Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8#include <linux/dmaengine.h>
9#include <linux/pm_runtime.h>
10#include <linux/spi/spi.h>
11#include <linux/spi/spi-mem.h>
12
13#include "internals.h"
14
15#define SPI_MEM_MAX_BUSWIDTH 8
16
17/**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 * memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 * function
24 *
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
31 *
32 * Return: 0 in case of success, a negative error code otherwise.
33 */
34int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 const struct spi_mem_op *op,
36 struct sg_table *sgt)
37{
38 struct device *dmadev;
39
40 if (!op->data.nbytes)
41 return -EINVAL;
42
43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 dmadev = ctlr->dma_tx->device->dev;
45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 dmadev = ctlr->dma_rx->device->dev;
47 else
48 dmadev = ctlr->dev.parent;
49
50 if (!dmadev)
51 return -EINVAL;
52
53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 op->data.dir == SPI_MEM_DATA_IN ?
55 DMA_FROM_DEVICE : DMA_TO_DEVICE);
56}
57EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58
59/**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 * memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
66 *
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
70 *
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
73 *
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
77 *
78 * Return: 0 in case of success, a negative error code otherwise.
79 */
80void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 const struct spi_mem_op *op,
82 struct sg_table *sgt)
83{
84 struct device *dmadev;
85
86 if (!op->data.nbytes)
87 return;
88
89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 dmadev = ctlr->dma_tx->device->dev;
91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 dmadev = ctlr->dma_rx->device->dev;
93 else
94 dmadev = ctlr->dev.parent;
95
96 spi_unmap_buf(ctlr, dmadev, sgt,
97 op->data.dir == SPI_MEM_DATA_IN ?
98 DMA_FROM_DEVICE : DMA_TO_DEVICE);
99}
100EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101
102static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103{
104 u32 mode = mem->spi->mode;
105
106 switch (buswidth) {
107 case 1:
108 return 0;
109
110 case 2:
111 if ((tx &&
112 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 (!tx &&
114 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 return 0;
116
117 break;
118
119 case 4:
120 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 return 0;
123
124 break;
125
126 case 8:
127 if ((tx && (mode & SPI_TX_OCTAL)) ||
128 (!tx && (mode & SPI_RX_OCTAL)))
129 return 0;
130
131 break;
132
133 default:
134 break;
135 }
136
137 return -ENOTSUPP;
138}
139
140bool spi_mem_default_supports_op(struct spi_mem *mem,
141 const struct spi_mem_op *op)
142{
143 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 return false;
145
146 if (op->addr.nbytes &&
147 spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 return false;
149
150 if (op->dummy.nbytes &&
151 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 return false;
153
154 if (op->data.dir != SPI_MEM_NO_DATA &&
155 spi_check_buswidth_req(mem, op->data.buswidth,
156 op->data.dir == SPI_MEM_DATA_OUT))
157 return false;
158
159 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
160 return false;
161
162 if (op->cmd.nbytes != 1)
163 return false;
164
165 return true;
166}
167EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
168
169static bool spi_mem_buswidth_is_valid(u8 buswidth)
170{
171 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
172 return false;
173
174 return true;
175}
176
177static int spi_mem_check_op(const struct spi_mem_op *op)
178{
179 if (!op->cmd.buswidth || !op->cmd.nbytes)
180 return -EINVAL;
181
182 if ((op->addr.nbytes && !op->addr.buswidth) ||
183 (op->dummy.nbytes && !op->dummy.buswidth) ||
184 (op->data.nbytes && !op->data.buswidth))
185 return -EINVAL;
186
187 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
188 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
189 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
190 !spi_mem_buswidth_is_valid(op->data.buswidth))
191 return -EINVAL;
192
193 return 0;
194}
195
196static bool spi_mem_internal_supports_op(struct spi_mem *mem,
197 const struct spi_mem_op *op)
198{
199 struct spi_controller *ctlr = mem->spi->controller;
200
201 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
202 return ctlr->mem_ops->supports_op(mem, op);
203
204 return spi_mem_default_supports_op(mem, op);
205}
206
207/**
208 * spi_mem_supports_op() - Check if a memory device and the controller it is
209 * connected to support a specific memory operation
210 * @mem: the SPI memory
211 * @op: the memory operation to check
212 *
213 * Some controllers are only supporting Single or Dual IOs, others might only
214 * support specific opcodes, or it can even be that the controller and device
215 * both support Quad IOs but the hardware prevents you from using it because
216 * only 2 IO lines are connected.
217 *
218 * This function checks whether a specific operation is supported.
219 *
220 * Return: true if @op is supported, false otherwise.
221 */
222bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
223{
224 if (spi_mem_check_op(op))
225 return false;
226
227 return spi_mem_internal_supports_op(mem, op);
228}
229EXPORT_SYMBOL_GPL(spi_mem_supports_op);
230
231static int spi_mem_access_start(struct spi_mem *mem)
232{
233 struct spi_controller *ctlr = mem->spi->controller;
234
235 /*
236 * Flush the message queue before executing our SPI memory
237 * operation to prevent preemption of regular SPI transfers.
238 */
239 spi_flush_queue(ctlr);
240
241 if (ctlr->auto_runtime_pm) {
242 int ret;
243
244 ret = pm_runtime_get_sync(ctlr->dev.parent);
245 if (ret < 0) {
246 dev_err(&ctlr->dev, "Failed to power device: %d\n",
247 ret);
248 return ret;
249 }
250 }
251
252 mutex_lock(&ctlr->bus_lock_mutex);
253 mutex_lock(&ctlr->io_mutex);
254
255 return 0;
256}
257
258static void spi_mem_access_end(struct spi_mem *mem)
259{
260 struct spi_controller *ctlr = mem->spi->controller;
261
262 mutex_unlock(&ctlr->io_mutex);
263 mutex_unlock(&ctlr->bus_lock_mutex);
264
265 if (ctlr->auto_runtime_pm)
266 pm_runtime_put(ctlr->dev.parent);
267}
268
269/**
270 * spi_mem_exec_op() - Execute a memory operation
271 * @mem: the SPI memory
272 * @op: the memory operation to execute
273 *
274 * Executes a memory operation.
275 *
276 * This function first checks that @op is supported and then tries to execute
277 * it.
278 *
279 * Return: 0 in case of success, a negative error code otherwise.
280 */
281int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
282{
283 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
284 struct spi_controller *ctlr = mem->spi->controller;
285 struct spi_transfer xfers[4] = { };
286 struct spi_message msg;
287 u8 *tmpbuf;
288 int ret;
289
290 ret = spi_mem_check_op(op);
291 if (ret)
292 return ret;
293
294 if (!spi_mem_internal_supports_op(mem, op))
295 return -ENOTSUPP;
296
297 if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
298 ret = spi_mem_access_start(mem);
299 if (ret)
300 return ret;
301
302 ret = ctlr->mem_ops->exec_op(mem, op);
303
304 spi_mem_access_end(mem);
305
306 /*
307 * Some controllers only optimize specific paths (typically the
308 * read path) and expect the core to use the regular SPI
309 * interface in other cases.
310 */
311 if (!ret || ret != -ENOTSUPP)
312 return ret;
313 }
314
315 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
316
317 /*
318 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
319 * we're guaranteed that this buffer is DMA-able, as required by the
320 * SPI layer.
321 */
322 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
323 if (!tmpbuf)
324 return -ENOMEM;
325
326 spi_message_init(&msg);
327
328 tmpbuf[0] = op->cmd.opcode;
329 xfers[xferpos].tx_buf = tmpbuf;
330 xfers[xferpos].len = op->cmd.nbytes;
331 xfers[xferpos].tx_nbits = op->cmd.buswidth;
332 spi_message_add_tail(&xfers[xferpos], &msg);
333 xferpos++;
334 totalxferlen++;
335
336 if (op->addr.nbytes) {
337 int i;
338
339 for (i = 0; i < op->addr.nbytes; i++)
340 tmpbuf[i + 1] = op->addr.val >>
341 (8 * (op->addr.nbytes - i - 1));
342
343 xfers[xferpos].tx_buf = tmpbuf + 1;
344 xfers[xferpos].len = op->addr.nbytes;
345 xfers[xferpos].tx_nbits = op->addr.buswidth;
346 spi_message_add_tail(&xfers[xferpos], &msg);
347 xferpos++;
348 totalxferlen += op->addr.nbytes;
349 }
350
351 if (op->dummy.nbytes) {
352 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
353 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
354 xfers[xferpos].len = op->dummy.nbytes;
355 xfers[xferpos].tx_nbits = op->dummy.buswidth;
356 spi_message_add_tail(&xfers[xferpos], &msg);
357 xferpos++;
358 totalxferlen += op->dummy.nbytes;
359 }
360
361 if (op->data.nbytes) {
362 if (op->data.dir == SPI_MEM_DATA_IN) {
363 xfers[xferpos].rx_buf = op->data.buf.in;
364 xfers[xferpos].rx_nbits = op->data.buswidth;
365 } else {
366 xfers[xferpos].tx_buf = op->data.buf.out;
367 xfers[xferpos].tx_nbits = op->data.buswidth;
368 }
369
370 xfers[xferpos].len = op->data.nbytes;
371 spi_message_add_tail(&xfers[xferpos], &msg);
372 xferpos++;
373 totalxferlen += op->data.nbytes;
374 }
375
376 ret = spi_sync(mem->spi, &msg);
377
378 kfree(tmpbuf);
379
380 if (ret)
381 return ret;
382
383 if (msg.actual_length != totalxferlen)
384 return -EIO;
385
386 return 0;
387}
388EXPORT_SYMBOL_GPL(spi_mem_exec_op);
389
390/**
391 * spi_mem_get_name() - Return the SPI mem device name to be used by the
392 * upper layer if necessary
393 * @mem: the SPI memory
394 *
395 * This function allows SPI mem users to retrieve the SPI mem device name.
396 * It is useful if the upper layer needs to expose a custom name for
397 * compatibility reasons.
398 *
399 * Return: a string containing the name of the memory device to be used
400 * by the SPI mem user
401 */
402const char *spi_mem_get_name(struct spi_mem *mem)
403{
404 return mem->name;
405}
406EXPORT_SYMBOL_GPL(spi_mem_get_name);
407
408/**
409 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
410 * match controller limitations
411 * @mem: the SPI memory
412 * @op: the operation to adjust
413 *
414 * Some controllers have FIFO limitations and must split a data transfer
415 * operation into multiple ones, others require a specific alignment for
416 * optimized accesses. This function allows SPI mem drivers to split a single
417 * operation into multiple sub-operations when required.
418 *
419 * Return: a negative error code if the controller can't properly adjust @op,
420 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
421 * can't be handled in a single step.
422 */
423int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
424{
425 struct spi_controller *ctlr = mem->spi->controller;
426 size_t len;
427
428 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
429 return ctlr->mem_ops->adjust_op_size(mem, op);
430
431 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
432 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
433
434 if (len > spi_max_transfer_size(mem->spi))
435 return -EINVAL;
436
437 op->data.nbytes = min3((size_t)op->data.nbytes,
438 spi_max_transfer_size(mem->spi),
439 spi_max_message_size(mem->spi) -
440 len);
441 if (!op->data.nbytes)
442 return -EINVAL;
443 }
444
445 return 0;
446}
447EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
448
449static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
450 u64 offs, size_t len, void *buf)
451{
452 struct spi_mem_op op = desc->info.op_tmpl;
453 int ret;
454
455 op.addr.val = desc->info.offset + offs;
456 op.data.buf.in = buf;
457 op.data.nbytes = len;
458 ret = spi_mem_adjust_op_size(desc->mem, &op);
459 if (ret)
460 return ret;
461
462 ret = spi_mem_exec_op(desc->mem, &op);
463 if (ret)
464 return ret;
465
466 return op.data.nbytes;
467}
468
469static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
470 u64 offs, size_t len, const void *buf)
471{
472 struct spi_mem_op op = desc->info.op_tmpl;
473 int ret;
474
475 op.addr.val = desc->info.offset + offs;
476 op.data.buf.out = buf;
477 op.data.nbytes = len;
478 ret = spi_mem_adjust_op_size(desc->mem, &op);
479 if (ret)
480 return ret;
481
482 ret = spi_mem_exec_op(desc->mem, &op);
483 if (ret)
484 return ret;
485
486 return op.data.nbytes;
487}
488
489/**
490 * spi_mem_dirmap_create() - Create a direct mapping descriptor
491 * @mem: SPI mem device this direct mapping should be created for
492 * @info: direct mapping information
493 *
494 * This function is creating a direct mapping descriptor which can then be used
495 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
496 * If the SPI controller driver does not support direct mapping, this function
497 * falls back to an implementation using spi_mem_exec_op(), so that the caller
498 * doesn't have to bother implementing a fallback on his own.
499 *
500 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
501 */
502struct spi_mem_dirmap_desc *
503spi_mem_dirmap_create(struct spi_mem *mem,
504 const struct spi_mem_dirmap_info *info)
505{
506 struct spi_controller *ctlr = mem->spi->controller;
507 struct spi_mem_dirmap_desc *desc;
508 int ret = -ENOTSUPP;
509
510 /* Make sure the number of address cycles is between 1 and 8 bytes. */
511 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
512 return ERR_PTR(-EINVAL);
513
514 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
515 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
516 return ERR_PTR(-EINVAL);
517
518 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
519 if (!desc)
520 return ERR_PTR(-ENOMEM);
521
522 desc->mem = mem;
523 desc->info = *info;
524 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
525 ret = ctlr->mem_ops->dirmap_create(desc);
526
527 if (ret) {
528 desc->nodirmap = true;
529 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
530 ret = -ENOTSUPP;
531 else
532 ret = 0;
533 }
534
535 if (ret) {
536 kfree(desc);
537 return ERR_PTR(ret);
538 }
539
540 return desc;
541}
542EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
543
544/**
545 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
546 * @desc: the direct mapping descriptor to destroy
547 *
548 * This function destroys a direct mapping descriptor previously created by
549 * spi_mem_dirmap_create().
550 */
551void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
552{
553 struct spi_controller *ctlr = desc->mem->spi->controller;
554
555 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
556 ctlr->mem_ops->dirmap_destroy(desc);
557
558 kfree(desc);
559}
560EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
561
562static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
563{
564 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
565
566 spi_mem_dirmap_destroy(desc);
567}
568
569/**
570 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
571 * it to a device
572 * @dev: device the dirmap desc will be attached to
573 * @mem: SPI mem device this direct mapping should be created for
574 * @info: direct mapping information
575 *
576 * devm_ variant of the spi_mem_dirmap_create() function. See
577 * spi_mem_dirmap_create() for more details.
578 *
579 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
580 */
581struct spi_mem_dirmap_desc *
582devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
583 const struct spi_mem_dirmap_info *info)
584{
585 struct spi_mem_dirmap_desc **ptr, *desc;
586
587 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
588 GFP_KERNEL);
589 if (!ptr)
590 return ERR_PTR(-ENOMEM);
591
592 desc = spi_mem_dirmap_create(mem, info);
593 if (IS_ERR(desc)) {
594 devres_free(ptr);
595 } else {
596 *ptr = desc;
597 devres_add(dev, ptr);
598 }
599
600 return desc;
601}
602EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
603
604static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
605{
606 struct spi_mem_dirmap_desc **ptr = res;
607
608 if (WARN_ON(!ptr || !*ptr))
609 return 0;
610
611 return *ptr == data;
612}
613
614/**
615 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
616 * to a device
617 * @dev: device the dirmap desc is attached to
618 * @desc: the direct mapping descriptor to destroy
619 *
620 * devm_ variant of the spi_mem_dirmap_destroy() function. See
621 * spi_mem_dirmap_destroy() for more details.
622 */
623void devm_spi_mem_dirmap_destroy(struct device *dev,
624 struct spi_mem_dirmap_desc *desc)
625{
626 devres_release(dev, devm_spi_mem_dirmap_release,
627 devm_spi_mem_dirmap_match, desc);
628}
629EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
630
631/**
632 * spi_mem_dirmap_read() - Read data through a direct mapping
633 * @desc: direct mapping descriptor
634 * @offs: offset to start reading from. Note that this is not an absolute
635 * offset, but the offset within the direct mapping which already has
636 * its own offset
637 * @len: length in bytes
638 * @buf: destination buffer. This buffer must be DMA-able
639 *
640 * This function reads data from a memory device using a direct mapping
641 * previously instantiated with spi_mem_dirmap_create().
642 *
643 * Return: the amount of data read from the memory device or a negative error
644 * code. Note that the returned size might be smaller than @len, and the caller
645 * is responsible for calling spi_mem_dirmap_read() again when that happens.
646 */
647ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
648 u64 offs, size_t len, void *buf)
649{
650 struct spi_controller *ctlr = desc->mem->spi->controller;
651 ssize_t ret;
652
653 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
654 return -EINVAL;
655
656 if (!len)
657 return 0;
658
659 if (desc->nodirmap) {
660 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
661 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
662 ret = spi_mem_access_start(desc->mem);
663 if (ret)
664 return ret;
665
666 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
667
668 spi_mem_access_end(desc->mem);
669 } else {
670 ret = -ENOTSUPP;
671 }
672
673 return ret;
674}
675EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
676
677/**
678 * spi_mem_dirmap_write() - Write data through a direct mapping
679 * @desc: direct mapping descriptor
680 * @offs: offset to start writing from. Note that this is not an absolute
681 * offset, but the offset within the direct mapping which already has
682 * its own offset
683 * @len: length in bytes
684 * @buf: source buffer. This buffer must be DMA-able
685 *
686 * This function writes data to a memory device using a direct mapping
687 * previously instantiated with spi_mem_dirmap_create().
688 *
689 * Return: the amount of data written to the memory device or a negative error
690 * code. Note that the returned size might be smaller than @len, and the caller
691 * is responsible for calling spi_mem_dirmap_write() again when that happens.
692 */
693ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
694 u64 offs, size_t len, const void *buf)
695{
696 struct spi_controller *ctlr = desc->mem->spi->controller;
697 ssize_t ret;
698
699 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
700 return -EINVAL;
701
702 if (!len)
703 return 0;
704
705 if (desc->nodirmap) {
706 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
707 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
708 ret = spi_mem_access_start(desc->mem);
709 if (ret)
710 return ret;
711
712 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
713
714 spi_mem_access_end(desc->mem);
715 } else {
716 ret = -ENOTSUPP;
717 }
718
719 return ret;
720}
721EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
722
723static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
724{
725 return container_of(drv, struct spi_mem_driver, spidrv.driver);
726}
727
728static int spi_mem_probe(struct spi_device *spi)
729{
730 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
731 struct spi_controller *ctlr = spi->controller;
732 struct spi_mem *mem;
733
734 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
735 if (!mem)
736 return -ENOMEM;
737
738 mem->spi = spi;
739
740 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
741 mem->name = ctlr->mem_ops->get_name(mem);
742 else
743 mem->name = dev_name(&spi->dev);
744
745 if (IS_ERR_OR_NULL(mem->name))
746 return PTR_ERR(mem->name);
747
748 spi_set_drvdata(spi, mem);
749
750 return memdrv->probe(mem);
751}
752
753static int spi_mem_remove(struct spi_device *spi)
754{
755 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
756 struct spi_mem *mem = spi_get_drvdata(spi);
757
758 if (memdrv->remove)
759 return memdrv->remove(mem);
760
761 return 0;
762}
763
764static void spi_mem_shutdown(struct spi_device *spi)
765{
766 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
767 struct spi_mem *mem = spi_get_drvdata(spi);
768
769 if (memdrv->shutdown)
770 memdrv->shutdown(mem);
771}
772
773/**
774 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
775 * @memdrv: the SPI memory driver to register
776 * @owner: the owner of this driver
777 *
778 * Registers a SPI memory driver.
779 *
780 * Return: 0 in case of success, a negative error core otherwise.
781 */
782
783int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
784 struct module *owner)
785{
786 memdrv->spidrv.probe = spi_mem_probe;
787 memdrv->spidrv.remove = spi_mem_remove;
788 memdrv->spidrv.shutdown = spi_mem_shutdown;
789
790 return __spi_register_driver(owner, &memdrv->spidrv);
791}
792EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
793
794/**
795 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
796 * @memdrv: the SPI memory driver to unregister
797 *
798 * Unregisters a SPI memory driver.
799 */
800void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
801{
802 spi_unregister_driver(&memdrv->spidrv);
803}
804EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8#include <linux/dmaengine.h>
9#include <linux/iopoll.h>
10#include <linux/pm_runtime.h>
11#include <linux/spi/spi.h>
12#include <linux/spi/spi-mem.h>
13#include <linux/sched/task_stack.h>
14
15#include "internals.h"
16
17#define SPI_MEM_MAX_BUSWIDTH 8
18
19/**
20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21 * memory operation
22 * @ctlr: the SPI controller requesting this dma_map()
23 * @op: the memory operation containing the buffer to map
24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25 * function
26 *
27 * Some controllers might want to do DMA on the data buffer embedded in @op.
28 * This helper prepares everything for you and provides a ready-to-use
29 * sg_table. This function is not intended to be called from spi drivers.
30 * Only SPI controller drivers should use it.
31 * Note that the caller must ensure the memory region pointed by
32 * op->data.buf.{in,out} is DMA-able before calling this function.
33 *
34 * Return: 0 in case of success, a negative error code otherwise.
35 */
36int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 const struct spi_mem_op *op,
38 struct sg_table *sgt)
39{
40 struct device *dmadev;
41
42 if (!op->data.nbytes)
43 return -EINVAL;
44
45 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 dmadev = ctlr->dma_tx->device->dev;
47 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 dmadev = ctlr->dma_rx->device->dev;
49 else
50 dmadev = ctlr->dev.parent;
51
52 if (!dmadev)
53 return -EINVAL;
54
55 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 op->data.dir == SPI_MEM_DATA_IN ?
57 DMA_FROM_DEVICE : DMA_TO_DEVICE);
58}
59EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60
61/**
62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63 * memory operation
64 * @ctlr: the SPI controller requesting this dma_unmap()
65 * @op: the memory operation containing the buffer to unmap
66 * @sgt: a pointer to an sg_table previously initialized by
67 * spi_controller_dma_map_mem_op_data()
68 *
69 * Some controllers might want to do DMA on the data buffer embedded in @op.
70 * This helper prepares things so that the CPU can access the
71 * op->data.buf.{in,out} buffer again.
72 *
73 * This function is not intended to be called from SPI drivers. Only SPI
74 * controller drivers should use it.
75 *
76 * This function should be called after the DMA operation has finished and is
77 * only valid if the previous spi_controller_dma_map_mem_op_data() call
78 * returned 0.
79 *
80 * Return: 0 in case of success, a negative error code otherwise.
81 */
82void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 const struct spi_mem_op *op,
84 struct sg_table *sgt)
85{
86 struct device *dmadev;
87
88 if (!op->data.nbytes)
89 return;
90
91 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 dmadev = ctlr->dma_tx->device->dev;
93 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 dmadev = ctlr->dma_rx->device->dev;
95 else
96 dmadev = ctlr->dev.parent;
97
98 spi_unmap_buf(ctlr, dmadev, sgt,
99 op->data.dir == SPI_MEM_DATA_IN ?
100 DMA_FROM_DEVICE : DMA_TO_DEVICE);
101}
102EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103
104static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105{
106 u32 mode = mem->spi->mode;
107
108 switch (buswidth) {
109 case 1:
110 return 0;
111
112 case 2:
113 if ((tx &&
114 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 (!tx &&
116 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 return 0;
118
119 break;
120
121 case 4:
122 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 return 0;
125
126 break;
127
128 case 8:
129 if ((tx && (mode & SPI_TX_OCTAL)) ||
130 (!tx && (mode & SPI_RX_OCTAL)))
131 return 0;
132
133 break;
134
135 default:
136 break;
137 }
138
139 return -ENOTSUPP;
140}
141
142static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 const struct spi_mem_op *op)
144{
145 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 return false;
147
148 if (op->addr.nbytes &&
149 spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 return false;
151
152 if (op->dummy.nbytes &&
153 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 return false;
155
156 if (op->data.dir != SPI_MEM_NO_DATA &&
157 spi_check_buswidth_req(mem, op->data.buswidth,
158 op->data.dir == SPI_MEM_DATA_OUT))
159 return false;
160
161 return true;
162}
163
164bool spi_mem_default_supports_op(struct spi_mem *mem,
165 const struct spi_mem_op *op)
166{
167 struct spi_controller *ctlr = mem->spi->controller;
168 bool op_is_dtr =
169 op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170
171 if (op_is_dtr) {
172 if (!spi_mem_controller_is_capable(ctlr, dtr))
173 return false;
174
175 if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
176 return false;
177
178 if (op->cmd.nbytes != 2)
179 return false;
180 } else {
181 if (op->cmd.nbytes != 1)
182 return false;
183 }
184
185 if (op->data.ecc) {
186 if (!spi_mem_controller_is_capable(ctlr, ecc))
187 return false;
188 }
189
190 return spi_mem_check_buswidth(mem, op);
191}
192EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
193
194static bool spi_mem_buswidth_is_valid(u8 buswidth)
195{
196 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
197 return false;
198
199 return true;
200}
201
202static int spi_mem_check_op(const struct spi_mem_op *op)
203{
204 if (!op->cmd.buswidth || !op->cmd.nbytes)
205 return -EINVAL;
206
207 if ((op->addr.nbytes && !op->addr.buswidth) ||
208 (op->dummy.nbytes && !op->dummy.buswidth) ||
209 (op->data.nbytes && !op->data.buswidth))
210 return -EINVAL;
211
212 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
213 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
214 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
215 !spi_mem_buswidth_is_valid(op->data.buswidth))
216 return -EINVAL;
217
218 /* Buffers must be DMA-able. */
219 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
220 object_is_on_stack(op->data.buf.in)))
221 return -EINVAL;
222
223 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
224 object_is_on_stack(op->data.buf.out)))
225 return -EINVAL;
226
227 return 0;
228}
229
230static bool spi_mem_internal_supports_op(struct spi_mem *mem,
231 const struct spi_mem_op *op)
232{
233 struct spi_controller *ctlr = mem->spi->controller;
234
235 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
236 return ctlr->mem_ops->supports_op(mem, op);
237
238 return spi_mem_default_supports_op(mem, op);
239}
240
241/**
242 * spi_mem_supports_op() - Check if a memory device and the controller it is
243 * connected to support a specific memory operation
244 * @mem: the SPI memory
245 * @op: the memory operation to check
246 *
247 * Some controllers are only supporting Single or Dual IOs, others might only
248 * support specific opcodes, or it can even be that the controller and device
249 * both support Quad IOs but the hardware prevents you from using it because
250 * only 2 IO lines are connected.
251 *
252 * This function checks whether a specific operation is supported.
253 *
254 * Return: true if @op is supported, false otherwise.
255 */
256bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
257{
258 if (spi_mem_check_op(op))
259 return false;
260
261 return spi_mem_internal_supports_op(mem, op);
262}
263EXPORT_SYMBOL_GPL(spi_mem_supports_op);
264
265static int spi_mem_access_start(struct spi_mem *mem)
266{
267 struct spi_controller *ctlr = mem->spi->controller;
268
269 /*
270 * Flush the message queue before executing our SPI memory
271 * operation to prevent preemption of regular SPI transfers.
272 */
273 spi_flush_queue(ctlr);
274
275 if (ctlr->auto_runtime_pm) {
276 int ret;
277
278 ret = pm_runtime_resume_and_get(ctlr->dev.parent);
279 if (ret < 0) {
280 dev_err(&ctlr->dev, "Failed to power device: %d\n",
281 ret);
282 return ret;
283 }
284 }
285
286 mutex_lock(&ctlr->bus_lock_mutex);
287 mutex_lock(&ctlr->io_mutex);
288
289 return 0;
290}
291
292static void spi_mem_access_end(struct spi_mem *mem)
293{
294 struct spi_controller *ctlr = mem->spi->controller;
295
296 mutex_unlock(&ctlr->io_mutex);
297 mutex_unlock(&ctlr->bus_lock_mutex);
298
299 if (ctlr->auto_runtime_pm)
300 pm_runtime_put(ctlr->dev.parent);
301}
302
303static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
304 const struct spi_mem_op *op, int exec_op_ret)
305{
306 struct spi_statistics *stats;
307 u64 len, l2len;
308
309 get_cpu();
310 stats = this_cpu_ptr(pcpu_stats);
311 u64_stats_update_begin(&stats->syncp);
312
313 /*
314 * We do not have the concept of messages or transfers. Let's consider
315 * that one operation is equivalent to one message and one transfer.
316 */
317 u64_stats_inc(&stats->messages);
318 u64_stats_inc(&stats->transfers);
319
320 /* Use the sum of all lengths as bytes count and histogram value. */
321 len = op->cmd.nbytes + op->addr.nbytes;
322 len += op->dummy.nbytes + op->data.nbytes;
323 u64_stats_add(&stats->bytes, len);
324 l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
325 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
326
327 /* Only account for data bytes as transferred bytes. */
328 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
329 u64_stats_add(&stats->bytes_tx, op->data.nbytes);
330 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
331 u64_stats_add(&stats->bytes_rx, op->data.nbytes);
332
333 /*
334 * A timeout is not an error, following the same behavior as
335 * spi_transfer_one_message().
336 */
337 if (exec_op_ret == -ETIMEDOUT)
338 u64_stats_inc(&stats->timedout);
339 else if (exec_op_ret)
340 u64_stats_inc(&stats->errors);
341
342 u64_stats_update_end(&stats->syncp);
343 put_cpu();
344}
345
346/**
347 * spi_mem_exec_op() - Execute a memory operation
348 * @mem: the SPI memory
349 * @op: the memory operation to execute
350 *
351 * Executes a memory operation.
352 *
353 * This function first checks that @op is supported and then tries to execute
354 * it.
355 *
356 * Return: 0 in case of success, a negative error code otherwise.
357 */
358int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
359{
360 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
361 struct spi_controller *ctlr = mem->spi->controller;
362 struct spi_transfer xfers[4] = { };
363 struct spi_message msg;
364 u8 *tmpbuf;
365 int ret;
366
367 ret = spi_mem_check_op(op);
368 if (ret)
369 return ret;
370
371 if (!spi_mem_internal_supports_op(mem, op))
372 return -EOPNOTSUPP;
373
374 if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
375 ret = spi_mem_access_start(mem);
376 if (ret)
377 return ret;
378
379 ret = ctlr->mem_ops->exec_op(mem, op);
380
381 spi_mem_access_end(mem);
382
383 /*
384 * Some controllers only optimize specific paths (typically the
385 * read path) and expect the core to use the regular SPI
386 * interface in other cases.
387 */
388 if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
389 spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
390 spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
391
392 return ret;
393 }
394 }
395
396 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
397
398 /*
399 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
400 * we're guaranteed that this buffer is DMA-able, as required by the
401 * SPI layer.
402 */
403 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
404 if (!tmpbuf)
405 return -ENOMEM;
406
407 spi_message_init(&msg);
408
409 tmpbuf[0] = op->cmd.opcode;
410 xfers[xferpos].tx_buf = tmpbuf;
411 xfers[xferpos].len = op->cmd.nbytes;
412 xfers[xferpos].tx_nbits = op->cmd.buswidth;
413 spi_message_add_tail(&xfers[xferpos], &msg);
414 xferpos++;
415 totalxferlen++;
416
417 if (op->addr.nbytes) {
418 int i;
419
420 for (i = 0; i < op->addr.nbytes; i++)
421 tmpbuf[i + 1] = op->addr.val >>
422 (8 * (op->addr.nbytes - i - 1));
423
424 xfers[xferpos].tx_buf = tmpbuf + 1;
425 xfers[xferpos].len = op->addr.nbytes;
426 xfers[xferpos].tx_nbits = op->addr.buswidth;
427 spi_message_add_tail(&xfers[xferpos], &msg);
428 xferpos++;
429 totalxferlen += op->addr.nbytes;
430 }
431
432 if (op->dummy.nbytes) {
433 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
434 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
435 xfers[xferpos].len = op->dummy.nbytes;
436 xfers[xferpos].tx_nbits = op->dummy.buswidth;
437 xfers[xferpos].dummy_data = 1;
438 spi_message_add_tail(&xfers[xferpos], &msg);
439 xferpos++;
440 totalxferlen += op->dummy.nbytes;
441 }
442
443 if (op->data.nbytes) {
444 if (op->data.dir == SPI_MEM_DATA_IN) {
445 xfers[xferpos].rx_buf = op->data.buf.in;
446 xfers[xferpos].rx_nbits = op->data.buswidth;
447 } else {
448 xfers[xferpos].tx_buf = op->data.buf.out;
449 xfers[xferpos].tx_nbits = op->data.buswidth;
450 }
451
452 xfers[xferpos].len = op->data.nbytes;
453 spi_message_add_tail(&xfers[xferpos], &msg);
454 xferpos++;
455 totalxferlen += op->data.nbytes;
456 }
457
458 ret = spi_sync(mem->spi, &msg);
459
460 kfree(tmpbuf);
461
462 if (ret)
463 return ret;
464
465 if (msg.actual_length != totalxferlen)
466 return -EIO;
467
468 return 0;
469}
470EXPORT_SYMBOL_GPL(spi_mem_exec_op);
471
472/**
473 * spi_mem_get_name() - Return the SPI mem device name to be used by the
474 * upper layer if necessary
475 * @mem: the SPI memory
476 *
477 * This function allows SPI mem users to retrieve the SPI mem device name.
478 * It is useful if the upper layer needs to expose a custom name for
479 * compatibility reasons.
480 *
481 * Return: a string containing the name of the memory device to be used
482 * by the SPI mem user
483 */
484const char *spi_mem_get_name(struct spi_mem *mem)
485{
486 return mem->name;
487}
488EXPORT_SYMBOL_GPL(spi_mem_get_name);
489
490/**
491 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
492 * match controller limitations
493 * @mem: the SPI memory
494 * @op: the operation to adjust
495 *
496 * Some controllers have FIFO limitations and must split a data transfer
497 * operation into multiple ones, others require a specific alignment for
498 * optimized accesses. This function allows SPI mem drivers to split a single
499 * operation into multiple sub-operations when required.
500 *
501 * Return: a negative error code if the controller can't properly adjust @op,
502 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
503 * can't be handled in a single step.
504 */
505int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
506{
507 struct spi_controller *ctlr = mem->spi->controller;
508 size_t len;
509
510 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
511 return ctlr->mem_ops->adjust_op_size(mem, op);
512
513 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
514 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
515
516 if (len > spi_max_transfer_size(mem->spi))
517 return -EINVAL;
518
519 op->data.nbytes = min3((size_t)op->data.nbytes,
520 spi_max_transfer_size(mem->spi),
521 spi_max_message_size(mem->spi) -
522 len);
523 if (!op->data.nbytes)
524 return -EINVAL;
525 }
526
527 return 0;
528}
529EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
530
531static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
532 u64 offs, size_t len, void *buf)
533{
534 struct spi_mem_op op = desc->info.op_tmpl;
535 int ret;
536
537 op.addr.val = desc->info.offset + offs;
538 op.data.buf.in = buf;
539 op.data.nbytes = len;
540 ret = spi_mem_adjust_op_size(desc->mem, &op);
541 if (ret)
542 return ret;
543
544 ret = spi_mem_exec_op(desc->mem, &op);
545 if (ret)
546 return ret;
547
548 return op.data.nbytes;
549}
550
551static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
552 u64 offs, size_t len, const void *buf)
553{
554 struct spi_mem_op op = desc->info.op_tmpl;
555 int ret;
556
557 op.addr.val = desc->info.offset + offs;
558 op.data.buf.out = buf;
559 op.data.nbytes = len;
560 ret = spi_mem_adjust_op_size(desc->mem, &op);
561 if (ret)
562 return ret;
563
564 ret = spi_mem_exec_op(desc->mem, &op);
565 if (ret)
566 return ret;
567
568 return op.data.nbytes;
569}
570
571/**
572 * spi_mem_dirmap_create() - Create a direct mapping descriptor
573 * @mem: SPI mem device this direct mapping should be created for
574 * @info: direct mapping information
575 *
576 * This function is creating a direct mapping descriptor which can then be used
577 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
578 * If the SPI controller driver does not support direct mapping, this function
579 * falls back to an implementation using spi_mem_exec_op(), so that the caller
580 * doesn't have to bother implementing a fallback on his own.
581 *
582 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
583 */
584struct spi_mem_dirmap_desc *
585spi_mem_dirmap_create(struct spi_mem *mem,
586 const struct spi_mem_dirmap_info *info)
587{
588 struct spi_controller *ctlr = mem->spi->controller;
589 struct spi_mem_dirmap_desc *desc;
590 int ret = -ENOTSUPP;
591
592 /* Make sure the number of address cycles is between 1 and 8 bytes. */
593 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
594 return ERR_PTR(-EINVAL);
595
596 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
597 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
598 return ERR_PTR(-EINVAL);
599
600 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
601 if (!desc)
602 return ERR_PTR(-ENOMEM);
603
604 desc->mem = mem;
605 desc->info = *info;
606 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
607 ret = ctlr->mem_ops->dirmap_create(desc);
608
609 if (ret) {
610 desc->nodirmap = true;
611 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
612 ret = -EOPNOTSUPP;
613 else
614 ret = 0;
615 }
616
617 if (ret) {
618 kfree(desc);
619 return ERR_PTR(ret);
620 }
621
622 return desc;
623}
624EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
625
626/**
627 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
628 * @desc: the direct mapping descriptor to destroy
629 *
630 * This function destroys a direct mapping descriptor previously created by
631 * spi_mem_dirmap_create().
632 */
633void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
634{
635 struct spi_controller *ctlr = desc->mem->spi->controller;
636
637 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
638 ctlr->mem_ops->dirmap_destroy(desc);
639
640 kfree(desc);
641}
642EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
643
644static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
645{
646 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
647
648 spi_mem_dirmap_destroy(desc);
649}
650
651/**
652 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
653 * it to a device
654 * @dev: device the dirmap desc will be attached to
655 * @mem: SPI mem device this direct mapping should be created for
656 * @info: direct mapping information
657 *
658 * devm_ variant of the spi_mem_dirmap_create() function. See
659 * spi_mem_dirmap_create() for more details.
660 *
661 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
662 */
663struct spi_mem_dirmap_desc *
664devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
665 const struct spi_mem_dirmap_info *info)
666{
667 struct spi_mem_dirmap_desc **ptr, *desc;
668
669 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
670 GFP_KERNEL);
671 if (!ptr)
672 return ERR_PTR(-ENOMEM);
673
674 desc = spi_mem_dirmap_create(mem, info);
675 if (IS_ERR(desc)) {
676 devres_free(ptr);
677 } else {
678 *ptr = desc;
679 devres_add(dev, ptr);
680 }
681
682 return desc;
683}
684EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
685
686static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
687{
688 struct spi_mem_dirmap_desc **ptr = res;
689
690 if (WARN_ON(!ptr || !*ptr))
691 return 0;
692
693 return *ptr == data;
694}
695
696/**
697 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
698 * to a device
699 * @dev: device the dirmap desc is attached to
700 * @desc: the direct mapping descriptor to destroy
701 *
702 * devm_ variant of the spi_mem_dirmap_destroy() function. See
703 * spi_mem_dirmap_destroy() for more details.
704 */
705void devm_spi_mem_dirmap_destroy(struct device *dev,
706 struct spi_mem_dirmap_desc *desc)
707{
708 devres_release(dev, devm_spi_mem_dirmap_release,
709 devm_spi_mem_dirmap_match, desc);
710}
711EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
712
713/**
714 * spi_mem_dirmap_read() - Read data through a direct mapping
715 * @desc: direct mapping descriptor
716 * @offs: offset to start reading from. Note that this is not an absolute
717 * offset, but the offset within the direct mapping which already has
718 * its own offset
719 * @len: length in bytes
720 * @buf: destination buffer. This buffer must be DMA-able
721 *
722 * This function reads data from a memory device using a direct mapping
723 * previously instantiated with spi_mem_dirmap_create().
724 *
725 * Return: the amount of data read from the memory device or a negative error
726 * code. Note that the returned size might be smaller than @len, and the caller
727 * is responsible for calling spi_mem_dirmap_read() again when that happens.
728 */
729ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
730 u64 offs, size_t len, void *buf)
731{
732 struct spi_controller *ctlr = desc->mem->spi->controller;
733 ssize_t ret;
734
735 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
736 return -EINVAL;
737
738 if (!len)
739 return 0;
740
741 if (desc->nodirmap) {
742 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
743 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
744 ret = spi_mem_access_start(desc->mem);
745 if (ret)
746 return ret;
747
748 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
749
750 spi_mem_access_end(desc->mem);
751 } else {
752 ret = -ENOTSUPP;
753 }
754
755 return ret;
756}
757EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
758
759/**
760 * spi_mem_dirmap_write() - Write data through a direct mapping
761 * @desc: direct mapping descriptor
762 * @offs: offset to start writing from. Note that this is not an absolute
763 * offset, but the offset within the direct mapping which already has
764 * its own offset
765 * @len: length in bytes
766 * @buf: source buffer. This buffer must be DMA-able
767 *
768 * This function writes data to a memory device using a direct mapping
769 * previously instantiated with spi_mem_dirmap_create().
770 *
771 * Return: the amount of data written to the memory device or a negative error
772 * code. Note that the returned size might be smaller than @len, and the caller
773 * is responsible for calling spi_mem_dirmap_write() again when that happens.
774 */
775ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
776 u64 offs, size_t len, const void *buf)
777{
778 struct spi_controller *ctlr = desc->mem->spi->controller;
779 ssize_t ret;
780
781 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
782 return -EINVAL;
783
784 if (!len)
785 return 0;
786
787 if (desc->nodirmap) {
788 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
789 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
790 ret = spi_mem_access_start(desc->mem);
791 if (ret)
792 return ret;
793
794 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
795
796 spi_mem_access_end(desc->mem);
797 } else {
798 ret = -ENOTSUPP;
799 }
800
801 return ret;
802}
803EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
804
805static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
806{
807 return container_of(drv, struct spi_mem_driver, spidrv.driver);
808}
809
810static int spi_mem_read_status(struct spi_mem *mem,
811 const struct spi_mem_op *op,
812 u16 *status)
813{
814 const u8 *bytes = (u8 *)op->data.buf.in;
815 int ret;
816
817 ret = spi_mem_exec_op(mem, op);
818 if (ret)
819 return ret;
820
821 if (op->data.nbytes > 1)
822 *status = ((u16)bytes[0] << 8) | bytes[1];
823 else
824 *status = bytes[0];
825
826 return 0;
827}
828
829/**
830 * spi_mem_poll_status() - Poll memory device status
831 * @mem: SPI memory device
832 * @op: the memory operation to execute
833 * @mask: status bitmask to ckeck
834 * @match: (status & mask) expected value
835 * @initial_delay_us: delay in us before starting to poll
836 * @polling_delay_us: time to sleep between reads in us
837 * @timeout_ms: timeout in milliseconds
838 *
839 * This function polls a status register and returns when
840 * (status & mask) == match or when the timeout has expired.
841 *
842 * Return: 0 in case of success, -ETIMEDOUT in case of error,
843 * -EOPNOTSUPP if not supported.
844 */
845int spi_mem_poll_status(struct spi_mem *mem,
846 const struct spi_mem_op *op,
847 u16 mask, u16 match,
848 unsigned long initial_delay_us,
849 unsigned long polling_delay_us,
850 u16 timeout_ms)
851{
852 struct spi_controller *ctlr = mem->spi->controller;
853 int ret = -EOPNOTSUPP;
854 int read_status_ret;
855 u16 status;
856
857 if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
858 op->data.dir != SPI_MEM_DATA_IN)
859 return -EINVAL;
860
861 if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
862 ret = spi_mem_access_start(mem);
863 if (ret)
864 return ret;
865
866 ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
867 initial_delay_us, polling_delay_us,
868 timeout_ms);
869
870 spi_mem_access_end(mem);
871 }
872
873 if (ret == -EOPNOTSUPP) {
874 if (!spi_mem_supports_op(mem, op))
875 return ret;
876
877 if (initial_delay_us < 10)
878 udelay(initial_delay_us);
879 else
880 usleep_range((initial_delay_us >> 2) + 1,
881 initial_delay_us);
882
883 ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
884 (read_status_ret || ((status) & mask) == match),
885 polling_delay_us, timeout_ms * 1000, false, mem,
886 op, &status);
887 if (read_status_ret)
888 return read_status_ret;
889 }
890
891 return ret;
892}
893EXPORT_SYMBOL_GPL(spi_mem_poll_status);
894
895static int spi_mem_probe(struct spi_device *spi)
896{
897 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
898 struct spi_controller *ctlr = spi->controller;
899 struct spi_mem *mem;
900
901 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
902 if (!mem)
903 return -ENOMEM;
904
905 mem->spi = spi;
906
907 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
908 mem->name = ctlr->mem_ops->get_name(mem);
909 else
910 mem->name = dev_name(&spi->dev);
911
912 if (IS_ERR_OR_NULL(mem->name))
913 return PTR_ERR_OR_ZERO(mem->name);
914
915 spi_set_drvdata(spi, mem);
916
917 return memdrv->probe(mem);
918}
919
920static void spi_mem_remove(struct spi_device *spi)
921{
922 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
923 struct spi_mem *mem = spi_get_drvdata(spi);
924
925 if (memdrv->remove)
926 memdrv->remove(mem);
927}
928
929static void spi_mem_shutdown(struct spi_device *spi)
930{
931 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
932 struct spi_mem *mem = spi_get_drvdata(spi);
933
934 if (memdrv->shutdown)
935 memdrv->shutdown(mem);
936}
937
938/**
939 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
940 * @memdrv: the SPI memory driver to register
941 * @owner: the owner of this driver
942 *
943 * Registers a SPI memory driver.
944 *
945 * Return: 0 in case of success, a negative error core otherwise.
946 */
947
948int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
949 struct module *owner)
950{
951 memdrv->spidrv.probe = spi_mem_probe;
952 memdrv->spidrv.remove = spi_mem_remove;
953 memdrv->spidrv.shutdown = spi_mem_shutdown;
954
955 return __spi_register_driver(owner, &memdrv->spidrv);
956}
957EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
958
959/**
960 * spi_mem_driver_unregister() - Unregister a SPI memory driver
961 * @memdrv: the SPI memory driver to unregister
962 *
963 * Unregisters a SPI memory driver.
964 */
965void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
966{
967 spi_unregister_driver(&memdrv->spidrv);
968}
969EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);