Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * KMSAN initialization routines.
  4 *
  5 * Copyright (C) 2017-2021 Google LLC
  6 * Author: Alexander Potapenko <glider@google.com>
  7 *
  8 */
  9
 10#include "kmsan.h"
 11
 12#include <asm/sections.h>
 13#include <linux/mm.h>
 14#include <linux/memblock.h>
 15
 16#include "../internal.h"
 17
 18#define NUM_FUTURE_RANGES 128
 19struct start_end_pair {
 20	u64 start, end;
 21};
 22
 23static struct start_end_pair start_end_pairs[NUM_FUTURE_RANGES] __initdata;
 24static int future_index __initdata;
 25
 26/*
 27 * Record a range of memory for which the metadata pages will be created once
 28 * the page allocator becomes available.
 29 */
 30static void __init kmsan_record_future_shadow_range(void *start, void *end)
 31{
 32	u64 nstart = (u64)start, nend = (u64)end, cstart, cend;
 33	bool merged = false;
 34
 35	KMSAN_WARN_ON(future_index == NUM_FUTURE_RANGES);
 36	KMSAN_WARN_ON((nstart >= nend) ||
 37		      /* Virtual address 0 is valid on s390. */
 38		      (!IS_ENABLED(CONFIG_S390) && !nstart) ||
 39		      !nend);
 40	nstart = ALIGN_DOWN(nstart, PAGE_SIZE);
 41	nend = ALIGN(nend, PAGE_SIZE);
 42
 43	/*
 44	 * Scan the existing ranges to see if any of them overlaps with
 45	 * [start, end). In that case, merge the two ranges instead of
 46	 * creating a new one.
 47	 * The number of ranges is less than 20, so there is no need to organize
 48	 * them into a more intelligent data structure.
 49	 */
 50	for (int i = 0; i < future_index; i++) {
 51		cstart = start_end_pairs[i].start;
 52		cend = start_end_pairs[i].end;
 53		if ((cstart < nstart && cend < nstart) ||
 54		    (cstart > nend && cend > nend))
 55			/* ranges are disjoint - do not merge */
 56			continue;
 57		start_end_pairs[i].start = min(nstart, cstart);
 58		start_end_pairs[i].end = max(nend, cend);
 59		merged = true;
 60		break;
 61	}
 62	if (merged)
 63		return;
 64	start_end_pairs[future_index].start = nstart;
 65	start_end_pairs[future_index].end = nend;
 66	future_index++;
 67}
 68
 69/*
 70 * Initialize the shadow for existing mappings during kernel initialization.
 71 * These include kernel text/data sections, NODE_DATA and future ranges
 72 * registered while creating other data (e.g. percpu).
 73 *
 74 * Allocations via memblock can be only done before slab is initialized.
 75 */
 76void __init kmsan_init_shadow(void)
 77{
 78	const size_t nd_size = sizeof(pg_data_t);
 79	phys_addr_t p_start, p_end;
 80	u64 loop;
 81	int nid;
 82
 83	for_each_reserved_mem_range(loop, &p_start, &p_end)
 84		kmsan_record_future_shadow_range(phys_to_virt(p_start),
 85						 phys_to_virt(p_end));
 86	/* Allocate shadow for .data */
 87	kmsan_record_future_shadow_range(_sdata, _edata);
 88
 89	for_each_online_node(nid)
 90		kmsan_record_future_shadow_range(
 91			NODE_DATA(nid), (char *)NODE_DATA(nid) + nd_size);
 92
 93	for (int i = 0; i < future_index; i++)
 94		kmsan_init_alloc_meta_for_range(
 95			(void *)start_end_pairs[i].start,
 96			(void *)start_end_pairs[i].end);
 97}
 98
 99struct metadata_page_pair {
100	struct page *shadow, *origin;
101};
102static struct metadata_page_pair held_back[NR_PAGE_ORDERS] __initdata;
103
104/*
105 * Eager metadata allocation. When the memblock allocator is freeing pages to
106 * pagealloc, we use 2/3 of them as metadata for the remaining 1/3.
107 * We store the pointers to the returned blocks of pages in held_back[] grouped
108 * by their order: when kmsan_memblock_free_pages() is called for the first
109 * time with a certain order, it is reserved as a shadow block, for the second
110 * time - as an origin block. On the third time the incoming block receives its
111 * shadow and origin ranges from the previously saved shadow and origin blocks,
112 * after which held_back[order] can be used again.
113 *
114 * At the very end there may be leftover blocks in held_back[]. They are
115 * collected later by kmsan_memblock_discard().
116 */
117bool kmsan_memblock_free_pages(struct page *page, unsigned int order)
118{
119	struct page *shadow, *origin;
120
121	if (!held_back[order].shadow) {
122		held_back[order].shadow = page;
123		return false;
124	}
125	if (!held_back[order].origin) {
126		held_back[order].origin = page;
127		return false;
128	}
129	shadow = held_back[order].shadow;
130	origin = held_back[order].origin;
131	kmsan_setup_meta(page, shadow, origin, order);
132
133	held_back[order].shadow = NULL;
134	held_back[order].origin = NULL;
135	return true;
136}
137
138#define MAX_BLOCKS 8
139struct smallstack {
140	struct page *items[MAX_BLOCKS];
141	int index;
142	int order;
143};
144
145static struct smallstack collect = {
146	.index = 0,
147	.order = MAX_PAGE_ORDER,
148};
149
150static void smallstack_push(struct smallstack *stack, struct page *pages)
151{
152	KMSAN_WARN_ON(stack->index == MAX_BLOCKS);
153	stack->items[stack->index] = pages;
154	stack->index++;
155}
156#undef MAX_BLOCKS
157
158static struct page *smallstack_pop(struct smallstack *stack)
159{
160	struct page *ret;
161
162	KMSAN_WARN_ON(stack->index == 0);
163	stack->index--;
164	ret = stack->items[stack->index];
165	stack->items[stack->index] = NULL;
166	return ret;
167}
168
169static void do_collection(void)
170{
171	struct page *page, *shadow, *origin;
172
173	while (collect.index >= 3) {
174		page = smallstack_pop(&collect);
175		shadow = smallstack_pop(&collect);
176		origin = smallstack_pop(&collect);
177		kmsan_setup_meta(page, shadow, origin, collect.order);
178		__free_pages_core(page, collect.order, MEMINIT_EARLY);
179	}
180}
181
182static void collect_split(void)
183{
184	struct smallstack tmp = {
185		.order = collect.order - 1,
186		.index = 0,
187	};
188	struct page *page;
189
190	if (!collect.order)
191		return;
192	while (collect.index) {
193		page = smallstack_pop(&collect);
194		smallstack_push(&tmp, &page[0]);
195		smallstack_push(&tmp, &page[1 << tmp.order]);
196	}
197	__memcpy(&collect, &tmp, sizeof(tmp));
198}
199
200/*
201 * Memblock is about to go away. Split the page blocks left over in held_back[]
202 * and return 1/3 of that memory to the system.
203 */
204static void kmsan_memblock_discard(void)
205{
206	/*
207	 * For each order=N:
208	 *  - push held_back[N].shadow and .origin to @collect;
209	 *  - while there are >= 3 elements in @collect, do garbage collection:
210	 *    - pop 3 ranges from @collect;
211	 *    - use two of them as shadow and origin for the third one;
212	 *    - repeat;
213	 *  - split each remaining element from @collect into 2 ranges of
214	 *    order=N-1,
215	 *  - repeat.
216	 */
217	collect.order = MAX_PAGE_ORDER;
218	for (int i = MAX_PAGE_ORDER; i >= 0; i--) {
219		if (held_back[i].shadow)
220			smallstack_push(&collect, held_back[i].shadow);
221		if (held_back[i].origin)
222			smallstack_push(&collect, held_back[i].origin);
223		held_back[i].shadow = NULL;
224		held_back[i].origin = NULL;
225		do_collection();
226		collect_split();
227	}
228}
229
230void __init kmsan_init_runtime(void)
231{
232	/* Assuming current is init_task */
233	kmsan_internal_task_create(current);
234	kmsan_memblock_discard();
235	pr_info("Starting KernelMemorySanitizer\n");
236	pr_info("ATTENTION: KMSAN is a debugging tool! Do not use it on production machines!\n");
237	kmsan_enabled = true;
238}