Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
 
  22#include <linux/can/core.h>
  23#include <linux/can/dev.h>
  24#include <linux/can/led.h>
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
 
  29#include <linux/freezer.h>
 
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
 
  32#include <linux/kernel.h>
  33#include <linux/module.h>
  34#include <linux/netdevice.h>
  35#include <linux/property.h>
  36#include <linux/platform_device.h>
 
 
  37#include <linux/slab.h>
  38#include <linux/spi/spi.h>
  39#include <linux/uaccess.h>
  40#include <linux/regulator/consumer.h>
  41
  42/* SPI interface instruction set */
  43#define INSTRUCTION_WRITE	0x02
  44#define INSTRUCTION_READ	0x03
  45#define INSTRUCTION_BIT_MODIFY	0x05
  46#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  47#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  48#define INSTRUCTION_RESET	0xC0
  49#define RTS_TXB0		0x01
  50#define RTS_TXB1		0x02
  51#define RTS_TXB2		0x04
  52#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  53
  54/* MPC251x registers */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55#define CANSTAT	      0x0e
  56#define CANCTRL	      0x0f
  57#  define CANCTRL_REQOP_MASK	    0xe0
  58#  define CANCTRL_REQOP_CONF	    0x80
  59#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  60#  define CANCTRL_REQOP_LOOPBACK    0x40
  61#  define CANCTRL_REQOP_SLEEP	    0x20
  62#  define CANCTRL_REQOP_NORMAL	    0x00
  63#  define CANCTRL_OSM		    0x08
  64#  define CANCTRL_ABAT		    0x10
  65#define TEC	      0x1c
  66#define REC	      0x1d
  67#define CNF1	      0x2a
  68#  define CNF1_SJW_SHIFT   6
  69#define CNF2	      0x29
  70#  define CNF2_BTLMODE	   0x80
  71#  define CNF2_SAM         0x40
  72#  define CNF2_PS1_SHIFT   3
  73#define CNF3	      0x28
  74#  define CNF3_SOF	   0x08
  75#  define CNF3_WAKFIL	   0x04
  76#  define CNF3_PHSEG2_MASK 0x07
  77#define CANINTE	      0x2b
  78#  define CANINTE_MERRE 0x80
  79#  define CANINTE_WAKIE 0x40
  80#  define CANINTE_ERRIE 0x20
  81#  define CANINTE_TX2IE 0x10
  82#  define CANINTE_TX1IE 0x08
  83#  define CANINTE_TX0IE 0x04
  84#  define CANINTE_RX1IE 0x02
  85#  define CANINTE_RX0IE 0x01
  86#define CANINTF	      0x2c
  87#  define CANINTF_MERRF 0x80
  88#  define CANINTF_WAKIF 0x40
  89#  define CANINTF_ERRIF 0x20
  90#  define CANINTF_TX2IF 0x10
  91#  define CANINTF_TX1IF 0x08
  92#  define CANINTF_TX0IF 0x04
  93#  define CANINTF_RX1IF 0x02
  94#  define CANINTF_RX0IF 0x01
  95#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  96#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  97#  define CANINTF_ERR (CANINTF_ERRIF)
  98#define EFLG	      0x2d
  99#  define EFLG_EWARN	0x01
 100#  define EFLG_RXWAR	0x02
 101#  define EFLG_TXWAR	0x04
 102#  define EFLG_RXEP	0x08
 103#  define EFLG_TXEP	0x10
 104#  define EFLG_TXBO	0x20
 105#  define EFLG_RX0OVR	0x40
 106#  define EFLG_RX1OVR	0x80
 107#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 108#  define TXBCTRL_ABTF	0x40
 109#  define TXBCTRL_MLOA	0x20
 110#  define TXBCTRL_TXERR 0x10
 111#  define TXBCTRL_TXREQ 0x08
 112#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 113#  define SIDH_SHIFT    3
 114#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 115#  define SIDL_SID_MASK    7
 116#  define SIDL_SID_SHIFT   5
 117#  define SIDL_EXIDE_SHIFT 3
 118#  define SIDL_EID_SHIFT   16
 119#  define SIDL_EID_MASK    3
 120#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 121#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 122#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 123#  define DLC_RTR_SHIFT    6
 124#define TXBCTRL_OFF 0
 125#define TXBSIDH_OFF 1
 126#define TXBSIDL_OFF 2
 127#define TXBEID8_OFF 3
 128#define TXBEID0_OFF 4
 129#define TXBDLC_OFF  5
 130#define TXBDAT_OFF  6
 131#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 132#  define RXBCTRL_BUKT	0x04
 133#  define RXBCTRL_RXM0	0x20
 134#  define RXBCTRL_RXM1	0x40
 135#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 136#  define RXBSIDH_SHIFT 3
 137#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 138#  define RXBSIDL_IDE   0x08
 139#  define RXBSIDL_SRR   0x10
 140#  define RXBSIDL_EID   3
 141#  define RXBSIDL_SHIFT 5
 142#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 143#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 144#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 145#  define RXBDLC_LEN_MASK  0x0f
 146#  define RXBDLC_RTR       0x40
 147#define RXBCTRL_OFF 0
 148#define RXBSIDH_OFF 1
 149#define RXBSIDL_OFF 2
 150#define RXBEID8_OFF 3
 151#define RXBEID0_OFF 4
 152#define RXBDLC_OFF  5
 153#define RXBDAT_OFF  6
 154#define RXFSID(n) ((n < 3) ? 0 : 4)
 155#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 156#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 157#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 158#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 159#define RXMSIDH(n) ((n) * 4 + 0x20)
 160#define RXMSIDL(n) ((n) * 4 + 0x21)
 161#define RXMEID8(n) ((n) * 4 + 0x22)
 162#define RXMEID0(n) ((n) * 4 + 0x23)
 163
 164#define GET_BYTE(val, byte)			\
 165	(((val) >> ((byte) * 8)) & 0xff)
 166#define SET_BYTE(val, byte)			\
 167	(((val) & 0xff) << ((byte) * 8))
 168
 169/* Buffer size required for the largest SPI transfer (i.e., reading a
 170 * frame)
 171 */
 172#define CAN_FRAME_MAX_DATA_LEN	8
 173#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 174#define CAN_FRAME_MAX_BITS	128
 175
 176#define TX_ECHO_SKB_MAX	1
 177
 178#define MCP251X_OST_DELAY_MS	(5)
 179
 180#define DEVICE_NAME "mcp251x"
 181
 182static const struct can_bittiming_const mcp251x_bittiming_const = {
 183	.name = DEVICE_NAME,
 184	.tseg1_min = 3,
 185	.tseg1_max = 16,
 186	.tseg2_min = 2,
 187	.tseg2_max = 8,
 188	.sjw_max = 4,
 189	.brp_min = 1,
 190	.brp_max = 64,
 191	.brp_inc = 1,
 192};
 193
 194enum mcp251x_model {
 195	CAN_MCP251X_MCP2510	= 0x2510,
 196	CAN_MCP251X_MCP2515	= 0x2515,
 197	CAN_MCP251X_MCP25625	= 0x25625,
 198};
 199
 200struct mcp251x_priv {
 201	struct can_priv	   can;
 202	struct net_device *net;
 203	struct spi_device *spi;
 204	enum mcp251x_model model;
 205
 206	struct mutex mcp_lock; /* SPI device lock */
 207
 208	u8 *spi_tx_buf;
 209	u8 *spi_rx_buf;
 210
 211	struct sk_buff *tx_skb;
 212	int tx_len;
 213
 214	struct workqueue_struct *wq;
 215	struct work_struct tx_work;
 216	struct work_struct restart_work;
 217
 218	int force_quit;
 219	int after_suspend;
 220#define AFTER_SUSPEND_UP 1
 221#define AFTER_SUSPEND_DOWN 2
 222#define AFTER_SUSPEND_POWER 4
 223#define AFTER_SUSPEND_RESTART 8
 224	int restart_tx;
 
 
 225	struct regulator *power;
 226	struct regulator *transceiver;
 227	struct clk *clk;
 
 
 
 
 228};
 229
 230#define MCP251X_IS(_model) \
 231static inline int mcp251x_is_##_model(struct spi_device *spi) \
 232{ \
 233	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 234	return priv->model == CAN_MCP251X_MCP##_model; \
 235}
 236
 237MCP251X_IS(2510);
 238
 239static void mcp251x_clean(struct net_device *net)
 240{
 241	struct mcp251x_priv *priv = netdev_priv(net);
 242
 243	if (priv->tx_skb || priv->tx_len)
 244		net->stats.tx_errors++;
 245	dev_kfree_skb(priv->tx_skb);
 246	if (priv->tx_len)
 247		can_free_echo_skb(priv->net, 0);
 248	priv->tx_skb = NULL;
 249	priv->tx_len = 0;
 250}
 251
 252/* Note about handling of error return of mcp251x_spi_trans: accessing
 253 * registers via SPI is not really different conceptually than using
 254 * normal I/O assembler instructions, although it's much more
 255 * complicated from a practical POV. So it's not advisable to always
 256 * check the return value of this function. Imagine that every
 257 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 258 * error();", it would be a great mess (well there are some situation
 259 * when exception handling C++ like could be useful after all). So we
 260 * just check that transfers are OK at the beginning of our
 261 * conversation with the chip and to avoid doing really nasty things
 262 * (like injecting bogus packets in the network stack).
 263 */
 264static int mcp251x_spi_trans(struct spi_device *spi, int len)
 265{
 266	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 267	struct spi_transfer t = {
 268		.tx_buf = priv->spi_tx_buf,
 269		.rx_buf = priv->spi_rx_buf,
 270		.len = len,
 271		.cs_change = 0,
 272	};
 273	struct spi_message m;
 274	int ret;
 275
 276	spi_message_init(&m);
 277	spi_message_add_tail(&t, &m);
 278
 279	ret = spi_sync(spi, &m);
 280	if (ret)
 281		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 282	return ret;
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 285static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 286{
 287	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 288	u8 val = 0;
 289
 290	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 291	priv->spi_tx_buf[1] = reg;
 292
 293	mcp251x_spi_trans(spi, 3);
 294	val = priv->spi_rx_buf[2];
 
 
 
 
 295
 296	return val;
 297}
 298
 299static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 300{
 301	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 302
 303	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 304	priv->spi_tx_buf[1] = reg;
 305
 306	mcp251x_spi_trans(spi, 4);
 
 307
 308	*v1 = priv->spi_rx_buf[2];
 309	*v2 = priv->spi_rx_buf[3];
 
 
 
 
 
 
 
 310}
 311
 312static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 313{
 314	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 315
 316	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 317	priv->spi_tx_buf[1] = reg;
 318	priv->spi_tx_buf[2] = val;
 319
 320	mcp251x_spi_trans(spi, 3);
 321}
 322
 323static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 324{
 325	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 326
 327	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 328	priv->spi_tx_buf[1] = reg;
 329	priv->spi_tx_buf[2] = v1;
 330	priv->spi_tx_buf[3] = v2;
 331
 332	mcp251x_spi_trans(spi, 4);
 333}
 334
 335static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 336			       u8 mask, u8 val)
 337{
 338	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 339
 340	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 341	priv->spi_tx_buf[1] = reg;
 342	priv->spi_tx_buf[2] = mask;
 343	priv->spi_tx_buf[3] = val;
 344
 345	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 349				int len, int tx_buf_idx)
 350{
 351	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 352
 353	if (mcp251x_is_2510(spi)) {
 354		int i;
 355
 356		for (i = 1; i < TXBDAT_OFF + len; i++)
 357			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 358					  buf[i]);
 359	} else {
 360		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 361		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 362	}
 363}
 364
 365static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 366			  int tx_buf_idx)
 367{
 368	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 369	u32 sid, eid, exide, rtr;
 370	u8 buf[SPI_TRANSFER_BUF_LEN];
 371
 372	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 373	if (exide)
 374		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 375	else
 376		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 377	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 378	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 379
 380	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 381	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 382	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 383		(exide << SIDL_EXIDE_SHIFT) |
 384		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 385	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 386	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 387	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 388	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 389	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 390
 391	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 392	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 393	mcp251x_spi_trans(priv->spi, 1);
 394}
 395
 396static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 397				int buf_idx)
 398{
 399	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 400
 401	if (mcp251x_is_2510(spi)) {
 402		int i, len;
 403
 404		for (i = 1; i < RXBDAT_OFF; i++)
 405			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 406
 407		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 408		for (; i < (RXBDAT_OFF + len); i++)
 409			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 410	} else {
 411		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 412		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 413		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 
 
 
 
 
 
 
 
 414	}
 415}
 416
 417static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 418{
 419	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 420	struct sk_buff *skb;
 421	struct can_frame *frame;
 422	u8 buf[SPI_TRANSFER_BUF_LEN];
 423
 424	skb = alloc_can_skb(priv->net, &frame);
 425	if (!skb) {
 426		dev_err(&spi->dev, "cannot allocate RX skb\n");
 427		priv->net->stats.rx_dropped++;
 428		return;
 429	}
 430
 431	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 432	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 433		/* Extended ID format */
 434		frame->can_id = CAN_EFF_FLAG;
 435		frame->can_id |=
 436			/* Extended ID part */
 437			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 438			SET_BYTE(buf[RXBEID8_OFF], 1) |
 439			SET_BYTE(buf[RXBEID0_OFF], 0) |
 440			/* Standard ID part */
 441			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 442			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 443		/* Remote transmission request */
 444		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 445			frame->can_id |= CAN_RTR_FLAG;
 446	} else {
 447		/* Standard ID format */
 448		frame->can_id =
 449			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 450			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 451		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 452			frame->can_id |= CAN_RTR_FLAG;
 453	}
 454	/* Data length */
 455	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 456	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 
 457
 
 
 458	priv->net->stats.rx_packets++;
 459	priv->net->stats.rx_bytes += frame->can_dlc;
 460
 461	can_led_event(priv->net, CAN_LED_EVENT_RX);
 462
 463	netif_rx_ni(skb);
 464}
 465
 466static void mcp251x_hw_sleep(struct spi_device *spi)
 467{
 468	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 469}
 470
 471/* May only be called when device is sleeping! */
 472static int mcp251x_hw_wake(struct spi_device *spi)
 473{
 474	unsigned long timeout;
 
 475
 476	/* Force wakeup interrupt to wake device, but don't execute IST */
 477	disable_irq(spi->irq);
 478	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 479
 480	/* Wait for oscillator startup timer after wake up */
 481	mdelay(MCP251X_OST_DELAY_MS);
 482
 483	/* Put device into config mode */
 484	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 485
 486	/* Wait for the device to enter config mode */
 487	timeout = jiffies + HZ;
 488	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
 489			CANCTRL_REQOP_CONF) {
 490		schedule();
 491		if (time_after(jiffies, timeout)) {
 492			dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 493			return -EBUSY;
 494		}
 495	}
 496
 497	/* Disable and clear pending interrupts */
 498	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 499	enable_irq(spi->irq);
 500
 501	return 0;
 502}
 503
 504static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 505					   struct net_device *net)
 506{
 507	struct mcp251x_priv *priv = netdev_priv(net);
 508	struct spi_device *spi = priv->spi;
 509
 510	if (priv->tx_skb || priv->tx_len) {
 511		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 512		return NETDEV_TX_BUSY;
 513	}
 514
 515	if (can_dropped_invalid_skb(net, skb))
 516		return NETDEV_TX_OK;
 517
 518	netif_stop_queue(net);
 519	priv->tx_skb = skb;
 520	queue_work(priv->wq, &priv->tx_work);
 521
 522	return NETDEV_TX_OK;
 523}
 524
 525static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 526{
 527	struct mcp251x_priv *priv = netdev_priv(net);
 528
 529	switch (mode) {
 530	case CAN_MODE_START:
 531		mcp251x_clean(net);
 532		/* We have to delay work since SPI I/O may sleep */
 533		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 534		priv->restart_tx = 1;
 535		if (priv->can.restart_ms == 0)
 536			priv->after_suspend = AFTER_SUSPEND_RESTART;
 537		queue_work(priv->wq, &priv->restart_work);
 538		break;
 539	default:
 540		return -EOPNOTSUPP;
 541	}
 542
 543	return 0;
 544}
 545
 546static int mcp251x_set_normal_mode(struct spi_device *spi)
 547{
 548	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 549	unsigned long timeout;
 
 550
 551	/* Enable interrupts */
 552	mcp251x_write_reg(spi, CANINTE,
 553			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 554			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 555
 556	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 557		/* Put device into loopback mode */
 558		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 559	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 560		/* Put device into listen-only mode */
 561		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 562	} else {
 563		/* Put device into normal mode */
 564		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 565
 566		/* Wait for the device to enter normal mode */
 567		timeout = jiffies + HZ;
 568		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 569			schedule();
 570			if (time_after(jiffies, timeout)) {
 571				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 572				return -EBUSY;
 573			}
 574		}
 575	}
 576	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 577	return 0;
 578}
 579
 580static int mcp251x_do_set_bittiming(struct net_device *net)
 581{
 582	struct mcp251x_priv *priv = netdev_priv(net);
 583	struct can_bittiming *bt = &priv->can.bittiming;
 584	struct spi_device *spi = priv->spi;
 585
 586	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 587			  (bt->brp - 1));
 588	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 589			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 590			   CNF2_SAM : 0) |
 591			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 592			  (bt->prop_seg - 1));
 593	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 594			   (bt->phase_seg2 - 1));
 595	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 596		mcp251x_read_reg(spi, CNF1),
 597		mcp251x_read_reg(spi, CNF2),
 598		mcp251x_read_reg(spi, CNF3));
 599
 600	return 0;
 601}
 602
 603static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 604{
 605	mcp251x_do_set_bittiming(net);
 606
 607	mcp251x_write_reg(spi, RXBCTRL(0),
 608			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 609	mcp251x_write_reg(spi, RXBCTRL(1),
 610			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 611	return 0;
 612}
 613
 614static int mcp251x_hw_reset(struct spi_device *spi)
 615{
 616	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 617	unsigned long timeout;
 618	int ret;
 619
 620	/* Wait for oscillator startup timer after power up */
 621	mdelay(MCP251X_OST_DELAY_MS);
 622
 623	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 624	ret = mcp251x_spi_trans(spi, 1);
 625	if (ret)
 626		return ret;
 627
 628	/* Wait for oscillator startup timer after reset */
 629	mdelay(MCP251X_OST_DELAY_MS);
 630
 631	/* Wait for reset to finish */
 632	timeout = jiffies + HZ;
 633	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
 634	       CANCTRL_REQOP_CONF) {
 635		usleep_range(MCP251X_OST_DELAY_MS * 1000,
 636			     MCP251X_OST_DELAY_MS * 1000 * 2);
 637
 638		if (time_after(jiffies, timeout)) {
 639			dev_err(&spi->dev,
 640				"MCP251x didn't enter in conf mode after reset\n");
 641			return -EBUSY;
 642		}
 643	}
 644	return 0;
 645}
 646
 647static int mcp251x_hw_probe(struct spi_device *spi)
 648{
 649	u8 ctrl;
 650	int ret;
 651
 652	ret = mcp251x_hw_reset(spi);
 653	if (ret)
 654		return ret;
 655
 656	ctrl = mcp251x_read_reg(spi, CANCTRL);
 657
 658	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 659
 660	/* Check for power up default value */
 661	if ((ctrl & 0x17) != 0x07)
 662		return -ENODEV;
 663
 664	return 0;
 665}
 666
 667static int mcp251x_power_enable(struct regulator *reg, int enable)
 668{
 669	if (IS_ERR_OR_NULL(reg))
 670		return 0;
 671
 672	if (enable)
 673		return regulator_enable(reg);
 674	else
 675		return regulator_disable(reg);
 676}
 677
 678static int mcp251x_stop(struct net_device *net)
 679{
 680	struct mcp251x_priv *priv = netdev_priv(net);
 681	struct spi_device *spi = priv->spi;
 682
 683	close_candev(net);
 684
 685	priv->force_quit = 1;
 686	free_irq(spi->irq, priv);
 687	destroy_workqueue(priv->wq);
 688	priv->wq = NULL;
 689
 690	mutex_lock(&priv->mcp_lock);
 691
 692	/* Disable and clear pending interrupts */
 693	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 694
 695	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 696	mcp251x_clean(net);
 697
 698	mcp251x_hw_sleep(spi);
 699
 700	mcp251x_power_enable(priv->transceiver, 0);
 701
 702	priv->can.state = CAN_STATE_STOPPED;
 703
 704	mutex_unlock(&priv->mcp_lock);
 705
 706	can_led_event(net, CAN_LED_EVENT_STOP);
 707
 708	return 0;
 709}
 710
 711static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 712{
 713	struct sk_buff *skb;
 714	struct can_frame *frame;
 715
 716	skb = alloc_can_err_skb(net, &frame);
 717	if (skb) {
 718		frame->can_id |= can_id;
 719		frame->data[1] = data1;
 720		netif_rx_ni(skb);
 721	} else {
 722		netdev_err(net, "cannot allocate error skb\n");
 723	}
 724}
 725
 726static void mcp251x_tx_work_handler(struct work_struct *ws)
 727{
 728	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 729						 tx_work);
 730	struct spi_device *spi = priv->spi;
 731	struct net_device *net = priv->net;
 732	struct can_frame *frame;
 733
 734	mutex_lock(&priv->mcp_lock);
 735	if (priv->tx_skb) {
 736		if (priv->can.state == CAN_STATE_BUS_OFF) {
 737			mcp251x_clean(net);
 738		} else {
 739			frame = (struct can_frame *)priv->tx_skb->data;
 740
 741			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 742				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 743			mcp251x_hw_tx(spi, frame, 0);
 744			priv->tx_len = 1 + frame->can_dlc;
 745			can_put_echo_skb(priv->tx_skb, net, 0);
 746			priv->tx_skb = NULL;
 747		}
 748	}
 749	mutex_unlock(&priv->mcp_lock);
 750}
 751
 752static void mcp251x_restart_work_handler(struct work_struct *ws)
 753{
 754	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 755						 restart_work);
 756	struct spi_device *spi = priv->spi;
 757	struct net_device *net = priv->net;
 758
 759	mutex_lock(&priv->mcp_lock);
 760	if (priv->after_suspend) {
 761		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
 762			mcp251x_hw_reset(spi);
 763			mcp251x_setup(net, spi);
 
 764		} else {
 765			mcp251x_hw_wake(spi);
 766		}
 767		priv->force_quit = 0;
 768		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 769			mcp251x_set_normal_mode(spi);
 770		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 771			netif_device_attach(net);
 772			mcp251x_clean(net);
 773			mcp251x_set_normal_mode(spi);
 774			netif_wake_queue(net);
 775		} else {
 776			mcp251x_hw_sleep(spi);
 777		}
 778		priv->after_suspend = 0;
 779	}
 780
 781	if (priv->restart_tx) {
 782		priv->restart_tx = 0;
 783		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 784		mcp251x_clean(net);
 785		netif_wake_queue(net);
 786		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 787	}
 788	mutex_unlock(&priv->mcp_lock);
 789}
 790
 791static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 792{
 793	struct mcp251x_priv *priv = dev_id;
 794	struct spi_device *spi = priv->spi;
 795	struct net_device *net = priv->net;
 796
 797	mutex_lock(&priv->mcp_lock);
 798	while (!priv->force_quit) {
 799		enum can_state new_state;
 800		u8 intf, eflag;
 801		u8 clear_intf = 0;
 802		int can_id = 0, data1 = 0;
 803
 804		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 805
 806		/* mask out flags we don't care about */
 807		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 808
 809		/* receive buffer 0 */
 810		if (intf & CANINTF_RX0IF) {
 811			mcp251x_hw_rx(spi, 0);
 812			/* Free one buffer ASAP
 813			 * (The MCP2515/25625 does this automatically.)
 814			 */
 815			if (mcp251x_is_2510(spi))
 816				mcp251x_write_bits(spi, CANINTF,
 817						   CANINTF_RX0IF, 0x00);
 
 
 
 
 
 
 
 
 
 
 
 
 818		}
 819
 820		/* receive buffer 1 */
 821		if (intf & CANINTF_RX1IF) {
 822			mcp251x_hw_rx(spi, 1);
 823			/* The MCP2515/25625 does this automatically. */
 824			if (mcp251x_is_2510(spi))
 825				clear_intf |= CANINTF_RX1IF;
 826		}
 827
 
 
 
 828		/* any error or tx interrupt we need to clear? */
 829		if (intf & (CANINTF_ERR | CANINTF_TX))
 830			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 831		if (clear_intf)
 832			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 833
 834		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
 835			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 836
 837		/* Update can state */
 838		if (eflag & EFLG_TXBO) {
 839			new_state = CAN_STATE_BUS_OFF;
 840			can_id |= CAN_ERR_BUSOFF;
 841		} else if (eflag & EFLG_TXEP) {
 842			new_state = CAN_STATE_ERROR_PASSIVE;
 843			can_id |= CAN_ERR_CRTL;
 844			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 845		} else if (eflag & EFLG_RXEP) {
 846			new_state = CAN_STATE_ERROR_PASSIVE;
 847			can_id |= CAN_ERR_CRTL;
 848			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 849		} else if (eflag & EFLG_TXWAR) {
 850			new_state = CAN_STATE_ERROR_WARNING;
 851			can_id |= CAN_ERR_CRTL;
 852			data1 |= CAN_ERR_CRTL_TX_WARNING;
 853		} else if (eflag & EFLG_RXWAR) {
 854			new_state = CAN_STATE_ERROR_WARNING;
 855			can_id |= CAN_ERR_CRTL;
 856			data1 |= CAN_ERR_CRTL_RX_WARNING;
 857		} else {
 858			new_state = CAN_STATE_ERROR_ACTIVE;
 859		}
 860
 861		/* Update can state statistics */
 862		switch (priv->can.state) {
 863		case CAN_STATE_ERROR_ACTIVE:
 864			if (new_state >= CAN_STATE_ERROR_WARNING &&
 865			    new_state <= CAN_STATE_BUS_OFF)
 866				priv->can.can_stats.error_warning++;
 867			fallthrough;
 868		case CAN_STATE_ERROR_WARNING:
 869			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 870			    new_state <= CAN_STATE_BUS_OFF)
 871				priv->can.can_stats.error_passive++;
 872			break;
 873		default:
 874			break;
 875		}
 876		priv->can.state = new_state;
 877
 878		if (intf & CANINTF_ERRIF) {
 879			/* Handle overflow counters */
 880			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 881				if (eflag & EFLG_RX0OVR) {
 882					net->stats.rx_over_errors++;
 883					net->stats.rx_errors++;
 884				}
 885				if (eflag & EFLG_RX1OVR) {
 886					net->stats.rx_over_errors++;
 887					net->stats.rx_errors++;
 888				}
 889				can_id |= CAN_ERR_CRTL;
 890				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 891			}
 892			mcp251x_error_skb(net, can_id, data1);
 893		}
 894
 895		if (priv->can.state == CAN_STATE_BUS_OFF) {
 896			if (priv->can.restart_ms == 0) {
 897				priv->force_quit = 1;
 898				priv->can.can_stats.bus_off++;
 899				can_bus_off(net);
 900				mcp251x_hw_sleep(spi);
 901				break;
 902			}
 903		}
 904
 905		if (intf == 0)
 906			break;
 907
 908		if (intf & CANINTF_TX) {
 909			net->stats.tx_packets++;
 910			net->stats.tx_bytes += priv->tx_len - 1;
 911			can_led_event(net, CAN_LED_EVENT_TX);
 912			if (priv->tx_len) {
 913				can_get_echo_skb(net, 0);
 914				priv->tx_len = 0;
 915			}
 916			netif_wake_queue(net);
 917		}
 918	}
 919	mutex_unlock(&priv->mcp_lock);
 920	return IRQ_HANDLED;
 921}
 922
 923static int mcp251x_open(struct net_device *net)
 924{
 925	struct mcp251x_priv *priv = netdev_priv(net);
 926	struct spi_device *spi = priv->spi;
 927	unsigned long flags = 0;
 928	int ret;
 929
 930	ret = open_candev(net);
 931	if (ret) {
 932		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 933		return ret;
 934	}
 935
 936	mutex_lock(&priv->mcp_lock);
 937	mcp251x_power_enable(priv->transceiver, 1);
 938
 939	priv->force_quit = 0;
 940	priv->tx_skb = NULL;
 941	priv->tx_len = 0;
 942
 943	if (!dev_fwnode(&spi->dev))
 944		flags = IRQF_TRIGGER_FALLING;
 945
 946	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 947				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
 948				   priv);
 949	if (ret) {
 950		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 951		goto out_close;
 952	}
 953
 954	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
 955				   0);
 956	if (!priv->wq) {
 957		ret = -ENOMEM;
 958		goto out_clean;
 959	}
 960	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 961	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 962
 963	ret = mcp251x_hw_wake(spi);
 964	if (ret)
 965		goto out_free_wq;
 966	ret = mcp251x_setup(net, spi);
 967	if (ret)
 968		goto out_free_wq;
 969	ret = mcp251x_set_normal_mode(spi);
 970	if (ret)
 971		goto out_free_wq;
 972
 973	can_led_event(net, CAN_LED_EVENT_OPEN);
 974
 975	netif_wake_queue(net);
 976	mutex_unlock(&priv->mcp_lock);
 977
 978	return 0;
 979
 980out_free_wq:
 981	destroy_workqueue(priv->wq);
 982out_clean:
 983	free_irq(spi->irq, priv);
 984	mcp251x_hw_sleep(spi);
 985out_close:
 986	mcp251x_power_enable(priv->transceiver, 0);
 987	close_candev(net);
 988	mutex_unlock(&priv->mcp_lock);
 989	return ret;
 990}
 991
 992static const struct net_device_ops mcp251x_netdev_ops = {
 993	.ndo_open = mcp251x_open,
 994	.ndo_stop = mcp251x_stop,
 995	.ndo_start_xmit = mcp251x_hard_start_xmit,
 996	.ndo_change_mtu = can_change_mtu,
 997};
 998
 
 
 
 
 999static const struct of_device_id mcp251x_of_match[] = {
1000	{
1001		.compatible	= "microchip,mcp2510",
1002		.data		= (void *)CAN_MCP251X_MCP2510,
1003	},
1004	{
1005		.compatible	= "microchip,mcp2515",
1006		.data		= (void *)CAN_MCP251X_MCP2515,
1007	},
1008	{
1009		.compatible	= "microchip,mcp25625",
1010		.data		= (void *)CAN_MCP251X_MCP25625,
1011	},
1012	{ }
1013};
1014MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1015
1016static const struct spi_device_id mcp251x_id_table[] = {
1017	{
1018		.name		= "mcp2510",
1019		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1020	},
1021	{
1022		.name		= "mcp2515",
1023		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1024	},
1025	{
1026		.name		= "mcp25625",
1027		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1028	},
1029	{ }
1030};
1031MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1032
1033static int mcp251x_can_probe(struct spi_device *spi)
1034{
1035	const void *match = device_get_match_data(&spi->dev);
1036	struct net_device *net;
1037	struct mcp251x_priv *priv;
1038	struct clk *clk;
1039	u32 freq;
1040	int ret;
1041
1042	clk = devm_clk_get_optional(&spi->dev, NULL);
1043	if (IS_ERR(clk))
1044		return PTR_ERR(clk);
1045
1046	freq = clk_get_rate(clk);
1047	if (freq == 0)
1048		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1049
1050	/* Sanity check */
1051	if (freq < 1000000 || freq > 25000000)
1052		return -ERANGE;
1053
1054	/* Allocate can/net device */
1055	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1056	if (!net)
1057		return -ENOMEM;
1058
1059	ret = clk_prepare_enable(clk);
1060	if (ret)
1061		goto out_free;
1062
1063	net->netdev_ops = &mcp251x_netdev_ops;
 
1064	net->flags |= IFF_ECHO;
1065
1066	priv = netdev_priv(net);
1067	priv->can.bittiming_const = &mcp251x_bittiming_const;
1068	priv->can.do_set_mode = mcp251x_do_set_mode;
1069	priv->can.clock.freq = freq / 2;
1070	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1071		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1072	if (match)
1073		priv->model = (enum mcp251x_model)match;
1074	else
1075		priv->model = spi_get_device_id(spi)->driver_data;
1076	priv->net = net;
1077	priv->clk = clk;
1078
1079	spi_set_drvdata(spi, priv);
1080
1081	/* Configure the SPI bus */
1082	spi->bits_per_word = 8;
1083	if (mcp251x_is_2510(spi))
1084		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1085	else
1086		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1087	ret = spi_setup(spi);
1088	if (ret)
1089		goto out_clk;
1090
1091	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1092	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1093	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1094	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1095		ret = -EPROBE_DEFER;
1096		goto out_clk;
1097	}
1098
1099	ret = mcp251x_power_enable(priv->power, 1);
1100	if (ret)
1101		goto out_clk;
1102
 
 
 
 
 
 
 
 
 
1103	priv->spi = spi;
1104	mutex_init(&priv->mcp_lock);
1105
1106	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1107					GFP_KERNEL);
1108	if (!priv->spi_tx_buf) {
1109		ret = -ENOMEM;
1110		goto error_probe;
1111	}
1112
1113	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1114					GFP_KERNEL);
1115	if (!priv->spi_rx_buf) {
1116		ret = -ENOMEM;
1117		goto error_probe;
1118	}
1119
1120	SET_NETDEV_DEV(net, &spi->dev);
1121
1122	/* Here is OK to not lock the MCP, no one knows about it yet */
1123	ret = mcp251x_hw_probe(spi);
1124	if (ret) {
1125		if (ret == -ENODEV)
1126			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1127				priv->model);
1128		goto error_probe;
1129	}
1130
1131	mcp251x_hw_sleep(spi);
1132
1133	ret = register_candev(net);
1134	if (ret)
1135		goto error_probe;
1136
1137	devm_can_led_init(net);
 
 
1138
1139	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1140	return 0;
1141
 
 
 
1142error_probe:
 
 
1143	mcp251x_power_enable(priv->power, 0);
1144
1145out_clk:
1146	clk_disable_unprepare(clk);
1147
1148out_free:
1149	free_candev(net);
1150
1151	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1152	return ret;
1153}
1154
1155static int mcp251x_can_remove(struct spi_device *spi)
1156{
1157	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1158	struct net_device *net = priv->net;
1159
1160	unregister_candev(net);
1161
1162	mcp251x_power_enable(priv->power, 0);
1163
 
 
 
1164	clk_disable_unprepare(priv->clk);
1165
1166	free_candev(net);
1167
1168	return 0;
1169}
1170
1171static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1172{
1173	struct spi_device *spi = to_spi_device(dev);
1174	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1175	struct net_device *net = priv->net;
1176
1177	priv->force_quit = 1;
1178	disable_irq(spi->irq);
1179	/* Note: at this point neither IST nor workqueues are running.
1180	 * open/stop cannot be called anyway so locking is not needed
1181	 */
1182	if (netif_running(net)) {
1183		netif_device_detach(net);
1184
1185		mcp251x_hw_sleep(spi);
1186		mcp251x_power_enable(priv->transceiver, 0);
1187		priv->after_suspend = AFTER_SUSPEND_UP;
1188	} else {
1189		priv->after_suspend = AFTER_SUSPEND_DOWN;
1190	}
1191
1192	mcp251x_power_enable(priv->power, 0);
1193	priv->after_suspend |= AFTER_SUSPEND_POWER;
1194
1195	return 0;
1196}
1197
1198static int __maybe_unused mcp251x_can_resume(struct device *dev)
1199{
1200	struct spi_device *spi = to_spi_device(dev);
1201	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1202
1203	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1204		mcp251x_power_enable(priv->power, 1);
1205	if (priv->after_suspend & AFTER_SUSPEND_UP)
1206		mcp251x_power_enable(priv->transceiver, 1);
1207
1208	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1209		queue_work(priv->wq, &priv->restart_work);
1210	else
1211		priv->after_suspend = 0;
1212
1213	priv->force_quit = 0;
1214	enable_irq(spi->irq);
1215	return 0;
1216}
1217
1218static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1219	mcp251x_can_resume);
1220
1221static struct spi_driver mcp251x_can_driver = {
1222	.driver = {
1223		.name = DEVICE_NAME,
1224		.of_match_table = mcp251x_of_match,
1225		.pm = &mcp251x_can_pm_ops,
1226	},
1227	.id_table = mcp251x_id_table,
1228	.probe = mcp251x_can_probe,
1229	.remove = mcp251x_can_remove,
1230};
1231module_spi_driver(mcp251x_can_driver);
1232
1233MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1234	      "Christian Pellegrin <chripell@evolware.org>");
1235MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1236MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
 
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
  31#include <linux/gpio/driver.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/iopoll.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/netdevice.h>
 
  38#include <linux/platform_device.h>
  39#include <linux/property.h>
  40#include <linux/regulator/consumer.h>
  41#include <linux/slab.h>
  42#include <linux/spi/spi.h>
  43#include <linux/uaccess.h>
 
  44
  45/* SPI interface instruction set */
  46#define INSTRUCTION_WRITE	0x02
  47#define INSTRUCTION_READ	0x03
  48#define INSTRUCTION_BIT_MODIFY	0x05
  49#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  50#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  51#define INSTRUCTION_RESET	0xC0
  52#define RTS_TXB0		0x01
  53#define RTS_TXB1		0x02
  54#define RTS_TXB2		0x04
  55#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  56
  57/* MPC251x registers */
  58#define BFPCTRL			0x0c
  59#  define BFPCTRL_B0BFM		BIT(0)
  60#  define BFPCTRL_B1BFM		BIT(1)
  61#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  62#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  63#  define BFPCTRL_B0BFE		BIT(2)
  64#  define BFPCTRL_B1BFE		BIT(3)
  65#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  66#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  67#  define BFPCTRL_B0BFS		BIT(4)
  68#  define BFPCTRL_B1BFS		BIT(5)
  69#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  70#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  71#define TXRTSCTRL		0x0d
  72#  define TXRTSCTRL_B0RTSM	BIT(0)
  73#  define TXRTSCTRL_B1RTSM	BIT(1)
  74#  define TXRTSCTRL_B2RTSM	BIT(2)
  75#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  76#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  77#  define TXRTSCTRL_B0RTS	BIT(3)
  78#  define TXRTSCTRL_B1RTS	BIT(4)
  79#  define TXRTSCTRL_B2RTS	BIT(5)
  80#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  81#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  82#define CANSTAT	      0x0e
  83#define CANCTRL	      0x0f
  84#  define CANCTRL_REQOP_MASK	    0xe0
  85#  define CANCTRL_REQOP_CONF	    0x80
  86#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  87#  define CANCTRL_REQOP_LOOPBACK    0x40
  88#  define CANCTRL_REQOP_SLEEP	    0x20
  89#  define CANCTRL_REQOP_NORMAL	    0x00
  90#  define CANCTRL_OSM		    0x08
  91#  define CANCTRL_ABAT		    0x10
  92#define TEC	      0x1c
  93#define REC	      0x1d
  94#define CNF1	      0x2a
  95#  define CNF1_SJW_SHIFT   6
  96#define CNF2	      0x29
  97#  define CNF2_BTLMODE	   0x80
  98#  define CNF2_SAM         0x40
  99#  define CNF2_PS1_SHIFT   3
 100#define CNF3	      0x28
 101#  define CNF3_SOF	   0x08
 102#  define CNF3_WAKFIL	   0x04
 103#  define CNF3_PHSEG2_MASK 0x07
 104#define CANINTE	      0x2b
 105#  define CANINTE_MERRE 0x80
 106#  define CANINTE_WAKIE 0x40
 107#  define CANINTE_ERRIE 0x20
 108#  define CANINTE_TX2IE 0x10
 109#  define CANINTE_TX1IE 0x08
 110#  define CANINTE_TX0IE 0x04
 111#  define CANINTE_RX1IE 0x02
 112#  define CANINTE_RX0IE 0x01
 113#define CANINTF	      0x2c
 114#  define CANINTF_MERRF 0x80
 115#  define CANINTF_WAKIF 0x40
 116#  define CANINTF_ERRIF 0x20
 117#  define CANINTF_TX2IF 0x10
 118#  define CANINTF_TX1IF 0x08
 119#  define CANINTF_TX0IF 0x04
 120#  define CANINTF_RX1IF 0x02
 121#  define CANINTF_RX0IF 0x01
 122#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 123#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 124#  define CANINTF_ERR (CANINTF_ERRIF)
 125#define EFLG	      0x2d
 126#  define EFLG_EWARN	0x01
 127#  define EFLG_RXWAR	0x02
 128#  define EFLG_TXWAR	0x04
 129#  define EFLG_RXEP	0x08
 130#  define EFLG_TXEP	0x10
 131#  define EFLG_TXBO	0x20
 132#  define EFLG_RX0OVR	0x40
 133#  define EFLG_RX1OVR	0x80
 134#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 135#  define TXBCTRL_ABTF	0x40
 136#  define TXBCTRL_MLOA	0x20
 137#  define TXBCTRL_TXERR 0x10
 138#  define TXBCTRL_TXREQ 0x08
 139#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 140#  define SIDH_SHIFT    3
 141#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 142#  define SIDL_SID_MASK    7
 143#  define SIDL_SID_SHIFT   5
 144#  define SIDL_EXIDE_SHIFT 3
 145#  define SIDL_EID_SHIFT   16
 146#  define SIDL_EID_MASK    3
 147#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 148#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 149#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 150#  define DLC_RTR_SHIFT    6
 151#define TXBCTRL_OFF 0
 152#define TXBSIDH_OFF 1
 153#define TXBSIDL_OFF 2
 154#define TXBEID8_OFF 3
 155#define TXBEID0_OFF 4
 156#define TXBDLC_OFF  5
 157#define TXBDAT_OFF  6
 158#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 159#  define RXBCTRL_BUKT	0x04
 160#  define RXBCTRL_RXM0	0x20
 161#  define RXBCTRL_RXM1	0x40
 162#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 163#  define RXBSIDH_SHIFT 3
 164#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 165#  define RXBSIDL_IDE   0x08
 166#  define RXBSIDL_SRR   0x10
 167#  define RXBSIDL_EID   3
 168#  define RXBSIDL_SHIFT 5
 169#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 170#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 171#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 172#  define RXBDLC_LEN_MASK  0x0f
 173#  define RXBDLC_RTR       0x40
 174#define RXBCTRL_OFF 0
 175#define RXBSIDH_OFF 1
 176#define RXBSIDL_OFF 2
 177#define RXBEID8_OFF 3
 178#define RXBEID0_OFF 4
 179#define RXBDLC_OFF  5
 180#define RXBDAT_OFF  6
 181#define RXFSID(n) ((n < 3) ? 0 : 4)
 182#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 183#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 184#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 185#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 186#define RXMSIDH(n) ((n) * 4 + 0x20)
 187#define RXMSIDL(n) ((n) * 4 + 0x21)
 188#define RXMEID8(n) ((n) * 4 + 0x22)
 189#define RXMEID0(n) ((n) * 4 + 0x23)
 190
 191#define GET_BYTE(val, byte)			\
 192	(((val) >> ((byte) * 8)) & 0xff)
 193#define SET_BYTE(val, byte)			\
 194	(((val) & 0xff) << ((byte) * 8))
 195
 196/* Buffer size required for the largest SPI transfer (i.e., reading a
 197 * frame)
 198 */
 199#define CAN_FRAME_MAX_DATA_LEN	8
 200#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 201#define CAN_FRAME_MAX_BITS	128
 202
 203#define TX_ECHO_SKB_MAX	1
 204
 205#define MCP251X_OST_DELAY_MS	(5)
 206
 207#define DEVICE_NAME "mcp251x"
 208
 209static const struct can_bittiming_const mcp251x_bittiming_const = {
 210	.name = DEVICE_NAME,
 211	.tseg1_min = 3,
 212	.tseg1_max = 16,
 213	.tseg2_min = 2,
 214	.tseg2_max = 8,
 215	.sjw_max = 4,
 216	.brp_min = 1,
 217	.brp_max = 64,
 218	.brp_inc = 1,
 219};
 220
 221enum mcp251x_model {
 222	CAN_MCP251X_MCP2510	= 0x2510,
 223	CAN_MCP251X_MCP2515	= 0x2515,
 224	CAN_MCP251X_MCP25625	= 0x25625,
 225};
 226
 227struct mcp251x_priv {
 228	struct can_priv	   can;
 229	struct net_device *net;
 230	struct spi_device *spi;
 231	enum mcp251x_model model;
 232
 233	struct mutex mcp_lock; /* SPI device lock */
 234
 235	u8 *spi_tx_buf;
 236	u8 *spi_rx_buf;
 237
 238	struct sk_buff *tx_skb;
 
 239
 240	struct workqueue_struct *wq;
 241	struct work_struct tx_work;
 242	struct work_struct restart_work;
 243
 244	int force_quit;
 245	int after_suspend;
 246#define AFTER_SUSPEND_UP 1
 247#define AFTER_SUSPEND_DOWN 2
 248#define AFTER_SUSPEND_POWER 4
 249#define AFTER_SUSPEND_RESTART 8
 250	int restart_tx;
 251	bool tx_busy;
 252
 253	struct regulator *power;
 254	struct regulator *transceiver;
 255	struct clk *clk;
 256#ifdef CONFIG_GPIOLIB
 257	struct gpio_chip gpio;
 258	u8 reg_bfpctrl;
 259#endif
 260};
 261
 262#define MCP251X_IS(_model) \
 263static inline int mcp251x_is_##_model(struct spi_device *spi) \
 264{ \
 265	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 266	return priv->model == CAN_MCP251X_MCP##_model; \
 267}
 268
 269MCP251X_IS(2510);
 270
 271static void mcp251x_clean(struct net_device *net)
 272{
 273	struct mcp251x_priv *priv = netdev_priv(net);
 274
 275	if (priv->tx_skb || priv->tx_busy)
 276		net->stats.tx_errors++;
 277	dev_kfree_skb(priv->tx_skb);
 278	if (priv->tx_busy)
 279		can_free_echo_skb(priv->net, 0, NULL);
 280	priv->tx_skb = NULL;
 281	priv->tx_busy = false;
 282}
 283
 284/* Note about handling of error return of mcp251x_spi_trans: accessing
 285 * registers via SPI is not really different conceptually than using
 286 * normal I/O assembler instructions, although it's much more
 287 * complicated from a practical POV. So it's not advisable to always
 288 * check the return value of this function. Imagine that every
 289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 290 * error();", it would be a great mess (well there are some situation
 291 * when exception handling C++ like could be useful after all). So we
 292 * just check that transfers are OK at the beginning of our
 293 * conversation with the chip and to avoid doing really nasty things
 294 * (like injecting bogus packets in the network stack).
 295 */
 296static int mcp251x_spi_trans(struct spi_device *spi, int len)
 297{
 298	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 299	struct spi_transfer t = {
 300		.tx_buf = priv->spi_tx_buf,
 301		.rx_buf = priv->spi_rx_buf,
 302		.len = len,
 303		.cs_change = 0,
 304	};
 305	struct spi_message m;
 306	int ret;
 307
 308	spi_message_init(&m);
 309	spi_message_add_tail(&t, &m);
 310
 311	ret = spi_sync(spi, &m);
 312	if (ret)
 313		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 314	return ret;
 315}
 316
 317static int mcp251x_spi_write(struct spi_device *spi, int len)
 318{
 319	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 320	int ret;
 321
 322	ret = spi_write(spi, priv->spi_tx_buf, len);
 323	if (ret)
 324		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 325
 326	return ret;
 327}
 328
 329static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 330{
 331	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 332	u8 val = 0;
 333
 334	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 335	priv->spi_tx_buf[1] = reg;
 336
 337	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 338		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 339	} else {
 340		mcp251x_spi_trans(spi, 3);
 341		val = priv->spi_rx_buf[2];
 342	}
 343
 344	return val;
 345}
 346
 347static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 348{
 349	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 350
 351	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 352	priv->spi_tx_buf[1] = reg;
 353
 354	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 355		u8 val[2] = { 0 };
 356
 357		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 358		*v1 = val[0];
 359		*v2 = val[1];
 360	} else {
 361		mcp251x_spi_trans(spi, 4);
 362
 363		*v1 = priv->spi_rx_buf[2];
 364		*v2 = priv->spi_rx_buf[3];
 365	}
 366}
 367
 368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 369{
 370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 371
 372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 373	priv->spi_tx_buf[1] = reg;
 374	priv->spi_tx_buf[2] = val;
 375
 376	mcp251x_spi_write(spi, 3);
 377}
 378
 379static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 380{
 381	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 382
 383	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 384	priv->spi_tx_buf[1] = reg;
 385	priv->spi_tx_buf[2] = v1;
 386	priv->spi_tx_buf[3] = v2;
 387
 388	mcp251x_spi_write(spi, 4);
 389}
 390
 391static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 392			       u8 mask, u8 val)
 393{
 394	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 395
 396	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 397	priv->spi_tx_buf[1] = reg;
 398	priv->spi_tx_buf[2] = mask;
 399	priv->spi_tx_buf[3] = val;
 400
 401	mcp251x_spi_write(spi, 4);
 402}
 403
 404static u8 mcp251x_read_stat(struct spi_device *spi)
 405{
 406	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 407}
 408
 409#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 410	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 411			   delay_us, timeout_us)
 412
 413#ifdef CONFIG_GPIOLIB
 414enum {
 415	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 416	MCP251X_GPIO_TX1RTS,
 417	MCP251X_GPIO_TX2RTS,
 418	MCP251X_GPIO_RX0BF,			/* outputs */
 419	MCP251X_GPIO_RX1BF,
 420};
 421
 422#define MCP251X_GPIO_INPUT_MASK \
 423	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 424#define MCP251X_GPIO_OUTPUT_MASK \
 425	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 426
 427static const char * const mcp251x_gpio_names[] = {
 428	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 429	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 430	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 431	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 432	[MCP251X_GPIO_RX1BF] = "RX1BF",
 433};
 434
 435static inline bool mcp251x_gpio_is_input(unsigned int offset)
 436{
 437	return offset <= MCP251X_GPIO_TX2RTS;
 438}
 439
 440static int mcp251x_gpio_request(struct gpio_chip *chip,
 441				unsigned int offset)
 442{
 443	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 444	u8 val;
 445
 446	/* nothing to be done for inputs */
 447	if (mcp251x_gpio_is_input(offset))
 448		return 0;
 449
 450	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 451
 452	mutex_lock(&priv->mcp_lock);
 453	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 454	mutex_unlock(&priv->mcp_lock);
 455
 456	priv->reg_bfpctrl |= val;
 457
 458	return 0;
 459}
 460
 461static void mcp251x_gpio_free(struct gpio_chip *chip,
 462			      unsigned int offset)
 463{
 464	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 465	u8 val;
 466
 467	/* nothing to be done for inputs */
 468	if (mcp251x_gpio_is_input(offset))
 469		return;
 470
 471	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 472
 473	mutex_lock(&priv->mcp_lock);
 474	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 475	mutex_unlock(&priv->mcp_lock);
 476
 477	priv->reg_bfpctrl &= ~val;
 478}
 479
 480static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 481				      unsigned int offset)
 482{
 483	if (mcp251x_gpio_is_input(offset))
 484		return GPIO_LINE_DIRECTION_IN;
 485
 486	return GPIO_LINE_DIRECTION_OUT;
 487}
 488
 489static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 490{
 491	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 492	u8 reg, mask, val;
 493
 494	if (mcp251x_gpio_is_input(offset)) {
 495		reg = TXRTSCTRL;
 496		mask = TXRTSCTRL_RTS(offset);
 497	} else {
 498		reg = BFPCTRL;
 499		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 500	}
 501
 502	mutex_lock(&priv->mcp_lock);
 503	val = mcp251x_read_reg(priv->spi, reg);
 504	mutex_unlock(&priv->mcp_lock);
 505
 506	return !!(val & mask);
 507}
 508
 509static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 510				     unsigned long *maskp, unsigned long *bitsp)
 511{
 512	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 513	unsigned long bits = 0;
 514	u8 val;
 515
 516	mutex_lock(&priv->mcp_lock);
 517	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 518		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 519		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 520		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 521	}
 522	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 523		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 524		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 525		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 526	}
 527	mutex_unlock(&priv->mcp_lock);
 528
 529	bitsp[0] = bits;
 530	return 0;
 531}
 532
 533static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 534			     int value)
 535{
 536	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 537	u8 mask, val;
 538
 539	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 540	val = value ? mask : 0;
 541
 542	mutex_lock(&priv->mcp_lock);
 543	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 544	mutex_unlock(&priv->mcp_lock);
 545
 546	priv->reg_bfpctrl &= ~mask;
 547	priv->reg_bfpctrl |= val;
 548}
 549
 550static void
 551mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 552			  unsigned long *maskp, unsigned long *bitsp)
 553{
 554	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 555	u8 mask, val;
 556
 557	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 558	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 559
 560	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 561	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 562
 563	if (!mask)
 564		return;
 565
 566	mutex_lock(&priv->mcp_lock);
 567	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 568	mutex_unlock(&priv->mcp_lock);
 569
 570	priv->reg_bfpctrl &= ~mask;
 571	priv->reg_bfpctrl |= val;
 572}
 573
 574static void mcp251x_gpio_restore(struct spi_device *spi)
 575{
 576	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 577
 578	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 579}
 580
 581static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 582{
 583	struct gpio_chip *gpio = &priv->gpio;
 584
 585	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 586		return 0;
 587
 588	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 589	gpio->label = priv->spi->modalias;
 590	gpio->parent = &priv->spi->dev;
 591	gpio->owner = THIS_MODULE;
 592	gpio->request = mcp251x_gpio_request;
 593	gpio->free = mcp251x_gpio_free;
 594	gpio->get_direction = mcp251x_gpio_get_direction;
 595	gpio->get = mcp251x_gpio_get;
 596	gpio->get_multiple = mcp251x_gpio_get_multiple;
 597	gpio->set = mcp251x_gpio_set;
 598	gpio->set_multiple = mcp251x_gpio_set_multiple;
 599	gpio->base = -1;
 600	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 601	gpio->names = mcp251x_gpio_names;
 602	gpio->can_sleep = true;
 603
 604	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 605}
 606#else
 607static inline void mcp251x_gpio_restore(struct spi_device *spi)
 608{
 609}
 610
 611static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 612{
 613	return 0;
 614}
 615#endif
 616
 617static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 618				int len, int tx_buf_idx)
 619{
 620	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 621
 622	if (mcp251x_is_2510(spi)) {
 623		int i;
 624
 625		for (i = 1; i < TXBDAT_OFF + len; i++)
 626			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 627					  buf[i]);
 628	} else {
 629		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 630		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 631	}
 632}
 633
 634static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 635			  int tx_buf_idx)
 636{
 637	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 638	u32 sid, eid, exide, rtr;
 639	u8 buf[SPI_TRANSFER_BUF_LEN];
 640
 641	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 642	if (exide)
 643		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 644	else
 645		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 646	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 647	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 648
 649	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 650	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 651	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 652		(exide << SIDL_EXIDE_SHIFT) |
 653		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 654	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 655	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 656	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 657	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 658	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 659
 660	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 661	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 662	mcp251x_spi_write(priv->spi, 1);
 663}
 664
 665static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 666				int buf_idx)
 667{
 668	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 669
 670	if (mcp251x_is_2510(spi)) {
 671		int i, len;
 672
 673		for (i = 1; i < RXBDAT_OFF; i++)
 674			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 675
 676		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 677		for (; i < (RXBDAT_OFF + len); i++)
 678			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 679	} else {
 680		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 681		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 682			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 683					    priv->spi_rx_buf,
 684					    SPI_TRANSFER_BUF_LEN);
 685			memcpy(buf + 1, priv->spi_rx_buf,
 686			       SPI_TRANSFER_BUF_LEN - 1);
 687		} else {
 688			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 689			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 690		}
 691	}
 692}
 693
 694static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 695{
 696	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 697	struct sk_buff *skb;
 698	struct can_frame *frame;
 699	u8 buf[SPI_TRANSFER_BUF_LEN];
 700
 701	skb = alloc_can_skb(priv->net, &frame);
 702	if (!skb) {
 703		dev_err(&spi->dev, "cannot allocate RX skb\n");
 704		priv->net->stats.rx_dropped++;
 705		return;
 706	}
 707
 708	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 709	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 710		/* Extended ID format */
 711		frame->can_id = CAN_EFF_FLAG;
 712		frame->can_id |=
 713			/* Extended ID part */
 714			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 715			SET_BYTE(buf[RXBEID8_OFF], 1) |
 716			SET_BYTE(buf[RXBEID0_OFF], 0) |
 717			/* Standard ID part */
 718			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 719			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 720		/* Remote transmission request */
 721		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 722			frame->can_id |= CAN_RTR_FLAG;
 723	} else {
 724		/* Standard ID format */
 725		frame->can_id =
 726			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 727			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 728		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 729			frame->can_id |= CAN_RTR_FLAG;
 730	}
 731	/* Data length */
 732	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 733	if (!(frame->can_id & CAN_RTR_FLAG)) {
 734		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 735
 736		priv->net->stats.rx_bytes += frame->len;
 737	}
 738	priv->net->stats.rx_packets++;
 
 
 
 739
 740	netif_rx(skb);
 741}
 742
 743static void mcp251x_hw_sleep(struct spi_device *spi)
 744{
 745	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 746}
 747
 748/* May only be called when device is sleeping! */
 749static int mcp251x_hw_wake(struct spi_device *spi)
 750{
 751	u8 value;
 752	int ret;
 753
 754	/* Force wakeup interrupt to wake device, but don't execute IST */
 755	disable_irq_nosync(spi->irq);
 756	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 757
 758	/* Wait for oscillator startup timer after wake up */
 759	mdelay(MCP251X_OST_DELAY_MS);
 760
 761	/* Put device into config mode */
 762	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 763
 764	/* Wait for the device to enter config mode */
 765	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 766					     MCP251X_OST_DELAY_MS * 1000,
 767					     USEC_PER_SEC);
 768	if (ret) {
 769		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 770		return ret;
 
 
 771	}
 772
 773	/* Disable and clear pending interrupts */
 774	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 775	enable_irq(spi->irq);
 776
 777	return 0;
 778}
 779
 780static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 781					   struct net_device *net)
 782{
 783	struct mcp251x_priv *priv = netdev_priv(net);
 784	struct spi_device *spi = priv->spi;
 785
 786	if (priv->tx_skb || priv->tx_busy) {
 787		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 788		return NETDEV_TX_BUSY;
 789	}
 790
 791	if (can_dev_dropped_skb(net, skb))
 792		return NETDEV_TX_OK;
 793
 794	netif_stop_queue(net);
 795	priv->tx_skb = skb;
 796	queue_work(priv->wq, &priv->tx_work);
 797
 798	return NETDEV_TX_OK;
 799}
 800
 801static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 802{
 803	struct mcp251x_priv *priv = netdev_priv(net);
 804
 805	switch (mode) {
 806	case CAN_MODE_START:
 807		mcp251x_clean(net);
 808		/* We have to delay work since SPI I/O may sleep */
 809		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 810		priv->restart_tx = 1;
 811		if (priv->can.restart_ms == 0)
 812			priv->after_suspend = AFTER_SUSPEND_RESTART;
 813		queue_work(priv->wq, &priv->restart_work);
 814		break;
 815	default:
 816		return -EOPNOTSUPP;
 817	}
 818
 819	return 0;
 820}
 821
 822static int mcp251x_set_normal_mode(struct spi_device *spi)
 823{
 824	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 825	u8 value;
 826	int ret;
 827
 828	/* Enable interrupts */
 829	mcp251x_write_reg(spi, CANINTE,
 830			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 831			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 832
 833	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 834		/* Put device into loopback mode */
 835		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 836	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 837		/* Put device into listen-only mode */
 838		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 839	} else {
 840		/* Put device into normal mode */
 841		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 842
 843		/* Wait for the device to enter normal mode */
 844		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 845						     MCP251X_OST_DELAY_MS * 1000,
 846						     USEC_PER_SEC);
 847		if (ret) {
 848			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 849			return ret;
 
 850		}
 851	}
 852	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 853	return 0;
 854}
 855
 856static int mcp251x_do_set_bittiming(struct net_device *net)
 857{
 858	struct mcp251x_priv *priv = netdev_priv(net);
 859	struct can_bittiming *bt = &priv->can.bittiming;
 860	struct spi_device *spi = priv->spi;
 861
 862	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 863			  (bt->brp - 1));
 864	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 865			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 866			   CNF2_SAM : 0) |
 867			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 868			  (bt->prop_seg - 1));
 869	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 870			   (bt->phase_seg2 - 1));
 871	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 872		mcp251x_read_reg(spi, CNF1),
 873		mcp251x_read_reg(spi, CNF2),
 874		mcp251x_read_reg(spi, CNF3));
 875
 876	return 0;
 877}
 878
 879static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 880{
 881	mcp251x_do_set_bittiming(net);
 882
 883	mcp251x_write_reg(spi, RXBCTRL(0),
 884			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 885	mcp251x_write_reg(spi, RXBCTRL(1),
 886			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 887	return 0;
 888}
 889
 890static int mcp251x_hw_reset(struct spi_device *spi)
 891{
 892	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 893	u8 value;
 894	int ret;
 895
 896	/* Wait for oscillator startup timer after power up */
 897	mdelay(MCP251X_OST_DELAY_MS);
 898
 899	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 900	ret = mcp251x_spi_write(spi, 1);
 901	if (ret)
 902		return ret;
 903
 904	/* Wait for oscillator startup timer after reset */
 905	mdelay(MCP251X_OST_DELAY_MS);
 906
 907	/* Wait for reset to finish */
 908	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 909					     MCP251X_OST_DELAY_MS * 1000,
 910					     USEC_PER_SEC);
 911	if (ret)
 912		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 913	return ret;
 
 
 
 
 
 
 
 914}
 915
 916static int mcp251x_hw_probe(struct spi_device *spi)
 917{
 918	u8 ctrl;
 919	int ret;
 920
 921	ret = mcp251x_hw_reset(spi);
 922	if (ret)
 923		return ret;
 924
 925	ctrl = mcp251x_read_reg(spi, CANCTRL);
 926
 927	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 928
 929	/* Check for power up default value */
 930	if ((ctrl & 0x17) != 0x07)
 931		return -ENODEV;
 932
 933	return 0;
 934}
 935
 936static int mcp251x_power_enable(struct regulator *reg, int enable)
 937{
 938	if (IS_ERR_OR_NULL(reg))
 939		return 0;
 940
 941	if (enable)
 942		return regulator_enable(reg);
 943	else
 944		return regulator_disable(reg);
 945}
 946
 947static int mcp251x_stop(struct net_device *net)
 948{
 949	struct mcp251x_priv *priv = netdev_priv(net);
 950	struct spi_device *spi = priv->spi;
 951
 952	close_candev(net);
 953
 954	priv->force_quit = 1;
 955	free_irq(spi->irq, priv);
 
 
 956
 957	mutex_lock(&priv->mcp_lock);
 958
 959	/* Disable and clear pending interrupts */
 960	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 961
 962	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 963	mcp251x_clean(net);
 964
 965	mcp251x_hw_sleep(spi);
 966
 967	mcp251x_power_enable(priv->transceiver, 0);
 968
 969	priv->can.state = CAN_STATE_STOPPED;
 970
 971	mutex_unlock(&priv->mcp_lock);
 972
 
 
 973	return 0;
 974}
 975
 976static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 977{
 978	struct sk_buff *skb;
 979	struct can_frame *frame;
 980
 981	skb = alloc_can_err_skb(net, &frame);
 982	if (skb) {
 983		frame->can_id |= can_id;
 984		frame->data[1] = data1;
 985		netif_rx(skb);
 986	} else {
 987		netdev_err(net, "cannot allocate error skb\n");
 988	}
 989}
 990
 991static void mcp251x_tx_work_handler(struct work_struct *ws)
 992{
 993	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 994						 tx_work);
 995	struct spi_device *spi = priv->spi;
 996	struct net_device *net = priv->net;
 997	struct can_frame *frame;
 998
 999	mutex_lock(&priv->mcp_lock);
1000	if (priv->tx_skb) {
1001		if (priv->can.state == CAN_STATE_BUS_OFF) {
1002			mcp251x_clean(net);
1003		} else {
1004			frame = (struct can_frame *)priv->tx_skb->data;
1005
1006			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1007				frame->len = CAN_FRAME_MAX_DATA_LEN;
1008			mcp251x_hw_tx(spi, frame, 0);
1009			priv->tx_busy = true;
1010			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1011			priv->tx_skb = NULL;
1012		}
1013	}
1014	mutex_unlock(&priv->mcp_lock);
1015}
1016
1017static void mcp251x_restart_work_handler(struct work_struct *ws)
1018{
1019	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1020						 restart_work);
1021	struct spi_device *spi = priv->spi;
1022	struct net_device *net = priv->net;
1023
1024	mutex_lock(&priv->mcp_lock);
1025	if (priv->after_suspend) {
1026		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1027			mcp251x_hw_reset(spi);
1028			mcp251x_setup(net, spi);
1029			mcp251x_gpio_restore(spi);
1030		} else {
1031			mcp251x_hw_wake(spi);
1032		}
1033		priv->force_quit = 0;
1034		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1035			mcp251x_set_normal_mode(spi);
1036		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1037			netif_device_attach(net);
1038			mcp251x_clean(net);
1039			mcp251x_set_normal_mode(spi);
1040			netif_wake_queue(net);
1041		} else {
1042			mcp251x_hw_sleep(spi);
1043		}
1044		priv->after_suspend = 0;
1045	}
1046
1047	if (priv->restart_tx) {
1048		priv->restart_tx = 0;
1049		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1050		mcp251x_clean(net);
1051		netif_wake_queue(net);
1052		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1053	}
1054	mutex_unlock(&priv->mcp_lock);
1055}
1056
1057static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1058{
1059	struct mcp251x_priv *priv = dev_id;
1060	struct spi_device *spi = priv->spi;
1061	struct net_device *net = priv->net;
1062
1063	mutex_lock(&priv->mcp_lock);
1064	while (!priv->force_quit) {
1065		enum can_state new_state;
1066		u8 intf, eflag;
1067		u8 clear_intf = 0;
1068		int can_id = 0, data1 = 0;
1069
1070		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1071
 
 
 
1072		/* receive buffer 0 */
1073		if (intf & CANINTF_RX0IF) {
1074			mcp251x_hw_rx(spi, 0);
1075			/* Free one buffer ASAP
1076			 * (The MCP2515/25625 does this automatically.)
1077			 */
1078			if (mcp251x_is_2510(spi))
1079				mcp251x_write_bits(spi, CANINTF,
1080						   CANINTF_RX0IF, 0x00);
1081
1082			/* check if buffer 1 is already known to be full, no need to re-read */
1083			if (!(intf & CANINTF_RX1IF)) {
1084				u8 intf1, eflag1;
1085
1086				/* intf needs to be read again to avoid a race condition */
1087				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1088
1089				/* combine flags from both operations for error handling */
1090				intf |= intf1;
1091				eflag |= eflag1;
1092			}
1093		}
1094
1095		/* receive buffer 1 */
1096		if (intf & CANINTF_RX1IF) {
1097			mcp251x_hw_rx(spi, 1);
1098			/* The MCP2515/25625 does this automatically. */
1099			if (mcp251x_is_2510(spi))
1100				clear_intf |= CANINTF_RX1IF;
1101		}
1102
1103		/* mask out flags we don't care about */
1104		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1105
1106		/* any error or tx interrupt we need to clear? */
1107		if (intf & (CANINTF_ERR | CANINTF_TX))
1108			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1109		if (clear_intf)
1110			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1111
1112		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1113			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1114
1115		/* Update can state */
1116		if (eflag & EFLG_TXBO) {
1117			new_state = CAN_STATE_BUS_OFF;
1118			can_id |= CAN_ERR_BUSOFF;
1119		} else if (eflag & EFLG_TXEP) {
1120			new_state = CAN_STATE_ERROR_PASSIVE;
1121			can_id |= CAN_ERR_CRTL;
1122			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1123		} else if (eflag & EFLG_RXEP) {
1124			new_state = CAN_STATE_ERROR_PASSIVE;
1125			can_id |= CAN_ERR_CRTL;
1126			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1127		} else if (eflag & EFLG_TXWAR) {
1128			new_state = CAN_STATE_ERROR_WARNING;
1129			can_id |= CAN_ERR_CRTL;
1130			data1 |= CAN_ERR_CRTL_TX_WARNING;
1131		} else if (eflag & EFLG_RXWAR) {
1132			new_state = CAN_STATE_ERROR_WARNING;
1133			can_id |= CAN_ERR_CRTL;
1134			data1 |= CAN_ERR_CRTL_RX_WARNING;
1135		} else {
1136			new_state = CAN_STATE_ERROR_ACTIVE;
1137		}
1138
1139		/* Update can state statistics */
1140		switch (priv->can.state) {
1141		case CAN_STATE_ERROR_ACTIVE:
1142			if (new_state >= CAN_STATE_ERROR_WARNING &&
1143			    new_state <= CAN_STATE_BUS_OFF)
1144				priv->can.can_stats.error_warning++;
1145			fallthrough;
1146		case CAN_STATE_ERROR_WARNING:
1147			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1148			    new_state <= CAN_STATE_BUS_OFF)
1149				priv->can.can_stats.error_passive++;
1150			break;
1151		default:
1152			break;
1153		}
1154		priv->can.state = new_state;
1155
1156		if (intf & CANINTF_ERRIF) {
1157			/* Handle overflow counters */
1158			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1159				if (eflag & EFLG_RX0OVR) {
1160					net->stats.rx_over_errors++;
1161					net->stats.rx_errors++;
1162				}
1163				if (eflag & EFLG_RX1OVR) {
1164					net->stats.rx_over_errors++;
1165					net->stats.rx_errors++;
1166				}
1167				can_id |= CAN_ERR_CRTL;
1168				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1169			}
1170			mcp251x_error_skb(net, can_id, data1);
1171		}
1172
1173		if (priv->can.state == CAN_STATE_BUS_OFF) {
1174			if (priv->can.restart_ms == 0) {
1175				priv->force_quit = 1;
1176				priv->can.can_stats.bus_off++;
1177				can_bus_off(net);
1178				mcp251x_hw_sleep(spi);
1179				break;
1180			}
1181		}
1182
1183		if (intf == 0)
1184			break;
1185
1186		if (intf & CANINTF_TX) {
1187			if (priv->tx_busy) {
1188				net->stats.tx_packets++;
1189				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1190									NULL);
1191				priv->tx_busy = false;
 
1192			}
1193			netif_wake_queue(net);
1194		}
1195	}
1196	mutex_unlock(&priv->mcp_lock);
1197	return IRQ_HANDLED;
1198}
1199
1200static int mcp251x_open(struct net_device *net)
1201{
1202	struct mcp251x_priv *priv = netdev_priv(net);
1203	struct spi_device *spi = priv->spi;
1204	unsigned long flags = 0;
1205	int ret;
1206
1207	ret = open_candev(net);
1208	if (ret) {
1209		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1210		return ret;
1211	}
1212
1213	mutex_lock(&priv->mcp_lock);
1214	mcp251x_power_enable(priv->transceiver, 1);
1215
1216	priv->force_quit = 0;
1217	priv->tx_skb = NULL;
1218	priv->tx_busy = false;
1219
1220	if (!dev_fwnode(&spi->dev))
1221		flags = IRQF_TRIGGER_FALLING;
1222
1223	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1224				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1225				   priv);
1226	if (ret) {
1227		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1228		goto out_close;
1229	}
1230
 
 
 
 
 
 
 
 
 
1231	ret = mcp251x_hw_wake(spi);
1232	if (ret)
1233		goto out_free_irq;
1234	ret = mcp251x_setup(net, spi);
1235	if (ret)
1236		goto out_free_irq;
1237	ret = mcp251x_set_normal_mode(spi);
1238	if (ret)
1239		goto out_free_irq;
 
 
1240
1241	netif_wake_queue(net);
1242	mutex_unlock(&priv->mcp_lock);
1243
1244	return 0;
1245
1246out_free_irq:
 
 
1247	free_irq(spi->irq, priv);
1248	mcp251x_hw_sleep(spi);
1249out_close:
1250	mcp251x_power_enable(priv->transceiver, 0);
1251	close_candev(net);
1252	mutex_unlock(&priv->mcp_lock);
1253	return ret;
1254}
1255
1256static const struct net_device_ops mcp251x_netdev_ops = {
1257	.ndo_open = mcp251x_open,
1258	.ndo_stop = mcp251x_stop,
1259	.ndo_start_xmit = mcp251x_hard_start_xmit,
1260	.ndo_change_mtu = can_change_mtu,
1261};
1262
1263static const struct ethtool_ops mcp251x_ethtool_ops = {
1264	.get_ts_info = ethtool_op_get_ts_info,
1265};
1266
1267static const struct of_device_id mcp251x_of_match[] = {
1268	{
1269		.compatible	= "microchip,mcp2510",
1270		.data		= (void *)CAN_MCP251X_MCP2510,
1271	},
1272	{
1273		.compatible	= "microchip,mcp2515",
1274		.data		= (void *)CAN_MCP251X_MCP2515,
1275	},
1276	{
1277		.compatible	= "microchip,mcp25625",
1278		.data		= (void *)CAN_MCP251X_MCP25625,
1279	},
1280	{ }
1281};
1282MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1283
1284static const struct spi_device_id mcp251x_id_table[] = {
1285	{
1286		.name		= "mcp2510",
1287		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1288	},
1289	{
1290		.name		= "mcp2515",
1291		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1292	},
1293	{
1294		.name		= "mcp25625",
1295		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1296	},
1297	{ }
1298};
1299MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1300
1301static int mcp251x_can_probe(struct spi_device *spi)
1302{
 
1303	struct net_device *net;
1304	struct mcp251x_priv *priv;
1305	struct clk *clk;
1306	u32 freq;
1307	int ret;
1308
1309	clk = devm_clk_get_optional(&spi->dev, NULL);
1310	if (IS_ERR(clk))
1311		return PTR_ERR(clk);
1312
1313	freq = clk_get_rate(clk);
1314	if (freq == 0)
1315		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1316
1317	/* Sanity check */
1318	if (freq < 1000000 || freq > 25000000)
1319		return -ERANGE;
1320
1321	/* Allocate can/net device */
1322	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1323	if (!net)
1324		return -ENOMEM;
1325
1326	ret = clk_prepare_enable(clk);
1327	if (ret)
1328		goto out_free;
1329
1330	net->netdev_ops = &mcp251x_netdev_ops;
1331	net->ethtool_ops = &mcp251x_ethtool_ops;
1332	net->flags |= IFF_ECHO;
1333
1334	priv = netdev_priv(net);
1335	priv->can.bittiming_const = &mcp251x_bittiming_const;
1336	priv->can.do_set_mode = mcp251x_do_set_mode;
1337	priv->can.clock.freq = freq / 2;
1338	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1339		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1340	priv->model = (enum mcp251x_model)(uintptr_t)spi_get_device_match_data(spi);
 
 
 
1341	priv->net = net;
1342	priv->clk = clk;
1343
1344	spi_set_drvdata(spi, priv);
1345
1346	/* Configure the SPI bus */
1347	spi->bits_per_word = 8;
1348	if (mcp251x_is_2510(spi))
1349		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1350	else
1351		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1352	ret = spi_setup(spi);
1353	if (ret)
1354		goto out_clk;
1355
1356	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1357	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1358	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1359	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1360		ret = -EPROBE_DEFER;
1361		goto out_clk;
1362	}
1363
1364	ret = mcp251x_power_enable(priv->power, 1);
1365	if (ret)
1366		goto out_clk;
1367
1368	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1369				   0);
1370	if (!priv->wq) {
1371		ret = -ENOMEM;
1372		goto out_clk;
1373	}
1374	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1375	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1376
1377	priv->spi = spi;
1378	mutex_init(&priv->mcp_lock);
1379
1380	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1381					GFP_KERNEL);
1382	if (!priv->spi_tx_buf) {
1383		ret = -ENOMEM;
1384		goto error_probe;
1385	}
1386
1387	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388					GFP_KERNEL);
1389	if (!priv->spi_rx_buf) {
1390		ret = -ENOMEM;
1391		goto error_probe;
1392	}
1393
1394	SET_NETDEV_DEV(net, &spi->dev);
1395
1396	/* Here is OK to not lock the MCP, no one knows about it yet */
1397	ret = mcp251x_hw_probe(spi);
1398	if (ret) {
1399		if (ret == -ENODEV)
1400			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1401				priv->model);
1402		goto error_probe;
1403	}
1404
1405	mcp251x_hw_sleep(spi);
1406
1407	ret = register_candev(net);
1408	if (ret)
1409		goto error_probe;
1410
1411	ret = mcp251x_gpio_setup(priv);
1412	if (ret)
1413		goto out_unregister_candev;
1414
1415	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1416	return 0;
1417
1418out_unregister_candev:
1419	unregister_candev(net);
1420
1421error_probe:
1422	destroy_workqueue(priv->wq);
1423	priv->wq = NULL;
1424	mcp251x_power_enable(priv->power, 0);
1425
1426out_clk:
1427	clk_disable_unprepare(clk);
1428
1429out_free:
1430	free_candev(net);
1431
1432	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1433	return ret;
1434}
1435
1436static void mcp251x_can_remove(struct spi_device *spi)
1437{
1438	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1439	struct net_device *net = priv->net;
1440
1441	unregister_candev(net);
1442
1443	mcp251x_power_enable(priv->power, 0);
1444
1445	destroy_workqueue(priv->wq);
1446	priv->wq = NULL;
1447
1448	clk_disable_unprepare(priv->clk);
1449
1450	free_candev(net);
 
 
1451}
1452
1453static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1454{
1455	struct spi_device *spi = to_spi_device(dev);
1456	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1457	struct net_device *net = priv->net;
1458
1459	priv->force_quit = 1;
1460	disable_irq(spi->irq);
1461	/* Note: at this point neither IST nor workqueues are running.
1462	 * open/stop cannot be called anyway so locking is not needed
1463	 */
1464	if (netif_running(net)) {
1465		netif_device_detach(net);
1466
1467		mcp251x_hw_sleep(spi);
1468		mcp251x_power_enable(priv->transceiver, 0);
1469		priv->after_suspend = AFTER_SUSPEND_UP;
1470	} else {
1471		priv->after_suspend = AFTER_SUSPEND_DOWN;
1472	}
1473
1474	mcp251x_power_enable(priv->power, 0);
1475	priv->after_suspend |= AFTER_SUSPEND_POWER;
1476
1477	return 0;
1478}
1479
1480static int __maybe_unused mcp251x_can_resume(struct device *dev)
1481{
1482	struct spi_device *spi = to_spi_device(dev);
1483	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1484
1485	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1486		mcp251x_power_enable(priv->power, 1);
1487	if (priv->after_suspend & AFTER_SUSPEND_UP)
1488		mcp251x_power_enable(priv->transceiver, 1);
1489
1490	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1491		queue_work(priv->wq, &priv->restart_work);
1492	else
1493		priv->after_suspend = 0;
1494
1495	priv->force_quit = 0;
1496	enable_irq(spi->irq);
1497	return 0;
1498}
1499
1500static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1501	mcp251x_can_resume);
1502
1503static struct spi_driver mcp251x_can_driver = {
1504	.driver = {
1505		.name = DEVICE_NAME,
1506		.of_match_table = mcp251x_of_match,
1507		.pm = &mcp251x_can_pm_ops,
1508	},
1509	.id_table = mcp251x_id_table,
1510	.probe = mcp251x_can_probe,
1511	.remove = mcp251x_can_remove,
1512};
1513module_spi_driver(mcp251x_can_driver);
1514
1515MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1516	      "Christian Pellegrin <chripell@evolware.org>");
1517MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1518MODULE_LICENSE("GPL v2");