Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2004 Texas Instruments, Inc.
4 *
5 * Some parts based tps65010.c:
6 * Copyright (C) 2004 Texas Instruments and
7 * Copyright (C) 2004-2005 David Brownell
8 *
9 * Some parts based on tlv320aic24.c:
10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
11 *
12 * Changes for interrupt handling and clean-up by
13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
14 * Cleanup and generalized support for voltage setting by
15 * Juha Yrjola
16 * Added support for controlling VCORE and regulator sleep states,
17 * Amit Kucheria <amit.kucheria@nokia.com>
18 * Copyright (C) 2005, 2006 Nokia Corporation
19 */
20
21#include <linux/module.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/sched.h>
25#include <linux/mutex.h>
26#include <linux/workqueue.h>
27#include <linux/delay.h>
28#include <linux/rtc.h>
29#include <linux/bcd.h>
30#include <linux/slab.h>
31#include <linux/mfd/menelaus.h>
32#include <linux/gpio.h>
33
34#include <asm/mach/irq.h>
35
36
37#define DRIVER_NAME "menelaus"
38
39#define MENELAUS_I2C_ADDRESS 0x72
40
41#define MENELAUS_REV 0x01
42#define MENELAUS_VCORE_CTRL1 0x02
43#define MENELAUS_VCORE_CTRL2 0x03
44#define MENELAUS_VCORE_CTRL3 0x04
45#define MENELAUS_VCORE_CTRL4 0x05
46#define MENELAUS_VCORE_CTRL5 0x06
47#define MENELAUS_DCDC_CTRL1 0x07
48#define MENELAUS_DCDC_CTRL2 0x08
49#define MENELAUS_DCDC_CTRL3 0x09
50#define MENELAUS_LDO_CTRL1 0x0A
51#define MENELAUS_LDO_CTRL2 0x0B
52#define MENELAUS_LDO_CTRL3 0x0C
53#define MENELAUS_LDO_CTRL4 0x0D
54#define MENELAUS_LDO_CTRL5 0x0E
55#define MENELAUS_LDO_CTRL6 0x0F
56#define MENELAUS_LDO_CTRL7 0x10
57#define MENELAUS_LDO_CTRL8 0x11
58#define MENELAUS_SLEEP_CTRL1 0x12
59#define MENELAUS_SLEEP_CTRL2 0x13
60#define MENELAUS_DEVICE_OFF 0x14
61#define MENELAUS_OSC_CTRL 0x15
62#define MENELAUS_DETECT_CTRL 0x16
63#define MENELAUS_INT_MASK1 0x17
64#define MENELAUS_INT_MASK2 0x18
65#define MENELAUS_INT_STATUS1 0x19
66#define MENELAUS_INT_STATUS2 0x1A
67#define MENELAUS_INT_ACK1 0x1B
68#define MENELAUS_INT_ACK2 0x1C
69#define MENELAUS_GPIO_CTRL 0x1D
70#define MENELAUS_GPIO_IN 0x1E
71#define MENELAUS_GPIO_OUT 0x1F
72#define MENELAUS_BBSMS 0x20
73#define MENELAUS_RTC_CTRL 0x21
74#define MENELAUS_RTC_UPDATE 0x22
75#define MENELAUS_RTC_SEC 0x23
76#define MENELAUS_RTC_MIN 0x24
77#define MENELAUS_RTC_HR 0x25
78#define MENELAUS_RTC_DAY 0x26
79#define MENELAUS_RTC_MON 0x27
80#define MENELAUS_RTC_YR 0x28
81#define MENELAUS_RTC_WKDAY 0x29
82#define MENELAUS_RTC_AL_SEC 0x2A
83#define MENELAUS_RTC_AL_MIN 0x2B
84#define MENELAUS_RTC_AL_HR 0x2C
85#define MENELAUS_RTC_AL_DAY 0x2D
86#define MENELAUS_RTC_AL_MON 0x2E
87#define MENELAUS_RTC_AL_YR 0x2F
88#define MENELAUS_RTC_COMP_MSB 0x30
89#define MENELAUS_RTC_COMP_LSB 0x31
90#define MENELAUS_S1_PULL_EN 0x32
91#define MENELAUS_S1_PULL_DIR 0x33
92#define MENELAUS_S2_PULL_EN 0x34
93#define MENELAUS_S2_PULL_DIR 0x35
94#define MENELAUS_MCT_CTRL1 0x36
95#define MENELAUS_MCT_CTRL2 0x37
96#define MENELAUS_MCT_CTRL3 0x38
97#define MENELAUS_MCT_PIN_ST 0x39
98#define MENELAUS_DEBOUNCE1 0x3A
99
100#define IH_MENELAUS_IRQS 12
101#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
102#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
103#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
104#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
105#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
106#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
107#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
108#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
109#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
110#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
111#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
112#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
113#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
114#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
115#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
116#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
117
118/* VCORE_CTRL1 register */
119#define VCORE_CTRL1_BYP_COMP (1 << 5)
120#define VCORE_CTRL1_HW_NSW (1 << 7)
121
122/* GPIO_CTRL register */
123#define GPIO_CTRL_SLOTSELEN (1 << 5)
124#define GPIO_CTRL_SLPCTLEN (1 << 6)
125#define GPIO1_DIR_INPUT (1 << 0)
126#define GPIO2_DIR_INPUT (1 << 1)
127#define GPIO3_DIR_INPUT (1 << 2)
128
129/* MCT_CTRL1 register */
130#define MCT_CTRL1_S1_CMD_OD (1 << 2)
131#define MCT_CTRL1_S2_CMD_OD (1 << 3)
132
133/* MCT_CTRL2 register */
134#define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
135#define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
136#define MCT_CTRL2_S1CD_BUFEN (1 << 4)
137#define MCT_CTRL2_S2CD_BUFEN (1 << 5)
138#define MCT_CTRL2_S1CD_DBEN (1 << 6)
139#define MCT_CTRL2_S2CD_BEN (1 << 7)
140
141/* MCT_CTRL3 register */
142#define MCT_CTRL3_SLOT1_EN (1 << 0)
143#define MCT_CTRL3_SLOT2_EN (1 << 1)
144#define MCT_CTRL3_S1_AUTO_EN (1 << 2)
145#define MCT_CTRL3_S2_AUTO_EN (1 << 3)
146
147/* MCT_PIN_ST register */
148#define MCT_PIN_ST_S1_CD_ST (1 << 0)
149#define MCT_PIN_ST_S2_CD_ST (1 << 1)
150
151static void menelaus_work(struct work_struct *_menelaus);
152
153struct menelaus_chip {
154 struct mutex lock;
155 struct i2c_client *client;
156 struct work_struct work;
157#ifdef CONFIG_RTC_DRV_TWL92330
158 struct rtc_device *rtc;
159 u8 rtc_control;
160 unsigned uie:1;
161#endif
162 unsigned vcore_hw_mode:1;
163 u8 mask1, mask2;
164 void (*handlers[16])(struct menelaus_chip *);
165 void (*mmc_callback)(void *data, u8 mask);
166 void *mmc_callback_data;
167};
168
169static struct menelaus_chip *the_menelaus;
170
171static int menelaus_write_reg(int reg, u8 value)
172{
173 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
174
175 if (val < 0) {
176 pr_err(DRIVER_NAME ": write error");
177 return val;
178 }
179
180 return 0;
181}
182
183static int menelaus_read_reg(int reg)
184{
185 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
186
187 if (val < 0)
188 pr_err(DRIVER_NAME ": read error");
189
190 return val;
191}
192
193static int menelaus_enable_irq(int irq)
194{
195 if (irq > 7) {
196 irq -= 8;
197 the_menelaus->mask2 &= ~(1 << irq);
198 return menelaus_write_reg(MENELAUS_INT_MASK2,
199 the_menelaus->mask2);
200 } else {
201 the_menelaus->mask1 &= ~(1 << irq);
202 return menelaus_write_reg(MENELAUS_INT_MASK1,
203 the_menelaus->mask1);
204 }
205}
206
207static int menelaus_disable_irq(int irq)
208{
209 if (irq > 7) {
210 irq -= 8;
211 the_menelaus->mask2 |= (1 << irq);
212 return menelaus_write_reg(MENELAUS_INT_MASK2,
213 the_menelaus->mask2);
214 } else {
215 the_menelaus->mask1 |= (1 << irq);
216 return menelaus_write_reg(MENELAUS_INT_MASK1,
217 the_menelaus->mask1);
218 }
219}
220
221static int menelaus_ack_irq(int irq)
222{
223 if (irq > 7)
224 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
225 else
226 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
227}
228
229/* Adds a handler for an interrupt. Does not run in interrupt context */
230static int menelaus_add_irq_work(int irq,
231 void (*handler)(struct menelaus_chip *))
232{
233 int ret = 0;
234
235 mutex_lock(&the_menelaus->lock);
236 the_menelaus->handlers[irq] = handler;
237 ret = menelaus_enable_irq(irq);
238 mutex_unlock(&the_menelaus->lock);
239
240 return ret;
241}
242
243/* Removes handler for an interrupt */
244static int menelaus_remove_irq_work(int irq)
245{
246 int ret = 0;
247
248 mutex_lock(&the_menelaus->lock);
249 ret = menelaus_disable_irq(irq);
250 the_menelaus->handlers[irq] = NULL;
251 mutex_unlock(&the_menelaus->lock);
252
253 return ret;
254}
255
256/*
257 * Gets scheduled when a card detect interrupt happens. Note that in some cases
258 * this line is wired to card cover switch rather than the card detect switch
259 * in each slot. In this case the cards are not seen by menelaus.
260 * FIXME: Add handling for D1 too
261 */
262static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
263{
264 int reg;
265 unsigned char card_mask = 0;
266
267 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
268 if (reg < 0)
269 return;
270
271 if (!(reg & 0x1))
272 card_mask |= MCT_PIN_ST_S1_CD_ST;
273
274 if (!(reg & 0x2))
275 card_mask |= MCT_PIN_ST_S2_CD_ST;
276
277 if (menelaus_hw->mmc_callback)
278 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
279 card_mask);
280}
281
282/*
283 * Toggles the MMC slots between open-drain and push-pull mode.
284 */
285int menelaus_set_mmc_opendrain(int slot, int enable)
286{
287 int ret, val;
288
289 if (slot != 1 && slot != 2)
290 return -EINVAL;
291 mutex_lock(&the_menelaus->lock);
292 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
293 if (ret < 0) {
294 mutex_unlock(&the_menelaus->lock);
295 return ret;
296 }
297 val = ret;
298 if (slot == 1) {
299 if (enable)
300 val |= MCT_CTRL1_S1_CMD_OD;
301 else
302 val &= ~MCT_CTRL1_S1_CMD_OD;
303 } else {
304 if (enable)
305 val |= MCT_CTRL1_S2_CMD_OD;
306 else
307 val &= ~MCT_CTRL1_S2_CMD_OD;
308 }
309 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
310 mutex_unlock(&the_menelaus->lock);
311
312 return ret;
313}
314EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
315
316int menelaus_set_slot_sel(int enable)
317{
318 int ret;
319
320 mutex_lock(&the_menelaus->lock);
321 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
322 if (ret < 0)
323 goto out;
324 ret |= GPIO2_DIR_INPUT;
325 if (enable)
326 ret |= GPIO_CTRL_SLOTSELEN;
327 else
328 ret &= ~GPIO_CTRL_SLOTSELEN;
329 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
330out:
331 mutex_unlock(&the_menelaus->lock);
332 return ret;
333}
334EXPORT_SYMBOL(menelaus_set_slot_sel);
335
336int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
337{
338 int ret, val;
339
340 if (slot != 1 && slot != 2)
341 return -EINVAL;
342 if (power >= 3)
343 return -EINVAL;
344
345 mutex_lock(&the_menelaus->lock);
346
347 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
348 if (ret < 0)
349 goto out;
350 val = ret;
351 if (slot == 1) {
352 if (cd_en)
353 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
354 else
355 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
356 } else {
357 if (cd_en)
358 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
359 else
360 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
361 }
362 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
363 if (ret < 0)
364 goto out;
365
366 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
367 if (ret < 0)
368 goto out;
369 val = ret;
370 if (slot == 1) {
371 if (enable)
372 val |= MCT_CTRL3_SLOT1_EN;
373 else
374 val &= ~MCT_CTRL3_SLOT1_EN;
375 } else {
376 int b;
377
378 if (enable)
379 val |= MCT_CTRL3_SLOT2_EN;
380 else
381 val &= ~MCT_CTRL3_SLOT2_EN;
382 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
383 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
384 b |= power;
385 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
386 if (ret < 0)
387 goto out;
388 }
389 /* Disable autonomous shutdown */
390 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
391 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
392out:
393 mutex_unlock(&the_menelaus->lock);
394 return ret;
395}
396EXPORT_SYMBOL(menelaus_set_mmc_slot);
397
398int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
399 void *data)
400{
401 int ret = 0;
402
403 the_menelaus->mmc_callback_data = data;
404 the_menelaus->mmc_callback = callback;
405 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
406 menelaus_mmc_cd_work);
407 if (ret < 0)
408 return ret;
409 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
410 menelaus_mmc_cd_work);
411 if (ret < 0)
412 return ret;
413 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
414 menelaus_mmc_cd_work);
415 if (ret < 0)
416 return ret;
417 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
418 menelaus_mmc_cd_work);
419
420 return ret;
421}
422EXPORT_SYMBOL(menelaus_register_mmc_callback);
423
424void menelaus_unregister_mmc_callback(void)
425{
426 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
427 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
428 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
429 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
430
431 the_menelaus->mmc_callback = NULL;
432 the_menelaus->mmc_callback_data = NULL;
433}
434EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
435
436struct menelaus_vtg {
437 const char *name;
438 u8 vtg_reg;
439 u8 vtg_shift;
440 u8 vtg_bits;
441 u8 mode_reg;
442};
443
444struct menelaus_vtg_value {
445 u16 vtg;
446 u16 val;
447};
448
449static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
450 int vtg_val, int mode)
451{
452 int val, ret;
453 struct i2c_client *c = the_menelaus->client;
454
455 mutex_lock(&the_menelaus->lock);
456
457 ret = menelaus_read_reg(vtg->vtg_reg);
458 if (ret < 0)
459 goto out;
460 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
461 val |= vtg_val << vtg->vtg_shift;
462
463 dev_dbg(&c->dev, "Setting voltage '%s'"
464 "to %d mV (reg 0x%02x, val 0x%02x)\n",
465 vtg->name, mV, vtg->vtg_reg, val);
466
467 ret = menelaus_write_reg(vtg->vtg_reg, val);
468 if (ret < 0)
469 goto out;
470 ret = menelaus_write_reg(vtg->mode_reg, mode);
471out:
472 mutex_unlock(&the_menelaus->lock);
473 if (ret == 0) {
474 /* Wait for voltage to stabilize */
475 msleep(1);
476 }
477 return ret;
478}
479
480static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
481 int n)
482{
483 int i;
484
485 for (i = 0; i < n; i++, tbl++)
486 if (tbl->vtg == vtg)
487 return tbl->val;
488 return -EINVAL;
489}
490
491/*
492 * Vcore can be programmed in two ways:
493 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
494 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
495 * and VCORE_CTRL4
496 *
497 * Call correct 'set' function accordingly
498 */
499
500static const struct menelaus_vtg_value vcore_values[] = {
501 { 1000, 0 },
502 { 1025, 1 },
503 { 1050, 2 },
504 { 1075, 3 },
505 { 1100, 4 },
506 { 1125, 5 },
507 { 1150, 6 },
508 { 1175, 7 },
509 { 1200, 8 },
510 { 1225, 9 },
511 { 1250, 10 },
512 { 1275, 11 },
513 { 1300, 12 },
514 { 1325, 13 },
515 { 1350, 14 },
516 { 1375, 15 },
517 { 1400, 16 },
518 { 1425, 17 },
519 { 1450, 18 },
520};
521
522int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
523{
524 int fval, rval, val, ret;
525 struct i2c_client *c = the_menelaus->client;
526
527 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
528 ARRAY_SIZE(vcore_values));
529 if (rval < 0)
530 return -EINVAL;
531 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
532 ARRAY_SIZE(vcore_values));
533 if (fval < 0)
534 return -EINVAL;
535
536 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
537 floor_mV, roof_mV);
538
539 mutex_lock(&the_menelaus->lock);
540 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
541 if (ret < 0)
542 goto out;
543 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
544 if (ret < 0)
545 goto out;
546 if (!the_menelaus->vcore_hw_mode) {
547 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
548 /* HW mode, turn OFF byte comparator */
549 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
550 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
551 the_menelaus->vcore_hw_mode = 1;
552 }
553 msleep(1);
554out:
555 mutex_unlock(&the_menelaus->lock);
556 return ret;
557}
558
559static const struct menelaus_vtg vmem_vtg = {
560 .name = "VMEM",
561 .vtg_reg = MENELAUS_LDO_CTRL1,
562 .vtg_shift = 0,
563 .vtg_bits = 2,
564 .mode_reg = MENELAUS_LDO_CTRL3,
565};
566
567static const struct menelaus_vtg_value vmem_values[] = {
568 { 1500, 0 },
569 { 1800, 1 },
570 { 1900, 2 },
571 { 2500, 3 },
572};
573
574int menelaus_set_vmem(unsigned int mV)
575{
576 int val;
577
578 if (mV == 0)
579 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
580
581 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
582 if (val < 0)
583 return -EINVAL;
584 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
585}
586EXPORT_SYMBOL(menelaus_set_vmem);
587
588static const struct menelaus_vtg vio_vtg = {
589 .name = "VIO",
590 .vtg_reg = MENELAUS_LDO_CTRL1,
591 .vtg_shift = 2,
592 .vtg_bits = 2,
593 .mode_reg = MENELAUS_LDO_CTRL4,
594};
595
596static const struct menelaus_vtg_value vio_values[] = {
597 { 1500, 0 },
598 { 1800, 1 },
599 { 2500, 2 },
600 { 2800, 3 },
601};
602
603int menelaus_set_vio(unsigned int mV)
604{
605 int val;
606
607 if (mV == 0)
608 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
609
610 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
611 if (val < 0)
612 return -EINVAL;
613 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
614}
615EXPORT_SYMBOL(menelaus_set_vio);
616
617static const struct menelaus_vtg_value vdcdc_values[] = {
618 { 1500, 0 },
619 { 1800, 1 },
620 { 2000, 2 },
621 { 2200, 3 },
622 { 2400, 4 },
623 { 2800, 5 },
624 { 3000, 6 },
625 { 3300, 7 },
626};
627
628static const struct menelaus_vtg vdcdc2_vtg = {
629 .name = "VDCDC2",
630 .vtg_reg = MENELAUS_DCDC_CTRL1,
631 .vtg_shift = 0,
632 .vtg_bits = 3,
633 .mode_reg = MENELAUS_DCDC_CTRL2,
634};
635
636static const struct menelaus_vtg vdcdc3_vtg = {
637 .name = "VDCDC3",
638 .vtg_reg = MENELAUS_DCDC_CTRL1,
639 .vtg_shift = 3,
640 .vtg_bits = 3,
641 .mode_reg = MENELAUS_DCDC_CTRL3,
642};
643
644int menelaus_set_vdcdc(int dcdc, unsigned int mV)
645{
646 const struct menelaus_vtg *vtg;
647 int val;
648
649 if (dcdc != 2 && dcdc != 3)
650 return -EINVAL;
651 if (dcdc == 2)
652 vtg = &vdcdc2_vtg;
653 else
654 vtg = &vdcdc3_vtg;
655
656 if (mV == 0)
657 return menelaus_set_voltage(vtg, 0, 0, 0);
658
659 val = menelaus_get_vtg_value(mV, vdcdc_values,
660 ARRAY_SIZE(vdcdc_values));
661 if (val < 0)
662 return -EINVAL;
663 return menelaus_set_voltage(vtg, mV, val, 0x03);
664}
665
666static const struct menelaus_vtg_value vmmc_values[] = {
667 { 1850, 0 },
668 { 2800, 1 },
669 { 3000, 2 },
670 { 3100, 3 },
671};
672
673static const struct menelaus_vtg vmmc_vtg = {
674 .name = "VMMC",
675 .vtg_reg = MENELAUS_LDO_CTRL1,
676 .vtg_shift = 6,
677 .vtg_bits = 2,
678 .mode_reg = MENELAUS_LDO_CTRL7,
679};
680
681int menelaus_set_vmmc(unsigned int mV)
682{
683 int val;
684
685 if (mV == 0)
686 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
687
688 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
689 if (val < 0)
690 return -EINVAL;
691 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
692}
693EXPORT_SYMBOL(menelaus_set_vmmc);
694
695
696static const struct menelaus_vtg_value vaux_values[] = {
697 { 1500, 0 },
698 { 1800, 1 },
699 { 2500, 2 },
700 { 2800, 3 },
701};
702
703static const struct menelaus_vtg vaux_vtg = {
704 .name = "VAUX",
705 .vtg_reg = MENELAUS_LDO_CTRL1,
706 .vtg_shift = 4,
707 .vtg_bits = 2,
708 .mode_reg = MENELAUS_LDO_CTRL6,
709};
710
711int menelaus_set_vaux(unsigned int mV)
712{
713 int val;
714
715 if (mV == 0)
716 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
717
718 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
719 if (val < 0)
720 return -EINVAL;
721 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
722}
723EXPORT_SYMBOL(menelaus_set_vaux);
724
725int menelaus_get_slot_pin_states(void)
726{
727 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
728}
729EXPORT_SYMBOL(menelaus_get_slot_pin_states);
730
731int menelaus_set_regulator_sleep(int enable, u32 val)
732{
733 int t, ret;
734 struct i2c_client *c = the_menelaus->client;
735
736 mutex_lock(&the_menelaus->lock);
737 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
738 if (ret < 0)
739 goto out;
740
741 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
742
743 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
744 if (ret < 0)
745 goto out;
746 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
747 if (enable)
748 ret |= t;
749 else
750 ret &= ~t;
751 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
752out:
753 mutex_unlock(&the_menelaus->lock);
754 return ret;
755}
756
757/*-----------------------------------------------------------------------*/
758
759/* Handles Menelaus interrupts. Does not run in interrupt context */
760static void menelaus_work(struct work_struct *_menelaus)
761{
762 struct menelaus_chip *menelaus =
763 container_of(_menelaus, struct menelaus_chip, work);
764 void (*handler)(struct menelaus_chip *menelaus);
765
766 while (1) {
767 unsigned isr;
768
769 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
770 & ~menelaus->mask2) << 8;
771 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
772 & ~menelaus->mask1;
773 if (!isr)
774 break;
775
776 while (isr) {
777 int irq = fls(isr) - 1;
778 isr &= ~(1 << irq);
779
780 mutex_lock(&menelaus->lock);
781 menelaus_disable_irq(irq);
782 menelaus_ack_irq(irq);
783 handler = menelaus->handlers[irq];
784 if (handler)
785 handler(menelaus);
786 menelaus_enable_irq(irq);
787 mutex_unlock(&menelaus->lock);
788 }
789 }
790 enable_irq(menelaus->client->irq);
791}
792
793/*
794 * We cannot use I2C in interrupt context, so we just schedule work.
795 */
796static irqreturn_t menelaus_irq(int irq, void *_menelaus)
797{
798 struct menelaus_chip *menelaus = _menelaus;
799
800 disable_irq_nosync(irq);
801 (void)schedule_work(&menelaus->work);
802
803 return IRQ_HANDLED;
804}
805
806/*-----------------------------------------------------------------------*/
807
808/*
809 * The RTC needs to be set once, then it runs on backup battery power.
810 * It supports alarms, including system wake alarms (from some modes);
811 * and 1/second IRQs if requested.
812 */
813#ifdef CONFIG_RTC_DRV_TWL92330
814
815#define RTC_CTRL_RTC_EN (1 << 0)
816#define RTC_CTRL_AL_EN (1 << 1)
817#define RTC_CTRL_MODE12 (1 << 2)
818#define RTC_CTRL_EVERY_MASK (3 << 3)
819#define RTC_CTRL_EVERY_SEC (0 << 3)
820#define RTC_CTRL_EVERY_MIN (1 << 3)
821#define RTC_CTRL_EVERY_HR (2 << 3)
822#define RTC_CTRL_EVERY_DAY (3 << 3)
823
824#define RTC_UPDATE_EVERY 0x08
825
826#define RTC_HR_PM (1 << 7)
827
828static void menelaus_to_time(char *regs, struct rtc_time *t)
829{
830 t->tm_sec = bcd2bin(regs[0]);
831 t->tm_min = bcd2bin(regs[1]);
832 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
833 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
834 if (regs[2] & RTC_HR_PM)
835 t->tm_hour += 12;
836 } else
837 t->tm_hour = bcd2bin(regs[2] & 0x3f);
838 t->tm_mday = bcd2bin(regs[3]);
839 t->tm_mon = bcd2bin(regs[4]) - 1;
840 t->tm_year = bcd2bin(regs[5]) + 100;
841}
842
843static int time_to_menelaus(struct rtc_time *t, int regnum)
844{
845 int hour, status;
846
847 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
848 if (status < 0)
849 goto fail;
850
851 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
852 if (status < 0)
853 goto fail;
854
855 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
856 hour = t->tm_hour + 1;
857 if (hour > 12)
858 hour = RTC_HR_PM | bin2bcd(hour - 12);
859 else
860 hour = bin2bcd(hour);
861 } else
862 hour = bin2bcd(t->tm_hour);
863 status = menelaus_write_reg(regnum++, hour);
864 if (status < 0)
865 goto fail;
866
867 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
868 if (status < 0)
869 goto fail;
870
871 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
872 if (status < 0)
873 goto fail;
874
875 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
876 if (status < 0)
877 goto fail;
878
879 return 0;
880fail:
881 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
882 --regnum, status);
883 return status;
884}
885
886static int menelaus_read_time(struct device *dev, struct rtc_time *t)
887{
888 struct i2c_msg msg[2];
889 char regs[7];
890 int status;
891
892 /* block read date and time registers */
893 regs[0] = MENELAUS_RTC_SEC;
894
895 msg[0].addr = MENELAUS_I2C_ADDRESS;
896 msg[0].flags = 0;
897 msg[0].len = 1;
898 msg[0].buf = regs;
899
900 msg[1].addr = MENELAUS_I2C_ADDRESS;
901 msg[1].flags = I2C_M_RD;
902 msg[1].len = sizeof(regs);
903 msg[1].buf = regs;
904
905 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
906 if (status != 2) {
907 dev_err(dev, "%s error %d\n", "read", status);
908 return -EIO;
909 }
910
911 menelaus_to_time(regs, t);
912 t->tm_wday = bcd2bin(regs[6]);
913
914 return 0;
915}
916
917static int menelaus_set_time(struct device *dev, struct rtc_time *t)
918{
919 int status;
920
921 /* write date and time registers */
922 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
923 if (status < 0)
924 return status;
925 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
926 if (status < 0) {
927 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
928 "err %d\n", MENELAUS_RTC_WKDAY, status);
929 return status;
930 }
931
932 /* now commit the write */
933 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
934 if (status < 0)
935 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
936 status);
937
938 return 0;
939}
940
941static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
942{
943 struct i2c_msg msg[2];
944 char regs[6];
945 int status;
946
947 /* block read alarm registers */
948 regs[0] = MENELAUS_RTC_AL_SEC;
949
950 msg[0].addr = MENELAUS_I2C_ADDRESS;
951 msg[0].flags = 0;
952 msg[0].len = 1;
953 msg[0].buf = regs;
954
955 msg[1].addr = MENELAUS_I2C_ADDRESS;
956 msg[1].flags = I2C_M_RD;
957 msg[1].len = sizeof(regs);
958 msg[1].buf = regs;
959
960 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
961 if (status != 2) {
962 dev_err(dev, "%s error %d\n", "alarm read", status);
963 return -EIO;
964 }
965
966 menelaus_to_time(regs, &w->time);
967
968 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
969
970 /* NOTE we *could* check if actually pending... */
971 w->pending = 0;
972
973 return 0;
974}
975
976static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
977{
978 int status;
979
980 if (the_menelaus->client->irq <= 0 && w->enabled)
981 return -ENODEV;
982
983 /* clear previous alarm enable */
984 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
985 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
986 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
987 the_menelaus->rtc_control);
988 if (status < 0)
989 return status;
990 }
991
992 /* write alarm registers */
993 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
994 if (status < 0)
995 return status;
996
997 /* enable alarm if requested */
998 if (w->enabled) {
999 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1000 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1001 the_menelaus->rtc_control);
1002 }
1003
1004 return status;
1005}
1006
1007#ifdef CONFIG_RTC_INTF_DEV
1008
1009static void menelaus_rtc_update_work(struct menelaus_chip *m)
1010{
1011 /* report 1/sec update */
1012 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1013}
1014
1015static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1016{
1017 int status;
1018
1019 if (the_menelaus->client->irq <= 0)
1020 return -ENOIOCTLCMD;
1021
1022 switch (cmd) {
1023 /* alarm IRQ */
1024 case RTC_AIE_ON:
1025 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1026 return 0;
1027 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1028 break;
1029 case RTC_AIE_OFF:
1030 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1031 return 0;
1032 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1033 break;
1034 /* 1/second "update" IRQ */
1035 case RTC_UIE_ON:
1036 if (the_menelaus->uie)
1037 return 0;
1038 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1039 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1040 menelaus_rtc_update_work);
1041 if (status == 0)
1042 the_menelaus->uie = 1;
1043 return status;
1044 case RTC_UIE_OFF:
1045 if (!the_menelaus->uie)
1046 return 0;
1047 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1048 if (status == 0)
1049 the_menelaus->uie = 0;
1050 return status;
1051 default:
1052 return -ENOIOCTLCMD;
1053 }
1054 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1055}
1056
1057#else
1058#define menelaus_ioctl NULL
1059#endif
1060
1061/* REVISIT no compensation register support ... */
1062
1063static const struct rtc_class_ops menelaus_rtc_ops = {
1064 .ioctl = menelaus_ioctl,
1065 .read_time = menelaus_read_time,
1066 .set_time = menelaus_set_time,
1067 .read_alarm = menelaus_read_alarm,
1068 .set_alarm = menelaus_set_alarm,
1069};
1070
1071static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1072{
1073 /* report alarm */
1074 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1075
1076 /* then disable it; alarms are oneshot */
1077 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1078 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1079}
1080
1081static inline void menelaus_rtc_init(struct menelaus_chip *m)
1082{
1083 int alarm = (m->client->irq > 0);
1084 int err;
1085
1086 /* assume 32KDETEN pin is pulled high */
1087 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1088 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1089 return;
1090 }
1091
1092 m->rtc = devm_rtc_allocate_device(&m->client->dev);
1093 if (IS_ERR(m->rtc))
1094 return;
1095
1096 m->rtc->ops = &menelaus_rtc_ops;
1097
1098 /* support RTC alarm; it can issue wakeups */
1099 if (alarm) {
1100 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1101 menelaus_rtc_alarm_work) < 0) {
1102 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1103 return;
1104 }
1105 device_init_wakeup(&m->client->dev, 1);
1106 }
1107
1108 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1109 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1110 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1111 || (m->rtc_control & RTC_CTRL_AL_EN)
1112 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1113 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1114 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1115 m->rtc_control |= RTC_CTRL_RTC_EN;
1116 }
1117 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1118 m->rtc_control &= ~RTC_CTRL_AL_EN;
1119 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1120 }
1121
1122 err = rtc_register_device(m->rtc);
1123 if (err) {
1124 if (alarm) {
1125 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1126 device_init_wakeup(&m->client->dev, 0);
1127 }
1128 the_menelaus->rtc = NULL;
1129 }
1130}
1131
1132#else
1133
1134static inline void menelaus_rtc_init(struct menelaus_chip *m)
1135{
1136 /* nothing */
1137}
1138
1139#endif
1140
1141/*-----------------------------------------------------------------------*/
1142
1143static struct i2c_driver menelaus_i2c_driver;
1144
1145static int menelaus_probe(struct i2c_client *client,
1146 const struct i2c_device_id *id)
1147{
1148 struct menelaus_chip *menelaus;
1149 int rev = 0;
1150 int err = 0;
1151 struct menelaus_platform_data *menelaus_pdata =
1152 dev_get_platdata(&client->dev);
1153
1154 if (the_menelaus) {
1155 dev_dbg(&client->dev, "only one %s for now\n",
1156 DRIVER_NAME);
1157 return -ENODEV;
1158 }
1159
1160 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1161 if (!menelaus)
1162 return -ENOMEM;
1163
1164 i2c_set_clientdata(client, menelaus);
1165
1166 the_menelaus = menelaus;
1167 menelaus->client = client;
1168
1169 /* If a true probe check the device */
1170 rev = menelaus_read_reg(MENELAUS_REV);
1171 if (rev < 0) {
1172 pr_err(DRIVER_NAME ": device not found");
1173 return -ENODEV;
1174 }
1175
1176 /* Ack and disable all Menelaus interrupts */
1177 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1178 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1179 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1180 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1181 menelaus->mask1 = 0xff;
1182 menelaus->mask2 = 0xff;
1183
1184 /* Set output buffer strengths */
1185 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1186
1187 if (client->irq > 0) {
1188 err = request_irq(client->irq, menelaus_irq, 0,
1189 DRIVER_NAME, menelaus);
1190 if (err) {
1191 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1192 client->irq, err);
1193 return err;
1194 }
1195 }
1196
1197 mutex_init(&menelaus->lock);
1198 INIT_WORK(&menelaus->work, menelaus_work);
1199
1200 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1201
1202 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1203 if (err < 0)
1204 goto fail;
1205 if (err & VCORE_CTRL1_HW_NSW)
1206 menelaus->vcore_hw_mode = 1;
1207 else
1208 menelaus->vcore_hw_mode = 0;
1209
1210 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1211 err = menelaus_pdata->late_init(&client->dev);
1212 if (err < 0)
1213 goto fail;
1214 }
1215
1216 menelaus_rtc_init(menelaus);
1217
1218 return 0;
1219fail:
1220 free_irq(client->irq, menelaus);
1221 flush_work(&menelaus->work);
1222 return err;
1223}
1224
1225static int menelaus_remove(struct i2c_client *client)
1226{
1227 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1228
1229 free_irq(client->irq, menelaus);
1230 flush_work(&menelaus->work);
1231 the_menelaus = NULL;
1232 return 0;
1233}
1234
1235static const struct i2c_device_id menelaus_id[] = {
1236 { "menelaus", 0 },
1237 { }
1238};
1239MODULE_DEVICE_TABLE(i2c, menelaus_id);
1240
1241static struct i2c_driver menelaus_i2c_driver = {
1242 .driver = {
1243 .name = DRIVER_NAME,
1244 },
1245 .probe = menelaus_probe,
1246 .remove = menelaus_remove,
1247 .id_table = menelaus_id,
1248};
1249
1250module_i2c_driver(menelaus_i2c_driver);
1251
1252MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1253MODULE_DESCRIPTION("I2C interface for Menelaus.");
1254MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2004 Texas Instruments, Inc.
4 *
5 * Some parts based tps65010.c:
6 * Copyright (C) 2004 Texas Instruments and
7 * Copyright (C) 2004-2005 David Brownell
8 *
9 * Some parts based on tlv320aic24.c:
10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
11 *
12 * Changes for interrupt handling and clean-up by
13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
14 * Cleanup and generalized support for voltage setting by
15 * Juha Yrjola
16 * Added support for controlling VCORE and regulator sleep states,
17 * Amit Kucheria <amit.kucheria@nokia.com>
18 * Copyright (C) 2005, 2006 Nokia Corporation
19 */
20
21#include <linux/module.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/sched.h>
25#include <linux/mutex.h>
26#include <linux/workqueue.h>
27#include <linux/delay.h>
28#include <linux/rtc.h>
29#include <linux/bcd.h>
30#include <linux/slab.h>
31#include <linux/mfd/menelaus.h>
32
33#include <asm/mach/irq.h>
34
35
36#define DRIVER_NAME "menelaus"
37
38#define MENELAUS_I2C_ADDRESS 0x72
39
40#define MENELAUS_REV 0x01
41#define MENELAUS_VCORE_CTRL1 0x02
42#define MENELAUS_VCORE_CTRL2 0x03
43#define MENELAUS_VCORE_CTRL3 0x04
44#define MENELAUS_VCORE_CTRL4 0x05
45#define MENELAUS_VCORE_CTRL5 0x06
46#define MENELAUS_DCDC_CTRL1 0x07
47#define MENELAUS_DCDC_CTRL2 0x08
48#define MENELAUS_DCDC_CTRL3 0x09
49#define MENELAUS_LDO_CTRL1 0x0A
50#define MENELAUS_LDO_CTRL2 0x0B
51#define MENELAUS_LDO_CTRL3 0x0C
52#define MENELAUS_LDO_CTRL4 0x0D
53#define MENELAUS_LDO_CTRL5 0x0E
54#define MENELAUS_LDO_CTRL6 0x0F
55#define MENELAUS_LDO_CTRL7 0x10
56#define MENELAUS_LDO_CTRL8 0x11
57#define MENELAUS_SLEEP_CTRL1 0x12
58#define MENELAUS_SLEEP_CTRL2 0x13
59#define MENELAUS_DEVICE_OFF 0x14
60#define MENELAUS_OSC_CTRL 0x15
61#define MENELAUS_DETECT_CTRL 0x16
62#define MENELAUS_INT_MASK1 0x17
63#define MENELAUS_INT_MASK2 0x18
64#define MENELAUS_INT_STATUS1 0x19
65#define MENELAUS_INT_STATUS2 0x1A
66#define MENELAUS_INT_ACK1 0x1B
67#define MENELAUS_INT_ACK2 0x1C
68#define MENELAUS_GPIO_CTRL 0x1D
69#define MENELAUS_GPIO_IN 0x1E
70#define MENELAUS_GPIO_OUT 0x1F
71#define MENELAUS_BBSMS 0x20
72#define MENELAUS_RTC_CTRL 0x21
73#define MENELAUS_RTC_UPDATE 0x22
74#define MENELAUS_RTC_SEC 0x23
75#define MENELAUS_RTC_MIN 0x24
76#define MENELAUS_RTC_HR 0x25
77#define MENELAUS_RTC_DAY 0x26
78#define MENELAUS_RTC_MON 0x27
79#define MENELAUS_RTC_YR 0x28
80#define MENELAUS_RTC_WKDAY 0x29
81#define MENELAUS_RTC_AL_SEC 0x2A
82#define MENELAUS_RTC_AL_MIN 0x2B
83#define MENELAUS_RTC_AL_HR 0x2C
84#define MENELAUS_RTC_AL_DAY 0x2D
85#define MENELAUS_RTC_AL_MON 0x2E
86#define MENELAUS_RTC_AL_YR 0x2F
87#define MENELAUS_RTC_COMP_MSB 0x30
88#define MENELAUS_RTC_COMP_LSB 0x31
89#define MENELAUS_S1_PULL_EN 0x32
90#define MENELAUS_S1_PULL_DIR 0x33
91#define MENELAUS_S2_PULL_EN 0x34
92#define MENELAUS_S2_PULL_DIR 0x35
93#define MENELAUS_MCT_CTRL1 0x36
94#define MENELAUS_MCT_CTRL2 0x37
95#define MENELAUS_MCT_CTRL3 0x38
96#define MENELAUS_MCT_PIN_ST 0x39
97#define MENELAUS_DEBOUNCE1 0x3A
98
99#define IH_MENELAUS_IRQS 12
100#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
101#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
102#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
103#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
104#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
105#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
106#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
107#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
108#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
109#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
110#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
111#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
112#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
113#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
114#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
115#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
116
117/* VCORE_CTRL1 register */
118#define VCORE_CTRL1_BYP_COMP (1 << 5)
119#define VCORE_CTRL1_HW_NSW (1 << 7)
120
121/* GPIO_CTRL register */
122#define GPIO_CTRL_SLOTSELEN (1 << 5)
123#define GPIO_CTRL_SLPCTLEN (1 << 6)
124#define GPIO1_DIR_INPUT (1 << 0)
125#define GPIO2_DIR_INPUT (1 << 1)
126#define GPIO3_DIR_INPUT (1 << 2)
127
128/* MCT_CTRL1 register */
129#define MCT_CTRL1_S1_CMD_OD (1 << 2)
130#define MCT_CTRL1_S2_CMD_OD (1 << 3)
131
132/* MCT_CTRL2 register */
133#define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
134#define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
135#define MCT_CTRL2_S1CD_BUFEN (1 << 4)
136#define MCT_CTRL2_S2CD_BUFEN (1 << 5)
137#define MCT_CTRL2_S1CD_DBEN (1 << 6)
138#define MCT_CTRL2_S2CD_BEN (1 << 7)
139
140/* MCT_CTRL3 register */
141#define MCT_CTRL3_SLOT1_EN (1 << 0)
142#define MCT_CTRL3_SLOT2_EN (1 << 1)
143#define MCT_CTRL3_S1_AUTO_EN (1 << 2)
144#define MCT_CTRL3_S2_AUTO_EN (1 << 3)
145
146/* MCT_PIN_ST register */
147#define MCT_PIN_ST_S1_CD_ST (1 << 0)
148#define MCT_PIN_ST_S2_CD_ST (1 << 1)
149
150static void menelaus_work(struct work_struct *_menelaus);
151
152struct menelaus_chip {
153 struct mutex lock;
154 struct i2c_client *client;
155 struct work_struct work;
156#ifdef CONFIG_RTC_DRV_TWL92330
157 struct rtc_device *rtc;
158 u8 rtc_control;
159 unsigned uie:1;
160#endif
161 unsigned vcore_hw_mode:1;
162 u8 mask1, mask2;
163 void (*handlers[16])(struct menelaus_chip *);
164 void (*mmc_callback)(void *data, u8 mask);
165 void *mmc_callback_data;
166};
167
168static struct menelaus_chip *the_menelaus;
169
170static int menelaus_write_reg(int reg, u8 value)
171{
172 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
173
174 if (val < 0) {
175 pr_err(DRIVER_NAME ": write error");
176 return val;
177 }
178
179 return 0;
180}
181
182static int menelaus_read_reg(int reg)
183{
184 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
185
186 if (val < 0)
187 pr_err(DRIVER_NAME ": read error");
188
189 return val;
190}
191
192static int menelaus_enable_irq(int irq)
193{
194 if (irq > 7) {
195 irq -= 8;
196 the_menelaus->mask2 &= ~(1 << irq);
197 return menelaus_write_reg(MENELAUS_INT_MASK2,
198 the_menelaus->mask2);
199 } else {
200 the_menelaus->mask1 &= ~(1 << irq);
201 return menelaus_write_reg(MENELAUS_INT_MASK1,
202 the_menelaus->mask1);
203 }
204}
205
206static int menelaus_disable_irq(int irq)
207{
208 if (irq > 7) {
209 irq -= 8;
210 the_menelaus->mask2 |= (1 << irq);
211 return menelaus_write_reg(MENELAUS_INT_MASK2,
212 the_menelaus->mask2);
213 } else {
214 the_menelaus->mask1 |= (1 << irq);
215 return menelaus_write_reg(MENELAUS_INT_MASK1,
216 the_menelaus->mask1);
217 }
218}
219
220static int menelaus_ack_irq(int irq)
221{
222 if (irq > 7)
223 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
224 else
225 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
226}
227
228/* Adds a handler for an interrupt. Does not run in interrupt context */
229static int menelaus_add_irq_work(int irq,
230 void (*handler)(struct menelaus_chip *))
231{
232 int ret = 0;
233
234 mutex_lock(&the_menelaus->lock);
235 the_menelaus->handlers[irq] = handler;
236 ret = menelaus_enable_irq(irq);
237 mutex_unlock(&the_menelaus->lock);
238
239 return ret;
240}
241
242/* Removes handler for an interrupt */
243static int menelaus_remove_irq_work(int irq)
244{
245 int ret = 0;
246
247 mutex_lock(&the_menelaus->lock);
248 ret = menelaus_disable_irq(irq);
249 the_menelaus->handlers[irq] = NULL;
250 mutex_unlock(&the_menelaus->lock);
251
252 return ret;
253}
254
255/*
256 * Gets scheduled when a card detect interrupt happens. Note that in some cases
257 * this line is wired to card cover switch rather than the card detect switch
258 * in each slot. In this case the cards are not seen by menelaus.
259 * FIXME: Add handling for D1 too
260 */
261static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
262{
263 int reg;
264 unsigned char card_mask = 0;
265
266 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
267 if (reg < 0)
268 return;
269
270 if (!(reg & 0x1))
271 card_mask |= MCT_PIN_ST_S1_CD_ST;
272
273 if (!(reg & 0x2))
274 card_mask |= MCT_PIN_ST_S2_CD_ST;
275
276 if (menelaus_hw->mmc_callback)
277 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
278 card_mask);
279}
280
281/*
282 * Toggles the MMC slots between open-drain and push-pull mode.
283 */
284int menelaus_set_mmc_opendrain(int slot, int enable)
285{
286 int ret, val;
287
288 if (slot != 1 && slot != 2)
289 return -EINVAL;
290 mutex_lock(&the_menelaus->lock);
291 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
292 if (ret < 0) {
293 mutex_unlock(&the_menelaus->lock);
294 return ret;
295 }
296 val = ret;
297 if (slot == 1) {
298 if (enable)
299 val |= MCT_CTRL1_S1_CMD_OD;
300 else
301 val &= ~MCT_CTRL1_S1_CMD_OD;
302 } else {
303 if (enable)
304 val |= MCT_CTRL1_S2_CMD_OD;
305 else
306 val &= ~MCT_CTRL1_S2_CMD_OD;
307 }
308 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
309 mutex_unlock(&the_menelaus->lock);
310
311 return ret;
312}
313EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
314
315int menelaus_set_slot_sel(int enable)
316{
317 int ret;
318
319 mutex_lock(&the_menelaus->lock);
320 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
321 if (ret < 0)
322 goto out;
323 ret |= GPIO2_DIR_INPUT;
324 if (enable)
325 ret |= GPIO_CTRL_SLOTSELEN;
326 else
327 ret &= ~GPIO_CTRL_SLOTSELEN;
328 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
329out:
330 mutex_unlock(&the_menelaus->lock);
331 return ret;
332}
333EXPORT_SYMBOL(menelaus_set_slot_sel);
334
335int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
336{
337 int ret, val;
338
339 if (slot != 1 && slot != 2)
340 return -EINVAL;
341 if (power >= 3)
342 return -EINVAL;
343
344 mutex_lock(&the_menelaus->lock);
345
346 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
347 if (ret < 0)
348 goto out;
349 val = ret;
350 if (slot == 1) {
351 if (cd_en)
352 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
353 else
354 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
355 } else {
356 if (cd_en)
357 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
358 else
359 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
360 }
361 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
362 if (ret < 0)
363 goto out;
364
365 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
366 if (ret < 0)
367 goto out;
368 val = ret;
369 if (slot == 1) {
370 if (enable)
371 val |= MCT_CTRL3_SLOT1_EN;
372 else
373 val &= ~MCT_CTRL3_SLOT1_EN;
374 } else {
375 int b;
376
377 if (enable)
378 val |= MCT_CTRL3_SLOT2_EN;
379 else
380 val &= ~MCT_CTRL3_SLOT2_EN;
381 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
382 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
383 b |= power;
384 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
385 if (ret < 0)
386 goto out;
387 }
388 /* Disable autonomous shutdown */
389 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
390 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
391out:
392 mutex_unlock(&the_menelaus->lock);
393 return ret;
394}
395EXPORT_SYMBOL(menelaus_set_mmc_slot);
396
397int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
398 void *data)
399{
400 int ret = 0;
401
402 the_menelaus->mmc_callback_data = data;
403 the_menelaus->mmc_callback = callback;
404 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
405 menelaus_mmc_cd_work);
406 if (ret < 0)
407 return ret;
408 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
409 menelaus_mmc_cd_work);
410 if (ret < 0)
411 return ret;
412 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
413 menelaus_mmc_cd_work);
414 if (ret < 0)
415 return ret;
416 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
417 menelaus_mmc_cd_work);
418
419 return ret;
420}
421EXPORT_SYMBOL(menelaus_register_mmc_callback);
422
423void menelaus_unregister_mmc_callback(void)
424{
425 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
426 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
427 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
428 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
429
430 the_menelaus->mmc_callback = NULL;
431 the_menelaus->mmc_callback_data = NULL;
432}
433EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
434
435struct menelaus_vtg {
436 const char *name;
437 u8 vtg_reg;
438 u8 vtg_shift;
439 u8 vtg_bits;
440 u8 mode_reg;
441};
442
443struct menelaus_vtg_value {
444 u16 vtg;
445 u16 val;
446};
447
448static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
449 int vtg_val, int mode)
450{
451 int val, ret;
452 struct i2c_client *c = the_menelaus->client;
453
454 mutex_lock(&the_menelaus->lock);
455
456 ret = menelaus_read_reg(vtg->vtg_reg);
457 if (ret < 0)
458 goto out;
459 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
460 val |= vtg_val << vtg->vtg_shift;
461
462 dev_dbg(&c->dev, "Setting voltage '%s'"
463 "to %d mV (reg 0x%02x, val 0x%02x)\n",
464 vtg->name, mV, vtg->vtg_reg, val);
465
466 ret = menelaus_write_reg(vtg->vtg_reg, val);
467 if (ret < 0)
468 goto out;
469 ret = menelaus_write_reg(vtg->mode_reg, mode);
470out:
471 mutex_unlock(&the_menelaus->lock);
472 if (ret == 0) {
473 /* Wait for voltage to stabilize */
474 msleep(1);
475 }
476 return ret;
477}
478
479static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
480 int n)
481{
482 int i;
483
484 for (i = 0; i < n; i++, tbl++)
485 if (tbl->vtg == vtg)
486 return tbl->val;
487 return -EINVAL;
488}
489
490/*
491 * Vcore can be programmed in two ways:
492 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
493 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
494 * and VCORE_CTRL4
495 *
496 * Call correct 'set' function accordingly
497 */
498
499static const struct menelaus_vtg_value vcore_values[] = {
500 { 1000, 0 },
501 { 1025, 1 },
502 { 1050, 2 },
503 { 1075, 3 },
504 { 1100, 4 },
505 { 1125, 5 },
506 { 1150, 6 },
507 { 1175, 7 },
508 { 1200, 8 },
509 { 1225, 9 },
510 { 1250, 10 },
511 { 1275, 11 },
512 { 1300, 12 },
513 { 1325, 13 },
514 { 1350, 14 },
515 { 1375, 15 },
516 { 1400, 16 },
517 { 1425, 17 },
518 { 1450, 18 },
519};
520
521int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
522{
523 int fval, rval, val, ret;
524 struct i2c_client *c = the_menelaus->client;
525
526 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
527 ARRAY_SIZE(vcore_values));
528 if (rval < 0)
529 return -EINVAL;
530 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
531 ARRAY_SIZE(vcore_values));
532 if (fval < 0)
533 return -EINVAL;
534
535 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
536 floor_mV, roof_mV);
537
538 mutex_lock(&the_menelaus->lock);
539 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
540 if (ret < 0)
541 goto out;
542 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
543 if (ret < 0)
544 goto out;
545 if (!the_menelaus->vcore_hw_mode) {
546 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
547 /* HW mode, turn OFF byte comparator */
548 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
549 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
550 the_menelaus->vcore_hw_mode = 1;
551 }
552 msleep(1);
553out:
554 mutex_unlock(&the_menelaus->lock);
555 return ret;
556}
557
558static const struct menelaus_vtg vmem_vtg = {
559 .name = "VMEM",
560 .vtg_reg = MENELAUS_LDO_CTRL1,
561 .vtg_shift = 0,
562 .vtg_bits = 2,
563 .mode_reg = MENELAUS_LDO_CTRL3,
564};
565
566static const struct menelaus_vtg_value vmem_values[] = {
567 { 1500, 0 },
568 { 1800, 1 },
569 { 1900, 2 },
570 { 2500, 3 },
571};
572
573int menelaus_set_vmem(unsigned int mV)
574{
575 int val;
576
577 if (mV == 0)
578 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
579
580 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
581 if (val < 0)
582 return -EINVAL;
583 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
584}
585EXPORT_SYMBOL(menelaus_set_vmem);
586
587static const struct menelaus_vtg vio_vtg = {
588 .name = "VIO",
589 .vtg_reg = MENELAUS_LDO_CTRL1,
590 .vtg_shift = 2,
591 .vtg_bits = 2,
592 .mode_reg = MENELAUS_LDO_CTRL4,
593};
594
595static const struct menelaus_vtg_value vio_values[] = {
596 { 1500, 0 },
597 { 1800, 1 },
598 { 2500, 2 },
599 { 2800, 3 },
600};
601
602int menelaus_set_vio(unsigned int mV)
603{
604 int val;
605
606 if (mV == 0)
607 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
608
609 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
610 if (val < 0)
611 return -EINVAL;
612 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
613}
614EXPORT_SYMBOL(menelaus_set_vio);
615
616static const struct menelaus_vtg_value vdcdc_values[] = {
617 { 1500, 0 },
618 { 1800, 1 },
619 { 2000, 2 },
620 { 2200, 3 },
621 { 2400, 4 },
622 { 2800, 5 },
623 { 3000, 6 },
624 { 3300, 7 },
625};
626
627static const struct menelaus_vtg vdcdc2_vtg = {
628 .name = "VDCDC2",
629 .vtg_reg = MENELAUS_DCDC_CTRL1,
630 .vtg_shift = 0,
631 .vtg_bits = 3,
632 .mode_reg = MENELAUS_DCDC_CTRL2,
633};
634
635static const struct menelaus_vtg vdcdc3_vtg = {
636 .name = "VDCDC3",
637 .vtg_reg = MENELAUS_DCDC_CTRL1,
638 .vtg_shift = 3,
639 .vtg_bits = 3,
640 .mode_reg = MENELAUS_DCDC_CTRL3,
641};
642
643int menelaus_set_vdcdc(int dcdc, unsigned int mV)
644{
645 const struct menelaus_vtg *vtg;
646 int val;
647
648 if (dcdc != 2 && dcdc != 3)
649 return -EINVAL;
650 if (dcdc == 2)
651 vtg = &vdcdc2_vtg;
652 else
653 vtg = &vdcdc3_vtg;
654
655 if (mV == 0)
656 return menelaus_set_voltage(vtg, 0, 0, 0);
657
658 val = menelaus_get_vtg_value(mV, vdcdc_values,
659 ARRAY_SIZE(vdcdc_values));
660 if (val < 0)
661 return -EINVAL;
662 return menelaus_set_voltage(vtg, mV, val, 0x03);
663}
664
665static const struct menelaus_vtg_value vmmc_values[] = {
666 { 1850, 0 },
667 { 2800, 1 },
668 { 3000, 2 },
669 { 3100, 3 },
670};
671
672static const struct menelaus_vtg vmmc_vtg = {
673 .name = "VMMC",
674 .vtg_reg = MENELAUS_LDO_CTRL1,
675 .vtg_shift = 6,
676 .vtg_bits = 2,
677 .mode_reg = MENELAUS_LDO_CTRL7,
678};
679
680int menelaus_set_vmmc(unsigned int mV)
681{
682 int val;
683
684 if (mV == 0)
685 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
686
687 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
688 if (val < 0)
689 return -EINVAL;
690 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
691}
692EXPORT_SYMBOL(menelaus_set_vmmc);
693
694
695static const struct menelaus_vtg_value vaux_values[] = {
696 { 1500, 0 },
697 { 1800, 1 },
698 { 2500, 2 },
699 { 2800, 3 },
700};
701
702static const struct menelaus_vtg vaux_vtg = {
703 .name = "VAUX",
704 .vtg_reg = MENELAUS_LDO_CTRL1,
705 .vtg_shift = 4,
706 .vtg_bits = 2,
707 .mode_reg = MENELAUS_LDO_CTRL6,
708};
709
710int menelaus_set_vaux(unsigned int mV)
711{
712 int val;
713
714 if (mV == 0)
715 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
716
717 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
718 if (val < 0)
719 return -EINVAL;
720 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
721}
722EXPORT_SYMBOL(menelaus_set_vaux);
723
724int menelaus_get_slot_pin_states(void)
725{
726 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
727}
728EXPORT_SYMBOL(menelaus_get_slot_pin_states);
729
730int menelaus_set_regulator_sleep(int enable, u32 val)
731{
732 int t, ret;
733 struct i2c_client *c = the_menelaus->client;
734
735 mutex_lock(&the_menelaus->lock);
736 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
737 if (ret < 0)
738 goto out;
739
740 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
741
742 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
743 if (ret < 0)
744 goto out;
745 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
746 if (enable)
747 ret |= t;
748 else
749 ret &= ~t;
750 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
751out:
752 mutex_unlock(&the_menelaus->lock);
753 return ret;
754}
755
756/*-----------------------------------------------------------------------*/
757
758/* Handles Menelaus interrupts. Does not run in interrupt context */
759static void menelaus_work(struct work_struct *_menelaus)
760{
761 struct menelaus_chip *menelaus =
762 container_of(_menelaus, struct menelaus_chip, work);
763 void (*handler)(struct menelaus_chip *menelaus);
764
765 while (1) {
766 unsigned isr;
767
768 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
769 & ~menelaus->mask2) << 8;
770 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
771 & ~menelaus->mask1;
772 if (!isr)
773 break;
774
775 while (isr) {
776 int irq = fls(isr) - 1;
777 isr &= ~(1 << irq);
778
779 mutex_lock(&menelaus->lock);
780 menelaus_disable_irq(irq);
781 menelaus_ack_irq(irq);
782 handler = menelaus->handlers[irq];
783 if (handler)
784 handler(menelaus);
785 menelaus_enable_irq(irq);
786 mutex_unlock(&menelaus->lock);
787 }
788 }
789 enable_irq(menelaus->client->irq);
790}
791
792/*
793 * We cannot use I2C in interrupt context, so we just schedule work.
794 */
795static irqreturn_t menelaus_irq(int irq, void *_menelaus)
796{
797 struct menelaus_chip *menelaus = _menelaus;
798
799 disable_irq_nosync(irq);
800 (void)schedule_work(&menelaus->work);
801
802 return IRQ_HANDLED;
803}
804
805/*-----------------------------------------------------------------------*/
806
807/*
808 * The RTC needs to be set once, then it runs on backup battery power.
809 * It supports alarms, including system wake alarms (from some modes);
810 * and 1/second IRQs if requested.
811 */
812#ifdef CONFIG_RTC_DRV_TWL92330
813
814#define RTC_CTRL_RTC_EN (1 << 0)
815#define RTC_CTRL_AL_EN (1 << 1)
816#define RTC_CTRL_MODE12 (1 << 2)
817#define RTC_CTRL_EVERY_MASK (3 << 3)
818#define RTC_CTRL_EVERY_SEC (0 << 3)
819#define RTC_CTRL_EVERY_MIN (1 << 3)
820#define RTC_CTRL_EVERY_HR (2 << 3)
821#define RTC_CTRL_EVERY_DAY (3 << 3)
822
823#define RTC_UPDATE_EVERY 0x08
824
825#define RTC_HR_PM (1 << 7)
826
827static void menelaus_to_time(char *regs, struct rtc_time *t)
828{
829 t->tm_sec = bcd2bin(regs[0]);
830 t->tm_min = bcd2bin(regs[1]);
831 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
832 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
833 if (regs[2] & RTC_HR_PM)
834 t->tm_hour += 12;
835 } else
836 t->tm_hour = bcd2bin(regs[2] & 0x3f);
837 t->tm_mday = bcd2bin(regs[3]);
838 t->tm_mon = bcd2bin(regs[4]) - 1;
839 t->tm_year = bcd2bin(regs[5]) + 100;
840}
841
842static int time_to_menelaus(struct rtc_time *t, int regnum)
843{
844 int hour, status;
845
846 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
847 if (status < 0)
848 goto fail;
849
850 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
851 if (status < 0)
852 goto fail;
853
854 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
855 hour = t->tm_hour + 1;
856 if (hour > 12)
857 hour = RTC_HR_PM | bin2bcd(hour - 12);
858 else
859 hour = bin2bcd(hour);
860 } else
861 hour = bin2bcd(t->tm_hour);
862 status = menelaus_write_reg(regnum++, hour);
863 if (status < 0)
864 goto fail;
865
866 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
867 if (status < 0)
868 goto fail;
869
870 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
871 if (status < 0)
872 goto fail;
873
874 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
875 if (status < 0)
876 goto fail;
877
878 return 0;
879fail:
880 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
881 --regnum, status);
882 return status;
883}
884
885static int menelaus_read_time(struct device *dev, struct rtc_time *t)
886{
887 struct i2c_msg msg[2];
888 char regs[7];
889 int status;
890
891 /* block read date and time registers */
892 regs[0] = MENELAUS_RTC_SEC;
893
894 msg[0].addr = MENELAUS_I2C_ADDRESS;
895 msg[0].flags = 0;
896 msg[0].len = 1;
897 msg[0].buf = regs;
898
899 msg[1].addr = MENELAUS_I2C_ADDRESS;
900 msg[1].flags = I2C_M_RD;
901 msg[1].len = sizeof(regs);
902 msg[1].buf = regs;
903
904 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
905 if (status != 2) {
906 dev_err(dev, "%s error %d\n", "read", status);
907 return -EIO;
908 }
909
910 menelaus_to_time(regs, t);
911 t->tm_wday = bcd2bin(regs[6]);
912
913 return 0;
914}
915
916static int menelaus_set_time(struct device *dev, struct rtc_time *t)
917{
918 int status;
919
920 /* write date and time registers */
921 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
922 if (status < 0)
923 return status;
924 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
925 if (status < 0) {
926 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
927 "err %d\n", MENELAUS_RTC_WKDAY, status);
928 return status;
929 }
930
931 /* now commit the write */
932 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
933 if (status < 0)
934 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
935 status);
936
937 return 0;
938}
939
940static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
941{
942 struct i2c_msg msg[2];
943 char regs[6];
944 int status;
945
946 /* block read alarm registers */
947 regs[0] = MENELAUS_RTC_AL_SEC;
948
949 msg[0].addr = MENELAUS_I2C_ADDRESS;
950 msg[0].flags = 0;
951 msg[0].len = 1;
952 msg[0].buf = regs;
953
954 msg[1].addr = MENELAUS_I2C_ADDRESS;
955 msg[1].flags = I2C_M_RD;
956 msg[1].len = sizeof(regs);
957 msg[1].buf = regs;
958
959 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
960 if (status != 2) {
961 dev_err(dev, "%s error %d\n", "alarm read", status);
962 return -EIO;
963 }
964
965 menelaus_to_time(regs, &w->time);
966
967 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
968
969 /* NOTE we *could* check if actually pending... */
970 w->pending = 0;
971
972 return 0;
973}
974
975static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
976{
977 int status;
978
979 if (the_menelaus->client->irq <= 0 && w->enabled)
980 return -ENODEV;
981
982 /* clear previous alarm enable */
983 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
984 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
985 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
986 the_menelaus->rtc_control);
987 if (status < 0)
988 return status;
989 }
990
991 /* write alarm registers */
992 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
993 if (status < 0)
994 return status;
995
996 /* enable alarm if requested */
997 if (w->enabled) {
998 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
999 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1000 the_menelaus->rtc_control);
1001 }
1002
1003 return status;
1004}
1005
1006#ifdef CONFIG_RTC_INTF_DEV
1007
1008static void menelaus_rtc_update_work(struct menelaus_chip *m)
1009{
1010 /* report 1/sec update */
1011 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1012}
1013
1014static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1015{
1016 int status;
1017
1018 if (the_menelaus->client->irq <= 0)
1019 return -ENOIOCTLCMD;
1020
1021 switch (cmd) {
1022 /* alarm IRQ */
1023 case RTC_AIE_ON:
1024 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1025 return 0;
1026 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1027 break;
1028 case RTC_AIE_OFF:
1029 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1030 return 0;
1031 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1032 break;
1033 /* 1/second "update" IRQ */
1034 case RTC_UIE_ON:
1035 if (the_menelaus->uie)
1036 return 0;
1037 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1038 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1039 menelaus_rtc_update_work);
1040 if (status == 0)
1041 the_menelaus->uie = 1;
1042 return status;
1043 case RTC_UIE_OFF:
1044 if (!the_menelaus->uie)
1045 return 0;
1046 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1047 if (status == 0)
1048 the_menelaus->uie = 0;
1049 return status;
1050 default:
1051 return -ENOIOCTLCMD;
1052 }
1053 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1054}
1055
1056#else
1057#define menelaus_ioctl NULL
1058#endif
1059
1060/* REVISIT no compensation register support ... */
1061
1062static const struct rtc_class_ops menelaus_rtc_ops = {
1063 .ioctl = menelaus_ioctl,
1064 .read_time = menelaus_read_time,
1065 .set_time = menelaus_set_time,
1066 .read_alarm = menelaus_read_alarm,
1067 .set_alarm = menelaus_set_alarm,
1068};
1069
1070static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1071{
1072 /* report alarm */
1073 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1074
1075 /* then disable it; alarms are oneshot */
1076 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1077 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1078}
1079
1080static inline void menelaus_rtc_init(struct menelaus_chip *m)
1081{
1082 int alarm = (m->client->irq > 0);
1083 int err;
1084
1085 /* assume 32KDETEN pin is pulled high */
1086 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1087 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1088 return;
1089 }
1090
1091 m->rtc = devm_rtc_allocate_device(&m->client->dev);
1092 if (IS_ERR(m->rtc))
1093 return;
1094
1095 m->rtc->ops = &menelaus_rtc_ops;
1096
1097 /* support RTC alarm; it can issue wakeups */
1098 if (alarm) {
1099 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1100 menelaus_rtc_alarm_work) < 0) {
1101 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1102 return;
1103 }
1104 device_init_wakeup(&m->client->dev, 1);
1105 }
1106
1107 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1108 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1109 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1110 || (m->rtc_control & RTC_CTRL_AL_EN)
1111 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1112 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1113 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1114 m->rtc_control |= RTC_CTRL_RTC_EN;
1115 }
1116 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1117 m->rtc_control &= ~RTC_CTRL_AL_EN;
1118 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1119 }
1120
1121 err = devm_rtc_register_device(m->rtc);
1122 if (err) {
1123 if (alarm) {
1124 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1125 device_init_wakeup(&m->client->dev, 0);
1126 }
1127 the_menelaus->rtc = NULL;
1128 }
1129}
1130
1131#else
1132
1133static inline void menelaus_rtc_init(struct menelaus_chip *m)
1134{
1135 /* nothing */
1136}
1137
1138#endif
1139
1140/*-----------------------------------------------------------------------*/
1141
1142static struct i2c_driver menelaus_i2c_driver;
1143
1144static int menelaus_probe(struct i2c_client *client)
1145{
1146 struct menelaus_chip *menelaus;
1147 int rev = 0;
1148 int err = 0;
1149 struct menelaus_platform_data *menelaus_pdata =
1150 dev_get_platdata(&client->dev);
1151
1152 if (the_menelaus) {
1153 dev_dbg(&client->dev, "only one %s for now\n",
1154 DRIVER_NAME);
1155 return -ENODEV;
1156 }
1157
1158 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1159 if (!menelaus)
1160 return -ENOMEM;
1161
1162 i2c_set_clientdata(client, menelaus);
1163
1164 the_menelaus = menelaus;
1165 menelaus->client = client;
1166
1167 /* If a true probe check the device */
1168 rev = menelaus_read_reg(MENELAUS_REV);
1169 if (rev < 0) {
1170 pr_err(DRIVER_NAME ": device not found");
1171 return -ENODEV;
1172 }
1173
1174 /* Ack and disable all Menelaus interrupts */
1175 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1176 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1177 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1178 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1179 menelaus->mask1 = 0xff;
1180 menelaus->mask2 = 0xff;
1181
1182 /* Set output buffer strengths */
1183 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1184
1185 if (client->irq > 0) {
1186 err = request_irq(client->irq, menelaus_irq, 0,
1187 DRIVER_NAME, menelaus);
1188 if (err) {
1189 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1190 client->irq, err);
1191 return err;
1192 }
1193 }
1194
1195 mutex_init(&menelaus->lock);
1196 INIT_WORK(&menelaus->work, menelaus_work);
1197
1198 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1199
1200 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1201 if (err < 0)
1202 goto fail;
1203 if (err & VCORE_CTRL1_HW_NSW)
1204 menelaus->vcore_hw_mode = 1;
1205 else
1206 menelaus->vcore_hw_mode = 0;
1207
1208 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1209 err = menelaus_pdata->late_init(&client->dev);
1210 if (err < 0)
1211 goto fail;
1212 }
1213
1214 menelaus_rtc_init(menelaus);
1215
1216 return 0;
1217fail:
1218 free_irq(client->irq, menelaus);
1219 flush_work(&menelaus->work);
1220 return err;
1221}
1222
1223static void menelaus_remove(struct i2c_client *client)
1224{
1225 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1226
1227 free_irq(client->irq, menelaus);
1228 flush_work(&menelaus->work);
1229 the_menelaus = NULL;
1230}
1231
1232static const struct i2c_device_id menelaus_id[] = {
1233 { "menelaus" },
1234 { }
1235};
1236MODULE_DEVICE_TABLE(i2c, menelaus_id);
1237
1238static struct i2c_driver menelaus_i2c_driver = {
1239 .driver = {
1240 .name = DRIVER_NAME,
1241 },
1242 .probe = menelaus_probe,
1243 .remove = menelaus_remove,
1244 .id_table = menelaus_id,
1245};
1246
1247module_i2c_driver(menelaus_i2c_driver);
1248
1249MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1250MODULE_DESCRIPTION("I2C interface for Menelaus.");
1251MODULE_LICENSE("GPL");