Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
 
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
 
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
 
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
 
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
 
 
 
 
 
 
 
 
 
  98
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 
 
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear the KASAN shadow of the stack. */
 228		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 
 
 229
 230		/* Clear stale pointers from reused stack. */
 231		memset(s->addr, 0, THREAD_SIZE);
 
 
 
 
 
 232
 233		tsk->stack_vm_area = s;
 234		tsk->stack = s->addr;
 235		return s->addr;
 236	}
 237
 238	/*
 239	 * Allocated stacks are cached and later reused by new threads,
 240	 * so memcg accounting is performed manually on assigning/releasing
 241	 * stacks to tasks. Drop __GFP_ACCOUNT.
 242	 */
 243	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244				     VMALLOC_START, VMALLOC_END,
 245				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246				     PAGE_KERNEL,
 247				     0, node, __builtin_return_address(0));
 
 
 248
 
 
 
 
 
 249	/*
 250	 * We can't call find_vm_area() in interrupt context, and
 251	 * free_thread_stack() can be called in interrupt context,
 252	 * so cache the vm_struct.
 253	 */
 254	if (stack) {
 255		tsk->stack_vm_area = find_vm_area(stack);
 256		tsk->stack = stack;
 257	}
 258	return stack;
 259#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261					     THREAD_SIZE_ORDER);
 262
 263	if (likely(page)) {
 264		tsk->stack = kasan_reset_tag(page_address(page));
 265		return tsk->stack;
 266	}
 267	return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274	struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276	if (vm) {
 277		int i;
 278
 279		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 280			memcg_kmem_uncharge_page(vm->pages[i], 0);
 281
 282		for (i = 0; i < NR_CACHED_STACKS; i++) {
 283			if (this_cpu_cmpxchg(cached_stacks[i],
 284					NULL, tsk->stack_vm_area) != NULL)
 285				continue;
 286
 287			return;
 288		}
 
 
 289
 290		vfree_atomic(tsk->stack);
 291		return;
 292	}
 293#endif
 294
 295	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 296}
 297# else
 298static struct kmem_cache *thread_stack_cache;
 299
 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 301						  int node)
 302{
 303	unsigned long *stack;
 304	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 305	stack = kasan_reset_tag(stack);
 306	tsk->stack = stack;
 307	return stack;
 308}
 309
 310static void free_thread_stack(struct task_struct *tsk)
 311{
 312	kmem_cache_free(thread_stack_cache, tsk->stack);
 
 313}
 314
 315void thread_stack_cache_init(void)
 316{
 317	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 318					THREAD_SIZE, THREAD_SIZE, 0, 0,
 319					THREAD_SIZE, NULL);
 320	BUG_ON(thread_stack_cache == NULL);
 321}
 322# endif
 323#endif
 324
 325/* SLAB cache for signal_struct structures (tsk->signal) */
 326static struct kmem_cache *signal_cachep;
 327
 328/* SLAB cache for sighand_struct structures (tsk->sighand) */
 329struct kmem_cache *sighand_cachep;
 330
 331/* SLAB cache for files_struct structures (tsk->files) */
 332struct kmem_cache *files_cachep;
 333
 334/* SLAB cache for fs_struct structures (tsk->fs) */
 335struct kmem_cache *fs_cachep;
 336
 337/* SLAB cache for vm_area_struct structures */
 338static struct kmem_cache *vm_area_cachep;
 339
 340/* SLAB cache for mm_struct structures (tsk->mm) */
 341static struct kmem_cache *mm_cachep;
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 344{
 345	struct vm_area_struct *vma;
 346
 347	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348	if (vma)
 349		vma_init(vma, mm);
 
 
 
 
 
 
 
 350	return vma;
 351}
 352
 353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 354{
 355	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 356
 357	if (new) {
 358		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 359		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 360		/*
 361		 * orig->shared.rb may be modified concurrently, but the clone
 362		 * will be reinitialized.
 363		 */
 364		*new = data_race(*orig);
 365		INIT_LIST_HEAD(&new->anon_vma_chain);
 366		new->vm_next = new->vm_prev = NULL;
 
 
 
 367	}
 
 
 
 
 368	return new;
 369}
 370
 371void vm_area_free(struct vm_area_struct *vma)
 372{
 
 
 
 373	kmem_cache_free(vm_area_cachep, vma);
 374}
 375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376static void account_kernel_stack(struct task_struct *tsk, int account)
 377{
 378	void *stack = task_stack_page(tsk);
 379	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 380
 
 
 
 
 
 381
 382	/* All stack pages are in the same node. */
 383	if (vm)
 384		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
 385				      account * (THREAD_SIZE / 1024));
 386	else
 387		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
 388				      account * (THREAD_SIZE / 1024));
 
 389}
 390
 391static int memcg_charge_kernel_stack(struct task_struct *tsk)
 392{
 393#ifdef CONFIG_VMAP_STACK
 394	struct vm_struct *vm = task_stack_vm_area(tsk);
 395	int ret;
 396
 397	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 398
 399	if (vm) {
 
 400		int i;
 401
 402		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 403
 404		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 405			/*
 406			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
 407			 * pointer is NULL, and memcg_kmem_uncharge_page() in
 408			 * free_thread_stack() will ignore this page.
 409			 */
 410			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 411						     0);
 412			if (ret)
 413				return ret;
 414		}
 415	}
 416#endif
 417	return 0;
 418}
 419
 420static void release_task_stack(struct task_struct *tsk)
 421{
 422	if (WARN_ON(tsk->state != TASK_DEAD))
 423		return;  /* Better to leak the stack than to free prematurely */
 424
 425	account_kernel_stack(tsk, -1);
 426	free_thread_stack(tsk);
 427	tsk->stack = NULL;
 428#ifdef CONFIG_VMAP_STACK
 429	tsk->stack_vm_area = NULL;
 430#endif
 431}
 432
 433#ifdef CONFIG_THREAD_INFO_IN_TASK
 434void put_task_stack(struct task_struct *tsk)
 435{
 436	if (refcount_dec_and_test(&tsk->stack_refcount))
 437		release_task_stack(tsk);
 438}
 439#endif
 440
 441void free_task(struct task_struct *tsk)
 442{
 
 
 
 
 443	scs_release(tsk);
 444
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446	/*
 447	 * The task is finally done with both the stack and thread_info,
 448	 * so free both.
 449	 */
 450	release_task_stack(tsk);
 451#else
 452	/*
 453	 * If the task had a separate stack allocation, it should be gone
 454	 * by now.
 455	 */
 456	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458	rt_mutex_debug_task_free(tsk);
 459	ftrace_graph_exit_task(tsk);
 460	arch_release_task_struct(tsk);
 461	if (tsk->flags & PF_KTHREAD)
 462		free_kthread_struct(tsk);
 
 463	free_task_struct(tsk);
 464}
 465EXPORT_SYMBOL(free_task);
 466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467#ifdef CONFIG_MMU
 468static __latent_entropy int dup_mmap(struct mm_struct *mm,
 469					struct mm_struct *oldmm)
 470{
 471	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 472	struct rb_node **rb_link, *rb_parent;
 473	int retval;
 474	unsigned long charge;
 475	LIST_HEAD(uf);
 
 476
 477	uprobe_start_dup_mmap();
 478	if (mmap_write_lock_killable(oldmm)) {
 479		retval = -EINTR;
 480		goto fail_uprobe_end;
 481	}
 482	flush_cache_dup_mm(oldmm);
 483	uprobe_dup_mmap(oldmm, mm);
 484	/*
 485	 * Not linked in yet - no deadlock potential:
 486	 */
 487	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 488
 489	/* No ordering required: file already has been exposed. */
 490	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 491
 492	mm->total_vm = oldmm->total_vm;
 493	mm->data_vm = oldmm->data_vm;
 494	mm->exec_vm = oldmm->exec_vm;
 495	mm->stack_vm = oldmm->stack_vm;
 496
 497	rb_link = &mm->mm_rb.rb_node;
 498	rb_parent = NULL;
 499	pprev = &mm->mmap;
 500	retval = ksm_fork(mm, oldmm);
 501	if (retval)
 502		goto out;
 503	retval = khugepaged_fork(mm, oldmm);
 504	if (retval)
 505		goto out;
 506
 507	prev = NULL;
 508	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 509		struct file *file;
 510
 
 511		if (mpnt->vm_flags & VM_DONTCOPY) {
 
 
 
 
 
 512			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 513			continue;
 514		}
 515		charge = 0;
 516		/*
 517		 * Don't duplicate many vmas if we've been oom-killed (for
 518		 * example)
 519		 */
 520		if (fatal_signal_pending(current)) {
 521			retval = -EINTR;
 522			goto out;
 523		}
 524		if (mpnt->vm_flags & VM_ACCOUNT) {
 525			unsigned long len = vma_pages(mpnt);
 526
 527			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 528				goto fail_nomem;
 529			charge = len;
 530		}
 531		tmp = vm_area_dup(mpnt);
 532		if (!tmp)
 533			goto fail_nomem;
 534		retval = vma_dup_policy(mpnt, tmp);
 535		if (retval)
 536			goto fail_nomem_policy;
 537		tmp->vm_mm = mm;
 538		retval = dup_userfaultfd(tmp, &uf);
 539		if (retval)
 540			goto fail_nomem_anon_vma_fork;
 541		if (tmp->vm_flags & VM_WIPEONFORK) {
 542			/*
 543			 * VM_WIPEONFORK gets a clean slate in the child.
 544			 * Don't prepare anon_vma until fault since we don't
 545			 * copy page for current vma.
 546			 */
 547			tmp->anon_vma = NULL;
 548		} else if (anon_vma_fork(tmp, mpnt))
 549			goto fail_nomem_anon_vma_fork;
 550		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551		file = tmp->vm_file;
 552		if (file) {
 553			struct inode *inode = file_inode(file);
 554			struct address_space *mapping = file->f_mapping;
 555
 556			get_file(file);
 557			if (tmp->vm_flags & VM_DENYWRITE)
 558				atomic_dec(&inode->i_writecount);
 559			i_mmap_lock_write(mapping);
 560			if (tmp->vm_flags & VM_SHARED)
 561				atomic_inc(&mapping->i_mmap_writable);
 562			flush_dcache_mmap_lock(mapping);
 563			/* insert tmp into the share list, just after mpnt */
 564			vma_interval_tree_insert_after(tmp, mpnt,
 565					&mapping->i_mmap);
 566			flush_dcache_mmap_unlock(mapping);
 567			i_mmap_unlock_write(mapping);
 568		}
 569
 570		/*
 571		 * Clear hugetlb-related page reserves for children. This only
 572		 * affects MAP_PRIVATE mappings. Faults generated by the child
 573		 * are not guaranteed to succeed, even if read-only
 574		 */
 575		if (is_vm_hugetlb_page(tmp))
 576			reset_vma_resv_huge_pages(tmp);
 577
 578		/*
 579		 * Link in the new vma and copy the page table entries.
 580		 */
 581		*pprev = tmp;
 582		pprev = &tmp->vm_next;
 583		tmp->vm_prev = prev;
 584		prev = tmp;
 585
 586		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 587		rb_link = &tmp->vm_rb.rb_right;
 588		rb_parent = &tmp->vm_rb;
 589
 590		mm->map_count++;
 591		if (!(tmp->vm_flags & VM_WIPEONFORK))
 592			retval = copy_page_range(mm, oldmm, mpnt, tmp);
 593
 594		if (tmp->vm_ops && tmp->vm_ops->open)
 595			tmp->vm_ops->open(tmp);
 596
 597		if (retval)
 598			goto out;
 
 
 599	}
 600	/* a new mm has just been created */
 601	retval = arch_dup_mmap(oldmm, mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602out:
 603	mmap_write_unlock(mm);
 604	flush_tlb_mm(oldmm);
 605	mmap_write_unlock(oldmm);
 606	dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608	uprobe_end_dup_mmap();
 
 609	return retval;
 
 610fail_nomem_anon_vma_fork:
 611	mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613	vm_area_free(tmp);
 614fail_nomem:
 615	retval = -ENOMEM;
 616	vm_unacct_memory(charge);
 617	goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622	mm->pgd = pgd_alloc(mm);
 623	if (unlikely(!mm->pgd))
 624		return -ENOMEM;
 625	return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630	pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635	mmap_write_lock(oldmm);
 636	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637	mmap_write_unlock(oldmm);
 638	return 0;
 639}
 640#define mm_alloc_pgd(mm)	(0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646	int i;
 647
 648	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 649			 "Please make sure 'struct resident_page_types[]' is updated as well");
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 656				 mm, resident_page_types[i], x);
 657	}
 658
 659	if (mm_pgtables_bytes(mm))
 660		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 661				mm_pgtables_bytes(mm));
 662
 663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 664	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 665#endif
 666}
 667
 668#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 669#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/*
 672 * Called when the last reference to the mm
 673 * is dropped: either by a lazy thread or by
 674 * mmput. Free the page directory and the mm.
 675 */
 676void __mmdrop(struct mm_struct *mm)
 677{
 678	BUG_ON(mm == &init_mm);
 679	WARN_ON_ONCE(mm == current->mm);
 
 
 
 
 680	WARN_ON_ONCE(mm == current->active_mm);
 681	mm_free_pgd(mm);
 682	destroy_context(mm);
 683	mmu_notifier_subscriptions_destroy(mm);
 684	check_mm(mm);
 685	put_user_ns(mm->user_ns);
 
 
 
 
 686	free_mm(mm);
 687}
 688EXPORT_SYMBOL_GPL(__mmdrop);
 689
 690static void mmdrop_async_fn(struct work_struct *work)
 691{
 692	struct mm_struct *mm;
 693
 694	mm = container_of(work, struct mm_struct, async_put_work);
 695	__mmdrop(mm);
 696}
 697
 698static void mmdrop_async(struct mm_struct *mm)
 699{
 700	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 701		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 702		schedule_work(&mm->async_put_work);
 703	}
 704}
 705
 706static inline void free_signal_struct(struct signal_struct *sig)
 707{
 708	taskstats_tgid_free(sig);
 709	sched_autogroup_exit(sig);
 710	/*
 711	 * __mmdrop is not safe to call from softirq context on x86 due to
 712	 * pgd_dtor so postpone it to the async context
 713	 */
 714	if (sig->oom_mm)
 715		mmdrop_async(sig->oom_mm);
 716	kmem_cache_free(signal_cachep, sig);
 717}
 718
 719static inline void put_signal_struct(struct signal_struct *sig)
 720{
 721	if (refcount_dec_and_test(&sig->sigcnt))
 722		free_signal_struct(sig);
 723}
 724
 725void __put_task_struct(struct task_struct *tsk)
 726{
 727	WARN_ON(!tsk->exit_state);
 728	WARN_ON(refcount_read(&tsk->usage));
 729	WARN_ON(tsk == current);
 730
 
 
 731	cgroup_free(tsk);
 732	task_numa_free(tsk, true);
 733	security_task_free(tsk);
 734	exit_creds(tsk);
 735	delayacct_tsk_free(tsk);
 736	put_signal_struct(tsk->signal);
 737
 738	if (!profile_handoff_task(tsk))
 739		free_task(tsk);
 740}
 741EXPORT_SYMBOL_GPL(__put_task_struct);
 742
 
 
 
 
 
 
 
 
 743void __init __weak arch_task_cache_init(void) { }
 744
 745/*
 746 * set_max_threads
 747 */
 748static void set_max_threads(unsigned int max_threads_suggested)
 749{
 750	u64 threads;
 751	unsigned long nr_pages = totalram_pages();
 752
 753	/*
 754	 * The number of threads shall be limited such that the thread
 755	 * structures may only consume a small part of the available memory.
 756	 */
 757	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 758		threads = MAX_THREADS;
 759	else
 760		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 761				    (u64) THREAD_SIZE * 8UL);
 762
 763	if (threads > max_threads_suggested)
 764		threads = max_threads_suggested;
 765
 766	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 767}
 768
 769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 770/* Initialized by the architecture: */
 771int arch_task_struct_size __read_mostly;
 772#endif
 773
 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 776{
 777	/* Fetch thread_struct whitelist for the architecture. */
 778	arch_thread_struct_whitelist(offset, size);
 779
 780	/*
 781	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 782	 * adjust offset to position of thread_struct in task_struct.
 783	 */
 784	if (unlikely(*size == 0))
 785		*offset = 0;
 786	else
 787		*offset += offsetof(struct task_struct, thread);
 788}
 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 790
 791void __init fork_init(void)
 792{
 793	int i;
 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 795#ifndef ARCH_MIN_TASKALIGN
 796#define ARCH_MIN_TASKALIGN	0
 797#endif
 798	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 799	unsigned long useroffset, usersize;
 800
 801	/* create a slab on which task_structs can be allocated */
 802	task_struct_whitelist(&useroffset, &usersize);
 803	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 804			arch_task_struct_size, align,
 805			SLAB_PANIC|SLAB_ACCOUNT,
 806			useroffset, usersize, NULL);
 807#endif
 808
 809	/* do the arch specific task caches init */
 810	arch_task_cache_init();
 811
 812	set_max_threads(MAX_THREADS);
 813
 814	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 815	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 816	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 817		init_task.signal->rlim[RLIMIT_NPROC];
 818
 819	for (i = 0; i < UCOUNT_COUNTS; i++) {
 820		init_user_ns.ucount_max[i] = max_threads/2;
 821	}
 
 
 
 
 822
 823#ifdef CONFIG_VMAP_STACK
 824	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 825			  NULL, free_vm_stack_cache);
 826#endif
 827
 828	scs_init();
 829
 830	lockdep_init_task(&init_task);
 831	uprobes_init();
 832}
 833
 834int __weak arch_dup_task_struct(struct task_struct *dst,
 835					       struct task_struct *src)
 836{
 837	*dst = *src;
 838	return 0;
 839}
 840
 841void set_task_stack_end_magic(struct task_struct *tsk)
 842{
 843	unsigned long *stackend;
 844
 845	stackend = end_of_stack(tsk);
 846	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 847}
 848
 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 850{
 851	struct task_struct *tsk;
 852	unsigned long *stack;
 853	struct vm_struct *stack_vm_area __maybe_unused;
 854	int err;
 855
 856	if (node == NUMA_NO_NODE)
 857		node = tsk_fork_get_node(orig);
 858	tsk = alloc_task_struct_node(node);
 859	if (!tsk)
 860		return NULL;
 861
 862	stack = alloc_thread_stack_node(tsk, node);
 863	if (!stack)
 864		goto free_tsk;
 865
 866	if (memcg_charge_kernel_stack(tsk))
 867		goto free_stack;
 868
 869	stack_vm_area = task_stack_vm_area(tsk);
 870
 871	err = arch_dup_task_struct(tsk, orig);
 872
 873	/*
 874	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 875	 * sure they're properly initialized before using any stack-related
 876	 * functions again.
 877	 */
 878	tsk->stack = stack;
 879#ifdef CONFIG_VMAP_STACK
 880	tsk->stack_vm_area = stack_vm_area;
 881#endif
 882#ifdef CONFIG_THREAD_INFO_IN_TASK
 883	refcount_set(&tsk->stack_refcount, 1);
 884#endif
 885
 886	if (err)
 887		goto free_stack;
 888
 889	err = scs_prepare(tsk, node);
 890	if (err)
 891		goto free_stack;
 892
 893#ifdef CONFIG_SECCOMP
 894	/*
 895	 * We must handle setting up seccomp filters once we're under
 896	 * the sighand lock in case orig has changed between now and
 897	 * then. Until then, filter must be NULL to avoid messing up
 898	 * the usage counts on the error path calling free_task.
 899	 */
 900	tsk->seccomp.filter = NULL;
 901#endif
 902
 903	setup_thread_stack(tsk, orig);
 904	clear_user_return_notifier(tsk);
 905	clear_tsk_need_resched(tsk);
 906	set_task_stack_end_magic(tsk);
 
 907
 908#ifdef CONFIG_STACKPROTECTOR
 909	tsk->stack_canary = get_random_canary();
 910#endif
 911	if (orig->cpus_ptr == &orig->cpus_mask)
 912		tsk->cpus_ptr = &tsk->cpus_mask;
 
 913
 914	/*
 915	 * One for the user space visible state that goes away when reaped.
 916	 * One for the scheduler.
 917	 */
 918	refcount_set(&tsk->rcu_users, 2);
 919	/* One for the rcu users */
 920	refcount_set(&tsk->usage, 1);
 921#ifdef CONFIG_BLK_DEV_IO_TRACE
 922	tsk->btrace_seq = 0;
 923#endif
 924	tsk->splice_pipe = NULL;
 925	tsk->task_frag.page = NULL;
 926	tsk->wake_q.next = NULL;
 927
 928	account_kernel_stack(tsk, 1);
 929
 930	kcov_task_init(tsk);
 
 
 931
 932#ifdef CONFIG_FAULT_INJECTION
 933	tsk->fail_nth = 0;
 934#endif
 935
 936#ifdef CONFIG_BLK_CGROUP
 937	tsk->throttle_queue = NULL;
 938	tsk->use_memdelay = 0;
 939#endif
 940
 
 
 
 
 941#ifdef CONFIG_MEMCG
 942	tsk->active_memcg = NULL;
 943#endif
 
 
 
 
 
 
 
 
 
 
 
 944	return tsk;
 945
 946free_stack:
 
 947	free_thread_stack(tsk);
 948free_tsk:
 949	free_task_struct(tsk);
 950	return NULL;
 951}
 952
 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 954
 955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 956
 957static int __init coredump_filter_setup(char *s)
 958{
 959	default_dump_filter =
 960		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 961		MMF_DUMP_FILTER_MASK;
 962	return 1;
 963}
 964
 965__setup("coredump_filter=", coredump_filter_setup);
 966
 967#include <linux/init_task.h>
 968
 969static void mm_init_aio(struct mm_struct *mm)
 970{
 971#ifdef CONFIG_AIO
 972	spin_lock_init(&mm->ioctx_lock);
 973	mm->ioctx_table = NULL;
 974#endif
 975}
 976
 977static __always_inline void mm_clear_owner(struct mm_struct *mm,
 978					   struct task_struct *p)
 979{
 980#ifdef CONFIG_MEMCG
 981	if (mm->owner == p)
 982		WRITE_ONCE(mm->owner, NULL);
 983#endif
 984}
 985
 986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 987{
 988#ifdef CONFIG_MEMCG
 989	mm->owner = p;
 990#endif
 991}
 992
 993static void mm_init_uprobes_state(struct mm_struct *mm)
 994{
 995#ifdef CONFIG_UPROBES
 996	mm->uprobes_state.xol_area = NULL;
 997#endif
 998}
 999
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001	struct user_namespace *user_ns)
1002{
1003	mm->mmap = NULL;
1004	mm->mm_rb = RB_ROOT;
1005	mm->vmacache_seqnum = 0;
1006	atomic_set(&mm->mm_users, 1);
1007	atomic_set(&mm->mm_count, 1);
 
1008	mmap_init_lock(mm);
1009	INIT_LIST_HEAD(&mm->mmlist);
1010	mm->core_state = NULL;
 
 
1011	mm_pgtables_bytes_init(mm);
1012	mm->map_count = 0;
1013	mm->locked_vm = 0;
1014	atomic_set(&mm->has_pinned, 0);
1015	atomic64_set(&mm->pinned_vm, 0);
1016	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017	spin_lock_init(&mm->page_table_lock);
1018	spin_lock_init(&mm->arg_lock);
1019	mm_init_cpumask(mm);
1020	mm_init_aio(mm);
1021	mm_init_owner(mm, p);
 
1022	RCU_INIT_POINTER(mm->exe_file, NULL);
1023	mmu_notifier_subscriptions_init(mm);
1024	init_tlb_flush_pending(mm);
1025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026	mm->pmd_huge_pte = NULL;
1027#endif
1028	mm_init_uprobes_state(mm);
 
1029
1030	if (current->mm) {
1031		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033	} else {
1034		mm->flags = default_dump_filter;
1035		mm->def_flags = 0;
1036	}
1037
1038	if (mm_alloc_pgd(mm))
1039		goto fail_nopgd;
1040
1041	if (init_new_context(p, mm))
1042		goto fail_nocontext;
1043
 
 
 
 
 
 
 
1044	mm->user_ns = get_user_ns(user_ns);
 
1045	return mm;
1046
 
 
 
 
1047fail_nocontext:
1048	mm_free_pgd(mm);
1049fail_nopgd:
1050	free_mm(mm);
1051	return NULL;
1052}
1053
1054/*
1055 * Allocate and initialize an mm_struct.
1056 */
1057struct mm_struct *mm_alloc(void)
1058{
1059	struct mm_struct *mm;
1060
1061	mm = allocate_mm();
1062	if (!mm)
1063		return NULL;
1064
1065	memset(mm, 0, sizeof(*mm));
1066	return mm_init(mm, current, current_user_ns());
1067}
 
1068
1069static inline void __mmput(struct mm_struct *mm)
1070{
1071	VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073	uprobe_clear_state(mm);
1074	exit_aio(mm);
1075	ksm_exit(mm);
1076	khugepaged_exit(mm); /* must run before exit_mmap */
1077	exit_mmap(mm);
1078	mm_put_huge_zero_page(mm);
1079	set_mm_exe_file(mm, NULL);
1080	if (!list_empty(&mm->mmlist)) {
1081		spin_lock(&mmlist_lock);
1082		list_del(&mm->mmlist);
1083		spin_unlock(&mmlist_lock);
1084	}
1085	if (mm->binfmt)
1086		module_put(mm->binfmt->module);
 
1087	mmdrop(mm);
1088}
1089
1090/*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093void mmput(struct mm_struct *mm)
1094{
1095	might_sleep();
1096
1097	if (atomic_dec_and_test(&mm->mm_users))
1098		__mmput(mm);
1099}
1100EXPORT_SYMBOL_GPL(mmput);
1101
1102#ifdef CONFIG_MMU
1103static void mmput_async_fn(struct work_struct *work)
1104{
1105	struct mm_struct *mm = container_of(work, struct mm_struct,
1106					    async_put_work);
1107
1108	__mmput(mm);
1109}
1110
1111void mmput_async(struct mm_struct *mm)
1112{
1113	if (atomic_dec_and_test(&mm->mm_users)) {
1114		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115		schedule_work(&mm->async_put_work);
1116	}
1117}
 
1118#endif
1119
1120/**
1121 * set_mm_exe_file - change a reference to the mm's executable file
 
 
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132{
1133	struct file *old_exe_file;
1134
1135	/*
1136	 * It is safe to dereference the exe_file without RCU as
1137	 * this function is only called if nobody else can access
1138	 * this mm -- see comment above for justification.
1139	 */
1140	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142	if (new_exe_file)
 
 
 
 
 
 
1143		get_file(new_exe_file);
 
1144	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145	if (old_exe_file)
 
1146		fput(old_exe_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147}
1148
1149/**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
 
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155struct file *get_mm_exe_file(struct mm_struct *mm)
1156{
1157	struct file *exe_file;
1158
1159	rcu_read_lock();
1160	exe_file = rcu_dereference(mm->exe_file);
1161	if (exe_file && !get_file_rcu(exe_file))
1162		exe_file = NULL;
1163	rcu_read_unlock();
1164	return exe_file;
1165}
1166EXPORT_SYMBOL(get_mm_exe_file);
1167
1168/**
1169 * get_task_exe_file - acquire a reference to the task's executable file
 
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175struct file *get_task_exe_file(struct task_struct *task)
1176{
1177	struct file *exe_file = NULL;
1178	struct mm_struct *mm;
1179
1180	task_lock(task);
1181	mm = task->mm;
1182	if (mm) {
1183		if (!(task->flags & PF_KTHREAD))
1184			exe_file = get_mm_exe_file(mm);
1185	}
1186	task_unlock(task);
1187	return exe_file;
1188}
1189EXPORT_SYMBOL(get_task_exe_file);
1190
1191/**
1192 * get_task_mm - acquire a reference to the task's mm
 
1193 *
1194 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count.  User must release the mm via mmput()
1198 * after use.  Typically used by /proc and ptrace.
1199 */
1200struct mm_struct *get_task_mm(struct task_struct *task)
1201{
1202	struct mm_struct *mm;
1203
 
 
 
1204	task_lock(task);
1205	mm = task->mm;
1206	if (mm) {
1207		if (task->flags & PF_KTHREAD)
1208			mm = NULL;
1209		else
1210			mmget(mm);
1211	}
1212	task_unlock(task);
1213	return mm;
1214}
1215EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218{
1219	struct mm_struct *mm;
1220	int err;
1221
1222	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223	if (err)
1224		return ERR_PTR(err);
1225
1226	mm = get_task_mm(task);
1227	if (mm && mm != current->mm &&
1228			!ptrace_may_access(task, mode)) {
 
1229		mmput(mm);
1230		mm = ERR_PTR(-EACCES);
1231	}
1232	mutex_unlock(&task->signal->exec_update_mutex);
1233
1234	return mm;
1235}
1236
1237static void complete_vfork_done(struct task_struct *tsk)
1238{
1239	struct completion *vfork;
1240
1241	task_lock(tsk);
1242	vfork = tsk->vfork_done;
1243	if (likely(vfork)) {
1244		tsk->vfork_done = NULL;
1245		complete(vfork);
1246	}
1247	task_unlock(tsk);
1248}
1249
1250static int wait_for_vfork_done(struct task_struct *child,
1251				struct completion *vfork)
1252{
 
1253	int killed;
1254
1255	freezer_do_not_count();
1256	cgroup_enter_frozen();
1257	killed = wait_for_completion_killable(vfork);
1258	cgroup_leave_frozen(false);
1259	freezer_count();
1260
1261	if (killed) {
1262		task_lock(child);
1263		child->vfork_done = NULL;
1264		task_unlock(child);
1265	}
1266
1267	put_task_struct(child);
1268	return killed;
1269}
1270
1271/* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one.  Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285{
1286	uprobe_free_utask(tsk);
1287
1288	/* Get rid of any cached register state */
1289	deactivate_mm(tsk, mm);
1290
1291	/*
1292	 * Signal userspace if we're not exiting with a core dump
1293	 * because we want to leave the value intact for debugging
1294	 * purposes.
1295	 */
1296	if (tsk->clear_child_tid) {
1297		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298		    atomic_read(&mm->mm_users) > 1) {
1299			/*
1300			 * We don't check the error code - if userspace has
1301			 * not set up a proper pointer then tough luck.
1302			 */
1303			put_user(0, tsk->clear_child_tid);
1304			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305					1, NULL, NULL, 0, 0);
1306		}
1307		tsk->clear_child_tid = NULL;
1308	}
1309
1310	/*
1311	 * All done, finally we can wake up parent and return this mm to him.
1312	 * Also kthread_stop() uses this completion for synchronization.
1313	 */
1314	if (tsk->vfork_done)
1315		complete_vfork_done(tsk);
1316}
1317
1318void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319{
1320	futex_exit_release(tsk);
1321	mm_release(tsk, mm);
1322}
1323
1324void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325{
1326	futex_exec_release(tsk);
1327	mm_release(tsk, mm);
1328}
1329
1330/**
1331 * dup_mm() - duplicates an existing mm structure
1332 * @tsk: the task_struct with which the new mm will be associated.
1333 * @oldmm: the mm to duplicate.
1334 *
1335 * Allocates a new mm structure and duplicates the provided @oldmm structure
1336 * content into it.
1337 *
1338 * Return: the duplicated mm or NULL on failure.
1339 */
1340static struct mm_struct *dup_mm(struct task_struct *tsk,
1341				struct mm_struct *oldmm)
1342{
1343	struct mm_struct *mm;
1344	int err;
1345
1346	mm = allocate_mm();
1347	if (!mm)
1348		goto fail_nomem;
1349
1350	memcpy(mm, oldmm, sizeof(*mm));
1351
1352	if (!mm_init(mm, tsk, mm->user_ns))
1353		goto fail_nomem;
1354
 
1355	err = dup_mmap(mm, oldmm);
1356	if (err)
1357		goto free_pt;
 
1358
1359	mm->hiwater_rss = get_mm_rss(mm);
1360	mm->hiwater_vm = mm->total_vm;
1361
1362	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363		goto free_pt;
1364
1365	return mm;
1366
1367free_pt:
1368	/* don't put binfmt in mmput, we haven't got module yet */
1369	mm->binfmt = NULL;
1370	mm_init_owner(mm, NULL);
1371	mmput(mm);
 
 
1372
1373fail_nomem:
1374	return NULL;
1375}
1376
1377static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379	struct mm_struct *mm, *oldmm;
1380	int retval;
1381
1382	tsk->min_flt = tsk->maj_flt = 0;
1383	tsk->nvcsw = tsk->nivcsw = 0;
1384#ifdef CONFIG_DETECT_HUNG_TASK
1385	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386	tsk->last_switch_time = 0;
1387#endif
1388
1389	tsk->mm = NULL;
1390	tsk->active_mm = NULL;
1391
1392	/*
1393	 * Are we cloning a kernel thread?
1394	 *
1395	 * We need to steal a active VM for that..
1396	 */
1397	oldmm = current->mm;
1398	if (!oldmm)
1399		return 0;
1400
1401	/* initialize the new vmacache entries */
1402	vmacache_flush(tsk);
1403
1404	if (clone_flags & CLONE_VM) {
1405		mmget(oldmm);
1406		mm = oldmm;
1407		goto good_mm;
 
 
 
1408	}
1409
1410	retval = -ENOMEM;
1411	mm = dup_mm(tsk, current->mm);
1412	if (!mm)
1413		goto fail_nomem;
1414
1415good_mm:
1416	tsk->mm = mm;
1417	tsk->active_mm = mm;
 
1418	return 0;
1419
1420fail_nomem:
1421	return retval;
1422}
1423
1424static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425{
1426	struct fs_struct *fs = current->fs;
1427	if (clone_flags & CLONE_FS) {
1428		/* tsk->fs is already what we want */
1429		spin_lock(&fs->lock);
 
1430		if (fs->in_exec) {
1431			spin_unlock(&fs->lock);
1432			return -EAGAIN;
1433		}
1434		fs->users++;
1435		spin_unlock(&fs->lock);
1436		return 0;
1437	}
1438	tsk->fs = copy_fs_struct(fs);
1439	if (!tsk->fs)
1440		return -ENOMEM;
1441	return 0;
1442}
1443
1444static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 
1445{
1446	struct files_struct *oldf, *newf;
1447	int error = 0;
1448
1449	/*
1450	 * A background process may not have any files ...
1451	 */
1452	oldf = current->files;
1453	if (!oldf)
1454		goto out;
 
 
 
 
 
1455
1456	if (clone_flags & CLONE_FILES) {
1457		atomic_inc(&oldf->count);
1458		goto out;
1459	}
1460
1461	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462	if (!newf)
1463		goto out;
1464
1465	tsk->files = newf;
1466	error = 0;
1467out:
1468	return error;
1469}
1470
1471static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472{
1473#ifdef CONFIG_BLOCK
1474	struct io_context *ioc = current->io_context;
1475	struct io_context *new_ioc;
1476
1477	if (!ioc)
1478		return 0;
1479	/*
1480	 * Share io context with parent, if CLONE_IO is set
1481	 */
1482	if (clone_flags & CLONE_IO) {
1483		ioc_task_link(ioc);
1484		tsk->io_context = ioc;
1485	} else if (ioprio_valid(ioc->ioprio)) {
1486		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487		if (unlikely(!new_ioc))
1488			return -ENOMEM;
1489
1490		new_ioc->ioprio = ioc->ioprio;
1491		put_io_context(new_ioc);
1492	}
1493#endif
1494	return 0;
1495}
1496
1497static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498{
1499	struct sighand_struct *sig;
1500
1501	if (clone_flags & CLONE_SIGHAND) {
1502		refcount_inc(&current->sighand->count);
1503		return 0;
1504	}
1505	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506	RCU_INIT_POINTER(tsk->sighand, sig);
1507	if (!sig)
1508		return -ENOMEM;
1509
1510	refcount_set(&sig->count, 1);
1511	spin_lock_irq(&current->sighand->siglock);
1512	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513	spin_unlock_irq(&current->sighand->siglock);
1514
1515	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517		flush_signal_handlers(tsk, 0);
1518
1519	return 0;
1520}
1521
1522void __cleanup_sighand(struct sighand_struct *sighand)
1523{
1524	if (refcount_dec_and_test(&sighand->count)) {
1525		signalfd_cleanup(sighand);
1526		/*
1527		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528		 * without an RCU grace period, see __lock_task_sighand().
1529		 */
1530		kmem_cache_free(sighand_cachep, sighand);
1531	}
1532}
1533
1534/*
1535 * Initialize POSIX timer handling for a thread group.
1536 */
1537static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538{
1539	struct posix_cputimers *pct = &sig->posix_cputimers;
1540	unsigned long cpu_limit;
1541
1542	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543	posix_cputimers_group_init(pct, cpu_limit);
1544}
1545
1546static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547{
1548	struct signal_struct *sig;
1549
1550	if (clone_flags & CLONE_THREAD)
1551		return 0;
1552
1553	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554	tsk->signal = sig;
1555	if (!sig)
1556		return -ENOMEM;
1557
1558	sig->nr_threads = 1;
 
1559	atomic_set(&sig->live, 1);
1560	refcount_set(&sig->sigcnt, 1);
1561
1562	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565
1566	init_waitqueue_head(&sig->wait_chldexit);
1567	sig->curr_target = tsk;
1568	init_sigpending(&sig->shared_pending);
1569	INIT_HLIST_HEAD(&sig->multiprocess);
1570	seqlock_init(&sig->stats_lock);
1571	prev_cputime_init(&sig->prev_cputime);
1572
1573#ifdef CONFIG_POSIX_TIMERS
1574	INIT_LIST_HEAD(&sig->posix_timers);
 
1575	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576	sig->real_timer.function = it_real_fn;
1577#endif
1578
1579	task_lock(current->group_leader);
1580	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581	task_unlock(current->group_leader);
1582
1583	posix_cpu_timers_init_group(sig);
1584
1585	tty_audit_fork(sig);
1586	sched_autogroup_fork(sig);
1587
1588	sig->oom_score_adj = current->signal->oom_score_adj;
1589	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590
1591	mutex_init(&sig->cred_guard_mutex);
1592	mutex_init(&sig->exec_update_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
 
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678#ifdef CONFIG_TASKS_TRACE_RCU
1679	p->trc_reader_nesting = 0;
1680	p->trc_reader_special.s = 0;
1681	INIT_LIST_HEAD(&p->trc_holdout_list);
 
1682#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683}
1684
1685struct pid *pidfd_pid(const struct file *file)
1686{
1687	if (file->f_op == &pidfd_fops)
1688		return file->private_data;
1689
1690	return ERR_PTR(-EBADF);
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695	struct pid *pid = file->private_data;
1696
1697	file->private_data = NULL;
1698	put_pid(pid);
1699	return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703/**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the  pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 *   namespace (also take care to create new mount namespaces in the
1732 *   new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 *   have exactly one entry, which is 0
1737 */
1738static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739{
1740	struct pid *pid = f->private_data;
1741	struct pid_namespace *ns;
1742	pid_t nr = -1;
1743
1744	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746		nr = pid_nr_ns(pid, ns);
1747	}
1748
1749	seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751#ifdef CONFIG_PID_NS
1752	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753	if (nr > 0) {
1754		int i;
1755
1756		/* If nr is non-zero it means that 'pid' is valid and that
1757		 * ns, i.e. the pid namespace associated with the procfs
1758		 * instance, is in the pid namespace hierarchy of pid.
1759		 * Start at one below the already printed level.
1760		 */
1761		for (i = ns->level + 1; i <= pid->level; i++)
1762			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763	}
1764#endif
1765	seq_putc(m, '\n');
 
 
 
 
 
1766}
1767#endif
1768
1769/*
1770 * Poll support for process exit notification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771 */
1772static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773{
1774	struct pid *pid = file->private_data;
1775	__poll_t poll_flags = 0;
1776
1777	poll_wait(file, &pid->wait_pidfd, pts);
1778
1779	/*
1780	 * Inform pollers only when the whole thread group exits.
1781	 * If the thread group leader exits before all other threads in the
1782	 * group, then poll(2) should block, similar to the wait(2) family.
1783	 */
1784	if (thread_group_exited(pid))
1785		poll_flags = EPOLLIN | EPOLLRDNORM;
1786
1787	return poll_flags;
1788}
1789
1790const struct file_operations pidfd_fops = {
1791	.release = pidfd_release,
1792	.poll = pidfd_poll,
1793#ifdef CONFIG_PROC_FS
1794	.show_fdinfo = pidfd_show_fdinfo,
1795#endif
1796};
1797
1798static void __delayed_free_task(struct rcu_head *rhp)
1799{
1800	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801
1802	free_task(tsk);
1803}
1804
1805static __always_inline void delayed_free_task(struct task_struct *tsk)
1806{
1807	if (IS_ENABLED(CONFIG_MEMCG))
1808		call_rcu(&tsk->rcu, __delayed_free_task);
1809	else
1810		free_task(tsk);
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813/*
1814 * This creates a new process as a copy of the old one,
1815 * but does not actually start it yet.
1816 *
1817 * It copies the registers, and all the appropriate
1818 * parts of the process environment (as per the clone
1819 * flags). The actual kick-off is left to the caller.
1820 */
1821static __latent_entropy struct task_struct *copy_process(
1822					struct pid *pid,
1823					int trace,
1824					int node,
1825					struct kernel_clone_args *args)
1826{
1827	int pidfd = -1, retval;
1828	struct task_struct *p;
1829	struct multiprocess_signals delayed;
1830	struct file *pidfile = NULL;
1831	u64 clone_flags = args->flags;
1832	struct nsproxy *nsp = current->nsproxy;
1833
1834	/*
1835	 * Don't allow sharing the root directory with processes in a different
1836	 * namespace
1837	 */
1838	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839		return ERR_PTR(-EINVAL);
1840
1841	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842		return ERR_PTR(-EINVAL);
1843
1844	/*
1845	 * Thread groups must share signals as well, and detached threads
1846	 * can only be started up within the thread group.
1847	 */
1848	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849		return ERR_PTR(-EINVAL);
1850
1851	/*
1852	 * Shared signal handlers imply shared VM. By way of the above,
1853	 * thread groups also imply shared VM. Blocking this case allows
1854	 * for various simplifications in other code.
1855	 */
1856	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857		return ERR_PTR(-EINVAL);
1858
1859	/*
1860	 * Siblings of global init remain as zombies on exit since they are
1861	 * not reaped by their parent (swapper). To solve this and to avoid
1862	 * multi-rooted process trees, prevent global and container-inits
1863	 * from creating siblings.
1864	 */
1865	if ((clone_flags & CLONE_PARENT) &&
1866				current->signal->flags & SIGNAL_UNKILLABLE)
1867		return ERR_PTR(-EINVAL);
1868
1869	/*
1870	 * If the new process will be in a different pid or user namespace
1871	 * do not allow it to share a thread group with the forking task.
1872	 */
1873	if (clone_flags & CLONE_THREAD) {
1874		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1876			return ERR_PTR(-EINVAL);
1877	}
1878
1879	/*
1880	 * If the new process will be in a different time namespace
1881	 * do not allow it to share VM or a thread group with the forking task.
1882	 */
1883	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884		if (nsp->time_ns != nsp->time_ns_for_children)
1885			return ERR_PTR(-EINVAL);
1886	}
1887
1888	if (clone_flags & CLONE_PIDFD) {
1889		/*
1890		 * - CLONE_DETACHED is blocked so that we can potentially
1891		 *   reuse it later for CLONE_PIDFD.
1892		 * - CLONE_THREAD is blocked until someone really needs it.
1893		 */
1894		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895			return ERR_PTR(-EINVAL);
1896	}
1897
1898	/*
1899	 * Force any signals received before this point to be delivered
1900	 * before the fork happens.  Collect up signals sent to multiple
1901	 * processes that happen during the fork and delay them so that
1902	 * they appear to happen after the fork.
1903	 */
1904	sigemptyset(&delayed.signal);
1905	INIT_HLIST_NODE(&delayed.node);
1906
1907	spin_lock_irq(&current->sighand->siglock);
1908	if (!(clone_flags & CLONE_THREAD))
1909		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910	recalc_sigpending();
1911	spin_unlock_irq(&current->sighand->siglock);
1912	retval = -ERESTARTNOINTR;
1913	if (signal_pending(current))
1914		goto fork_out;
1915
1916	retval = -ENOMEM;
1917	p = dup_task_struct(current, node);
1918	if (!p)
1919		goto fork_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920
1921	/*
1922	 * This _must_ happen before we call free_task(), i.e. before we jump
1923	 * to any of the bad_fork_* labels. This is to avoid freeing
1924	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925	 * kernel threads (PF_KTHREAD).
1926	 */
1927	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928	/*
1929	 * Clear TID on mm_release()?
1930	 */
1931	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932
1933	ftrace_graph_init_task(p);
1934
1935	rt_mutex_init_task(p);
1936
1937	lockdep_assert_irqs_enabled();
1938#ifdef CONFIG_PROVE_LOCKING
1939	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940#endif
 
 
 
 
1941	retval = -EAGAIN;
1942	if (atomic_read(&p->real_cred->user->processes) >=
1943			task_rlimit(p, RLIMIT_NPROC)) {
1944		if (p->real_cred->user != INIT_USER &&
1945		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946			goto bad_fork_free;
1947	}
1948	current->flags &= ~PF_NPROC_EXCEEDED;
1949
1950	retval = copy_creds(p, clone_flags);
1951	if (retval < 0)
1952		goto bad_fork_free;
1953
1954	/*
1955	 * If multiple threads are within copy_process(), then this check
1956	 * triggers too late. This doesn't hurt, the check is only there
1957	 * to stop root fork bombs.
1958	 */
1959	retval = -EAGAIN;
1960	if (data_race(nr_threads >= max_threads))
1961		goto bad_fork_cleanup_count;
1962
1963	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965	p->flags |= PF_FORKNOEXEC;
1966	INIT_LIST_HEAD(&p->children);
1967	INIT_LIST_HEAD(&p->sibling);
1968	rcu_copy_process(p);
1969	p->vfork_done = NULL;
1970	spin_lock_init(&p->alloc_lock);
1971
1972	init_sigpending(&p->pending);
1973
1974	p->utime = p->stime = p->gtime = 0;
1975#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976	p->utimescaled = p->stimescaled = 0;
1977#endif
1978	prev_cputime_init(&p->prev_cputime);
1979
1980#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981	seqcount_init(&p->vtime.seqcount);
1982	p->vtime.starttime = 0;
1983	p->vtime.state = VTIME_INACTIVE;
1984#endif
1985
1986#if defined(SPLIT_RSS_COUNTING)
1987	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988#endif
1989
1990	p->default_timer_slack_ns = current->timer_slack_ns;
1991
1992#ifdef CONFIG_PSI
1993	p->psi_flags = 0;
1994#endif
1995
1996	task_io_accounting_init(&p->ioac);
1997	acct_clear_integrals(p);
1998
1999	posix_cputimers_init(&p->posix_cputimers);
 
2000
2001	p->io_context = NULL;
2002	audit_set_context(p, NULL);
2003	cgroup_fork(p);
 
 
 
 
2004#ifdef CONFIG_NUMA
2005	p->mempolicy = mpol_dup(p->mempolicy);
2006	if (IS_ERR(p->mempolicy)) {
2007		retval = PTR_ERR(p->mempolicy);
2008		p->mempolicy = NULL;
2009		goto bad_fork_cleanup_threadgroup_lock;
2010	}
2011#endif
2012#ifdef CONFIG_CPUSETS
2013	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016#endif
2017#ifdef CONFIG_TRACE_IRQFLAGS
2018	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021	p->softirqs_enabled		= 1;
2022	p->softirq_context		= 0;
2023#endif
2024
2025	p->pagefault_disabled = 0;
2026
2027#ifdef CONFIG_LOCKDEP
2028	lockdep_init_task(p);
2029#endif
2030
2031#ifdef CONFIG_DEBUG_MUTEXES
2032	p->blocked_on = NULL; /* not blocked yet */
2033#endif
2034#ifdef CONFIG_BCACHE
2035	p->sequential_io	= 0;
2036	p->sequential_io_avg	= 0;
2037#endif
 
 
 
 
2038
2039	/* Perform scheduler related setup. Assign this task to a CPU. */
2040	retval = sched_fork(clone_flags, p);
2041	if (retval)
2042		goto bad_fork_cleanup_policy;
2043
2044	retval = perf_event_init_task(p);
2045	if (retval)
2046		goto bad_fork_cleanup_policy;
2047	retval = audit_alloc(p);
2048	if (retval)
2049		goto bad_fork_cleanup_perf;
2050	/* copy all the process information */
2051	shm_init_task(p);
2052	retval = security_task_alloc(p, clone_flags);
2053	if (retval)
2054		goto bad_fork_cleanup_audit;
2055	retval = copy_semundo(clone_flags, p);
2056	if (retval)
2057		goto bad_fork_cleanup_security;
2058	retval = copy_files(clone_flags, p);
2059	if (retval)
2060		goto bad_fork_cleanup_semundo;
2061	retval = copy_fs(clone_flags, p);
2062	if (retval)
2063		goto bad_fork_cleanup_files;
2064	retval = copy_sighand(clone_flags, p);
2065	if (retval)
2066		goto bad_fork_cleanup_fs;
2067	retval = copy_signal(clone_flags, p);
2068	if (retval)
2069		goto bad_fork_cleanup_sighand;
2070	retval = copy_mm(clone_flags, p);
2071	if (retval)
2072		goto bad_fork_cleanup_signal;
2073	retval = copy_namespaces(clone_flags, p);
2074	if (retval)
2075		goto bad_fork_cleanup_mm;
2076	retval = copy_io(clone_flags, p);
2077	if (retval)
2078		goto bad_fork_cleanup_namespaces;
2079	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080	if (retval)
2081		goto bad_fork_cleanup_io;
2082
2083	stackleak_task_init(p);
2084
2085	if (pid != &init_struct_pid) {
2086		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087				args->set_tid_size);
2088		if (IS_ERR(pid)) {
2089			retval = PTR_ERR(pid);
2090			goto bad_fork_cleanup_thread;
2091		}
2092	}
2093
2094	/*
2095	 * This has to happen after we've potentially unshared the file
2096	 * descriptor table (so that the pidfd doesn't leak into the child
2097	 * if the fd table isn't shared).
2098	 */
2099	if (clone_flags & CLONE_PIDFD) {
2100		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
 
 
 
2101		if (retval < 0)
2102			goto bad_fork_free_pid;
2103
2104		pidfd = retval;
2105
2106		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107					      O_RDWR | O_CLOEXEC);
2108		if (IS_ERR(pidfile)) {
2109			put_unused_fd(pidfd);
2110			retval = PTR_ERR(pidfile);
2111			goto bad_fork_free_pid;
2112		}
2113		get_pid(pid);	/* held by pidfile now */
2114
2115		retval = put_user(pidfd, args->pidfd);
2116		if (retval)
2117			goto bad_fork_put_pidfd;
2118	}
2119
2120#ifdef CONFIG_BLOCK
2121	p->plug = NULL;
2122#endif
2123	futex_init_task(p);
2124
2125	/*
2126	 * sigaltstack should be cleared when sharing the same VM
2127	 */
2128	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129		sas_ss_reset(p);
2130
2131	/*
2132	 * Syscall tracing and stepping should be turned off in the
2133	 * child regardless of CLONE_PTRACE.
2134	 */
2135	user_disable_single_step(p);
2136	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137#ifdef TIF_SYSCALL_EMU
2138	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139#endif
2140	clear_tsk_latency_tracing(p);
2141
2142	/* ok, now we should be set up.. */
2143	p->pid = pid_nr(pid);
2144	if (clone_flags & CLONE_THREAD) {
2145		p->exit_signal = -1;
2146		p->group_leader = current->group_leader;
2147		p->tgid = current->tgid;
2148	} else {
2149		if (clone_flags & CLONE_PARENT)
2150			p->exit_signal = current->group_leader->exit_signal;
2151		else
2152			p->exit_signal = args->exit_signal;
2153		p->group_leader = p;
2154		p->tgid = p->pid;
2155	}
2156
2157	p->nr_dirtied = 0;
2158	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159	p->dirty_paused_when = 0;
2160
2161	p->pdeath_signal = 0;
2162	INIT_LIST_HEAD(&p->thread_group);
2163	p->task_works = NULL;
 
 
 
 
 
 
 
 
2164
2165	/*
2166	 * Ensure that the cgroup subsystem policies allow the new process to be
2167	 * forked. It should be noted the the new process's css_set can be changed
2168	 * between here and cgroup_post_fork() if an organisation operation is in
2169	 * progress.
2170	 */
2171	retval = cgroup_can_fork(p, args);
2172	if (retval)
2173		goto bad_fork_put_pidfd;
2174
2175	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2176	 * From this point on we must avoid any synchronous user-space
2177	 * communication until we take the tasklist-lock. In particular, we do
2178	 * not want user-space to be able to predict the process start-time by
2179	 * stalling fork(2) after we recorded the start_time but before it is
2180	 * visible to the system.
2181	 */
2182
2183	p->start_time = ktime_get_ns();
2184	p->start_boottime = ktime_get_boottime_ns();
2185
2186	/*
2187	 * Make it visible to the rest of the system, but dont wake it up yet.
2188	 * Need tasklist lock for parent etc handling!
2189	 */
2190	write_lock_irq(&tasklist_lock);
2191
2192	/* CLONE_PARENT re-uses the old parent */
2193	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194		p->real_parent = current->real_parent;
2195		p->parent_exec_id = current->parent_exec_id;
 
 
 
 
2196	} else {
2197		p->real_parent = current;
2198		p->parent_exec_id = current->self_exec_id;
 
2199	}
2200
2201	klp_copy_process(p);
2202
 
 
2203	spin_lock(&current->sighand->siglock);
2204
2205	/*
2206	 * Copy seccomp details explicitly here, in case they were changed
2207	 * before holding sighand lock.
2208	 */
2209	copy_seccomp(p);
2210
2211	rseq_fork(p, clone_flags);
2212
2213	/* Don't start children in a dying pid namespace */
2214	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215		retval = -ENOMEM;
2216		goto bad_fork_cancel_cgroup;
2217	}
2218
2219	/* Let kill terminate clone/fork in the middle */
2220	if (fatal_signal_pending(current)) {
2221		retval = -EINTR;
2222		goto bad_fork_cancel_cgroup;
2223	}
2224
2225	/* past the last point of failure */
2226	if (pidfile)
2227		fd_install(pidfd, pidfile);
 
 
 
 
2228
2229	init_task_pid_links(p);
2230	if (likely(p->pid)) {
2231		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232
2233		init_task_pid(p, PIDTYPE_PID, pid);
2234		if (thread_group_leader(p)) {
2235			init_task_pid(p, PIDTYPE_TGID, pid);
2236			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238
2239			if (is_child_reaper(pid)) {
2240				ns_of_pid(pid)->child_reaper = p;
2241				p->signal->flags |= SIGNAL_UNKILLABLE;
2242			}
2243			p->signal->shared_pending.signal = delayed.signal;
2244			p->signal->tty = tty_kref_get(current->signal->tty);
2245			/*
2246			 * Inherit has_child_subreaper flag under the same
2247			 * tasklist_lock with adding child to the process tree
2248			 * for propagate_has_child_subreaper optimization.
2249			 */
2250			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251							 p->real_parent->signal->is_child_subreaper;
2252			list_add_tail(&p->sibling, &p->real_parent->children);
2253			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254			attach_pid(p, PIDTYPE_TGID);
2255			attach_pid(p, PIDTYPE_PGID);
2256			attach_pid(p, PIDTYPE_SID);
2257			__this_cpu_inc(process_counts);
2258		} else {
2259			current->signal->nr_threads++;
 
2260			atomic_inc(&current->signal->live);
2261			refcount_inc(&current->signal->sigcnt);
2262			task_join_group_stop(p);
2263			list_add_tail_rcu(&p->thread_group,
2264					  &p->group_leader->thread_group);
2265			list_add_tail_rcu(&p->thread_node,
2266					  &p->signal->thread_head);
2267		}
2268		attach_pid(p, PIDTYPE_PID);
2269		nr_threads++;
2270	}
2271	total_forks++;
2272	hlist_del_init(&delayed.node);
2273	spin_unlock(&current->sighand->siglock);
2274	syscall_tracepoint_update(p);
2275	write_unlock_irq(&tasklist_lock);
2276
 
 
 
2277	proc_fork_connector(p);
2278	sched_post_fork(p);
2279	cgroup_post_fork(p, args);
2280	perf_event_fork(p);
2281
2282	trace_task_newtask(p, clone_flags);
2283	uprobe_copy_process(p, clone_flags);
 
 
 
2284
2285	return p;
2286
2287bad_fork_cancel_cgroup:
 
2288	spin_unlock(&current->sighand->siglock);
2289	write_unlock_irq(&tasklist_lock);
 
2290	cgroup_cancel_fork(p, args);
2291bad_fork_put_pidfd:
2292	if (clone_flags & CLONE_PIDFD) {
2293		fput(pidfile);
2294		put_unused_fd(pidfd);
2295	}
2296bad_fork_free_pid:
2297	if (pid != &init_struct_pid)
2298		free_pid(pid);
2299bad_fork_cleanup_thread:
2300	exit_thread(p);
2301bad_fork_cleanup_io:
2302	if (p->io_context)
2303		exit_io_context(p);
2304bad_fork_cleanup_namespaces:
2305	exit_task_namespaces(p);
2306bad_fork_cleanup_mm:
2307	if (p->mm) {
2308		mm_clear_owner(p->mm, p);
2309		mmput(p->mm);
2310	}
2311bad_fork_cleanup_signal:
2312	if (!(clone_flags & CLONE_THREAD))
2313		free_signal_struct(p->signal);
2314bad_fork_cleanup_sighand:
2315	__cleanup_sighand(p->sighand);
2316bad_fork_cleanup_fs:
2317	exit_fs(p); /* blocking */
2318bad_fork_cleanup_files:
2319	exit_files(p); /* blocking */
2320bad_fork_cleanup_semundo:
2321	exit_sem(p);
2322bad_fork_cleanup_security:
2323	security_task_free(p);
2324bad_fork_cleanup_audit:
2325	audit_free(p);
2326bad_fork_cleanup_perf:
2327	perf_event_free_task(p);
 
 
2328bad_fork_cleanup_policy:
2329	lockdep_free_task(p);
2330#ifdef CONFIG_NUMA
2331	mpol_put(p->mempolicy);
2332bad_fork_cleanup_threadgroup_lock:
2333#endif
 
2334	delayacct_tsk_free(p);
2335bad_fork_cleanup_count:
2336	atomic_dec(&p->cred->user->processes);
2337	exit_creds(p);
2338bad_fork_free:
2339	p->state = TASK_DEAD;
 
2340	put_task_stack(p);
2341	delayed_free_task(p);
2342fork_out:
2343	spin_lock_irq(&current->sighand->siglock);
2344	hlist_del_init(&delayed.node);
2345	spin_unlock_irq(&current->sighand->siglock);
2346	return ERR_PTR(retval);
2347}
2348
2349static inline void init_idle_pids(struct task_struct *idle)
2350{
2351	enum pid_type type;
2352
2353	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355		init_task_pid(idle, type, &init_struct_pid);
2356	}
2357}
2358
2359struct task_struct *fork_idle(int cpu)
 
 
 
 
 
 
2360{
2361	struct task_struct *task;
2362	struct kernel_clone_args args = {
2363		.flags = CLONE_VM,
 
 
 
 
2364	};
2365
2366	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2367	if (!IS_ERR(task)) {
2368		init_idle_pids(task);
2369		init_idle(task, cpu);
2370	}
2371
2372	return task;
2373}
2374
2375struct mm_struct *copy_init_mm(void)
 
 
 
 
 
 
2376{
2377	return dup_mm(NULL, &init_mm);
 
 
 
 
 
 
 
 
 
 
 
 
2378}
2379
2380/*
2381 *  Ok, this is the main fork-routine.
2382 *
2383 * It copies the process, and if successful kick-starts
2384 * it and waits for it to finish using the VM if required.
2385 *
2386 * args->exit_signal is expected to be checked for sanity by the caller.
2387 */
2388long _do_fork(struct kernel_clone_args *args)
2389{
2390	u64 clone_flags = args->flags;
2391	struct completion vfork;
2392	struct pid *pid;
2393	struct task_struct *p;
2394	int trace = 0;
2395	long nr;
2396
2397	/*
2398	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401	 * field in struct clone_args and it still doesn't make sense to have
2402	 * them both point at the same memory location. Performing this check
2403	 * here has the advantage that we don't need to have a separate helper
2404	 * to check for legacy clone().
2405	 */
2406	if ((args->flags & CLONE_PIDFD) &&
2407	    (args->flags & CLONE_PARENT_SETTID) &&
2408	    (args->pidfd == args->parent_tid))
2409		return -EINVAL;
2410
2411	/*
2412	 * Determine whether and which event to report to ptracer.  When
2413	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414	 * requested, no event is reported; otherwise, report if the event
2415	 * for the type of forking is enabled.
2416	 */
2417	if (!(clone_flags & CLONE_UNTRACED)) {
2418		if (clone_flags & CLONE_VFORK)
2419			trace = PTRACE_EVENT_VFORK;
2420		else if (args->exit_signal != SIGCHLD)
2421			trace = PTRACE_EVENT_CLONE;
2422		else
2423			trace = PTRACE_EVENT_FORK;
2424
2425		if (likely(!ptrace_event_enabled(current, trace)))
2426			trace = 0;
2427	}
2428
2429	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2430	add_latent_entropy();
2431
2432	if (IS_ERR(p))
2433		return PTR_ERR(p);
2434
2435	/*
2436	 * Do this prior waking up the new thread - the thread pointer
2437	 * might get invalid after that point, if the thread exits quickly.
2438	 */
2439	trace_sched_process_fork(current, p);
2440
2441	pid = get_task_pid(p, PIDTYPE_PID);
2442	nr = pid_vnr(pid);
2443
2444	if (clone_flags & CLONE_PARENT_SETTID)
2445		put_user(nr, args->parent_tid);
2446
2447	if (clone_flags & CLONE_VFORK) {
2448		p->vfork_done = &vfork;
2449		init_completion(&vfork);
2450		get_task_struct(p);
2451	}
2452
 
 
 
 
 
 
 
2453	wake_up_new_task(p);
2454
2455	/* forking complete and child started to run, tell ptracer */
2456	if (unlikely(trace))
2457		ptrace_event_pid(trace, pid);
2458
2459	if (clone_flags & CLONE_VFORK) {
2460		if (!wait_for_vfork_done(p, &vfork))
2461			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2462	}
2463
2464	put_pid(pid);
2465	return nr;
2466}
2467
2468/*
2469 * Create a kernel thread.
2470 */
2471pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 
2472{
2473	struct kernel_clone_args args = {
2474		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475				    CLONE_UNTRACED) & ~CSIGNAL),
2476		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477		.stack		= (unsigned long)fn,
2478		.stack_size	= (unsigned long)arg,
 
 
2479	};
2480
2481	return _do_fork(&args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482}
2483
2484#ifdef __ARCH_WANT_SYS_FORK
2485SYSCALL_DEFINE0(fork)
2486{
2487#ifdef CONFIG_MMU
2488	struct kernel_clone_args args = {
2489		.exit_signal = SIGCHLD,
2490	};
2491
2492	return _do_fork(&args);
2493#else
2494	/* can not support in nommu mode */
2495	return -EINVAL;
2496#endif
2497}
2498#endif
2499
2500#ifdef __ARCH_WANT_SYS_VFORK
2501SYSCALL_DEFINE0(vfork)
2502{
2503	struct kernel_clone_args args = {
2504		.flags		= CLONE_VFORK | CLONE_VM,
2505		.exit_signal	= SIGCHLD,
2506	};
2507
2508	return _do_fork(&args);
2509}
2510#endif
2511
2512#ifdef __ARCH_WANT_SYS_CLONE
2513#ifdef CONFIG_CLONE_BACKWARDS
2514SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515		 int __user *, parent_tidptr,
2516		 unsigned long, tls,
2517		 int __user *, child_tidptr)
2518#elif defined(CONFIG_CLONE_BACKWARDS2)
2519SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520		 int __user *, parent_tidptr,
2521		 int __user *, child_tidptr,
2522		 unsigned long, tls)
2523#elif defined(CONFIG_CLONE_BACKWARDS3)
2524SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525		int, stack_size,
2526		int __user *, parent_tidptr,
2527		int __user *, child_tidptr,
2528		unsigned long, tls)
2529#else
2530SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531		 int __user *, parent_tidptr,
2532		 int __user *, child_tidptr,
2533		 unsigned long, tls)
2534#endif
2535{
2536	struct kernel_clone_args args = {
2537		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538		.pidfd		= parent_tidptr,
2539		.child_tid	= child_tidptr,
2540		.parent_tid	= parent_tidptr,
2541		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542		.stack		= newsp,
2543		.tls		= tls,
2544	};
2545
2546	return _do_fork(&args);
2547}
2548#endif
2549
2550#ifdef __ARCH_WANT_SYS_CLONE3
2551
2552noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553					      struct clone_args __user *uargs,
2554					      size_t usize)
2555{
2556	int err;
2557	struct clone_args args;
2558	pid_t *kset_tid = kargs->set_tid;
2559
2560	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561		     CLONE_ARGS_SIZE_VER0);
2562	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563		     CLONE_ARGS_SIZE_VER1);
2564	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565		     CLONE_ARGS_SIZE_VER2);
2566	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567
2568	if (unlikely(usize > PAGE_SIZE))
2569		return -E2BIG;
2570	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571		return -EINVAL;
2572
2573	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574	if (err)
2575		return err;
2576
2577	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578		return -EINVAL;
2579
2580	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581		return -EINVAL;
2582
2583	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584		return -EINVAL;
2585
2586	/*
2587	 * Verify that higher 32bits of exit_signal are unset and that
2588	 * it is a valid signal
2589	 */
2590	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591		     !valid_signal(args.exit_signal)))
2592		return -EINVAL;
2593
2594	if ((args.flags & CLONE_INTO_CGROUP) &&
2595	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596		return -EINVAL;
2597
2598	*kargs = (struct kernel_clone_args){
2599		.flags		= args.flags,
2600		.pidfd		= u64_to_user_ptr(args.pidfd),
2601		.child_tid	= u64_to_user_ptr(args.child_tid),
2602		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603		.exit_signal	= args.exit_signal,
2604		.stack		= args.stack,
2605		.stack_size	= args.stack_size,
2606		.tls		= args.tls,
2607		.set_tid_size	= args.set_tid_size,
2608		.cgroup		= args.cgroup,
2609	};
2610
2611	if (args.set_tid &&
2612		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613			(kargs->set_tid_size * sizeof(pid_t))))
2614		return -EFAULT;
2615
2616	kargs->set_tid = kset_tid;
2617
2618	return 0;
2619}
2620
2621/**
2622 * clone3_stack_valid - check and prepare stack
2623 * @kargs: kernel clone args
2624 *
2625 * Verify that the stack arguments userspace gave us are sane.
2626 * In addition, set the stack direction for userspace since it's easy for us to
2627 * determine.
2628 */
2629static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630{
2631	if (kargs->stack == 0) {
2632		if (kargs->stack_size > 0)
2633			return false;
2634	} else {
2635		if (kargs->stack_size == 0)
2636			return false;
2637
2638		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639			return false;
2640
2641#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642		kargs->stack += kargs->stack_size;
2643#endif
2644	}
2645
2646	return true;
2647}
2648
2649static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650{
2651	/* Verify that no unknown flags are passed along. */
2652	if (kargs->flags &
2653	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654		return false;
2655
2656	/*
2657	 * - make the CLONE_DETACHED bit reuseable for clone3
2658	 * - make the CSIGNAL bits reuseable for clone3
2659	 */
2660	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661		return false;
2662
2663	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665		return false;
2666
2667	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668	    kargs->exit_signal)
2669		return false;
2670
2671	if (!clone3_stack_valid(kargs))
2672		return false;
2673
2674	return true;
2675}
2676
2677/**
2678 * clone3 - create a new process with specific properties
2679 * @uargs: argument structure
2680 * @size:  size of @uargs
2681 *
2682 * clone3() is the extensible successor to clone()/clone2().
2683 * It takes a struct as argument that is versioned by its size.
2684 *
2685 * Return: On success, a positive PID for the child process.
2686 *         On error, a negative errno number.
2687 */
2688SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689{
2690	int err;
2691
2692	struct kernel_clone_args kargs;
2693	pid_t set_tid[MAX_PID_NS_LEVEL];
2694
 
 
 
 
 
2695	kargs.set_tid = set_tid;
2696
2697	err = copy_clone_args_from_user(&kargs, uargs, size);
2698	if (err)
2699		return err;
2700
2701	if (!clone3_args_valid(&kargs))
2702		return -EINVAL;
2703
2704	return _do_fork(&kargs);
2705}
2706#endif
2707
2708void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709{
2710	struct task_struct *leader, *parent, *child;
2711	int res;
2712
2713	read_lock(&tasklist_lock);
2714	leader = top = top->group_leader;
2715down:
2716	for_each_thread(leader, parent) {
2717		list_for_each_entry(child, &parent->children, sibling) {
2718			res = visitor(child, data);
2719			if (res) {
2720				if (res < 0)
2721					goto out;
2722				leader = child;
2723				goto down;
2724			}
2725up:
2726			;
2727		}
2728	}
2729
2730	if (leader != top) {
2731		child = leader;
2732		parent = child->real_parent;
2733		leader = parent->group_leader;
2734		goto up;
2735	}
2736out:
2737	read_unlock(&tasklist_lock);
2738}
2739
2740#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741#define ARCH_MIN_MMSTRUCT_ALIGN 0
2742#endif
2743
2744static void sighand_ctor(void *data)
2745{
2746	struct sighand_struct *sighand = data;
2747
2748	spin_lock_init(&sighand->siglock);
2749	init_waitqueue_head(&sighand->signalfd_wqh);
2750}
2751
2752void __init proc_caches_init(void)
2753{
2754	unsigned int mm_size;
2755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2756	sighand_cachep = kmem_cache_create("sighand_cache",
2757			sizeof(struct sighand_struct), 0,
2758			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759			SLAB_ACCOUNT, sighand_ctor);
2760	signal_cachep = kmem_cache_create("signal_cache",
2761			sizeof(struct signal_struct), 0,
2762			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763			NULL);
2764	files_cachep = kmem_cache_create("files_cache",
2765			sizeof(struct files_struct), 0,
2766			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767			NULL);
2768	fs_cachep = kmem_cache_create("fs_cache",
2769			sizeof(struct fs_struct), 0,
2770			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771			NULL);
2772
2773	/*
2774	 * The mm_cpumask is located at the end of mm_struct, and is
2775	 * dynamically sized based on the maximum CPU number this system
2776	 * can have, taking hotplug into account (nr_cpu_ids).
2777	 */
2778	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779
2780	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783			offsetof(struct mm_struct, saved_auxv),
2784			sizeof_field(struct mm_struct, saved_auxv),
2785			NULL);
2786	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
 
 
 
2787	mmap_init();
2788	nsproxy_cache_init();
2789}
2790
2791/*
2792 * Check constraints on flags passed to the unshare system call.
2793 */
2794static int check_unshare_flags(unsigned long unshare_flags)
2795{
2796	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800				CLONE_NEWTIME))
2801		return -EINVAL;
2802	/*
2803	 * Not implemented, but pretend it works if there is nothing
2804	 * to unshare.  Note that unsharing the address space or the
2805	 * signal handlers also need to unshare the signal queues (aka
2806	 * CLONE_THREAD).
2807	 */
2808	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809		if (!thread_group_empty(current))
2810			return -EINVAL;
2811	}
2812	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813		if (refcount_read(&current->sighand->count) > 1)
2814			return -EINVAL;
2815	}
2816	if (unshare_flags & CLONE_VM) {
2817		if (!current_is_single_threaded())
2818			return -EINVAL;
2819	}
2820
2821	return 0;
2822}
2823
2824/*
2825 * Unshare the filesystem structure if it is being shared
2826 */
2827static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828{
2829	struct fs_struct *fs = current->fs;
2830
2831	if (!(unshare_flags & CLONE_FS) || !fs)
2832		return 0;
2833
2834	/* don't need lock here; in the worst case we'll do useless copy */
2835	if (fs->users == 1)
2836		return 0;
2837
2838	*new_fsp = copy_fs_struct(fs);
2839	if (!*new_fsp)
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845/*
2846 * Unshare file descriptor table if it is being shared
2847 */
2848int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849	       struct files_struct **new_fdp)
2850{
2851	struct files_struct *fd = current->files;
2852	int error = 0;
2853
2854	if ((unshare_flags & CLONE_FILES) &&
2855	    (fd && atomic_read(&fd->count) > 1)) {
2856		*new_fdp = dup_fd(fd, max_fds, &error);
2857		if (!*new_fdp)
2858			return error;
 
2859	}
2860
2861	return 0;
2862}
2863
2864/*
2865 * unshare allows a process to 'unshare' part of the process
2866 * context which was originally shared using clone.  copy_*
2867 * functions used by _do_fork() cannot be used here directly
2868 * because they modify an inactive task_struct that is being
2869 * constructed. Here we are modifying the current, active,
2870 * task_struct.
2871 */
2872int ksys_unshare(unsigned long unshare_flags)
2873{
2874	struct fs_struct *fs, *new_fs = NULL;
2875	struct files_struct *fd, *new_fd = NULL;
2876	struct cred *new_cred = NULL;
2877	struct nsproxy *new_nsproxy = NULL;
2878	int do_sysvsem = 0;
2879	int err;
2880
2881	/*
2882	 * If unsharing a user namespace must also unshare the thread group
2883	 * and unshare the filesystem root and working directories.
2884	 */
2885	if (unshare_flags & CLONE_NEWUSER)
2886		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887	/*
2888	 * If unsharing vm, must also unshare signal handlers.
2889	 */
2890	if (unshare_flags & CLONE_VM)
2891		unshare_flags |= CLONE_SIGHAND;
2892	/*
2893	 * If unsharing a signal handlers, must also unshare the signal queues.
2894	 */
2895	if (unshare_flags & CLONE_SIGHAND)
2896		unshare_flags |= CLONE_THREAD;
2897	/*
2898	 * If unsharing namespace, must also unshare filesystem information.
2899	 */
2900	if (unshare_flags & CLONE_NEWNS)
2901		unshare_flags |= CLONE_FS;
2902
2903	err = check_unshare_flags(unshare_flags);
2904	if (err)
2905		goto bad_unshare_out;
2906	/*
2907	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908	 * to a new ipc namespace, the semaphore arrays from the old
2909	 * namespace are unreachable.
2910	 */
2911	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912		do_sysvsem = 1;
2913	err = unshare_fs(unshare_flags, &new_fs);
2914	if (err)
2915		goto bad_unshare_out;
2916	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917	if (err)
2918		goto bad_unshare_cleanup_fs;
2919	err = unshare_userns(unshare_flags, &new_cred);
2920	if (err)
2921		goto bad_unshare_cleanup_fd;
2922	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923					 new_cred, new_fs);
2924	if (err)
2925		goto bad_unshare_cleanup_cred;
2926
 
 
 
 
 
 
2927	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928		if (do_sysvsem) {
2929			/*
2930			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931			 */
2932			exit_sem(current);
2933		}
2934		if (unshare_flags & CLONE_NEWIPC) {
2935			/* Orphan segments in old ns (see sem above). */
2936			exit_shm(current);
2937			shm_init_task(current);
2938		}
2939
2940		if (new_nsproxy)
2941			switch_task_namespaces(current, new_nsproxy);
2942
2943		task_lock(current);
2944
2945		if (new_fs) {
2946			fs = current->fs;
2947			spin_lock(&fs->lock);
2948			current->fs = new_fs;
2949			if (--fs->users)
2950				new_fs = NULL;
2951			else
2952				new_fs = fs;
2953			spin_unlock(&fs->lock);
2954		}
2955
2956		if (new_fd) {
2957			fd = current->files;
2958			current->files = new_fd;
2959			new_fd = fd;
2960		}
2961
2962		task_unlock(current);
2963
2964		if (new_cred) {
2965			/* Install the new user namespace */
2966			commit_creds(new_cred);
2967			new_cred = NULL;
2968		}
2969	}
2970
2971	perf_event_namespaces(current);
2972
2973bad_unshare_cleanup_cred:
2974	if (new_cred)
2975		put_cred(new_cred);
2976bad_unshare_cleanup_fd:
2977	if (new_fd)
2978		put_files_struct(new_fd);
2979
2980bad_unshare_cleanup_fs:
2981	if (new_fs)
2982		free_fs_struct(new_fs);
2983
2984bad_unshare_out:
2985	return err;
2986}
2987
2988SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989{
2990	return ksys_unshare(unshare_flags);
2991}
2992
2993/*
2994 *	Helper to unshare the files of the current task.
2995 *	We don't want to expose copy_files internals to
2996 *	the exec layer of the kernel.
2997 */
2998
2999int unshare_files(struct files_struct **displaced)
3000{
3001	struct task_struct *task = current;
3002	struct files_struct *copy = NULL;
3003	int error;
3004
3005	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006	if (error || !copy) {
3007		*displaced = NULL;
3008		return error;
3009	}
3010	*displaced = task->files;
3011	task_lock(task);
3012	task->files = copy;
3013	task_unlock(task);
 
3014	return 0;
3015}
3016
3017int sysctl_max_threads(struct ctl_table *table, int write,
3018		       void *buffer, size_t *lenp, loff_t *ppos)
3019{
3020	struct ctl_table t;
3021	int ret;
3022	int threads = max_threads;
3023	int min = 1;
3024	int max = MAX_THREADS;
3025
3026	t = *table;
3027	t.data = &threads;
3028	t.extra1 = &min;
3029	t.extra2 = &max;
3030
3031	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032	if (ret || !write)
3033		return ret;
3034
3035	max_threads = threads;
3036
3037	return 0;
3038}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
 
  19#include <linux/sched/user.h>
  20#include <linux/sched/numa_balancing.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/task_stack.h>
  24#include <linux/sched/cputime.h>
  25#include <linux/sched/ext.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/memblock.h>
  48#include <linux/nsproxy.h>
  49#include <linux/capability.h>
  50#include <linux/cpu.h>
  51#include <linux/cgroup.h>
  52#include <linux/security.h>
  53#include <linux/hugetlb.h>
  54#include <linux/seccomp.h>
  55#include <linux/swap.h>
  56#include <linux/syscalls.h>
  57#include <linux/syscall_user_dispatch.h>
  58#include <linux/jiffies.h>
  59#include <linux/futex.h>
  60#include <linux/compat.h>
  61#include <linux/kthread.h>
  62#include <linux/task_io_accounting_ops.h>
  63#include <linux/rcupdate.h>
  64#include <linux/ptrace.h>
  65#include <linux/mount.h>
  66#include <linux/audit.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/proc_fs.h>
  70#include <linux/profile.h>
  71#include <linux/rmap.h>
  72#include <linux/ksm.h>
  73#include <linux/acct.h>
  74#include <linux/userfaultfd_k.h>
  75#include <linux/tsacct_kern.h>
  76#include <linux/cn_proc.h>
  77#include <linux/freezer.h>
  78#include <linux/delayacct.h>
  79#include <linux/taskstats_kern.h>
 
  80#include <linux/tty.h>
 
  81#include <linux/fs_struct.h>
  82#include <linux/magic.h>
  83#include <linux/perf_event.h>
  84#include <linux/posix-timers.h>
  85#include <linux/user-return-notifier.h>
  86#include <linux/oom.h>
  87#include <linux/khugepaged.h>
  88#include <linux/signalfd.h>
  89#include <linux/uprobes.h>
  90#include <linux/aio.h>
  91#include <linux/compiler.h>
  92#include <linux/sysctl.h>
  93#include <linux/kcov.h>
  94#include <linux/livepatch.h>
  95#include <linux/thread_info.h>
  96#include <linux/stackleak.h>
  97#include <linux/kasan.h>
  98#include <linux/scs.h>
  99#include <linux/io_uring.h>
 100#include <linux/bpf.h>
 101#include <linux/stackprotector.h>
 102#include <linux/user_events.h>
 103#include <linux/iommu.h>
 104#include <linux/rseq.h>
 105#include <uapi/linux/pidfd.h>
 106#include <linux/pidfs.h>
 107#include <linux/tick.h>
 108
 109#include <asm/pgalloc.h>
 110#include <linux/uaccess.h>
 111#include <asm/mmu_context.h>
 112#include <asm/cacheflush.h>
 113#include <asm/tlbflush.h>
 114
 115#include <trace/events/sched.h>
 116
 117#define CREATE_TRACE_POINTS
 118#include <trace/events/task.h>
 119
 120#include <kunit/visibility.h>
 121
 122/*
 123 * Minimum number of threads to boot the kernel
 124 */
 125#define MIN_THREADS 20
 126
 127/*
 128 * Maximum number of threads
 129 */
 130#define MAX_THREADS FUTEX_TID_MASK
 131
 132/*
 133 * Protected counters by write_lock_irq(&tasklist_lock)
 134 */
 135unsigned long total_forks;	/* Handle normal Linux uptimes. */
 136int nr_threads;			/* The idle threads do not count.. */
 137
 138static int max_threads;		/* tunable limit on nr_threads */
 139
 140#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 141
 142static const char * const resident_page_types[] = {
 143	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 144	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 145	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 146	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 147};
 148
 149DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 150
 151__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 152
 153#ifdef CONFIG_PROVE_RCU
 154int lockdep_tasklist_lock_is_held(void)
 155{
 156	return lockdep_is_held(&tasklist_lock);
 157}
 158EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 159#endif /* #ifdef CONFIG_PROVE_RCU */
 160
 161int nr_processes(void)
 162{
 163	int cpu;
 164	int total = 0;
 165
 166	for_each_possible_cpu(cpu)
 167		total += per_cpu(process_counts, cpu);
 168
 169	return total;
 170}
 171
 172void __weak arch_release_task_struct(struct task_struct *tsk)
 173{
 174}
 175
 
 176static struct kmem_cache *task_struct_cachep;
 177
 178static inline struct task_struct *alloc_task_struct_node(int node)
 179{
 180	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 181}
 182
 183static inline void free_task_struct(struct task_struct *tsk)
 184{
 185	kmem_cache_free(task_struct_cachep, tsk);
 186}
 
 
 
 187
 188/*
 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 190 * kmemcache based allocator.
 191 */
 192# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 193
 194#  ifdef CONFIG_VMAP_STACK
 195/*
 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 197 * flush.  Try to minimize the number of calls by caching stacks.
 198 */
 199#define NR_CACHED_STACKS 2
 200static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 201
 202struct vm_stack {
 203	struct rcu_head rcu;
 204	struct vm_struct *stack_vm_area;
 205};
 206
 207static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 208{
 209	unsigned int i;
 210
 211	for (i = 0; i < NR_CACHED_STACKS; i++) {
 212		struct vm_struct *tmp = NULL;
 213
 214		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
 215			return true;
 216	}
 217	return false;
 218}
 219
 220static void thread_stack_free_rcu(struct rcu_head *rh)
 221{
 222	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 223
 224	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 225		return;
 226
 227	vfree(vm_stack);
 228}
 229
 230static void thread_stack_delayed_free(struct task_struct *tsk)
 231{
 232	struct vm_stack *vm_stack = tsk->stack;
 233
 234	vm_stack->stack_vm_area = tsk->stack_vm_area;
 235	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 236}
 237
 238static int free_vm_stack_cache(unsigned int cpu)
 239{
 240	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 241	int i;
 242
 243	for (i = 0; i < NR_CACHED_STACKS; i++) {
 244		struct vm_struct *vm_stack = cached_vm_stacks[i];
 245
 246		if (!vm_stack)
 247			continue;
 248
 249		vfree(vm_stack->addr);
 250		cached_vm_stacks[i] = NULL;
 251	}
 252
 253	return 0;
 254}
 
 255
 256static int memcg_charge_kernel_stack(struct vm_struct *vm)
 257{
 258	int i;
 259	int ret;
 260	int nr_charged = 0;
 261
 262	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 263
 264	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 265		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 266		if (ret)
 267			goto err;
 268		nr_charged++;
 269	}
 270	return 0;
 271err:
 272	for (i = 0; i < nr_charged; i++)
 273		memcg_kmem_uncharge_page(vm->pages[i], 0);
 274	return ret;
 275}
 276
 277static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 278{
 279	struct vm_struct *vm;
 280	void *stack;
 281	int i;
 282
 283	for (i = 0; i < NR_CACHED_STACKS; i++) {
 284		struct vm_struct *s;
 285
 286		s = this_cpu_xchg(cached_stacks[i], NULL);
 287
 288		if (!s)
 289			continue;
 290
 291		/* Reset stack metadata. */
 292		kasan_unpoison_range(s->addr, THREAD_SIZE);
 293
 294		stack = kasan_reset_tag(s->addr);
 295
 296		/* Clear stale pointers from reused stack. */
 297		memset(stack, 0, THREAD_SIZE);
 298
 299		if (memcg_charge_kernel_stack(s)) {
 300			vfree(s->addr);
 301			return -ENOMEM;
 302		}
 303
 304		tsk->stack_vm_area = s;
 305		tsk->stack = stack;
 306		return 0;
 307	}
 308
 309	/*
 310	 * Allocated stacks are cached and later reused by new threads,
 311	 * so memcg accounting is performed manually on assigning/releasing
 312	 * stacks to tasks. Drop __GFP_ACCOUNT.
 313	 */
 314	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 315				     VMALLOC_START, VMALLOC_END,
 316				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 317				     PAGE_KERNEL,
 318				     0, node, __builtin_return_address(0));
 319	if (!stack)
 320		return -ENOMEM;
 321
 322	vm = find_vm_area(stack);
 323	if (memcg_charge_kernel_stack(vm)) {
 324		vfree(stack);
 325		return -ENOMEM;
 326	}
 327	/*
 328	 * We can't call find_vm_area() in interrupt context, and
 329	 * free_thread_stack() can be called in interrupt context,
 330	 * so cache the vm_struct.
 331	 */
 332	tsk->stack_vm_area = vm;
 333	stack = kasan_reset_tag(stack);
 334	tsk->stack = stack;
 335	return 0;
 336}
 337
 338static void free_thread_stack(struct task_struct *tsk)
 339{
 340	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 341		thread_stack_delayed_free(tsk);
 342
 343	tsk->stack = NULL;
 344	tsk->stack_vm_area = NULL;
 345}
 346
 347#  else /* !CONFIG_VMAP_STACK */
 348
 349static void thread_stack_free_rcu(struct rcu_head *rh)
 350{
 351	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 352}
 353
 354static void thread_stack_delayed_free(struct task_struct *tsk)
 355{
 356	struct rcu_head *rh = tsk->stack;
 357
 358	call_rcu(rh, thread_stack_free_rcu);
 359}
 360
 361static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 362{
 363	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 364					     THREAD_SIZE_ORDER);
 365
 366	if (likely(page)) {
 367		tsk->stack = kasan_reset_tag(page_address(page));
 368		return 0;
 369	}
 370	return -ENOMEM;
 
 371}
 372
 373static void free_thread_stack(struct task_struct *tsk)
 374{
 375	thread_stack_delayed_free(tsk);
 376	tsk->stack = NULL;
 377}
 
 
 378
 379#  endif /* CONFIG_VMAP_STACK */
 380# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 381
 382static struct kmem_cache *thread_stack_cache;
 
 
 
 383
 384static void thread_stack_free_rcu(struct rcu_head *rh)
 385{
 386	kmem_cache_free(thread_stack_cache, rh);
 387}
 388
 389static void thread_stack_delayed_free(struct task_struct *tsk)
 390{
 391	struct rcu_head *rh = tsk->stack;
 
 392
 393	call_rcu(rh, thread_stack_free_rcu);
 394}
 
 
 395
 396static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 397{
 398	unsigned long *stack;
 399	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 400	stack = kasan_reset_tag(stack);
 401	tsk->stack = stack;
 402	return stack ? 0 : -ENOMEM;
 403}
 404
 405static void free_thread_stack(struct task_struct *tsk)
 406{
 407	thread_stack_delayed_free(tsk);
 408	tsk->stack = NULL;
 409}
 410
 411void thread_stack_cache_init(void)
 412{
 413	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 414					THREAD_SIZE, THREAD_SIZE, 0, 0,
 415					THREAD_SIZE, NULL);
 416	BUG_ON(thread_stack_cache == NULL);
 417}
 418
 419# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 420
 421/* SLAB cache for signal_struct structures (tsk->signal) */
 422static struct kmem_cache *signal_cachep;
 423
 424/* SLAB cache for sighand_struct structures (tsk->sighand) */
 425struct kmem_cache *sighand_cachep;
 426
 427/* SLAB cache for files_struct structures (tsk->files) */
 428struct kmem_cache *files_cachep;
 429
 430/* SLAB cache for fs_struct structures (tsk->fs) */
 431struct kmem_cache *fs_cachep;
 432
 433/* SLAB cache for vm_area_struct structures */
 434static struct kmem_cache *vm_area_cachep;
 435
 436/* SLAB cache for mm_struct structures (tsk->mm) */
 437static struct kmem_cache *mm_cachep;
 438
 439#ifdef CONFIG_PER_VMA_LOCK
 440
 441/* SLAB cache for vm_area_struct.lock */
 442static struct kmem_cache *vma_lock_cachep;
 443
 444static bool vma_lock_alloc(struct vm_area_struct *vma)
 445{
 446	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
 447	if (!vma->vm_lock)
 448		return false;
 449
 450	init_rwsem(&vma->vm_lock->lock);
 451	vma->vm_lock_seq = -1;
 452
 453	return true;
 454}
 455
 456static inline void vma_lock_free(struct vm_area_struct *vma)
 457{
 458	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
 459}
 460
 461#else /* CONFIG_PER_VMA_LOCK */
 462
 463static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
 464static inline void vma_lock_free(struct vm_area_struct *vma) {}
 465
 466#endif /* CONFIG_PER_VMA_LOCK */
 467
 468struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 469{
 470	struct vm_area_struct *vma;
 471
 472	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 473	if (!vma)
 474		return NULL;
 475
 476	vma_init(vma, mm);
 477	if (!vma_lock_alloc(vma)) {
 478		kmem_cache_free(vm_area_cachep, vma);
 479		return NULL;
 480	}
 481
 482	return vma;
 483}
 484
 485struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 486{
 487	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 488
 489	if (!new)
 490		return NULL;
 491
 492	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 493	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 494	/*
 495	 * orig->shared.rb may be modified concurrently, but the clone
 496	 * will be reinitialized.
 497	 */
 498	data_race(memcpy(new, orig, sizeof(*new)));
 499	if (!vma_lock_alloc(new)) {
 500		kmem_cache_free(vm_area_cachep, new);
 501		return NULL;
 502	}
 503	INIT_LIST_HEAD(&new->anon_vma_chain);
 504	vma_numab_state_init(new);
 505	dup_anon_vma_name(orig, new);
 506
 507	return new;
 508}
 509
 510void __vm_area_free(struct vm_area_struct *vma)
 511{
 512	vma_numab_state_free(vma);
 513	free_anon_vma_name(vma);
 514	vma_lock_free(vma);
 515	kmem_cache_free(vm_area_cachep, vma);
 516}
 517
 518#ifdef CONFIG_PER_VMA_LOCK
 519static void vm_area_free_rcu_cb(struct rcu_head *head)
 520{
 521	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
 522						  vm_rcu);
 523
 524	/* The vma should not be locked while being destroyed. */
 525	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
 526	__vm_area_free(vma);
 527}
 528#endif
 529
 530void vm_area_free(struct vm_area_struct *vma)
 531{
 532#ifdef CONFIG_PER_VMA_LOCK
 533	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
 534#else
 535	__vm_area_free(vma);
 536#endif
 537}
 538
 539static void account_kernel_stack(struct task_struct *tsk, int account)
 540{
 541	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 542		struct vm_struct *vm = task_stack_vm_area(tsk);
 543		int i;
 544
 545		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 546			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 547					      account * (PAGE_SIZE / 1024));
 548	} else {
 549		void *stack = task_stack_page(tsk);
 550
 551		/* All stack pages are in the same node. */
 552		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 
 
 
 
 553				      account * (THREAD_SIZE / 1024));
 554	}
 555}
 556
 557void exit_task_stack_account(struct task_struct *tsk)
 558{
 559	account_kernel_stack(tsk, -1);
 
 
 
 
 560
 561	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 562		struct vm_struct *vm;
 563		int i;
 564
 565		vm = task_stack_vm_area(tsk);
 566		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 567			memcg_kmem_uncharge_page(vm->pages[i], 0);
 
 
 
 
 
 
 
 
 
 
 568	}
 
 
 569}
 570
 571static void release_task_stack(struct task_struct *tsk)
 572{
 573	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 574		return;  /* Better to leak the stack than to free prematurely */
 575
 
 576	free_thread_stack(tsk);
 
 
 
 
 577}
 578
 579#ifdef CONFIG_THREAD_INFO_IN_TASK
 580void put_task_stack(struct task_struct *tsk)
 581{
 582	if (refcount_dec_and_test(&tsk->stack_refcount))
 583		release_task_stack(tsk);
 584}
 585#endif
 586
 587void free_task(struct task_struct *tsk)
 588{
 589#ifdef CONFIG_SECCOMP
 590	WARN_ON_ONCE(tsk->seccomp.filter);
 591#endif
 592	release_user_cpus_ptr(tsk);
 593	scs_release(tsk);
 594
 595#ifndef CONFIG_THREAD_INFO_IN_TASK
 596	/*
 597	 * The task is finally done with both the stack and thread_info,
 598	 * so free both.
 599	 */
 600	release_task_stack(tsk);
 601#else
 602	/*
 603	 * If the task had a separate stack allocation, it should be gone
 604	 * by now.
 605	 */
 606	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 607#endif
 608	rt_mutex_debug_task_free(tsk);
 609	ftrace_graph_exit_task(tsk);
 610	arch_release_task_struct(tsk);
 611	if (tsk->flags & PF_KTHREAD)
 612		free_kthread_struct(tsk);
 613	bpf_task_storage_free(tsk);
 614	free_task_struct(tsk);
 615}
 616EXPORT_SYMBOL(free_task);
 617
 618static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 619{
 620	struct file *exe_file;
 621
 622	exe_file = get_mm_exe_file(oldmm);
 623	RCU_INIT_POINTER(mm->exe_file, exe_file);
 624	/*
 625	 * We depend on the oldmm having properly denied write access to the
 626	 * exe_file already.
 627	 */
 628	if (exe_file && deny_write_access(exe_file))
 629		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 630}
 631
 632#ifdef CONFIG_MMU
 633static __latent_entropy int dup_mmap(struct mm_struct *mm,
 634					struct mm_struct *oldmm)
 635{
 636	struct vm_area_struct *mpnt, *tmp;
 
 637	int retval;
 638	unsigned long charge = 0;
 639	LIST_HEAD(uf);
 640	VMA_ITERATOR(vmi, mm, 0);
 641
 642	if (mmap_write_lock_killable(oldmm))
 643		return -EINTR;
 
 
 
 644	flush_cache_dup_mm(oldmm);
 645	uprobe_dup_mmap(oldmm, mm);
 646	/*
 647	 * Not linked in yet - no deadlock potential:
 648	 */
 649	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 650
 651	/* No ordering required: file already has been exposed. */
 652	dup_mm_exe_file(mm, oldmm);
 653
 654	mm->total_vm = oldmm->total_vm;
 655	mm->data_vm = oldmm->data_vm;
 656	mm->exec_vm = oldmm->exec_vm;
 657	mm->stack_vm = oldmm->stack_vm;
 658
 659	/* Use __mt_dup() to efficiently build an identical maple tree. */
 660	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
 661	if (unlikely(retval))
 
 
 
 
 
 662		goto out;
 663
 664	mt_clear_in_rcu(vmi.mas.tree);
 665	for_each_vma(vmi, mpnt) {
 666		struct file *file;
 667
 668		vma_start_write(mpnt);
 669		if (mpnt->vm_flags & VM_DONTCOPY) {
 670			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
 671						    mpnt->vm_end, GFP_KERNEL);
 672			if (retval)
 673				goto loop_out;
 674
 675			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 676			continue;
 677		}
 678		charge = 0;
 679		/*
 680		 * Don't duplicate many vmas if we've been oom-killed (for
 681		 * example)
 682		 */
 683		if (fatal_signal_pending(current)) {
 684			retval = -EINTR;
 685			goto loop_out;
 686		}
 687		if (mpnt->vm_flags & VM_ACCOUNT) {
 688			unsigned long len = vma_pages(mpnt);
 689
 690			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 691				goto fail_nomem;
 692			charge = len;
 693		}
 694		tmp = vm_area_dup(mpnt);
 695		if (!tmp)
 696			goto fail_nomem;
 697		retval = vma_dup_policy(mpnt, tmp);
 698		if (retval)
 699			goto fail_nomem_policy;
 700		tmp->vm_mm = mm;
 701		retval = dup_userfaultfd(tmp, &uf);
 702		if (retval)
 703			goto fail_nomem_anon_vma_fork;
 704		if (tmp->vm_flags & VM_WIPEONFORK) {
 705			/*
 706			 * VM_WIPEONFORK gets a clean slate in the child.
 707			 * Don't prepare anon_vma until fault since we don't
 708			 * copy page for current vma.
 709			 */
 710			tmp->anon_vma = NULL;
 711		} else if (anon_vma_fork(tmp, mpnt))
 712			goto fail_nomem_anon_vma_fork;
 713		vm_flags_clear(tmp, VM_LOCKED_MASK);
 714		/*
 715		 * Copy/update hugetlb private vma information.
 716		 */
 717		if (is_vm_hugetlb_page(tmp))
 718			hugetlb_dup_vma_private(tmp);
 719
 720		/*
 721		 * Link the vma into the MT. After using __mt_dup(), memory
 722		 * allocation is not necessary here, so it cannot fail.
 723		 */
 724		vma_iter_bulk_store(&vmi, tmp);
 725
 726		mm->map_count++;
 727
 728		if (tmp->vm_ops && tmp->vm_ops->open)
 729			tmp->vm_ops->open(tmp);
 730
 731		file = tmp->vm_file;
 732		if (file) {
 
 733			struct address_space *mapping = file->f_mapping;
 734
 735			get_file(file);
 
 
 736			i_mmap_lock_write(mapping);
 737			if (vma_is_shared_maywrite(tmp))
 738				mapping_allow_writable(mapping);
 739			flush_dcache_mmap_lock(mapping);
 740			/* insert tmp into the share list, just after mpnt */
 741			vma_interval_tree_insert_after(tmp, mpnt,
 742					&mapping->i_mmap);
 743			flush_dcache_mmap_unlock(mapping);
 744			i_mmap_unlock_write(mapping);
 745		}
 746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747		if (!(tmp->vm_flags & VM_WIPEONFORK))
 748			retval = copy_page_range(tmp, mpnt);
 
 
 
 749
 750		if (retval) {
 751			mpnt = vma_next(&vmi);
 752			goto loop_out;
 753		}
 754	}
 755	/* a new mm has just been created */
 756	retval = arch_dup_mmap(oldmm, mm);
 757loop_out:
 758	vma_iter_free(&vmi);
 759	if (!retval) {
 760		mt_set_in_rcu(vmi.mas.tree);
 761		ksm_fork(mm, oldmm);
 762		khugepaged_fork(mm, oldmm);
 763	} else {
 764
 765		/*
 766		 * The entire maple tree has already been duplicated. If the
 767		 * mmap duplication fails, mark the failure point with
 768		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
 769		 * stop releasing VMAs that have not been duplicated after this
 770		 * point.
 771		 */
 772		if (mpnt) {
 773			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
 774			mas_store(&vmi.mas, XA_ZERO_ENTRY);
 775			/* Avoid OOM iterating a broken tree */
 776			set_bit(MMF_OOM_SKIP, &mm->flags);
 777		}
 778		/*
 779		 * The mm_struct is going to exit, but the locks will be dropped
 780		 * first.  Set the mm_struct as unstable is advisable as it is
 781		 * not fully initialised.
 782		 */
 783		set_bit(MMF_UNSTABLE, &mm->flags);
 784	}
 785out:
 786	mmap_write_unlock(mm);
 787	flush_tlb_mm(oldmm);
 788	mmap_write_unlock(oldmm);
 789	if (!retval)
 790		dup_userfaultfd_complete(&uf);
 791	else
 792		dup_userfaultfd_fail(&uf);
 793	return retval;
 794
 795fail_nomem_anon_vma_fork:
 796	mpol_put(vma_policy(tmp));
 797fail_nomem_policy:
 798	vm_area_free(tmp);
 799fail_nomem:
 800	retval = -ENOMEM;
 801	vm_unacct_memory(charge);
 802	goto loop_out;
 803}
 804
 805static inline int mm_alloc_pgd(struct mm_struct *mm)
 806{
 807	mm->pgd = pgd_alloc(mm);
 808	if (unlikely(!mm->pgd))
 809		return -ENOMEM;
 810	return 0;
 811}
 812
 813static inline void mm_free_pgd(struct mm_struct *mm)
 814{
 815	pgd_free(mm, mm->pgd);
 816}
 817#else
 818static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 819{
 820	mmap_write_lock(oldmm);
 821	dup_mm_exe_file(mm, oldmm);
 822	mmap_write_unlock(oldmm);
 823	return 0;
 824}
 825#define mm_alloc_pgd(mm)	(0)
 826#define mm_free_pgd(mm)
 827#endif /* CONFIG_MMU */
 828
 829static void check_mm(struct mm_struct *mm)
 830{
 831	int i;
 832
 833	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 834			 "Please make sure 'struct resident_page_types[]' is updated as well");
 835
 836	for (i = 0; i < NR_MM_COUNTERS; i++) {
 837		long x = percpu_counter_sum(&mm->rss_stat[i]);
 838
 839		if (unlikely(x))
 840			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 841				 mm, resident_page_types[i], x);
 842	}
 843
 844	if (mm_pgtables_bytes(mm))
 845		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 846				mm_pgtables_bytes(mm));
 847
 848#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
 849	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 850#endif
 851}
 852
 853#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 854#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 855
 856static void do_check_lazy_tlb(void *arg)
 857{
 858	struct mm_struct *mm = arg;
 859
 860	WARN_ON_ONCE(current->active_mm == mm);
 861}
 862
 863static void do_shoot_lazy_tlb(void *arg)
 864{
 865	struct mm_struct *mm = arg;
 866
 867	if (current->active_mm == mm) {
 868		WARN_ON_ONCE(current->mm);
 869		current->active_mm = &init_mm;
 870		switch_mm(mm, &init_mm, current);
 871	}
 872}
 873
 874static void cleanup_lazy_tlbs(struct mm_struct *mm)
 875{
 876	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
 877		/*
 878		 * In this case, lazy tlb mms are refounted and would not reach
 879		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
 880		 */
 881		return;
 882	}
 883
 884	/*
 885	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
 886	 * requires lazy mm users to switch to another mm when the refcount
 887	 * drops to zero, before the mm is freed. This requires IPIs here to
 888	 * switch kernel threads to init_mm.
 889	 *
 890	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
 891	 * switch with the final userspace teardown TLB flush which leaves the
 892	 * mm lazy on this CPU but no others, reducing the need for additional
 893	 * IPIs here. There are cases where a final IPI is still required here,
 894	 * such as the final mmdrop being performed on a different CPU than the
 895	 * one exiting, or kernel threads using the mm when userspace exits.
 896	 *
 897	 * IPI overheads have not found to be expensive, but they could be
 898	 * reduced in a number of possible ways, for example (roughly
 899	 * increasing order of complexity):
 900	 * - The last lazy reference created by exit_mm() could instead switch
 901	 *   to init_mm, however it's probable this will run on the same CPU
 902	 *   immediately afterwards, so this may not reduce IPIs much.
 903	 * - A batch of mms requiring IPIs could be gathered and freed at once.
 904	 * - CPUs store active_mm where it can be remotely checked without a
 905	 *   lock, to filter out false-positives in the cpumask.
 906	 * - After mm_users or mm_count reaches zero, switching away from the
 907	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
 908	 *   with some batching or delaying of the final IPIs.
 909	 * - A delayed freeing and RCU-like quiescing sequence based on mm
 910	 *   switching to avoid IPIs completely.
 911	 */
 912	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
 913	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
 914		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
 915}
 916
 917/*
 918 * Called when the last reference to the mm
 919 * is dropped: either by a lazy thread or by
 920 * mmput. Free the page directory and the mm.
 921 */
 922void __mmdrop(struct mm_struct *mm)
 923{
 924	BUG_ON(mm == &init_mm);
 925	WARN_ON_ONCE(mm == current->mm);
 926
 927	/* Ensure no CPUs are using this as their lazy tlb mm */
 928	cleanup_lazy_tlbs(mm);
 929
 930	WARN_ON_ONCE(mm == current->active_mm);
 931	mm_free_pgd(mm);
 932	destroy_context(mm);
 933	mmu_notifier_subscriptions_destroy(mm);
 934	check_mm(mm);
 935	put_user_ns(mm->user_ns);
 936	mm_pasid_drop(mm);
 937	mm_destroy_cid(mm);
 938	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
 939
 940	free_mm(mm);
 941}
 942EXPORT_SYMBOL_GPL(__mmdrop);
 943
 944static void mmdrop_async_fn(struct work_struct *work)
 945{
 946	struct mm_struct *mm;
 947
 948	mm = container_of(work, struct mm_struct, async_put_work);
 949	__mmdrop(mm);
 950}
 951
 952static void mmdrop_async(struct mm_struct *mm)
 953{
 954	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 955		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 956		schedule_work(&mm->async_put_work);
 957	}
 958}
 959
 960static inline void free_signal_struct(struct signal_struct *sig)
 961{
 962	taskstats_tgid_free(sig);
 963	sched_autogroup_exit(sig);
 964	/*
 965	 * __mmdrop is not safe to call from softirq context on x86 due to
 966	 * pgd_dtor so postpone it to the async context
 967	 */
 968	if (sig->oom_mm)
 969		mmdrop_async(sig->oom_mm);
 970	kmem_cache_free(signal_cachep, sig);
 971}
 972
 973static inline void put_signal_struct(struct signal_struct *sig)
 974{
 975	if (refcount_dec_and_test(&sig->sigcnt))
 976		free_signal_struct(sig);
 977}
 978
 979void __put_task_struct(struct task_struct *tsk)
 980{
 981	WARN_ON(!tsk->exit_state);
 982	WARN_ON(refcount_read(&tsk->usage));
 983	WARN_ON(tsk == current);
 984
 985	sched_ext_free(tsk);
 986	io_uring_free(tsk);
 987	cgroup_free(tsk);
 988	task_numa_free(tsk, true);
 989	security_task_free(tsk);
 990	exit_creds(tsk);
 991	delayacct_tsk_free(tsk);
 992	put_signal_struct(tsk->signal);
 993	sched_core_free(tsk);
 994	free_task(tsk);
 
 995}
 996EXPORT_SYMBOL_GPL(__put_task_struct);
 997
 998void __put_task_struct_rcu_cb(struct rcu_head *rhp)
 999{
1000	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1001
1002	__put_task_struct(task);
1003}
1004EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1005
1006void __init __weak arch_task_cache_init(void) { }
1007
1008/*
1009 * set_max_threads
1010 */
1011static void __init set_max_threads(unsigned int max_threads_suggested)
1012{
1013	u64 threads;
1014	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1015
1016	/*
1017	 * The number of threads shall be limited such that the thread
1018	 * structures may only consume a small part of the available memory.
1019	 */
1020	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1021		threads = MAX_THREADS;
1022	else
1023		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1024				    (u64) THREAD_SIZE * 8UL);
1025
1026	if (threads > max_threads_suggested)
1027		threads = max_threads_suggested;
1028
1029	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1030}
1031
1032#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1033/* Initialized by the architecture: */
1034int arch_task_struct_size __read_mostly;
1035#endif
1036
1037static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
 
1038{
1039	/* Fetch thread_struct whitelist for the architecture. */
1040	arch_thread_struct_whitelist(offset, size);
1041
1042	/*
1043	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1044	 * adjust offset to position of thread_struct in task_struct.
1045	 */
1046	if (unlikely(*size == 0))
1047		*offset = 0;
1048	else
1049		*offset += offsetof(struct task_struct, thread);
1050}
 
1051
1052void __init fork_init(void)
1053{
1054	int i;
 
1055#ifndef ARCH_MIN_TASKALIGN
1056#define ARCH_MIN_TASKALIGN	0
1057#endif
1058	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1059	unsigned long useroffset, usersize;
1060
1061	/* create a slab on which task_structs can be allocated */
1062	task_struct_whitelist(&useroffset, &usersize);
1063	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1064			arch_task_struct_size, align,
1065			SLAB_PANIC|SLAB_ACCOUNT,
1066			useroffset, usersize, NULL);
 
1067
1068	/* do the arch specific task caches init */
1069	arch_task_cache_init();
1070
1071	set_max_threads(MAX_THREADS);
1072
1073	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1074	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1075	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1076		init_task.signal->rlim[RLIMIT_NPROC];
1077
1078	for (i = 0; i < UCOUNT_COUNTS; i++)
1079		init_user_ns.ucount_max[i] = max_threads/2;
1080
1081	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1082	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1083	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1084	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1085
1086#ifdef CONFIG_VMAP_STACK
1087	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1088			  NULL, free_vm_stack_cache);
1089#endif
1090
1091	scs_init();
1092
1093	lockdep_init_task(&init_task);
1094	uprobes_init();
1095}
1096
1097int __weak arch_dup_task_struct(struct task_struct *dst,
1098					       struct task_struct *src)
1099{
1100	*dst = *src;
1101	return 0;
1102}
1103
1104void set_task_stack_end_magic(struct task_struct *tsk)
1105{
1106	unsigned long *stackend;
1107
1108	stackend = end_of_stack(tsk);
1109	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1110}
1111
1112static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1113{
1114	struct task_struct *tsk;
 
 
1115	int err;
1116
1117	if (node == NUMA_NO_NODE)
1118		node = tsk_fork_get_node(orig);
1119	tsk = alloc_task_struct_node(node);
1120	if (!tsk)
1121		return NULL;
1122
1123	err = arch_dup_task_struct(tsk, orig);
1124	if (err)
1125		goto free_tsk;
1126
1127	err = alloc_thread_stack_node(tsk, node);
1128	if (err)
1129		goto free_tsk;
 
 
 
1130
 
 
 
 
 
 
 
 
 
1131#ifdef CONFIG_THREAD_INFO_IN_TASK
1132	refcount_set(&tsk->stack_refcount, 1);
1133#endif
1134	account_kernel_stack(tsk, 1);
 
 
1135
1136	err = scs_prepare(tsk, node);
1137	if (err)
1138		goto free_stack;
1139
1140#ifdef CONFIG_SECCOMP
1141	/*
1142	 * We must handle setting up seccomp filters once we're under
1143	 * the sighand lock in case orig has changed between now and
1144	 * then. Until then, filter must be NULL to avoid messing up
1145	 * the usage counts on the error path calling free_task.
1146	 */
1147	tsk->seccomp.filter = NULL;
1148#endif
1149
1150	setup_thread_stack(tsk, orig);
1151	clear_user_return_notifier(tsk);
1152	clear_tsk_need_resched(tsk);
1153	set_task_stack_end_magic(tsk);
1154	clear_syscall_work_syscall_user_dispatch(tsk);
1155
1156#ifdef CONFIG_STACKPROTECTOR
1157	tsk->stack_canary = get_random_canary();
1158#endif
1159	if (orig->cpus_ptr == &orig->cpus_mask)
1160		tsk->cpus_ptr = &tsk->cpus_mask;
1161	dup_user_cpus_ptr(tsk, orig, node);
1162
1163	/*
1164	 * One for the user space visible state that goes away when reaped.
1165	 * One for the scheduler.
1166	 */
1167	refcount_set(&tsk->rcu_users, 2);
1168	/* One for the rcu users */
1169	refcount_set(&tsk->usage, 1);
1170#ifdef CONFIG_BLK_DEV_IO_TRACE
1171	tsk->btrace_seq = 0;
1172#endif
1173	tsk->splice_pipe = NULL;
1174	tsk->task_frag.page = NULL;
1175	tsk->wake_q.next = NULL;
1176	tsk->worker_private = NULL;
 
1177
1178	kcov_task_init(tsk);
1179	kmsan_task_create(tsk);
1180	kmap_local_fork(tsk);
1181
1182#ifdef CONFIG_FAULT_INJECTION
1183	tsk->fail_nth = 0;
1184#endif
1185
1186#ifdef CONFIG_BLK_CGROUP
1187	tsk->throttle_disk = NULL;
1188	tsk->use_memdelay = 0;
1189#endif
1190
1191#ifdef CONFIG_ARCH_HAS_CPU_PASID
1192	tsk->pasid_activated = 0;
1193#endif
1194
1195#ifdef CONFIG_MEMCG
1196	tsk->active_memcg = NULL;
1197#endif
1198
1199#ifdef CONFIG_X86_BUS_LOCK_DETECT
1200	tsk->reported_split_lock = 0;
1201#endif
1202
1203#ifdef CONFIG_SCHED_MM_CID
1204	tsk->mm_cid = -1;
1205	tsk->last_mm_cid = -1;
1206	tsk->mm_cid_active = 0;
1207	tsk->migrate_from_cpu = -1;
1208#endif
1209	return tsk;
1210
1211free_stack:
1212	exit_task_stack_account(tsk);
1213	free_thread_stack(tsk);
1214free_tsk:
1215	free_task_struct(tsk);
1216	return NULL;
1217}
1218
1219__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1220
1221static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1222
1223static int __init coredump_filter_setup(char *s)
1224{
1225	default_dump_filter =
1226		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1227		MMF_DUMP_FILTER_MASK;
1228	return 1;
1229}
1230
1231__setup("coredump_filter=", coredump_filter_setup);
1232
1233#include <linux/init_task.h>
1234
1235static void mm_init_aio(struct mm_struct *mm)
1236{
1237#ifdef CONFIG_AIO
1238	spin_lock_init(&mm->ioctx_lock);
1239	mm->ioctx_table = NULL;
1240#endif
1241}
1242
1243static __always_inline void mm_clear_owner(struct mm_struct *mm,
1244					   struct task_struct *p)
1245{
1246#ifdef CONFIG_MEMCG
1247	if (mm->owner == p)
1248		WRITE_ONCE(mm->owner, NULL);
1249#endif
1250}
1251
1252static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1253{
1254#ifdef CONFIG_MEMCG
1255	mm->owner = p;
1256#endif
1257}
1258
1259static void mm_init_uprobes_state(struct mm_struct *mm)
1260{
1261#ifdef CONFIG_UPROBES
1262	mm->uprobes_state.xol_area = NULL;
1263#endif
1264}
1265
1266static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1267	struct user_namespace *user_ns)
1268{
1269	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1270	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
 
1271	atomic_set(&mm->mm_users, 1);
1272	atomic_set(&mm->mm_count, 1);
1273	seqcount_init(&mm->write_protect_seq);
1274	mmap_init_lock(mm);
1275	INIT_LIST_HEAD(&mm->mmlist);
1276#ifdef CONFIG_PER_VMA_LOCK
1277	mm->mm_lock_seq = 0;
1278#endif
1279	mm_pgtables_bytes_init(mm);
1280	mm->map_count = 0;
1281	mm->locked_vm = 0;
 
1282	atomic64_set(&mm->pinned_vm, 0);
1283	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1284	spin_lock_init(&mm->page_table_lock);
1285	spin_lock_init(&mm->arg_lock);
1286	mm_init_cpumask(mm);
1287	mm_init_aio(mm);
1288	mm_init_owner(mm, p);
1289	mm_pasid_init(mm);
1290	RCU_INIT_POINTER(mm->exe_file, NULL);
1291	mmu_notifier_subscriptions_init(mm);
1292	init_tlb_flush_pending(mm);
1293#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1294	mm->pmd_huge_pte = NULL;
1295#endif
1296	mm_init_uprobes_state(mm);
1297	hugetlb_count_init(mm);
1298
1299	if (current->mm) {
1300		mm->flags = mmf_init_flags(current->mm->flags);
1301		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1302	} else {
1303		mm->flags = default_dump_filter;
1304		mm->def_flags = 0;
1305	}
1306
1307	if (mm_alloc_pgd(mm))
1308		goto fail_nopgd;
1309
1310	if (init_new_context(p, mm))
1311		goto fail_nocontext;
1312
1313	if (mm_alloc_cid(mm, p))
1314		goto fail_cid;
1315
1316	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1317				     NR_MM_COUNTERS))
1318		goto fail_pcpu;
1319
1320	mm->user_ns = get_user_ns(user_ns);
1321	lru_gen_init_mm(mm);
1322	return mm;
1323
1324fail_pcpu:
1325	mm_destroy_cid(mm);
1326fail_cid:
1327	destroy_context(mm);
1328fail_nocontext:
1329	mm_free_pgd(mm);
1330fail_nopgd:
1331	free_mm(mm);
1332	return NULL;
1333}
1334
1335/*
1336 * Allocate and initialize an mm_struct.
1337 */
1338struct mm_struct *mm_alloc(void)
1339{
1340	struct mm_struct *mm;
1341
1342	mm = allocate_mm();
1343	if (!mm)
1344		return NULL;
1345
1346	memset(mm, 0, sizeof(*mm));
1347	return mm_init(mm, current, current_user_ns());
1348}
1349EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1350
1351static inline void __mmput(struct mm_struct *mm)
1352{
1353	VM_BUG_ON(atomic_read(&mm->mm_users));
1354
1355	uprobe_clear_state(mm);
1356	exit_aio(mm);
1357	ksm_exit(mm);
1358	khugepaged_exit(mm); /* must run before exit_mmap */
1359	exit_mmap(mm);
1360	mm_put_huge_zero_folio(mm);
1361	set_mm_exe_file(mm, NULL);
1362	if (!list_empty(&mm->mmlist)) {
1363		spin_lock(&mmlist_lock);
1364		list_del(&mm->mmlist);
1365		spin_unlock(&mmlist_lock);
1366	}
1367	if (mm->binfmt)
1368		module_put(mm->binfmt->module);
1369	lru_gen_del_mm(mm);
1370	mmdrop(mm);
1371}
1372
1373/*
1374 * Decrement the use count and release all resources for an mm.
1375 */
1376void mmput(struct mm_struct *mm)
1377{
1378	might_sleep();
1379
1380	if (atomic_dec_and_test(&mm->mm_users))
1381		__mmput(mm);
1382}
1383EXPORT_SYMBOL_GPL(mmput);
1384
1385#ifdef CONFIG_MMU
1386static void mmput_async_fn(struct work_struct *work)
1387{
1388	struct mm_struct *mm = container_of(work, struct mm_struct,
1389					    async_put_work);
1390
1391	__mmput(mm);
1392}
1393
1394void mmput_async(struct mm_struct *mm)
1395{
1396	if (atomic_dec_and_test(&mm->mm_users)) {
1397		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1398		schedule_work(&mm->async_put_work);
1399	}
1400}
1401EXPORT_SYMBOL_GPL(mmput_async);
1402#endif
1403
1404/**
1405 * set_mm_exe_file - change a reference to the mm's executable file
1406 * @mm: The mm to change.
1407 * @new_exe_file: The new file to use.
1408 *
1409 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1410 *
1411 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1412 * invocations: in mmput() nobody alive left, in execve it happens before
1413 * the new mm is made visible to anyone.
1414 *
1415 * Can only fail if new_exe_file != NULL.
1416 */
1417int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1418{
1419	struct file *old_exe_file;
1420
1421	/*
1422	 * It is safe to dereference the exe_file without RCU as
1423	 * this function is only called if nobody else can access
1424	 * this mm -- see comment above for justification.
1425	 */
1426	old_exe_file = rcu_dereference_raw(mm->exe_file);
1427
1428	if (new_exe_file) {
1429		/*
1430		 * We expect the caller (i.e., sys_execve) to already denied
1431		 * write access, so this is unlikely to fail.
1432		 */
1433		if (unlikely(deny_write_access(new_exe_file)))
1434			return -EACCES;
1435		get_file(new_exe_file);
1436	}
1437	rcu_assign_pointer(mm->exe_file, new_exe_file);
1438	if (old_exe_file) {
1439		allow_write_access(old_exe_file);
1440		fput(old_exe_file);
1441	}
1442	return 0;
1443}
1444
1445/**
1446 * replace_mm_exe_file - replace a reference to the mm's executable file
1447 * @mm: The mm to change.
1448 * @new_exe_file: The new file to use.
1449 *
1450 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1451 *
1452 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1453 */
1454int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1455{
1456	struct vm_area_struct *vma;
1457	struct file *old_exe_file;
1458	int ret = 0;
1459
1460	/* Forbid mm->exe_file change if old file still mapped. */
1461	old_exe_file = get_mm_exe_file(mm);
1462	if (old_exe_file) {
1463		VMA_ITERATOR(vmi, mm, 0);
1464		mmap_read_lock(mm);
1465		for_each_vma(vmi, vma) {
1466			if (!vma->vm_file)
1467				continue;
1468			if (path_equal(&vma->vm_file->f_path,
1469				       &old_exe_file->f_path)) {
1470				ret = -EBUSY;
1471				break;
1472			}
1473		}
1474		mmap_read_unlock(mm);
1475		fput(old_exe_file);
1476		if (ret)
1477			return ret;
1478	}
1479
1480	ret = deny_write_access(new_exe_file);
1481	if (ret)
1482		return -EACCES;
1483	get_file(new_exe_file);
1484
1485	/* set the new file */
1486	mmap_write_lock(mm);
1487	old_exe_file = rcu_dereference_raw(mm->exe_file);
1488	rcu_assign_pointer(mm->exe_file, new_exe_file);
1489	mmap_write_unlock(mm);
1490
1491	if (old_exe_file) {
1492		allow_write_access(old_exe_file);
1493		fput(old_exe_file);
1494	}
1495	return 0;
1496}
1497
1498/**
1499 * get_mm_exe_file - acquire a reference to the mm's executable file
1500 * @mm: The mm of interest.
1501 *
1502 * Returns %NULL if mm has no associated executable file.
1503 * User must release file via fput().
1504 */
1505struct file *get_mm_exe_file(struct mm_struct *mm)
1506{
1507	struct file *exe_file;
1508
1509	rcu_read_lock();
1510	exe_file = get_file_rcu(&mm->exe_file);
 
 
1511	rcu_read_unlock();
1512	return exe_file;
1513}
 
1514
1515/**
1516 * get_task_exe_file - acquire a reference to the task's executable file
1517 * @task: The task.
1518 *
1519 * Returns %NULL if task's mm (if any) has no associated executable file or
1520 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1521 * User must release file via fput().
1522 */
1523struct file *get_task_exe_file(struct task_struct *task)
1524{
1525	struct file *exe_file = NULL;
1526	struct mm_struct *mm;
1527
1528	task_lock(task);
1529	mm = task->mm;
1530	if (mm) {
1531		if (!(task->flags & PF_KTHREAD))
1532			exe_file = get_mm_exe_file(mm);
1533	}
1534	task_unlock(task);
1535	return exe_file;
1536}
 
1537
1538/**
1539 * get_task_mm - acquire a reference to the task's mm
1540 * @task: The task.
1541 *
1542 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1543 * this kernel workthread has transiently adopted a user mm with use_mm,
1544 * to do its AIO) is not set and if so returns a reference to it, after
1545 * bumping up the use count.  User must release the mm via mmput()
1546 * after use.  Typically used by /proc and ptrace.
1547 */
1548struct mm_struct *get_task_mm(struct task_struct *task)
1549{
1550	struct mm_struct *mm;
1551
1552	if (task->flags & PF_KTHREAD)
1553		return NULL;
1554
1555	task_lock(task);
1556	mm = task->mm;
1557	if (mm)
1558		mmget(mm);
 
 
 
 
1559	task_unlock(task);
1560	return mm;
1561}
1562EXPORT_SYMBOL_GPL(get_task_mm);
1563
1564struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1565{
1566	struct mm_struct *mm;
1567	int err;
1568
1569	err =  down_read_killable(&task->signal->exec_update_lock);
1570	if (err)
1571		return ERR_PTR(err);
1572
1573	mm = get_task_mm(task);
1574	if (!mm) {
1575		mm = ERR_PTR(-ESRCH);
1576	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1577		mmput(mm);
1578		mm = ERR_PTR(-EACCES);
1579	}
1580	up_read(&task->signal->exec_update_lock);
1581
1582	return mm;
1583}
1584
1585static void complete_vfork_done(struct task_struct *tsk)
1586{
1587	struct completion *vfork;
1588
1589	task_lock(tsk);
1590	vfork = tsk->vfork_done;
1591	if (likely(vfork)) {
1592		tsk->vfork_done = NULL;
1593		complete(vfork);
1594	}
1595	task_unlock(tsk);
1596}
1597
1598static int wait_for_vfork_done(struct task_struct *child,
1599				struct completion *vfork)
1600{
1601	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1602	int killed;
1603
 
1604	cgroup_enter_frozen();
1605	killed = wait_for_completion_state(vfork, state);
1606	cgroup_leave_frozen(false);
 
1607
1608	if (killed) {
1609		task_lock(child);
1610		child->vfork_done = NULL;
1611		task_unlock(child);
1612	}
1613
1614	put_task_struct(child);
1615	return killed;
1616}
1617
1618/* Please note the differences between mmput and mm_release.
1619 * mmput is called whenever we stop holding onto a mm_struct,
1620 * error success whatever.
1621 *
1622 * mm_release is called after a mm_struct has been removed
1623 * from the current process.
1624 *
1625 * This difference is important for error handling, when we
1626 * only half set up a mm_struct for a new process and need to restore
1627 * the old one.  Because we mmput the new mm_struct before
1628 * restoring the old one. . .
1629 * Eric Biederman 10 January 1998
1630 */
1631static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1632{
1633	uprobe_free_utask(tsk);
1634
1635	/* Get rid of any cached register state */
1636	deactivate_mm(tsk, mm);
1637
1638	/*
1639	 * Signal userspace if we're not exiting with a core dump
1640	 * because we want to leave the value intact for debugging
1641	 * purposes.
1642	 */
1643	if (tsk->clear_child_tid) {
1644		if (atomic_read(&mm->mm_users) > 1) {
 
1645			/*
1646			 * We don't check the error code - if userspace has
1647			 * not set up a proper pointer then tough luck.
1648			 */
1649			put_user(0, tsk->clear_child_tid);
1650			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1651					1, NULL, NULL, 0, 0);
1652		}
1653		tsk->clear_child_tid = NULL;
1654	}
1655
1656	/*
1657	 * All done, finally we can wake up parent and return this mm to him.
1658	 * Also kthread_stop() uses this completion for synchronization.
1659	 */
1660	if (tsk->vfork_done)
1661		complete_vfork_done(tsk);
1662}
1663
1664void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665{
1666	futex_exit_release(tsk);
1667	mm_release(tsk, mm);
1668}
1669
1670void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1671{
1672	futex_exec_release(tsk);
1673	mm_release(tsk, mm);
1674}
1675
1676/**
1677 * dup_mm() - duplicates an existing mm structure
1678 * @tsk: the task_struct with which the new mm will be associated.
1679 * @oldmm: the mm to duplicate.
1680 *
1681 * Allocates a new mm structure and duplicates the provided @oldmm structure
1682 * content into it.
1683 *
1684 * Return: the duplicated mm or NULL on failure.
1685 */
1686static struct mm_struct *dup_mm(struct task_struct *tsk,
1687				struct mm_struct *oldmm)
1688{
1689	struct mm_struct *mm;
1690	int err;
1691
1692	mm = allocate_mm();
1693	if (!mm)
1694		goto fail_nomem;
1695
1696	memcpy(mm, oldmm, sizeof(*mm));
1697
1698	if (!mm_init(mm, tsk, mm->user_ns))
1699		goto fail_nomem;
1700
1701	uprobe_start_dup_mmap();
1702	err = dup_mmap(mm, oldmm);
1703	if (err)
1704		goto free_pt;
1705	uprobe_end_dup_mmap();
1706
1707	mm->hiwater_rss = get_mm_rss(mm);
1708	mm->hiwater_vm = mm->total_vm;
1709
1710	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1711		goto free_pt;
1712
1713	return mm;
1714
1715free_pt:
1716	/* don't put binfmt in mmput, we haven't got module yet */
1717	mm->binfmt = NULL;
1718	mm_init_owner(mm, NULL);
1719	mmput(mm);
1720	if (err)
1721		uprobe_end_dup_mmap();
1722
1723fail_nomem:
1724	return NULL;
1725}
1726
1727static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1728{
1729	struct mm_struct *mm, *oldmm;
 
1730
1731	tsk->min_flt = tsk->maj_flt = 0;
1732	tsk->nvcsw = tsk->nivcsw = 0;
1733#ifdef CONFIG_DETECT_HUNG_TASK
1734	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1735	tsk->last_switch_time = 0;
1736#endif
1737
1738	tsk->mm = NULL;
1739	tsk->active_mm = NULL;
1740
1741	/*
1742	 * Are we cloning a kernel thread?
1743	 *
1744	 * We need to steal a active VM for that..
1745	 */
1746	oldmm = current->mm;
1747	if (!oldmm)
1748		return 0;
1749
 
 
 
1750	if (clone_flags & CLONE_VM) {
1751		mmget(oldmm);
1752		mm = oldmm;
1753	} else {
1754		mm = dup_mm(tsk, current->mm);
1755		if (!mm)
1756			return -ENOMEM;
1757	}
1758
 
 
 
 
 
 
1759	tsk->mm = mm;
1760	tsk->active_mm = mm;
1761	sched_mm_cid_fork(tsk);
1762	return 0;
 
 
 
1763}
1764
1765static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1766{
1767	struct fs_struct *fs = current->fs;
1768	if (clone_flags & CLONE_FS) {
1769		/* tsk->fs is already what we want */
1770		spin_lock(&fs->lock);
1771		/* "users" and "in_exec" locked for check_unsafe_exec() */
1772		if (fs->in_exec) {
1773			spin_unlock(&fs->lock);
1774			return -EAGAIN;
1775		}
1776		fs->users++;
1777		spin_unlock(&fs->lock);
1778		return 0;
1779	}
1780	tsk->fs = copy_fs_struct(fs);
1781	if (!tsk->fs)
1782		return -ENOMEM;
1783	return 0;
1784}
1785
1786static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1787		      int no_files)
1788{
1789	struct files_struct *oldf, *newf;
 
1790
1791	/*
1792	 * A background process may not have any files ...
1793	 */
1794	oldf = current->files;
1795	if (!oldf)
1796		return 0;
1797
1798	if (no_files) {
1799		tsk->files = NULL;
1800		return 0;
1801	}
1802
1803	if (clone_flags & CLONE_FILES) {
1804		atomic_inc(&oldf->count);
1805		return 0;
1806	}
1807
1808	newf = dup_fd(oldf, NULL);
1809	if (IS_ERR(newf))
1810		return PTR_ERR(newf);
1811
1812	tsk->files = newf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	return 0;
1814}
1815
1816static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1817{
1818	struct sighand_struct *sig;
1819
1820	if (clone_flags & CLONE_SIGHAND) {
1821		refcount_inc(&current->sighand->count);
1822		return 0;
1823	}
1824	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1825	RCU_INIT_POINTER(tsk->sighand, sig);
1826	if (!sig)
1827		return -ENOMEM;
1828
1829	refcount_set(&sig->count, 1);
1830	spin_lock_irq(&current->sighand->siglock);
1831	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1832	spin_unlock_irq(&current->sighand->siglock);
1833
1834	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1835	if (clone_flags & CLONE_CLEAR_SIGHAND)
1836		flush_signal_handlers(tsk, 0);
1837
1838	return 0;
1839}
1840
1841void __cleanup_sighand(struct sighand_struct *sighand)
1842{
1843	if (refcount_dec_and_test(&sighand->count)) {
1844		signalfd_cleanup(sighand);
1845		/*
1846		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1847		 * without an RCU grace period, see __lock_task_sighand().
1848		 */
1849		kmem_cache_free(sighand_cachep, sighand);
1850	}
1851}
1852
1853/*
1854 * Initialize POSIX timer handling for a thread group.
1855 */
1856static void posix_cpu_timers_init_group(struct signal_struct *sig)
1857{
1858	struct posix_cputimers *pct = &sig->posix_cputimers;
1859	unsigned long cpu_limit;
1860
1861	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1862	posix_cputimers_group_init(pct, cpu_limit);
1863}
1864
1865static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1866{
1867	struct signal_struct *sig;
1868
1869	if (clone_flags & CLONE_THREAD)
1870		return 0;
1871
1872	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1873	tsk->signal = sig;
1874	if (!sig)
1875		return -ENOMEM;
1876
1877	sig->nr_threads = 1;
1878	sig->quick_threads = 1;
1879	atomic_set(&sig->live, 1);
1880	refcount_set(&sig->sigcnt, 1);
1881
1882	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1883	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1884	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1885
1886	init_waitqueue_head(&sig->wait_chldexit);
1887	sig->curr_target = tsk;
1888	init_sigpending(&sig->shared_pending);
1889	INIT_HLIST_HEAD(&sig->multiprocess);
1890	seqlock_init(&sig->stats_lock);
1891	prev_cputime_init(&sig->prev_cputime);
1892
1893#ifdef CONFIG_POSIX_TIMERS
1894	INIT_HLIST_HEAD(&sig->posix_timers);
1895	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1896	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1897	sig->real_timer.function = it_real_fn;
1898#endif
1899
1900	task_lock(current->group_leader);
1901	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1902	task_unlock(current->group_leader);
1903
1904	posix_cpu_timers_init_group(sig);
1905
1906	tty_audit_fork(sig);
1907	sched_autogroup_fork(sig);
1908
1909	sig->oom_score_adj = current->signal->oom_score_adj;
1910	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1911
1912	mutex_init(&sig->cred_guard_mutex);
1913	init_rwsem(&sig->exec_update_lock);
1914
1915	return 0;
1916}
1917
1918static void copy_seccomp(struct task_struct *p)
1919{
1920#ifdef CONFIG_SECCOMP
1921	/*
1922	 * Must be called with sighand->lock held, which is common to
1923	 * all threads in the group. Holding cred_guard_mutex is not
1924	 * needed because this new task is not yet running and cannot
1925	 * be racing exec.
1926	 */
1927	assert_spin_locked(&current->sighand->siglock);
1928
1929	/* Ref-count the new filter user, and assign it. */
1930	get_seccomp_filter(current);
1931	p->seccomp = current->seccomp;
1932
1933	/*
1934	 * Explicitly enable no_new_privs here in case it got set
1935	 * between the task_struct being duplicated and holding the
1936	 * sighand lock. The seccomp state and nnp must be in sync.
1937	 */
1938	if (task_no_new_privs(current))
1939		task_set_no_new_privs(p);
1940
1941	/*
1942	 * If the parent gained a seccomp mode after copying thread
1943	 * flags and between before we held the sighand lock, we have
1944	 * to manually enable the seccomp thread flag here.
1945	 */
1946	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1947		set_task_syscall_work(p, SECCOMP);
1948#endif
1949}
1950
1951SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1952{
1953	current->clear_child_tid = tidptr;
1954
1955	return task_pid_vnr(current);
1956}
1957
1958static void rt_mutex_init_task(struct task_struct *p)
1959{
1960	raw_spin_lock_init(&p->pi_lock);
1961#ifdef CONFIG_RT_MUTEXES
1962	p->pi_waiters = RB_ROOT_CACHED;
1963	p->pi_top_task = NULL;
1964	p->pi_blocked_on = NULL;
1965#endif
1966}
1967
1968static inline void init_task_pid_links(struct task_struct *task)
1969{
1970	enum pid_type type;
1971
1972	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1973		INIT_HLIST_NODE(&task->pid_links[type]);
 
1974}
1975
1976static inline void
1977init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1978{
1979	if (type == PIDTYPE_PID)
1980		task->thread_pid = pid;
1981	else
1982		task->signal->pids[type] = pid;
1983}
1984
1985static inline void rcu_copy_process(struct task_struct *p)
1986{
1987#ifdef CONFIG_PREEMPT_RCU
1988	p->rcu_read_lock_nesting = 0;
1989	p->rcu_read_unlock_special.s = 0;
1990	p->rcu_blocked_node = NULL;
1991	INIT_LIST_HEAD(&p->rcu_node_entry);
1992#endif /* #ifdef CONFIG_PREEMPT_RCU */
1993#ifdef CONFIG_TASKS_RCU
1994	p->rcu_tasks_holdout = false;
1995	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1996	p->rcu_tasks_idle_cpu = -1;
1997	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1998#endif /* #ifdef CONFIG_TASKS_RCU */
1999#ifdef CONFIG_TASKS_TRACE_RCU
2000	p->trc_reader_nesting = 0;
2001	p->trc_reader_special.s = 0;
2002	INIT_LIST_HEAD(&p->trc_holdout_list);
2003	INIT_LIST_HEAD(&p->trc_blkd_node);
2004#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2005}
2006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2007/**
2008 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2009 * @pid:   the struct pid for which to create a pidfd
2010 * @flags: flags of the new @pidfd
2011 * @ret: Where to return the file for the pidfd.
2012 *
2013 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2014 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2015 *
2016 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2017 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2018 * pidfd file are prepared.
2019 *
2020 * If this function returns successfully the caller is responsible to either
2021 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2022 * order to install the pidfd into its file descriptor table or they must use
2023 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2024 * respectively.
2025 *
2026 * This function is useful when a pidfd must already be reserved but there
2027 * might still be points of failure afterwards and the caller wants to ensure
2028 * that no pidfd is leaked into its file descriptor table.
2029 *
2030 * Return: On success, a reserved pidfd is returned from the function and a new
2031 *         pidfd file is returned in the last argument to the function. On
2032 *         error, a negative error code is returned from the function and the
2033 *         last argument remains unchanged.
2034 */
2035static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2036{
2037	int pidfd;
2038	struct file *pidfd_file;
2039
2040	pidfd = get_unused_fd_flags(O_CLOEXEC);
2041	if (pidfd < 0)
2042		return pidfd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043
2044	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2045	if (IS_ERR(pidfd_file)) {
2046		put_unused_fd(pidfd);
2047		return PTR_ERR(pidfd_file);
 
 
 
2048	}
2049	/*
2050	 * anon_inode_getfile() ignores everything outside of the
2051	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2052	 */
2053	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2054	*ret = pidfd_file;
2055	return pidfd;
2056}
 
2057
2058/**
2059 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2060 * @pid:   the struct pid for which to create a pidfd
2061 * @flags: flags of the new @pidfd
2062 * @ret: Where to return the pidfd.
2063 *
2064 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2065 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2066 *
2067 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2068 * task identified by @pid must be a thread-group leader.
2069 *
2070 * If this function returns successfully the caller is responsible to either
2071 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2072 * order to install the pidfd into its file descriptor table or they must use
2073 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2074 * respectively.
2075 *
2076 * This function is useful when a pidfd must already be reserved but there
2077 * might still be points of failure afterwards and the caller wants to ensure
2078 * that no pidfd is leaked into its file descriptor table.
2079 *
2080 * Return: On success, a reserved pidfd is returned from the function and a new
2081 *         pidfd file is returned in the last argument to the function. On
2082 *         error, a negative error code is returned from the function and the
2083 *         last argument remains unchanged.
2084 */
2085int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2086{
2087	bool thread = flags & PIDFD_THREAD;
 
2088
2089	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2090		return -EINVAL;
 
 
 
 
 
 
 
2091
2092	return __pidfd_prepare(pid, flags, ret);
2093}
2094
 
 
 
 
 
 
 
 
2095static void __delayed_free_task(struct rcu_head *rhp)
2096{
2097	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2098
2099	free_task(tsk);
2100}
2101
2102static __always_inline void delayed_free_task(struct task_struct *tsk)
2103{
2104	if (IS_ENABLED(CONFIG_MEMCG))
2105		call_rcu(&tsk->rcu, __delayed_free_task);
2106	else
2107		free_task(tsk);
2108}
2109
2110static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2111{
2112	/* Skip if kernel thread */
2113	if (!tsk->mm)
2114		return;
2115
2116	/* Skip if spawning a thread or using vfork */
2117	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2118		return;
2119
2120	/* We need to synchronize with __set_oom_adj */
2121	mutex_lock(&oom_adj_mutex);
2122	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2123	/* Update the values in case they were changed after copy_signal */
2124	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2125	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2126	mutex_unlock(&oom_adj_mutex);
2127}
2128
2129#ifdef CONFIG_RV
2130static void rv_task_fork(struct task_struct *p)
2131{
2132	int i;
2133
2134	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2135		p->rv[i].da_mon.monitoring = false;
2136}
2137#else
2138#define rv_task_fork(p) do {} while (0)
2139#endif
2140
2141/*
2142 * This creates a new process as a copy of the old one,
2143 * but does not actually start it yet.
2144 *
2145 * It copies the registers, and all the appropriate
2146 * parts of the process environment (as per the clone
2147 * flags). The actual kick-off is left to the caller.
2148 */
2149__latent_entropy struct task_struct *copy_process(
2150					struct pid *pid,
2151					int trace,
2152					int node,
2153					struct kernel_clone_args *args)
2154{
2155	int pidfd = -1, retval;
2156	struct task_struct *p;
2157	struct multiprocess_signals delayed;
2158	struct file *pidfile = NULL;
2159	const u64 clone_flags = args->flags;
2160	struct nsproxy *nsp = current->nsproxy;
2161
2162	/*
2163	 * Don't allow sharing the root directory with processes in a different
2164	 * namespace
2165	 */
2166	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2167		return ERR_PTR(-EINVAL);
2168
2169	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2170		return ERR_PTR(-EINVAL);
2171
2172	/*
2173	 * Thread groups must share signals as well, and detached threads
2174	 * can only be started up within the thread group.
2175	 */
2176	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2177		return ERR_PTR(-EINVAL);
2178
2179	/*
2180	 * Shared signal handlers imply shared VM. By way of the above,
2181	 * thread groups also imply shared VM. Blocking this case allows
2182	 * for various simplifications in other code.
2183	 */
2184	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2185		return ERR_PTR(-EINVAL);
2186
2187	/*
2188	 * Siblings of global init remain as zombies on exit since they are
2189	 * not reaped by their parent (swapper). To solve this and to avoid
2190	 * multi-rooted process trees, prevent global and container-inits
2191	 * from creating siblings.
2192	 */
2193	if ((clone_flags & CLONE_PARENT) &&
2194				current->signal->flags & SIGNAL_UNKILLABLE)
2195		return ERR_PTR(-EINVAL);
2196
2197	/*
2198	 * If the new process will be in a different pid or user namespace
2199	 * do not allow it to share a thread group with the forking task.
2200	 */
2201	if (clone_flags & CLONE_THREAD) {
2202		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2203		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2204			return ERR_PTR(-EINVAL);
2205	}
2206
 
 
 
 
 
 
 
 
 
2207	if (clone_flags & CLONE_PIDFD) {
2208		/*
2209		 * - CLONE_DETACHED is blocked so that we can potentially
2210		 *   reuse it later for CLONE_PIDFD.
 
2211		 */
2212		if (clone_flags & CLONE_DETACHED)
2213			return ERR_PTR(-EINVAL);
2214	}
2215
2216	/*
2217	 * Force any signals received before this point to be delivered
2218	 * before the fork happens.  Collect up signals sent to multiple
2219	 * processes that happen during the fork and delay them so that
2220	 * they appear to happen after the fork.
2221	 */
2222	sigemptyset(&delayed.signal);
2223	INIT_HLIST_NODE(&delayed.node);
2224
2225	spin_lock_irq(&current->sighand->siglock);
2226	if (!(clone_flags & CLONE_THREAD))
2227		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2228	recalc_sigpending();
2229	spin_unlock_irq(&current->sighand->siglock);
2230	retval = -ERESTARTNOINTR;
2231	if (task_sigpending(current))
2232		goto fork_out;
2233
2234	retval = -ENOMEM;
2235	p = dup_task_struct(current, node);
2236	if (!p)
2237		goto fork_out;
2238	p->flags &= ~PF_KTHREAD;
2239	if (args->kthread)
2240		p->flags |= PF_KTHREAD;
2241	if (args->user_worker) {
2242		/*
2243		 * Mark us a user worker, and block any signal that isn't
2244		 * fatal or STOP
2245		 */
2246		p->flags |= PF_USER_WORKER;
2247		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2248	}
2249	if (args->io_thread)
2250		p->flags |= PF_IO_WORKER;
2251
2252	if (args->name)
2253		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2254
 
 
 
 
 
 
2255	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2256	/*
2257	 * Clear TID on mm_release()?
2258	 */
2259	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2260
2261	ftrace_graph_init_task(p);
2262
2263	rt_mutex_init_task(p);
2264
2265	lockdep_assert_irqs_enabled();
2266#ifdef CONFIG_PROVE_LOCKING
2267	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2268#endif
2269	retval = copy_creds(p, clone_flags);
2270	if (retval < 0)
2271		goto bad_fork_free;
2272
2273	retval = -EAGAIN;
2274	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
 
2275		if (p->real_cred->user != INIT_USER &&
2276		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2277			goto bad_fork_cleanup_count;
2278	}
2279	current->flags &= ~PF_NPROC_EXCEEDED;
2280
 
 
 
 
2281	/*
2282	 * If multiple threads are within copy_process(), then this check
2283	 * triggers too late. This doesn't hurt, the check is only there
2284	 * to stop root fork bombs.
2285	 */
2286	retval = -EAGAIN;
2287	if (data_race(nr_threads >= max_threads))
2288		goto bad_fork_cleanup_count;
2289
2290	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2291	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2292	p->flags |= PF_FORKNOEXEC;
2293	INIT_LIST_HEAD(&p->children);
2294	INIT_LIST_HEAD(&p->sibling);
2295	rcu_copy_process(p);
2296	p->vfork_done = NULL;
2297	spin_lock_init(&p->alloc_lock);
2298
2299	init_sigpending(&p->pending);
2300
2301	p->utime = p->stime = p->gtime = 0;
2302#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2303	p->utimescaled = p->stimescaled = 0;
2304#endif
2305	prev_cputime_init(&p->prev_cputime);
2306
2307#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2308	seqcount_init(&p->vtime.seqcount);
2309	p->vtime.starttime = 0;
2310	p->vtime.state = VTIME_INACTIVE;
2311#endif
2312
2313#ifdef CONFIG_IO_URING
2314	p->io_uring = NULL;
2315#endif
2316
2317	p->default_timer_slack_ns = current->timer_slack_ns;
2318
2319#ifdef CONFIG_PSI
2320	p->psi_flags = 0;
2321#endif
2322
2323	task_io_accounting_init(&p->ioac);
2324	acct_clear_integrals(p);
2325
2326	posix_cputimers_init(&p->posix_cputimers);
2327	tick_dep_init_task(p);
2328
2329	p->io_context = NULL;
2330	audit_set_context(p, NULL);
2331	cgroup_fork(p);
2332	if (args->kthread) {
2333		if (!set_kthread_struct(p))
2334			goto bad_fork_cleanup_delayacct;
2335	}
2336#ifdef CONFIG_NUMA
2337	p->mempolicy = mpol_dup(p->mempolicy);
2338	if (IS_ERR(p->mempolicy)) {
2339		retval = PTR_ERR(p->mempolicy);
2340		p->mempolicy = NULL;
2341		goto bad_fork_cleanup_delayacct;
2342	}
2343#endif
2344#ifdef CONFIG_CPUSETS
2345	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
 
2346	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2347#endif
2348#ifdef CONFIG_TRACE_IRQFLAGS
2349	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2350	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2351	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2352	p->softirqs_enabled		= 1;
2353	p->softirq_context		= 0;
2354#endif
2355
2356	p->pagefault_disabled = 0;
2357
2358#ifdef CONFIG_LOCKDEP
2359	lockdep_init_task(p);
2360#endif
2361
2362#ifdef CONFIG_DEBUG_MUTEXES
2363	p->blocked_on = NULL; /* not blocked yet */
2364#endif
2365#ifdef CONFIG_BCACHE
2366	p->sequential_io	= 0;
2367	p->sequential_io_avg	= 0;
2368#endif
2369#ifdef CONFIG_BPF_SYSCALL
2370	RCU_INIT_POINTER(p->bpf_storage, NULL);
2371	p->bpf_ctx = NULL;
2372#endif
2373
2374	/* Perform scheduler related setup. Assign this task to a CPU. */
2375	retval = sched_fork(clone_flags, p);
2376	if (retval)
2377		goto bad_fork_cleanup_policy;
2378
2379	retval = perf_event_init_task(p, clone_flags);
2380	if (retval)
2381		goto bad_fork_sched_cancel_fork;
2382	retval = audit_alloc(p);
2383	if (retval)
2384		goto bad_fork_cleanup_perf;
2385	/* copy all the process information */
2386	shm_init_task(p);
2387	retval = security_task_alloc(p, clone_flags);
2388	if (retval)
2389		goto bad_fork_cleanup_audit;
2390	retval = copy_semundo(clone_flags, p);
2391	if (retval)
2392		goto bad_fork_cleanup_security;
2393	retval = copy_files(clone_flags, p, args->no_files);
2394	if (retval)
2395		goto bad_fork_cleanup_semundo;
2396	retval = copy_fs(clone_flags, p);
2397	if (retval)
2398		goto bad_fork_cleanup_files;
2399	retval = copy_sighand(clone_flags, p);
2400	if (retval)
2401		goto bad_fork_cleanup_fs;
2402	retval = copy_signal(clone_flags, p);
2403	if (retval)
2404		goto bad_fork_cleanup_sighand;
2405	retval = copy_mm(clone_flags, p);
2406	if (retval)
2407		goto bad_fork_cleanup_signal;
2408	retval = copy_namespaces(clone_flags, p);
2409	if (retval)
2410		goto bad_fork_cleanup_mm;
2411	retval = copy_io(clone_flags, p);
2412	if (retval)
2413		goto bad_fork_cleanup_namespaces;
2414	retval = copy_thread(p, args);
2415	if (retval)
2416		goto bad_fork_cleanup_io;
2417
2418	stackleak_task_init(p);
2419
2420	if (pid != &init_struct_pid) {
2421		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2422				args->set_tid_size);
2423		if (IS_ERR(pid)) {
2424			retval = PTR_ERR(pid);
2425			goto bad_fork_cleanup_thread;
2426		}
2427	}
2428
2429	/*
2430	 * This has to happen after we've potentially unshared the file
2431	 * descriptor table (so that the pidfd doesn't leak into the child
2432	 * if the fd table isn't shared).
2433	 */
2434	if (clone_flags & CLONE_PIDFD) {
2435		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2436
2437		/* Note that no task has been attached to @pid yet. */
2438		retval = __pidfd_prepare(pid, flags, &pidfile);
2439		if (retval < 0)
2440			goto bad_fork_free_pid;
 
2441		pidfd = retval;
2442
 
 
 
 
 
 
 
 
 
2443		retval = put_user(pidfd, args->pidfd);
2444		if (retval)
2445			goto bad_fork_put_pidfd;
2446	}
2447
2448#ifdef CONFIG_BLOCK
2449	p->plug = NULL;
2450#endif
2451	futex_init_task(p);
2452
2453	/*
2454	 * sigaltstack should be cleared when sharing the same VM
2455	 */
2456	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2457		sas_ss_reset(p);
2458
2459	/*
2460	 * Syscall tracing and stepping should be turned off in the
2461	 * child regardless of CLONE_PTRACE.
2462	 */
2463	user_disable_single_step(p);
2464	clear_task_syscall_work(p, SYSCALL_TRACE);
2465#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2466	clear_task_syscall_work(p, SYSCALL_EMU);
2467#endif
2468	clear_tsk_latency_tracing(p);
2469
2470	/* ok, now we should be set up.. */
2471	p->pid = pid_nr(pid);
2472	if (clone_flags & CLONE_THREAD) {
 
2473		p->group_leader = current->group_leader;
2474		p->tgid = current->tgid;
2475	} else {
 
 
 
 
2476		p->group_leader = p;
2477		p->tgid = p->pid;
2478	}
2479
2480	p->nr_dirtied = 0;
2481	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2482	p->dirty_paused_when = 0;
2483
2484	p->pdeath_signal = 0;
 
2485	p->task_works = NULL;
2486	clear_posix_cputimers_work(p);
2487
2488#ifdef CONFIG_KRETPROBES
2489	p->kretprobe_instances.first = NULL;
2490#endif
2491#ifdef CONFIG_RETHOOK
2492	p->rethooks.first = NULL;
2493#endif
2494
2495	/*
2496	 * Ensure that the cgroup subsystem policies allow the new process to be
2497	 * forked. It should be noted that the new process's css_set can be changed
2498	 * between here and cgroup_post_fork() if an organisation operation is in
2499	 * progress.
2500	 */
2501	retval = cgroup_can_fork(p, args);
2502	if (retval)
2503		goto bad_fork_put_pidfd;
2504
2505	/*
2506	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2507	 * the new task on the correct runqueue. All this *before* the task
2508	 * becomes visible.
2509	 *
2510	 * This isn't part of ->can_fork() because while the re-cloning is
2511	 * cgroup specific, it unconditionally needs to place the task on a
2512	 * runqueue.
2513	 */
2514	retval = sched_cgroup_fork(p, args);
2515	if (retval)
2516		goto bad_fork_cancel_cgroup;
2517
2518	/*
2519	 * From this point on we must avoid any synchronous user-space
2520	 * communication until we take the tasklist-lock. In particular, we do
2521	 * not want user-space to be able to predict the process start-time by
2522	 * stalling fork(2) after we recorded the start_time but before it is
2523	 * visible to the system.
2524	 */
2525
2526	p->start_time = ktime_get_ns();
2527	p->start_boottime = ktime_get_boottime_ns();
2528
2529	/*
2530	 * Make it visible to the rest of the system, but dont wake it up yet.
2531	 * Need tasklist lock for parent etc handling!
2532	 */
2533	write_lock_irq(&tasklist_lock);
2534
2535	/* CLONE_PARENT re-uses the old parent */
2536	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2537		p->real_parent = current->real_parent;
2538		p->parent_exec_id = current->parent_exec_id;
2539		if (clone_flags & CLONE_THREAD)
2540			p->exit_signal = -1;
2541		else
2542			p->exit_signal = current->group_leader->exit_signal;
2543	} else {
2544		p->real_parent = current;
2545		p->parent_exec_id = current->self_exec_id;
2546		p->exit_signal = args->exit_signal;
2547	}
2548
2549	klp_copy_process(p);
2550
2551	sched_core_fork(p);
2552
2553	spin_lock(&current->sighand->siglock);
2554
2555	rv_task_fork(p);
 
 
 
 
2556
2557	rseq_fork(p, clone_flags);
2558
2559	/* Don't start children in a dying pid namespace */
2560	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2561		retval = -ENOMEM;
2562		goto bad_fork_core_free;
2563	}
2564
2565	/* Let kill terminate clone/fork in the middle */
2566	if (fatal_signal_pending(current)) {
2567		retval = -EINTR;
2568		goto bad_fork_core_free;
2569	}
2570
2571	/* No more failure paths after this point. */
2572
2573	/*
2574	 * Copy seccomp details explicitly here, in case they were changed
2575	 * before holding sighand lock.
2576	 */
2577	copy_seccomp(p);
2578
2579	init_task_pid_links(p);
2580	if (likely(p->pid)) {
2581		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2582
2583		init_task_pid(p, PIDTYPE_PID, pid);
2584		if (thread_group_leader(p)) {
2585			init_task_pid(p, PIDTYPE_TGID, pid);
2586			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2587			init_task_pid(p, PIDTYPE_SID, task_session(current));
2588
2589			if (is_child_reaper(pid)) {
2590				ns_of_pid(pid)->child_reaper = p;
2591				p->signal->flags |= SIGNAL_UNKILLABLE;
2592			}
2593			p->signal->shared_pending.signal = delayed.signal;
2594			p->signal->tty = tty_kref_get(current->signal->tty);
2595			/*
2596			 * Inherit has_child_subreaper flag under the same
2597			 * tasklist_lock with adding child to the process tree
2598			 * for propagate_has_child_subreaper optimization.
2599			 */
2600			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2601							 p->real_parent->signal->is_child_subreaper;
2602			list_add_tail(&p->sibling, &p->real_parent->children);
2603			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2604			attach_pid(p, PIDTYPE_TGID);
2605			attach_pid(p, PIDTYPE_PGID);
2606			attach_pid(p, PIDTYPE_SID);
2607			__this_cpu_inc(process_counts);
2608		} else {
2609			current->signal->nr_threads++;
2610			current->signal->quick_threads++;
2611			atomic_inc(&current->signal->live);
2612			refcount_inc(&current->signal->sigcnt);
2613			task_join_group_stop(p);
 
 
2614			list_add_tail_rcu(&p->thread_node,
2615					  &p->signal->thread_head);
2616		}
2617		attach_pid(p, PIDTYPE_PID);
2618		nr_threads++;
2619	}
2620	total_forks++;
2621	hlist_del_init(&delayed.node);
2622	spin_unlock(&current->sighand->siglock);
2623	syscall_tracepoint_update(p);
2624	write_unlock_irq(&tasklist_lock);
2625
2626	if (pidfile)
2627		fd_install(pidfd, pidfile);
2628
2629	proc_fork_connector(p);
2630	sched_post_fork(p);
2631	cgroup_post_fork(p, args);
2632	perf_event_fork(p);
2633
2634	trace_task_newtask(p, clone_flags);
2635	uprobe_copy_process(p, clone_flags);
2636	user_events_fork(p, clone_flags);
2637
2638	copy_oom_score_adj(clone_flags, p);
2639
2640	return p;
2641
2642bad_fork_core_free:
2643	sched_core_free(p);
2644	spin_unlock(&current->sighand->siglock);
2645	write_unlock_irq(&tasklist_lock);
2646bad_fork_cancel_cgroup:
2647	cgroup_cancel_fork(p, args);
2648bad_fork_put_pidfd:
2649	if (clone_flags & CLONE_PIDFD) {
2650		fput(pidfile);
2651		put_unused_fd(pidfd);
2652	}
2653bad_fork_free_pid:
2654	if (pid != &init_struct_pid)
2655		free_pid(pid);
2656bad_fork_cleanup_thread:
2657	exit_thread(p);
2658bad_fork_cleanup_io:
2659	if (p->io_context)
2660		exit_io_context(p);
2661bad_fork_cleanup_namespaces:
2662	exit_task_namespaces(p);
2663bad_fork_cleanup_mm:
2664	if (p->mm) {
2665		mm_clear_owner(p->mm, p);
2666		mmput(p->mm);
2667	}
2668bad_fork_cleanup_signal:
2669	if (!(clone_flags & CLONE_THREAD))
2670		free_signal_struct(p->signal);
2671bad_fork_cleanup_sighand:
2672	__cleanup_sighand(p->sighand);
2673bad_fork_cleanup_fs:
2674	exit_fs(p); /* blocking */
2675bad_fork_cleanup_files:
2676	exit_files(p); /* blocking */
2677bad_fork_cleanup_semundo:
2678	exit_sem(p);
2679bad_fork_cleanup_security:
2680	security_task_free(p);
2681bad_fork_cleanup_audit:
2682	audit_free(p);
2683bad_fork_cleanup_perf:
2684	perf_event_free_task(p);
2685bad_fork_sched_cancel_fork:
2686	sched_cancel_fork(p);
2687bad_fork_cleanup_policy:
2688	lockdep_free_task(p);
2689#ifdef CONFIG_NUMA
2690	mpol_put(p->mempolicy);
 
2691#endif
2692bad_fork_cleanup_delayacct:
2693	delayacct_tsk_free(p);
2694bad_fork_cleanup_count:
2695	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2696	exit_creds(p);
2697bad_fork_free:
2698	WRITE_ONCE(p->__state, TASK_DEAD);
2699	exit_task_stack_account(p);
2700	put_task_stack(p);
2701	delayed_free_task(p);
2702fork_out:
2703	spin_lock_irq(&current->sighand->siglock);
2704	hlist_del_init(&delayed.node);
2705	spin_unlock_irq(&current->sighand->siglock);
2706	return ERR_PTR(retval);
2707}
2708
2709static inline void init_idle_pids(struct task_struct *idle)
2710{
2711	enum pid_type type;
2712
2713	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2714		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2715		init_task_pid(idle, type, &init_struct_pid);
2716	}
2717}
2718
2719static int idle_dummy(void *dummy)
2720{
2721	/* This function is never called */
2722	return 0;
2723}
2724
2725struct task_struct * __init fork_idle(int cpu)
2726{
2727	struct task_struct *task;
2728	struct kernel_clone_args args = {
2729		.flags		= CLONE_VM,
2730		.fn		= &idle_dummy,
2731		.fn_arg		= NULL,
2732		.kthread	= 1,
2733		.idle		= 1,
2734	};
2735
2736	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2737	if (!IS_ERR(task)) {
2738		init_idle_pids(task);
2739		init_idle(task, cpu);
2740	}
2741
2742	return task;
2743}
2744
2745/*
2746 * This is like kernel_clone(), but shaved down and tailored to just
2747 * creating io_uring workers. It returns a created task, or an error pointer.
2748 * The returned task is inactive, and the caller must fire it up through
2749 * wake_up_new_task(p). All signals are blocked in the created task.
2750 */
2751struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2752{
2753	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2754				CLONE_IO;
2755	struct kernel_clone_args args = {
2756		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2757				    CLONE_UNTRACED) & ~CSIGNAL),
2758		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2759		.fn		= fn,
2760		.fn_arg		= arg,
2761		.io_thread	= 1,
2762		.user_worker	= 1,
2763	};
2764
2765	return copy_process(NULL, 0, node, &args);
2766}
2767
2768/*
2769 *  Ok, this is the main fork-routine.
2770 *
2771 * It copies the process, and if successful kick-starts
2772 * it and waits for it to finish using the VM if required.
2773 *
2774 * args->exit_signal is expected to be checked for sanity by the caller.
2775 */
2776pid_t kernel_clone(struct kernel_clone_args *args)
2777{
2778	u64 clone_flags = args->flags;
2779	struct completion vfork;
2780	struct pid *pid;
2781	struct task_struct *p;
2782	int trace = 0;
2783	pid_t nr;
2784
2785	/*
2786	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2787	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2788	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2789	 * field in struct clone_args and it still doesn't make sense to have
2790	 * them both point at the same memory location. Performing this check
2791	 * here has the advantage that we don't need to have a separate helper
2792	 * to check for legacy clone().
2793	 */
2794	if ((clone_flags & CLONE_PIDFD) &&
2795	    (clone_flags & CLONE_PARENT_SETTID) &&
2796	    (args->pidfd == args->parent_tid))
2797		return -EINVAL;
2798
2799	/*
2800	 * Determine whether and which event to report to ptracer.  When
2801	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2802	 * requested, no event is reported; otherwise, report if the event
2803	 * for the type of forking is enabled.
2804	 */
2805	if (!(clone_flags & CLONE_UNTRACED)) {
2806		if (clone_flags & CLONE_VFORK)
2807			trace = PTRACE_EVENT_VFORK;
2808		else if (args->exit_signal != SIGCHLD)
2809			trace = PTRACE_EVENT_CLONE;
2810		else
2811			trace = PTRACE_EVENT_FORK;
2812
2813		if (likely(!ptrace_event_enabled(current, trace)))
2814			trace = 0;
2815	}
2816
2817	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2818	add_latent_entropy();
2819
2820	if (IS_ERR(p))
2821		return PTR_ERR(p);
2822
2823	/*
2824	 * Do this prior waking up the new thread - the thread pointer
2825	 * might get invalid after that point, if the thread exits quickly.
2826	 */
2827	trace_sched_process_fork(current, p);
2828
2829	pid = get_task_pid(p, PIDTYPE_PID);
2830	nr = pid_vnr(pid);
2831
2832	if (clone_flags & CLONE_PARENT_SETTID)
2833		put_user(nr, args->parent_tid);
2834
2835	if (clone_flags & CLONE_VFORK) {
2836		p->vfork_done = &vfork;
2837		init_completion(&vfork);
2838		get_task_struct(p);
2839	}
2840
2841	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2842		/* lock the task to synchronize with memcg migration */
2843		task_lock(p);
2844		lru_gen_add_mm(p->mm);
2845		task_unlock(p);
2846	}
2847
2848	wake_up_new_task(p);
2849
2850	/* forking complete and child started to run, tell ptracer */
2851	if (unlikely(trace))
2852		ptrace_event_pid(trace, pid);
2853
2854	if (clone_flags & CLONE_VFORK) {
2855		if (!wait_for_vfork_done(p, &vfork))
2856			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2857	}
2858
2859	put_pid(pid);
2860	return nr;
2861}
2862
2863/*
2864 * Create a kernel thread.
2865 */
2866pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2867		    unsigned long flags)
2868{
2869	struct kernel_clone_args args = {
2870		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2871				    CLONE_UNTRACED) & ~CSIGNAL),
2872		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2873		.fn		= fn,
2874		.fn_arg		= arg,
2875		.name		= name,
2876		.kthread	= 1,
2877	};
2878
2879	return kernel_clone(&args);
2880}
2881
2882/*
2883 * Create a user mode thread.
2884 */
2885pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2886{
2887	struct kernel_clone_args args = {
2888		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2889				    CLONE_UNTRACED) & ~CSIGNAL),
2890		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2891		.fn		= fn,
2892		.fn_arg		= arg,
2893	};
2894
2895	return kernel_clone(&args);
2896}
2897
2898#ifdef __ARCH_WANT_SYS_FORK
2899SYSCALL_DEFINE0(fork)
2900{
2901#ifdef CONFIG_MMU
2902	struct kernel_clone_args args = {
2903		.exit_signal = SIGCHLD,
2904	};
2905
2906	return kernel_clone(&args);
2907#else
2908	/* can not support in nommu mode */
2909	return -EINVAL;
2910#endif
2911}
2912#endif
2913
2914#ifdef __ARCH_WANT_SYS_VFORK
2915SYSCALL_DEFINE0(vfork)
2916{
2917	struct kernel_clone_args args = {
2918		.flags		= CLONE_VFORK | CLONE_VM,
2919		.exit_signal	= SIGCHLD,
2920	};
2921
2922	return kernel_clone(&args);
2923}
2924#endif
2925
2926#ifdef __ARCH_WANT_SYS_CLONE
2927#ifdef CONFIG_CLONE_BACKWARDS
2928SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2929		 int __user *, parent_tidptr,
2930		 unsigned long, tls,
2931		 int __user *, child_tidptr)
2932#elif defined(CONFIG_CLONE_BACKWARDS2)
2933SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2934		 int __user *, parent_tidptr,
2935		 int __user *, child_tidptr,
2936		 unsigned long, tls)
2937#elif defined(CONFIG_CLONE_BACKWARDS3)
2938SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2939		int, stack_size,
2940		int __user *, parent_tidptr,
2941		int __user *, child_tidptr,
2942		unsigned long, tls)
2943#else
2944SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2945		 int __user *, parent_tidptr,
2946		 int __user *, child_tidptr,
2947		 unsigned long, tls)
2948#endif
2949{
2950	struct kernel_clone_args args = {
2951		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2952		.pidfd		= parent_tidptr,
2953		.child_tid	= child_tidptr,
2954		.parent_tid	= parent_tidptr,
2955		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2956		.stack		= newsp,
2957		.tls		= tls,
2958	};
2959
2960	return kernel_clone(&args);
2961}
2962#endif
2963
 
 
2964noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2965					      struct clone_args __user *uargs,
2966					      size_t usize)
2967{
2968	int err;
2969	struct clone_args args;
2970	pid_t *kset_tid = kargs->set_tid;
2971
2972	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2973		     CLONE_ARGS_SIZE_VER0);
2974	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2975		     CLONE_ARGS_SIZE_VER1);
2976	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2977		     CLONE_ARGS_SIZE_VER2);
2978	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2979
2980	if (unlikely(usize > PAGE_SIZE))
2981		return -E2BIG;
2982	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2983		return -EINVAL;
2984
2985	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2986	if (err)
2987		return err;
2988
2989	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2990		return -EINVAL;
2991
2992	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2993		return -EINVAL;
2994
2995	if (unlikely(args.set_tid && args.set_tid_size == 0))
2996		return -EINVAL;
2997
2998	/*
2999	 * Verify that higher 32bits of exit_signal are unset and that
3000	 * it is a valid signal
3001	 */
3002	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3003		     !valid_signal(args.exit_signal)))
3004		return -EINVAL;
3005
3006	if ((args.flags & CLONE_INTO_CGROUP) &&
3007	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3008		return -EINVAL;
3009
3010	*kargs = (struct kernel_clone_args){
3011		.flags		= args.flags,
3012		.pidfd		= u64_to_user_ptr(args.pidfd),
3013		.child_tid	= u64_to_user_ptr(args.child_tid),
3014		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3015		.exit_signal	= args.exit_signal,
3016		.stack		= args.stack,
3017		.stack_size	= args.stack_size,
3018		.tls		= args.tls,
3019		.set_tid_size	= args.set_tid_size,
3020		.cgroup		= args.cgroup,
3021	};
3022
3023	if (args.set_tid &&
3024		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3025			(kargs->set_tid_size * sizeof(pid_t))))
3026		return -EFAULT;
3027
3028	kargs->set_tid = kset_tid;
3029
3030	return 0;
3031}
3032
3033/**
3034 * clone3_stack_valid - check and prepare stack
3035 * @kargs: kernel clone args
3036 *
3037 * Verify that the stack arguments userspace gave us are sane.
3038 * In addition, set the stack direction for userspace since it's easy for us to
3039 * determine.
3040 */
3041static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3042{
3043	if (kargs->stack == 0) {
3044		if (kargs->stack_size > 0)
3045			return false;
3046	} else {
3047		if (kargs->stack_size == 0)
3048			return false;
3049
3050		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3051			return false;
3052
3053#if !defined(CONFIG_STACK_GROWSUP)
3054		kargs->stack += kargs->stack_size;
3055#endif
3056	}
3057
3058	return true;
3059}
3060
3061static bool clone3_args_valid(struct kernel_clone_args *kargs)
3062{
3063	/* Verify that no unknown flags are passed along. */
3064	if (kargs->flags &
3065	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3066		return false;
3067
3068	/*
3069	 * - make the CLONE_DETACHED bit reusable for clone3
3070	 * - make the CSIGNAL bits reusable for clone3
3071	 */
3072	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3073		return false;
3074
3075	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3076	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3077		return false;
3078
3079	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3080	    kargs->exit_signal)
3081		return false;
3082
3083	if (!clone3_stack_valid(kargs))
3084		return false;
3085
3086	return true;
3087}
3088
3089/**
3090 * sys_clone3 - create a new process with specific properties
3091 * @uargs: argument structure
3092 * @size:  size of @uargs
3093 *
3094 * clone3() is the extensible successor to clone()/clone2().
3095 * It takes a struct as argument that is versioned by its size.
3096 *
3097 * Return: On success, a positive PID for the child process.
3098 *         On error, a negative errno number.
3099 */
3100SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3101{
3102	int err;
3103
3104	struct kernel_clone_args kargs;
3105	pid_t set_tid[MAX_PID_NS_LEVEL];
3106
3107#ifdef __ARCH_BROKEN_SYS_CLONE3
3108#warning clone3() entry point is missing, please fix
3109	return -ENOSYS;
3110#endif
3111
3112	kargs.set_tid = set_tid;
3113
3114	err = copy_clone_args_from_user(&kargs, uargs, size);
3115	if (err)
3116		return err;
3117
3118	if (!clone3_args_valid(&kargs))
3119		return -EINVAL;
3120
3121	return kernel_clone(&kargs);
3122}
 
3123
3124void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3125{
3126	struct task_struct *leader, *parent, *child;
3127	int res;
3128
3129	read_lock(&tasklist_lock);
3130	leader = top = top->group_leader;
3131down:
3132	for_each_thread(leader, parent) {
3133		list_for_each_entry(child, &parent->children, sibling) {
3134			res = visitor(child, data);
3135			if (res) {
3136				if (res < 0)
3137					goto out;
3138				leader = child;
3139				goto down;
3140			}
3141up:
3142			;
3143		}
3144	}
3145
3146	if (leader != top) {
3147		child = leader;
3148		parent = child->real_parent;
3149		leader = parent->group_leader;
3150		goto up;
3151	}
3152out:
3153	read_unlock(&tasklist_lock);
3154}
3155
3156#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3157#define ARCH_MIN_MMSTRUCT_ALIGN 0
3158#endif
3159
3160static void sighand_ctor(void *data)
3161{
3162	struct sighand_struct *sighand = data;
3163
3164	spin_lock_init(&sighand->siglock);
3165	init_waitqueue_head(&sighand->signalfd_wqh);
3166}
3167
3168void __init mm_cache_init(void)
3169{
3170	unsigned int mm_size;
3171
3172	/*
3173	 * The mm_cpumask is located at the end of mm_struct, and is
3174	 * dynamically sized based on the maximum CPU number this system
3175	 * can have, taking hotplug into account (nr_cpu_ids).
3176	 */
3177	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3178
3179	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3180			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3181			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3182			offsetof(struct mm_struct, saved_auxv),
3183			sizeof_field(struct mm_struct, saved_auxv),
3184			NULL);
3185}
3186
3187void __init proc_caches_init(void)
3188{
3189	sighand_cachep = kmem_cache_create("sighand_cache",
3190			sizeof(struct sighand_struct), 0,
3191			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3192			SLAB_ACCOUNT, sighand_ctor);
3193	signal_cachep = kmem_cache_create("signal_cache",
3194			sizeof(struct signal_struct), 0,
3195			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3196			NULL);
3197	files_cachep = kmem_cache_create("files_cache",
3198			sizeof(struct files_struct), 0,
3199			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3200			NULL);
3201	fs_cachep = kmem_cache_create("fs_cache",
3202			sizeof(struct fs_struct), 0,
3203			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3204			NULL);
3205
 
 
 
 
 
 
 
 
 
 
 
 
 
3206	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3207#ifdef CONFIG_PER_VMA_LOCK
3208	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3209#endif
3210	mmap_init();
3211	nsproxy_cache_init();
3212}
3213
3214/*
3215 * Check constraints on flags passed to the unshare system call.
3216 */
3217static int check_unshare_flags(unsigned long unshare_flags)
3218{
3219	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3220				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3221				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3222				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3223				CLONE_NEWTIME))
3224		return -EINVAL;
3225	/*
3226	 * Not implemented, but pretend it works if there is nothing
3227	 * to unshare.  Note that unsharing the address space or the
3228	 * signal handlers also need to unshare the signal queues (aka
3229	 * CLONE_THREAD).
3230	 */
3231	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3232		if (!thread_group_empty(current))
3233			return -EINVAL;
3234	}
3235	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3236		if (refcount_read(&current->sighand->count) > 1)
3237			return -EINVAL;
3238	}
3239	if (unshare_flags & CLONE_VM) {
3240		if (!current_is_single_threaded())
3241			return -EINVAL;
3242	}
3243
3244	return 0;
3245}
3246
3247/*
3248 * Unshare the filesystem structure if it is being shared
3249 */
3250static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3251{
3252	struct fs_struct *fs = current->fs;
3253
3254	if (!(unshare_flags & CLONE_FS) || !fs)
3255		return 0;
3256
3257	/* don't need lock here; in the worst case we'll do useless copy */
3258	if (fs->users == 1)
3259		return 0;
3260
3261	*new_fsp = copy_fs_struct(fs);
3262	if (!*new_fsp)
3263		return -ENOMEM;
3264
3265	return 0;
3266}
3267
3268/*
3269 * Unshare file descriptor table if it is being shared
3270 */
3271static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
3272{
3273	struct files_struct *fd = current->files;
 
3274
3275	if ((unshare_flags & CLONE_FILES) &&
3276	    (fd && atomic_read(&fd->count) > 1)) {
3277		fd = dup_fd(fd, NULL);
3278		if (IS_ERR(fd))
3279			return PTR_ERR(fd);
3280		*new_fdp = fd;
3281	}
3282
3283	return 0;
3284}
3285
3286/*
3287 * unshare allows a process to 'unshare' part of the process
3288 * context which was originally shared using clone.  copy_*
3289 * functions used by kernel_clone() cannot be used here directly
3290 * because they modify an inactive task_struct that is being
3291 * constructed. Here we are modifying the current, active,
3292 * task_struct.
3293 */
3294int ksys_unshare(unsigned long unshare_flags)
3295{
3296	struct fs_struct *fs, *new_fs = NULL;
3297	struct files_struct *new_fd = NULL;
3298	struct cred *new_cred = NULL;
3299	struct nsproxy *new_nsproxy = NULL;
3300	int do_sysvsem = 0;
3301	int err;
3302
3303	/*
3304	 * If unsharing a user namespace must also unshare the thread group
3305	 * and unshare the filesystem root and working directories.
3306	 */
3307	if (unshare_flags & CLONE_NEWUSER)
3308		unshare_flags |= CLONE_THREAD | CLONE_FS;
3309	/*
3310	 * If unsharing vm, must also unshare signal handlers.
3311	 */
3312	if (unshare_flags & CLONE_VM)
3313		unshare_flags |= CLONE_SIGHAND;
3314	/*
3315	 * If unsharing a signal handlers, must also unshare the signal queues.
3316	 */
3317	if (unshare_flags & CLONE_SIGHAND)
3318		unshare_flags |= CLONE_THREAD;
3319	/*
3320	 * If unsharing namespace, must also unshare filesystem information.
3321	 */
3322	if (unshare_flags & CLONE_NEWNS)
3323		unshare_flags |= CLONE_FS;
3324
3325	err = check_unshare_flags(unshare_flags);
3326	if (err)
3327		goto bad_unshare_out;
3328	/*
3329	 * CLONE_NEWIPC must also detach from the undolist: after switching
3330	 * to a new ipc namespace, the semaphore arrays from the old
3331	 * namespace are unreachable.
3332	 */
3333	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3334		do_sysvsem = 1;
3335	err = unshare_fs(unshare_flags, &new_fs);
3336	if (err)
3337		goto bad_unshare_out;
3338	err = unshare_fd(unshare_flags, &new_fd);
3339	if (err)
3340		goto bad_unshare_cleanup_fs;
3341	err = unshare_userns(unshare_flags, &new_cred);
3342	if (err)
3343		goto bad_unshare_cleanup_fd;
3344	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3345					 new_cred, new_fs);
3346	if (err)
3347		goto bad_unshare_cleanup_cred;
3348
3349	if (new_cred) {
3350		err = set_cred_ucounts(new_cred);
3351		if (err)
3352			goto bad_unshare_cleanup_cred;
3353	}
3354
3355	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3356		if (do_sysvsem) {
3357			/*
3358			 * CLONE_SYSVSEM is equivalent to sys_exit().
3359			 */
3360			exit_sem(current);
3361		}
3362		if (unshare_flags & CLONE_NEWIPC) {
3363			/* Orphan segments in old ns (see sem above). */
3364			exit_shm(current);
3365			shm_init_task(current);
3366		}
3367
3368		if (new_nsproxy)
3369			switch_task_namespaces(current, new_nsproxy);
3370
3371		task_lock(current);
3372
3373		if (new_fs) {
3374			fs = current->fs;
3375			spin_lock(&fs->lock);
3376			current->fs = new_fs;
3377			if (--fs->users)
3378				new_fs = NULL;
3379			else
3380				new_fs = fs;
3381			spin_unlock(&fs->lock);
3382		}
3383
3384		if (new_fd)
3385			swap(current->files, new_fd);
 
 
 
3386
3387		task_unlock(current);
3388
3389		if (new_cred) {
3390			/* Install the new user namespace */
3391			commit_creds(new_cred);
3392			new_cred = NULL;
3393		}
3394	}
3395
3396	perf_event_namespaces(current);
3397
3398bad_unshare_cleanup_cred:
3399	if (new_cred)
3400		put_cred(new_cred);
3401bad_unshare_cleanup_fd:
3402	if (new_fd)
3403		put_files_struct(new_fd);
3404
3405bad_unshare_cleanup_fs:
3406	if (new_fs)
3407		free_fs_struct(new_fs);
3408
3409bad_unshare_out:
3410	return err;
3411}
3412
3413SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3414{
3415	return ksys_unshare(unshare_flags);
3416}
3417
3418/*
3419 *	Helper to unshare the files of the current task.
3420 *	We don't want to expose copy_files internals to
3421 *	the exec layer of the kernel.
3422 */
3423
3424int unshare_files(void)
3425{
3426	struct task_struct *task = current;
3427	struct files_struct *old, *copy = NULL;
3428	int error;
3429
3430	error = unshare_fd(CLONE_FILES, &copy);
3431	if (error || !copy)
 
3432		return error;
3433
3434	old = task->files;
3435	task_lock(task);
3436	task->files = copy;
3437	task_unlock(task);
3438	put_files_struct(old);
3439	return 0;
3440}
3441
3442int sysctl_max_threads(const struct ctl_table *table, int write,
3443		       void *buffer, size_t *lenp, loff_t *ppos)
3444{
3445	struct ctl_table t;
3446	int ret;
3447	int threads = max_threads;
3448	int min = 1;
3449	int max = MAX_THREADS;
3450
3451	t = *table;
3452	t.data = &threads;
3453	t.extra1 = &min;
3454	t.extra2 = &max;
3455
3456	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3457	if (ret || !write)
3458		return ret;
3459
3460	max_threads = threads;
3461
3462	return 0;
3463}