Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 *   redistributing this file, you may do so under either license.
   4 *
   5 *   GPL LICENSE SUMMARY
   6 *
   7 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
   8 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
   9 *
  10 *   This program is free software; you can redistribute it and/or modify
  11 *   it under the terms of version 2 of the GNU General Public License as
  12 *   published by the Free Software Foundation.
  13 *
  14 *   BSD LICENSE
  15 *
  16 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
  17 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
  18 *
  19 *   Redistribution and use in source and binary forms, with or without
  20 *   modification, are permitted provided that the following conditions
  21 *   are met:
  22 *
  23 *     * Redistributions of source code must retain the above copyright
  24 *       notice, this list of conditions and the following disclaimer.
  25 *     * Redistributions in binary form must reproduce the above copy
  26 *       notice, this list of conditions and the following disclaimer in
  27 *       the documentation and/or other materials provided with the
  28 *       distribution.
  29 *     * Neither the name of Intel Corporation nor the names of its
  30 *       contributors may be used to endorse or promote products derived
  31 *       from this software without specific prior written permission.
  32 *
  33 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  34 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  35 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  36 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  37 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  38 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  39 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  40 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  41 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  42 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  43 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  44 *
  45 * PCIe NTB Transport Linux driver
  46 *
  47 * Contact Information:
  48 * Jon Mason <jon.mason@intel.com>
  49 */
  50#include <linux/debugfs.h>
  51#include <linux/delay.h>
  52#include <linux/dmaengine.h>
  53#include <linux/dma-mapping.h>
  54#include <linux/errno.h>
  55#include <linux/export.h>
  56#include <linux/interrupt.h>
  57#include <linux/module.h>
  58#include <linux/pci.h>
  59#include <linux/slab.h>
  60#include <linux/types.h>
  61#include <linux/uaccess.h>
  62#include "linux/ntb.h"
  63#include "linux/ntb_transport.h"
  64
  65#define NTB_TRANSPORT_VERSION	4
  66#define NTB_TRANSPORT_VER	"4"
  67#define NTB_TRANSPORT_NAME	"ntb_transport"
  68#define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
  69#define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
  70
  71MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
  72MODULE_VERSION(NTB_TRANSPORT_VER);
  73MODULE_LICENSE("Dual BSD/GPL");
  74MODULE_AUTHOR("Intel Corporation");
  75
  76static unsigned long max_mw_size;
  77module_param(max_mw_size, ulong, 0644);
  78MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
  79
  80static unsigned int transport_mtu = 0x10000;
  81module_param(transport_mtu, uint, 0644);
  82MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
  83
  84static unsigned char max_num_clients;
  85module_param(max_num_clients, byte, 0644);
  86MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
  87
  88static unsigned int copy_bytes = 1024;
  89module_param(copy_bytes, uint, 0644);
  90MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
  91
  92static bool use_dma;
  93module_param(use_dma, bool, 0644);
  94MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
  95
  96static bool use_msi;
  97#ifdef CONFIG_NTB_MSI
  98module_param(use_msi, bool, 0644);
  99MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
 100#endif
 101
 102static struct dentry *nt_debugfs_dir;
 103
 104/* Only two-ports NTB devices are supported */
 105#define PIDX		NTB_DEF_PEER_IDX
 106
 107struct ntb_queue_entry {
 108	/* ntb_queue list reference */
 109	struct list_head entry;
 110	/* pointers to data to be transferred */
 111	void *cb_data;
 112	void *buf;
 113	unsigned int len;
 114	unsigned int flags;
 115	int retries;
 116	int errors;
 117	unsigned int tx_index;
 118	unsigned int rx_index;
 119
 120	struct ntb_transport_qp *qp;
 121	union {
 122		struct ntb_payload_header __iomem *tx_hdr;
 123		struct ntb_payload_header *rx_hdr;
 124	};
 125};
 126
 127struct ntb_rx_info {
 128	unsigned int entry;
 129};
 130
 131struct ntb_transport_qp {
 132	struct ntb_transport_ctx *transport;
 133	struct ntb_dev *ndev;
 134	void *cb_data;
 135	struct dma_chan *tx_dma_chan;
 136	struct dma_chan *rx_dma_chan;
 137
 138	bool client_ready;
 139	bool link_is_up;
 140	bool active;
 141
 142	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
 143	u64 qp_bit;
 144
 145	struct ntb_rx_info __iomem *rx_info;
 146	struct ntb_rx_info *remote_rx_info;
 147
 148	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
 149			   void *data, int len);
 150	struct list_head tx_free_q;
 151	spinlock_t ntb_tx_free_q_lock;
 152	void __iomem *tx_mw;
 153	phys_addr_t tx_mw_phys;
 154	size_t tx_mw_size;
 155	dma_addr_t tx_mw_dma_addr;
 156	unsigned int tx_index;
 157	unsigned int tx_max_entry;
 158	unsigned int tx_max_frame;
 159
 160	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
 161			   void *data, int len);
 162	struct list_head rx_post_q;
 163	struct list_head rx_pend_q;
 164	struct list_head rx_free_q;
 165	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
 166	spinlock_t ntb_rx_q_lock;
 167	void *rx_buff;
 168	unsigned int rx_index;
 169	unsigned int rx_max_entry;
 170	unsigned int rx_max_frame;
 171	unsigned int rx_alloc_entry;
 172	dma_cookie_t last_cookie;
 173	struct tasklet_struct rxc_db_work;
 174
 175	void (*event_handler)(void *data, int status);
 176	struct delayed_work link_work;
 177	struct work_struct link_cleanup;
 178
 179	struct dentry *debugfs_dir;
 180	struct dentry *debugfs_stats;
 181
 182	/* Stats */
 183	u64 rx_bytes;
 184	u64 rx_pkts;
 185	u64 rx_ring_empty;
 186	u64 rx_err_no_buf;
 187	u64 rx_err_oflow;
 188	u64 rx_err_ver;
 189	u64 rx_memcpy;
 190	u64 rx_async;
 191	u64 tx_bytes;
 192	u64 tx_pkts;
 193	u64 tx_ring_full;
 194	u64 tx_err_no_buf;
 195	u64 tx_memcpy;
 196	u64 tx_async;
 197
 198	bool use_msi;
 199	int msi_irq;
 200	struct ntb_msi_desc msi_desc;
 201	struct ntb_msi_desc peer_msi_desc;
 202};
 203
 204struct ntb_transport_mw {
 205	phys_addr_t phys_addr;
 206	resource_size_t phys_size;
 207	void __iomem *vbase;
 208	size_t xlat_size;
 209	size_t buff_size;
 210	size_t alloc_size;
 211	void *alloc_addr;
 212	void *virt_addr;
 213	dma_addr_t dma_addr;
 214};
 215
 216struct ntb_transport_client_dev {
 217	struct list_head entry;
 218	struct ntb_transport_ctx *nt;
 219	struct device dev;
 220};
 221
 222struct ntb_transport_ctx {
 223	struct list_head entry;
 224	struct list_head client_devs;
 225
 226	struct ntb_dev *ndev;
 227
 228	struct ntb_transport_mw *mw_vec;
 229	struct ntb_transport_qp *qp_vec;
 230	unsigned int mw_count;
 231	unsigned int qp_count;
 232	u64 qp_bitmap;
 233	u64 qp_bitmap_free;
 234
 235	bool use_msi;
 236	unsigned int msi_spad_offset;
 237	u64 msi_db_mask;
 238
 239	bool link_is_up;
 240	struct delayed_work link_work;
 241	struct work_struct link_cleanup;
 242
 243	struct dentry *debugfs_node_dir;
 244};
 245
 246enum {
 247	DESC_DONE_FLAG = BIT(0),
 248	LINK_DOWN_FLAG = BIT(1),
 249};
 250
 251struct ntb_payload_header {
 252	unsigned int ver;
 253	unsigned int len;
 254	unsigned int flags;
 255};
 256
 257enum {
 258	VERSION = 0,
 259	QP_LINKS,
 260	NUM_QPS,
 261	NUM_MWS,
 262	MW0_SZ_HIGH,
 263	MW0_SZ_LOW,
 264};
 265
 266#define dev_client_dev(__dev) \
 267	container_of((__dev), struct ntb_transport_client_dev, dev)
 268
 269#define drv_client(__drv) \
 270	container_of((__drv), struct ntb_transport_client, driver)
 271
 272#define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
 273#define NTB_QP_DEF_NUM_ENTRIES	100
 274#define NTB_LINK_DOWN_TIMEOUT	10
 275
 276static void ntb_transport_rxc_db(unsigned long data);
 277static const struct ntb_ctx_ops ntb_transport_ops;
 278static struct ntb_client ntb_transport_client;
 279static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
 280			       struct ntb_queue_entry *entry);
 281static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
 282static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
 283static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
 284
 285
 286static int ntb_transport_bus_match(struct device *dev,
 287				   struct device_driver *drv)
 288{
 289	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
 290}
 291
 292static int ntb_transport_bus_probe(struct device *dev)
 293{
 294	const struct ntb_transport_client *client;
 295	int rc;
 296
 297	get_device(dev);
 298
 299	client = drv_client(dev->driver);
 300	rc = client->probe(dev);
 301	if (rc)
 302		put_device(dev);
 303
 304	return rc;
 305}
 306
 307static int ntb_transport_bus_remove(struct device *dev)
 308{
 309	const struct ntb_transport_client *client;
 310
 311	client = drv_client(dev->driver);
 312	client->remove(dev);
 313
 314	put_device(dev);
 315
 316	return 0;
 317}
 318
 319static struct bus_type ntb_transport_bus = {
 320	.name = "ntb_transport",
 321	.match = ntb_transport_bus_match,
 322	.probe = ntb_transport_bus_probe,
 323	.remove = ntb_transport_bus_remove,
 324};
 325
 326static LIST_HEAD(ntb_transport_list);
 327
 328static int ntb_bus_init(struct ntb_transport_ctx *nt)
 329{
 330	list_add_tail(&nt->entry, &ntb_transport_list);
 331	return 0;
 332}
 333
 334static void ntb_bus_remove(struct ntb_transport_ctx *nt)
 335{
 336	struct ntb_transport_client_dev *client_dev, *cd;
 337
 338	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
 339		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
 340			dev_name(&client_dev->dev));
 341		list_del(&client_dev->entry);
 342		device_unregister(&client_dev->dev);
 343	}
 344
 345	list_del(&nt->entry);
 346}
 347
 348static void ntb_transport_client_release(struct device *dev)
 349{
 350	struct ntb_transport_client_dev *client_dev;
 351
 352	client_dev = dev_client_dev(dev);
 353	kfree(client_dev);
 354}
 355
 356/**
 357 * ntb_transport_unregister_client_dev - Unregister NTB client device
 358 * @device_name: Name of NTB client device
 359 *
 360 * Unregister an NTB client device with the NTB transport layer
 361 */
 362void ntb_transport_unregister_client_dev(char *device_name)
 363{
 364	struct ntb_transport_client_dev *client, *cd;
 365	struct ntb_transport_ctx *nt;
 366
 367	list_for_each_entry(nt, &ntb_transport_list, entry)
 368		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
 369			if (!strncmp(dev_name(&client->dev), device_name,
 370				     strlen(device_name))) {
 371				list_del(&client->entry);
 372				device_unregister(&client->dev);
 373			}
 374}
 375EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
 376
 377/**
 378 * ntb_transport_register_client_dev - Register NTB client device
 379 * @device_name: Name of NTB client device
 380 *
 381 * Register an NTB client device with the NTB transport layer
 
 
 382 */
 383int ntb_transport_register_client_dev(char *device_name)
 384{
 385	struct ntb_transport_client_dev *client_dev;
 386	struct ntb_transport_ctx *nt;
 387	int node;
 388	int rc, i = 0;
 389
 390	if (list_empty(&ntb_transport_list))
 391		return -ENODEV;
 392
 393	list_for_each_entry(nt, &ntb_transport_list, entry) {
 394		struct device *dev;
 395
 396		node = dev_to_node(&nt->ndev->dev);
 397
 398		client_dev = kzalloc_node(sizeof(*client_dev),
 399					  GFP_KERNEL, node);
 400		if (!client_dev) {
 401			rc = -ENOMEM;
 402			goto err;
 403		}
 404
 405		dev = &client_dev->dev;
 406
 407		/* setup and register client devices */
 408		dev_set_name(dev, "%s%d", device_name, i);
 409		dev->bus = &ntb_transport_bus;
 410		dev->release = ntb_transport_client_release;
 411		dev->parent = &nt->ndev->dev;
 412
 413		rc = device_register(dev);
 414		if (rc) {
 415			kfree(client_dev);
 416			goto err;
 417		}
 418
 419		list_add_tail(&client_dev->entry, &nt->client_devs);
 420		i++;
 421	}
 422
 423	return 0;
 424
 425err:
 426	ntb_transport_unregister_client_dev(device_name);
 427
 428	return rc;
 429}
 430EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
 431
 432/**
 433 * ntb_transport_register_client - Register NTB client driver
 434 * @drv: NTB client driver to be registered
 435 *
 436 * Register an NTB client driver with the NTB transport layer
 437 *
 438 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 439 */
 440int ntb_transport_register_client(struct ntb_transport_client *drv)
 441{
 442	drv->driver.bus = &ntb_transport_bus;
 443
 444	if (list_empty(&ntb_transport_list))
 445		return -ENODEV;
 446
 447	return driver_register(&drv->driver);
 448}
 449EXPORT_SYMBOL_GPL(ntb_transport_register_client);
 450
 451/**
 452 * ntb_transport_unregister_client - Unregister NTB client driver
 453 * @drv: NTB client driver to be unregistered
 454 *
 455 * Unregister an NTB client driver with the NTB transport layer
 456 *
 457 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 458 */
 459void ntb_transport_unregister_client(struct ntb_transport_client *drv)
 460{
 461	driver_unregister(&drv->driver);
 462}
 463EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
 464
 465static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
 466			    loff_t *offp)
 467{
 468	struct ntb_transport_qp *qp;
 469	char *buf;
 470	ssize_t ret, out_offset, out_count;
 471
 472	qp = filp->private_data;
 473
 474	if (!qp || !qp->link_is_up)
 475		return 0;
 476
 477	out_count = 1000;
 478
 479	buf = kmalloc(out_count, GFP_KERNEL);
 480	if (!buf)
 481		return -ENOMEM;
 482
 483	out_offset = 0;
 484	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 485			       "\nNTB QP stats:\n\n");
 486	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 487			       "rx_bytes - \t%llu\n", qp->rx_bytes);
 488	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 489			       "rx_pkts - \t%llu\n", qp->rx_pkts);
 490	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 491			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
 492	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 493			       "rx_async - \t%llu\n", qp->rx_async);
 494	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 495			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
 496	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 497			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
 498	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 499			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
 500	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 501			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
 502	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 503			       "rx_buff - \t0x%p\n", qp->rx_buff);
 504	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 505			       "rx_index - \t%u\n", qp->rx_index);
 506	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 507			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
 508	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 509			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
 510
 511	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 512			       "tx_bytes - \t%llu\n", qp->tx_bytes);
 513	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 514			       "tx_pkts - \t%llu\n", qp->tx_pkts);
 515	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 516			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
 517	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 518			       "tx_async - \t%llu\n", qp->tx_async);
 519	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 520			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
 521	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 522			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
 523	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 524			       "tx_mw - \t0x%p\n", qp->tx_mw);
 525	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 526			       "tx_index (H) - \t%u\n", qp->tx_index);
 527	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 528			       "RRI (T) - \t%u\n",
 529			       qp->remote_rx_info->entry);
 530	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 531			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
 532	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 533			       "free tx - \t%u\n",
 534			       ntb_transport_tx_free_entry(qp));
 535
 536	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 537			       "\n");
 538	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 539			       "Using TX DMA - \t%s\n",
 540			       qp->tx_dma_chan ? "Yes" : "No");
 541	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 542			       "Using RX DMA - \t%s\n",
 543			       qp->rx_dma_chan ? "Yes" : "No");
 544	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 545			       "QP Link - \t%s\n",
 546			       qp->link_is_up ? "Up" : "Down");
 547	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 548			       "\n");
 549
 550	if (out_offset > out_count)
 551		out_offset = out_count;
 552
 553	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
 554	kfree(buf);
 555	return ret;
 556}
 557
 558static const struct file_operations ntb_qp_debugfs_stats = {
 559	.owner = THIS_MODULE,
 560	.open = simple_open,
 561	.read = debugfs_read,
 562};
 563
 564static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
 565			 struct list_head *list)
 566{
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(lock, flags);
 570	list_add_tail(entry, list);
 571	spin_unlock_irqrestore(lock, flags);
 572}
 573
 574static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
 575					   struct list_head *list)
 576{
 577	struct ntb_queue_entry *entry;
 578	unsigned long flags;
 579
 580	spin_lock_irqsave(lock, flags);
 581	if (list_empty(list)) {
 582		entry = NULL;
 583		goto out;
 584	}
 585	entry = list_first_entry(list, struct ntb_queue_entry, entry);
 586	list_del(&entry->entry);
 587
 588out:
 589	spin_unlock_irqrestore(lock, flags);
 590
 591	return entry;
 592}
 593
 594static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
 595					   struct list_head *list,
 596					   struct list_head *to_list)
 597{
 598	struct ntb_queue_entry *entry;
 599	unsigned long flags;
 600
 601	spin_lock_irqsave(lock, flags);
 602
 603	if (list_empty(list)) {
 604		entry = NULL;
 605	} else {
 606		entry = list_first_entry(list, struct ntb_queue_entry, entry);
 607		list_move_tail(&entry->entry, to_list);
 608	}
 609
 610	spin_unlock_irqrestore(lock, flags);
 611
 612	return entry;
 613}
 614
 615static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
 616				     unsigned int qp_num)
 617{
 618	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 619	struct ntb_transport_mw *mw;
 620	struct ntb_dev *ndev = nt->ndev;
 621	struct ntb_queue_entry *entry;
 622	unsigned int rx_size, num_qps_mw;
 623	unsigned int mw_num, mw_count, qp_count;
 624	unsigned int i;
 625	int node;
 626
 627	mw_count = nt->mw_count;
 628	qp_count = nt->qp_count;
 629
 630	mw_num = QP_TO_MW(nt, qp_num);
 631	mw = &nt->mw_vec[mw_num];
 632
 633	if (!mw->virt_addr)
 634		return -ENOMEM;
 635
 636	if (mw_num < qp_count % mw_count)
 637		num_qps_mw = qp_count / mw_count + 1;
 638	else
 639		num_qps_mw = qp_count / mw_count;
 640
 641	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
 642	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
 643	rx_size -= sizeof(struct ntb_rx_info);
 644
 645	qp->remote_rx_info = qp->rx_buff + rx_size;
 646
 647	/* Due to housekeeping, there must be atleast 2 buffs */
 648	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
 649	qp->rx_max_entry = rx_size / qp->rx_max_frame;
 650	qp->rx_index = 0;
 651
 652	/*
 653	 * Checking to see if we have more entries than the default.
 654	 * We should add additional entries if that is the case so we
 655	 * can be in sync with the transport frames.
 656	 */
 657	node = dev_to_node(&ndev->dev);
 658	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
 659		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
 660		if (!entry)
 661			return -ENOMEM;
 662
 663		entry->qp = qp;
 664		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
 665			     &qp->rx_free_q);
 666		qp->rx_alloc_entry++;
 667	}
 668
 669	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
 670
 671	/* setup the hdr offsets with 0's */
 672	for (i = 0; i < qp->rx_max_entry; i++) {
 673		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
 674				sizeof(struct ntb_payload_header));
 675		memset(offset, 0, sizeof(struct ntb_payload_header));
 676	}
 677
 678	qp->rx_pkts = 0;
 679	qp->tx_pkts = 0;
 680	qp->tx_index = 0;
 681
 682	return 0;
 683}
 684
 685static irqreturn_t ntb_transport_isr(int irq, void *dev)
 686{
 687	struct ntb_transport_qp *qp = dev;
 688
 689	tasklet_schedule(&qp->rxc_db_work);
 690
 691	return IRQ_HANDLED;
 692}
 693
 694static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
 695					    unsigned int qp_num)
 696{
 697	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 698	int spad = qp_num * 2 + nt->msi_spad_offset;
 699
 700	if (!nt->use_msi)
 701		return;
 702
 703	if (spad >= ntb_spad_count(nt->ndev))
 704		return;
 705
 706	qp->peer_msi_desc.addr_offset =
 707		ntb_peer_spad_read(qp->ndev, PIDX, spad);
 708	qp->peer_msi_desc.data =
 709		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
 710
 711	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
 712		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
 713
 714	if (qp->peer_msi_desc.addr_offset) {
 715		qp->use_msi = true;
 716		dev_info(&qp->ndev->pdev->dev,
 717			 "Using MSI interrupts for QP%d\n", qp_num);
 718	}
 719}
 720
 721static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
 722				       unsigned int qp_num)
 723{
 724	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 725	int spad = qp_num * 2 + nt->msi_spad_offset;
 726	int rc;
 727
 728	if (!nt->use_msi)
 729		return;
 730
 731	if (spad >= ntb_spad_count(nt->ndev)) {
 732		dev_warn_once(&qp->ndev->pdev->dev,
 733			      "Not enough SPADS to use MSI interrupts\n");
 734		return;
 735	}
 736
 737	ntb_spad_write(qp->ndev, spad, 0);
 738	ntb_spad_write(qp->ndev, spad + 1, 0);
 739
 740	if (!qp->msi_irq) {
 741		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
 742						   KBUILD_MODNAME, qp,
 743						   &qp->msi_desc);
 744		if (qp->msi_irq < 0) {
 745			dev_warn(&qp->ndev->pdev->dev,
 746				 "Unable to allocate MSI interrupt for qp%d\n",
 747				 qp_num);
 748			return;
 749		}
 750	}
 751
 752	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
 753	if (rc)
 754		goto err_free_interrupt;
 755
 756	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
 757	if (rc)
 758		goto err_free_interrupt;
 759
 760	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
 761		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
 762		qp->msi_desc.data);
 763
 764	return;
 765
 766err_free_interrupt:
 767	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
 768}
 769
 770static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
 771{
 772	int i;
 773
 774	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
 775
 776	for (i = 0; i < nt->qp_count; i++)
 777		ntb_transport_setup_qp_peer_msi(nt, i);
 778}
 779
 780static void ntb_transport_msi_desc_changed(void *data)
 781{
 782	struct ntb_transport_ctx *nt = data;
 783	int i;
 784
 785	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
 786
 787	for (i = 0; i < nt->qp_count; i++)
 788		ntb_transport_setup_qp_msi(nt, i);
 789
 790	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
 791}
 792
 793static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
 794{
 795	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
 796	struct pci_dev *pdev = nt->ndev->pdev;
 797
 798	if (!mw->virt_addr)
 799		return;
 800
 801	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
 802	dma_free_coherent(&pdev->dev, mw->alloc_size,
 803			  mw->alloc_addr, mw->dma_addr);
 804	mw->xlat_size = 0;
 805	mw->buff_size = 0;
 806	mw->alloc_size = 0;
 807	mw->alloc_addr = NULL;
 808	mw->virt_addr = NULL;
 809}
 810
 811static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
 812			       struct device *dma_dev, size_t align)
 813{
 814	dma_addr_t dma_addr;
 815	void *alloc_addr, *virt_addr;
 816	int rc;
 817
 818	alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
 819					&dma_addr, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 820	if (!alloc_addr) {
 821		dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
 822			mw->alloc_size);
 823		return -ENOMEM;
 824	}
 825	virt_addr = alloc_addr;
 826
 827	/*
 828	 * we must ensure that the memory address allocated is BAR size
 829	 * aligned in order for the XLAT register to take the value. This
 830	 * is a requirement of the hardware. It is recommended to setup CMA
 831	 * for BAR sizes equal or greater than 4MB.
 832	 */
 833	if (!IS_ALIGNED(dma_addr, align)) {
 834		if (mw->alloc_size > mw->buff_size) {
 835			virt_addr = PTR_ALIGN(alloc_addr, align);
 836			dma_addr = ALIGN(dma_addr, align);
 837		} else {
 838			rc = -ENOMEM;
 839			goto err;
 840		}
 841	}
 842
 843	mw->alloc_addr = alloc_addr;
 844	mw->virt_addr = virt_addr;
 845	mw->dma_addr = dma_addr;
 846
 847	return 0;
 848
 849err:
 850	dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
 851
 852	return rc;
 853}
 854
 855static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
 856		      resource_size_t size)
 857{
 858	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
 859	struct pci_dev *pdev = nt->ndev->pdev;
 860	size_t xlat_size, buff_size;
 861	resource_size_t xlat_align;
 862	resource_size_t xlat_align_size;
 863	int rc;
 864
 865	if (!size)
 866		return -EINVAL;
 867
 868	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
 869			      &xlat_align_size, NULL);
 870	if (rc)
 871		return rc;
 872
 873	xlat_size = round_up(size, xlat_align_size);
 874	buff_size = round_up(size, xlat_align);
 875
 876	/* No need to re-setup */
 877	if (mw->xlat_size == xlat_size)
 878		return 0;
 879
 880	if (mw->buff_size)
 881		ntb_free_mw(nt, num_mw);
 882
 883	/* Alloc memory for receiving data.  Must be aligned */
 884	mw->xlat_size = xlat_size;
 885	mw->buff_size = buff_size;
 886	mw->alloc_size = buff_size;
 887
 888	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
 889	if (rc) {
 890		mw->alloc_size *= 2;
 891		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
 892		if (rc) {
 893			dev_err(&pdev->dev,
 894				"Unable to alloc aligned MW buff\n");
 895			mw->xlat_size = 0;
 896			mw->buff_size = 0;
 897			mw->alloc_size = 0;
 898			return rc;
 899		}
 900	}
 901
 902	/* Notify HW the memory location of the receive buffer */
 903	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
 904			      mw->xlat_size);
 905	if (rc) {
 906		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
 907		ntb_free_mw(nt, num_mw);
 908		return -EIO;
 909	}
 910
 911	return 0;
 912}
 913
 914static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
 915{
 916	qp->link_is_up = false;
 917	qp->active = false;
 918
 919	qp->tx_index = 0;
 920	qp->rx_index = 0;
 921	qp->rx_bytes = 0;
 922	qp->rx_pkts = 0;
 923	qp->rx_ring_empty = 0;
 924	qp->rx_err_no_buf = 0;
 925	qp->rx_err_oflow = 0;
 926	qp->rx_err_ver = 0;
 927	qp->rx_memcpy = 0;
 928	qp->rx_async = 0;
 929	qp->tx_bytes = 0;
 930	qp->tx_pkts = 0;
 931	qp->tx_ring_full = 0;
 932	qp->tx_err_no_buf = 0;
 933	qp->tx_memcpy = 0;
 934	qp->tx_async = 0;
 935}
 936
 
 
 
 
 
 
 
 937static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
 938{
 939	struct ntb_transport_ctx *nt = qp->transport;
 940	struct pci_dev *pdev = nt->ndev->pdev;
 941
 942	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
 943
 944	cancel_delayed_work_sync(&qp->link_work);
 945	ntb_qp_link_down_reset(qp);
 946
 947	if (qp->event_handler)
 948		qp->event_handler(qp->cb_data, qp->link_is_up);
 949}
 950
 951static void ntb_qp_link_cleanup_work(struct work_struct *work)
 952{
 953	struct ntb_transport_qp *qp = container_of(work,
 954						   struct ntb_transport_qp,
 955						   link_cleanup);
 956	struct ntb_transport_ctx *nt = qp->transport;
 957
 958	ntb_qp_link_cleanup(qp);
 959
 960	if (nt->link_is_up)
 961		schedule_delayed_work(&qp->link_work,
 962				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
 963}
 964
 965static void ntb_qp_link_down(struct ntb_transport_qp *qp)
 966{
 967	schedule_work(&qp->link_cleanup);
 968}
 969
 970static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
 971{
 972	struct ntb_transport_qp *qp;
 973	u64 qp_bitmap_alloc;
 974	unsigned int i, count;
 975
 976	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
 977
 978	/* Pass along the info to any clients */
 979	for (i = 0; i < nt->qp_count; i++)
 980		if (qp_bitmap_alloc & BIT_ULL(i)) {
 981			qp = &nt->qp_vec[i];
 982			ntb_qp_link_cleanup(qp);
 983			cancel_work_sync(&qp->link_cleanup);
 984			cancel_delayed_work_sync(&qp->link_work);
 985		}
 986
 987	if (!nt->link_is_up)
 988		cancel_delayed_work_sync(&nt->link_work);
 989
 990	for (i = 0; i < nt->mw_count; i++)
 991		ntb_free_mw(nt, i);
 992
 993	/* The scratchpad registers keep the values if the remote side
 994	 * goes down, blast them now to give them a sane value the next
 995	 * time they are accessed
 996	 */
 997	count = ntb_spad_count(nt->ndev);
 998	for (i = 0; i < count; i++)
 999		ntb_spad_write(nt->ndev, i, 0);
1000}
1001
1002static void ntb_transport_link_cleanup_work(struct work_struct *work)
1003{
1004	struct ntb_transport_ctx *nt =
1005		container_of(work, struct ntb_transport_ctx, link_cleanup);
1006
1007	ntb_transport_link_cleanup(nt);
1008}
1009
1010static void ntb_transport_event_callback(void *data)
1011{
1012	struct ntb_transport_ctx *nt = data;
1013
1014	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1015		schedule_delayed_work(&nt->link_work, 0);
1016	else
1017		schedule_work(&nt->link_cleanup);
1018}
1019
1020static void ntb_transport_link_work(struct work_struct *work)
1021{
1022	struct ntb_transport_ctx *nt =
1023		container_of(work, struct ntb_transport_ctx, link_work.work);
1024	struct ntb_dev *ndev = nt->ndev;
1025	struct pci_dev *pdev = ndev->pdev;
1026	resource_size_t size;
1027	u32 val;
1028	int rc = 0, i, spad;
1029
1030	/* send the local info, in the opposite order of the way we read it */
1031
1032	if (nt->use_msi) {
1033		rc = ntb_msi_setup_mws(ndev);
1034		if (rc) {
1035			dev_warn(&pdev->dev,
1036				 "Failed to register MSI memory window: %d\n",
1037				 rc);
1038			nt->use_msi = false;
1039		}
1040	}
1041
1042	for (i = 0; i < nt->qp_count; i++)
1043		ntb_transport_setup_qp_msi(nt, i);
1044
1045	for (i = 0; i < nt->mw_count; i++) {
1046		size = nt->mw_vec[i].phys_size;
1047
1048		if (max_mw_size && size > max_mw_size)
1049			size = max_mw_size;
1050
1051		spad = MW0_SZ_HIGH + (i * 2);
1052		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1053
1054		spad = MW0_SZ_LOW + (i * 2);
1055		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1056	}
1057
1058	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1059
1060	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1061
1062	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1063
1064	/* Query the remote side for its info */
1065	val = ntb_spad_read(ndev, VERSION);
1066	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1067	if (val != NTB_TRANSPORT_VERSION)
1068		goto out;
1069
1070	val = ntb_spad_read(ndev, NUM_QPS);
1071	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1072	if (val != nt->qp_count)
1073		goto out;
1074
1075	val = ntb_spad_read(ndev, NUM_MWS);
1076	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1077	if (val != nt->mw_count)
1078		goto out;
1079
1080	for (i = 0; i < nt->mw_count; i++) {
1081		u64 val64;
1082
1083		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1084		val64 = (u64)val << 32;
1085
1086		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1087		val64 |= val;
1088
1089		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1090
1091		rc = ntb_set_mw(nt, i, val64);
1092		if (rc)
1093			goto out1;
1094	}
1095
1096	nt->link_is_up = true;
1097
1098	for (i = 0; i < nt->qp_count; i++) {
1099		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1100
1101		ntb_transport_setup_qp_mw(nt, i);
1102		ntb_transport_setup_qp_peer_msi(nt, i);
1103
1104		if (qp->client_ready)
1105			schedule_delayed_work(&qp->link_work, 0);
1106	}
1107
1108	return;
1109
1110out1:
1111	for (i = 0; i < nt->mw_count; i++)
1112		ntb_free_mw(nt, i);
1113
1114	/* if there's an actual failure, we should just bail */
1115	if (rc < 0)
1116		return;
1117
1118out:
1119	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1120		schedule_delayed_work(&nt->link_work,
1121				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1122}
1123
1124static void ntb_qp_link_work(struct work_struct *work)
1125{
1126	struct ntb_transport_qp *qp = container_of(work,
1127						   struct ntb_transport_qp,
1128						   link_work.work);
1129	struct pci_dev *pdev = qp->ndev->pdev;
1130	struct ntb_transport_ctx *nt = qp->transport;
1131	int val;
1132
1133	WARN_ON(!nt->link_is_up);
1134
1135	val = ntb_spad_read(nt->ndev, QP_LINKS);
1136
1137	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1138
1139	/* query remote spad for qp ready bits */
1140	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1141
1142	/* See if the remote side is up */
1143	if (val & BIT(qp->qp_num)) {
1144		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1145		qp->link_is_up = true;
1146		qp->active = true;
1147
1148		if (qp->event_handler)
1149			qp->event_handler(qp->cb_data, qp->link_is_up);
1150
1151		if (qp->active)
1152			tasklet_schedule(&qp->rxc_db_work);
1153	} else if (nt->link_is_up)
1154		schedule_delayed_work(&qp->link_work,
1155				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1156}
1157
1158static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1159				    unsigned int qp_num)
1160{
1161	struct ntb_transport_qp *qp;
1162	phys_addr_t mw_base;
1163	resource_size_t mw_size;
1164	unsigned int num_qps_mw, tx_size;
1165	unsigned int mw_num, mw_count, qp_count;
1166	u64 qp_offset;
1167
1168	mw_count = nt->mw_count;
1169	qp_count = nt->qp_count;
1170
1171	mw_num = QP_TO_MW(nt, qp_num);
1172
1173	qp = &nt->qp_vec[qp_num];
1174	qp->qp_num = qp_num;
1175	qp->transport = nt;
1176	qp->ndev = nt->ndev;
1177	qp->client_ready = false;
1178	qp->event_handler = NULL;
1179	ntb_qp_link_down_reset(qp);
1180
1181	if (mw_num < qp_count % mw_count)
1182		num_qps_mw = qp_count / mw_count + 1;
1183	else
1184		num_qps_mw = qp_count / mw_count;
1185
1186	mw_base = nt->mw_vec[mw_num].phys_addr;
1187	mw_size = nt->mw_vec[mw_num].phys_size;
1188
1189	if (max_mw_size && mw_size > max_mw_size)
1190		mw_size = max_mw_size;
1191
1192	tx_size = (unsigned int)mw_size / num_qps_mw;
1193	qp_offset = tx_size * (qp_num / mw_count);
1194
1195	qp->tx_mw_size = tx_size;
1196	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1197	if (!qp->tx_mw)
1198		return -EINVAL;
1199
1200	qp->tx_mw_phys = mw_base + qp_offset;
1201	if (!qp->tx_mw_phys)
1202		return -EINVAL;
1203
1204	tx_size -= sizeof(struct ntb_rx_info);
1205	qp->rx_info = qp->tx_mw + tx_size;
1206
1207	/* Due to housekeeping, there must be atleast 2 buffs */
1208	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1209	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1210
1211	if (nt->debugfs_node_dir) {
1212		char debugfs_name[4];
1213
1214		snprintf(debugfs_name, 4, "qp%d", qp_num);
1215		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1216						     nt->debugfs_node_dir);
1217
1218		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1219							qp->debugfs_dir, qp,
1220							&ntb_qp_debugfs_stats);
1221	} else {
1222		qp->debugfs_dir = NULL;
1223		qp->debugfs_stats = NULL;
1224	}
1225
1226	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1227	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1228
1229	spin_lock_init(&qp->ntb_rx_q_lock);
1230	spin_lock_init(&qp->ntb_tx_free_q_lock);
1231
1232	INIT_LIST_HEAD(&qp->rx_post_q);
1233	INIT_LIST_HEAD(&qp->rx_pend_q);
1234	INIT_LIST_HEAD(&qp->rx_free_q);
1235	INIT_LIST_HEAD(&qp->tx_free_q);
1236
1237	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1238		     (unsigned long)qp);
1239
1240	return 0;
1241}
1242
1243static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1244{
1245	struct ntb_transport_ctx *nt;
1246	struct ntb_transport_mw *mw;
1247	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1248	u64 qp_bitmap;
1249	int node;
1250	int rc, i;
1251
1252	mw_count = ntb_peer_mw_count(ndev);
1253
1254	if (!ndev->ops->mw_set_trans) {
1255		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1256		return -EINVAL;
1257	}
1258
1259	if (ntb_db_is_unsafe(ndev))
1260		dev_dbg(&ndev->dev,
1261			"doorbell is unsafe, proceed anyway...\n");
1262	if (ntb_spad_is_unsafe(ndev))
1263		dev_dbg(&ndev->dev,
1264			"scratchpad is unsafe, proceed anyway...\n");
1265
1266	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1267		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1268
1269	node = dev_to_node(&ndev->dev);
1270
1271	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1272	if (!nt)
1273		return -ENOMEM;
1274
1275	nt->ndev = ndev;
1276
1277	/*
1278	 * If we are using MSI, and have at least one extra memory window,
1279	 * we will reserve the last MW for the MSI window.
1280	 */
1281	if (use_msi && mw_count > 1) {
1282		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1283		if (!rc) {
1284			mw_count -= 1;
1285			nt->use_msi = true;
1286		}
1287	}
1288
1289	spad_count = ntb_spad_count(ndev);
1290
1291	/* Limit the MW's based on the availability of scratchpads */
1292
1293	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1294		nt->mw_count = 0;
1295		rc = -EINVAL;
1296		goto err;
1297	}
1298
1299	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1300	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1301
1302	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1303
1304	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1305				  GFP_KERNEL, node);
1306	if (!nt->mw_vec) {
1307		rc = -ENOMEM;
1308		goto err;
1309	}
1310
1311	for (i = 0; i < mw_count; i++) {
1312		mw = &nt->mw_vec[i];
1313
1314		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1315					  &mw->phys_size);
1316		if (rc)
1317			goto err1;
1318
1319		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1320		if (!mw->vbase) {
1321			rc = -ENOMEM;
1322			goto err1;
1323		}
1324
1325		mw->buff_size = 0;
1326		mw->xlat_size = 0;
1327		mw->virt_addr = NULL;
1328		mw->dma_addr = 0;
1329	}
1330
1331	qp_bitmap = ntb_db_valid_mask(ndev);
1332
1333	qp_count = ilog2(qp_bitmap);
1334	if (nt->use_msi) {
1335		qp_count -= 1;
1336		nt->msi_db_mask = 1 << qp_count;
1337		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1338	}
1339
1340	if (max_num_clients && max_num_clients < qp_count)
1341		qp_count = max_num_clients;
1342	else if (nt->mw_count < qp_count)
1343		qp_count = nt->mw_count;
1344
1345	qp_bitmap &= BIT_ULL(qp_count) - 1;
1346
1347	nt->qp_count = qp_count;
1348	nt->qp_bitmap = qp_bitmap;
1349	nt->qp_bitmap_free = qp_bitmap;
1350
1351	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1352				  GFP_KERNEL, node);
1353	if (!nt->qp_vec) {
1354		rc = -ENOMEM;
1355		goto err1;
1356	}
1357
1358	if (nt_debugfs_dir) {
1359		nt->debugfs_node_dir =
1360			debugfs_create_dir(pci_name(ndev->pdev),
1361					   nt_debugfs_dir);
1362	}
1363
1364	for (i = 0; i < qp_count; i++) {
1365		rc = ntb_transport_init_queue(nt, i);
1366		if (rc)
1367			goto err2;
1368	}
1369
1370	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1371	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1372
1373	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1374	if (rc)
1375		goto err2;
1376
1377	INIT_LIST_HEAD(&nt->client_devs);
1378	rc = ntb_bus_init(nt);
1379	if (rc)
1380		goto err3;
1381
1382	nt->link_is_up = false;
1383	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1384	ntb_link_event(ndev);
1385
1386	return 0;
1387
1388err3:
1389	ntb_clear_ctx(ndev);
1390err2:
1391	kfree(nt->qp_vec);
1392err1:
1393	while (i--) {
1394		mw = &nt->mw_vec[i];
1395		iounmap(mw->vbase);
1396	}
1397	kfree(nt->mw_vec);
1398err:
1399	kfree(nt);
1400	return rc;
1401}
1402
1403static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1404{
1405	struct ntb_transport_ctx *nt = ndev->ctx;
1406	struct ntb_transport_qp *qp;
1407	u64 qp_bitmap_alloc;
1408	int i;
1409
1410	ntb_transport_link_cleanup(nt);
1411	cancel_work_sync(&nt->link_cleanup);
1412	cancel_delayed_work_sync(&nt->link_work);
1413
1414	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1415
1416	/* verify that all the qp's are freed */
1417	for (i = 0; i < nt->qp_count; i++) {
1418		qp = &nt->qp_vec[i];
1419		if (qp_bitmap_alloc & BIT_ULL(i))
1420			ntb_transport_free_queue(qp);
1421		debugfs_remove_recursive(qp->debugfs_dir);
1422	}
1423
1424	ntb_link_disable(ndev);
1425	ntb_clear_ctx(ndev);
1426
1427	ntb_bus_remove(nt);
1428
1429	for (i = nt->mw_count; i--; ) {
1430		ntb_free_mw(nt, i);
1431		iounmap(nt->mw_vec[i].vbase);
1432	}
1433
1434	kfree(nt->qp_vec);
1435	kfree(nt->mw_vec);
1436	kfree(nt);
1437}
1438
1439static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1440{
1441	struct ntb_queue_entry *entry;
1442	void *cb_data;
1443	unsigned int len;
1444	unsigned long irqflags;
1445
1446	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1447
1448	while (!list_empty(&qp->rx_post_q)) {
1449		entry = list_first_entry(&qp->rx_post_q,
1450					 struct ntb_queue_entry, entry);
1451		if (!(entry->flags & DESC_DONE_FLAG))
1452			break;
1453
1454		entry->rx_hdr->flags = 0;
1455		iowrite32(entry->rx_index, &qp->rx_info->entry);
1456
1457		cb_data = entry->cb_data;
1458		len = entry->len;
1459
1460		list_move_tail(&entry->entry, &qp->rx_free_q);
1461
1462		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1463
1464		if (qp->rx_handler && qp->client_ready)
1465			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1466
1467		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1468	}
1469
1470	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1471}
1472
1473static void ntb_rx_copy_callback(void *data,
1474				 const struct dmaengine_result *res)
1475{
1476	struct ntb_queue_entry *entry = data;
1477
1478	/* we need to check DMA results if we are using DMA */
1479	if (res) {
1480		enum dmaengine_tx_result dma_err = res->result;
1481
1482		switch (dma_err) {
1483		case DMA_TRANS_READ_FAILED:
1484		case DMA_TRANS_WRITE_FAILED:
1485			entry->errors++;
1486			fallthrough;
1487		case DMA_TRANS_ABORTED:
1488		{
1489			struct ntb_transport_qp *qp = entry->qp;
1490			void *offset = qp->rx_buff + qp->rx_max_frame *
1491					qp->rx_index;
1492
1493			ntb_memcpy_rx(entry, offset);
1494			qp->rx_memcpy++;
1495			return;
1496		}
1497
1498		case DMA_TRANS_NOERROR:
1499		default:
1500			break;
1501		}
1502	}
1503
1504	entry->flags |= DESC_DONE_FLAG;
1505
1506	ntb_complete_rxc(entry->qp);
1507}
1508
1509static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1510{
1511	void *buf = entry->buf;
1512	size_t len = entry->len;
1513
1514	memcpy(buf, offset, len);
1515
1516	/* Ensure that the data is fully copied out before clearing the flag */
1517	wmb();
1518
1519	ntb_rx_copy_callback(entry, NULL);
1520}
1521
1522static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1523{
1524	struct dma_async_tx_descriptor *txd;
1525	struct ntb_transport_qp *qp = entry->qp;
1526	struct dma_chan *chan = qp->rx_dma_chan;
1527	struct dma_device *device;
1528	size_t pay_off, buff_off, len;
1529	struct dmaengine_unmap_data *unmap;
1530	dma_cookie_t cookie;
1531	void *buf = entry->buf;
1532
1533	len = entry->len;
1534	device = chan->device;
1535	pay_off = (size_t)offset & ~PAGE_MASK;
1536	buff_off = (size_t)buf & ~PAGE_MASK;
1537
1538	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1539		goto err;
1540
1541	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1542	if (!unmap)
1543		goto err;
1544
1545	unmap->len = len;
1546	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1547				      pay_off, len, DMA_TO_DEVICE);
1548	if (dma_mapping_error(device->dev, unmap->addr[0]))
1549		goto err_get_unmap;
1550
1551	unmap->to_cnt = 1;
1552
1553	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1554				      buff_off, len, DMA_FROM_DEVICE);
1555	if (dma_mapping_error(device->dev, unmap->addr[1]))
1556		goto err_get_unmap;
1557
1558	unmap->from_cnt = 1;
1559
1560	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1561					     unmap->addr[0], len,
1562					     DMA_PREP_INTERRUPT);
1563	if (!txd)
1564		goto err_get_unmap;
1565
1566	txd->callback_result = ntb_rx_copy_callback;
1567	txd->callback_param = entry;
1568	dma_set_unmap(txd, unmap);
1569
1570	cookie = dmaengine_submit(txd);
1571	if (dma_submit_error(cookie))
1572		goto err_set_unmap;
1573
1574	dmaengine_unmap_put(unmap);
1575
1576	qp->last_cookie = cookie;
1577
1578	qp->rx_async++;
1579
1580	return 0;
1581
1582err_set_unmap:
1583	dmaengine_unmap_put(unmap);
1584err_get_unmap:
1585	dmaengine_unmap_put(unmap);
1586err:
1587	return -ENXIO;
1588}
1589
1590static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1591{
1592	struct ntb_transport_qp *qp = entry->qp;
1593	struct dma_chan *chan = qp->rx_dma_chan;
1594	int res;
1595
1596	if (!chan)
1597		goto err;
1598
1599	if (entry->len < copy_bytes)
1600		goto err;
1601
1602	res = ntb_async_rx_submit(entry, offset);
1603	if (res < 0)
1604		goto err;
1605
1606	if (!entry->retries)
1607		qp->rx_async++;
1608
1609	return;
1610
1611err:
1612	ntb_memcpy_rx(entry, offset);
1613	qp->rx_memcpy++;
1614}
1615
1616static int ntb_process_rxc(struct ntb_transport_qp *qp)
1617{
1618	struct ntb_payload_header *hdr;
1619	struct ntb_queue_entry *entry;
1620	void *offset;
1621
1622	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1623	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1624
1625	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1626		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1627
1628	if (!(hdr->flags & DESC_DONE_FLAG)) {
1629		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1630		qp->rx_ring_empty++;
1631		return -EAGAIN;
1632	}
1633
1634	if (hdr->flags & LINK_DOWN_FLAG) {
1635		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1636		ntb_qp_link_down(qp);
1637		hdr->flags = 0;
1638		return -EAGAIN;
1639	}
1640
1641	if (hdr->ver != (u32)qp->rx_pkts) {
1642		dev_dbg(&qp->ndev->pdev->dev,
1643			"version mismatch, expected %llu - got %u\n",
1644			qp->rx_pkts, hdr->ver);
1645		qp->rx_err_ver++;
1646		return -EIO;
1647	}
1648
1649	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1650	if (!entry) {
1651		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1652		qp->rx_err_no_buf++;
1653		return -EAGAIN;
1654	}
1655
1656	entry->rx_hdr = hdr;
1657	entry->rx_index = qp->rx_index;
1658
1659	if (hdr->len > entry->len) {
1660		dev_dbg(&qp->ndev->pdev->dev,
1661			"receive buffer overflow! Wanted %d got %d\n",
1662			hdr->len, entry->len);
1663		qp->rx_err_oflow++;
1664
1665		entry->len = -EIO;
1666		entry->flags |= DESC_DONE_FLAG;
1667
1668		ntb_complete_rxc(qp);
1669	} else {
1670		dev_dbg(&qp->ndev->pdev->dev,
1671			"RX OK index %u ver %u size %d into buf size %d\n",
1672			qp->rx_index, hdr->ver, hdr->len, entry->len);
1673
1674		qp->rx_bytes += hdr->len;
1675		qp->rx_pkts++;
1676
1677		entry->len = hdr->len;
1678
1679		ntb_async_rx(entry, offset);
1680	}
1681
1682	qp->rx_index++;
1683	qp->rx_index %= qp->rx_max_entry;
1684
1685	return 0;
1686}
1687
1688static void ntb_transport_rxc_db(unsigned long data)
1689{
1690	struct ntb_transport_qp *qp = (void *)data;
1691	int rc, i;
1692
1693	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1694		__func__, qp->qp_num);
1695
1696	/* Limit the number of packets processed in a single interrupt to
1697	 * provide fairness to others
1698	 */
1699	for (i = 0; i < qp->rx_max_entry; i++) {
1700		rc = ntb_process_rxc(qp);
1701		if (rc)
1702			break;
1703	}
1704
1705	if (i && qp->rx_dma_chan)
1706		dma_async_issue_pending(qp->rx_dma_chan);
1707
1708	if (i == qp->rx_max_entry) {
1709		/* there is more work to do */
1710		if (qp->active)
1711			tasklet_schedule(&qp->rxc_db_work);
1712	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1713		/* the doorbell bit is set: clear it */
1714		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1715		/* ntb_db_read ensures ntb_db_clear write is committed */
1716		ntb_db_read(qp->ndev);
1717
1718		/* an interrupt may have arrived between finishing
1719		 * ntb_process_rxc and clearing the doorbell bit:
1720		 * there might be some more work to do.
1721		 */
1722		if (qp->active)
1723			tasklet_schedule(&qp->rxc_db_work);
1724	}
1725}
1726
1727static void ntb_tx_copy_callback(void *data,
1728				 const struct dmaengine_result *res)
1729{
1730	struct ntb_queue_entry *entry = data;
1731	struct ntb_transport_qp *qp = entry->qp;
1732	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1733
1734	/* we need to check DMA results if we are using DMA */
1735	if (res) {
1736		enum dmaengine_tx_result dma_err = res->result;
1737
1738		switch (dma_err) {
1739		case DMA_TRANS_READ_FAILED:
1740		case DMA_TRANS_WRITE_FAILED:
1741			entry->errors++;
1742			fallthrough;
1743		case DMA_TRANS_ABORTED:
1744		{
1745			void __iomem *offset =
1746				qp->tx_mw + qp->tx_max_frame *
1747				entry->tx_index;
1748
1749			/* resubmit via CPU */
1750			ntb_memcpy_tx(entry, offset);
1751			qp->tx_memcpy++;
1752			return;
1753		}
1754
1755		case DMA_TRANS_NOERROR:
1756		default:
1757			break;
1758		}
1759	}
1760
1761	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1762
1763	if (qp->use_msi)
1764		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1765	else
1766		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1767
1768	/* The entry length can only be zero if the packet is intended to be a
1769	 * "link down" or similar.  Since no payload is being sent in these
1770	 * cases, there is nothing to add to the completion queue.
1771	 */
1772	if (entry->len > 0) {
1773		qp->tx_bytes += entry->len;
1774
1775		if (qp->tx_handler)
1776			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1777				       entry->len);
1778	}
1779
1780	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1781}
1782
1783static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1784{
1785#ifdef ARCH_HAS_NOCACHE_UACCESS
1786	/*
1787	 * Using non-temporal mov to improve performance on non-cached
1788	 * writes, even though we aren't actually copying from user space.
1789	 */
1790	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1791#else
1792	memcpy_toio(offset, entry->buf, entry->len);
1793#endif
1794
1795	/* Ensure that the data is fully copied out before setting the flags */
1796	wmb();
1797
1798	ntb_tx_copy_callback(entry, NULL);
1799}
1800
1801static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1802			       struct ntb_queue_entry *entry)
1803{
1804	struct dma_async_tx_descriptor *txd;
1805	struct dma_chan *chan = qp->tx_dma_chan;
1806	struct dma_device *device;
1807	size_t len = entry->len;
1808	void *buf = entry->buf;
1809	size_t dest_off, buff_off;
1810	struct dmaengine_unmap_data *unmap;
1811	dma_addr_t dest;
1812	dma_cookie_t cookie;
1813
1814	device = chan->device;
1815	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1816	buff_off = (size_t)buf & ~PAGE_MASK;
1817	dest_off = (size_t)dest & ~PAGE_MASK;
1818
1819	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1820		goto err;
1821
1822	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1823	if (!unmap)
1824		goto err;
1825
1826	unmap->len = len;
1827	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1828				      buff_off, len, DMA_TO_DEVICE);
1829	if (dma_mapping_error(device->dev, unmap->addr[0]))
1830		goto err_get_unmap;
1831
1832	unmap->to_cnt = 1;
1833
1834	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1835					     DMA_PREP_INTERRUPT);
1836	if (!txd)
1837		goto err_get_unmap;
1838
1839	txd->callback_result = ntb_tx_copy_callback;
1840	txd->callback_param = entry;
1841	dma_set_unmap(txd, unmap);
1842
1843	cookie = dmaengine_submit(txd);
1844	if (dma_submit_error(cookie))
1845		goto err_set_unmap;
1846
1847	dmaengine_unmap_put(unmap);
1848
1849	dma_async_issue_pending(chan);
1850
1851	return 0;
1852err_set_unmap:
1853	dmaengine_unmap_put(unmap);
1854err_get_unmap:
1855	dmaengine_unmap_put(unmap);
1856err:
1857	return -ENXIO;
1858}
1859
1860static void ntb_async_tx(struct ntb_transport_qp *qp,
1861			 struct ntb_queue_entry *entry)
1862{
1863	struct ntb_payload_header __iomem *hdr;
1864	struct dma_chan *chan = qp->tx_dma_chan;
1865	void __iomem *offset;
1866	int res;
1867
1868	entry->tx_index = qp->tx_index;
1869	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1870	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1871	entry->tx_hdr = hdr;
1872
1873	iowrite32(entry->len, &hdr->len);
1874	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1875
1876	if (!chan)
1877		goto err;
1878
1879	if (entry->len < copy_bytes)
1880		goto err;
1881
1882	res = ntb_async_tx_submit(qp, entry);
1883	if (res < 0)
1884		goto err;
1885
1886	if (!entry->retries)
1887		qp->tx_async++;
1888
1889	return;
1890
1891err:
1892	ntb_memcpy_tx(entry, offset);
1893	qp->tx_memcpy++;
1894}
1895
1896static int ntb_process_tx(struct ntb_transport_qp *qp,
1897			  struct ntb_queue_entry *entry)
1898{
1899	if (qp->tx_index == qp->remote_rx_info->entry) {
1900		qp->tx_ring_full++;
1901		return -EAGAIN;
1902	}
1903
1904	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1905		if (qp->tx_handler)
1906			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1907
1908		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1909			     &qp->tx_free_q);
1910		return 0;
1911	}
1912
1913	ntb_async_tx(qp, entry);
1914
1915	qp->tx_index++;
1916	qp->tx_index %= qp->tx_max_entry;
1917
1918	qp->tx_pkts++;
1919
1920	return 0;
1921}
1922
1923static void ntb_send_link_down(struct ntb_transport_qp *qp)
1924{
1925	struct pci_dev *pdev = qp->ndev->pdev;
1926	struct ntb_queue_entry *entry;
1927	int i, rc;
1928
1929	if (!qp->link_is_up)
1930		return;
1931
1932	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1933
1934	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1935		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1936		if (entry)
1937			break;
1938		msleep(100);
1939	}
1940
1941	if (!entry)
1942		return;
1943
1944	entry->cb_data = NULL;
1945	entry->buf = NULL;
1946	entry->len = 0;
1947	entry->flags = LINK_DOWN_FLAG;
1948
1949	rc = ntb_process_tx(qp, entry);
1950	if (rc)
1951		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1952			qp->qp_num);
1953
1954	ntb_qp_link_down_reset(qp);
1955}
1956
1957static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1958{
1959	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1960}
1961
1962/**
1963 * ntb_transport_create_queue - Create a new NTB transport layer queue
1964 * @rx_handler: receive callback function
1965 * @tx_handler: transmit callback function
1966 * @event_handler: event callback function
1967 *
1968 * Create a new NTB transport layer queue and provide the queue with a callback
1969 * routine for both transmit and receive.  The receive callback routine will be
1970 * used to pass up data when the transport has received it on the queue.   The
1971 * transmit callback routine will be called when the transport has completed the
1972 * transmission of the data on the queue and the data is ready to be freed.
1973 *
1974 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1975 */
1976struct ntb_transport_qp *
1977ntb_transport_create_queue(void *data, struct device *client_dev,
1978			   const struct ntb_queue_handlers *handlers)
1979{
1980	struct ntb_dev *ndev;
1981	struct pci_dev *pdev;
1982	struct ntb_transport_ctx *nt;
1983	struct ntb_queue_entry *entry;
1984	struct ntb_transport_qp *qp;
1985	u64 qp_bit;
1986	unsigned int free_queue;
1987	dma_cap_mask_t dma_mask;
1988	int node;
1989	int i;
1990
1991	ndev = dev_ntb(client_dev->parent);
1992	pdev = ndev->pdev;
1993	nt = ndev->ctx;
1994
1995	node = dev_to_node(&ndev->dev);
1996
1997	free_queue = ffs(nt->qp_bitmap_free);
1998	if (!free_queue)
1999		goto err;
2000
2001	/* decrement free_queue to make it zero based */
2002	free_queue--;
2003
2004	qp = &nt->qp_vec[free_queue];
2005	qp_bit = BIT_ULL(qp->qp_num);
2006
2007	nt->qp_bitmap_free &= ~qp_bit;
2008
2009	qp->cb_data = data;
2010	qp->rx_handler = handlers->rx_handler;
2011	qp->tx_handler = handlers->tx_handler;
2012	qp->event_handler = handlers->event_handler;
2013
2014	dma_cap_zero(dma_mask);
2015	dma_cap_set(DMA_MEMCPY, dma_mask);
2016
2017	if (use_dma) {
2018		qp->tx_dma_chan =
2019			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2020					    (void *)(unsigned long)node);
2021		if (!qp->tx_dma_chan)
2022			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2023
2024		qp->rx_dma_chan =
2025			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2026					    (void *)(unsigned long)node);
2027		if (!qp->rx_dma_chan)
2028			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2029	} else {
2030		qp->tx_dma_chan = NULL;
2031		qp->rx_dma_chan = NULL;
2032	}
2033
2034	qp->tx_mw_dma_addr = 0;
2035	if (qp->tx_dma_chan) {
2036		qp->tx_mw_dma_addr =
2037			dma_map_resource(qp->tx_dma_chan->device->dev,
2038					 qp->tx_mw_phys, qp->tx_mw_size,
2039					 DMA_FROM_DEVICE, 0);
2040		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2041				      qp->tx_mw_dma_addr)) {
2042			qp->tx_mw_dma_addr = 0;
2043			goto err1;
2044		}
2045	}
2046
2047	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2048		qp->tx_dma_chan ? "DMA" : "CPU");
2049
2050	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2051		qp->rx_dma_chan ? "DMA" : "CPU");
2052
2053	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2054		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2055		if (!entry)
2056			goto err1;
2057
2058		entry->qp = qp;
2059		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2060			     &qp->rx_free_q);
2061	}
2062	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2063
2064	for (i = 0; i < qp->tx_max_entry; i++) {
2065		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2066		if (!entry)
2067			goto err2;
2068
2069		entry->qp = qp;
2070		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2071			     &qp->tx_free_q);
2072	}
2073
2074	ntb_db_clear(qp->ndev, qp_bit);
2075	ntb_db_clear_mask(qp->ndev, qp_bit);
2076
2077	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2078
2079	return qp;
2080
2081err2:
2082	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2083		kfree(entry);
2084err1:
2085	qp->rx_alloc_entry = 0;
2086	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2087		kfree(entry);
2088	if (qp->tx_mw_dma_addr)
2089		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2090				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2091				   DMA_FROM_DEVICE, 0);
2092	if (qp->tx_dma_chan)
2093		dma_release_channel(qp->tx_dma_chan);
2094	if (qp->rx_dma_chan)
2095		dma_release_channel(qp->rx_dma_chan);
2096	nt->qp_bitmap_free |= qp_bit;
2097err:
2098	return NULL;
2099}
2100EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2101
2102/**
2103 * ntb_transport_free_queue - Frees NTB transport queue
2104 * @qp: NTB queue to be freed
2105 *
2106 * Frees NTB transport queue
2107 */
2108void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2109{
2110	struct pci_dev *pdev;
2111	struct ntb_queue_entry *entry;
2112	u64 qp_bit;
2113
2114	if (!qp)
2115		return;
2116
2117	pdev = qp->ndev->pdev;
2118
2119	qp->active = false;
2120
2121	if (qp->tx_dma_chan) {
2122		struct dma_chan *chan = qp->tx_dma_chan;
2123		/* Putting the dma_chan to NULL will force any new traffic to be
2124		 * processed by the CPU instead of the DAM engine
2125		 */
2126		qp->tx_dma_chan = NULL;
2127
2128		/* Try to be nice and wait for any queued DMA engine
2129		 * transactions to process before smashing it with a rock
2130		 */
2131		dma_sync_wait(chan, qp->last_cookie);
2132		dmaengine_terminate_all(chan);
2133
2134		dma_unmap_resource(chan->device->dev,
2135				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2136				   DMA_FROM_DEVICE, 0);
2137
2138		dma_release_channel(chan);
2139	}
2140
2141	if (qp->rx_dma_chan) {
2142		struct dma_chan *chan = qp->rx_dma_chan;
2143		/* Putting the dma_chan to NULL will force any new traffic to be
2144		 * processed by the CPU instead of the DAM engine
2145		 */
2146		qp->rx_dma_chan = NULL;
2147
2148		/* Try to be nice and wait for any queued DMA engine
2149		 * transactions to process before smashing it with a rock
2150		 */
2151		dma_sync_wait(chan, qp->last_cookie);
2152		dmaengine_terminate_all(chan);
2153		dma_release_channel(chan);
2154	}
2155
2156	qp_bit = BIT_ULL(qp->qp_num);
2157
2158	ntb_db_set_mask(qp->ndev, qp_bit);
2159	tasklet_kill(&qp->rxc_db_work);
2160
2161	cancel_delayed_work_sync(&qp->link_work);
2162
2163	qp->cb_data = NULL;
2164	qp->rx_handler = NULL;
2165	qp->tx_handler = NULL;
2166	qp->event_handler = NULL;
2167
2168	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2169		kfree(entry);
2170
2171	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2172		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2173		kfree(entry);
2174	}
2175
2176	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2177		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2178		kfree(entry);
2179	}
2180
2181	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2182		kfree(entry);
2183
2184	qp->transport->qp_bitmap_free |= qp_bit;
2185
2186	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2187}
2188EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2189
2190/**
2191 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2192 * @qp: NTB queue to be freed
2193 * @len: pointer to variable to write enqueued buffers length
2194 *
2195 * Dequeues unused buffers from receive queue.  Should only be used during
2196 * shutdown of qp.
2197 *
2198 * RETURNS: NULL error value on error, or void* for success.
2199 */
2200void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2201{
2202	struct ntb_queue_entry *entry;
2203	void *buf;
2204
2205	if (!qp || qp->client_ready)
2206		return NULL;
2207
2208	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2209	if (!entry)
2210		return NULL;
2211
2212	buf = entry->cb_data;
2213	*len = entry->len;
2214
2215	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2216
2217	return buf;
2218}
2219EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2220
2221/**
2222 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2223 * @qp: NTB transport layer queue the entry is to be enqueued on
2224 * @cb: per buffer pointer for callback function to use
2225 * @data: pointer to data buffer that incoming packets will be copied into
2226 * @len: length of the data buffer
2227 *
2228 * Enqueue a new receive buffer onto the transport queue into which a NTB
2229 * payload can be received into.
2230 *
2231 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2232 */
2233int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2234			     unsigned int len)
2235{
2236	struct ntb_queue_entry *entry;
2237
2238	if (!qp)
2239		return -EINVAL;
2240
2241	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2242	if (!entry)
2243		return -ENOMEM;
2244
2245	entry->cb_data = cb;
2246	entry->buf = data;
2247	entry->len = len;
2248	entry->flags = 0;
2249	entry->retries = 0;
2250	entry->errors = 0;
2251	entry->rx_index = 0;
2252
2253	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2254
2255	if (qp->active)
2256		tasklet_schedule(&qp->rxc_db_work);
2257
2258	return 0;
2259}
2260EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2261
2262/**
2263 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2264 * @qp: NTB transport layer queue the entry is to be enqueued on
2265 * @cb: per buffer pointer for callback function to use
2266 * @data: pointer to data buffer that will be sent
2267 * @len: length of the data buffer
2268 *
2269 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2270 * payload will be transmitted.  This assumes that a lock is being held to
2271 * serialize access to the qp.
2272 *
2273 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2274 */
2275int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2276			     unsigned int len)
2277{
2278	struct ntb_queue_entry *entry;
2279	int rc;
2280
2281	if (!qp || !qp->link_is_up || !len)
2282		return -EINVAL;
2283
 
 
 
 
2284	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2285	if (!entry) {
2286		qp->tx_err_no_buf++;
2287		return -EBUSY;
2288	}
2289
2290	entry->cb_data = cb;
2291	entry->buf = data;
2292	entry->len = len;
2293	entry->flags = 0;
2294	entry->errors = 0;
2295	entry->retries = 0;
2296	entry->tx_index = 0;
2297
2298	rc = ntb_process_tx(qp, entry);
2299	if (rc)
2300		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2301			     &qp->tx_free_q);
2302
2303	return rc;
2304}
2305EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2306
2307/**
2308 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2309 * @qp: NTB transport layer queue to be enabled
2310 *
2311 * Notify NTB transport layer of client readiness to use queue
2312 */
2313void ntb_transport_link_up(struct ntb_transport_qp *qp)
2314{
2315	if (!qp)
2316		return;
2317
2318	qp->client_ready = true;
2319
2320	if (qp->transport->link_is_up)
2321		schedule_delayed_work(&qp->link_work, 0);
2322}
2323EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2324
2325/**
2326 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2327 * @qp: NTB transport layer queue to be disabled
2328 *
2329 * Notify NTB transport layer of client's desire to no longer receive data on
2330 * transport queue specified.  It is the client's responsibility to ensure all
2331 * entries on queue are purged or otherwise handled appropriately.
2332 */
2333void ntb_transport_link_down(struct ntb_transport_qp *qp)
2334{
2335	int val;
2336
2337	if (!qp)
2338		return;
2339
2340	qp->client_ready = false;
2341
2342	val = ntb_spad_read(qp->ndev, QP_LINKS);
2343
2344	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2345
2346	if (qp->link_is_up)
2347		ntb_send_link_down(qp);
2348	else
2349		cancel_delayed_work_sync(&qp->link_work);
2350}
2351EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2352
2353/**
2354 * ntb_transport_link_query - Query transport link state
2355 * @qp: NTB transport layer queue to be queried
2356 *
2357 * Query connectivity to the remote system of the NTB transport queue
2358 *
2359 * RETURNS: true for link up or false for link down
2360 */
2361bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2362{
2363	if (!qp)
2364		return false;
2365
2366	return qp->link_is_up;
2367}
2368EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2369
2370/**
2371 * ntb_transport_qp_num - Query the qp number
2372 * @qp: NTB transport layer queue to be queried
2373 *
2374 * Query qp number of the NTB transport queue
2375 *
2376 * RETURNS: a zero based number specifying the qp number
2377 */
2378unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2379{
2380	if (!qp)
2381		return 0;
2382
2383	return qp->qp_num;
2384}
2385EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2386
2387/**
2388 * ntb_transport_max_size - Query the max payload size of a qp
2389 * @qp: NTB transport layer queue to be queried
2390 *
2391 * Query the maximum payload size permissible on the given qp
2392 *
2393 * RETURNS: the max payload size of a qp
2394 */
2395unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2396{
2397	unsigned int max_size;
2398	unsigned int copy_align;
2399	struct dma_chan *rx_chan, *tx_chan;
2400
2401	if (!qp)
2402		return 0;
2403
2404	rx_chan = qp->rx_dma_chan;
2405	tx_chan = qp->tx_dma_chan;
2406
2407	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2408			 tx_chan ? tx_chan->device->copy_align : 0);
2409
2410	/* If DMA engine usage is possible, try to find the max size for that */
2411	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2412	max_size = round_down(max_size, 1 << copy_align);
2413
2414	return max_size;
2415}
2416EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2417
2418unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2419{
2420	unsigned int head = qp->tx_index;
2421	unsigned int tail = qp->remote_rx_info->entry;
2422
2423	return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2424}
2425EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2426
2427static void ntb_transport_doorbell_callback(void *data, int vector)
2428{
2429	struct ntb_transport_ctx *nt = data;
2430	struct ntb_transport_qp *qp;
2431	u64 db_bits;
2432	unsigned int qp_num;
2433
2434	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2435		ntb_transport_msi_peer_desc_changed(nt);
2436		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2437	}
2438
2439	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2440		   ntb_db_vector_mask(nt->ndev, vector));
2441
2442	while (db_bits) {
2443		qp_num = __ffs(db_bits);
2444		qp = &nt->qp_vec[qp_num];
2445
2446		if (qp->active)
2447			tasklet_schedule(&qp->rxc_db_work);
2448
2449		db_bits &= ~BIT_ULL(qp_num);
2450	}
2451}
2452
2453static const struct ntb_ctx_ops ntb_transport_ops = {
2454	.link_event = ntb_transport_event_callback,
2455	.db_event = ntb_transport_doorbell_callback,
2456};
2457
2458static struct ntb_client ntb_transport_client = {
2459	.ops = {
2460		.probe = ntb_transport_probe,
2461		.remove = ntb_transport_free,
2462	},
2463};
2464
2465static int __init ntb_transport_init(void)
2466{
2467	int rc;
2468
2469	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2470
2471	if (debugfs_initialized())
2472		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2473
2474	rc = bus_register(&ntb_transport_bus);
2475	if (rc)
2476		goto err_bus;
2477
2478	rc = ntb_register_client(&ntb_transport_client);
2479	if (rc)
2480		goto err_client;
2481
2482	return 0;
2483
2484err_client:
2485	bus_unregister(&ntb_transport_bus);
2486err_bus:
2487	debugfs_remove_recursive(nt_debugfs_dir);
2488	return rc;
2489}
2490module_init(ntb_transport_init);
2491
2492static void __exit ntb_transport_exit(void)
2493{
2494	ntb_unregister_client(&ntb_transport_client);
2495	bus_unregister(&ntb_transport_bus);
2496	debugfs_remove_recursive(nt_debugfs_dir);
2497}
2498module_exit(ntb_transport_exit);
v6.13.7
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 *   redistributing this file, you may do so under either license.
   4 *
   5 *   GPL LICENSE SUMMARY
   6 *
   7 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
   8 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
   9 *
  10 *   This program is free software; you can redistribute it and/or modify
  11 *   it under the terms of version 2 of the GNU General Public License as
  12 *   published by the Free Software Foundation.
  13 *
  14 *   BSD LICENSE
  15 *
  16 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
  17 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
  18 *
  19 *   Redistribution and use in source and binary forms, with or without
  20 *   modification, are permitted provided that the following conditions
  21 *   are met:
  22 *
  23 *     * Redistributions of source code must retain the above copyright
  24 *       notice, this list of conditions and the following disclaimer.
  25 *     * Redistributions in binary form must reproduce the above copy
  26 *       notice, this list of conditions and the following disclaimer in
  27 *       the documentation and/or other materials provided with the
  28 *       distribution.
  29 *     * Neither the name of Intel Corporation nor the names of its
  30 *       contributors may be used to endorse or promote products derived
  31 *       from this software without specific prior written permission.
  32 *
  33 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  34 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  35 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  36 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  37 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  38 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  39 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  40 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  41 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  42 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  43 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  44 *
  45 * PCIe NTB Transport Linux driver
  46 *
  47 * Contact Information:
  48 * Jon Mason <jon.mason@intel.com>
  49 */
  50#include <linux/debugfs.h>
  51#include <linux/delay.h>
  52#include <linux/dmaengine.h>
  53#include <linux/dma-mapping.h>
  54#include <linux/errno.h>
  55#include <linux/export.h>
  56#include <linux/interrupt.h>
  57#include <linux/module.h>
  58#include <linux/pci.h>
  59#include <linux/slab.h>
  60#include <linux/types.h>
  61#include <linux/uaccess.h>
  62#include "linux/ntb.h"
  63#include "linux/ntb_transport.h"
  64
  65#define NTB_TRANSPORT_VERSION	4
  66#define NTB_TRANSPORT_VER	"4"
  67#define NTB_TRANSPORT_NAME	"ntb_transport"
  68#define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
  69#define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
  70
  71MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
  72MODULE_VERSION(NTB_TRANSPORT_VER);
  73MODULE_LICENSE("Dual BSD/GPL");
  74MODULE_AUTHOR("Intel Corporation");
  75
  76static unsigned long max_mw_size;
  77module_param(max_mw_size, ulong, 0644);
  78MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
  79
  80static unsigned int transport_mtu = 0x10000;
  81module_param(transport_mtu, uint, 0644);
  82MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
  83
  84static unsigned char max_num_clients;
  85module_param(max_num_clients, byte, 0644);
  86MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
  87
  88static unsigned int copy_bytes = 1024;
  89module_param(copy_bytes, uint, 0644);
  90MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
  91
  92static bool use_dma;
  93module_param(use_dma, bool, 0644);
  94MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
  95
  96static bool use_msi;
  97#ifdef CONFIG_NTB_MSI
  98module_param(use_msi, bool, 0644);
  99MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
 100#endif
 101
 102static struct dentry *nt_debugfs_dir;
 103
 104/* Only two-ports NTB devices are supported */
 105#define PIDX		NTB_DEF_PEER_IDX
 106
 107struct ntb_queue_entry {
 108	/* ntb_queue list reference */
 109	struct list_head entry;
 110	/* pointers to data to be transferred */
 111	void *cb_data;
 112	void *buf;
 113	unsigned int len;
 114	unsigned int flags;
 115	int retries;
 116	int errors;
 117	unsigned int tx_index;
 118	unsigned int rx_index;
 119
 120	struct ntb_transport_qp *qp;
 121	union {
 122		struct ntb_payload_header __iomem *tx_hdr;
 123		struct ntb_payload_header *rx_hdr;
 124	};
 125};
 126
 127struct ntb_rx_info {
 128	unsigned int entry;
 129};
 130
 131struct ntb_transport_qp {
 132	struct ntb_transport_ctx *transport;
 133	struct ntb_dev *ndev;
 134	void *cb_data;
 135	struct dma_chan *tx_dma_chan;
 136	struct dma_chan *rx_dma_chan;
 137
 138	bool client_ready;
 139	bool link_is_up;
 140	bool active;
 141
 142	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
 143	u64 qp_bit;
 144
 145	struct ntb_rx_info __iomem *rx_info;
 146	struct ntb_rx_info *remote_rx_info;
 147
 148	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
 149			   void *data, int len);
 150	struct list_head tx_free_q;
 151	spinlock_t ntb_tx_free_q_lock;
 152	void __iomem *tx_mw;
 153	phys_addr_t tx_mw_phys;
 154	size_t tx_mw_size;
 155	dma_addr_t tx_mw_dma_addr;
 156	unsigned int tx_index;
 157	unsigned int tx_max_entry;
 158	unsigned int tx_max_frame;
 159
 160	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
 161			   void *data, int len);
 162	struct list_head rx_post_q;
 163	struct list_head rx_pend_q;
 164	struct list_head rx_free_q;
 165	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
 166	spinlock_t ntb_rx_q_lock;
 167	void *rx_buff;
 168	unsigned int rx_index;
 169	unsigned int rx_max_entry;
 170	unsigned int rx_max_frame;
 171	unsigned int rx_alloc_entry;
 172	dma_cookie_t last_cookie;
 173	struct tasklet_struct rxc_db_work;
 174
 175	void (*event_handler)(void *data, int status);
 176	struct delayed_work link_work;
 177	struct work_struct link_cleanup;
 178
 179	struct dentry *debugfs_dir;
 180	struct dentry *debugfs_stats;
 181
 182	/* Stats */
 183	u64 rx_bytes;
 184	u64 rx_pkts;
 185	u64 rx_ring_empty;
 186	u64 rx_err_no_buf;
 187	u64 rx_err_oflow;
 188	u64 rx_err_ver;
 189	u64 rx_memcpy;
 190	u64 rx_async;
 191	u64 tx_bytes;
 192	u64 tx_pkts;
 193	u64 tx_ring_full;
 194	u64 tx_err_no_buf;
 195	u64 tx_memcpy;
 196	u64 tx_async;
 197
 198	bool use_msi;
 199	int msi_irq;
 200	struct ntb_msi_desc msi_desc;
 201	struct ntb_msi_desc peer_msi_desc;
 202};
 203
 204struct ntb_transport_mw {
 205	phys_addr_t phys_addr;
 206	resource_size_t phys_size;
 207	void __iomem *vbase;
 208	size_t xlat_size;
 209	size_t buff_size;
 210	size_t alloc_size;
 211	void *alloc_addr;
 212	void *virt_addr;
 213	dma_addr_t dma_addr;
 214};
 215
 216struct ntb_transport_client_dev {
 217	struct list_head entry;
 218	struct ntb_transport_ctx *nt;
 219	struct device dev;
 220};
 221
 222struct ntb_transport_ctx {
 223	struct list_head entry;
 224	struct list_head client_devs;
 225
 226	struct ntb_dev *ndev;
 227
 228	struct ntb_transport_mw *mw_vec;
 229	struct ntb_transport_qp *qp_vec;
 230	unsigned int mw_count;
 231	unsigned int qp_count;
 232	u64 qp_bitmap;
 233	u64 qp_bitmap_free;
 234
 235	bool use_msi;
 236	unsigned int msi_spad_offset;
 237	u64 msi_db_mask;
 238
 239	bool link_is_up;
 240	struct delayed_work link_work;
 241	struct work_struct link_cleanup;
 242
 243	struct dentry *debugfs_node_dir;
 244};
 245
 246enum {
 247	DESC_DONE_FLAG = BIT(0),
 248	LINK_DOWN_FLAG = BIT(1),
 249};
 250
 251struct ntb_payload_header {
 252	unsigned int ver;
 253	unsigned int len;
 254	unsigned int flags;
 255};
 256
 257enum {
 258	VERSION = 0,
 259	QP_LINKS,
 260	NUM_QPS,
 261	NUM_MWS,
 262	MW0_SZ_HIGH,
 263	MW0_SZ_LOW,
 264};
 265
 266#define dev_client_dev(__dev) \
 267	container_of((__dev), struct ntb_transport_client_dev, dev)
 268
 269#define drv_client(__drv) \
 270	container_of((__drv), struct ntb_transport_client, driver)
 271
 272#define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
 273#define NTB_QP_DEF_NUM_ENTRIES	100
 274#define NTB_LINK_DOWN_TIMEOUT	10
 275
 276static void ntb_transport_rxc_db(unsigned long data);
 277static const struct ntb_ctx_ops ntb_transport_ops;
 278static struct ntb_client ntb_transport_client;
 279static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
 280			       struct ntb_queue_entry *entry);
 281static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
 282static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
 283static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
 284
 285
 286static int ntb_transport_bus_match(struct device *dev,
 287				   const struct device_driver *drv)
 288{
 289	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
 290}
 291
 292static int ntb_transport_bus_probe(struct device *dev)
 293{
 294	const struct ntb_transport_client *client;
 295	int rc;
 296
 297	get_device(dev);
 298
 299	client = drv_client(dev->driver);
 300	rc = client->probe(dev);
 301	if (rc)
 302		put_device(dev);
 303
 304	return rc;
 305}
 306
 307static void ntb_transport_bus_remove(struct device *dev)
 308{
 309	const struct ntb_transport_client *client;
 310
 311	client = drv_client(dev->driver);
 312	client->remove(dev);
 313
 314	put_device(dev);
 
 
 315}
 316
 317static const struct bus_type ntb_transport_bus = {
 318	.name = "ntb_transport",
 319	.match = ntb_transport_bus_match,
 320	.probe = ntb_transport_bus_probe,
 321	.remove = ntb_transport_bus_remove,
 322};
 323
 324static LIST_HEAD(ntb_transport_list);
 325
 326static int ntb_bus_init(struct ntb_transport_ctx *nt)
 327{
 328	list_add_tail(&nt->entry, &ntb_transport_list);
 329	return 0;
 330}
 331
 332static void ntb_bus_remove(struct ntb_transport_ctx *nt)
 333{
 334	struct ntb_transport_client_dev *client_dev, *cd;
 335
 336	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
 337		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
 338			dev_name(&client_dev->dev));
 339		list_del(&client_dev->entry);
 340		device_unregister(&client_dev->dev);
 341	}
 342
 343	list_del(&nt->entry);
 344}
 345
 346static void ntb_transport_client_release(struct device *dev)
 347{
 348	struct ntb_transport_client_dev *client_dev;
 349
 350	client_dev = dev_client_dev(dev);
 351	kfree(client_dev);
 352}
 353
 354/**
 355 * ntb_transport_unregister_client_dev - Unregister NTB client device
 356 * @device_name: Name of NTB client device
 357 *
 358 * Unregister an NTB client device with the NTB transport layer
 359 */
 360void ntb_transport_unregister_client_dev(char *device_name)
 361{
 362	struct ntb_transport_client_dev *client, *cd;
 363	struct ntb_transport_ctx *nt;
 364
 365	list_for_each_entry(nt, &ntb_transport_list, entry)
 366		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
 367			if (!strncmp(dev_name(&client->dev), device_name,
 368				     strlen(device_name))) {
 369				list_del(&client->entry);
 370				device_unregister(&client->dev);
 371			}
 372}
 373EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
 374
 375/**
 376 * ntb_transport_register_client_dev - Register NTB client device
 377 * @device_name: Name of NTB client device
 378 *
 379 * Register an NTB client device with the NTB transport layer
 380 *
 381 * Returns: %0 on success or -errno code on error
 382 */
 383int ntb_transport_register_client_dev(char *device_name)
 384{
 385	struct ntb_transport_client_dev *client_dev;
 386	struct ntb_transport_ctx *nt;
 387	int node;
 388	int rc, i = 0;
 389
 390	if (list_empty(&ntb_transport_list))
 391		return -ENODEV;
 392
 393	list_for_each_entry(nt, &ntb_transport_list, entry) {
 394		struct device *dev;
 395
 396		node = dev_to_node(&nt->ndev->dev);
 397
 398		client_dev = kzalloc_node(sizeof(*client_dev),
 399					  GFP_KERNEL, node);
 400		if (!client_dev) {
 401			rc = -ENOMEM;
 402			goto err;
 403		}
 404
 405		dev = &client_dev->dev;
 406
 407		/* setup and register client devices */
 408		dev_set_name(dev, "%s%d", device_name, i);
 409		dev->bus = &ntb_transport_bus;
 410		dev->release = ntb_transport_client_release;
 411		dev->parent = &nt->ndev->dev;
 412
 413		rc = device_register(dev);
 414		if (rc) {
 415			put_device(dev);
 416			goto err;
 417		}
 418
 419		list_add_tail(&client_dev->entry, &nt->client_devs);
 420		i++;
 421	}
 422
 423	return 0;
 424
 425err:
 426	ntb_transport_unregister_client_dev(device_name);
 427
 428	return rc;
 429}
 430EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
 431
 432/**
 433 * ntb_transport_register_client - Register NTB client driver
 434 * @drv: NTB client driver to be registered
 435 *
 436 * Register an NTB client driver with the NTB transport layer
 437 *
 438 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 439 */
 440int ntb_transport_register_client(struct ntb_transport_client *drv)
 441{
 442	drv->driver.bus = &ntb_transport_bus;
 443
 444	if (list_empty(&ntb_transport_list))
 445		return -ENODEV;
 446
 447	return driver_register(&drv->driver);
 448}
 449EXPORT_SYMBOL_GPL(ntb_transport_register_client);
 450
 451/**
 452 * ntb_transport_unregister_client - Unregister NTB client driver
 453 * @drv: NTB client driver to be unregistered
 454 *
 455 * Unregister an NTB client driver with the NTB transport layer
 456 *
 457 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 458 */
 459void ntb_transport_unregister_client(struct ntb_transport_client *drv)
 460{
 461	driver_unregister(&drv->driver);
 462}
 463EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
 464
 465static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
 466			    loff_t *offp)
 467{
 468	struct ntb_transport_qp *qp;
 469	char *buf;
 470	ssize_t ret, out_offset, out_count;
 471
 472	qp = filp->private_data;
 473
 474	if (!qp || !qp->link_is_up)
 475		return 0;
 476
 477	out_count = 1000;
 478
 479	buf = kmalloc(out_count, GFP_KERNEL);
 480	if (!buf)
 481		return -ENOMEM;
 482
 483	out_offset = 0;
 484	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 485			       "\nNTB QP stats:\n\n");
 486	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 487			       "rx_bytes - \t%llu\n", qp->rx_bytes);
 488	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 489			       "rx_pkts - \t%llu\n", qp->rx_pkts);
 490	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 491			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
 492	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 493			       "rx_async - \t%llu\n", qp->rx_async);
 494	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 495			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
 496	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 497			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
 498	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 499			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
 500	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 501			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
 502	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 503			       "rx_buff - \t0x%p\n", qp->rx_buff);
 504	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 505			       "rx_index - \t%u\n", qp->rx_index);
 506	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 507			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
 508	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 509			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
 510
 511	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 512			       "tx_bytes - \t%llu\n", qp->tx_bytes);
 513	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 514			       "tx_pkts - \t%llu\n", qp->tx_pkts);
 515	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 516			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
 517	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 518			       "tx_async - \t%llu\n", qp->tx_async);
 519	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 520			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
 521	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 522			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
 523	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 524			       "tx_mw - \t0x%p\n", qp->tx_mw);
 525	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 526			       "tx_index (H) - \t%u\n", qp->tx_index);
 527	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 528			       "RRI (T) - \t%u\n",
 529			       qp->remote_rx_info->entry);
 530	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 531			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
 532	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 533			       "free tx - \t%u\n",
 534			       ntb_transport_tx_free_entry(qp));
 535
 536	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 537			       "\n");
 538	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 539			       "Using TX DMA - \t%s\n",
 540			       qp->tx_dma_chan ? "Yes" : "No");
 541	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 542			       "Using RX DMA - \t%s\n",
 543			       qp->rx_dma_chan ? "Yes" : "No");
 544	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 545			       "QP Link - \t%s\n",
 546			       qp->link_is_up ? "Up" : "Down");
 547	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
 548			       "\n");
 549
 550	if (out_offset > out_count)
 551		out_offset = out_count;
 552
 553	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
 554	kfree(buf);
 555	return ret;
 556}
 557
 558static const struct file_operations ntb_qp_debugfs_stats = {
 559	.owner = THIS_MODULE,
 560	.open = simple_open,
 561	.read = debugfs_read,
 562};
 563
 564static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
 565			 struct list_head *list)
 566{
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(lock, flags);
 570	list_add_tail(entry, list);
 571	spin_unlock_irqrestore(lock, flags);
 572}
 573
 574static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
 575					   struct list_head *list)
 576{
 577	struct ntb_queue_entry *entry;
 578	unsigned long flags;
 579
 580	spin_lock_irqsave(lock, flags);
 581	if (list_empty(list)) {
 582		entry = NULL;
 583		goto out;
 584	}
 585	entry = list_first_entry(list, struct ntb_queue_entry, entry);
 586	list_del(&entry->entry);
 587
 588out:
 589	spin_unlock_irqrestore(lock, flags);
 590
 591	return entry;
 592}
 593
 594static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
 595					   struct list_head *list,
 596					   struct list_head *to_list)
 597{
 598	struct ntb_queue_entry *entry;
 599	unsigned long flags;
 600
 601	spin_lock_irqsave(lock, flags);
 602
 603	if (list_empty(list)) {
 604		entry = NULL;
 605	} else {
 606		entry = list_first_entry(list, struct ntb_queue_entry, entry);
 607		list_move_tail(&entry->entry, to_list);
 608	}
 609
 610	spin_unlock_irqrestore(lock, flags);
 611
 612	return entry;
 613}
 614
 615static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
 616				     unsigned int qp_num)
 617{
 618	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 619	struct ntb_transport_mw *mw;
 620	struct ntb_dev *ndev = nt->ndev;
 621	struct ntb_queue_entry *entry;
 622	unsigned int rx_size, num_qps_mw;
 623	unsigned int mw_num, mw_count, qp_count;
 624	unsigned int i;
 625	int node;
 626
 627	mw_count = nt->mw_count;
 628	qp_count = nt->qp_count;
 629
 630	mw_num = QP_TO_MW(nt, qp_num);
 631	mw = &nt->mw_vec[mw_num];
 632
 633	if (!mw->virt_addr)
 634		return -ENOMEM;
 635
 636	if (mw_num < qp_count % mw_count)
 637		num_qps_mw = qp_count / mw_count + 1;
 638	else
 639		num_qps_mw = qp_count / mw_count;
 640
 641	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
 642	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
 643	rx_size -= sizeof(struct ntb_rx_info);
 644
 645	qp->remote_rx_info = qp->rx_buff + rx_size;
 646
 647	/* Due to housekeeping, there must be atleast 2 buffs */
 648	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
 649	qp->rx_max_entry = rx_size / qp->rx_max_frame;
 650	qp->rx_index = 0;
 651
 652	/*
 653	 * Checking to see if we have more entries than the default.
 654	 * We should add additional entries if that is the case so we
 655	 * can be in sync with the transport frames.
 656	 */
 657	node = dev_to_node(&ndev->dev);
 658	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
 659		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
 660		if (!entry)
 661			return -ENOMEM;
 662
 663		entry->qp = qp;
 664		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
 665			     &qp->rx_free_q);
 666		qp->rx_alloc_entry++;
 667	}
 668
 669	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
 670
 671	/* setup the hdr offsets with 0's */
 672	for (i = 0; i < qp->rx_max_entry; i++) {
 673		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
 674				sizeof(struct ntb_payload_header));
 675		memset(offset, 0, sizeof(struct ntb_payload_header));
 676	}
 677
 678	qp->rx_pkts = 0;
 679	qp->tx_pkts = 0;
 680	qp->tx_index = 0;
 681
 682	return 0;
 683}
 684
 685static irqreturn_t ntb_transport_isr(int irq, void *dev)
 686{
 687	struct ntb_transport_qp *qp = dev;
 688
 689	tasklet_schedule(&qp->rxc_db_work);
 690
 691	return IRQ_HANDLED;
 692}
 693
 694static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
 695					    unsigned int qp_num)
 696{
 697	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 698	int spad = qp_num * 2 + nt->msi_spad_offset;
 699
 700	if (!nt->use_msi)
 701		return;
 702
 703	if (spad >= ntb_spad_count(nt->ndev))
 704		return;
 705
 706	qp->peer_msi_desc.addr_offset =
 707		ntb_peer_spad_read(qp->ndev, PIDX, spad);
 708	qp->peer_msi_desc.data =
 709		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
 710
 711	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
 712		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
 713
 714	if (qp->peer_msi_desc.addr_offset) {
 715		qp->use_msi = true;
 716		dev_info(&qp->ndev->pdev->dev,
 717			 "Using MSI interrupts for QP%d\n", qp_num);
 718	}
 719}
 720
 721static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
 722				       unsigned int qp_num)
 723{
 724	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
 725	int spad = qp_num * 2 + nt->msi_spad_offset;
 726	int rc;
 727
 728	if (!nt->use_msi)
 729		return;
 730
 731	if (spad >= ntb_spad_count(nt->ndev)) {
 732		dev_warn_once(&qp->ndev->pdev->dev,
 733			      "Not enough SPADS to use MSI interrupts\n");
 734		return;
 735	}
 736
 737	ntb_spad_write(qp->ndev, spad, 0);
 738	ntb_spad_write(qp->ndev, spad + 1, 0);
 739
 740	if (!qp->msi_irq) {
 741		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
 742						   KBUILD_MODNAME, qp,
 743						   &qp->msi_desc);
 744		if (qp->msi_irq < 0) {
 745			dev_warn(&qp->ndev->pdev->dev,
 746				 "Unable to allocate MSI interrupt for qp%d\n",
 747				 qp_num);
 748			return;
 749		}
 750	}
 751
 752	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
 753	if (rc)
 754		goto err_free_interrupt;
 755
 756	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
 757	if (rc)
 758		goto err_free_interrupt;
 759
 760	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
 761		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
 762		qp->msi_desc.data);
 763
 764	return;
 765
 766err_free_interrupt:
 767	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
 768}
 769
 770static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
 771{
 772	int i;
 773
 774	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
 775
 776	for (i = 0; i < nt->qp_count; i++)
 777		ntb_transport_setup_qp_peer_msi(nt, i);
 778}
 779
 780static void ntb_transport_msi_desc_changed(void *data)
 781{
 782	struct ntb_transport_ctx *nt = data;
 783	int i;
 784
 785	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
 786
 787	for (i = 0; i < nt->qp_count; i++)
 788		ntb_transport_setup_qp_msi(nt, i);
 789
 790	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
 791}
 792
 793static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
 794{
 795	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
 796	struct pci_dev *pdev = nt->ndev->pdev;
 797
 798	if (!mw->virt_addr)
 799		return;
 800
 801	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
 802	dma_free_coherent(&pdev->dev, mw->alloc_size,
 803			  mw->alloc_addr, mw->dma_addr);
 804	mw->xlat_size = 0;
 805	mw->buff_size = 0;
 806	mw->alloc_size = 0;
 807	mw->alloc_addr = NULL;
 808	mw->virt_addr = NULL;
 809}
 810
 811static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
 812			       struct device *ntb_dev, size_t align)
 813{
 814	dma_addr_t dma_addr;
 815	void *alloc_addr, *virt_addr;
 816	int rc;
 817
 818	/*
 819	 * The buffer here is allocated against the NTB device. The reason to
 820	 * use dma_alloc_*() call is to allocate a large IOVA contiguous buffer
 821	 * backing the NTB BAR for the remote host to write to. During receive
 822	 * processing, the data is being copied out of the receive buffer to
 823	 * the kernel skbuff. When a DMA device is being used, dma_map_page()
 824	 * is called on the kvaddr of the receive buffer (from dma_alloc_*())
 825	 * and remapped against the DMA device. It appears to be a double
 826	 * DMA mapping of buffers, but first is mapped to the NTB device and
 827	 * second is to the DMA device. DMA_ATTR_FORCE_CONTIGUOUS is necessary
 828	 * in order for the later dma_map_page() to not fail.
 829	 */
 830	alloc_addr = dma_alloc_attrs(ntb_dev, mw->alloc_size,
 831				     &dma_addr, GFP_KERNEL,
 832				     DMA_ATTR_FORCE_CONTIGUOUS);
 833	if (!alloc_addr) {
 834		dev_err(ntb_dev, "Unable to alloc MW buff of size %zu\n",
 835			mw->alloc_size);
 836		return -ENOMEM;
 837	}
 838	virt_addr = alloc_addr;
 839
 840	/*
 841	 * we must ensure that the memory address allocated is BAR size
 842	 * aligned in order for the XLAT register to take the value. This
 843	 * is a requirement of the hardware. It is recommended to setup CMA
 844	 * for BAR sizes equal or greater than 4MB.
 845	 */
 846	if (!IS_ALIGNED(dma_addr, align)) {
 847		if (mw->alloc_size > mw->buff_size) {
 848			virt_addr = PTR_ALIGN(alloc_addr, align);
 849			dma_addr = ALIGN(dma_addr, align);
 850		} else {
 851			rc = -ENOMEM;
 852			goto err;
 853		}
 854	}
 855
 856	mw->alloc_addr = alloc_addr;
 857	mw->virt_addr = virt_addr;
 858	mw->dma_addr = dma_addr;
 859
 860	return 0;
 861
 862err:
 863	dma_free_coherent(ntb_dev, mw->alloc_size, alloc_addr, dma_addr);
 864
 865	return rc;
 866}
 867
 868static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
 869		      resource_size_t size)
 870{
 871	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
 872	struct pci_dev *pdev = nt->ndev->pdev;
 873	size_t xlat_size, buff_size;
 874	resource_size_t xlat_align;
 875	resource_size_t xlat_align_size;
 876	int rc;
 877
 878	if (!size)
 879		return -EINVAL;
 880
 881	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
 882			      &xlat_align_size, NULL);
 883	if (rc)
 884		return rc;
 885
 886	xlat_size = round_up(size, xlat_align_size);
 887	buff_size = round_up(size, xlat_align);
 888
 889	/* No need to re-setup */
 890	if (mw->xlat_size == xlat_size)
 891		return 0;
 892
 893	if (mw->buff_size)
 894		ntb_free_mw(nt, num_mw);
 895
 896	/* Alloc memory for receiving data.  Must be aligned */
 897	mw->xlat_size = xlat_size;
 898	mw->buff_size = buff_size;
 899	mw->alloc_size = buff_size;
 900
 901	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
 902	if (rc) {
 903		mw->alloc_size *= 2;
 904		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
 905		if (rc) {
 906			dev_err(&pdev->dev,
 907				"Unable to alloc aligned MW buff\n");
 908			mw->xlat_size = 0;
 909			mw->buff_size = 0;
 910			mw->alloc_size = 0;
 911			return rc;
 912		}
 913	}
 914
 915	/* Notify HW the memory location of the receive buffer */
 916	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
 917			      mw->xlat_size);
 918	if (rc) {
 919		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
 920		ntb_free_mw(nt, num_mw);
 921		return -EIO;
 922	}
 923
 924	return 0;
 925}
 926
 927static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
 928{
 929	qp->link_is_up = false;
 930	qp->active = false;
 931
 932	qp->tx_index = 0;
 933	qp->rx_index = 0;
 934	qp->rx_bytes = 0;
 935	qp->rx_pkts = 0;
 936	qp->rx_ring_empty = 0;
 937	qp->rx_err_no_buf = 0;
 938	qp->rx_err_oflow = 0;
 939	qp->rx_err_ver = 0;
 940	qp->rx_memcpy = 0;
 941	qp->rx_async = 0;
 942	qp->tx_bytes = 0;
 943	qp->tx_pkts = 0;
 944	qp->tx_ring_full = 0;
 945	qp->tx_err_no_buf = 0;
 946	qp->tx_memcpy = 0;
 947	qp->tx_async = 0;
 948}
 949
 950static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
 951{
 952	ntb_qp_link_context_reset(qp);
 953	if (qp->remote_rx_info)
 954		qp->remote_rx_info->entry = qp->rx_max_entry - 1;
 955}
 956
 957static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
 958{
 959	struct ntb_transport_ctx *nt = qp->transport;
 960	struct pci_dev *pdev = nt->ndev->pdev;
 961
 962	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
 963
 964	cancel_delayed_work_sync(&qp->link_work);
 965	ntb_qp_link_down_reset(qp);
 966
 967	if (qp->event_handler)
 968		qp->event_handler(qp->cb_data, qp->link_is_up);
 969}
 970
 971static void ntb_qp_link_cleanup_work(struct work_struct *work)
 972{
 973	struct ntb_transport_qp *qp = container_of(work,
 974						   struct ntb_transport_qp,
 975						   link_cleanup);
 976	struct ntb_transport_ctx *nt = qp->transport;
 977
 978	ntb_qp_link_cleanup(qp);
 979
 980	if (nt->link_is_up)
 981		schedule_delayed_work(&qp->link_work,
 982				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
 983}
 984
 985static void ntb_qp_link_down(struct ntb_transport_qp *qp)
 986{
 987	schedule_work(&qp->link_cleanup);
 988}
 989
 990static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
 991{
 992	struct ntb_transport_qp *qp;
 993	u64 qp_bitmap_alloc;
 994	unsigned int i, count;
 995
 996	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
 997
 998	/* Pass along the info to any clients */
 999	for (i = 0; i < nt->qp_count; i++)
1000		if (qp_bitmap_alloc & BIT_ULL(i)) {
1001			qp = &nt->qp_vec[i];
1002			ntb_qp_link_cleanup(qp);
1003			cancel_work_sync(&qp->link_cleanup);
1004			cancel_delayed_work_sync(&qp->link_work);
1005		}
1006
1007	if (!nt->link_is_up)
1008		cancel_delayed_work_sync(&nt->link_work);
1009
1010	for (i = 0; i < nt->mw_count; i++)
1011		ntb_free_mw(nt, i);
1012
1013	/* The scratchpad registers keep the values if the remote side
1014	 * goes down, blast them now to give them a sane value the next
1015	 * time they are accessed
1016	 */
1017	count = ntb_spad_count(nt->ndev);
1018	for (i = 0; i < count; i++)
1019		ntb_spad_write(nt->ndev, i, 0);
1020}
1021
1022static void ntb_transport_link_cleanup_work(struct work_struct *work)
1023{
1024	struct ntb_transport_ctx *nt =
1025		container_of(work, struct ntb_transport_ctx, link_cleanup);
1026
1027	ntb_transport_link_cleanup(nt);
1028}
1029
1030static void ntb_transport_event_callback(void *data)
1031{
1032	struct ntb_transport_ctx *nt = data;
1033
1034	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1035		schedule_delayed_work(&nt->link_work, 0);
1036	else
1037		schedule_work(&nt->link_cleanup);
1038}
1039
1040static void ntb_transport_link_work(struct work_struct *work)
1041{
1042	struct ntb_transport_ctx *nt =
1043		container_of(work, struct ntb_transport_ctx, link_work.work);
1044	struct ntb_dev *ndev = nt->ndev;
1045	struct pci_dev *pdev = ndev->pdev;
1046	resource_size_t size;
1047	u32 val;
1048	int rc = 0, i, spad;
1049
1050	/* send the local info, in the opposite order of the way we read it */
1051
1052	if (nt->use_msi) {
1053		rc = ntb_msi_setup_mws(ndev);
1054		if (rc) {
1055			dev_warn(&pdev->dev,
1056				 "Failed to register MSI memory window: %d\n",
1057				 rc);
1058			nt->use_msi = false;
1059		}
1060	}
1061
1062	for (i = 0; i < nt->qp_count; i++)
1063		ntb_transport_setup_qp_msi(nt, i);
1064
1065	for (i = 0; i < nt->mw_count; i++) {
1066		size = nt->mw_vec[i].phys_size;
1067
1068		if (max_mw_size && size > max_mw_size)
1069			size = max_mw_size;
1070
1071		spad = MW0_SZ_HIGH + (i * 2);
1072		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1073
1074		spad = MW0_SZ_LOW + (i * 2);
1075		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1076	}
1077
1078	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1079
1080	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1081
1082	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1083
1084	/* Query the remote side for its info */
1085	val = ntb_spad_read(ndev, VERSION);
1086	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1087	if (val != NTB_TRANSPORT_VERSION)
1088		goto out;
1089
1090	val = ntb_spad_read(ndev, NUM_QPS);
1091	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1092	if (val != nt->qp_count)
1093		goto out;
1094
1095	val = ntb_spad_read(ndev, NUM_MWS);
1096	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1097	if (val != nt->mw_count)
1098		goto out;
1099
1100	for (i = 0; i < nt->mw_count; i++) {
1101		u64 val64;
1102
1103		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1104		val64 = (u64)val << 32;
1105
1106		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1107		val64 |= val;
1108
1109		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1110
1111		rc = ntb_set_mw(nt, i, val64);
1112		if (rc)
1113			goto out1;
1114	}
1115
1116	nt->link_is_up = true;
1117
1118	for (i = 0; i < nt->qp_count; i++) {
1119		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1120
1121		ntb_transport_setup_qp_mw(nt, i);
1122		ntb_transport_setup_qp_peer_msi(nt, i);
1123
1124		if (qp->client_ready)
1125			schedule_delayed_work(&qp->link_work, 0);
1126	}
1127
1128	return;
1129
1130out1:
1131	for (i = 0; i < nt->mw_count; i++)
1132		ntb_free_mw(nt, i);
1133
1134	/* if there's an actual failure, we should just bail */
1135	if (rc < 0)
1136		return;
1137
1138out:
1139	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1140		schedule_delayed_work(&nt->link_work,
1141				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1142}
1143
1144static void ntb_qp_link_work(struct work_struct *work)
1145{
1146	struct ntb_transport_qp *qp = container_of(work,
1147						   struct ntb_transport_qp,
1148						   link_work.work);
1149	struct pci_dev *pdev = qp->ndev->pdev;
1150	struct ntb_transport_ctx *nt = qp->transport;
1151	int val;
1152
1153	WARN_ON(!nt->link_is_up);
1154
1155	val = ntb_spad_read(nt->ndev, QP_LINKS);
1156
1157	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1158
1159	/* query remote spad for qp ready bits */
1160	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1161
1162	/* See if the remote side is up */
1163	if (val & BIT(qp->qp_num)) {
1164		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1165		qp->link_is_up = true;
1166		qp->active = true;
1167
1168		if (qp->event_handler)
1169			qp->event_handler(qp->cb_data, qp->link_is_up);
1170
1171		if (qp->active)
1172			tasklet_schedule(&qp->rxc_db_work);
1173	} else if (nt->link_is_up)
1174		schedule_delayed_work(&qp->link_work,
1175				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1176}
1177
1178static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1179				    unsigned int qp_num)
1180{
1181	struct ntb_transport_qp *qp;
1182	phys_addr_t mw_base;
1183	resource_size_t mw_size;
1184	unsigned int num_qps_mw, tx_size;
1185	unsigned int mw_num, mw_count, qp_count;
1186	u64 qp_offset;
1187
1188	mw_count = nt->mw_count;
1189	qp_count = nt->qp_count;
1190
1191	mw_num = QP_TO_MW(nt, qp_num);
1192
1193	qp = &nt->qp_vec[qp_num];
1194	qp->qp_num = qp_num;
1195	qp->transport = nt;
1196	qp->ndev = nt->ndev;
1197	qp->client_ready = false;
1198	qp->event_handler = NULL;
1199	ntb_qp_link_context_reset(qp);
1200
1201	if (mw_num < qp_count % mw_count)
1202		num_qps_mw = qp_count / mw_count + 1;
1203	else
1204		num_qps_mw = qp_count / mw_count;
1205
1206	mw_base = nt->mw_vec[mw_num].phys_addr;
1207	mw_size = nt->mw_vec[mw_num].phys_size;
1208
1209	if (max_mw_size && mw_size > max_mw_size)
1210		mw_size = max_mw_size;
1211
1212	tx_size = (unsigned int)mw_size / num_qps_mw;
1213	qp_offset = tx_size * (qp_num / mw_count);
1214
1215	qp->tx_mw_size = tx_size;
1216	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1217	if (!qp->tx_mw)
1218		return -EINVAL;
1219
1220	qp->tx_mw_phys = mw_base + qp_offset;
1221	if (!qp->tx_mw_phys)
1222		return -EINVAL;
1223
1224	tx_size -= sizeof(struct ntb_rx_info);
1225	qp->rx_info = qp->tx_mw + tx_size;
1226
1227	/* Due to housekeeping, there must be atleast 2 buffs */
1228	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1229	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1230
1231	if (nt->debugfs_node_dir) {
1232		char debugfs_name[4];
1233
1234		snprintf(debugfs_name, 4, "qp%d", qp_num);
1235		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1236						     nt->debugfs_node_dir);
1237
1238		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1239							qp->debugfs_dir, qp,
1240							&ntb_qp_debugfs_stats);
1241	} else {
1242		qp->debugfs_dir = NULL;
1243		qp->debugfs_stats = NULL;
1244	}
1245
1246	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1247	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1248
1249	spin_lock_init(&qp->ntb_rx_q_lock);
1250	spin_lock_init(&qp->ntb_tx_free_q_lock);
1251
1252	INIT_LIST_HEAD(&qp->rx_post_q);
1253	INIT_LIST_HEAD(&qp->rx_pend_q);
1254	INIT_LIST_HEAD(&qp->rx_free_q);
1255	INIT_LIST_HEAD(&qp->tx_free_q);
1256
1257	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1258		     (unsigned long)qp);
1259
1260	return 0;
1261}
1262
1263static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1264{
1265	struct ntb_transport_ctx *nt;
1266	struct ntb_transport_mw *mw;
1267	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1268	u64 qp_bitmap;
1269	int node;
1270	int rc, i;
1271
1272	mw_count = ntb_peer_mw_count(ndev);
1273
1274	if (!ndev->ops->mw_set_trans) {
1275		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1276		return -EINVAL;
1277	}
1278
1279	if (ntb_db_is_unsafe(ndev))
1280		dev_dbg(&ndev->dev,
1281			"doorbell is unsafe, proceed anyway...\n");
1282	if (ntb_spad_is_unsafe(ndev))
1283		dev_dbg(&ndev->dev,
1284			"scratchpad is unsafe, proceed anyway...\n");
1285
1286	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1287		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1288
1289	node = dev_to_node(&ndev->dev);
1290
1291	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1292	if (!nt)
1293		return -ENOMEM;
1294
1295	nt->ndev = ndev;
1296
1297	/*
1298	 * If we are using MSI, and have at least one extra memory window,
1299	 * we will reserve the last MW for the MSI window.
1300	 */
1301	if (use_msi && mw_count > 1) {
1302		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1303		if (!rc) {
1304			mw_count -= 1;
1305			nt->use_msi = true;
1306		}
1307	}
1308
1309	spad_count = ntb_spad_count(ndev);
1310
1311	/* Limit the MW's based on the availability of scratchpads */
1312
1313	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1314		nt->mw_count = 0;
1315		rc = -EINVAL;
1316		goto err;
1317	}
1318
1319	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1320	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1321
1322	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1323
1324	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1325				  GFP_KERNEL, node);
1326	if (!nt->mw_vec) {
1327		rc = -ENOMEM;
1328		goto err;
1329	}
1330
1331	for (i = 0; i < mw_count; i++) {
1332		mw = &nt->mw_vec[i];
1333
1334		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1335					  &mw->phys_size);
1336		if (rc)
1337			goto err1;
1338
1339		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1340		if (!mw->vbase) {
1341			rc = -ENOMEM;
1342			goto err1;
1343		}
1344
1345		mw->buff_size = 0;
1346		mw->xlat_size = 0;
1347		mw->virt_addr = NULL;
1348		mw->dma_addr = 0;
1349	}
1350
1351	qp_bitmap = ntb_db_valid_mask(ndev);
1352
1353	qp_count = ilog2(qp_bitmap);
1354	if (nt->use_msi) {
1355		qp_count -= 1;
1356		nt->msi_db_mask = 1 << qp_count;
1357		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1358	}
1359
1360	if (max_num_clients && max_num_clients < qp_count)
1361		qp_count = max_num_clients;
1362	else if (nt->mw_count < qp_count)
1363		qp_count = nt->mw_count;
1364
1365	qp_bitmap &= BIT_ULL(qp_count) - 1;
1366
1367	nt->qp_count = qp_count;
1368	nt->qp_bitmap = qp_bitmap;
1369	nt->qp_bitmap_free = qp_bitmap;
1370
1371	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1372				  GFP_KERNEL, node);
1373	if (!nt->qp_vec) {
1374		rc = -ENOMEM;
1375		goto err1;
1376	}
1377
1378	if (nt_debugfs_dir) {
1379		nt->debugfs_node_dir =
1380			debugfs_create_dir(pci_name(ndev->pdev),
1381					   nt_debugfs_dir);
1382	}
1383
1384	for (i = 0; i < qp_count; i++) {
1385		rc = ntb_transport_init_queue(nt, i);
1386		if (rc)
1387			goto err2;
1388	}
1389
1390	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1391	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1392
1393	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1394	if (rc)
1395		goto err2;
1396
1397	INIT_LIST_HEAD(&nt->client_devs);
1398	rc = ntb_bus_init(nt);
1399	if (rc)
1400		goto err3;
1401
1402	nt->link_is_up = false;
1403	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1404	ntb_link_event(ndev);
1405
1406	return 0;
1407
1408err3:
1409	ntb_clear_ctx(ndev);
1410err2:
1411	kfree(nt->qp_vec);
1412err1:
1413	while (i--) {
1414		mw = &nt->mw_vec[i];
1415		iounmap(mw->vbase);
1416	}
1417	kfree(nt->mw_vec);
1418err:
1419	kfree(nt);
1420	return rc;
1421}
1422
1423static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1424{
1425	struct ntb_transport_ctx *nt = ndev->ctx;
1426	struct ntb_transport_qp *qp;
1427	u64 qp_bitmap_alloc;
1428	int i;
1429
1430	ntb_transport_link_cleanup(nt);
1431	cancel_work_sync(&nt->link_cleanup);
1432	cancel_delayed_work_sync(&nt->link_work);
1433
1434	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1435
1436	/* verify that all the qp's are freed */
1437	for (i = 0; i < nt->qp_count; i++) {
1438		qp = &nt->qp_vec[i];
1439		if (qp_bitmap_alloc & BIT_ULL(i))
1440			ntb_transport_free_queue(qp);
1441		debugfs_remove_recursive(qp->debugfs_dir);
1442	}
1443
1444	ntb_link_disable(ndev);
1445	ntb_clear_ctx(ndev);
1446
1447	ntb_bus_remove(nt);
1448
1449	for (i = nt->mw_count; i--; ) {
1450		ntb_free_mw(nt, i);
1451		iounmap(nt->mw_vec[i].vbase);
1452	}
1453
1454	kfree(nt->qp_vec);
1455	kfree(nt->mw_vec);
1456	kfree(nt);
1457}
1458
1459static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1460{
1461	struct ntb_queue_entry *entry;
1462	void *cb_data;
1463	unsigned int len;
1464	unsigned long irqflags;
1465
1466	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1467
1468	while (!list_empty(&qp->rx_post_q)) {
1469		entry = list_first_entry(&qp->rx_post_q,
1470					 struct ntb_queue_entry, entry);
1471		if (!(entry->flags & DESC_DONE_FLAG))
1472			break;
1473
1474		entry->rx_hdr->flags = 0;
1475		iowrite32(entry->rx_index, &qp->rx_info->entry);
1476
1477		cb_data = entry->cb_data;
1478		len = entry->len;
1479
1480		list_move_tail(&entry->entry, &qp->rx_free_q);
1481
1482		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1483
1484		if (qp->rx_handler && qp->client_ready)
1485			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1486
1487		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1488	}
1489
1490	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1491}
1492
1493static void ntb_rx_copy_callback(void *data,
1494				 const struct dmaengine_result *res)
1495{
1496	struct ntb_queue_entry *entry = data;
1497
1498	/* we need to check DMA results if we are using DMA */
1499	if (res) {
1500		enum dmaengine_tx_result dma_err = res->result;
1501
1502		switch (dma_err) {
1503		case DMA_TRANS_READ_FAILED:
1504		case DMA_TRANS_WRITE_FAILED:
1505			entry->errors++;
1506			fallthrough;
1507		case DMA_TRANS_ABORTED:
1508		{
1509			struct ntb_transport_qp *qp = entry->qp;
1510			void *offset = qp->rx_buff + qp->rx_max_frame *
1511					qp->rx_index;
1512
1513			ntb_memcpy_rx(entry, offset);
1514			qp->rx_memcpy++;
1515			return;
1516		}
1517
1518		case DMA_TRANS_NOERROR:
1519		default:
1520			break;
1521		}
1522	}
1523
1524	entry->flags |= DESC_DONE_FLAG;
1525
1526	ntb_complete_rxc(entry->qp);
1527}
1528
1529static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1530{
1531	void *buf = entry->buf;
1532	size_t len = entry->len;
1533
1534	memcpy(buf, offset, len);
1535
1536	/* Ensure that the data is fully copied out before clearing the flag */
1537	wmb();
1538
1539	ntb_rx_copy_callback(entry, NULL);
1540}
1541
1542static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1543{
1544	struct dma_async_tx_descriptor *txd;
1545	struct ntb_transport_qp *qp = entry->qp;
1546	struct dma_chan *chan = qp->rx_dma_chan;
1547	struct dma_device *device;
1548	size_t pay_off, buff_off, len;
1549	struct dmaengine_unmap_data *unmap;
1550	dma_cookie_t cookie;
1551	void *buf = entry->buf;
1552
1553	len = entry->len;
1554	device = chan->device;
1555	pay_off = (size_t)offset & ~PAGE_MASK;
1556	buff_off = (size_t)buf & ~PAGE_MASK;
1557
1558	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1559		goto err;
1560
1561	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1562	if (!unmap)
1563		goto err;
1564
1565	unmap->len = len;
1566	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1567				      pay_off, len, DMA_TO_DEVICE);
1568	if (dma_mapping_error(device->dev, unmap->addr[0]))
1569		goto err_get_unmap;
1570
1571	unmap->to_cnt = 1;
1572
1573	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1574				      buff_off, len, DMA_FROM_DEVICE);
1575	if (dma_mapping_error(device->dev, unmap->addr[1]))
1576		goto err_get_unmap;
1577
1578	unmap->from_cnt = 1;
1579
1580	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1581					     unmap->addr[0], len,
1582					     DMA_PREP_INTERRUPT);
1583	if (!txd)
1584		goto err_get_unmap;
1585
1586	txd->callback_result = ntb_rx_copy_callback;
1587	txd->callback_param = entry;
1588	dma_set_unmap(txd, unmap);
1589
1590	cookie = dmaengine_submit(txd);
1591	if (dma_submit_error(cookie))
1592		goto err_set_unmap;
1593
1594	dmaengine_unmap_put(unmap);
1595
1596	qp->last_cookie = cookie;
1597
1598	qp->rx_async++;
1599
1600	return 0;
1601
1602err_set_unmap:
1603	dmaengine_unmap_put(unmap);
1604err_get_unmap:
1605	dmaengine_unmap_put(unmap);
1606err:
1607	return -ENXIO;
1608}
1609
1610static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1611{
1612	struct ntb_transport_qp *qp = entry->qp;
1613	struct dma_chan *chan = qp->rx_dma_chan;
1614	int res;
1615
1616	if (!chan)
1617		goto err;
1618
1619	if (entry->len < copy_bytes)
1620		goto err;
1621
1622	res = ntb_async_rx_submit(entry, offset);
1623	if (res < 0)
1624		goto err;
1625
1626	if (!entry->retries)
1627		qp->rx_async++;
1628
1629	return;
1630
1631err:
1632	ntb_memcpy_rx(entry, offset);
1633	qp->rx_memcpy++;
1634}
1635
1636static int ntb_process_rxc(struct ntb_transport_qp *qp)
1637{
1638	struct ntb_payload_header *hdr;
1639	struct ntb_queue_entry *entry;
1640	void *offset;
1641
1642	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1643	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1644
1645	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1646		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1647
1648	if (!(hdr->flags & DESC_DONE_FLAG)) {
1649		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1650		qp->rx_ring_empty++;
1651		return -EAGAIN;
1652	}
1653
1654	if (hdr->flags & LINK_DOWN_FLAG) {
1655		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1656		ntb_qp_link_down(qp);
1657		hdr->flags = 0;
1658		return -EAGAIN;
1659	}
1660
1661	if (hdr->ver != (u32)qp->rx_pkts) {
1662		dev_dbg(&qp->ndev->pdev->dev,
1663			"version mismatch, expected %llu - got %u\n",
1664			qp->rx_pkts, hdr->ver);
1665		qp->rx_err_ver++;
1666		return -EIO;
1667	}
1668
1669	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1670	if (!entry) {
1671		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1672		qp->rx_err_no_buf++;
1673		return -EAGAIN;
1674	}
1675
1676	entry->rx_hdr = hdr;
1677	entry->rx_index = qp->rx_index;
1678
1679	if (hdr->len > entry->len) {
1680		dev_dbg(&qp->ndev->pdev->dev,
1681			"receive buffer overflow! Wanted %d got %d\n",
1682			hdr->len, entry->len);
1683		qp->rx_err_oflow++;
1684
1685		entry->len = -EIO;
1686		entry->flags |= DESC_DONE_FLAG;
1687
1688		ntb_complete_rxc(qp);
1689	} else {
1690		dev_dbg(&qp->ndev->pdev->dev,
1691			"RX OK index %u ver %u size %d into buf size %d\n",
1692			qp->rx_index, hdr->ver, hdr->len, entry->len);
1693
1694		qp->rx_bytes += hdr->len;
1695		qp->rx_pkts++;
1696
1697		entry->len = hdr->len;
1698
1699		ntb_async_rx(entry, offset);
1700	}
1701
1702	qp->rx_index++;
1703	qp->rx_index %= qp->rx_max_entry;
1704
1705	return 0;
1706}
1707
1708static void ntb_transport_rxc_db(unsigned long data)
1709{
1710	struct ntb_transport_qp *qp = (void *)data;
1711	int rc, i;
1712
1713	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1714		__func__, qp->qp_num);
1715
1716	/* Limit the number of packets processed in a single interrupt to
1717	 * provide fairness to others
1718	 */
1719	for (i = 0; i < qp->rx_max_entry; i++) {
1720		rc = ntb_process_rxc(qp);
1721		if (rc)
1722			break;
1723	}
1724
1725	if (i && qp->rx_dma_chan)
1726		dma_async_issue_pending(qp->rx_dma_chan);
1727
1728	if (i == qp->rx_max_entry) {
1729		/* there is more work to do */
1730		if (qp->active)
1731			tasklet_schedule(&qp->rxc_db_work);
1732	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1733		/* the doorbell bit is set: clear it */
1734		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1735		/* ntb_db_read ensures ntb_db_clear write is committed */
1736		ntb_db_read(qp->ndev);
1737
1738		/* an interrupt may have arrived between finishing
1739		 * ntb_process_rxc and clearing the doorbell bit:
1740		 * there might be some more work to do.
1741		 */
1742		if (qp->active)
1743			tasklet_schedule(&qp->rxc_db_work);
1744	}
1745}
1746
1747static void ntb_tx_copy_callback(void *data,
1748				 const struct dmaengine_result *res)
1749{
1750	struct ntb_queue_entry *entry = data;
1751	struct ntb_transport_qp *qp = entry->qp;
1752	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1753
1754	/* we need to check DMA results if we are using DMA */
1755	if (res) {
1756		enum dmaengine_tx_result dma_err = res->result;
1757
1758		switch (dma_err) {
1759		case DMA_TRANS_READ_FAILED:
1760		case DMA_TRANS_WRITE_FAILED:
1761			entry->errors++;
1762			fallthrough;
1763		case DMA_TRANS_ABORTED:
1764		{
1765			void __iomem *offset =
1766				qp->tx_mw + qp->tx_max_frame *
1767				entry->tx_index;
1768
1769			/* resubmit via CPU */
1770			ntb_memcpy_tx(entry, offset);
1771			qp->tx_memcpy++;
1772			return;
1773		}
1774
1775		case DMA_TRANS_NOERROR:
1776		default:
1777			break;
1778		}
1779	}
1780
1781	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1782
1783	if (qp->use_msi)
1784		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1785	else
1786		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1787
1788	/* The entry length can only be zero if the packet is intended to be a
1789	 * "link down" or similar.  Since no payload is being sent in these
1790	 * cases, there is nothing to add to the completion queue.
1791	 */
1792	if (entry->len > 0) {
1793		qp->tx_bytes += entry->len;
1794
1795		if (qp->tx_handler)
1796			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1797				       entry->len);
1798	}
1799
1800	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1801}
1802
1803static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1804{
1805#ifdef ARCH_HAS_NOCACHE_UACCESS
1806	/*
1807	 * Using non-temporal mov to improve performance on non-cached
1808	 * writes, even though we aren't actually copying from user space.
1809	 */
1810	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1811#else
1812	memcpy_toio(offset, entry->buf, entry->len);
1813#endif
1814
1815	/* Ensure that the data is fully copied out before setting the flags */
1816	wmb();
1817
1818	ntb_tx_copy_callback(entry, NULL);
1819}
1820
1821static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1822			       struct ntb_queue_entry *entry)
1823{
1824	struct dma_async_tx_descriptor *txd;
1825	struct dma_chan *chan = qp->tx_dma_chan;
1826	struct dma_device *device;
1827	size_t len = entry->len;
1828	void *buf = entry->buf;
1829	size_t dest_off, buff_off;
1830	struct dmaengine_unmap_data *unmap;
1831	dma_addr_t dest;
1832	dma_cookie_t cookie;
1833
1834	device = chan->device;
1835	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1836	buff_off = (size_t)buf & ~PAGE_MASK;
1837	dest_off = (size_t)dest & ~PAGE_MASK;
1838
1839	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1840		goto err;
1841
1842	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1843	if (!unmap)
1844		goto err;
1845
1846	unmap->len = len;
1847	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1848				      buff_off, len, DMA_TO_DEVICE);
1849	if (dma_mapping_error(device->dev, unmap->addr[0]))
1850		goto err_get_unmap;
1851
1852	unmap->to_cnt = 1;
1853
1854	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1855					     DMA_PREP_INTERRUPT);
1856	if (!txd)
1857		goto err_get_unmap;
1858
1859	txd->callback_result = ntb_tx_copy_callback;
1860	txd->callback_param = entry;
1861	dma_set_unmap(txd, unmap);
1862
1863	cookie = dmaengine_submit(txd);
1864	if (dma_submit_error(cookie))
1865		goto err_set_unmap;
1866
1867	dmaengine_unmap_put(unmap);
1868
1869	dma_async_issue_pending(chan);
1870
1871	return 0;
1872err_set_unmap:
1873	dmaengine_unmap_put(unmap);
1874err_get_unmap:
1875	dmaengine_unmap_put(unmap);
1876err:
1877	return -ENXIO;
1878}
1879
1880static void ntb_async_tx(struct ntb_transport_qp *qp,
1881			 struct ntb_queue_entry *entry)
1882{
1883	struct ntb_payload_header __iomem *hdr;
1884	struct dma_chan *chan = qp->tx_dma_chan;
1885	void __iomem *offset;
1886	int res;
1887
1888	entry->tx_index = qp->tx_index;
1889	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1890	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1891	entry->tx_hdr = hdr;
1892
1893	iowrite32(entry->len, &hdr->len);
1894	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1895
1896	if (!chan)
1897		goto err;
1898
1899	if (entry->len < copy_bytes)
1900		goto err;
1901
1902	res = ntb_async_tx_submit(qp, entry);
1903	if (res < 0)
1904		goto err;
1905
1906	if (!entry->retries)
1907		qp->tx_async++;
1908
1909	return;
1910
1911err:
1912	ntb_memcpy_tx(entry, offset);
1913	qp->tx_memcpy++;
1914}
1915
1916static int ntb_process_tx(struct ntb_transport_qp *qp,
1917			  struct ntb_queue_entry *entry)
1918{
1919	if (!ntb_transport_tx_free_entry(qp)) {
1920		qp->tx_ring_full++;
1921		return -EAGAIN;
1922	}
1923
1924	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1925		if (qp->tx_handler)
1926			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1927
1928		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1929			     &qp->tx_free_q);
1930		return 0;
1931	}
1932
1933	ntb_async_tx(qp, entry);
1934
1935	qp->tx_index++;
1936	qp->tx_index %= qp->tx_max_entry;
1937
1938	qp->tx_pkts++;
1939
1940	return 0;
1941}
1942
1943static void ntb_send_link_down(struct ntb_transport_qp *qp)
1944{
1945	struct pci_dev *pdev = qp->ndev->pdev;
1946	struct ntb_queue_entry *entry;
1947	int i, rc;
1948
1949	if (!qp->link_is_up)
1950		return;
1951
1952	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1953
1954	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1955		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1956		if (entry)
1957			break;
1958		msleep(100);
1959	}
1960
1961	if (!entry)
1962		return;
1963
1964	entry->cb_data = NULL;
1965	entry->buf = NULL;
1966	entry->len = 0;
1967	entry->flags = LINK_DOWN_FLAG;
1968
1969	rc = ntb_process_tx(qp, entry);
1970	if (rc)
1971		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1972			qp->qp_num);
1973
1974	ntb_qp_link_down_reset(qp);
1975}
1976
1977static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1978{
1979	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1980}
1981
1982/**
1983 * ntb_transport_create_queue - Create a new NTB transport layer queue
1984 * @data: pointer for callback data
1985 * @client_dev: &struct device pointer
1986 * @handlers: pointer to various ntb queue (callback) handlers
1987 *
1988 * Create a new NTB transport layer queue and provide the queue with a callback
1989 * routine for both transmit and receive.  The receive callback routine will be
1990 * used to pass up data when the transport has received it on the queue.   The
1991 * transmit callback routine will be called when the transport has completed the
1992 * transmission of the data on the queue and the data is ready to be freed.
1993 *
1994 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1995 */
1996struct ntb_transport_qp *
1997ntb_transport_create_queue(void *data, struct device *client_dev,
1998			   const struct ntb_queue_handlers *handlers)
1999{
2000	struct ntb_dev *ndev;
2001	struct pci_dev *pdev;
2002	struct ntb_transport_ctx *nt;
2003	struct ntb_queue_entry *entry;
2004	struct ntb_transport_qp *qp;
2005	u64 qp_bit;
2006	unsigned int free_queue;
2007	dma_cap_mask_t dma_mask;
2008	int node;
2009	int i;
2010
2011	ndev = dev_ntb(client_dev->parent);
2012	pdev = ndev->pdev;
2013	nt = ndev->ctx;
2014
2015	node = dev_to_node(&ndev->dev);
2016
2017	free_queue = ffs(nt->qp_bitmap_free);
2018	if (!free_queue)
2019		goto err;
2020
2021	/* decrement free_queue to make it zero based */
2022	free_queue--;
2023
2024	qp = &nt->qp_vec[free_queue];
2025	qp_bit = BIT_ULL(qp->qp_num);
2026
2027	nt->qp_bitmap_free &= ~qp_bit;
2028
2029	qp->cb_data = data;
2030	qp->rx_handler = handlers->rx_handler;
2031	qp->tx_handler = handlers->tx_handler;
2032	qp->event_handler = handlers->event_handler;
2033
2034	dma_cap_zero(dma_mask);
2035	dma_cap_set(DMA_MEMCPY, dma_mask);
2036
2037	if (use_dma) {
2038		qp->tx_dma_chan =
2039			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2040					    (void *)(unsigned long)node);
2041		if (!qp->tx_dma_chan)
2042			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2043
2044		qp->rx_dma_chan =
2045			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2046					    (void *)(unsigned long)node);
2047		if (!qp->rx_dma_chan)
2048			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2049	} else {
2050		qp->tx_dma_chan = NULL;
2051		qp->rx_dma_chan = NULL;
2052	}
2053
2054	qp->tx_mw_dma_addr = 0;
2055	if (qp->tx_dma_chan) {
2056		qp->tx_mw_dma_addr =
2057			dma_map_resource(qp->tx_dma_chan->device->dev,
2058					 qp->tx_mw_phys, qp->tx_mw_size,
2059					 DMA_FROM_DEVICE, 0);
2060		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2061				      qp->tx_mw_dma_addr)) {
2062			qp->tx_mw_dma_addr = 0;
2063			goto err1;
2064		}
2065	}
2066
2067	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2068		qp->tx_dma_chan ? "DMA" : "CPU");
2069
2070	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2071		qp->rx_dma_chan ? "DMA" : "CPU");
2072
2073	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2074		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2075		if (!entry)
2076			goto err1;
2077
2078		entry->qp = qp;
2079		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2080			     &qp->rx_free_q);
2081	}
2082	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2083
2084	for (i = 0; i < qp->tx_max_entry; i++) {
2085		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2086		if (!entry)
2087			goto err2;
2088
2089		entry->qp = qp;
2090		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2091			     &qp->tx_free_q);
2092	}
2093
2094	ntb_db_clear(qp->ndev, qp_bit);
2095	ntb_db_clear_mask(qp->ndev, qp_bit);
2096
2097	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2098
2099	return qp;
2100
2101err2:
2102	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2103		kfree(entry);
2104err1:
2105	qp->rx_alloc_entry = 0;
2106	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2107		kfree(entry);
2108	if (qp->tx_mw_dma_addr)
2109		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2110				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2111				   DMA_FROM_DEVICE, 0);
2112	if (qp->tx_dma_chan)
2113		dma_release_channel(qp->tx_dma_chan);
2114	if (qp->rx_dma_chan)
2115		dma_release_channel(qp->rx_dma_chan);
2116	nt->qp_bitmap_free |= qp_bit;
2117err:
2118	return NULL;
2119}
2120EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2121
2122/**
2123 * ntb_transport_free_queue - Frees NTB transport queue
2124 * @qp: NTB queue to be freed
2125 *
2126 * Frees NTB transport queue
2127 */
2128void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2129{
2130	struct pci_dev *pdev;
2131	struct ntb_queue_entry *entry;
2132	u64 qp_bit;
2133
2134	if (!qp)
2135		return;
2136
2137	pdev = qp->ndev->pdev;
2138
2139	qp->active = false;
2140
2141	if (qp->tx_dma_chan) {
2142		struct dma_chan *chan = qp->tx_dma_chan;
2143		/* Putting the dma_chan to NULL will force any new traffic to be
2144		 * processed by the CPU instead of the DAM engine
2145		 */
2146		qp->tx_dma_chan = NULL;
2147
2148		/* Try to be nice and wait for any queued DMA engine
2149		 * transactions to process before smashing it with a rock
2150		 */
2151		dma_sync_wait(chan, qp->last_cookie);
2152		dmaengine_terminate_all(chan);
2153
2154		dma_unmap_resource(chan->device->dev,
2155				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2156				   DMA_FROM_DEVICE, 0);
2157
2158		dma_release_channel(chan);
2159	}
2160
2161	if (qp->rx_dma_chan) {
2162		struct dma_chan *chan = qp->rx_dma_chan;
2163		/* Putting the dma_chan to NULL will force any new traffic to be
2164		 * processed by the CPU instead of the DAM engine
2165		 */
2166		qp->rx_dma_chan = NULL;
2167
2168		/* Try to be nice and wait for any queued DMA engine
2169		 * transactions to process before smashing it with a rock
2170		 */
2171		dma_sync_wait(chan, qp->last_cookie);
2172		dmaengine_terminate_all(chan);
2173		dma_release_channel(chan);
2174	}
2175
2176	qp_bit = BIT_ULL(qp->qp_num);
2177
2178	ntb_db_set_mask(qp->ndev, qp_bit);
2179	tasklet_kill(&qp->rxc_db_work);
2180
2181	cancel_delayed_work_sync(&qp->link_work);
2182
2183	qp->cb_data = NULL;
2184	qp->rx_handler = NULL;
2185	qp->tx_handler = NULL;
2186	qp->event_handler = NULL;
2187
2188	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2189		kfree(entry);
2190
2191	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2192		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2193		kfree(entry);
2194	}
2195
2196	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2197		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2198		kfree(entry);
2199	}
2200
2201	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2202		kfree(entry);
2203
2204	qp->transport->qp_bitmap_free |= qp_bit;
2205
2206	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2207}
2208EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2209
2210/**
2211 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2212 * @qp: NTB queue to be freed
2213 * @len: pointer to variable to write enqueued buffers length
2214 *
2215 * Dequeues unused buffers from receive queue.  Should only be used during
2216 * shutdown of qp.
2217 *
2218 * RETURNS: NULL error value on error, or void* for success.
2219 */
2220void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2221{
2222	struct ntb_queue_entry *entry;
2223	void *buf;
2224
2225	if (!qp || qp->client_ready)
2226		return NULL;
2227
2228	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2229	if (!entry)
2230		return NULL;
2231
2232	buf = entry->cb_data;
2233	*len = entry->len;
2234
2235	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2236
2237	return buf;
2238}
2239EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2240
2241/**
2242 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2243 * @qp: NTB transport layer queue the entry is to be enqueued on
2244 * @cb: per buffer pointer for callback function to use
2245 * @data: pointer to data buffer that incoming packets will be copied into
2246 * @len: length of the data buffer
2247 *
2248 * Enqueue a new receive buffer onto the transport queue into which a NTB
2249 * payload can be received into.
2250 *
2251 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2252 */
2253int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2254			     unsigned int len)
2255{
2256	struct ntb_queue_entry *entry;
2257
2258	if (!qp)
2259		return -EINVAL;
2260
2261	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2262	if (!entry)
2263		return -ENOMEM;
2264
2265	entry->cb_data = cb;
2266	entry->buf = data;
2267	entry->len = len;
2268	entry->flags = 0;
2269	entry->retries = 0;
2270	entry->errors = 0;
2271	entry->rx_index = 0;
2272
2273	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2274
2275	if (qp->active)
2276		tasklet_schedule(&qp->rxc_db_work);
2277
2278	return 0;
2279}
2280EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2281
2282/**
2283 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2284 * @qp: NTB transport layer queue the entry is to be enqueued on
2285 * @cb: per buffer pointer for callback function to use
2286 * @data: pointer to data buffer that will be sent
2287 * @len: length of the data buffer
2288 *
2289 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2290 * payload will be transmitted.  This assumes that a lock is being held to
2291 * serialize access to the qp.
2292 *
2293 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2294 */
2295int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2296			     unsigned int len)
2297{
2298	struct ntb_queue_entry *entry;
2299	int rc;
2300
2301	if (!qp || !len)
2302		return -EINVAL;
2303
2304	/* If the qp link is down already, just ignore. */
2305	if (!qp->link_is_up)
2306		return 0;
2307
2308	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2309	if (!entry) {
2310		qp->tx_err_no_buf++;
2311		return -EBUSY;
2312	}
2313
2314	entry->cb_data = cb;
2315	entry->buf = data;
2316	entry->len = len;
2317	entry->flags = 0;
2318	entry->errors = 0;
2319	entry->retries = 0;
2320	entry->tx_index = 0;
2321
2322	rc = ntb_process_tx(qp, entry);
2323	if (rc)
2324		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2325			     &qp->tx_free_q);
2326
2327	return rc;
2328}
2329EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2330
2331/**
2332 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2333 * @qp: NTB transport layer queue to be enabled
2334 *
2335 * Notify NTB transport layer of client readiness to use queue
2336 */
2337void ntb_transport_link_up(struct ntb_transport_qp *qp)
2338{
2339	if (!qp)
2340		return;
2341
2342	qp->client_ready = true;
2343
2344	if (qp->transport->link_is_up)
2345		schedule_delayed_work(&qp->link_work, 0);
2346}
2347EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2348
2349/**
2350 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2351 * @qp: NTB transport layer queue to be disabled
2352 *
2353 * Notify NTB transport layer of client's desire to no longer receive data on
2354 * transport queue specified.  It is the client's responsibility to ensure all
2355 * entries on queue are purged or otherwise handled appropriately.
2356 */
2357void ntb_transport_link_down(struct ntb_transport_qp *qp)
2358{
2359	int val;
2360
2361	if (!qp)
2362		return;
2363
2364	qp->client_ready = false;
2365
2366	val = ntb_spad_read(qp->ndev, QP_LINKS);
2367
2368	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2369
2370	if (qp->link_is_up)
2371		ntb_send_link_down(qp);
2372	else
2373		cancel_delayed_work_sync(&qp->link_work);
2374}
2375EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2376
2377/**
2378 * ntb_transport_link_query - Query transport link state
2379 * @qp: NTB transport layer queue to be queried
2380 *
2381 * Query connectivity to the remote system of the NTB transport queue
2382 *
2383 * RETURNS: true for link up or false for link down
2384 */
2385bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2386{
2387	if (!qp)
2388		return false;
2389
2390	return qp->link_is_up;
2391}
2392EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2393
2394/**
2395 * ntb_transport_qp_num - Query the qp number
2396 * @qp: NTB transport layer queue to be queried
2397 *
2398 * Query qp number of the NTB transport queue
2399 *
2400 * RETURNS: a zero based number specifying the qp number
2401 */
2402unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2403{
2404	if (!qp)
2405		return 0;
2406
2407	return qp->qp_num;
2408}
2409EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2410
2411/**
2412 * ntb_transport_max_size - Query the max payload size of a qp
2413 * @qp: NTB transport layer queue to be queried
2414 *
2415 * Query the maximum payload size permissible on the given qp
2416 *
2417 * RETURNS: the max payload size of a qp
2418 */
2419unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2420{
2421	unsigned int max_size;
2422	unsigned int copy_align;
2423	struct dma_chan *rx_chan, *tx_chan;
2424
2425	if (!qp)
2426		return 0;
2427
2428	rx_chan = qp->rx_dma_chan;
2429	tx_chan = qp->tx_dma_chan;
2430
2431	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2432			 tx_chan ? tx_chan->device->copy_align : 0);
2433
2434	/* If DMA engine usage is possible, try to find the max size for that */
2435	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2436	max_size = round_down(max_size, 1 << copy_align);
2437
2438	return max_size;
2439}
2440EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2441
2442unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2443{
2444	unsigned int head = qp->tx_index;
2445	unsigned int tail = qp->remote_rx_info->entry;
2446
2447	return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2448}
2449EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2450
2451static void ntb_transport_doorbell_callback(void *data, int vector)
2452{
2453	struct ntb_transport_ctx *nt = data;
2454	struct ntb_transport_qp *qp;
2455	u64 db_bits;
2456	unsigned int qp_num;
2457
2458	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2459		ntb_transport_msi_peer_desc_changed(nt);
2460		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2461	}
2462
2463	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2464		   ntb_db_vector_mask(nt->ndev, vector));
2465
2466	while (db_bits) {
2467		qp_num = __ffs(db_bits);
2468		qp = &nt->qp_vec[qp_num];
2469
2470		if (qp->active)
2471			tasklet_schedule(&qp->rxc_db_work);
2472
2473		db_bits &= ~BIT_ULL(qp_num);
2474	}
2475}
2476
2477static const struct ntb_ctx_ops ntb_transport_ops = {
2478	.link_event = ntb_transport_event_callback,
2479	.db_event = ntb_transport_doorbell_callback,
2480};
2481
2482static struct ntb_client ntb_transport_client = {
2483	.ops = {
2484		.probe = ntb_transport_probe,
2485		.remove = ntb_transport_free,
2486	},
2487};
2488
2489static int __init ntb_transport_init(void)
2490{
2491	int rc;
2492
2493	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2494
2495	if (debugfs_initialized())
2496		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2497
2498	rc = bus_register(&ntb_transport_bus);
2499	if (rc)
2500		goto err_bus;
2501
2502	rc = ntb_register_client(&ntb_transport_client);
2503	if (rc)
2504		goto err_client;
2505
2506	return 0;
2507
2508err_client:
2509	bus_unregister(&ntb_transport_bus);
2510err_bus:
2511	debugfs_remove_recursive(nt_debugfs_dir);
2512	return rc;
2513}
2514module_init(ntb_transport_init);
2515
2516static void __exit ntb_transport_exit(void)
2517{
2518	ntb_unregister_client(&ntb_transport_client);
2519	bus_unregister(&ntb_transport_bus);
2520	debugfs_remove_recursive(nt_debugfs_dir);
2521}
2522module_exit(ntb_transport_exit);