Loading...
1/*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29#include <linux/debugfs.h>
30#include <linux/fs.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/mount.h>
34#include <linux/pseudo_fs.h>
35#include <linux/slab.h>
36#include <linux/srcu.h>
37
38#include <drm/drm_client.h>
39#include <drm/drm_color_mgmt.h>
40#include <drm/drm_drv.h>
41#include <drm/drm_file.h>
42#include <drm/drm_managed.h>
43#include <drm/drm_mode_object.h>
44#include <drm/drm_print.h>
45
46#include "drm_crtc_internal.h"
47#include "drm_internal.h"
48#include "drm_legacy.h"
49
50MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
51MODULE_DESCRIPTION("DRM shared core routines");
52MODULE_LICENSE("GPL and additional rights");
53
54static DEFINE_SPINLOCK(drm_minor_lock);
55static struct idr drm_minors_idr;
56
57/*
58 * If the drm core fails to init for whatever reason,
59 * we should prevent any drivers from registering with it.
60 * It's best to check this at drm_dev_init(), as some drivers
61 * prefer to embed struct drm_device into their own device
62 * structure and call drm_dev_init() themselves.
63 */
64static bool drm_core_init_complete = false;
65
66static struct dentry *drm_debugfs_root;
67
68DEFINE_STATIC_SRCU(drm_unplug_srcu);
69
70/*
71 * DRM Minors
72 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
73 * of them is represented by a drm_minor object. Depending on the capabilities
74 * of the device-driver, different interfaces are registered.
75 *
76 * Minors can be accessed via dev->$minor_name. This pointer is either
77 * NULL or a valid drm_minor pointer and stays valid as long as the device is
78 * valid. This means, DRM minors have the same life-time as the underlying
79 * device. However, this doesn't mean that the minor is active. Minors are
80 * registered and unregistered dynamically according to device-state.
81 */
82
83static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
84 unsigned int type)
85{
86 switch (type) {
87 case DRM_MINOR_PRIMARY:
88 return &dev->primary;
89 case DRM_MINOR_RENDER:
90 return &dev->render;
91 default:
92 BUG();
93 }
94}
95
96static void drm_minor_alloc_release(struct drm_device *dev, void *data)
97{
98 struct drm_minor *minor = data;
99 unsigned long flags;
100
101 WARN_ON(dev != minor->dev);
102
103 put_device(minor->kdev);
104
105 spin_lock_irqsave(&drm_minor_lock, flags);
106 idr_remove(&drm_minors_idr, minor->index);
107 spin_unlock_irqrestore(&drm_minor_lock, flags);
108}
109
110static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
111{
112 struct drm_minor *minor;
113 unsigned long flags;
114 int r;
115
116 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
117 if (!minor)
118 return -ENOMEM;
119
120 minor->type = type;
121 minor->dev = dev;
122
123 idr_preload(GFP_KERNEL);
124 spin_lock_irqsave(&drm_minor_lock, flags);
125 r = idr_alloc(&drm_minors_idr,
126 NULL,
127 64 * type,
128 64 * (type + 1),
129 GFP_NOWAIT);
130 spin_unlock_irqrestore(&drm_minor_lock, flags);
131 idr_preload_end();
132
133 if (r < 0)
134 return r;
135
136 minor->index = r;
137
138 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
139 if (r)
140 return r;
141
142 minor->kdev = drm_sysfs_minor_alloc(minor);
143 if (IS_ERR(minor->kdev))
144 return PTR_ERR(minor->kdev);
145
146 *drm_minor_get_slot(dev, type) = minor;
147 return 0;
148}
149
150static int drm_minor_register(struct drm_device *dev, unsigned int type)
151{
152 struct drm_minor *minor;
153 unsigned long flags;
154 int ret;
155
156 DRM_DEBUG("\n");
157
158 minor = *drm_minor_get_slot(dev, type);
159 if (!minor)
160 return 0;
161
162 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
163 if (ret) {
164 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
165 goto err_debugfs;
166 }
167
168 ret = device_add(minor->kdev);
169 if (ret)
170 goto err_debugfs;
171
172 /* replace NULL with @minor so lookups will succeed from now on */
173 spin_lock_irqsave(&drm_minor_lock, flags);
174 idr_replace(&drm_minors_idr, minor, minor->index);
175 spin_unlock_irqrestore(&drm_minor_lock, flags);
176
177 DRM_DEBUG("new minor registered %d\n", minor->index);
178 return 0;
179
180err_debugfs:
181 drm_debugfs_cleanup(minor);
182 return ret;
183}
184
185static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
186{
187 struct drm_minor *minor;
188 unsigned long flags;
189
190 minor = *drm_minor_get_slot(dev, type);
191 if (!minor || !device_is_registered(minor->kdev))
192 return;
193
194 /* replace @minor with NULL so lookups will fail from now on */
195 spin_lock_irqsave(&drm_minor_lock, flags);
196 idr_replace(&drm_minors_idr, NULL, minor->index);
197 spin_unlock_irqrestore(&drm_minor_lock, flags);
198
199 device_del(minor->kdev);
200 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
201 drm_debugfs_cleanup(minor);
202}
203
204/*
205 * Looks up the given minor-ID and returns the respective DRM-minor object. The
206 * refence-count of the underlying device is increased so you must release this
207 * object with drm_minor_release().
208 *
209 * As long as you hold this minor, it is guaranteed that the object and the
210 * minor->dev pointer will stay valid! However, the device may get unplugged and
211 * unregistered while you hold the minor.
212 */
213struct drm_minor *drm_minor_acquire(unsigned int minor_id)
214{
215 struct drm_minor *minor;
216 unsigned long flags;
217
218 spin_lock_irqsave(&drm_minor_lock, flags);
219 minor = idr_find(&drm_minors_idr, minor_id);
220 if (minor)
221 drm_dev_get(minor->dev);
222 spin_unlock_irqrestore(&drm_minor_lock, flags);
223
224 if (!minor) {
225 return ERR_PTR(-ENODEV);
226 } else if (drm_dev_is_unplugged(minor->dev)) {
227 drm_dev_put(minor->dev);
228 return ERR_PTR(-ENODEV);
229 }
230
231 return minor;
232}
233
234void drm_minor_release(struct drm_minor *minor)
235{
236 drm_dev_put(minor->dev);
237}
238
239/**
240 * DOC: driver instance overview
241 *
242 * A device instance for a drm driver is represented by &struct drm_device. This
243 * is initialized with drm_dev_init(), usually from bus-specific ->probe()
244 * callbacks implemented by the driver. The driver then needs to initialize all
245 * the various subsystems for the drm device like memory management, vblank
246 * handling, modesetting support and intial output configuration plus obviously
247 * initialize all the corresponding hardware bits. Finally when everything is up
248 * and running and ready for userspace the device instance can be published
249 * using drm_dev_register().
250 *
251 * There is also deprecated support for initalizing device instances using
252 * bus-specific helpers and the &drm_driver.load callback. But due to
253 * backwards-compatibility needs the device instance have to be published too
254 * early, which requires unpretty global locking to make safe and is therefore
255 * only support for existing drivers not yet converted to the new scheme.
256 *
257 * When cleaning up a device instance everything needs to be done in reverse:
258 * First unpublish the device instance with drm_dev_unregister(). Then clean up
259 * any other resources allocated at device initialization and drop the driver's
260 * reference to &drm_device using drm_dev_put().
261 *
262 * Note that any allocation or resource which is visible to userspace must be
263 * released only when the final drm_dev_put() is called, and not when the
264 * driver is unbound from the underlying physical struct &device. Best to use
265 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
266 * related functions.
267 *
268 * devres managed resources like devm_kmalloc() can only be used for resources
269 * directly related to the underlying hardware device, and only used in code
270 * paths fully protected by drm_dev_enter() and drm_dev_exit().
271 *
272 * Display driver example
273 * ~~~~~~~~~~~~~~~~~~~~~~
274 *
275 * The following example shows a typical structure of a DRM display driver.
276 * The example focus on the probe() function and the other functions that is
277 * almost always present and serves as a demonstration of devm_drm_dev_init().
278 *
279 * .. code-block:: c
280 *
281 * struct driver_device {
282 * struct drm_device drm;
283 * void *userspace_facing;
284 * struct clk *pclk;
285 * };
286 *
287 * static struct drm_driver driver_drm_driver = {
288 * [...]
289 * };
290 *
291 * static int driver_probe(struct platform_device *pdev)
292 * {
293 * struct driver_device *priv;
294 * struct drm_device *drm;
295 * int ret;
296 *
297 * // devm_kzalloc() can't be used here because the drm_device '
298 * // lifetime can exceed the device lifetime if driver unbind
299 * // happens when userspace still has open file descriptors.
300 * priv = kzalloc(sizeof(*priv), GFP_KERNEL);
301 * if (!priv)
302 * return -ENOMEM;
303 *
304 * drm = &priv->drm;
305 *
306 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver);
307 * if (ret) {
308 * kfree(priv);
309 * return ret;
310 * }
311 * drmm_add_final_kfree(drm, priv);
312 *
313 * ret = drmm_mode_config_init(drm);
314 * if (ret)
315 * return ret;
316 *
317 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
318 * if (!priv->userspace_facing)
319 * return -ENOMEM;
320 *
321 * priv->pclk = devm_clk_get(dev, "PCLK");
322 * if (IS_ERR(priv->pclk))
323 * return PTR_ERR(priv->pclk);
324 *
325 * // Further setup, display pipeline etc
326 *
327 * platform_set_drvdata(pdev, drm);
328 *
329 * drm_mode_config_reset(drm);
330 *
331 * ret = drm_dev_register(drm);
332 * if (ret)
333 * return ret;
334 *
335 * drm_fbdev_generic_setup(drm, 32);
336 *
337 * return 0;
338 * }
339 *
340 * // This function is called before the devm_ resources are released
341 * static int driver_remove(struct platform_device *pdev)
342 * {
343 * struct drm_device *drm = platform_get_drvdata(pdev);
344 *
345 * drm_dev_unregister(drm);
346 * drm_atomic_helper_shutdown(drm)
347 *
348 * return 0;
349 * }
350 *
351 * // This function is called on kernel restart and shutdown
352 * static void driver_shutdown(struct platform_device *pdev)
353 * {
354 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
355 * }
356 *
357 * static int __maybe_unused driver_pm_suspend(struct device *dev)
358 * {
359 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
360 * }
361 *
362 * static int __maybe_unused driver_pm_resume(struct device *dev)
363 * {
364 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
365 *
366 * return 0;
367 * }
368 *
369 * static const struct dev_pm_ops driver_pm_ops = {
370 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
371 * };
372 *
373 * static struct platform_driver driver_driver = {
374 * .driver = {
375 * [...]
376 * .pm = &driver_pm_ops,
377 * },
378 * .probe = driver_probe,
379 * .remove = driver_remove,
380 * .shutdown = driver_shutdown,
381 * };
382 * module_platform_driver(driver_driver);
383 *
384 * Drivers that want to support device unplugging (USB, DT overlay unload) should
385 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
386 * regions that is accessing device resources to prevent use after they're
387 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
388 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
389 * drm_atomic_helper_shutdown() is called. This means that if the disable code
390 * paths are protected, they will not run on regular driver module unload,
391 * possibily leaving the hardware enabled.
392 */
393
394/**
395 * drm_put_dev - Unregister and release a DRM device
396 * @dev: DRM device
397 *
398 * Called at module unload time or when a PCI device is unplugged.
399 *
400 * Cleans up all DRM device, calling drm_lastclose().
401 *
402 * Note: Use of this function is deprecated. It will eventually go away
403 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
404 * instead to make sure that the device isn't userspace accessible any more
405 * while teardown is in progress, ensuring that userspace can't access an
406 * inconsistent state.
407 */
408void drm_put_dev(struct drm_device *dev)
409{
410 DRM_DEBUG("\n");
411
412 if (!dev) {
413 DRM_ERROR("cleanup called no dev\n");
414 return;
415 }
416
417 drm_dev_unregister(dev);
418 drm_dev_put(dev);
419}
420EXPORT_SYMBOL(drm_put_dev);
421
422/**
423 * drm_dev_enter - Enter device critical section
424 * @dev: DRM device
425 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
426 *
427 * This function marks and protects the beginning of a section that should not
428 * be entered after the device has been unplugged. The section end is marked
429 * with drm_dev_exit(). Calls to this function can be nested.
430 *
431 * Returns:
432 * True if it is OK to enter the section, false otherwise.
433 */
434bool drm_dev_enter(struct drm_device *dev, int *idx)
435{
436 *idx = srcu_read_lock(&drm_unplug_srcu);
437
438 if (dev->unplugged) {
439 srcu_read_unlock(&drm_unplug_srcu, *idx);
440 return false;
441 }
442
443 return true;
444}
445EXPORT_SYMBOL(drm_dev_enter);
446
447/**
448 * drm_dev_exit - Exit device critical section
449 * @idx: index returned from drm_dev_enter()
450 *
451 * This function marks the end of a section that should not be entered after
452 * the device has been unplugged.
453 */
454void drm_dev_exit(int idx)
455{
456 srcu_read_unlock(&drm_unplug_srcu, idx);
457}
458EXPORT_SYMBOL(drm_dev_exit);
459
460/**
461 * drm_dev_unplug - unplug a DRM device
462 * @dev: DRM device
463 *
464 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
465 * userspace operations. Entry-points can use drm_dev_enter() and
466 * drm_dev_exit() to protect device resources in a race free manner. This
467 * essentially unregisters the device like drm_dev_unregister(), but can be
468 * called while there are still open users of @dev.
469 */
470void drm_dev_unplug(struct drm_device *dev)
471{
472 /*
473 * After synchronizing any critical read section is guaranteed to see
474 * the new value of ->unplugged, and any critical section which might
475 * still have seen the old value of ->unplugged is guaranteed to have
476 * finished.
477 */
478 dev->unplugged = true;
479 synchronize_srcu(&drm_unplug_srcu);
480
481 drm_dev_unregister(dev);
482}
483EXPORT_SYMBOL(drm_dev_unplug);
484
485/*
486 * DRM internal mount
487 * We want to be able to allocate our own "struct address_space" to control
488 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
489 * stand-alone address_space objects, so we need an underlying inode. As there
490 * is no way to allocate an independent inode easily, we need a fake internal
491 * VFS mount-point.
492 *
493 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
494 * frees it again. You are allowed to use iget() and iput() to get references to
495 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
496 * drm_fs_inode_free() call (which does not have to be the last iput()).
497 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
498 * between multiple inode-users. You could, technically, call
499 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
500 * iput(), but this way you'd end up with a new vfsmount for each inode.
501 */
502
503static int drm_fs_cnt;
504static struct vfsmount *drm_fs_mnt;
505
506static int drm_fs_init_fs_context(struct fs_context *fc)
507{
508 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
509}
510
511static struct file_system_type drm_fs_type = {
512 .name = "drm",
513 .owner = THIS_MODULE,
514 .init_fs_context = drm_fs_init_fs_context,
515 .kill_sb = kill_anon_super,
516};
517
518static struct inode *drm_fs_inode_new(void)
519{
520 struct inode *inode;
521 int r;
522
523 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
524 if (r < 0) {
525 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
526 return ERR_PTR(r);
527 }
528
529 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
530 if (IS_ERR(inode))
531 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
532
533 return inode;
534}
535
536static void drm_fs_inode_free(struct inode *inode)
537{
538 if (inode) {
539 iput(inode);
540 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
541 }
542}
543
544/**
545 * DOC: component helper usage recommendations
546 *
547 * DRM drivers that drive hardware where a logical device consists of a pile of
548 * independent hardware blocks are recommended to use the :ref:`component helper
549 * library<component>`. For consistency and better options for code reuse the
550 * following guidelines apply:
551 *
552 * - The entire device initialization procedure should be run from the
553 * &component_master_ops.master_bind callback, starting with drm_dev_init(),
554 * then binding all components with component_bind_all() and finishing with
555 * drm_dev_register().
556 *
557 * - The opaque pointer passed to all components through component_bind_all()
558 * should point at &struct drm_device of the device instance, not some driver
559 * specific private structure.
560 *
561 * - The component helper fills the niche where further standardization of
562 * interfaces is not practical. When there already is, or will be, a
563 * standardized interface like &drm_bridge or &drm_panel, providing its own
564 * functions to find such components at driver load time, like
565 * drm_of_find_panel_or_bridge(), then the component helper should not be
566 * used.
567 */
568
569static void drm_dev_init_release(struct drm_device *dev, void *res)
570{
571 drm_legacy_ctxbitmap_cleanup(dev);
572 drm_legacy_remove_map_hash(dev);
573 drm_fs_inode_free(dev->anon_inode);
574
575 put_device(dev->dev);
576 /* Prevent use-after-free in drm_managed_release when debugging is
577 * enabled. Slightly awkward, but can't really be helped. */
578 dev->dev = NULL;
579 mutex_destroy(&dev->master_mutex);
580 mutex_destroy(&dev->clientlist_mutex);
581 mutex_destroy(&dev->filelist_mutex);
582 mutex_destroy(&dev->struct_mutex);
583 drm_legacy_destroy_members(dev);
584}
585
586/**
587 * drm_dev_init - Initialise new DRM device
588 * @dev: DRM device
589 * @driver: DRM driver
590 * @parent: Parent device object
591 *
592 * Initialize a new DRM device. No device registration is done.
593 * Call drm_dev_register() to advertice the device to user space and register it
594 * with other core subsystems. This should be done last in the device
595 * initialization sequence to make sure userspace can't access an inconsistent
596 * state.
597 *
598 * The initial ref-count of the object is 1. Use drm_dev_get() and
599 * drm_dev_put() to take and drop further ref-counts.
600 *
601 * It is recommended that drivers embed &struct drm_device into their own device
602 * structure.
603 *
604 * Drivers that do not want to allocate their own device struct
605 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
606 * that do embed &struct drm_device it must be placed first in the overall
607 * structure, and the overall structure must be allocated using kmalloc(): The
608 * drm core's release function unconditionally calls kfree() on the @dev pointer
609 * when the final reference is released. To override this behaviour, and so
610 * allow embedding of the drm_device inside the driver's device struct at an
611 * arbitrary offset, you must supply a &drm_driver.release callback and control
612 * the finalization explicitly.
613 *
614 * Note that drivers must call drmm_add_final_kfree() after this function has
615 * completed successfully.
616 *
617 * RETURNS:
618 * 0 on success, or error code on failure.
619 */
620int drm_dev_init(struct drm_device *dev,
621 struct drm_driver *driver,
622 struct device *parent)
623{
624 int ret;
625
626 if (!drm_core_init_complete) {
627 DRM_ERROR("DRM core is not initialized\n");
628 return -ENODEV;
629 }
630
631 if (WARN_ON(!parent))
632 return -EINVAL;
633
634 kref_init(&dev->ref);
635 dev->dev = get_device(parent);
636 dev->driver = driver;
637
638 INIT_LIST_HEAD(&dev->managed.resources);
639 spin_lock_init(&dev->managed.lock);
640
641 /* no per-device feature limits by default */
642 dev->driver_features = ~0u;
643
644 drm_legacy_init_members(dev);
645 INIT_LIST_HEAD(&dev->filelist);
646 INIT_LIST_HEAD(&dev->filelist_internal);
647 INIT_LIST_HEAD(&dev->clientlist);
648 INIT_LIST_HEAD(&dev->vblank_event_list);
649
650 spin_lock_init(&dev->event_lock);
651 mutex_init(&dev->struct_mutex);
652 mutex_init(&dev->filelist_mutex);
653 mutex_init(&dev->clientlist_mutex);
654 mutex_init(&dev->master_mutex);
655
656 ret = drmm_add_action(dev, drm_dev_init_release, NULL);
657 if (ret)
658 return ret;
659
660 dev->anon_inode = drm_fs_inode_new();
661 if (IS_ERR(dev->anon_inode)) {
662 ret = PTR_ERR(dev->anon_inode);
663 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
664 goto err;
665 }
666
667 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
668 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
669 if (ret)
670 goto err;
671 }
672
673 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
674 if (ret)
675 goto err;
676
677 ret = drm_legacy_create_map_hash(dev);
678 if (ret)
679 goto err;
680
681 drm_legacy_ctxbitmap_init(dev);
682
683 if (drm_core_check_feature(dev, DRIVER_GEM)) {
684 ret = drm_gem_init(dev);
685 if (ret) {
686 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
687 goto err;
688 }
689 }
690
691 ret = drm_dev_set_unique(dev, dev_name(parent));
692 if (ret)
693 goto err;
694
695 return 0;
696
697err:
698 drm_managed_release(dev);
699
700 return ret;
701}
702EXPORT_SYMBOL(drm_dev_init);
703
704static void devm_drm_dev_init_release(void *data)
705{
706 drm_dev_put(data);
707}
708
709/**
710 * devm_drm_dev_init - Resource managed drm_dev_init()
711 * @parent: Parent device object
712 * @dev: DRM device
713 * @driver: DRM driver
714 *
715 * Managed drm_dev_init(). The DRM device initialized with this function is
716 * automatically put on driver detach using drm_dev_put().
717 *
718 * Note that drivers must call drmm_add_final_kfree() after this function has
719 * completed successfully.
720 *
721 * RETURNS:
722 * 0 on success, or error code on failure.
723 */
724int devm_drm_dev_init(struct device *parent,
725 struct drm_device *dev,
726 struct drm_driver *driver)
727{
728 int ret;
729
730 ret = drm_dev_init(dev, driver, parent);
731 if (ret)
732 return ret;
733
734 ret = devm_add_action(parent, devm_drm_dev_init_release, dev);
735 if (ret)
736 devm_drm_dev_init_release(dev);
737
738 return ret;
739}
740EXPORT_SYMBOL(devm_drm_dev_init);
741
742void *__devm_drm_dev_alloc(struct device *parent, struct drm_driver *driver,
743 size_t size, size_t offset)
744{
745 void *container;
746 struct drm_device *drm;
747 int ret;
748
749 container = kzalloc(size, GFP_KERNEL);
750 if (!container)
751 return ERR_PTR(-ENOMEM);
752
753 drm = container + offset;
754 ret = devm_drm_dev_init(parent, drm, driver);
755 if (ret) {
756 kfree(container);
757 return ERR_PTR(ret);
758 }
759 drmm_add_final_kfree(drm, container);
760
761 return container;
762}
763EXPORT_SYMBOL(__devm_drm_dev_alloc);
764
765/**
766 * drm_dev_alloc - Allocate new DRM device
767 * @driver: DRM driver to allocate device for
768 * @parent: Parent device object
769 *
770 * Allocate and initialize a new DRM device. No device registration is done.
771 * Call drm_dev_register() to advertice the device to user space and register it
772 * with other core subsystems. This should be done last in the device
773 * initialization sequence to make sure userspace can't access an inconsistent
774 * state.
775 *
776 * The initial ref-count of the object is 1. Use drm_dev_get() and
777 * drm_dev_put() to take and drop further ref-counts.
778 *
779 * Note that for purely virtual devices @parent can be NULL.
780 *
781 * Drivers that wish to subclass or embed &struct drm_device into their
782 * own struct should look at using drm_dev_init() instead.
783 *
784 * RETURNS:
785 * Pointer to new DRM device, or ERR_PTR on failure.
786 */
787struct drm_device *drm_dev_alloc(struct drm_driver *driver,
788 struct device *parent)
789{
790 struct drm_device *dev;
791 int ret;
792
793 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
794 if (!dev)
795 return ERR_PTR(-ENOMEM);
796
797 ret = drm_dev_init(dev, driver, parent);
798 if (ret) {
799 kfree(dev);
800 return ERR_PTR(ret);
801 }
802
803 drmm_add_final_kfree(dev, dev);
804
805 return dev;
806}
807EXPORT_SYMBOL(drm_dev_alloc);
808
809static void drm_dev_release(struct kref *ref)
810{
811 struct drm_device *dev = container_of(ref, struct drm_device, ref);
812
813 if (dev->driver->release)
814 dev->driver->release(dev);
815
816 drm_managed_release(dev);
817
818 kfree(dev->managed.final_kfree);
819}
820
821/**
822 * drm_dev_get - Take reference of a DRM device
823 * @dev: device to take reference of or NULL
824 *
825 * This increases the ref-count of @dev by one. You *must* already own a
826 * reference when calling this. Use drm_dev_put() to drop this reference
827 * again.
828 *
829 * This function never fails. However, this function does not provide *any*
830 * guarantee whether the device is alive or running. It only provides a
831 * reference to the object and the memory associated with it.
832 */
833void drm_dev_get(struct drm_device *dev)
834{
835 if (dev)
836 kref_get(&dev->ref);
837}
838EXPORT_SYMBOL(drm_dev_get);
839
840/**
841 * drm_dev_put - Drop reference of a DRM device
842 * @dev: device to drop reference of or NULL
843 *
844 * This decreases the ref-count of @dev by one. The device is destroyed if the
845 * ref-count drops to zero.
846 */
847void drm_dev_put(struct drm_device *dev)
848{
849 if (dev)
850 kref_put(&dev->ref, drm_dev_release);
851}
852EXPORT_SYMBOL(drm_dev_put);
853
854static int create_compat_control_link(struct drm_device *dev)
855{
856 struct drm_minor *minor;
857 char *name;
858 int ret;
859
860 if (!drm_core_check_feature(dev, DRIVER_MODESET))
861 return 0;
862
863 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
864 if (!minor)
865 return 0;
866
867 /*
868 * Some existing userspace out there uses the existing of the controlD*
869 * sysfs files to figure out whether it's a modeset driver. It only does
870 * readdir, hence a symlink is sufficient (and the least confusing
871 * option). Otherwise controlD* is entirely unused.
872 *
873 * Old controlD chardev have been allocated in the range
874 * 64-127.
875 */
876 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
877 if (!name)
878 return -ENOMEM;
879
880 ret = sysfs_create_link(minor->kdev->kobj.parent,
881 &minor->kdev->kobj,
882 name);
883
884 kfree(name);
885
886 return ret;
887}
888
889static void remove_compat_control_link(struct drm_device *dev)
890{
891 struct drm_minor *minor;
892 char *name;
893
894 if (!drm_core_check_feature(dev, DRIVER_MODESET))
895 return;
896
897 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
898 if (!minor)
899 return;
900
901 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
902 if (!name)
903 return;
904
905 sysfs_remove_link(minor->kdev->kobj.parent, name);
906
907 kfree(name);
908}
909
910/**
911 * drm_dev_register - Register DRM device
912 * @dev: Device to register
913 * @flags: Flags passed to the driver's .load() function
914 *
915 * Register the DRM device @dev with the system, advertise device to user-space
916 * and start normal device operation. @dev must be initialized via drm_dev_init()
917 * previously.
918 *
919 * Never call this twice on any device!
920 *
921 * NOTE: To ensure backward compatibility with existing drivers method this
922 * function calls the &drm_driver.load method after registering the device
923 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
924 * therefore deprecated, drivers must perform all initialization before calling
925 * drm_dev_register().
926 *
927 * RETURNS:
928 * 0 on success, negative error code on failure.
929 */
930int drm_dev_register(struct drm_device *dev, unsigned long flags)
931{
932 struct drm_driver *driver = dev->driver;
933 int ret;
934
935 if (!driver->load)
936 drm_mode_config_validate(dev);
937
938 WARN_ON(!dev->managed.final_kfree);
939
940 if (drm_dev_needs_global_mutex(dev))
941 mutex_lock(&drm_global_mutex);
942
943 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
944 if (ret)
945 goto err_minors;
946
947 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
948 if (ret)
949 goto err_minors;
950
951 ret = create_compat_control_link(dev);
952 if (ret)
953 goto err_minors;
954
955 dev->registered = true;
956
957 if (dev->driver->load) {
958 ret = dev->driver->load(dev, flags);
959 if (ret)
960 goto err_minors;
961 }
962
963 if (drm_core_check_feature(dev, DRIVER_MODESET))
964 drm_modeset_register_all(dev);
965
966 ret = 0;
967
968 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
969 driver->name, driver->major, driver->minor,
970 driver->patchlevel, driver->date,
971 dev->dev ? dev_name(dev->dev) : "virtual device",
972 dev->primary->index);
973
974 goto out_unlock;
975
976err_minors:
977 remove_compat_control_link(dev);
978 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
979 drm_minor_unregister(dev, DRM_MINOR_RENDER);
980out_unlock:
981 if (drm_dev_needs_global_mutex(dev))
982 mutex_unlock(&drm_global_mutex);
983 return ret;
984}
985EXPORT_SYMBOL(drm_dev_register);
986
987/**
988 * drm_dev_unregister - Unregister DRM device
989 * @dev: Device to unregister
990 *
991 * Unregister the DRM device from the system. This does the reverse of
992 * drm_dev_register() but does not deallocate the device. The caller must call
993 * drm_dev_put() to drop their final reference.
994 *
995 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
996 * which can be called while there are still open users of @dev.
997 *
998 * This should be called first in the device teardown code to make sure
999 * userspace can't access the device instance any more.
1000 */
1001void drm_dev_unregister(struct drm_device *dev)
1002{
1003 if (drm_core_check_feature(dev, DRIVER_LEGACY))
1004 drm_lastclose(dev);
1005
1006 dev->registered = false;
1007
1008 drm_client_dev_unregister(dev);
1009
1010 if (drm_core_check_feature(dev, DRIVER_MODESET))
1011 drm_modeset_unregister_all(dev);
1012
1013 if (dev->driver->unload)
1014 dev->driver->unload(dev);
1015
1016 if (dev->agp)
1017 drm_pci_agp_destroy(dev);
1018
1019 drm_legacy_rmmaps(dev);
1020
1021 remove_compat_control_link(dev);
1022 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1023 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1024}
1025EXPORT_SYMBOL(drm_dev_unregister);
1026
1027/**
1028 * drm_dev_set_unique - Set the unique name of a DRM device
1029 * @dev: device of which to set the unique name
1030 * @name: unique name
1031 *
1032 * Sets the unique name of a DRM device using the specified string. This is
1033 * already done by drm_dev_init(), drivers should only override the default
1034 * unique name for backwards compatibility reasons.
1035 *
1036 * Return: 0 on success or a negative error code on failure.
1037 */
1038int drm_dev_set_unique(struct drm_device *dev, const char *name)
1039{
1040 drmm_kfree(dev, dev->unique);
1041 dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL);
1042
1043 return dev->unique ? 0 : -ENOMEM;
1044}
1045EXPORT_SYMBOL(drm_dev_set_unique);
1046
1047/*
1048 * DRM Core
1049 * The DRM core module initializes all global DRM objects and makes them
1050 * available to drivers. Once setup, drivers can probe their respective
1051 * devices.
1052 * Currently, core management includes:
1053 * - The "DRM-Global" key/value database
1054 * - Global ID management for connectors
1055 * - DRM major number allocation
1056 * - DRM minor management
1057 * - DRM sysfs class
1058 * - DRM debugfs root
1059 *
1060 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1061 * interface registered on a DRM device, you can request minor numbers from DRM
1062 * core. DRM core takes care of major-number management and char-dev
1063 * registration. A stub ->open() callback forwards any open() requests to the
1064 * registered minor.
1065 */
1066
1067static int drm_stub_open(struct inode *inode, struct file *filp)
1068{
1069 const struct file_operations *new_fops;
1070 struct drm_minor *minor;
1071 int err;
1072
1073 DRM_DEBUG("\n");
1074
1075 minor = drm_minor_acquire(iminor(inode));
1076 if (IS_ERR(minor))
1077 return PTR_ERR(minor);
1078
1079 new_fops = fops_get(minor->dev->driver->fops);
1080 if (!new_fops) {
1081 err = -ENODEV;
1082 goto out;
1083 }
1084
1085 replace_fops(filp, new_fops);
1086 if (filp->f_op->open)
1087 err = filp->f_op->open(inode, filp);
1088 else
1089 err = 0;
1090
1091out:
1092 drm_minor_release(minor);
1093
1094 return err;
1095}
1096
1097static const struct file_operations drm_stub_fops = {
1098 .owner = THIS_MODULE,
1099 .open = drm_stub_open,
1100 .llseek = noop_llseek,
1101};
1102
1103static void drm_core_exit(void)
1104{
1105 unregister_chrdev(DRM_MAJOR, "drm");
1106 debugfs_remove(drm_debugfs_root);
1107 drm_sysfs_destroy();
1108 idr_destroy(&drm_minors_idr);
1109 drm_connector_ida_destroy();
1110}
1111
1112static int __init drm_core_init(void)
1113{
1114 int ret;
1115
1116 drm_connector_ida_init();
1117 idr_init(&drm_minors_idr);
1118
1119 ret = drm_sysfs_init();
1120 if (ret < 0) {
1121 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1122 goto error;
1123 }
1124
1125 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1126
1127 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1128 if (ret < 0)
1129 goto error;
1130
1131 drm_core_init_complete = true;
1132
1133 DRM_DEBUG("Initialized\n");
1134 return 0;
1135
1136error:
1137 drm_core_exit();
1138 return ret;
1139}
1140
1141module_init(drm_core_init);
1142module_exit(drm_core_exit);
1/*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29#include <linux/debugfs.h>
30#include <linux/fs.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/mount.h>
34#include <linux/pseudo_fs.h>
35#include <linux/slab.h>
36#include <linux/srcu.h>
37#include <linux/xarray.h>
38
39#include <drm/drm_accel.h>
40#include <drm/drm_cache.h>
41#include <drm/drm_client_event.h>
42#include <drm/drm_color_mgmt.h>
43#include <drm/drm_drv.h>
44#include <drm/drm_file.h>
45#include <drm/drm_managed.h>
46#include <drm/drm_mode_object.h>
47#include <drm/drm_panic.h>
48#include <drm/drm_print.h>
49#include <drm/drm_privacy_screen_machine.h>
50
51#include "drm_crtc_internal.h"
52#include "drm_internal.h"
53
54MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
55MODULE_DESCRIPTION("DRM shared core routines");
56MODULE_LICENSE("GPL and additional rights");
57
58DEFINE_XARRAY_ALLOC(drm_minors_xa);
59
60/*
61 * If the drm core fails to init for whatever reason,
62 * we should prevent any drivers from registering with it.
63 * It's best to check this at drm_dev_init(), as some drivers
64 * prefer to embed struct drm_device into their own device
65 * structure and call drm_dev_init() themselves.
66 */
67static bool drm_core_init_complete;
68
69static struct dentry *drm_debugfs_root;
70
71DEFINE_STATIC_SRCU(drm_unplug_srcu);
72
73/*
74 * DRM Minors
75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76 * of them is represented by a drm_minor object. Depending on the capabilities
77 * of the device-driver, different interfaces are registered.
78 *
79 * Minors can be accessed via dev->$minor_name. This pointer is either
80 * NULL or a valid drm_minor pointer and stays valid as long as the device is
81 * valid. This means, DRM minors have the same life-time as the underlying
82 * device. However, this doesn't mean that the minor is active. Minors are
83 * registered and unregistered dynamically according to device-state.
84 */
85
86static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
87{
88 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
89 return &drm_minors_xa;
90#if IS_ENABLED(CONFIG_DRM_ACCEL)
91 else if (type == DRM_MINOR_ACCEL)
92 return &accel_minors_xa;
93#endif
94 else
95 return ERR_PTR(-EOPNOTSUPP);
96}
97
98static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99 enum drm_minor_type type)
100{
101 switch (type) {
102 case DRM_MINOR_PRIMARY:
103 return &dev->primary;
104 case DRM_MINOR_RENDER:
105 return &dev->render;
106 case DRM_MINOR_ACCEL:
107 return &dev->accel;
108 default:
109 BUG();
110 }
111}
112
113static void drm_minor_alloc_release(struct drm_device *dev, void *data)
114{
115 struct drm_minor *minor = data;
116
117 WARN_ON(dev != minor->dev);
118
119 put_device(minor->kdev);
120
121 xa_erase(drm_minor_get_xa(minor->type), minor->index);
122}
123
124/*
125 * DRM used to support 64 devices, for backwards compatibility we need to maintain the
126 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
127 * and 128-191 are render nodes.
128 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
129 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
130 * range.
131 */
132#define DRM_MINOR_LIMIT(t) ({ \
133 typeof(t) _t = (t); \
134 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
135})
136#define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
137
138static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
139{
140 struct drm_minor *minor;
141 int r;
142
143 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
144 if (!minor)
145 return -ENOMEM;
146
147 minor->type = type;
148 minor->dev = dev;
149
150 r = xa_alloc(drm_minor_get_xa(type), &minor->index,
151 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
152 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
153 r = xa_alloc(&drm_minors_xa, &minor->index,
154 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
155 if (r < 0)
156 return r;
157
158 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
159 if (r)
160 return r;
161
162 minor->kdev = drm_sysfs_minor_alloc(minor);
163 if (IS_ERR(minor->kdev))
164 return PTR_ERR(minor->kdev);
165
166 *drm_minor_get_slot(dev, type) = minor;
167 return 0;
168}
169
170static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
171{
172 struct drm_minor *minor;
173 void *entry;
174 int ret;
175
176 DRM_DEBUG("\n");
177
178 minor = *drm_minor_get_slot(dev, type);
179 if (!minor)
180 return 0;
181
182 if (minor->type != DRM_MINOR_ACCEL) {
183 ret = drm_debugfs_register(minor, minor->index,
184 drm_debugfs_root);
185 if (ret) {
186 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
187 goto err_debugfs;
188 }
189 }
190
191 ret = device_add(minor->kdev);
192 if (ret)
193 goto err_debugfs;
194
195 /* replace NULL with @minor so lookups will succeed from now on */
196 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
197 if (xa_is_err(entry)) {
198 ret = xa_err(entry);
199 goto err_debugfs;
200 }
201 WARN_ON(entry);
202
203 DRM_DEBUG("new minor registered %d\n", minor->index);
204 return 0;
205
206err_debugfs:
207 drm_debugfs_unregister(minor);
208 return ret;
209}
210
211static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
212{
213 struct drm_minor *minor;
214
215 minor = *drm_minor_get_slot(dev, type);
216 if (!minor || !device_is_registered(minor->kdev))
217 return;
218
219 /* replace @minor with NULL so lookups will fail from now on */
220 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
221
222 device_del(minor->kdev);
223 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
224 drm_debugfs_unregister(minor);
225}
226
227/*
228 * Looks up the given minor-ID and returns the respective DRM-minor object. The
229 * refence-count of the underlying device is increased so you must release this
230 * object with drm_minor_release().
231 *
232 * As long as you hold this minor, it is guaranteed that the object and the
233 * minor->dev pointer will stay valid! However, the device may get unplugged and
234 * unregistered while you hold the minor.
235 */
236struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
237{
238 struct drm_minor *minor;
239
240 xa_lock(minor_xa);
241 minor = xa_load(minor_xa, minor_id);
242 if (minor)
243 drm_dev_get(minor->dev);
244 xa_unlock(minor_xa);
245
246 if (!minor) {
247 return ERR_PTR(-ENODEV);
248 } else if (drm_dev_is_unplugged(minor->dev)) {
249 drm_dev_put(minor->dev);
250 return ERR_PTR(-ENODEV);
251 }
252
253 return minor;
254}
255
256void drm_minor_release(struct drm_minor *minor)
257{
258 drm_dev_put(minor->dev);
259}
260
261/**
262 * DOC: driver instance overview
263 *
264 * A device instance for a drm driver is represented by &struct drm_device. This
265 * is allocated and initialized with devm_drm_dev_alloc(), usually from
266 * bus-specific ->probe() callbacks implemented by the driver. The driver then
267 * needs to initialize all the various subsystems for the drm device like memory
268 * management, vblank handling, modesetting support and initial output
269 * configuration plus obviously initialize all the corresponding hardware bits.
270 * Finally when everything is up and running and ready for userspace the device
271 * instance can be published using drm_dev_register().
272 *
273 * There is also deprecated support for initializing device instances using
274 * bus-specific helpers and the &drm_driver.load callback. But due to
275 * backwards-compatibility needs the device instance have to be published too
276 * early, which requires unpretty global locking to make safe and is therefore
277 * only support for existing drivers not yet converted to the new scheme.
278 *
279 * When cleaning up a device instance everything needs to be done in reverse:
280 * First unpublish the device instance with drm_dev_unregister(). Then clean up
281 * any other resources allocated at device initialization and drop the driver's
282 * reference to &drm_device using drm_dev_put().
283 *
284 * Note that any allocation or resource which is visible to userspace must be
285 * released only when the final drm_dev_put() is called, and not when the
286 * driver is unbound from the underlying physical struct &device. Best to use
287 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
288 * related functions.
289 *
290 * devres managed resources like devm_kmalloc() can only be used for resources
291 * directly related to the underlying hardware device, and only used in code
292 * paths fully protected by drm_dev_enter() and drm_dev_exit().
293 *
294 * Display driver example
295 * ~~~~~~~~~~~~~~~~~~~~~~
296 *
297 * The following example shows a typical structure of a DRM display driver.
298 * The example focus on the probe() function and the other functions that is
299 * almost always present and serves as a demonstration of devm_drm_dev_alloc().
300 *
301 * .. code-block:: c
302 *
303 * struct driver_device {
304 * struct drm_device drm;
305 * void *userspace_facing;
306 * struct clk *pclk;
307 * };
308 *
309 * static const struct drm_driver driver_drm_driver = {
310 * [...]
311 * };
312 *
313 * static int driver_probe(struct platform_device *pdev)
314 * {
315 * struct driver_device *priv;
316 * struct drm_device *drm;
317 * int ret;
318 *
319 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
320 * struct driver_device, drm);
321 * if (IS_ERR(priv))
322 * return PTR_ERR(priv);
323 * drm = &priv->drm;
324 *
325 * ret = drmm_mode_config_init(drm);
326 * if (ret)
327 * return ret;
328 *
329 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
330 * if (!priv->userspace_facing)
331 * return -ENOMEM;
332 *
333 * priv->pclk = devm_clk_get(dev, "PCLK");
334 * if (IS_ERR(priv->pclk))
335 * return PTR_ERR(priv->pclk);
336 *
337 * // Further setup, display pipeline etc
338 *
339 * platform_set_drvdata(pdev, drm);
340 *
341 * drm_mode_config_reset(drm);
342 *
343 * ret = drm_dev_register(drm);
344 * if (ret)
345 * return ret;
346 *
347 * drm_fbdev_{...}_setup(drm, 32);
348 *
349 * return 0;
350 * }
351 *
352 * // This function is called before the devm_ resources are released
353 * static int driver_remove(struct platform_device *pdev)
354 * {
355 * struct drm_device *drm = platform_get_drvdata(pdev);
356 *
357 * drm_dev_unregister(drm);
358 * drm_atomic_helper_shutdown(drm)
359 *
360 * return 0;
361 * }
362 *
363 * // This function is called on kernel restart and shutdown
364 * static void driver_shutdown(struct platform_device *pdev)
365 * {
366 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
367 * }
368 *
369 * static int __maybe_unused driver_pm_suspend(struct device *dev)
370 * {
371 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
372 * }
373 *
374 * static int __maybe_unused driver_pm_resume(struct device *dev)
375 * {
376 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
377 *
378 * return 0;
379 * }
380 *
381 * static const struct dev_pm_ops driver_pm_ops = {
382 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
383 * };
384 *
385 * static struct platform_driver driver_driver = {
386 * .driver = {
387 * [...]
388 * .pm = &driver_pm_ops,
389 * },
390 * .probe = driver_probe,
391 * .remove = driver_remove,
392 * .shutdown = driver_shutdown,
393 * };
394 * module_platform_driver(driver_driver);
395 *
396 * Drivers that want to support device unplugging (USB, DT overlay unload) should
397 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
398 * regions that is accessing device resources to prevent use after they're
399 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
400 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
401 * drm_atomic_helper_shutdown() is called. This means that if the disable code
402 * paths are protected, they will not run on regular driver module unload,
403 * possibly leaving the hardware enabled.
404 */
405
406/**
407 * drm_put_dev - Unregister and release a DRM device
408 * @dev: DRM device
409 *
410 * Called at module unload time or when a PCI device is unplugged.
411 *
412 * Cleans up all DRM device, calling drm_lastclose().
413 *
414 * Note: Use of this function is deprecated. It will eventually go away
415 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
416 * instead to make sure that the device isn't userspace accessible any more
417 * while teardown is in progress, ensuring that userspace can't access an
418 * inconsistent state.
419 */
420void drm_put_dev(struct drm_device *dev)
421{
422 DRM_DEBUG("\n");
423
424 if (!dev) {
425 DRM_ERROR("cleanup called no dev\n");
426 return;
427 }
428
429 drm_dev_unregister(dev);
430 drm_dev_put(dev);
431}
432EXPORT_SYMBOL(drm_put_dev);
433
434/**
435 * drm_dev_enter - Enter device critical section
436 * @dev: DRM device
437 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
438 *
439 * This function marks and protects the beginning of a section that should not
440 * be entered after the device has been unplugged. The section end is marked
441 * with drm_dev_exit(). Calls to this function can be nested.
442 *
443 * Returns:
444 * True if it is OK to enter the section, false otherwise.
445 */
446bool drm_dev_enter(struct drm_device *dev, int *idx)
447{
448 *idx = srcu_read_lock(&drm_unplug_srcu);
449
450 if (dev->unplugged) {
451 srcu_read_unlock(&drm_unplug_srcu, *idx);
452 return false;
453 }
454
455 return true;
456}
457EXPORT_SYMBOL(drm_dev_enter);
458
459/**
460 * drm_dev_exit - Exit device critical section
461 * @idx: index returned from drm_dev_enter()
462 *
463 * This function marks the end of a section that should not be entered after
464 * the device has been unplugged.
465 */
466void drm_dev_exit(int idx)
467{
468 srcu_read_unlock(&drm_unplug_srcu, idx);
469}
470EXPORT_SYMBOL(drm_dev_exit);
471
472/**
473 * drm_dev_unplug - unplug a DRM device
474 * @dev: DRM device
475 *
476 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
477 * userspace operations. Entry-points can use drm_dev_enter() and
478 * drm_dev_exit() to protect device resources in a race free manner. This
479 * essentially unregisters the device like drm_dev_unregister(), but can be
480 * called while there are still open users of @dev.
481 */
482void drm_dev_unplug(struct drm_device *dev)
483{
484 /*
485 * After synchronizing any critical read section is guaranteed to see
486 * the new value of ->unplugged, and any critical section which might
487 * still have seen the old value of ->unplugged is guaranteed to have
488 * finished.
489 */
490 dev->unplugged = true;
491 synchronize_srcu(&drm_unplug_srcu);
492
493 drm_dev_unregister(dev);
494
495 /* Clear all CPU mappings pointing to this device */
496 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
497}
498EXPORT_SYMBOL(drm_dev_unplug);
499
500/*
501 * DRM internal mount
502 * We want to be able to allocate our own "struct address_space" to control
503 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
504 * stand-alone address_space objects, so we need an underlying inode. As there
505 * is no way to allocate an independent inode easily, we need a fake internal
506 * VFS mount-point.
507 *
508 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
509 * frees it again. You are allowed to use iget() and iput() to get references to
510 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
511 * drm_fs_inode_free() call (which does not have to be the last iput()).
512 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
513 * between multiple inode-users. You could, technically, call
514 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
515 * iput(), but this way you'd end up with a new vfsmount for each inode.
516 */
517
518static int drm_fs_cnt;
519static struct vfsmount *drm_fs_mnt;
520
521static int drm_fs_init_fs_context(struct fs_context *fc)
522{
523 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
524}
525
526static struct file_system_type drm_fs_type = {
527 .name = "drm",
528 .owner = THIS_MODULE,
529 .init_fs_context = drm_fs_init_fs_context,
530 .kill_sb = kill_anon_super,
531};
532
533static struct inode *drm_fs_inode_new(void)
534{
535 struct inode *inode;
536 int r;
537
538 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
539 if (r < 0) {
540 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
541 return ERR_PTR(r);
542 }
543
544 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
545 if (IS_ERR(inode))
546 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
547
548 return inode;
549}
550
551static void drm_fs_inode_free(struct inode *inode)
552{
553 if (inode) {
554 iput(inode);
555 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
556 }
557}
558
559/**
560 * DOC: component helper usage recommendations
561 *
562 * DRM drivers that drive hardware where a logical device consists of a pile of
563 * independent hardware blocks are recommended to use the :ref:`component helper
564 * library<component>`. For consistency and better options for code reuse the
565 * following guidelines apply:
566 *
567 * - The entire device initialization procedure should be run from the
568 * &component_master_ops.master_bind callback, starting with
569 * devm_drm_dev_alloc(), then binding all components with
570 * component_bind_all() and finishing with drm_dev_register().
571 *
572 * - The opaque pointer passed to all components through component_bind_all()
573 * should point at &struct drm_device of the device instance, not some driver
574 * specific private structure.
575 *
576 * - The component helper fills the niche where further standardization of
577 * interfaces is not practical. When there already is, or will be, a
578 * standardized interface like &drm_bridge or &drm_panel, providing its own
579 * functions to find such components at driver load time, like
580 * drm_of_find_panel_or_bridge(), then the component helper should not be
581 * used.
582 */
583
584static void drm_dev_init_release(struct drm_device *dev, void *res)
585{
586 drm_fs_inode_free(dev->anon_inode);
587
588 put_device(dev->dev);
589 /* Prevent use-after-free in drm_managed_release when debugging is
590 * enabled. Slightly awkward, but can't really be helped. */
591 dev->dev = NULL;
592 mutex_destroy(&dev->master_mutex);
593 mutex_destroy(&dev->clientlist_mutex);
594 mutex_destroy(&dev->filelist_mutex);
595 mutex_destroy(&dev->struct_mutex);
596}
597
598static int drm_dev_init(struct drm_device *dev,
599 const struct drm_driver *driver,
600 struct device *parent)
601{
602 struct inode *inode;
603 int ret;
604
605 if (!drm_core_init_complete) {
606 DRM_ERROR("DRM core is not initialized\n");
607 return -ENODEV;
608 }
609
610 if (WARN_ON(!parent))
611 return -EINVAL;
612
613 kref_init(&dev->ref);
614 dev->dev = get_device(parent);
615 dev->driver = driver;
616
617 INIT_LIST_HEAD(&dev->managed.resources);
618 spin_lock_init(&dev->managed.lock);
619
620 /* no per-device feature limits by default */
621 dev->driver_features = ~0u;
622
623 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
624 (drm_core_check_feature(dev, DRIVER_RENDER) ||
625 drm_core_check_feature(dev, DRIVER_MODESET))) {
626 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
627 return -EINVAL;
628 }
629
630 INIT_LIST_HEAD(&dev->filelist);
631 INIT_LIST_HEAD(&dev->filelist_internal);
632 INIT_LIST_HEAD(&dev->clientlist);
633 INIT_LIST_HEAD(&dev->vblank_event_list);
634
635 spin_lock_init(&dev->event_lock);
636 mutex_init(&dev->struct_mutex);
637 mutex_init(&dev->filelist_mutex);
638 mutex_init(&dev->clientlist_mutex);
639 mutex_init(&dev->master_mutex);
640 raw_spin_lock_init(&dev->mode_config.panic_lock);
641
642 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
643 if (ret)
644 return ret;
645
646 inode = drm_fs_inode_new();
647 if (IS_ERR(inode)) {
648 ret = PTR_ERR(inode);
649 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
650 goto err;
651 }
652
653 dev->anon_inode = inode;
654
655 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
656 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
657 if (ret)
658 goto err;
659 } else {
660 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
661 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
662 if (ret)
663 goto err;
664 }
665
666 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
667 if (ret)
668 goto err;
669 }
670
671 if (drm_core_check_feature(dev, DRIVER_GEM)) {
672 ret = drm_gem_init(dev);
673 if (ret) {
674 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
675 goto err;
676 }
677 }
678
679 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
680 if (!dev->unique) {
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
686 accel_debugfs_init(dev);
687 else
688 drm_debugfs_dev_init(dev, drm_debugfs_root);
689
690 return 0;
691
692err:
693 drm_managed_release(dev);
694
695 return ret;
696}
697
698static void devm_drm_dev_init_release(void *data)
699{
700 drm_dev_put(data);
701}
702
703static int devm_drm_dev_init(struct device *parent,
704 struct drm_device *dev,
705 const struct drm_driver *driver)
706{
707 int ret;
708
709 ret = drm_dev_init(dev, driver, parent);
710 if (ret)
711 return ret;
712
713 return devm_add_action_or_reset(parent,
714 devm_drm_dev_init_release, dev);
715}
716
717void *__devm_drm_dev_alloc(struct device *parent,
718 const struct drm_driver *driver,
719 size_t size, size_t offset)
720{
721 void *container;
722 struct drm_device *drm;
723 int ret;
724
725 container = kzalloc(size, GFP_KERNEL);
726 if (!container)
727 return ERR_PTR(-ENOMEM);
728
729 drm = container + offset;
730 ret = devm_drm_dev_init(parent, drm, driver);
731 if (ret) {
732 kfree(container);
733 return ERR_PTR(ret);
734 }
735 drmm_add_final_kfree(drm, container);
736
737 return container;
738}
739EXPORT_SYMBOL(__devm_drm_dev_alloc);
740
741/**
742 * drm_dev_alloc - Allocate new DRM device
743 * @driver: DRM driver to allocate device for
744 * @parent: Parent device object
745 *
746 * This is the deprecated version of devm_drm_dev_alloc(), which does not support
747 * subclassing through embedding the struct &drm_device in a driver private
748 * structure, and which does not support automatic cleanup through devres.
749 *
750 * RETURNS:
751 * Pointer to new DRM device, or ERR_PTR on failure.
752 */
753struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
754 struct device *parent)
755{
756 struct drm_device *dev;
757 int ret;
758
759 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
760 if (!dev)
761 return ERR_PTR(-ENOMEM);
762
763 ret = drm_dev_init(dev, driver, parent);
764 if (ret) {
765 kfree(dev);
766 return ERR_PTR(ret);
767 }
768
769 drmm_add_final_kfree(dev, dev);
770
771 return dev;
772}
773EXPORT_SYMBOL(drm_dev_alloc);
774
775static void drm_dev_release(struct kref *ref)
776{
777 struct drm_device *dev = container_of(ref, struct drm_device, ref);
778
779 /* Just in case register/unregister was never called */
780 drm_debugfs_dev_fini(dev);
781
782 if (dev->driver->release)
783 dev->driver->release(dev);
784
785 drm_managed_release(dev);
786
787 kfree(dev->managed.final_kfree);
788}
789
790/**
791 * drm_dev_get - Take reference of a DRM device
792 * @dev: device to take reference of or NULL
793 *
794 * This increases the ref-count of @dev by one. You *must* already own a
795 * reference when calling this. Use drm_dev_put() to drop this reference
796 * again.
797 *
798 * This function never fails. However, this function does not provide *any*
799 * guarantee whether the device is alive or running. It only provides a
800 * reference to the object and the memory associated with it.
801 */
802void drm_dev_get(struct drm_device *dev)
803{
804 if (dev)
805 kref_get(&dev->ref);
806}
807EXPORT_SYMBOL(drm_dev_get);
808
809/**
810 * drm_dev_put - Drop reference of a DRM device
811 * @dev: device to drop reference of or NULL
812 *
813 * This decreases the ref-count of @dev by one. The device is destroyed if the
814 * ref-count drops to zero.
815 */
816void drm_dev_put(struct drm_device *dev)
817{
818 if (dev)
819 kref_put(&dev->ref, drm_dev_release);
820}
821EXPORT_SYMBOL(drm_dev_put);
822
823static int create_compat_control_link(struct drm_device *dev)
824{
825 struct drm_minor *minor;
826 char *name;
827 int ret;
828
829 if (!drm_core_check_feature(dev, DRIVER_MODESET))
830 return 0;
831
832 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
833 if (!minor)
834 return 0;
835
836 /*
837 * Some existing userspace out there uses the existing of the controlD*
838 * sysfs files to figure out whether it's a modeset driver. It only does
839 * readdir, hence a symlink is sufficient (and the least confusing
840 * option). Otherwise controlD* is entirely unused.
841 *
842 * Old controlD chardev have been allocated in the range
843 * 64-127.
844 */
845 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
846 if (!name)
847 return -ENOMEM;
848
849 ret = sysfs_create_link(minor->kdev->kobj.parent,
850 &minor->kdev->kobj,
851 name);
852
853 kfree(name);
854
855 return ret;
856}
857
858static void remove_compat_control_link(struct drm_device *dev)
859{
860 struct drm_minor *minor;
861 char *name;
862
863 if (!drm_core_check_feature(dev, DRIVER_MODESET))
864 return;
865
866 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
867 if (!minor)
868 return;
869
870 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
871 if (!name)
872 return;
873
874 sysfs_remove_link(minor->kdev->kobj.parent, name);
875
876 kfree(name);
877}
878
879/**
880 * drm_dev_register - Register DRM device
881 * @dev: Device to register
882 * @flags: Flags passed to the driver's .load() function
883 *
884 * Register the DRM device @dev with the system, advertise device to user-space
885 * and start normal device operation. @dev must be initialized via drm_dev_init()
886 * previously.
887 *
888 * Never call this twice on any device!
889 *
890 * NOTE: To ensure backward compatibility with existing drivers method this
891 * function calls the &drm_driver.load method after registering the device
892 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
893 * therefore deprecated, drivers must perform all initialization before calling
894 * drm_dev_register().
895 *
896 * RETURNS:
897 * 0 on success, negative error code on failure.
898 */
899int drm_dev_register(struct drm_device *dev, unsigned long flags)
900{
901 const struct drm_driver *driver = dev->driver;
902 int ret;
903
904 if (!driver->load)
905 drm_mode_config_validate(dev);
906
907 WARN_ON(!dev->managed.final_kfree);
908
909 if (drm_dev_needs_global_mutex(dev))
910 mutex_lock(&drm_global_mutex);
911
912 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
913 accel_debugfs_register(dev);
914 else
915 drm_debugfs_dev_register(dev);
916
917 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
918 if (ret)
919 goto err_minors;
920
921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
922 if (ret)
923 goto err_minors;
924
925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
926 if (ret)
927 goto err_minors;
928
929 ret = create_compat_control_link(dev);
930 if (ret)
931 goto err_minors;
932
933 dev->registered = true;
934
935 if (driver->load) {
936 ret = driver->load(dev, flags);
937 if (ret)
938 goto err_minors;
939 }
940
941 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
942 ret = drm_modeset_register_all(dev);
943 if (ret)
944 goto err_unload;
945 }
946 drm_panic_register(dev);
947
948 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
949 driver->name, driver->major, driver->minor,
950 driver->patchlevel,
951 dev->dev ? dev_name(dev->dev) : "virtual device",
952 dev->primary ? dev->primary->index : dev->accel->index);
953
954 goto out_unlock;
955
956err_unload:
957 if (dev->driver->unload)
958 dev->driver->unload(dev);
959err_minors:
960 remove_compat_control_link(dev);
961 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
962 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
963 drm_minor_unregister(dev, DRM_MINOR_RENDER);
964out_unlock:
965 if (drm_dev_needs_global_mutex(dev))
966 mutex_unlock(&drm_global_mutex);
967 return ret;
968}
969EXPORT_SYMBOL(drm_dev_register);
970
971/**
972 * drm_dev_unregister - Unregister DRM device
973 * @dev: Device to unregister
974 *
975 * Unregister the DRM device from the system. This does the reverse of
976 * drm_dev_register() but does not deallocate the device. The caller must call
977 * drm_dev_put() to drop their final reference, unless it is managed with devres
978 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
979 * already an unwind action registered.
980 *
981 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
982 * which can be called while there are still open users of @dev.
983 *
984 * This should be called first in the device teardown code to make sure
985 * userspace can't access the device instance any more.
986 */
987void drm_dev_unregister(struct drm_device *dev)
988{
989 dev->registered = false;
990
991 drm_panic_unregister(dev);
992
993 drm_client_dev_unregister(dev);
994
995 if (drm_core_check_feature(dev, DRIVER_MODESET))
996 drm_modeset_unregister_all(dev);
997
998 if (dev->driver->unload)
999 dev->driver->unload(dev);
1000
1001 remove_compat_control_link(dev);
1002 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1003 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1004 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1005 drm_debugfs_dev_fini(dev);
1006}
1007EXPORT_SYMBOL(drm_dev_unregister);
1008
1009/*
1010 * DRM Core
1011 * The DRM core module initializes all global DRM objects and makes them
1012 * available to drivers. Once setup, drivers can probe their respective
1013 * devices.
1014 * Currently, core management includes:
1015 * - The "DRM-Global" key/value database
1016 * - Global ID management for connectors
1017 * - DRM major number allocation
1018 * - DRM minor management
1019 * - DRM sysfs class
1020 * - DRM debugfs root
1021 *
1022 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1023 * interface registered on a DRM device, you can request minor numbers from DRM
1024 * core. DRM core takes care of major-number management and char-dev
1025 * registration. A stub ->open() callback forwards any open() requests to the
1026 * registered minor.
1027 */
1028
1029static int drm_stub_open(struct inode *inode, struct file *filp)
1030{
1031 const struct file_operations *new_fops;
1032 struct drm_minor *minor;
1033 int err;
1034
1035 DRM_DEBUG("\n");
1036
1037 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1038 if (IS_ERR(minor))
1039 return PTR_ERR(minor);
1040
1041 new_fops = fops_get(minor->dev->driver->fops);
1042 if (!new_fops) {
1043 err = -ENODEV;
1044 goto out;
1045 }
1046
1047 replace_fops(filp, new_fops);
1048 if (filp->f_op->open)
1049 err = filp->f_op->open(inode, filp);
1050 else
1051 err = 0;
1052
1053out:
1054 drm_minor_release(minor);
1055
1056 return err;
1057}
1058
1059static const struct file_operations drm_stub_fops = {
1060 .owner = THIS_MODULE,
1061 .open = drm_stub_open,
1062 .llseek = noop_llseek,
1063};
1064
1065static void drm_core_exit(void)
1066{
1067 drm_privacy_screen_lookup_exit();
1068 drm_panic_exit();
1069 accel_core_exit();
1070 unregister_chrdev(DRM_MAJOR, "drm");
1071 debugfs_remove(drm_debugfs_root);
1072 drm_sysfs_destroy();
1073 WARN_ON(!xa_empty(&drm_minors_xa));
1074 drm_connector_ida_destroy();
1075}
1076
1077static int __init drm_core_init(void)
1078{
1079 int ret;
1080
1081 drm_connector_ida_init();
1082 drm_memcpy_init_early();
1083
1084 ret = drm_sysfs_init();
1085 if (ret < 0) {
1086 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1087 goto error;
1088 }
1089
1090 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1091
1092 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1093 if (ret < 0)
1094 goto error;
1095
1096 ret = accel_core_init();
1097 if (ret < 0)
1098 goto error;
1099
1100 drm_panic_init();
1101
1102 drm_privacy_screen_lookup_init();
1103
1104 drm_core_init_complete = true;
1105
1106 DRM_DEBUG("Initialized\n");
1107 return 0;
1108
1109error:
1110 drm_core_exit();
1111 return ret;
1112}
1113
1114module_init(drm_core_init);
1115module_exit(drm_core_exit);