tsk: task to mark
689 *
690 * Has to be called with oom_lock held and never after
691 * oom has been disabled already.
692 *
693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
694 * under task_lock or operate on the current).
695 */
696static void mark_oom_victim(struct task_struct *tsk)
697{
698 struct mm_struct *mm = tsk->mm;
699
700 WARN_ON(oom_killer_disabled);
701 /* OOM killer might race with memcg OOM */
702 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
703 return;
704
705 /* oom_mm is bound to the signal struct life time. */
706 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
707 mmgrab(tsk->signal->oom_mm);
708 set_bit(MMF_OOM_VICTIM, &mm->flags);
709 }
710
711 /*
712 * Make sure that the task is woken up from uninterruptible sleep
713 * if it is frozen because OOM killer wouldn't be able to free
714 * any memory and livelock. freezing_slow_path will tell the freezer
715 * that TIF_MEMDIE tasks should be ignored.
716 */
717 __thaw_task(tsk);
718 atomic_inc(&oom_victims);
719 trace_mark_victim(tsk->pid);
720}
721
722/**
723 * exit_oom_victim - note the exit of an OOM victim
724 */
725void exit_oom_victim(void)
726{
727 clear_thread_flag(TIF_MEMDIE);
728
729 if (!atomic_dec_return(&oom_victims))
730 wake_up_all(&oom_victims_wait);
731}
732
733/**
734 * oom_killer_enable - enable OOM killer
735 */
736void oom_killer_enable(void)
737{
738 oom_killer_disabled = false;
739 pr_info("OOM killer enabled.\n");
740}
741
742/**
743 * oom_killer_disable - disable OOM killer
744 * @timeout: maximum timeout to wait for oom victims in jiffies
745 *
746 * Forces all page allocations to fail rather than trigger OOM killer.
747 * Will block and wait until all OOM victims are killed or the given
748 * timeout expires.
749 *
750 * The function cannot be called when there are runnable user tasks because
751 * the userspace would see unexpected allocation failures as a result. Any
752 * new usage of this function should be consulted with MM people.
753 *
754 * Returns true if successful and false if the OOM killer cannot be
755 * disabled.
756 */
757bool oom_killer_disable(signed long timeout)
758{
759 signed long ret;
760
761 /*
762 * Make sure to not race with an ongoing OOM killer. Check that the
763 * current is not killed (possibly due to sharing the victim's memory).
764 */
765 if (mutex_lock_killable(&oom_lock))
766 return false;
767 oom_killer_disabled = true;
768 mutex_unlock(&oom_lock);
769
770 ret = wait_event_interruptible_timeout(oom_victims_wait,
771 !atomic_read(&oom_victims), timeout);
772 if (ret <= 0) {
773 oom_killer_enable();
774 return false;
775 }
776 pr_info("OOM killer disabled.\n");
777
778 return true;
779}
780
781static inline bool __task_will_free_mem(struct task_struct *task)
782{
783 struct signal_struct *sig = task->signal;
784
785 /*
786 * A coredumping process may sleep for an extended period in exit_mm(),
787 * so the oom killer cannot assume that the process will promptly exit
788 * and release memory.
789 */
790 if (sig->flags & SIGNAL_GROUP_COREDUMP)
791 return false;
792
793 if (sig->flags & SIGNAL_GROUP_EXIT)
794 return true;
795
796 if (thread_group_empty(task) && (task->flags & PF_EXITING))
797 return true;
798
799 return false;
800}
801
802/*
803 * Checks whether the given task is dying or exiting and likely to
804 * release its address space. This means that all threads and processes
805 * sharing the same mm have to be killed or exiting.
806 * Caller has to make sure that task->mm is stable (hold task_lock or
807 * it operates on the current).
808 */
809static bool task_will_free_mem(struct task_struct *task)
810{
811 struct mm_struct *mm = task->mm;
812 struct task_struct *p;
813 bool ret = true;
814
815 /*
816 * Skip tasks without mm because it might have passed its exit_mm and
817 * exit_oom_victim. oom_reaper could have rescued that but do not rely
818 * on that for now. We can consider find_lock_task_mm in future.
819 */
820 if (!mm)
821 return false;
822
823 if (!__task_will_free_mem(task))
824 return false;
825
826 /*
827 * This task has already been drained by the oom reaper so there are
828 * only small chances it will free some more
829 */
830 if (test_bit(MMF_OOM_SKIP, &mm->flags))
831 return false;
832
833 if (atomic_read(&mm->mm_users) <= 1)
834 return true;
835
836 /*
837 * Make sure that all tasks which share the mm with the given tasks
838 * are dying as well to make sure that a) nobody pins its mm and
839 * b) the task is also reapable by the oom reaper.
840 */
841 rcu_read_lock();
842 for_each_process(p) {
843 if (!process_shares_mm(p, mm))
844 continue;
845 if (same_thread_group(task, p))
846 continue;
847 ret = __task_will_free_mem(p);
848 if (!ret)
849 break;
850 }
851 rcu_read_unlock();
852
853 return ret;
854}
855
856static void __oom_kill_process(struct task_struct *victim, const char *message)
857{
858 struct task_struct *p;
859 struct mm_struct *mm;
860 bool can_oom_reap = true;
861
862 p = find_lock_task_mm(victim);
863 if (!p) {
864 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
865 message, task_pid_nr(victim), victim->comm);
866 put_task_struct(victim);
867 return;
868 } else if (victim != p) {
869 get_task_struct(p);
870 put_task_struct(victim);
871 victim = p;
872 }
873
874 /* Get a reference to safely compare mm after task_unlock(victim) */
875 mm = victim->mm;
876 mmgrab(mm);
877
878 /* Raise event before sending signal: task reaper must see this */
879 count_vm_event(OOM_KILL);
880 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
881
882 /*
883 * We should send SIGKILL before granting access to memory reserves
884 * in order to prevent the OOM victim from depleting the memory
885 * reserves from the user space under its control.
886 */
887 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
888 mark_oom_victim(victim);
889 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
890 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
891 K(get_mm_counter(mm, MM_ANONPAGES)),
892 K(get_mm_counter(mm, MM_FILEPAGES)),
893 K(get_mm_counter(mm, MM_SHMEMPAGES)),
894 from_kuid(&init_user_ns, task_uid(victim)),
895 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
896 task_unlock(victim);
897
898 /*
899 * Kill all user processes sharing victim->mm in other thread groups, if
900 * any. They don't get access to memory reserves, though, to avoid
901 * depletion of all memory. This prevents mm->mmap_lock livelock when an
902 * oom killed thread cannot exit because it requires the semaphore and
903 * its contended by another thread trying to allocate memory itself.
904 * That thread will now get access to memory reserves since it has a
905 * pending fatal signal.
906 */
907 rcu_read_lock();
908 for_each_process(p) {
909 if (!process_shares_mm(p, mm))
910 continue;
911 if (same_thread_group(p, victim))
912 continue;
913 if (is_global_init(p)) {
914 can_oom_reap = false;
915 set_bit(MMF_OOM_SKIP, &mm->flags);
916 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
917 task_pid_nr(victim), victim->comm,
918 task_pid_nr(p), p->comm);
919 continue;
920 }
921 /*
922 * No kthead_use_mm() user needs to read from the userspace so
923 * we are ok to reap it.
924 */
925 if (unlikely(p->flags & PF_KTHREAD))
926 continue;
927 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
928 }
929 rcu_read_unlock();
930
931 if (can_oom_reap)
932 wake_oom_reaper(victim);
933
934 mmdrop(mm);
935 put_task_struct(victim);
936}
937#undef K
938
939/*
940 * Kill provided task unless it's secured by setting
941 * oom_score_adj to OOM_SCORE_ADJ_MIN.
942 */
943static int oom_kill_memcg_member(struct task_struct *task, void *message)
944{
945 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
946 !is_global_init(task)) {
947 get_task_struct(task);
948 __oom_kill_process(task, message);
949 }
950 return 0;
951}
952
953static void oom_kill_process(struct oom_control *oc, const char *message)
954{
955 struct task_struct *victim = oc->chosen;
956 struct mem_cgroup *oom_group;
957 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
958 DEFAULT_RATELIMIT_BURST);
959
960 /*
961 * If the task is already exiting, don't alarm the sysadmin or kill
962 * its children or threads, just give it access to memory reserves
963 * so it can die quickly
964 */
965 task_lock(victim);
966 if (task_will_free_mem(victim)) {
967 mark_oom_victim(victim);
968 wake_oom_reaper(victim);
969 task_unlock(victim);
970 put_task_struct(victim);
971 return;
972 }
973 task_unlock(victim);
974
975 if (__ratelimit(&oom_rs))
976 dump_header(oc, victim);
977
978 /*
979 * Do we need to kill the entire memory cgroup?
980 * Or even one of the ancestor memory cgroups?
981 * Check this out before killing the victim task.
982 */
983 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
984
985 __oom_kill_process(victim, message);
986
987 /*
988 * If necessary, kill all tasks in the selected memory cgroup.
989 */
990 if (oom_group) {
991 mem_cgroup_print_oom_group(oom_group);
992 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
993 (void*)message);
994 mem_cgroup_put(oom_group);
995 }
996}
997
998/*
999 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1000 */
1001static void check_panic_on_oom(struct oom_control *oc)
1002{
1003 if (likely(!sysctl_panic_on_oom))
1004 return;
1005 if (sysctl_panic_on_oom != 2) {
1006 /*
1007 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1008 * does not panic for cpuset, mempolicy, or memcg allocation
1009 * failures.
1010 */
1011 if (oc->constraint != CONSTRAINT_NONE)
1012 return;
1013 }
1014 /* Do not panic for oom kills triggered by sysrq */
1015 if (is_sysrq_oom(oc))
1016 return;
1017 dump_header(oc, NULL);
1018 panic("Out of memory: %s panic_on_oom is enabled\n",
1019 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1020}
1021
1022static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1023
1024int register_oom_notifier(struct notifier_block *nb)
1025{
1026 return blocking_notifier_chain_register(&oom_notify_list, nb);
1027}
1028EXPORT_SYMBOL_GPL(register_oom_notifier);
1029
1030int unregister_oom_notifier(struct notifier_block *nb)
1031{
1032 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1033}
1034EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1035
1036/**
1037 * out_of_memory - kill the "best" process when we run out of memory
1038 * @oc: pointer to struct oom_control
1039 *
1040 * If we run out of memory, we have the choice between either
1041 * killing a random task (bad), letting the system crash (worse)
1042 * OR try to be smart about which process to kill. Note that we
1043 * don't have to be perfect here, we just have to be good.
1044 */
1045bool out_of_memory(struct oom_control *oc)
1046{
1047 unsigned long freed = 0;
1048
1049 if (oom_killer_disabled)
1050 return false;
1051
1052 if (!is_memcg_oom(oc)) {
1053 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1054 if (freed > 0)
1055 /* Got some memory back in the last second. */
1056 return true;
1057 }
1058
1059 /*
1060 * If current has a pending SIGKILL or is exiting, then automatically
1061 * select it. The goal is to allow it to allocate so that it may
1062 * quickly exit and free its memory.
1063 */
1064 if (task_will_free_mem(current)) {
1065 mark_oom_victim(current);
1066 wake_oom_reaper(current);
1067 return true;
1068 }
1069
1070 /*
1071 * The OOM killer does not compensate for IO-less reclaim.
1072 * pagefault_out_of_memory lost its gfp context so we have to
1073 * make sure exclude 0 mask - all other users should have at least
1074 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1075 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1076 */
1077 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1078 return true;
1079
1080 /*
1081 * Check if there were limitations on the allocation (only relevant for
1082 * NUMA and memcg) that may require different handling.
1083 */
1084 oc->constraint = constrained_alloc(oc);
1085 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1086 oc->nodemask = NULL;
1087 check_panic_on_oom(oc);
1088
1089 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1090 current->mm && !oom_unkillable_task(current) &&
1091 oom_cpuset_eligible(current, oc) &&
1092 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1093 get_task_struct(current);
1094 oc->chosen = current;
1095 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1096 return true;
1097 }
1098
1099 select_bad_process(oc);
1100 /* Found nothing?!?! */
1101 if (!oc->chosen) {
1102 dump_header(oc, NULL);
1103 pr_warn("Out of memory and no killable processes...\n");
1104 /*
1105 * If we got here due to an actual allocation at the
1106 * system level, we cannot survive this and will enter
1107 * an endless loop in the allocator. Bail out now.
1108 */
1109 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1110 panic("System is deadlocked on memory\n");
1111 }
1112 if (oc->chosen && oc->chosen != (void *)-1UL)
1113 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1114 "Memory cgroup out of memory");
1115 return !!oc->chosen;
1116}
1117
1118/*
1119 * The pagefault handler calls here because it is out of memory, so kill a
1120 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1121 * killing is already in progress so do nothing.
1122 */
1123void pagefault_out_of_memory(void)
1124{
1125 struct oom_control oc = {
1126 .zonelist = NULL,
1127 .nodemask = NULL,
1128 .memcg = NULL,
1129 .gfp_mask = 0,
1130 .order = 0,
1131 };
1132
1133 if (mem_cgroup_oom_synchronize(true))
1134 return;
1135
1136 if (!mutex_trylock(&oom_lock))
1137 return;
1138 out_of_memory(&oc);
1139 mutex_unlock(&oom_lock);
1140}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/sched/debug.h>
29#include <linux/swap.h>
30#include <linux/syscalls.h>
31#include <linux/timex.h>
32#include <linux/jiffies.h>
33#include <linux/cpuset.h>
34#include <linux/export.h>
35#include <linux/notifier.h>
36#include <linux/memcontrol.h>
37#include <linux/mempolicy.h>
38#include <linux/security.h>
39#include <linux/ptrace.h>
40#include <linux/freezer.h>
41#include <linux/ftrace.h>
42#include <linux/ratelimit.h>
43#include <linux/kthread.h>
44#include <linux/init.h>
45#include <linux/mmu_notifier.h>
46#include <linux/cred.h>
47#include <linux/nmi.h>
48
49#include <asm/tlb.h>
50#include "internal.h"
51#include "slab.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/oom.h>
55
56static int sysctl_panic_on_oom;
57static int sysctl_oom_kill_allocating_task;
58static int sysctl_oom_dump_tasks = 1;
59
60/*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68DEFINE_MUTEX(oom_lock);
69/* Serializes oom_score_adj and oom_score_adj_min updates */
70DEFINE_MUTEX(oom_adj_mutex);
71
72static inline bool is_memcg_oom(struct oom_control *oc)
73{
74 return oc->memcg != NULL;
75}
76
77#ifdef CONFIG_NUMA
78/**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
90static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
92{
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120}
121#else
122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123{
124 return true;
125}
126#endif /* CONFIG_NUMA */
127
128/*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
134struct task_struct *find_lock_task_mm(struct task_struct *p)
135{
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147found:
148 rcu_read_unlock();
149
150 return t;
151}
152
153/*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
157static inline bool is_sysrq_oom(struct oom_control *oc)
158{
159 return oc->order == -1;
160}
161
162/* return true if the task is not adequate as candidate victim task. */
163static bool oom_unkillable_task(struct task_struct *p)
164{
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170}
171
172/*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177*/
178static bool should_dump_unreclaim_slab(void)
179{
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191}
192
193/**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
202long oom_badness(struct task_struct *p, unsigned long totalpages)
203{
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240}
241
242static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247};
248
249/*
250 * Determine the type of allocation constraint.
251 */
252static enum oom_constraint constrained_alloc(struct oom_control *oc)
253{
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307}
308
309static int oom_evaluate_task(struct task_struct *task, void *arg)
310{
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352next:
353 return 0;
354abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359}
360
361/*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
365static void select_bad_process(struct oom_control *oc)
366{
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380}
381
382static int dump_task(struct task_struct *p, void *arg)
383{
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413}
414
415/**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
425static void dump_tasks(struct oom_control *oc)
426{
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445}
446
447static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
448{
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457}
458
459static void dump_header(struct oom_control *oc)
460{
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
474 }
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
477}
478
479/*
480 * Number of OOM victims in flight
481 */
482static atomic_t oom_victims = ATOMIC_INIT(0);
483static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
484
485static bool oom_killer_disabled __read_mostly;
486
487/*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494{
495 struct task_struct *t;
496
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503}
504
505#ifdef CONFIG_MMU
506/*
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
509 */
510static struct task_struct *oom_reaper_th;
511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512static struct task_struct *oom_reaper_list;
513static DEFINE_SPINLOCK(oom_reaper_lock);
514
515static bool __oom_reap_task_mm(struct mm_struct *mm)
516{
517 struct vm_area_struct *vma;
518 bool ret = true;
519 VMA_ITERATOR(vmi, mm, 0);
520
521 /*
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
526 */
527 set_bit(MMF_UNSTABLE, &mm->flags);
528
529 for_each_vma(vmi, vma) {
530 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
531 continue;
532
533 /*
534 * Only anonymous pages have a good chance to be dropped
535 * without additional steps which we cannot afford as we
536 * are OOM already.
537 *
538 * We do not even care about fs backed pages because all
539 * which are reclaimable have already been reclaimed and
540 * we do not want to block exit_mmap by keeping mm ref
541 * count elevated without a good reason.
542 */
543 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
544 struct mmu_notifier_range range;
545 struct mmu_gather tlb;
546
547 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
548 mm, vma->vm_start,
549 vma->vm_end);
550 tlb_gather_mmu(&tlb, mm);
551 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
552 tlb_finish_mmu(&tlb);
553 ret = false;
554 continue;
555 }
556 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
557 mmu_notifier_invalidate_range_end(&range);
558 tlb_finish_mmu(&tlb);
559 }
560 }
561
562 return ret;
563}
564
565/*
566 * Reaps the address space of the give task.
567 *
568 * Returns true on success and false if none or part of the address space
569 * has been reclaimed and the caller should retry later.
570 */
571static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
572{
573 bool ret = true;
574
575 if (!mmap_read_trylock(mm)) {
576 trace_skip_task_reaping(tsk->pid);
577 return false;
578 }
579
580 /*
581 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
582 * work on the mm anymore. The check for MMF_OOM_SKIP must run
583 * under mmap_lock for reading because it serializes against the
584 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
585 */
586 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
587 trace_skip_task_reaping(tsk->pid);
588 goto out_unlock;
589 }
590
591 trace_start_task_reaping(tsk->pid);
592
593 /* failed to reap part of the address space. Try again later */
594 ret = __oom_reap_task_mm(mm);
595 if (!ret)
596 goto out_finish;
597
598 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
599 task_pid_nr(tsk), tsk->comm,
600 K(get_mm_counter(mm, MM_ANONPAGES)),
601 K(get_mm_counter(mm, MM_FILEPAGES)),
602 K(get_mm_counter(mm, MM_SHMEMPAGES)));
603out_finish:
604 trace_finish_task_reaping(tsk->pid);
605out_unlock:
606 mmap_read_unlock(mm);
607
608 return ret;
609}
610
611#define MAX_OOM_REAP_RETRIES 10
612static void oom_reap_task(struct task_struct *tsk)
613{
614 int attempts = 0;
615 struct mm_struct *mm = tsk->signal->oom_mm;
616
617 /* Retry the mmap_read_trylock(mm) a few times */
618 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
619 schedule_timeout_idle(HZ/10);
620
621 if (attempts <= MAX_OOM_REAP_RETRIES ||
622 test_bit(MMF_OOM_SKIP, &mm->flags))
623 goto done;
624
625 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
626 task_pid_nr(tsk), tsk->comm);
627 sched_show_task(tsk);
628 debug_show_all_locks();
629
630done:
631 tsk->oom_reaper_list = NULL;
632
633 /*
634 * Hide this mm from OOM killer because it has been either reaped or
635 * somebody can't call mmap_write_unlock(mm).
636 */
637 set_bit(MMF_OOM_SKIP, &mm->flags);
638
639 /* Drop a reference taken by queue_oom_reaper */
640 put_task_struct(tsk);
641}
642
643static int oom_reaper(void *unused)
644{
645 set_freezable();
646
647 while (true) {
648 struct task_struct *tsk = NULL;
649
650 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
651 spin_lock_irq(&oom_reaper_lock);
652 if (oom_reaper_list != NULL) {
653 tsk = oom_reaper_list;
654 oom_reaper_list = tsk->oom_reaper_list;
655 }
656 spin_unlock_irq(&oom_reaper_lock);
657
658 if (tsk)
659 oom_reap_task(tsk);
660 }
661
662 return 0;
663}
664
665static void wake_oom_reaper(struct timer_list *timer)
666{
667 struct task_struct *tsk = container_of(timer, struct task_struct,
668 oom_reaper_timer);
669 struct mm_struct *mm = tsk->signal->oom_mm;
670 unsigned long flags;
671
672 /* The victim managed to terminate on its own - see exit_mmap */
673 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
674 put_task_struct(tsk);
675 return;
676 }
677
678 spin_lock_irqsave(&oom_reaper_lock, flags);
679 tsk->oom_reaper_list = oom_reaper_list;
680 oom_reaper_list = tsk;
681 spin_unlock_irqrestore(&oom_reaper_lock, flags);
682 trace_wake_reaper(tsk->pid);
683 wake_up(&oom_reaper_wait);
684}
685
686/*
687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
688 * The timers timeout is arbitrary... the longer it is, the longer the worst
689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
690 * get in the way and release resources needed by the process exit path.
691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
692 * before the exit path is able to wake the futex waiters.
693 */
694#define OOM_REAPER_DELAY (2*HZ)
695static void queue_oom_reaper(struct task_struct *tsk)
696{
697 /* mm is already queued? */
698 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
699 return;
700
701 get_task_struct(tsk);
702 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
703 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
704 add_timer(&tsk->oom_reaper_timer);
705}
706
707#ifdef CONFIG_SYSCTL
708static struct ctl_table vm_oom_kill_table[] = {
709 {
710 .procname = "panic_on_oom",
711 .data = &sysctl_panic_on_oom,
712 .maxlen = sizeof(sysctl_panic_on_oom),
713 .mode = 0644,
714 .proc_handler = proc_dointvec_minmax,
715 .extra1 = SYSCTL_ZERO,
716 .extra2 = SYSCTL_TWO,
717 },
718 {
719 .procname = "oom_kill_allocating_task",
720 .data = &sysctl_oom_kill_allocating_task,
721 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
722 .mode = 0644,
723 .proc_handler = proc_dointvec,
724 },
725 {
726 .procname = "oom_dump_tasks",
727 .data = &sysctl_oom_dump_tasks,
728 .maxlen = sizeof(sysctl_oom_dump_tasks),
729 .mode = 0644,
730 .proc_handler = proc_dointvec,
731 },
732};
733#endif
734
735static int __init oom_init(void)
736{
737 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
738#ifdef CONFIG_SYSCTL
739 register_sysctl_init("vm", vm_oom_kill_table);
740#endif
741 return 0;
742}
743subsys_initcall(oom_init)
744#else
745static inline void queue_oom_reaper(struct task_struct *tsk)
746{
747}
748#endif /* CONFIG_MMU */
749
750/**
751 * mark_oom_victim - mark the given task as OOM victim
752 * @tsk: task to mark
753 *
754 * Has to be called with oom_lock held and never after
755 * oom has been disabled already.
756 *
757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
758 * under task_lock or operate on the current).
759 */
760static void mark_oom_victim(struct task_struct *tsk)
761{
762 const struct cred *cred;
763 struct mm_struct *mm = tsk->mm;
764
765 WARN_ON(oom_killer_disabled);
766 /* OOM killer might race with memcg OOM */
767 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
768 return;
769
770 /* oom_mm is bound to the signal struct life time. */
771 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
772 mmgrab(tsk->signal->oom_mm);
773
774 /*
775 * Make sure that the task is woken up from uninterruptible sleep
776 * if it is frozen because OOM killer wouldn't be able to free
777 * any memory and livelock. freezing_slow_path will tell the freezer
778 * that TIF_MEMDIE tasks should be ignored.
779 */
780 __thaw_task(tsk);
781 atomic_inc(&oom_victims);
782 cred = get_task_cred(tsk);
783 trace_mark_victim(tsk, cred->uid.val);
784 put_cred(cred);
785}
786
787/**
788 * exit_oom_victim - note the exit of an OOM victim
789 */
790void exit_oom_victim(void)
791{
792 clear_thread_flag(TIF_MEMDIE);
793
794 if (!atomic_dec_return(&oom_victims))
795 wake_up_all(&oom_victims_wait);
796}
797
798/**
799 * oom_killer_enable - enable OOM killer
800 */
801void oom_killer_enable(void)
802{
803 oom_killer_disabled = false;
804 pr_info("OOM killer enabled.\n");
805}
806
807/**
808 * oom_killer_disable - disable OOM killer
809 * @timeout: maximum timeout to wait for oom victims in jiffies
810 *
811 * Forces all page allocations to fail rather than trigger OOM killer.
812 * Will block and wait until all OOM victims are killed or the given
813 * timeout expires.
814 *
815 * The function cannot be called when there are runnable user tasks because
816 * the userspace would see unexpected allocation failures as a result. Any
817 * new usage of this function should be consulted with MM people.
818 *
819 * Returns true if successful and false if the OOM killer cannot be
820 * disabled.
821 */
822bool oom_killer_disable(signed long timeout)
823{
824 signed long ret;
825
826 /*
827 * Make sure to not race with an ongoing OOM killer. Check that the
828 * current is not killed (possibly due to sharing the victim's memory).
829 */
830 if (mutex_lock_killable(&oom_lock))
831 return false;
832 oom_killer_disabled = true;
833 mutex_unlock(&oom_lock);
834
835 ret = wait_event_interruptible_timeout(oom_victims_wait,
836 !atomic_read(&oom_victims), timeout);
837 if (ret <= 0) {
838 oom_killer_enable();
839 return false;
840 }
841 pr_info("OOM killer disabled.\n");
842
843 return true;
844}
845
846static inline bool __task_will_free_mem(struct task_struct *task)
847{
848 struct signal_struct *sig = task->signal;
849
850 /*
851 * A coredumping process may sleep for an extended period in
852 * coredump_task_exit(), so the oom killer cannot assume that
853 * the process will promptly exit and release memory.
854 */
855 if (sig->core_state)
856 return false;
857
858 if (sig->flags & SIGNAL_GROUP_EXIT)
859 return true;
860
861 if (thread_group_empty(task) && (task->flags & PF_EXITING))
862 return true;
863
864 return false;
865}
866
867/*
868 * Checks whether the given task is dying or exiting and likely to
869 * release its address space. This means that all threads and processes
870 * sharing the same mm have to be killed or exiting.
871 * Caller has to make sure that task->mm is stable (hold task_lock or
872 * it operates on the current).
873 */
874static bool task_will_free_mem(struct task_struct *task)
875{
876 struct mm_struct *mm = task->mm;
877 struct task_struct *p;
878 bool ret = true;
879
880 /*
881 * Skip tasks without mm because it might have passed its exit_mm and
882 * exit_oom_victim. oom_reaper could have rescued that but do not rely
883 * on that for now. We can consider find_lock_task_mm in future.
884 */
885 if (!mm)
886 return false;
887
888 if (!__task_will_free_mem(task))
889 return false;
890
891 /*
892 * This task has already been drained by the oom reaper so there are
893 * only small chances it will free some more
894 */
895 if (test_bit(MMF_OOM_SKIP, &mm->flags))
896 return false;
897
898 if (atomic_read(&mm->mm_users) <= 1)
899 return true;
900
901 /*
902 * Make sure that all tasks which share the mm with the given tasks
903 * are dying as well to make sure that a) nobody pins its mm and
904 * b) the task is also reapable by the oom reaper.
905 */
906 rcu_read_lock();
907 for_each_process(p) {
908 if (!process_shares_mm(p, mm))
909 continue;
910 if (same_thread_group(task, p))
911 continue;
912 ret = __task_will_free_mem(p);
913 if (!ret)
914 break;
915 }
916 rcu_read_unlock();
917
918 return ret;
919}
920
921static void __oom_kill_process(struct task_struct *victim, const char *message)
922{
923 struct task_struct *p;
924 struct mm_struct *mm;
925 bool can_oom_reap = true;
926
927 p = find_lock_task_mm(victim);
928 if (!p) {
929 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
930 message, task_pid_nr(victim), victim->comm);
931 put_task_struct(victim);
932 return;
933 } else if (victim != p) {
934 get_task_struct(p);
935 put_task_struct(victim);
936 victim = p;
937 }
938
939 /* Get a reference to safely compare mm after task_unlock(victim) */
940 mm = victim->mm;
941 mmgrab(mm);
942
943 /* Raise event before sending signal: task reaper must see this */
944 count_vm_event(OOM_KILL);
945 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
946
947 /*
948 * We should send SIGKILL before granting access to memory reserves
949 * in order to prevent the OOM victim from depleting the memory
950 * reserves from the user space under its control.
951 */
952 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
953 mark_oom_victim(victim);
954 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
955 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
956 K(get_mm_counter(mm, MM_ANONPAGES)),
957 K(get_mm_counter(mm, MM_FILEPAGES)),
958 K(get_mm_counter(mm, MM_SHMEMPAGES)),
959 from_kuid(&init_user_ns, task_uid(victim)),
960 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
961 task_unlock(victim);
962
963 /*
964 * Kill all user processes sharing victim->mm in other thread groups, if
965 * any. They don't get access to memory reserves, though, to avoid
966 * depletion of all memory. This prevents mm->mmap_lock livelock when an
967 * oom killed thread cannot exit because it requires the semaphore and
968 * its contended by another thread trying to allocate memory itself.
969 * That thread will now get access to memory reserves since it has a
970 * pending fatal signal.
971 */
972 rcu_read_lock();
973 for_each_process(p) {
974 if (!process_shares_mm(p, mm))
975 continue;
976 if (same_thread_group(p, victim))
977 continue;
978 if (is_global_init(p)) {
979 can_oom_reap = false;
980 set_bit(MMF_OOM_SKIP, &mm->flags);
981 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
982 task_pid_nr(victim), victim->comm,
983 task_pid_nr(p), p->comm);
984 continue;
985 }
986 /*
987 * No kthread_use_mm() user needs to read from the userspace so
988 * we are ok to reap it.
989 */
990 if (unlikely(p->flags & PF_KTHREAD))
991 continue;
992 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
993 }
994 rcu_read_unlock();
995
996 if (can_oom_reap)
997 queue_oom_reaper(victim);
998
999 mmdrop(mm);
1000 put_task_struct(victim);
1001}
1002
1003/*
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1006 */
1007static int oom_kill_memcg_member(struct task_struct *task, void *message)
1008{
1009 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010 !is_global_init(task)) {
1011 get_task_struct(task);
1012 __oom_kill_process(task, message);
1013 }
1014 return 0;
1015}
1016
1017static void oom_kill_process(struct oom_control *oc, const char *message)
1018{
1019 struct task_struct *victim = oc->chosen;
1020 struct mem_cgroup *oom_group;
1021 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022 DEFAULT_RATELIMIT_BURST);
1023
1024 /*
1025 * If the task is already exiting, don't alarm the sysadmin or kill
1026 * its children or threads, just give it access to memory reserves
1027 * so it can die quickly
1028 */
1029 task_lock(victim);
1030 if (task_will_free_mem(victim)) {
1031 mark_oom_victim(victim);
1032 queue_oom_reaper(victim);
1033 task_unlock(victim);
1034 put_task_struct(victim);
1035 return;
1036 }
1037 task_unlock(victim);
1038
1039 if (__ratelimit(&oom_rs)) {
1040 dump_header(oc);
1041 dump_oom_victim(oc, victim);
1042 }
1043
1044 /*
1045 * Do we need to kill the entire memory cgroup?
1046 * Or even one of the ancestor memory cgroups?
1047 * Check this out before killing the victim task.
1048 */
1049 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1050
1051 __oom_kill_process(victim, message);
1052
1053 /*
1054 * If necessary, kill all tasks in the selected memory cgroup.
1055 */
1056 if (oom_group) {
1057 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058 mem_cgroup_print_oom_group(oom_group);
1059 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060 (void *)message);
1061 mem_cgroup_put(oom_group);
1062 }
1063}
1064
1065/*
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1067 */
1068static void check_panic_on_oom(struct oom_control *oc)
1069{
1070 if (likely(!sysctl_panic_on_oom))
1071 return;
1072 if (sysctl_panic_on_oom != 2) {
1073 /*
1074 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075 * does not panic for cpuset, mempolicy, or memcg allocation
1076 * failures.
1077 */
1078 if (oc->constraint != CONSTRAINT_NONE)
1079 return;
1080 }
1081 /* Do not panic for oom kills triggered by sysrq */
1082 if (is_sysrq_oom(oc))
1083 return;
1084 dump_header(oc);
1085 panic("Out of memory: %s panic_on_oom is enabled\n",
1086 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1087}
1088
1089static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1090
1091int register_oom_notifier(struct notifier_block *nb)
1092{
1093 return blocking_notifier_chain_register(&oom_notify_list, nb);
1094}
1095EXPORT_SYMBOL_GPL(register_oom_notifier);
1096
1097int unregister_oom_notifier(struct notifier_block *nb)
1098{
1099 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1100}
1101EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1102
1103/**
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1106 *
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1111 */
1112bool out_of_memory(struct oom_control *oc)
1113{
1114 unsigned long freed = 0;
1115
1116 if (oom_killer_disabled)
1117 return false;
1118
1119 if (!is_memcg_oom(oc)) {
1120 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121 if (freed > 0 && !is_sysrq_oom(oc))
1122 /* Got some memory back in the last second. */
1123 return true;
1124 }
1125
1126 /*
1127 * If current has a pending SIGKILL or is exiting, then automatically
1128 * select it. The goal is to allow it to allocate so that it may
1129 * quickly exit and free its memory.
1130 */
1131 if (task_will_free_mem(current)) {
1132 mark_oom_victim(current);
1133 queue_oom_reaper(current);
1134 return true;
1135 }
1136
1137 /*
1138 * The OOM killer does not compensate for IO-less reclaim.
1139 * But mem_cgroup_oom() has to invoke the OOM killer even
1140 * if it is a GFP_NOFS allocation.
1141 */
1142 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143 return true;
1144
1145 /*
1146 * Check if there were limitations on the allocation (only relevant for
1147 * NUMA and memcg) that may require different handling.
1148 */
1149 oc->constraint = constrained_alloc(oc);
1150 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151 oc->nodemask = NULL;
1152 check_panic_on_oom(oc);
1153
1154 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155 current->mm && !oom_unkillable_task(current) &&
1156 oom_cpuset_eligible(current, oc) &&
1157 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158 get_task_struct(current);
1159 oc->chosen = current;
1160 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161 return true;
1162 }
1163
1164 select_bad_process(oc);
1165 /* Found nothing?!?! */
1166 if (!oc->chosen) {
1167 dump_header(oc);
1168 pr_warn("Out of memory and no killable processes...\n");
1169 /*
1170 * If we got here due to an actual allocation at the
1171 * system level, we cannot survive this and will enter
1172 * an endless loop in the allocator. Bail out now.
1173 */
1174 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175 panic("System is deadlocked on memory\n");
1176 }
1177 if (oc->chosen && oc->chosen != (void *)-1UL)
1178 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179 "Memory cgroup out of memory");
1180 return !!oc->chosen;
1181}
1182
1183/*
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1188 */
1189void pagefault_out_of_memory(void)
1190{
1191 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192 DEFAULT_RATELIMIT_BURST);
1193
1194 if (mem_cgroup_oom_synchronize(true))
1195 return;
1196
1197 if (fatal_signal_pending(current))
1198 return;
1199
1200 if (__ratelimit(&pfoom_rs))
1201 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1202}
1203
1204SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1205{
1206#ifdef CONFIG_MMU
1207 struct mm_struct *mm = NULL;
1208 struct task_struct *task;
1209 struct task_struct *p;
1210 unsigned int f_flags;
1211 bool reap = false;
1212 long ret = 0;
1213
1214 if (flags)
1215 return -EINVAL;
1216
1217 task = pidfd_get_task(pidfd, &f_flags);
1218 if (IS_ERR(task))
1219 return PTR_ERR(task);
1220
1221 /*
1222 * Make sure to choose a thread which still has a reference to mm
1223 * during the group exit
1224 */
1225 p = find_lock_task_mm(task);
1226 if (!p) {
1227 ret = -ESRCH;
1228 goto put_task;
1229 }
1230
1231 mm = p->mm;
1232 mmgrab(mm);
1233
1234 if (task_will_free_mem(p))
1235 reap = true;
1236 else {
1237 /* Error only if the work has not been done already */
1238 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239 ret = -EINVAL;
1240 }
1241 task_unlock(p);
1242
1243 if (!reap)
1244 goto drop_mm;
1245
1246 if (mmap_read_lock_killable(mm)) {
1247 ret = -EINTR;
1248 goto drop_mm;
1249 }
1250 /*
1251 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252 * possible change in exit_mmap is seen
1253 */
1254 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255 ret = -EAGAIN;
1256 mmap_read_unlock(mm);
1257
1258drop_mm:
1259 mmdrop(mm);
1260put_task:
1261 put_task_struct(task);
1262 return ret;
1263#else
1264 return -ENOSYS;
1265#endif /* CONFIG_MMU */
1266}