Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_SCATTERLIST_H
  3#define _LINUX_SCATTERLIST_H
  4
  5#include <linux/string.h>
  6#include <linux/types.h>
  7#include <linux/bug.h>
  8#include <linux/mm.h>
  9#include <asm/io.h>
 10
 11struct scatterlist {
 12	unsigned long	page_link;
 13	unsigned int	offset;
 14	unsigned int	length;
 15	dma_addr_t	dma_address;
 16#ifdef CONFIG_NEED_SG_DMA_LENGTH
 17	unsigned int	dma_length;
 18#endif
 
 
 
 19};
 20
 21/*
 22 * Since the above length field is an unsigned int, below we define the maximum
 23 * length in bytes that can be stored in one scatterlist entry.
 24 */
 25#define SCATTERLIST_MAX_SEGMENT (UINT_MAX & PAGE_MASK)
 26
 27/*
 28 * These macros should be used after a dma_map_sg call has been done
 29 * to get bus addresses of each of the SG entries and their lengths.
 30 * You should only work with the number of sg entries dma_map_sg
 31 * returns, or alternatively stop on the first sg_dma_len(sg) which
 32 * is 0.
 33 */
 34#define sg_dma_address(sg)	((sg)->dma_address)
 35
 36#ifdef CONFIG_NEED_SG_DMA_LENGTH
 37#define sg_dma_len(sg)		((sg)->dma_length)
 38#else
 39#define sg_dma_len(sg)		((sg)->length)
 40#endif
 41
 42struct sg_table {
 43	struct scatterlist *sgl;	/* the list */
 44	unsigned int nents;		/* number of mapped entries */
 45	unsigned int orig_nents;	/* original size of list */
 46};
 47
 
 
 
 
 
 
 48/*
 49 * Notes on SG table design.
 50 *
 51 * We use the unsigned long page_link field in the scatterlist struct to place
 52 * the page pointer AND encode information about the sg table as well. The two
 53 * lower bits are reserved for this information.
 54 *
 55 * If bit 0 is set, then the page_link contains a pointer to the next sg
 56 * table list. Otherwise the next entry is at sg + 1.
 57 *
 58 * If bit 1 is set, then this sg entry is the last element in a list.
 59 *
 60 * See sg_next().
 61 *
 62 */
 63
 64#define SG_CHAIN	0x01UL
 65#define SG_END		0x02UL
 66
 67/*
 68 * We overload the LSB of the page pointer to indicate whether it's
 69 * a valid sg entry, or whether it points to the start of a new scatterlist.
 70 * Those low bits are there for everyone! (thanks mason :-)
 71 */
 72#define sg_is_chain(sg)		((sg)->page_link & SG_CHAIN)
 73#define sg_is_last(sg)		((sg)->page_link & SG_END)
 74#define sg_chain_ptr(sg)	\
 75	((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76
 77/**
 78 * sg_assign_page - Assign a given page to an SG entry
 79 * @sg:		    SG entry
 80 * @page:	    The page
 81 *
 82 * Description:
 83 *   Assign page to sg entry. Also see sg_set_page(), the most commonly used
 84 *   variant.
 85 *
 86 **/
 87static inline void sg_assign_page(struct scatterlist *sg, struct page *page)
 88{
 89	unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END);
 90
 91	/*
 92	 * In order for the low bit stealing approach to work, pages
 93	 * must be aligned at a 32-bit boundary as a minimum.
 94	 */
 95	BUG_ON((unsigned long) page & (SG_CHAIN | SG_END));
 96#ifdef CONFIG_DEBUG_SG
 97	BUG_ON(sg_is_chain(sg));
 98#endif
 99	sg->page_link = page_link | (unsigned long) page;
100}
101
102/**
103 * sg_set_page - Set sg entry to point at given page
104 * @sg:		 SG entry
105 * @page:	 The page
106 * @len:	 Length of data
107 * @offset:	 Offset into page
108 *
109 * Description:
110 *   Use this function to set an sg entry pointing at a page, never assign
111 *   the page directly. We encode sg table information in the lower bits
112 *   of the page pointer. See sg_page() for looking up the page belonging
113 *   to an sg entry.
114 *
115 **/
116static inline void sg_set_page(struct scatterlist *sg, struct page *page,
117			       unsigned int len, unsigned int offset)
118{
119	sg_assign_page(sg, page);
120	sg->offset = offset;
121	sg->length = len;
122}
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124static inline struct page *sg_page(struct scatterlist *sg)
125{
126#ifdef CONFIG_DEBUG_SG
127	BUG_ON(sg_is_chain(sg));
128#endif
129	return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END));
130}
131
132/**
133 * sg_set_buf - Set sg entry to point at given data
134 * @sg:		 SG entry
135 * @buf:	 Data
136 * @buflen:	 Data length
137 *
138 **/
139static inline void sg_set_buf(struct scatterlist *sg, const void *buf,
140			      unsigned int buflen)
141{
142#ifdef CONFIG_DEBUG_SG
143	BUG_ON(!virt_addr_valid(buf));
144#endif
145	sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf));
146}
147
148/*
149 * Loop over each sg element, following the pointer to a new list if necessary
150 */
151#define for_each_sg(sglist, sg, nr, __i)	\
152	for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg))
153
154/*
155 * Loop over each sg element in the given sg_table object.
156 */
157#define for_each_sgtable_sg(sgt, sg, i)		\
158	for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i)
159
160/*
161 * Loop over each sg element in the given *DMA mapped* sg_table object.
162 * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses
163 * of the each element.
164 */
165#define for_each_sgtable_dma_sg(sgt, sg, i)	\
166	for_each_sg((sgt)->sgl, sg, (sgt)->nents, i)
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168/**
169 * sg_chain - Chain two sglists together
170 * @prv:	First scatterlist
171 * @prv_nents:	Number of entries in prv
172 * @sgl:	Second scatterlist
173 *
174 * Description:
175 *   Links @prv@ and @sgl@ together, to form a longer scatterlist.
176 *
177 **/
178static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents,
179			    struct scatterlist *sgl)
180{
181	/*
182	 * offset and length are unused for chain entry.  Clear them.
183	 */
184	prv[prv_nents - 1].offset = 0;
185	prv[prv_nents - 1].length = 0;
186
187	/*
188	 * Set lowest bit to indicate a link pointer, and make sure to clear
189	 * the termination bit if it happens to be set.
190	 */
191	prv[prv_nents - 1].page_link = ((unsigned long) sgl | SG_CHAIN)
192					& ~SG_END;
193}
194
195/**
196 * sg_mark_end - Mark the end of the scatterlist
197 * @sg:		 SG entryScatterlist
198 *
199 * Description:
200 *   Marks the passed in sg entry as the termination point for the sg
201 *   table. A call to sg_next() on this entry will return NULL.
202 *
203 **/
204static inline void sg_mark_end(struct scatterlist *sg)
205{
206	/*
207	 * Set termination bit, clear potential chain bit
208	 */
209	sg->page_link |= SG_END;
210	sg->page_link &= ~SG_CHAIN;
211}
212
213/**
214 * sg_unmark_end - Undo setting the end of the scatterlist
215 * @sg:		 SG entryScatterlist
216 *
217 * Description:
218 *   Removes the termination marker from the given entry of the scatterlist.
219 *
220 **/
221static inline void sg_unmark_end(struct scatterlist *sg)
222{
223	sg->page_link &= ~SG_END;
224}
225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226/**
227 * sg_phys - Return physical address of an sg entry
228 * @sg:	     SG entry
229 *
230 * Description:
231 *   This calls page_to_phys() on the page in this sg entry, and adds the
232 *   sg offset. The caller must know that it is legal to call page_to_phys()
233 *   on the sg page.
234 *
235 **/
236static inline dma_addr_t sg_phys(struct scatterlist *sg)
237{
238	return page_to_phys(sg_page(sg)) + sg->offset;
239}
240
241/**
242 * sg_virt - Return virtual address of an sg entry
243 * @sg:      SG entry
244 *
245 * Description:
246 *   This calls page_address() on the page in this sg entry, and adds the
247 *   sg offset. The caller must know that the sg page has a valid virtual
248 *   mapping.
249 *
250 **/
251static inline void *sg_virt(struct scatterlist *sg)
252{
253	return page_address(sg_page(sg)) + sg->offset;
254}
255
256/**
257 * sg_init_marker - Initialize markers in sg table
258 * @sgl:	   The SG table
259 * @nents:	   Number of entries in table
260 *
261 **/
262static inline void sg_init_marker(struct scatterlist *sgl,
263				  unsigned int nents)
264{
265	sg_mark_end(&sgl[nents - 1]);
266}
267
268int sg_nents(struct scatterlist *sg);
269int sg_nents_for_len(struct scatterlist *sg, u64 len);
270struct scatterlist *sg_next(struct scatterlist *);
271struct scatterlist *sg_last(struct scatterlist *s, unsigned int);
272void sg_init_table(struct scatterlist *, unsigned int);
273void sg_init_one(struct scatterlist *, const void *, unsigned int);
274int sg_split(struct scatterlist *in, const int in_mapped_nents,
275	     const off_t skip, const int nb_splits,
276	     const size_t *split_sizes,
277	     struct scatterlist **out, int *out_mapped_nents,
278	     gfp_t gfp_mask);
279
280typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t);
281typedef void (sg_free_fn)(struct scatterlist *, unsigned int);
282
283void __sg_free_table(struct sg_table *, unsigned int, unsigned int,
284		     sg_free_fn *);
285void sg_free_table(struct sg_table *);
 
286int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int,
287		     struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *);
288int sg_alloc_table(struct sg_table *, unsigned int, gfp_t);
289int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
290				unsigned int n_pages, unsigned int offset,
291				unsigned long size, unsigned int max_segment,
292				gfp_t gfp_mask);
293int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
294			      unsigned int n_pages, unsigned int offset,
295			      unsigned long size, gfp_t gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
297#ifdef CONFIG_SGL_ALLOC
298struct scatterlist *sgl_alloc_order(unsigned long long length,
299				    unsigned int order, bool chainable,
300				    gfp_t gfp, unsigned int *nent_p);
301struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
302			      unsigned int *nent_p);
303void sgl_free_n_order(struct scatterlist *sgl, int nents, int order);
304void sgl_free_order(struct scatterlist *sgl, int order);
305void sgl_free(struct scatterlist *sgl);
306#endif /* CONFIG_SGL_ALLOC */
307
308size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
309		      size_t buflen, off_t skip, bool to_buffer);
310
311size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
312			   const void *buf, size_t buflen);
313size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
314			 void *buf, size_t buflen);
315
316size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
317			    const void *buf, size_t buflen, off_t skip);
318size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
319			  void *buf, size_t buflen, off_t skip);
320size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
321		       size_t buflen, off_t skip);
322
323/*
324 * Maximum number of entries that will be allocated in one piece, if
325 * a list larger than this is required then chaining will be utilized.
326 */
327#define SG_MAX_SINGLE_ALLOC		(PAGE_SIZE / sizeof(struct scatterlist))
328
329/*
330 * The maximum number of SG segments that we will put inside a
331 * scatterlist (unless chaining is used). Should ideally fit inside a
332 * single page, to avoid a higher order allocation.  We could define this
333 * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order.  The
334 * minimum value is 32
335 */
336#define SG_CHUNK_SIZE	128
337
338/*
339 * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit
340 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
341 */
342#ifdef CONFIG_ARCH_NO_SG_CHAIN
343#define SG_MAX_SEGMENTS	SG_CHUNK_SIZE
344#else
345#define SG_MAX_SEGMENTS	2048
346#endif
347
348#ifdef CONFIG_SG_POOL
349void sg_free_table_chained(struct sg_table *table,
350			   unsigned nents_first_chunk);
351int sg_alloc_table_chained(struct sg_table *table, int nents,
352			   struct scatterlist *first_chunk,
353			   unsigned nents_first_chunk);
354#endif
355
356/*
357 * sg page iterator
358 *
359 * Iterates over sg entries page-by-page.  On each successful iteration, you
360 * can call sg_page_iter_page(@piter) to get the current page.
361 * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to
362 * the page's page offset within the sg. The iteration will stop either when a
363 * maximum number of sg entries was reached or a terminating sg
364 * (sg_last(sg) == true) was reached.
365 */
366struct sg_page_iter {
367	struct scatterlist	*sg;		/* sg holding the page */
368	unsigned int		sg_pgoffset;	/* page offset within the sg */
369
370	/* these are internal states, keep away */
371	unsigned int		__nents;	/* remaining sg entries */
372	int			__pg_advance;	/* nr pages to advance at the
373						 * next step */
374};
375
376/*
377 * sg page iterator for DMA addresses
378 *
379 * This is the same as sg_page_iter however you can call
380 * sg_page_iter_dma_address(@dma_iter) to get the page's DMA
381 * address. sg_page_iter_page() cannot be called on this iterator.
382 */
383struct sg_dma_page_iter {
384	struct sg_page_iter base;
385};
386
387bool __sg_page_iter_next(struct sg_page_iter *piter);
388bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter);
389void __sg_page_iter_start(struct sg_page_iter *piter,
390			  struct scatterlist *sglist, unsigned int nents,
391			  unsigned long pgoffset);
392/**
393 * sg_page_iter_page - get the current page held by the page iterator
394 * @piter:	page iterator holding the page
395 */
396static inline struct page *sg_page_iter_page(struct sg_page_iter *piter)
397{
398	return nth_page(sg_page(piter->sg), piter->sg_pgoffset);
399}
400
401/**
402 * sg_page_iter_dma_address - get the dma address of the current page held by
403 * the page iterator.
404 * @dma_iter:	page iterator holding the page
405 */
406static inline dma_addr_t
407sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter)
408{
409	return sg_dma_address(dma_iter->base.sg) +
410	       (dma_iter->base.sg_pgoffset << PAGE_SHIFT);
411}
412
413/**
414 * for_each_sg_page - iterate over the pages of the given sg list
415 * @sglist:	sglist to iterate over
416 * @piter:	page iterator to hold current page, sg, sg_pgoffset
417 * @nents:	maximum number of sg entries to iterate over
418 * @pgoffset:	starting page offset (in pages)
419 *
420 * Callers may use sg_page_iter_page() to get each page pointer.
421 * In each loop it operates on PAGE_SIZE unit.
422 */
423#define for_each_sg_page(sglist, piter, nents, pgoffset)		   \
424	for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \
425	     __sg_page_iter_next(piter);)
426
427/**
428 * for_each_sg_dma_page - iterate over the pages of the given sg list
429 * @sglist:	sglist to iterate over
430 * @dma_iter:	DMA page iterator to hold current page
431 * @dma_nents:	maximum number of sg entries to iterate over, this is the value
432 *              returned from dma_map_sg
433 * @pgoffset:	starting page offset (in pages)
434 *
435 * Callers may use sg_page_iter_dma_address() to get each page's DMA address.
436 * In each loop it operates on PAGE_SIZE unit.
437 */
438#define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset)            \
439	for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents,        \
440				  pgoffset);                                   \
441	     __sg_page_iter_dma_next(dma_iter);)
442
443/**
444 * for_each_sgtable_page - iterate over all pages in the sg_table object
445 * @sgt:	sg_table object to iterate over
446 * @piter:	page iterator to hold current page
447 * @pgoffset:	starting page offset (in pages)
448 *
449 * Iterates over the all memory pages in the buffer described by
450 * a scatterlist stored in the given sg_table object.
451 * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit.
452 */
453#define for_each_sgtable_page(sgt, piter, pgoffset)	\
454	for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset)
455
456/**
457 * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object
458 * @sgt:	sg_table object to iterate over
459 * @dma_iter:	DMA page iterator to hold current page
460 * @pgoffset:	starting page offset (in pages)
461 *
462 * Iterates over the all DMA mapped pages in the buffer described by
463 * a scatterlist stored in the given sg_table object.
464 * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE
465 * unit.
466 */
467#define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset)	\
468	for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset)
469
470
471/*
472 * Mapping sg iterator
473 *
474 * Iterates over sg entries mapping page-by-page.  On each successful
475 * iteration, @miter->page points to the mapped page and
476 * @miter->length bytes of data can be accessed at @miter->addr.  As
477 * long as an interation is enclosed between start and stop, the user
478 * is free to choose control structure and when to stop.
479 *
480 * @miter->consumed is set to @miter->length on each iteration.  It
481 * can be adjusted if the user can't consume all the bytes in one go.
482 * Also, a stopped iteration can be resumed by calling next on it.
483 * This is useful when iteration needs to release all resources and
484 * continue later (e.g. at the next interrupt).
485 */
486
487#define SG_MITER_ATOMIC		(1 << 0)	 /* use kmap_atomic */
488#define SG_MITER_TO_SG		(1 << 1)	/* flush back to phys on unmap */
489#define SG_MITER_FROM_SG	(1 << 2)	/* nop */
490
491struct sg_mapping_iter {
492	/* the following three fields can be accessed directly */
493	struct page		*page;		/* currently mapped page */
494	void			*addr;		/* pointer to the mapped area */
495	size_t			length;		/* length of the mapped area */
496	size_t			consumed;	/* number of consumed bytes */
497	struct sg_page_iter	piter;		/* page iterator */
498
499	/* these are internal states, keep away */
500	unsigned int		__offset;	/* offset within page */
501	unsigned int		__remaining;	/* remaining bytes on page */
502	unsigned int		__flags;
503};
504
505void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
506		    unsigned int nents, unsigned int flags);
507bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset);
508bool sg_miter_next(struct sg_mapping_iter *miter);
509void sg_miter_stop(struct sg_mapping_iter *miter);
510
511#endif /* _LINUX_SCATTERLIST_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_SCATTERLIST_H
  3#define _LINUX_SCATTERLIST_H
  4
  5#include <linux/string.h>
  6#include <linux/types.h>
  7#include <linux/bug.h>
  8#include <linux/mm.h>
  9#include <asm/io.h>
 10
 11struct scatterlist {
 12	unsigned long	page_link;
 13	unsigned int	offset;
 14	unsigned int	length;
 15	dma_addr_t	dma_address;
 16#ifdef CONFIG_NEED_SG_DMA_LENGTH
 17	unsigned int	dma_length;
 18#endif
 19#ifdef CONFIG_NEED_SG_DMA_FLAGS
 20	unsigned int    dma_flags;
 21#endif
 22};
 23
 24/*
 
 
 
 
 
 
 25 * These macros should be used after a dma_map_sg call has been done
 26 * to get bus addresses of each of the SG entries and their lengths.
 27 * You should only work with the number of sg entries dma_map_sg
 28 * returns, or alternatively stop on the first sg_dma_len(sg) which
 29 * is 0.
 30 */
 31#define sg_dma_address(sg)	((sg)->dma_address)
 32
 33#ifdef CONFIG_NEED_SG_DMA_LENGTH
 34#define sg_dma_len(sg)		((sg)->dma_length)
 35#else
 36#define sg_dma_len(sg)		((sg)->length)
 37#endif
 38
 39struct sg_table {
 40	struct scatterlist *sgl;	/* the list */
 41	unsigned int nents;		/* number of mapped entries */
 42	unsigned int orig_nents;	/* original size of list */
 43};
 44
 45struct sg_append_table {
 46	struct sg_table sgt;		/* The scatter list table */
 47	struct scatterlist *prv;	/* last populated sge in the table */
 48	unsigned int total_nents;	/* Total entries in the table */
 49};
 50
 51/*
 52 * Notes on SG table design.
 53 *
 54 * We use the unsigned long page_link field in the scatterlist struct to place
 55 * the page pointer AND encode information about the sg table as well. The two
 56 * lower bits are reserved for this information.
 57 *
 58 * If bit 0 is set, then the page_link contains a pointer to the next sg
 59 * table list. Otherwise the next entry is at sg + 1.
 60 *
 61 * If bit 1 is set, then this sg entry is the last element in a list.
 62 *
 63 * See sg_next().
 64 *
 65 */
 66
 67#define SG_CHAIN	0x01UL
 68#define SG_END		0x02UL
 69
 70/*
 71 * We overload the LSB of the page pointer to indicate whether it's
 72 * a valid sg entry, or whether it points to the start of a new scatterlist.
 73 * Those low bits are there for everyone! (thanks mason :-)
 74 */
 75#define SG_PAGE_LINK_MASK (SG_CHAIN | SG_END)
 76
 77static inline unsigned int __sg_flags(struct scatterlist *sg)
 78{
 79	return sg->page_link & SG_PAGE_LINK_MASK;
 80}
 81
 82static inline struct scatterlist *sg_chain_ptr(struct scatterlist *sg)
 83{
 84	return (struct scatterlist *)(sg->page_link & ~SG_PAGE_LINK_MASK);
 85}
 86
 87static inline bool sg_is_chain(struct scatterlist *sg)
 88{
 89	return __sg_flags(sg) & SG_CHAIN;
 90}
 91
 92static inline bool sg_is_last(struct scatterlist *sg)
 93{
 94	return __sg_flags(sg) & SG_END;
 95}
 96
 97/**
 98 * sg_assign_page - Assign a given page to an SG entry
 99 * @sg:		    SG entry
100 * @page:	    The page
101 *
102 * Description:
103 *   Assign page to sg entry. Also see sg_set_page(), the most commonly used
104 *   variant.
105 *
106 **/
107static inline void sg_assign_page(struct scatterlist *sg, struct page *page)
108{
109	unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END);
110
111	/*
112	 * In order for the low bit stealing approach to work, pages
113	 * must be aligned at a 32-bit boundary as a minimum.
114	 */
115	BUG_ON((unsigned long)page & SG_PAGE_LINK_MASK);
116#ifdef CONFIG_DEBUG_SG
117	BUG_ON(sg_is_chain(sg));
118#endif
119	sg->page_link = page_link | (unsigned long) page;
120}
121
122/**
123 * sg_set_page - Set sg entry to point at given page
124 * @sg:		 SG entry
125 * @page:	 The page
126 * @len:	 Length of data
127 * @offset:	 Offset into page
128 *
129 * Description:
130 *   Use this function to set an sg entry pointing at a page, never assign
131 *   the page directly. We encode sg table information in the lower bits
132 *   of the page pointer. See sg_page() for looking up the page belonging
133 *   to an sg entry.
134 *
135 **/
136static inline void sg_set_page(struct scatterlist *sg, struct page *page,
137			       unsigned int len, unsigned int offset)
138{
139	sg_assign_page(sg, page);
140	sg->offset = offset;
141	sg->length = len;
142}
143
144/**
145 * sg_set_folio - Set sg entry to point at given folio
146 * @sg:		 SG entry
147 * @folio:	 The folio
148 * @len:	 Length of data
149 * @offset:	 Offset into folio
150 *
151 * Description:
152 *   Use this function to set an sg entry pointing at a folio, never assign
153 *   the folio directly. We encode sg table information in the lower bits
154 *   of the folio pointer. See sg_page() for looking up the page belonging
155 *   to an sg entry.
156 *
157 **/
158static inline void sg_set_folio(struct scatterlist *sg, struct folio *folio,
159			       size_t len, size_t offset)
160{
161	WARN_ON_ONCE(len > UINT_MAX);
162	WARN_ON_ONCE(offset > UINT_MAX);
163	sg_assign_page(sg, &folio->page);
164	sg->offset = offset;
165	sg->length = len;
166}
167
168static inline struct page *sg_page(struct scatterlist *sg)
169{
170#ifdef CONFIG_DEBUG_SG
171	BUG_ON(sg_is_chain(sg));
172#endif
173	return (struct page *)((sg)->page_link & ~SG_PAGE_LINK_MASK);
174}
175
176/**
177 * sg_set_buf - Set sg entry to point at given data
178 * @sg:		 SG entry
179 * @buf:	 Data
180 * @buflen:	 Data length
181 *
182 **/
183static inline void sg_set_buf(struct scatterlist *sg, const void *buf,
184			      unsigned int buflen)
185{
186#ifdef CONFIG_DEBUG_SG
187	BUG_ON(!virt_addr_valid(buf));
188#endif
189	sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf));
190}
191
192/*
193 * Loop over each sg element, following the pointer to a new list if necessary
194 */
195#define for_each_sg(sglist, sg, nr, __i)	\
196	for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg))
197
198/*
199 * Loop over each sg element in the given sg_table object.
200 */
201#define for_each_sgtable_sg(sgt, sg, i)		\
202	for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i)
203
204/*
205 * Loop over each sg element in the given *DMA mapped* sg_table object.
206 * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses
207 * of the each element.
208 */
209#define for_each_sgtable_dma_sg(sgt, sg, i)	\
210	for_each_sg((sgt)->sgl, sg, (sgt)->nents, i)
211
212static inline void __sg_chain(struct scatterlist *chain_sg,
213			      struct scatterlist *sgl)
214{
215	/*
216	 * offset and length are unused for chain entry. Clear them.
217	 */
218	chain_sg->offset = 0;
219	chain_sg->length = 0;
220
221	/*
222	 * Set lowest bit to indicate a link pointer, and make sure to clear
223	 * the termination bit if it happens to be set.
224	 */
225	chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END;
226}
227
228/**
229 * sg_chain - Chain two sglists together
230 * @prv:	First scatterlist
231 * @prv_nents:	Number of entries in prv
232 * @sgl:	Second scatterlist
233 *
234 * Description:
235 *   Links @prv@ and @sgl@ together, to form a longer scatterlist.
236 *
237 **/
238static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents,
239			    struct scatterlist *sgl)
240{
241	__sg_chain(&prv[prv_nents - 1], sgl);
 
 
 
 
 
 
 
 
 
 
 
242}
243
244/**
245 * sg_mark_end - Mark the end of the scatterlist
246 * @sg:		 SG entryScatterlist
247 *
248 * Description:
249 *   Marks the passed in sg entry as the termination point for the sg
250 *   table. A call to sg_next() on this entry will return NULL.
251 *
252 **/
253static inline void sg_mark_end(struct scatterlist *sg)
254{
255	/*
256	 * Set termination bit, clear potential chain bit
257	 */
258	sg->page_link |= SG_END;
259	sg->page_link &= ~SG_CHAIN;
260}
261
262/**
263 * sg_unmark_end - Undo setting the end of the scatterlist
264 * @sg:		 SG entryScatterlist
265 *
266 * Description:
267 *   Removes the termination marker from the given entry of the scatterlist.
268 *
269 **/
270static inline void sg_unmark_end(struct scatterlist *sg)
271{
272	sg->page_link &= ~SG_END;
273}
274
275/*
276 * On 64-bit architectures there is a 4-byte padding in struct scatterlist
277 * (assuming also CONFIG_NEED_SG_DMA_LENGTH is set). Use this padding for DMA
278 * flags bits to indicate when a specific dma address is a bus address or the
279 * buffer may have been bounced via SWIOTLB.
280 */
281#ifdef CONFIG_NEED_SG_DMA_FLAGS
282
283#define SG_DMA_BUS_ADDRESS	(1 << 0)
284#define SG_DMA_SWIOTLB		(1 << 1)
285
286/**
287 * sg_dma_is_bus_address - Return whether a given segment was marked
288 *			   as a bus address
289 * @sg:		 SG entry
290 *
291 * Description:
292 *   Returns true if sg_dma_mark_bus_address() has been called on
293 *   this segment.
294 **/
295static inline bool sg_dma_is_bus_address(struct scatterlist *sg)
296{
297	return sg->dma_flags & SG_DMA_BUS_ADDRESS;
298}
299
300/**
301 * sg_dma_mark_bus_address - Mark the scatterlist entry as a bus address
302 * @sg:		 SG entry
303 *
304 * Description:
305 *   Marks the passed in sg entry to indicate that the dma_address is
306 *   a bus address and doesn't need to be unmapped. This should only be
307 *   used by dma_map_sg() implementations to mark bus addresses
308 *   so they can be properly cleaned up in dma_unmap_sg().
309 **/
310static inline void sg_dma_mark_bus_address(struct scatterlist *sg)
311{
312	sg->dma_flags |= SG_DMA_BUS_ADDRESS;
313}
314
315/**
316 * sg_dma_unmark_bus_address - Unmark the scatterlist entry as a bus address
317 * @sg:		 SG entry
318 *
319 * Description:
320 *   Clears the bus address mark.
321 **/
322static inline void sg_dma_unmark_bus_address(struct scatterlist *sg)
323{
324	sg->dma_flags &= ~SG_DMA_BUS_ADDRESS;
325}
326
327/**
328 * sg_dma_is_swiotlb - Return whether the scatterlist was marked for SWIOTLB
329 *			bouncing
330 * @sg:		SG entry
331 *
332 * Description:
333 *   Returns true if the scatterlist was marked for SWIOTLB bouncing. Not all
334 *   elements may have been bounced, so the caller would have to check
335 *   individual SG entries with swiotlb_find_pool().
336 */
337static inline bool sg_dma_is_swiotlb(struct scatterlist *sg)
338{
339	return sg->dma_flags & SG_DMA_SWIOTLB;
340}
341
342/**
343 * sg_dma_mark_swiotlb - Mark the scatterlist for SWIOTLB bouncing
344 * @sg:		SG entry
345 *
346 * Description:
347 *   Marks a a scatterlist for SWIOTLB bounce. Not all SG entries may be
348 *   bounced.
349 */
350static inline void sg_dma_mark_swiotlb(struct scatterlist *sg)
351{
352	sg->dma_flags |= SG_DMA_SWIOTLB;
353}
354
355#else
356
357static inline bool sg_dma_is_bus_address(struct scatterlist *sg)
358{
359	return false;
360}
361static inline void sg_dma_mark_bus_address(struct scatterlist *sg)
362{
363}
364static inline void sg_dma_unmark_bus_address(struct scatterlist *sg)
365{
366}
367static inline bool sg_dma_is_swiotlb(struct scatterlist *sg)
368{
369	return false;
370}
371static inline void sg_dma_mark_swiotlb(struct scatterlist *sg)
372{
373}
374
375#endif	/* CONFIG_NEED_SG_DMA_FLAGS */
376
377/**
378 * sg_phys - Return physical address of an sg entry
379 * @sg:	     SG entry
380 *
381 * Description:
382 *   This calls page_to_phys() on the page in this sg entry, and adds the
383 *   sg offset. The caller must know that it is legal to call page_to_phys()
384 *   on the sg page.
385 *
386 **/
387static inline dma_addr_t sg_phys(struct scatterlist *sg)
388{
389	return page_to_phys(sg_page(sg)) + sg->offset;
390}
391
392/**
393 * sg_virt - Return virtual address of an sg entry
394 * @sg:      SG entry
395 *
396 * Description:
397 *   This calls page_address() on the page in this sg entry, and adds the
398 *   sg offset. The caller must know that the sg page has a valid virtual
399 *   mapping.
400 *
401 **/
402static inline void *sg_virt(struct scatterlist *sg)
403{
404	return page_address(sg_page(sg)) + sg->offset;
405}
406
407/**
408 * sg_init_marker - Initialize markers in sg table
409 * @sgl:	   The SG table
410 * @nents:	   Number of entries in table
411 *
412 **/
413static inline void sg_init_marker(struct scatterlist *sgl,
414				  unsigned int nents)
415{
416	sg_mark_end(&sgl[nents - 1]);
417}
418
419int sg_nents(struct scatterlist *sg);
420int sg_nents_for_len(struct scatterlist *sg, u64 len);
421struct scatterlist *sg_next(struct scatterlist *);
422struct scatterlist *sg_last(struct scatterlist *s, unsigned int);
423void sg_init_table(struct scatterlist *, unsigned int);
424void sg_init_one(struct scatterlist *, const void *, unsigned int);
425int sg_split(struct scatterlist *in, const int in_mapped_nents,
426	     const off_t skip, const int nb_splits,
427	     const size_t *split_sizes,
428	     struct scatterlist **out, int *out_mapped_nents,
429	     gfp_t gfp_mask);
430
431typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t);
432typedef void (sg_free_fn)(struct scatterlist *, unsigned int);
433
434void __sg_free_table(struct sg_table *, unsigned int, unsigned int,
435		     sg_free_fn *, unsigned int);
436void sg_free_table(struct sg_table *);
437void sg_free_append_table(struct sg_append_table *sgt);
438int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int,
439		     struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *);
440int sg_alloc_table(struct sg_table *, unsigned int, gfp_t);
441int sg_alloc_append_table_from_pages(struct sg_append_table *sgt,
442				     struct page **pages, unsigned int n_pages,
443				     unsigned int offset, unsigned long size,
444				     unsigned int max_segment,
445				     unsigned int left_pages, gfp_t gfp_mask);
446int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
447				      unsigned int n_pages, unsigned int offset,
448				      unsigned long size,
449				      unsigned int max_segment, gfp_t gfp_mask);
450
451/**
452 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
453 *			       an array of pages
454 * @sgt:	 The sg table header to use
455 * @pages:	 Pointer to an array of page pointers
456 * @n_pages:	 Number of pages in the pages array
457 * @offset:      Offset from start of the first page to the start of a buffer
458 * @size:        Number of valid bytes in the buffer (after offset)
459 * @gfp_mask:	 GFP allocation mask
460 *
461 *  Description:
462 *    Allocate and initialize an sg table from a list of pages. Contiguous
463 *    ranges of the pages are squashed into a single scatterlist node. A user
464 *    may provide an offset at a start and a size of valid data in a buffer
465 *    specified by the page array. The returned sg table is released by
466 *    sg_free_table.
467 *
468 * Returns:
469 *   0 on success, negative error on failure
470 */
471static inline int sg_alloc_table_from_pages(struct sg_table *sgt,
472					    struct page **pages,
473					    unsigned int n_pages,
474					    unsigned int offset,
475					    unsigned long size, gfp_t gfp_mask)
476{
477	return sg_alloc_table_from_pages_segment(sgt, pages, n_pages, offset,
478						 size, UINT_MAX, gfp_mask);
479}
480
481#ifdef CONFIG_SGL_ALLOC
482struct scatterlist *sgl_alloc_order(unsigned long long length,
483				    unsigned int order, bool chainable,
484				    gfp_t gfp, unsigned int *nent_p);
485struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
486			      unsigned int *nent_p);
487void sgl_free_n_order(struct scatterlist *sgl, int nents, int order);
488void sgl_free_order(struct scatterlist *sgl, int order);
489void sgl_free(struct scatterlist *sgl);
490#endif /* CONFIG_SGL_ALLOC */
491
492size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
493		      size_t buflen, off_t skip, bool to_buffer);
494
495size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
496			   const void *buf, size_t buflen);
497size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
498			 void *buf, size_t buflen);
499
500size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
501			    const void *buf, size_t buflen, off_t skip);
502size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
503			  void *buf, size_t buflen, off_t skip);
504size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
505		       size_t buflen, off_t skip);
506
507/*
508 * Maximum number of entries that will be allocated in one piece, if
509 * a list larger than this is required then chaining will be utilized.
510 */
511#define SG_MAX_SINGLE_ALLOC		(PAGE_SIZE / sizeof(struct scatterlist))
512
513/*
514 * The maximum number of SG segments that we will put inside a
515 * scatterlist (unless chaining is used). Should ideally fit inside a
516 * single page, to avoid a higher order allocation.  We could define this
517 * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order.  The
518 * minimum value is 32
519 */
520#define SG_CHUNK_SIZE	128
521
522/*
523 * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit
524 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
525 */
526#ifdef CONFIG_ARCH_NO_SG_CHAIN
527#define SG_MAX_SEGMENTS	SG_CHUNK_SIZE
528#else
529#define SG_MAX_SEGMENTS	2048
530#endif
531
532#ifdef CONFIG_SG_POOL
533void sg_free_table_chained(struct sg_table *table,
534			   unsigned nents_first_chunk);
535int sg_alloc_table_chained(struct sg_table *table, int nents,
536			   struct scatterlist *first_chunk,
537			   unsigned nents_first_chunk);
538#endif
539
540/*
541 * sg page iterator
542 *
543 * Iterates over sg entries page-by-page.  On each successful iteration, you
544 * can call sg_page_iter_page(@piter) to get the current page.
545 * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to
546 * the page's page offset within the sg. The iteration will stop either when a
547 * maximum number of sg entries was reached or a terminating sg
548 * (sg_last(sg) == true) was reached.
549 */
550struct sg_page_iter {
551	struct scatterlist	*sg;		/* sg holding the page */
552	unsigned int		sg_pgoffset;	/* page offset within the sg */
553
554	/* these are internal states, keep away */
555	unsigned int		__nents;	/* remaining sg entries */
556	int			__pg_advance;	/* nr pages to advance at the
557						 * next step */
558};
559
560/*
561 * sg page iterator for DMA addresses
562 *
563 * This is the same as sg_page_iter however you can call
564 * sg_page_iter_dma_address(@dma_iter) to get the page's DMA
565 * address. sg_page_iter_page() cannot be called on this iterator.
566 */
567struct sg_dma_page_iter {
568	struct sg_page_iter base;
569};
570
571bool __sg_page_iter_next(struct sg_page_iter *piter);
572bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter);
573void __sg_page_iter_start(struct sg_page_iter *piter,
574			  struct scatterlist *sglist, unsigned int nents,
575			  unsigned long pgoffset);
576/**
577 * sg_page_iter_page - get the current page held by the page iterator
578 * @piter:	page iterator holding the page
579 */
580static inline struct page *sg_page_iter_page(struct sg_page_iter *piter)
581{
582	return nth_page(sg_page(piter->sg), piter->sg_pgoffset);
583}
584
585/**
586 * sg_page_iter_dma_address - get the dma address of the current page held by
587 * the page iterator.
588 * @dma_iter:	page iterator holding the page
589 */
590static inline dma_addr_t
591sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter)
592{
593	return sg_dma_address(dma_iter->base.sg) +
594	       (dma_iter->base.sg_pgoffset << PAGE_SHIFT);
595}
596
597/**
598 * for_each_sg_page - iterate over the pages of the given sg list
599 * @sglist:	sglist to iterate over
600 * @piter:	page iterator to hold current page, sg, sg_pgoffset
601 * @nents:	maximum number of sg entries to iterate over
602 * @pgoffset:	starting page offset (in pages)
603 *
604 * Callers may use sg_page_iter_page() to get each page pointer.
605 * In each loop it operates on PAGE_SIZE unit.
606 */
607#define for_each_sg_page(sglist, piter, nents, pgoffset)		   \
608	for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \
609	     __sg_page_iter_next(piter);)
610
611/**
612 * for_each_sg_dma_page - iterate over the pages of the given sg list
613 * @sglist:	sglist to iterate over
614 * @dma_iter:	DMA page iterator to hold current page
615 * @dma_nents:	maximum number of sg entries to iterate over, this is the value
616 *              returned from dma_map_sg
617 * @pgoffset:	starting page offset (in pages)
618 *
619 * Callers may use sg_page_iter_dma_address() to get each page's DMA address.
620 * In each loop it operates on PAGE_SIZE unit.
621 */
622#define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset)            \
623	for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents,        \
624				  pgoffset);                                   \
625	     __sg_page_iter_dma_next(dma_iter);)
626
627/**
628 * for_each_sgtable_page - iterate over all pages in the sg_table object
629 * @sgt:	sg_table object to iterate over
630 * @piter:	page iterator to hold current page
631 * @pgoffset:	starting page offset (in pages)
632 *
633 * Iterates over the all memory pages in the buffer described by
634 * a scatterlist stored in the given sg_table object.
635 * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit.
636 */
637#define for_each_sgtable_page(sgt, piter, pgoffset)	\
638	for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset)
639
640/**
641 * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object
642 * @sgt:	sg_table object to iterate over
643 * @dma_iter:	DMA page iterator to hold current page
644 * @pgoffset:	starting page offset (in pages)
645 *
646 * Iterates over the all DMA mapped pages in the buffer described by
647 * a scatterlist stored in the given sg_table object.
648 * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE
649 * unit.
650 */
651#define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset)	\
652	for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset)
653
654
655/*
656 * Mapping sg iterator
657 *
658 * Iterates over sg entries mapping page-by-page.  On each successful
659 * iteration, @miter->page points to the mapped page and
660 * @miter->length bytes of data can be accessed at @miter->addr.  As
661 * long as an iteration is enclosed between start and stop, the user
662 * is free to choose control structure and when to stop.
663 *
664 * @miter->consumed is set to @miter->length on each iteration.  It
665 * can be adjusted if the user can't consume all the bytes in one go.
666 * Also, a stopped iteration can be resumed by calling next on it.
667 * This is useful when iteration needs to release all resources and
668 * continue later (e.g. at the next interrupt).
669 */
670
671#define SG_MITER_ATOMIC		(1 << 0)	 /* use kmap_atomic */
672#define SG_MITER_TO_SG		(1 << 1)	/* flush back to phys on unmap */
673#define SG_MITER_FROM_SG	(1 << 2)	/* nop */
674
675struct sg_mapping_iter {
676	/* the following three fields can be accessed directly */
677	struct page		*page;		/* currently mapped page */
678	void			*addr;		/* pointer to the mapped area */
679	size_t			length;		/* length of the mapped area */
680	size_t			consumed;	/* number of consumed bytes */
681	struct sg_page_iter	piter;		/* page iterator */
682
683	/* these are internal states, keep away */
684	unsigned int		__offset;	/* offset within page */
685	unsigned int		__remaining;	/* remaining bytes on page */
686	unsigned int		__flags;
687};
688
689void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
690		    unsigned int nents, unsigned int flags);
691bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset);
692bool sg_miter_next(struct sg_mapping_iter *miter);
693void sg_miter_stop(struct sg_mapping_iter *miter);
694
695#endif /* _LINUX_SCATTERLIST_H */