Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* BPF JIT compiler for RV64G
   3 *
   4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
   5 *
   6 */
   7
 
   8#include <linux/bpf.h>
   9#include <linux/filter.h>
 
 
 
 
 
  10#include "bpf_jit.h"
  11
 
 
 
 
 
 
 
  12#define RV_REG_TCC RV_REG_A6
  13#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
 
  14
  15static const int regmap[] = {
  16	[BPF_REG_0] =	RV_REG_A5,
  17	[BPF_REG_1] =	RV_REG_A0,
  18	[BPF_REG_2] =	RV_REG_A1,
  19	[BPF_REG_3] =	RV_REG_A2,
  20	[BPF_REG_4] =	RV_REG_A3,
  21	[BPF_REG_5] =	RV_REG_A4,
  22	[BPF_REG_6] =	RV_REG_S1,
  23	[BPF_REG_7] =	RV_REG_S2,
  24	[BPF_REG_8] =	RV_REG_S3,
  25	[BPF_REG_9] =	RV_REG_S4,
  26	[BPF_REG_FP] =	RV_REG_S5,
  27	[BPF_REG_AX] =	RV_REG_T0,
  28};
  29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30enum {
  31	RV_CTX_F_SEEN_TAIL_CALL =	0,
  32	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
  33	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
  34	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
  35	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
  36	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
  37	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
  38	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
  39};
  40
  41static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
  42{
  43	u8 reg = regmap[bpf_reg];
  44
  45	switch (reg) {
  46	case RV_CTX_F_SEEN_S1:
  47	case RV_CTX_F_SEEN_S2:
  48	case RV_CTX_F_SEEN_S3:
  49	case RV_CTX_F_SEEN_S4:
  50	case RV_CTX_F_SEEN_S5:
  51	case RV_CTX_F_SEEN_S6:
  52		__set_bit(reg, &ctx->flags);
  53	}
  54	return reg;
  55};
  56
  57static bool seen_reg(int reg, struct rv_jit_context *ctx)
  58{
  59	switch (reg) {
  60	case RV_CTX_F_SEEN_CALL:
  61	case RV_CTX_F_SEEN_S1:
  62	case RV_CTX_F_SEEN_S2:
  63	case RV_CTX_F_SEEN_S3:
  64	case RV_CTX_F_SEEN_S4:
  65	case RV_CTX_F_SEEN_S5:
  66	case RV_CTX_F_SEEN_S6:
  67		return test_bit(reg, &ctx->flags);
  68	}
  69	return false;
  70}
  71
  72static void mark_fp(struct rv_jit_context *ctx)
  73{
  74	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
  75}
  76
  77static void mark_call(struct rv_jit_context *ctx)
  78{
  79	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
  80}
  81
  82static bool seen_call(struct rv_jit_context *ctx)
  83{
  84	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
  85}
  86
  87static void mark_tail_call(struct rv_jit_context *ctx)
  88{
  89	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
  90}
  91
  92static bool seen_tail_call(struct rv_jit_context *ctx)
  93{
  94	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
  95}
  96
  97static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
  98{
  99	mark_tail_call(ctx);
 100
 101	if (seen_call(ctx)) {
 102		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
 103		return RV_REG_S6;
 104	}
 105	return RV_REG_A6;
 106}
 107
 108static bool is_32b_int(s64 val)
 109{
 110	return -(1L << 31) <= val && val < (1L << 31);
 111}
 112
 113static bool in_auipc_jalr_range(s64 val)
 114{
 115	/*
 116	 * auipc+jalr can reach any signed PC-relative offset in the range
 117	 * [-2^31 - 2^11, 2^31 - 2^11).
 118	 */
 119	return (-(1L << 31) - (1L << 11)) <= val &&
 120		val < ((1L << 31) - (1L << 11));
 121}
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
 124{
 125	/* Note that the immediate from the add is sign-extended,
 126	 * which means that we need to compensate this by adding 2^12,
 127	 * when the 12th bit is set. A simpler way of doing this, and
 128	 * getting rid of the check, is to just add 2**11 before the
 129	 * shift. The "Loading a 32-Bit constant" example from the
 130	 * "Computer Organization and Design, RISC-V edition" book by
 131	 * Patterson/Hennessy highlights this fact.
 132	 *
 133	 * This also means that we need to process LSB to MSB.
 134	 */
 135	s64 upper = (val + (1 << 11)) >> 12;
 136	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
 137	 * and addi are signed and RVC checks will perform signed comparisons.
 138	 */
 139	s64 lower = ((val & 0xfff) << 52) >> 52;
 140	int shift;
 141
 142	if (is_32b_int(val)) {
 143		if (upper)
 144			emit_lui(rd, upper, ctx);
 145
 146		if (!upper) {
 147			emit_li(rd, lower, ctx);
 148			return;
 149		}
 150
 151		emit_addiw(rd, rd, lower, ctx);
 152		return;
 153	}
 154
 155	shift = __ffs(upper);
 156	upper >>= shift;
 157	shift += 12;
 158
 159	emit_imm(rd, upper, ctx);
 160
 161	emit_slli(rd, rd, shift, ctx);
 162	if (lower)
 163		emit_addi(rd, rd, lower, ctx);
 164}
 165
 166static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
 167{
 168	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
 169
 170	if (seen_reg(RV_REG_RA, ctx)) {
 171		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
 172		store_offset -= 8;
 173	}
 174	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
 175	store_offset -= 8;
 176	if (seen_reg(RV_REG_S1, ctx)) {
 177		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
 178		store_offset -= 8;
 179	}
 180	if (seen_reg(RV_REG_S2, ctx)) {
 181		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
 182		store_offset -= 8;
 183	}
 184	if (seen_reg(RV_REG_S3, ctx)) {
 185		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
 186		store_offset -= 8;
 187	}
 188	if (seen_reg(RV_REG_S4, ctx)) {
 189		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
 190		store_offset -= 8;
 191	}
 192	if (seen_reg(RV_REG_S5, ctx)) {
 193		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
 194		store_offset -= 8;
 195	}
 196	if (seen_reg(RV_REG_S6, ctx)) {
 197		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
 198		store_offset -= 8;
 199	}
 
 
 
 
 200
 201	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
 202	/* Set return value. */
 203	if (!is_tail_call)
 204		emit_mv(RV_REG_A0, RV_REG_A5, ctx);
 205	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
 206		  is_tail_call ? 4 : 0, /* skip TCC init */
 
 207		  ctx);
 208}
 209
 210static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
 211		     struct rv_jit_context *ctx)
 212{
 213	switch (cond) {
 214	case BPF_JEQ:
 215		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
 216		return;
 217	case BPF_JGT:
 218		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
 219		return;
 220	case BPF_JLT:
 221		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
 222		return;
 223	case BPF_JGE:
 224		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
 225		return;
 226	case BPF_JLE:
 227		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
 228		return;
 229	case BPF_JNE:
 230		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
 231		return;
 232	case BPF_JSGT:
 233		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
 234		return;
 235	case BPF_JSLT:
 236		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
 237		return;
 238	case BPF_JSGE:
 239		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
 240		return;
 241	case BPF_JSLE:
 242		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
 243	}
 244}
 245
 246static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
 247			struct rv_jit_context *ctx)
 248{
 249	s64 upper, lower;
 250
 251	if (is_13b_int(rvoff)) {
 252		emit_bcc(cond, rd, rs, rvoff, ctx);
 253		return;
 254	}
 255
 256	/* Adjust for jal */
 257	rvoff -= 4;
 258
 259	/* Transform, e.g.:
 260	 *   bne rd,rs,foo
 261	 * to
 262	 *   beq rd,rs,<.L1>
 263	 *   (auipc foo)
 264	 *   jal(r) foo
 265	 * .L1
 266	 */
 267	cond = invert_bpf_cond(cond);
 268	if (is_21b_int(rvoff)) {
 269		emit_bcc(cond, rd, rs, 8, ctx);
 270		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
 271		return;
 272	}
 273
 274	/* 32b No need for an additional rvoff adjustment, since we
 275	 * get that from the auipc at PC', where PC = PC' + 4.
 276	 */
 277	upper = (rvoff + (1 << 11)) >> 12;
 278	lower = rvoff & 0xfff;
 279
 280	emit_bcc(cond, rd, rs, 12, ctx);
 281	emit(rv_auipc(RV_REG_T1, upper), ctx);
 282	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
 283}
 284
 285static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
 286{
 287	emit_slli(reg, reg, 32, ctx);
 288	emit_srli(reg, reg, 32, ctx);
 289}
 290
 291static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
 292{
 293	int tc_ninsn, off, start_insn = ctx->ninsns;
 294	u8 tcc = rv_tail_call_reg(ctx);
 295
 296	/* a0: &ctx
 297	 * a1: &array
 298	 * a2: index
 299	 *
 300	 * if (index >= array->map.max_entries)
 301	 *	goto out;
 302	 */
 303	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
 304		   ctx->offset[0];
 305	emit_zext_32(RV_REG_A2, ctx);
 306
 307	off = offsetof(struct bpf_array, map.max_entries);
 308	if (is_12b_check(off, insn))
 309		return -1;
 310	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
 311	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 312	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
 313
 314	/* if (TCC-- < 0)
 315	 *     goto out;
 316	 */
 317	emit_addi(RV_REG_T1, tcc, -1, ctx);
 318	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 319	emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
 320
 321	/* prog = array->ptrs[index];
 322	 * if (!prog)
 323	 *     goto out;
 324	 */
 325	emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
 326	emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
 327	off = offsetof(struct bpf_array, ptrs);
 328	if (is_12b_check(off, insn))
 329		return -1;
 330	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
 331	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 332	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
 333
 334	/* goto *(prog->bpf_func + 4); */
 335	off = offsetof(struct bpf_prog, bpf_func);
 336	if (is_12b_check(off, insn))
 337		return -1;
 338	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
 339	emit_mv(RV_REG_TCC, RV_REG_T1, ctx);
 340	__build_epilogue(true, ctx);
 341	return 0;
 342}
 343
 344static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
 345		      struct rv_jit_context *ctx)
 346{
 347	u8 code = insn->code;
 348
 349	switch (code) {
 350	case BPF_JMP | BPF_JA:
 351	case BPF_JMP | BPF_CALL:
 352	case BPF_JMP | BPF_EXIT:
 353	case BPF_JMP | BPF_TAIL_CALL:
 354		break;
 355	default:
 356		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
 357	}
 358
 359	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
 360	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
 361	    code & BPF_LDX || code & BPF_STX)
 362		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
 363}
 364
 365static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
 366{
 367	emit_mv(RV_REG_T2, *rd, ctx);
 368	emit_zext_32(RV_REG_T2, ctx);
 369	emit_mv(RV_REG_T1, *rs, ctx);
 370	emit_zext_32(RV_REG_T1, ctx);
 371	*rd = RV_REG_T2;
 372	*rs = RV_REG_T1;
 373}
 374
 375static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
 376{
 377	emit_addiw(RV_REG_T2, *rd, 0, ctx);
 378	emit_addiw(RV_REG_T1, *rs, 0, ctx);
 379	*rd = RV_REG_T2;
 380	*rs = RV_REG_T1;
 381}
 382
 383static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
 384{
 385	emit_mv(RV_REG_T2, *rd, ctx);
 386	emit_zext_32(RV_REG_T2, ctx);
 387	emit_zext_32(RV_REG_T1, ctx);
 388	*rd = RV_REG_T2;
 389}
 390
 391static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
 392{
 393	emit_addiw(RV_REG_T2, *rd, 0, ctx);
 394	*rd = RV_REG_T2;
 395}
 396
 397static int emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr,
 398			      struct rv_jit_context *ctx)
 399{
 400	s64 upper, lower;
 401
 402	if (rvoff && is_21b_int(rvoff) && !force_jalr) {
 403		emit(rv_jal(rd, rvoff >> 1), ctx);
 404		return 0;
 405	} else if (in_auipc_jalr_range(rvoff)) {
 406		upper = (rvoff + (1 << 11)) >> 12;
 407		lower = rvoff & 0xfff;
 408		emit(rv_auipc(RV_REG_T1, upper), ctx);
 409		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
 410		return 0;
 411	}
 412
 413	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
 414	return -ERANGE;
 415}
 416
 417static bool is_signed_bpf_cond(u8 cond)
 418{
 419	return cond == BPF_JSGT || cond == BPF_JSLT ||
 420		cond == BPF_JSGE || cond == BPF_JSLE;
 421}
 422
 423static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
 424{
 425	s64 off = 0;
 426	u64 ip;
 427	u8 rd;
 428	int ret;
 429
 430	if (addr && ctx->insns) {
 431		ip = (u64)(long)(ctx->insns + ctx->ninsns);
 
 
 
 
 432		off = addr - ip;
 433	}
 434
 435	ret = emit_jump_and_link(RV_REG_RA, off, !fixed, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	if (ret)
 437		return ret;
 438	rd = bpf_to_rv_reg(BPF_REG_0, ctx);
 439	emit_mv(rd, RV_REG_A0, ctx);
 440	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441}
 442
 443int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
 444		      bool extra_pass)
 445{
 446	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
 447		    BPF_CLASS(insn->code) == BPF_JMP;
 448	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
 449	struct bpf_prog_aux *aux = ctx->prog->aux;
 450	u8 rd = -1, rs = -1, code = insn->code;
 451	s16 off = insn->off;
 452	s32 imm = insn->imm;
 453
 454	init_regs(&rd, &rs, insn, ctx);
 455
 456	switch (code) {
 457	/* dst = src */
 458	case BPF_ALU | BPF_MOV | BPF_X:
 459	case BPF_ALU64 | BPF_MOV | BPF_X:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460		if (imm == 1) {
 461			/* Special mov32 for zext */
 462			emit_zext_32(rd, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463			break;
 464		}
 465		emit_mv(rd, rs, ctx);
 466		if (!is64 && !aux->verifier_zext)
 467			emit_zext_32(rd, ctx);
 468		break;
 469
 470	/* dst = dst OP src */
 471	case BPF_ALU | BPF_ADD | BPF_X:
 472	case BPF_ALU64 | BPF_ADD | BPF_X:
 473		emit_add(rd, rd, rs, ctx);
 474		if (!is64 && !aux->verifier_zext)
 475			emit_zext_32(rd, ctx);
 476		break;
 477	case BPF_ALU | BPF_SUB | BPF_X:
 478	case BPF_ALU64 | BPF_SUB | BPF_X:
 479		if (is64)
 480			emit_sub(rd, rd, rs, ctx);
 481		else
 482			emit_subw(rd, rd, rs, ctx);
 483
 484		if (!is64 && !aux->verifier_zext)
 485			emit_zext_32(rd, ctx);
 486		break;
 487	case BPF_ALU | BPF_AND | BPF_X:
 488	case BPF_ALU64 | BPF_AND | BPF_X:
 489		emit_and(rd, rd, rs, ctx);
 490		if (!is64 && !aux->verifier_zext)
 491			emit_zext_32(rd, ctx);
 492		break;
 493	case BPF_ALU | BPF_OR | BPF_X:
 494	case BPF_ALU64 | BPF_OR | BPF_X:
 495		emit_or(rd, rd, rs, ctx);
 496		if (!is64 && !aux->verifier_zext)
 497			emit_zext_32(rd, ctx);
 498		break;
 499	case BPF_ALU | BPF_XOR | BPF_X:
 500	case BPF_ALU64 | BPF_XOR | BPF_X:
 501		emit_xor(rd, rd, rs, ctx);
 502		if (!is64 && !aux->verifier_zext)
 503			emit_zext_32(rd, ctx);
 504		break;
 505	case BPF_ALU | BPF_MUL | BPF_X:
 506	case BPF_ALU64 | BPF_MUL | BPF_X:
 507		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
 508		if (!is64 && !aux->verifier_zext)
 509			emit_zext_32(rd, ctx);
 510		break;
 511	case BPF_ALU | BPF_DIV | BPF_X:
 512	case BPF_ALU64 | BPF_DIV | BPF_X:
 513		emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
 
 
 
 514		if (!is64 && !aux->verifier_zext)
 515			emit_zext_32(rd, ctx);
 516		break;
 517	case BPF_ALU | BPF_MOD | BPF_X:
 518	case BPF_ALU64 | BPF_MOD | BPF_X:
 519		emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
 
 
 
 520		if (!is64 && !aux->verifier_zext)
 521			emit_zext_32(rd, ctx);
 522		break;
 523	case BPF_ALU | BPF_LSH | BPF_X:
 524	case BPF_ALU64 | BPF_LSH | BPF_X:
 525		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
 526		if (!is64 && !aux->verifier_zext)
 527			emit_zext_32(rd, ctx);
 528		break;
 529	case BPF_ALU | BPF_RSH | BPF_X:
 530	case BPF_ALU64 | BPF_RSH | BPF_X:
 531		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
 532		if (!is64 && !aux->verifier_zext)
 533			emit_zext_32(rd, ctx);
 534		break;
 535	case BPF_ALU | BPF_ARSH | BPF_X:
 536	case BPF_ALU64 | BPF_ARSH | BPF_X:
 537		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
 538		if (!is64 && !aux->verifier_zext)
 539			emit_zext_32(rd, ctx);
 540		break;
 541
 542	/* dst = -dst */
 543	case BPF_ALU | BPF_NEG:
 544	case BPF_ALU64 | BPF_NEG:
 545		emit_sub(rd, RV_REG_ZERO, rd, ctx);
 546		if (!is64 && !aux->verifier_zext)
 547			emit_zext_32(rd, ctx);
 548		break;
 549
 550	/* dst = BSWAP##imm(dst) */
 551	case BPF_ALU | BPF_END | BPF_FROM_LE:
 552		switch (imm) {
 553		case 16:
 554			emit_slli(rd, rd, 48, ctx);
 555			emit_srli(rd, rd, 48, ctx);
 556			break;
 557		case 32:
 558			if (!aux->verifier_zext)
 559				emit_zext_32(rd, ctx);
 560			break;
 561		case 64:
 562			/* Do nothing */
 563			break;
 564		}
 565		break;
 566
 567	case BPF_ALU | BPF_END | BPF_FROM_BE:
 568		emit_li(RV_REG_T2, 0, ctx);
 569
 570		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 571		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 572		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 573		emit_srli(rd, rd, 8, ctx);
 574		if (imm == 16)
 575			goto out_be;
 576
 577		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 578		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 579		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 580		emit_srli(rd, rd, 8, ctx);
 581
 582		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 583		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 584		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 585		emit_srli(rd, rd, 8, ctx);
 586		if (imm == 32)
 587			goto out_be;
 588
 589		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 590		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 591		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 592		emit_srli(rd, rd, 8, ctx);
 593
 594		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 595		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 596		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 597		emit_srli(rd, rd, 8, ctx);
 598
 599		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 600		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 601		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 602		emit_srli(rd, rd, 8, ctx);
 603
 604		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 605		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 606		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
 607		emit_srli(rd, rd, 8, ctx);
 608out_be:
 609		emit_andi(RV_REG_T1, rd, 0xff, ctx);
 610		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
 611
 612		emit_mv(rd, RV_REG_T2, ctx);
 613		break;
 614
 615	/* dst = imm */
 616	case BPF_ALU | BPF_MOV | BPF_K:
 617	case BPF_ALU64 | BPF_MOV | BPF_K:
 618		emit_imm(rd, imm, ctx);
 619		if (!is64 && !aux->verifier_zext)
 620			emit_zext_32(rd, ctx);
 621		break;
 622
 623	/* dst = dst OP imm */
 624	case BPF_ALU | BPF_ADD | BPF_K:
 625	case BPF_ALU64 | BPF_ADD | BPF_K:
 626		if (is_12b_int(imm)) {
 627			emit_addi(rd, rd, imm, ctx);
 628		} else {
 629			emit_imm(RV_REG_T1, imm, ctx);
 630			emit_add(rd, rd, RV_REG_T1, ctx);
 631		}
 632		if (!is64 && !aux->verifier_zext)
 633			emit_zext_32(rd, ctx);
 634		break;
 635	case BPF_ALU | BPF_SUB | BPF_K:
 636	case BPF_ALU64 | BPF_SUB | BPF_K:
 637		if (is_12b_int(-imm)) {
 638			emit_addi(rd, rd, -imm, ctx);
 639		} else {
 640			emit_imm(RV_REG_T1, imm, ctx);
 641			emit_sub(rd, rd, RV_REG_T1, ctx);
 642		}
 643		if (!is64 && !aux->verifier_zext)
 644			emit_zext_32(rd, ctx);
 645		break;
 646	case BPF_ALU | BPF_AND | BPF_K:
 647	case BPF_ALU64 | BPF_AND | BPF_K:
 648		if (is_12b_int(imm)) {
 649			emit_andi(rd, rd, imm, ctx);
 650		} else {
 651			emit_imm(RV_REG_T1, imm, ctx);
 652			emit_and(rd, rd, RV_REG_T1, ctx);
 653		}
 654		if (!is64 && !aux->verifier_zext)
 655			emit_zext_32(rd, ctx);
 656		break;
 657	case BPF_ALU | BPF_OR | BPF_K:
 658	case BPF_ALU64 | BPF_OR | BPF_K:
 659		if (is_12b_int(imm)) {
 660			emit(rv_ori(rd, rd, imm), ctx);
 661		} else {
 662			emit_imm(RV_REG_T1, imm, ctx);
 663			emit_or(rd, rd, RV_REG_T1, ctx);
 664		}
 665		if (!is64 && !aux->verifier_zext)
 666			emit_zext_32(rd, ctx);
 667		break;
 668	case BPF_ALU | BPF_XOR | BPF_K:
 669	case BPF_ALU64 | BPF_XOR | BPF_K:
 670		if (is_12b_int(imm)) {
 671			emit(rv_xori(rd, rd, imm), ctx);
 672		} else {
 673			emit_imm(RV_REG_T1, imm, ctx);
 674			emit_xor(rd, rd, RV_REG_T1, ctx);
 675		}
 676		if (!is64 && !aux->verifier_zext)
 677			emit_zext_32(rd, ctx);
 678		break;
 679	case BPF_ALU | BPF_MUL | BPF_K:
 680	case BPF_ALU64 | BPF_MUL | BPF_K:
 681		emit_imm(RV_REG_T1, imm, ctx);
 682		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
 683		     rv_mulw(rd, rd, RV_REG_T1), ctx);
 684		if (!is64 && !aux->verifier_zext)
 685			emit_zext_32(rd, ctx);
 686		break;
 687	case BPF_ALU | BPF_DIV | BPF_K:
 688	case BPF_ALU64 | BPF_DIV | BPF_K:
 689		emit_imm(RV_REG_T1, imm, ctx);
 690		emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
 691		     rv_divuw(rd, rd, RV_REG_T1), ctx);
 
 
 
 
 692		if (!is64 && !aux->verifier_zext)
 693			emit_zext_32(rd, ctx);
 694		break;
 695	case BPF_ALU | BPF_MOD | BPF_K:
 696	case BPF_ALU64 | BPF_MOD | BPF_K:
 697		emit_imm(RV_REG_T1, imm, ctx);
 698		emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
 699		     rv_remuw(rd, rd, RV_REG_T1), ctx);
 
 
 
 
 700		if (!is64 && !aux->verifier_zext)
 701			emit_zext_32(rd, ctx);
 702		break;
 703	case BPF_ALU | BPF_LSH | BPF_K:
 704	case BPF_ALU64 | BPF_LSH | BPF_K:
 705		emit_slli(rd, rd, imm, ctx);
 706
 707		if (!is64 && !aux->verifier_zext)
 708			emit_zext_32(rd, ctx);
 709		break;
 710	case BPF_ALU | BPF_RSH | BPF_K:
 711	case BPF_ALU64 | BPF_RSH | BPF_K:
 712		if (is64)
 713			emit_srli(rd, rd, imm, ctx);
 714		else
 715			emit(rv_srliw(rd, rd, imm), ctx);
 716
 717		if (!is64 && !aux->verifier_zext)
 718			emit_zext_32(rd, ctx);
 719		break;
 720	case BPF_ALU | BPF_ARSH | BPF_K:
 721	case BPF_ALU64 | BPF_ARSH | BPF_K:
 722		if (is64)
 723			emit_srai(rd, rd, imm, ctx);
 724		else
 725			emit(rv_sraiw(rd, rd, imm), ctx);
 726
 727		if (!is64 && !aux->verifier_zext)
 728			emit_zext_32(rd, ctx);
 729		break;
 730
 731	/* JUMP off */
 732	case BPF_JMP | BPF_JA:
 733		rvoff = rv_offset(i, off, ctx);
 734		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
 
 
 
 
 735		if (ret)
 736			return ret;
 737		break;
 738
 739	/* IF (dst COND src) JUMP off */
 740	case BPF_JMP | BPF_JEQ | BPF_X:
 741	case BPF_JMP32 | BPF_JEQ | BPF_X:
 742	case BPF_JMP | BPF_JGT | BPF_X:
 743	case BPF_JMP32 | BPF_JGT | BPF_X:
 744	case BPF_JMP | BPF_JLT | BPF_X:
 745	case BPF_JMP32 | BPF_JLT | BPF_X:
 746	case BPF_JMP | BPF_JGE | BPF_X:
 747	case BPF_JMP32 | BPF_JGE | BPF_X:
 748	case BPF_JMP | BPF_JLE | BPF_X:
 749	case BPF_JMP32 | BPF_JLE | BPF_X:
 750	case BPF_JMP | BPF_JNE | BPF_X:
 751	case BPF_JMP32 | BPF_JNE | BPF_X:
 752	case BPF_JMP | BPF_JSGT | BPF_X:
 753	case BPF_JMP32 | BPF_JSGT | BPF_X:
 754	case BPF_JMP | BPF_JSLT | BPF_X:
 755	case BPF_JMP32 | BPF_JSLT | BPF_X:
 756	case BPF_JMP | BPF_JSGE | BPF_X:
 757	case BPF_JMP32 | BPF_JSGE | BPF_X:
 758	case BPF_JMP | BPF_JSLE | BPF_X:
 759	case BPF_JMP32 | BPF_JSLE | BPF_X:
 760	case BPF_JMP | BPF_JSET | BPF_X:
 761	case BPF_JMP32 | BPF_JSET | BPF_X:
 762		rvoff = rv_offset(i, off, ctx);
 763		if (!is64) {
 764			s = ctx->ninsns;
 765			if (is_signed_bpf_cond(BPF_OP(code)))
 766				emit_sext_32_rd_rs(&rd, &rs, ctx);
 767			else
 768				emit_zext_32_rd_rs(&rd, &rs, ctx);
 
 
 
 769			e = ctx->ninsns;
 770
 771			/* Adjust for extra insns */
 772			rvoff -= ninsns_rvoff(e - s);
 773		}
 774
 775		if (BPF_OP(code) == BPF_JSET) {
 776			/* Adjust for and */
 777			rvoff -= 4;
 778			emit_and(RV_REG_T1, rd, rs, ctx);
 779			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
 780				    ctx);
 781		} else {
 782			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
 783		}
 784		break;
 785
 786	/* IF (dst COND imm) JUMP off */
 787	case BPF_JMP | BPF_JEQ | BPF_K:
 788	case BPF_JMP32 | BPF_JEQ | BPF_K:
 789	case BPF_JMP | BPF_JGT | BPF_K:
 790	case BPF_JMP32 | BPF_JGT | BPF_K:
 791	case BPF_JMP | BPF_JLT | BPF_K:
 792	case BPF_JMP32 | BPF_JLT | BPF_K:
 793	case BPF_JMP | BPF_JGE | BPF_K:
 794	case BPF_JMP32 | BPF_JGE | BPF_K:
 795	case BPF_JMP | BPF_JLE | BPF_K:
 796	case BPF_JMP32 | BPF_JLE | BPF_K:
 797	case BPF_JMP | BPF_JNE | BPF_K:
 798	case BPF_JMP32 | BPF_JNE | BPF_K:
 799	case BPF_JMP | BPF_JSGT | BPF_K:
 800	case BPF_JMP32 | BPF_JSGT | BPF_K:
 801	case BPF_JMP | BPF_JSLT | BPF_K:
 802	case BPF_JMP32 | BPF_JSLT | BPF_K:
 803	case BPF_JMP | BPF_JSGE | BPF_K:
 804	case BPF_JMP32 | BPF_JSGE | BPF_K:
 805	case BPF_JMP | BPF_JSLE | BPF_K:
 806	case BPF_JMP32 | BPF_JSLE | BPF_K:
 807		rvoff = rv_offset(i, off, ctx);
 808		s = ctx->ninsns;
 809		if (imm) {
 810			emit_imm(RV_REG_T1, imm, ctx);
 811			rs = RV_REG_T1;
 812		} else {
 813			/* If imm is 0, simply use zero register. */
 814			rs = RV_REG_ZERO;
 815		}
 816		if (!is64) {
 817			if (is_signed_bpf_cond(BPF_OP(code)))
 818				emit_sext_32_rd(&rd, ctx);
 819			else
 820				emit_zext_32_rd_t1(&rd, ctx);
 
 
 
 
 821		}
 822		e = ctx->ninsns;
 823
 824		/* Adjust for extra insns */
 825		rvoff -= ninsns_rvoff(e - s);
 826		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
 827		break;
 828
 829	case BPF_JMP | BPF_JSET | BPF_K:
 830	case BPF_JMP32 | BPF_JSET | BPF_K:
 831		rvoff = rv_offset(i, off, ctx);
 832		s = ctx->ninsns;
 833		if (is_12b_int(imm)) {
 834			emit_andi(RV_REG_T1, rd, imm, ctx);
 835		} else {
 836			emit_imm(RV_REG_T1, imm, ctx);
 837			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
 838		}
 839		/* For jset32, we should clear the upper 32 bits of t1, but
 840		 * sign-extension is sufficient here and saves one instruction,
 841		 * as t1 is used only in comparison against zero.
 842		 */
 843		if (!is64 && imm < 0)
 844			emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
 845		e = ctx->ninsns;
 846		rvoff -= ninsns_rvoff(e - s);
 847		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
 848		break;
 849
 850	/* function call */
 851	case BPF_JMP | BPF_CALL:
 852	{
 853		bool fixed;
 854		u64 addr;
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856		mark_call(ctx);
 857		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
 858					    &fixed);
 859		if (ret < 0)
 860			return ret;
 861		ret = emit_call(fixed, addr, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862		if (ret)
 863			return ret;
 
 
 
 864		break;
 865	}
 866	/* tail call */
 867	case BPF_JMP | BPF_TAIL_CALL:
 868		if (emit_bpf_tail_call(i, ctx))
 869			return -1;
 870		break;
 871
 872	/* function return */
 873	case BPF_JMP | BPF_EXIT:
 874		if (i == ctx->prog->len - 1)
 875			break;
 876
 877		rvoff = epilogue_offset(ctx);
 878		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
 879		if (ret)
 880			return ret;
 881		break;
 882
 883	/* dst = imm64 */
 884	case BPF_LD | BPF_IMM | BPF_DW:
 885	{
 886		struct bpf_insn insn1 = insn[1];
 887		u64 imm64;
 888
 889		imm64 = (u64)insn1.imm << 32 | (u32)imm;
 890		emit_imm(rd, imm64, ctx);
 
 
 
 
 
 
 
 
 891		return 1;
 892	}
 893
 894	/* LDX: dst = *(size *)(src + off) */
 895	case BPF_LDX | BPF_MEM | BPF_B:
 896		if (is_12b_int(off)) {
 897			emit(rv_lbu(rd, off, rs), ctx);
 898			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899		}
 900
 901		emit_imm(RV_REG_T1, off, ctx);
 902		emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
 903		emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
 904		if (insn_is_zext(&insn[1]))
 905			return 1;
 906		break;
 907	case BPF_LDX | BPF_MEM | BPF_H:
 908		if (is_12b_int(off)) {
 909			emit(rv_lhu(rd, off, rs), ctx);
 
 
 
 
 
 
 
 
 
 
 
 910			break;
 911		}
 
 
 
 
 
 
 
 
 
 912
 913		emit_imm(RV_REG_T1, off, ctx);
 914		emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
 915		emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
 916		if (insn_is_zext(&insn[1]))
 917			return 1;
 918		break;
 919	case BPF_LDX | BPF_MEM | BPF_W:
 920		if (is_12b_int(off)) {
 921			emit(rv_lwu(rd, off, rs), ctx);
 922			break;
 923		}
 
 
 
 
 
 
 
 
 
 924
 925		emit_imm(RV_REG_T1, off, ctx);
 926		emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
 927		emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
 928		if (insn_is_zext(&insn[1]))
 929			return 1;
 930		break;
 931	case BPF_LDX | BPF_MEM | BPF_DW:
 932		if (is_12b_int(off)) {
 933			emit_ld(rd, off, rs, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 934			break;
 935		}
 936
 937		emit_imm(RV_REG_T1, off, ctx);
 938		emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
 939		emit_ld(rd, 0, RV_REG_T1, ctx);
 
 
 
 
 
 
 
 940		break;
 941
 942	/* ST: *(size *)(dst + off) = imm */
 943	case BPF_ST | BPF_MEM | BPF_B:
 944		emit_imm(RV_REG_T1, imm, ctx);
 945		if (is_12b_int(off)) {
 946			emit(rv_sb(rd, off, RV_REG_T1), ctx);
 947			break;
 948		}
 949
 950		emit_imm(RV_REG_T2, off, ctx);
 951		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
 952		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
 953		break;
 954
 955	case BPF_ST | BPF_MEM | BPF_H:
 956		emit_imm(RV_REG_T1, imm, ctx);
 957		if (is_12b_int(off)) {
 958			emit(rv_sh(rd, off, RV_REG_T1), ctx);
 959			break;
 960		}
 961
 962		emit_imm(RV_REG_T2, off, ctx);
 963		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
 964		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
 965		break;
 966	case BPF_ST | BPF_MEM | BPF_W:
 967		emit_imm(RV_REG_T1, imm, ctx);
 968		if (is_12b_int(off)) {
 969			emit_sw(rd, off, RV_REG_T1, ctx);
 970			break;
 971		}
 972
 973		emit_imm(RV_REG_T2, off, ctx);
 974		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
 975		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
 976		break;
 977	case BPF_ST | BPF_MEM | BPF_DW:
 978		emit_imm(RV_REG_T1, imm, ctx);
 979		if (is_12b_int(off)) {
 980			emit_sd(rd, off, RV_REG_T1, ctx);
 981			break;
 982		}
 983
 984		emit_imm(RV_REG_T2, off, ctx);
 985		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
 986		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
 987		break;
 988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	/* STX: *(size *)(dst + off) = src */
 990	case BPF_STX | BPF_MEM | BPF_B:
 991		if (is_12b_int(off)) {
 992			emit(rv_sb(rd, off, rs), ctx);
 993			break;
 994		}
 995
 996		emit_imm(RV_REG_T1, off, ctx);
 997		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
 998		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
 999		break;
1000	case BPF_STX | BPF_MEM | BPF_H:
1001		if (is_12b_int(off)) {
1002			emit(rv_sh(rd, off, rs), ctx);
1003			break;
1004		}
1005
1006		emit_imm(RV_REG_T1, off, ctx);
1007		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1008		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1009		break;
1010	case BPF_STX | BPF_MEM | BPF_W:
1011		if (is_12b_int(off)) {
1012			emit_sw(rd, off, rs, ctx);
1013			break;
1014		}
1015
1016		emit_imm(RV_REG_T1, off, ctx);
1017		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1018		emit_sw(RV_REG_T1, 0, rs, ctx);
1019		break;
1020	case BPF_STX | BPF_MEM | BPF_DW:
1021		if (is_12b_int(off)) {
1022			emit_sd(rd, off, rs, ctx);
1023			break;
1024		}
1025
1026		emit_imm(RV_REG_T1, off, ctx);
1027		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1028		emit_sd(RV_REG_T1, 0, rs, ctx);
1029		break;
1030	/* STX XADD: lock *(u32 *)(dst + off) += src */
1031	case BPF_STX | BPF_XADD | BPF_W:
1032	/* STX XADD: lock *(u64 *)(dst + off) += src */
1033	case BPF_STX | BPF_XADD | BPF_DW:
1034		if (off) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1035			if (is_12b_int(off)) {
1036				emit_addi(RV_REG_T1, rd, off, ctx);
1037			} else {
1038				emit_imm(RV_REG_T1, off, ctx);
1039				emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040			}
1041
1042			rd = RV_REG_T1;
 
 
 
 
 
1043		}
1044
1045		emit(BPF_SIZE(code) == BPF_W ?
1046		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) :
1047		     rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx);
 
 
1048		break;
 
 
1049	default:
1050		pr_err("bpf-jit: unknown opcode %02x\n", code);
1051		return -EINVAL;
1052	}
1053
1054	return 0;
1055}
1056
1057void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1058{
1059	int stack_adjust = 0, store_offset, bpf_stack_adjust;
1060
1061	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1062	if (bpf_stack_adjust)
1063		mark_fp(ctx);
1064
1065	if (seen_reg(RV_REG_RA, ctx))
1066		stack_adjust += 8;
1067	stack_adjust += 8; /* RV_REG_FP */
1068	if (seen_reg(RV_REG_S1, ctx))
1069		stack_adjust += 8;
1070	if (seen_reg(RV_REG_S2, ctx))
1071		stack_adjust += 8;
1072	if (seen_reg(RV_REG_S3, ctx))
1073		stack_adjust += 8;
1074	if (seen_reg(RV_REG_S4, ctx))
1075		stack_adjust += 8;
1076	if (seen_reg(RV_REG_S5, ctx))
1077		stack_adjust += 8;
1078	if (seen_reg(RV_REG_S6, ctx))
1079		stack_adjust += 8;
 
 
1080
1081	stack_adjust = round_up(stack_adjust, 16);
1082	stack_adjust += bpf_stack_adjust;
1083
1084	store_offset = stack_adjust - 8;
1085
 
 
 
 
 
 
 
1086	/* First instruction is always setting the tail-call-counter
1087	 * (TCC) register. This instruction is skipped for tail calls.
1088	 * Force using a 4-byte (non-compressed) instruction.
1089	 */
1090	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1091
1092	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1093
1094	if (seen_reg(RV_REG_RA, ctx)) {
1095		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1096		store_offset -= 8;
1097	}
1098	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1099	store_offset -= 8;
1100	if (seen_reg(RV_REG_S1, ctx)) {
1101		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1102		store_offset -= 8;
1103	}
1104	if (seen_reg(RV_REG_S2, ctx)) {
1105		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1106		store_offset -= 8;
1107	}
1108	if (seen_reg(RV_REG_S3, ctx)) {
1109		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1110		store_offset -= 8;
1111	}
1112	if (seen_reg(RV_REG_S4, ctx)) {
1113		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1114		store_offset -= 8;
1115	}
1116	if (seen_reg(RV_REG_S5, ctx)) {
1117		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1118		store_offset -= 8;
1119	}
1120	if (seen_reg(RV_REG_S6, ctx)) {
1121		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1122		store_offset -= 8;
1123	}
 
 
 
 
1124
1125	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1126
1127	if (bpf_stack_adjust)
1128		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1129
1130	/* Program contains calls and tail calls, so RV_REG_TCC need
1131	 * to be saved across calls.
1132	 */
1133	if (seen_tail_call(ctx) && seen_call(ctx))
1134		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1135
1136	ctx->stack_size = stack_adjust;
 
 
 
1137}
1138
1139void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1140{
1141	__build_epilogue(false, ctx);
1142}
1143
1144void *bpf_jit_alloc_exec(unsigned long size)
1145{
1146	return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
1147				    BPF_JIT_REGION_END, GFP_KERNEL,
1148				    PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
1149				    __builtin_return_address(0));
1150}
1151
1152void bpf_jit_free_exec(void *addr)
1153{
1154	return vfree(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* BPF JIT compiler for RV64G
   3 *
   4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
   5 *
   6 */
   7
   8#include <linux/bitfield.h>
   9#include <linux/bpf.h>
  10#include <linux/filter.h>
  11#include <linux/memory.h>
  12#include <linux/stop_machine.h>
  13#include <asm/text-patching.h>
  14#include <asm/cfi.h>
  15#include <asm/percpu.h>
  16#include "bpf_jit.h"
  17
  18#define RV_MAX_REG_ARGS 8
  19#define RV_FENTRY_NINSNS 2
  20#define RV_FENTRY_NBYTES (RV_FENTRY_NINSNS * 4)
  21#define RV_KCFI_NINSNS (IS_ENABLED(CONFIG_CFI_CLANG) ? 1 : 0)
  22/* imm that allows emit_imm to emit max count insns */
  23#define RV_MAX_COUNT_IMM 0x7FFF7FF7FF7FF7FF
  24
  25#define RV_REG_TCC RV_REG_A6
  26#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
  27#define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
  28
  29static const int regmap[] = {
  30	[BPF_REG_0] =	RV_REG_A5,
  31	[BPF_REG_1] =	RV_REG_A0,
  32	[BPF_REG_2] =	RV_REG_A1,
  33	[BPF_REG_3] =	RV_REG_A2,
  34	[BPF_REG_4] =	RV_REG_A3,
  35	[BPF_REG_5] =	RV_REG_A4,
  36	[BPF_REG_6] =	RV_REG_S1,
  37	[BPF_REG_7] =	RV_REG_S2,
  38	[BPF_REG_8] =	RV_REG_S3,
  39	[BPF_REG_9] =	RV_REG_S4,
  40	[BPF_REG_FP] =	RV_REG_S5,
  41	[BPF_REG_AX] =	RV_REG_T0,
  42};
  43
  44static const int pt_regmap[] = {
  45	[RV_REG_A0] = offsetof(struct pt_regs, a0),
  46	[RV_REG_A1] = offsetof(struct pt_regs, a1),
  47	[RV_REG_A2] = offsetof(struct pt_regs, a2),
  48	[RV_REG_A3] = offsetof(struct pt_regs, a3),
  49	[RV_REG_A4] = offsetof(struct pt_regs, a4),
  50	[RV_REG_A5] = offsetof(struct pt_regs, a5),
  51	[RV_REG_S1] = offsetof(struct pt_regs, s1),
  52	[RV_REG_S2] = offsetof(struct pt_regs, s2),
  53	[RV_REG_S3] = offsetof(struct pt_regs, s3),
  54	[RV_REG_S4] = offsetof(struct pt_regs, s4),
  55	[RV_REG_S5] = offsetof(struct pt_regs, s5),
  56	[RV_REG_T0] = offsetof(struct pt_regs, t0),
  57};
  58
  59enum {
  60	RV_CTX_F_SEEN_TAIL_CALL =	0,
  61	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
  62	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
  63	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
  64	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
  65	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
  66	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
  67	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
  68};
  69
  70static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
  71{
  72	u8 reg = regmap[bpf_reg];
  73
  74	switch (reg) {
  75	case RV_CTX_F_SEEN_S1:
  76	case RV_CTX_F_SEEN_S2:
  77	case RV_CTX_F_SEEN_S3:
  78	case RV_CTX_F_SEEN_S4:
  79	case RV_CTX_F_SEEN_S5:
  80	case RV_CTX_F_SEEN_S6:
  81		__set_bit(reg, &ctx->flags);
  82	}
  83	return reg;
  84};
  85
  86static bool seen_reg(int reg, struct rv_jit_context *ctx)
  87{
  88	switch (reg) {
  89	case RV_CTX_F_SEEN_CALL:
  90	case RV_CTX_F_SEEN_S1:
  91	case RV_CTX_F_SEEN_S2:
  92	case RV_CTX_F_SEEN_S3:
  93	case RV_CTX_F_SEEN_S4:
  94	case RV_CTX_F_SEEN_S5:
  95	case RV_CTX_F_SEEN_S6:
  96		return test_bit(reg, &ctx->flags);
  97	}
  98	return false;
  99}
 100
 101static void mark_fp(struct rv_jit_context *ctx)
 102{
 103	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
 104}
 105
 106static void mark_call(struct rv_jit_context *ctx)
 107{
 108	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
 109}
 110
 111static bool seen_call(struct rv_jit_context *ctx)
 112{
 113	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
 114}
 115
 116static void mark_tail_call(struct rv_jit_context *ctx)
 117{
 118	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
 119}
 120
 121static bool seen_tail_call(struct rv_jit_context *ctx)
 122{
 123	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
 124}
 125
 126static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
 127{
 128	mark_tail_call(ctx);
 129
 130	if (seen_call(ctx)) {
 131		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
 132		return RV_REG_S6;
 133	}
 134	return RV_REG_A6;
 135}
 136
 137static bool is_32b_int(s64 val)
 138{
 139	return -(1L << 31) <= val && val < (1L << 31);
 140}
 141
 142static bool in_auipc_jalr_range(s64 val)
 143{
 144	/*
 145	 * auipc+jalr can reach any signed PC-relative offset in the range
 146	 * [-2^31 - 2^11, 2^31 - 2^11).
 147	 */
 148	return (-(1L << 31) - (1L << 11)) <= val &&
 149		val < ((1L << 31) - (1L << 11));
 150}
 151
 152/* Modify rd pointer to alternate reg to avoid corrupting original reg */
 153static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
 154{
 155	emit_sextw(ra, *rd, ctx);
 156	*rd = ra;
 157}
 158
 159static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
 160{
 161	emit_zextw(ra, *rd, ctx);
 162	*rd = ra;
 163}
 164
 165/* Emit fixed-length instructions for address */
 166static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
 167{
 168	/*
 169	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
 170	 * finally run from this memory region.
 171	 */
 172	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
 173	s64 off = addr - ip;
 174	s64 upper = (off + (1 << 11)) >> 12;
 175	s64 lower = off & 0xfff;
 176
 177	if (extra_pass && !in_auipc_jalr_range(off)) {
 178		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
 179		return -ERANGE;
 180	}
 181
 182	emit(rv_auipc(rd, upper), ctx);
 183	emit(rv_addi(rd, rd, lower), ctx);
 184	return 0;
 185}
 186
 187/* Emit variable-length instructions for 32-bit and 64-bit imm */
 188static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
 189{
 190	/* Note that the immediate from the add is sign-extended,
 191	 * which means that we need to compensate this by adding 2^12,
 192	 * when the 12th bit is set. A simpler way of doing this, and
 193	 * getting rid of the check, is to just add 2**11 before the
 194	 * shift. The "Loading a 32-Bit constant" example from the
 195	 * "Computer Organization and Design, RISC-V edition" book by
 196	 * Patterson/Hennessy highlights this fact.
 197	 *
 198	 * This also means that we need to process LSB to MSB.
 199	 */
 200	s64 upper = (val + (1 << 11)) >> 12;
 201	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
 202	 * and addi are signed and RVC checks will perform signed comparisons.
 203	 */
 204	s64 lower = ((val & 0xfff) << 52) >> 52;
 205	int shift;
 206
 207	if (is_32b_int(val)) {
 208		if (upper)
 209			emit_lui(rd, upper, ctx);
 210
 211		if (!upper) {
 212			emit_li(rd, lower, ctx);
 213			return;
 214		}
 215
 216		emit_addiw(rd, rd, lower, ctx);
 217		return;
 218	}
 219
 220	shift = __ffs(upper);
 221	upper >>= shift;
 222	shift += 12;
 223
 224	emit_imm(rd, upper, ctx);
 225
 226	emit_slli(rd, rd, shift, ctx);
 227	if (lower)
 228		emit_addi(rd, rd, lower, ctx);
 229}
 230
 231static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
 232{
 233	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
 234
 235	if (seen_reg(RV_REG_RA, ctx)) {
 236		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
 237		store_offset -= 8;
 238	}
 239	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
 240	store_offset -= 8;
 241	if (seen_reg(RV_REG_S1, ctx)) {
 242		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
 243		store_offset -= 8;
 244	}
 245	if (seen_reg(RV_REG_S2, ctx)) {
 246		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
 247		store_offset -= 8;
 248	}
 249	if (seen_reg(RV_REG_S3, ctx)) {
 250		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
 251		store_offset -= 8;
 252	}
 253	if (seen_reg(RV_REG_S4, ctx)) {
 254		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
 255		store_offset -= 8;
 256	}
 257	if (seen_reg(RV_REG_S5, ctx)) {
 258		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
 259		store_offset -= 8;
 260	}
 261	if (seen_reg(RV_REG_S6, ctx)) {
 262		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
 263		store_offset -= 8;
 264	}
 265	if (ctx->arena_vm_start) {
 266		emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
 267		store_offset -= 8;
 268	}
 269
 270	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
 271	/* Set return value. */
 272	if (!is_tail_call)
 273		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
 274	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
 275		  /* kcfi, fentry and TCC init insns will be skipped on tailcall */
 276		  is_tail_call ? (RV_KCFI_NINSNS + RV_FENTRY_NINSNS + 1) * 4 : 0,
 277		  ctx);
 278}
 279
 280static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
 281		     struct rv_jit_context *ctx)
 282{
 283	switch (cond) {
 284	case BPF_JEQ:
 285		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
 286		return;
 287	case BPF_JGT:
 288		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
 289		return;
 290	case BPF_JLT:
 291		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
 292		return;
 293	case BPF_JGE:
 294		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
 295		return;
 296	case BPF_JLE:
 297		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
 298		return;
 299	case BPF_JNE:
 300		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
 301		return;
 302	case BPF_JSGT:
 303		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
 304		return;
 305	case BPF_JSLT:
 306		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
 307		return;
 308	case BPF_JSGE:
 309		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
 310		return;
 311	case BPF_JSLE:
 312		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
 313	}
 314}
 315
 316static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
 317			struct rv_jit_context *ctx)
 318{
 319	s64 upper, lower;
 320
 321	if (is_13b_int(rvoff)) {
 322		emit_bcc(cond, rd, rs, rvoff, ctx);
 323		return;
 324	}
 325
 326	/* Adjust for jal */
 327	rvoff -= 4;
 328
 329	/* Transform, e.g.:
 330	 *   bne rd,rs,foo
 331	 * to
 332	 *   beq rd,rs,<.L1>
 333	 *   (auipc foo)
 334	 *   jal(r) foo
 335	 * .L1
 336	 */
 337	cond = invert_bpf_cond(cond);
 338	if (is_21b_int(rvoff)) {
 339		emit_bcc(cond, rd, rs, 8, ctx);
 340		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
 341		return;
 342	}
 343
 344	/* 32b No need for an additional rvoff adjustment, since we
 345	 * get that from the auipc at PC', where PC = PC' + 4.
 346	 */
 347	upper = (rvoff + (1 << 11)) >> 12;
 348	lower = rvoff & 0xfff;
 349
 350	emit_bcc(cond, rd, rs, 12, ctx);
 351	emit(rv_auipc(RV_REG_T1, upper), ctx);
 352	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
 353}
 354
 
 
 
 
 
 
 355static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
 356{
 357	int tc_ninsn, off, start_insn = ctx->ninsns;
 358	u8 tcc = rv_tail_call_reg(ctx);
 359
 360	/* a0: &ctx
 361	 * a1: &array
 362	 * a2: index
 363	 *
 364	 * if (index >= array->map.max_entries)
 365	 *	goto out;
 366	 */
 367	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
 368		   ctx->offset[0];
 369	emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
 370
 371	off = offsetof(struct bpf_array, map.max_entries);
 372	if (is_12b_check(off, insn))
 373		return -1;
 374	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
 375	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 376	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
 377
 378	/* if (--TCC < 0)
 379	 *     goto out;
 380	 */
 381	emit_addi(RV_REG_TCC, tcc, -1, ctx);
 382	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 383	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
 384
 385	/* prog = array->ptrs[index];
 386	 * if (!prog)
 387	 *     goto out;
 388	 */
 389	emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
 
 390	off = offsetof(struct bpf_array, ptrs);
 391	if (is_12b_check(off, insn))
 392		return -1;
 393	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
 394	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
 395	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
 396
 397	/* goto *(prog->bpf_func + 4); */
 398	off = offsetof(struct bpf_prog, bpf_func);
 399	if (is_12b_check(off, insn))
 400		return -1;
 401	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
 
 402	__build_epilogue(true, ctx);
 403	return 0;
 404}
 405
 406static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
 407		      struct rv_jit_context *ctx)
 408{
 409	u8 code = insn->code;
 410
 411	switch (code) {
 412	case BPF_JMP | BPF_JA:
 413	case BPF_JMP | BPF_CALL:
 414	case BPF_JMP | BPF_EXIT:
 415	case BPF_JMP | BPF_TAIL_CALL:
 416		break;
 417	default:
 418		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
 419	}
 420
 421	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
 422	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
 423	    code & BPF_LDX || code & BPF_STX)
 424		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
 425}
 426
 427static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428			      struct rv_jit_context *ctx)
 429{
 430	s64 upper, lower;
 431
 432	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
 433		emit(rv_jal(rd, rvoff >> 1), ctx);
 434		return 0;
 435	} else if (in_auipc_jalr_range(rvoff)) {
 436		upper = (rvoff + (1 << 11)) >> 12;
 437		lower = rvoff & 0xfff;
 438		emit(rv_auipc(RV_REG_T1, upper), ctx);
 439		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
 440		return 0;
 441	}
 442
 443	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
 444	return -ERANGE;
 445}
 446
 447static bool is_signed_bpf_cond(u8 cond)
 448{
 449	return cond == BPF_JSGT || cond == BPF_JSLT ||
 450		cond == BPF_JSGE || cond == BPF_JSLE;
 451}
 452
 453static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
 454{
 455	s64 off = 0;
 456	u64 ip;
 
 
 457
 458	if (addr && ctx->insns && ctx->ro_insns) {
 459		/*
 460		 * Use the ro_insns(RX) to calculate the offset as the BPF
 461		 * program will finally run from this memory region.
 462		 */
 463		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
 464		off = addr - ip;
 465	}
 466
 467	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
 468}
 469
 470static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
 471{
 472	if (IS_ENABLED(CONFIG_CFI_CLANG))
 473		emit(hash, ctx);
 474}
 475
 476static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
 477			struct rv_jit_context *ctx)
 478{
 479	u8 r0;
 480	int jmp_offset;
 481
 482	if (off) {
 483		if (is_12b_int(off)) {
 484			emit_addi(RV_REG_T1, rd, off, ctx);
 485		} else {
 486			emit_imm(RV_REG_T1, off, ctx);
 487			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
 488		}
 489		rd = RV_REG_T1;
 490	}
 491
 492	switch (imm) {
 493	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
 494	case BPF_ADD:
 495		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
 496		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
 497		break;
 498	case BPF_AND:
 499		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
 500		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
 501		break;
 502	case BPF_OR:
 503		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
 504		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
 505		break;
 506	case BPF_XOR:
 507		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
 508		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
 509		break;
 510	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
 511	case BPF_ADD | BPF_FETCH:
 512		emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
 513		     rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
 514		if (!is64)
 515			emit_zextw(rs, rs, ctx);
 516		break;
 517	case BPF_AND | BPF_FETCH:
 518		emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
 519		     rv_amoand_w(rs, rs, rd, 1, 1), ctx);
 520		if (!is64)
 521			emit_zextw(rs, rs, ctx);
 522		break;
 523	case BPF_OR | BPF_FETCH:
 524		emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
 525		     rv_amoor_w(rs, rs, rd, 1, 1), ctx);
 526		if (!is64)
 527			emit_zextw(rs, rs, ctx);
 528		break;
 529	case BPF_XOR | BPF_FETCH:
 530		emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
 531		     rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
 532		if (!is64)
 533			emit_zextw(rs, rs, ctx);
 534		break;
 535	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
 536	case BPF_XCHG:
 537		emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
 538		     rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
 539		if (!is64)
 540			emit_zextw(rs, rs, ctx);
 541		break;
 542	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
 543	case BPF_CMPXCHG:
 544		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
 545		if (is64)
 546			emit_mv(RV_REG_T2, r0, ctx);
 547		else
 548			emit_addiw(RV_REG_T2, r0, 0, ctx);
 549		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
 550		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
 551		jmp_offset = ninsns_rvoff(8);
 552		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
 553		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 1) :
 554		     rv_sc_w(RV_REG_T3, rs, rd, 0, 1), ctx);
 555		jmp_offset = ninsns_rvoff(-6);
 556		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
 557		emit(rv_fence(0x3, 0x3), ctx);
 558		break;
 559	}
 560}
 561
 562#define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
 563#define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
 564#define REG_DONT_CLEAR_MARKER	0	/* RV_REG_ZERO unused in pt_regmap */
 565
 566bool ex_handler_bpf(const struct exception_table_entry *ex,
 567		    struct pt_regs *regs)
 568{
 569	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
 570	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
 571
 572	if (regs_offset != REG_DONT_CLEAR_MARKER)
 573		*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
 574	regs->epc = (unsigned long)&ex->fixup - offset;
 575
 576	return true;
 577}
 578
 579/* For accesses to BTF pointers, add an entry to the exception table */
 580static int add_exception_handler(const struct bpf_insn *insn,
 581				 struct rv_jit_context *ctx,
 582				 int dst_reg, int insn_len)
 583{
 584	struct exception_table_entry *ex;
 585	unsigned long pc;
 586	off_t ins_offset;
 587	off_t fixup_offset;
 588
 589	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
 590	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
 591	     BPF_MODE(insn->code) != BPF_PROBE_MEM32))
 592		return 0;
 593
 594	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
 595		return -EINVAL;
 596
 597	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
 598		return -EINVAL;
 599
 600	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
 601		return -EINVAL;
 602
 603	ex = &ctx->prog->aux->extable[ctx->nexentries];
 604	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
 605
 606	/*
 607	 * This is the relative offset of the instruction that may fault from
 608	 * the exception table itself. This will be written to the exception
 609	 * table and if this instruction faults, the destination register will
 610	 * be set to '0' and the execution will jump to the next instruction.
 611	 */
 612	ins_offset = pc - (long)&ex->insn;
 613	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
 614		return -ERANGE;
 615
 616	/*
 617	 * Since the extable follows the program, the fixup offset is always
 618	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
 619	 * to keep things simple, and put the destination register in the upper
 620	 * bits. We don't need to worry about buildtime or runtime sort
 621	 * modifying the upper bits because the table is already sorted, and
 622	 * isn't part of the main exception table.
 623	 *
 624	 * The fixup_offset is set to the next instruction from the instruction
 625	 * that may fault. The execution will jump to this after handling the
 626	 * fault.
 627	 */
 628	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
 629	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
 630		return -ERANGE;
 631
 632	/*
 633	 * The offsets above have been calculated using the RO buffer but we
 634	 * need to use the R/W buffer for writes.
 635	 * switch ex to rw buffer for writing.
 636	 */
 637	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
 638
 639	ex->insn = ins_offset;
 640
 641	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
 642		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
 643	ex->type = EX_TYPE_BPF;
 644
 645	ctx->nexentries++;
 646	return 0;
 647}
 648
 649static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
 650{
 651	s64 rvoff;
 652	struct rv_jit_context ctx;
 653
 654	ctx.ninsns = 0;
 655	ctx.insns = (u16 *)insns;
 656
 657	if (!target) {
 658		emit(rv_nop(), &ctx);
 659		emit(rv_nop(), &ctx);
 660		return 0;
 661	}
 662
 663	rvoff = (s64)(target - ip);
 664	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
 665}
 666
 667int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
 668		       void *old_addr, void *new_addr)
 669{
 670	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
 671	bool is_call = poke_type == BPF_MOD_CALL;
 672	int ret;
 673
 674	if (!is_kernel_text((unsigned long)ip) &&
 675	    !is_bpf_text_address((unsigned long)ip))
 676		return -ENOTSUPP;
 677
 678	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
 679	if (ret)
 680		return ret;
 681
 682	if (memcmp(ip, old_insns, RV_FENTRY_NBYTES))
 683		return -EFAULT;
 684
 685	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
 686	if (ret)
 687		return ret;
 688
 689	cpus_read_lock();
 690	mutex_lock(&text_mutex);
 691	if (memcmp(ip, new_insns, RV_FENTRY_NBYTES))
 692		ret = patch_text(ip, new_insns, RV_FENTRY_NBYTES);
 693	mutex_unlock(&text_mutex);
 694	cpus_read_unlock();
 695
 696	return ret;
 697}
 698
 699static void store_args(int nr_arg_slots, int args_off, struct rv_jit_context *ctx)
 700{
 701	int i;
 702
 703	for (i = 0; i < nr_arg_slots; i++) {
 704		if (i < RV_MAX_REG_ARGS) {
 705			emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
 706		} else {
 707			/* skip slots for T0 and FP of traced function */
 708			emit_ld(RV_REG_T1, 16 + (i - RV_MAX_REG_ARGS) * 8, RV_REG_FP, ctx);
 709			emit_sd(RV_REG_FP, -args_off, RV_REG_T1, ctx);
 710		}
 711		args_off -= 8;
 712	}
 713}
 714
 715static void restore_args(int nr_reg_args, int args_off, struct rv_jit_context *ctx)
 716{
 717	int i;
 718
 719	for (i = 0; i < nr_reg_args; i++) {
 720		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
 721		args_off -= 8;
 722	}
 723}
 724
 725static void restore_stack_args(int nr_stack_args, int args_off, int stk_arg_off,
 726			       struct rv_jit_context *ctx)
 727{
 728	int i;
 729
 730	for (i = 0; i < nr_stack_args; i++) {
 731		emit_ld(RV_REG_T1, -(args_off - RV_MAX_REG_ARGS * 8), RV_REG_FP, ctx);
 732		emit_sd(RV_REG_FP, -stk_arg_off, RV_REG_T1, ctx);
 733		args_off -= 8;
 734		stk_arg_off -= 8;
 735	}
 736}
 737
 738static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
 739			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
 740{
 741	int ret, branch_off;
 742	struct bpf_prog *p = l->link.prog;
 743	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
 744
 745	if (l->cookie) {
 746		emit_imm(RV_REG_T1, l->cookie, ctx);
 747		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
 748	} else {
 749		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
 750	}
 751
 752	/* arg1: prog */
 753	emit_imm(RV_REG_A0, (const s64)p, ctx);
 754	/* arg2: &run_ctx */
 755	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
 756	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
 757	if (ret)
 758		return ret;
 759
 760	/* store prog start time */
 761	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
 762
 763	/* if (__bpf_prog_enter(prog) == 0)
 764	 *	goto skip_exec_of_prog;
 765	 */
 766	branch_off = ctx->ninsns;
 767	/* nop reserved for conditional jump */
 768	emit(rv_nop(), ctx);
 769
 770	/* arg1: &args_off */
 771	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
 772	if (!p->jited)
 773		/* arg2: progs[i]->insnsi for interpreter */
 774		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
 775	ret = emit_call((const u64)p->bpf_func, true, ctx);
 776	if (ret)
 777		return ret;
 778
 779	if (save_ret) {
 780		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
 781		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
 782	}
 783
 784	/* update branch with beqz */
 785	if (ctx->insns) {
 786		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
 787		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
 788		*(u32 *)(ctx->insns + branch_off) = insn;
 789	}
 790
 791	/* arg1: prog */
 792	emit_imm(RV_REG_A0, (const s64)p, ctx);
 793	/* arg2: prog start time */
 794	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
 795	/* arg3: &run_ctx */
 796	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
 797	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
 798
 799	return ret;
 800}
 801
 802static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
 803					 const struct btf_func_model *m,
 804					 struct bpf_tramp_links *tlinks,
 805					 void *func_addr, u32 flags,
 806					 struct rv_jit_context *ctx)
 807{
 808	int i, ret, offset;
 809	int *branches_off = NULL;
 810	int stack_size = 0, nr_arg_slots = 0;
 811	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off, stk_arg_off;
 812	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
 813	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
 814	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
 815	bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
 816	void *orig_call = func_addr;
 817	bool save_ret;
 818	u32 insn;
 819
 820	/* Two types of generated trampoline stack layout:
 821	 *
 822	 * 1. trampoline called from function entry
 823	 * --------------------------------------
 824	 * FP + 8	    [ RA to parent func	] return address to parent
 825	 *					  function
 826	 * FP + 0	    [ FP of parent func ] frame pointer of parent
 827	 *					  function
 828	 * FP - 8           [ T0 to traced func ] return address of traced
 829	 *					  function
 830	 * FP - 16	    [ FP of traced func ] frame pointer of traced
 831	 *					  function
 832	 * --------------------------------------
 833	 *
 834	 * 2. trampoline called directly
 835	 * --------------------------------------
 836	 * FP - 8	    [ RA to caller func ] return address to caller
 837	 *					  function
 838	 * FP - 16	    [ FP of caller func	] frame pointer of caller
 839	 *					  function
 840	 * --------------------------------------
 841	 *
 842	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
 843	 *					  BPF_TRAMP_F_RET_FENTRY_RET
 844	 *                  [ argN              ]
 845	 *                  [ ...               ]
 846	 * FP - args_off    [ arg1              ]
 847	 *
 848	 * FP - nregs_off   [ regs count        ]
 849	 *
 850	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
 851	 *
 852	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
 853	 *
 854	 * FP - sreg_off    [ callee saved reg	]
 855	 *
 856	 *		    [ pads              ] pads for 16 bytes alignment
 857	 *
 858	 *		    [ stack_argN        ]
 859	 *		    [ ...               ]
 860	 * FP - stk_arg_off [ stack_arg1        ] BPF_TRAMP_F_CALL_ORIG
 861	 */
 862
 863	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
 864		return -ENOTSUPP;
 865
 866	if (m->nr_args > MAX_BPF_FUNC_ARGS)
 867		return -ENOTSUPP;
 868
 869	for (i = 0; i < m->nr_args; i++)
 870		nr_arg_slots += round_up(m->arg_size[i], 8) / 8;
 871
 872	/* room of trampoline frame to store return address and frame pointer */
 873	stack_size += 16;
 874
 875	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
 876	if (save_ret) {
 877		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
 878		retval_off = stack_size;
 879	}
 880
 881	stack_size += nr_arg_slots * 8;
 882	args_off = stack_size;
 883
 884	stack_size += 8;
 885	nregs_off = stack_size;
 886
 887	if (flags & BPF_TRAMP_F_IP_ARG) {
 888		stack_size += 8;
 889		ip_off = stack_size;
 890	}
 891
 892	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
 893	run_ctx_off = stack_size;
 894
 895	stack_size += 8;
 896	sreg_off = stack_size;
 897
 898	if ((flags & BPF_TRAMP_F_CALL_ORIG) && (nr_arg_slots - RV_MAX_REG_ARGS > 0))
 899		stack_size += (nr_arg_slots - RV_MAX_REG_ARGS) * 8;
 900
 901	stack_size = round_up(stack_size, STACK_ALIGN);
 902
 903	/* room for args on stack must be at the top of stack */
 904	stk_arg_off = stack_size;
 905
 906	if (!is_struct_ops) {
 907		/* For the trampoline called from function entry,
 908		 * the frame of traced function and the frame of
 909		 * trampoline need to be considered.
 910		 */
 911		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
 912		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
 913		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
 914		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
 915
 916		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
 917		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
 918		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
 919		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
 920	} else {
 921		/* emit kcfi hash */
 922		emit_kcfi(cfi_get_func_hash(func_addr), ctx);
 923		/* For the trampoline called directly, just handle
 924		 * the frame of trampoline.
 925		 */
 926		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
 927		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
 928		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
 929		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
 930	}
 931
 932	/* callee saved register S1 to pass start time */
 933	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
 934
 935	/* store ip address of the traced function */
 936	if (flags & BPF_TRAMP_F_IP_ARG) {
 937		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
 938		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
 939	}
 940
 941	emit_li(RV_REG_T1, nr_arg_slots, ctx);
 942	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
 943
 944	store_args(nr_arg_slots, args_off, ctx);
 945
 946	/* skip to actual body of traced function */
 947	if (flags & BPF_TRAMP_F_SKIP_FRAME)
 948		orig_call += RV_FENTRY_NINSNS * 4;
 949
 950	if (flags & BPF_TRAMP_F_CALL_ORIG) {
 951		emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
 952		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
 953		if (ret)
 954			return ret;
 955	}
 956
 957	for (i = 0; i < fentry->nr_links; i++) {
 958		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
 959				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
 960		if (ret)
 961			return ret;
 962	}
 963
 964	if (fmod_ret->nr_links) {
 965		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
 966		if (!branches_off)
 967			return -ENOMEM;
 968
 969		/* cleanup to avoid garbage return value confusion */
 970		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
 971		for (i = 0; i < fmod_ret->nr_links; i++) {
 972			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
 973					      run_ctx_off, true, ctx);
 974			if (ret)
 975				goto out;
 976			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
 977			branches_off[i] = ctx->ninsns;
 978			/* nop reserved for conditional jump */
 979			emit(rv_nop(), ctx);
 980		}
 981	}
 982
 983	if (flags & BPF_TRAMP_F_CALL_ORIG) {
 984		restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
 985		restore_stack_args(nr_arg_slots - RV_MAX_REG_ARGS, args_off, stk_arg_off, ctx);
 986		ret = emit_call((const u64)orig_call, true, ctx);
 987		if (ret)
 988			goto out;
 989		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
 990		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
 991		im->ip_after_call = ctx->ro_insns + ctx->ninsns;
 992		/* 2 nops reserved for auipc+jalr pair */
 993		emit(rv_nop(), ctx);
 994		emit(rv_nop(), ctx);
 995	}
 996
 997	/* update branches saved in invoke_bpf_mod_ret with bnez */
 998	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
 999		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
1000		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
1001		*(u32 *)(ctx->insns + branches_off[i]) = insn;
1002	}
1003
1004	for (i = 0; i < fexit->nr_links; i++) {
1005		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
1006				      run_ctx_off, false, ctx);
1007		if (ret)
1008			goto out;
1009	}
1010
1011	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1012		im->ip_epilogue = ctx->ro_insns + ctx->ninsns;
1013		emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1014		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
1015		if (ret)
1016			goto out;
1017	}
1018
1019	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1020		restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1021
1022	if (save_ret) {
1023		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
1024		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
1025	}
1026
1027	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1028
1029	if (!is_struct_ops) {
1030		/* trampoline called from function entry */
1031		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1032		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1033		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1034
1035		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1036		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1037		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1038
1039		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1040			/* return to parent function */
1041			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1042		else
1043			/* return to traced function */
1044			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1045	} else {
1046		/* trampoline called directly */
1047		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1048		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1049		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1050
1051		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1052	}
1053
1054	ret = ctx->ninsns;
1055out:
1056	kfree(branches_off);
1057	return ret;
1058}
1059
1060int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1061			     struct bpf_tramp_links *tlinks, void *func_addr)
1062{
1063	struct bpf_tramp_image im;
1064	struct rv_jit_context ctx;
1065	int ret;
1066
1067	ctx.ninsns = 0;
1068	ctx.insns = NULL;
1069	ctx.ro_insns = NULL;
1070	ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1071
1072	return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1073}
1074
1075void *arch_alloc_bpf_trampoline(unsigned int size)
1076{
1077	return bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1078}
1079
1080void arch_free_bpf_trampoline(void *image, unsigned int size)
1081{
1082	bpf_prog_pack_free(image, size);
1083}
1084
1085int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
1086				void *ro_image_end, const struct btf_func_model *m,
1087				u32 flags, struct bpf_tramp_links *tlinks,
1088				void *func_addr)
1089{
1090	int ret;
1091	void *image, *res;
1092	struct rv_jit_context ctx;
1093	u32 size = ro_image_end - ro_image;
1094
1095	image = kvmalloc(size, GFP_KERNEL);
1096	if (!image)
1097		return -ENOMEM;
1098
1099	ctx.ninsns = 0;
1100	ctx.insns = image;
1101	ctx.ro_insns = ro_image;
1102	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1103	if (ret < 0)
1104		goto out;
1105
1106	if (WARN_ON(size < ninsns_rvoff(ctx.ninsns))) {
1107		ret = -E2BIG;
1108		goto out;
1109	}
1110
1111	res = bpf_arch_text_copy(ro_image, image, size);
1112	if (IS_ERR(res)) {
1113		ret = PTR_ERR(res);
1114		goto out;
1115	}
1116
1117	bpf_flush_icache(ro_image, ro_image_end);
1118out:
1119	kvfree(image);
1120	return ret < 0 ? ret : size;
1121}
1122
1123int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1124		      bool extra_pass)
1125{
1126	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1127		    BPF_CLASS(insn->code) == BPF_JMP;
1128	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1129	struct bpf_prog_aux *aux = ctx->prog->aux;
1130	u8 rd = -1, rs = -1, code = insn->code;
1131	s16 off = insn->off;
1132	s32 imm = insn->imm;
1133
1134	init_regs(&rd, &rs, insn, ctx);
1135
1136	switch (code) {
1137	/* dst = src */
1138	case BPF_ALU | BPF_MOV | BPF_X:
1139	case BPF_ALU64 | BPF_MOV | BPF_X:
1140		if (insn_is_cast_user(insn)) {
1141			emit_mv(RV_REG_T1, rs, ctx);
1142			emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1143			emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1144			emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1145			emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1146			emit_mv(rd, RV_REG_T1, ctx);
1147			break;
1148		} else if (insn_is_mov_percpu_addr(insn)) {
1149			if (rd != rs)
1150				emit_mv(rd, rs, ctx);
1151#ifdef CONFIG_SMP
1152			/* Load current CPU number in T1 */
1153			emit_ld(RV_REG_T1, offsetof(struct thread_info, cpu),
1154				RV_REG_TP, ctx);
1155			/* Load address of __per_cpu_offset array in T2 */
1156			emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1157			/* Get address of __per_cpu_offset[cpu] in T1 */
1158			emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1159			/* Load __per_cpu_offset[cpu] in T1 */
1160			emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1161			/* Add the offset to Rd */
1162			emit_add(rd, rd, RV_REG_T1, ctx);
1163#endif
1164		}
1165		if (imm == 1) {
1166			/* Special mov32 for zext */
1167			emit_zextw(rd, rd, ctx);
1168			break;
1169		}
1170		switch (insn->off) {
1171		case 0:
1172			emit_mv(rd, rs, ctx);
1173			break;
1174		case 8:
1175			emit_sextb(rd, rs, ctx);
1176			break;
1177		case 16:
1178			emit_sexth(rd, rs, ctx);
1179			break;
1180		case 32:
1181			emit_sextw(rd, rs, ctx);
1182			break;
1183		}
 
1184		if (!is64 && !aux->verifier_zext)
1185			emit_zextw(rd, rd, ctx);
1186		break;
1187
1188	/* dst = dst OP src */
1189	case BPF_ALU | BPF_ADD | BPF_X:
1190	case BPF_ALU64 | BPF_ADD | BPF_X:
1191		emit_add(rd, rd, rs, ctx);
1192		if (!is64 && !aux->verifier_zext)
1193			emit_zextw(rd, rd, ctx);
1194		break;
1195	case BPF_ALU | BPF_SUB | BPF_X:
1196	case BPF_ALU64 | BPF_SUB | BPF_X:
1197		if (is64)
1198			emit_sub(rd, rd, rs, ctx);
1199		else
1200			emit_subw(rd, rd, rs, ctx);
1201
1202		if (!is64 && !aux->verifier_zext)
1203			emit_zextw(rd, rd, ctx);
1204		break;
1205	case BPF_ALU | BPF_AND | BPF_X:
1206	case BPF_ALU64 | BPF_AND | BPF_X:
1207		emit_and(rd, rd, rs, ctx);
1208		if (!is64 && !aux->verifier_zext)
1209			emit_zextw(rd, rd, ctx);
1210		break;
1211	case BPF_ALU | BPF_OR | BPF_X:
1212	case BPF_ALU64 | BPF_OR | BPF_X:
1213		emit_or(rd, rd, rs, ctx);
1214		if (!is64 && !aux->verifier_zext)
1215			emit_zextw(rd, rd, ctx);
1216		break;
1217	case BPF_ALU | BPF_XOR | BPF_X:
1218	case BPF_ALU64 | BPF_XOR | BPF_X:
1219		emit_xor(rd, rd, rs, ctx);
1220		if (!is64 && !aux->verifier_zext)
1221			emit_zextw(rd, rd, ctx);
1222		break;
1223	case BPF_ALU | BPF_MUL | BPF_X:
1224	case BPF_ALU64 | BPF_MUL | BPF_X:
1225		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1226		if (!is64 && !aux->verifier_zext)
1227			emit_zextw(rd, rd, ctx);
1228		break;
1229	case BPF_ALU | BPF_DIV | BPF_X:
1230	case BPF_ALU64 | BPF_DIV | BPF_X:
1231		if (off)
1232			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1233		else
1234			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1235		if (!is64 && !aux->verifier_zext)
1236			emit_zextw(rd, rd, ctx);
1237		break;
1238	case BPF_ALU | BPF_MOD | BPF_X:
1239	case BPF_ALU64 | BPF_MOD | BPF_X:
1240		if (off)
1241			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1242		else
1243			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1244		if (!is64 && !aux->verifier_zext)
1245			emit_zextw(rd, rd, ctx);
1246		break;
1247	case BPF_ALU | BPF_LSH | BPF_X:
1248	case BPF_ALU64 | BPF_LSH | BPF_X:
1249		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1250		if (!is64 && !aux->verifier_zext)
1251			emit_zextw(rd, rd, ctx);
1252		break;
1253	case BPF_ALU | BPF_RSH | BPF_X:
1254	case BPF_ALU64 | BPF_RSH | BPF_X:
1255		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1256		if (!is64 && !aux->verifier_zext)
1257			emit_zextw(rd, rd, ctx);
1258		break;
1259	case BPF_ALU | BPF_ARSH | BPF_X:
1260	case BPF_ALU64 | BPF_ARSH | BPF_X:
1261		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1262		if (!is64 && !aux->verifier_zext)
1263			emit_zextw(rd, rd, ctx);
1264		break;
1265
1266	/* dst = -dst */
1267	case BPF_ALU | BPF_NEG:
1268	case BPF_ALU64 | BPF_NEG:
1269		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1270		if (!is64 && !aux->verifier_zext)
1271			emit_zextw(rd, rd, ctx);
1272		break;
1273
1274	/* dst = BSWAP##imm(dst) */
1275	case BPF_ALU | BPF_END | BPF_FROM_LE:
1276		switch (imm) {
1277		case 16:
1278			emit_zexth(rd, rd, ctx);
 
1279			break;
1280		case 32:
1281			if (!aux->verifier_zext)
1282				emit_zextw(rd, rd, ctx);
1283			break;
1284		case 64:
1285			/* Do nothing */
1286			break;
1287		}
1288		break;
 
1289	case BPF_ALU | BPF_END | BPF_FROM_BE:
1290	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1291		emit_bswap(rd, imm, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292		break;
1293
1294	/* dst = imm */
1295	case BPF_ALU | BPF_MOV | BPF_K:
1296	case BPF_ALU64 | BPF_MOV | BPF_K:
1297		emit_imm(rd, imm, ctx);
1298		if (!is64 && !aux->verifier_zext)
1299			emit_zextw(rd, rd, ctx);
1300		break;
1301
1302	/* dst = dst OP imm */
1303	case BPF_ALU | BPF_ADD | BPF_K:
1304	case BPF_ALU64 | BPF_ADD | BPF_K:
1305		if (is_12b_int(imm)) {
1306			emit_addi(rd, rd, imm, ctx);
1307		} else {
1308			emit_imm(RV_REG_T1, imm, ctx);
1309			emit_add(rd, rd, RV_REG_T1, ctx);
1310		}
1311		if (!is64 && !aux->verifier_zext)
1312			emit_zextw(rd, rd, ctx);
1313		break;
1314	case BPF_ALU | BPF_SUB | BPF_K:
1315	case BPF_ALU64 | BPF_SUB | BPF_K:
1316		if (is_12b_int(-imm)) {
1317			emit_addi(rd, rd, -imm, ctx);
1318		} else {
1319			emit_imm(RV_REG_T1, imm, ctx);
1320			emit_sub(rd, rd, RV_REG_T1, ctx);
1321		}
1322		if (!is64 && !aux->verifier_zext)
1323			emit_zextw(rd, rd, ctx);
1324		break;
1325	case BPF_ALU | BPF_AND | BPF_K:
1326	case BPF_ALU64 | BPF_AND | BPF_K:
1327		if (is_12b_int(imm)) {
1328			emit_andi(rd, rd, imm, ctx);
1329		} else {
1330			emit_imm(RV_REG_T1, imm, ctx);
1331			emit_and(rd, rd, RV_REG_T1, ctx);
1332		}
1333		if (!is64 && !aux->verifier_zext)
1334			emit_zextw(rd, rd, ctx);
1335		break;
1336	case BPF_ALU | BPF_OR | BPF_K:
1337	case BPF_ALU64 | BPF_OR | BPF_K:
1338		if (is_12b_int(imm)) {
1339			emit(rv_ori(rd, rd, imm), ctx);
1340		} else {
1341			emit_imm(RV_REG_T1, imm, ctx);
1342			emit_or(rd, rd, RV_REG_T1, ctx);
1343		}
1344		if (!is64 && !aux->verifier_zext)
1345			emit_zextw(rd, rd, ctx);
1346		break;
1347	case BPF_ALU | BPF_XOR | BPF_K:
1348	case BPF_ALU64 | BPF_XOR | BPF_K:
1349		if (is_12b_int(imm)) {
1350			emit(rv_xori(rd, rd, imm), ctx);
1351		} else {
1352			emit_imm(RV_REG_T1, imm, ctx);
1353			emit_xor(rd, rd, RV_REG_T1, ctx);
1354		}
1355		if (!is64 && !aux->verifier_zext)
1356			emit_zextw(rd, rd, ctx);
1357		break;
1358	case BPF_ALU | BPF_MUL | BPF_K:
1359	case BPF_ALU64 | BPF_MUL | BPF_K:
1360		emit_imm(RV_REG_T1, imm, ctx);
1361		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1362		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1363		if (!is64 && !aux->verifier_zext)
1364			emit_zextw(rd, rd, ctx);
1365		break;
1366	case BPF_ALU | BPF_DIV | BPF_K:
1367	case BPF_ALU64 | BPF_DIV | BPF_K:
1368		emit_imm(RV_REG_T1, imm, ctx);
1369		if (off)
1370			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1371			     rv_divw(rd, rd, RV_REG_T1), ctx);
1372		else
1373			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1374			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1375		if (!is64 && !aux->verifier_zext)
1376			emit_zextw(rd, rd, ctx);
1377		break;
1378	case BPF_ALU | BPF_MOD | BPF_K:
1379	case BPF_ALU64 | BPF_MOD | BPF_K:
1380		emit_imm(RV_REG_T1, imm, ctx);
1381		if (off)
1382			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1383			     rv_remw(rd, rd, RV_REG_T1), ctx);
1384		else
1385			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1386			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1387		if (!is64 && !aux->verifier_zext)
1388			emit_zextw(rd, rd, ctx);
1389		break;
1390	case BPF_ALU | BPF_LSH | BPF_K:
1391	case BPF_ALU64 | BPF_LSH | BPF_K:
1392		emit_slli(rd, rd, imm, ctx);
1393
1394		if (!is64 && !aux->verifier_zext)
1395			emit_zextw(rd, rd, ctx);
1396		break;
1397	case BPF_ALU | BPF_RSH | BPF_K:
1398	case BPF_ALU64 | BPF_RSH | BPF_K:
1399		if (is64)
1400			emit_srli(rd, rd, imm, ctx);
1401		else
1402			emit(rv_srliw(rd, rd, imm), ctx);
1403
1404		if (!is64 && !aux->verifier_zext)
1405			emit_zextw(rd, rd, ctx);
1406		break;
1407	case BPF_ALU | BPF_ARSH | BPF_K:
1408	case BPF_ALU64 | BPF_ARSH | BPF_K:
1409		if (is64)
1410			emit_srai(rd, rd, imm, ctx);
1411		else
1412			emit(rv_sraiw(rd, rd, imm), ctx);
1413
1414		if (!is64 && !aux->verifier_zext)
1415			emit_zextw(rd, rd, ctx);
1416		break;
1417
1418	/* JUMP off */
1419	case BPF_JMP | BPF_JA:
1420	case BPF_JMP32 | BPF_JA:
1421		if (BPF_CLASS(code) == BPF_JMP)
1422			rvoff = rv_offset(i, off, ctx);
1423		else
1424			rvoff = rv_offset(i, imm, ctx);
1425		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1426		if (ret)
1427			return ret;
1428		break;
1429
1430	/* IF (dst COND src) JUMP off */
1431	case BPF_JMP | BPF_JEQ | BPF_X:
1432	case BPF_JMP32 | BPF_JEQ | BPF_X:
1433	case BPF_JMP | BPF_JGT | BPF_X:
1434	case BPF_JMP32 | BPF_JGT | BPF_X:
1435	case BPF_JMP | BPF_JLT | BPF_X:
1436	case BPF_JMP32 | BPF_JLT | BPF_X:
1437	case BPF_JMP | BPF_JGE | BPF_X:
1438	case BPF_JMP32 | BPF_JGE | BPF_X:
1439	case BPF_JMP | BPF_JLE | BPF_X:
1440	case BPF_JMP32 | BPF_JLE | BPF_X:
1441	case BPF_JMP | BPF_JNE | BPF_X:
1442	case BPF_JMP32 | BPF_JNE | BPF_X:
1443	case BPF_JMP | BPF_JSGT | BPF_X:
1444	case BPF_JMP32 | BPF_JSGT | BPF_X:
1445	case BPF_JMP | BPF_JSLT | BPF_X:
1446	case BPF_JMP32 | BPF_JSLT | BPF_X:
1447	case BPF_JMP | BPF_JSGE | BPF_X:
1448	case BPF_JMP32 | BPF_JSGE | BPF_X:
1449	case BPF_JMP | BPF_JSLE | BPF_X:
1450	case BPF_JMP32 | BPF_JSLE | BPF_X:
1451	case BPF_JMP | BPF_JSET | BPF_X:
1452	case BPF_JMP32 | BPF_JSET | BPF_X:
1453		rvoff = rv_offset(i, off, ctx);
1454		if (!is64) {
1455			s = ctx->ninsns;
1456			if (is_signed_bpf_cond(BPF_OP(code))) {
1457				emit_sextw_alt(&rs, RV_REG_T1, ctx);
1458				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1459			} else {
1460				emit_zextw_alt(&rs, RV_REG_T1, ctx);
1461				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1462			}
1463			e = ctx->ninsns;
1464
1465			/* Adjust for extra insns */
1466			rvoff -= ninsns_rvoff(e - s);
1467		}
1468
1469		if (BPF_OP(code) == BPF_JSET) {
1470			/* Adjust for and */
1471			rvoff -= 4;
1472			emit_and(RV_REG_T1, rd, rs, ctx);
1473			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
 
1474		} else {
1475			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1476		}
1477		break;
1478
1479	/* IF (dst COND imm) JUMP off */
1480	case BPF_JMP | BPF_JEQ | BPF_K:
1481	case BPF_JMP32 | BPF_JEQ | BPF_K:
1482	case BPF_JMP | BPF_JGT | BPF_K:
1483	case BPF_JMP32 | BPF_JGT | BPF_K:
1484	case BPF_JMP | BPF_JLT | BPF_K:
1485	case BPF_JMP32 | BPF_JLT | BPF_K:
1486	case BPF_JMP | BPF_JGE | BPF_K:
1487	case BPF_JMP32 | BPF_JGE | BPF_K:
1488	case BPF_JMP | BPF_JLE | BPF_K:
1489	case BPF_JMP32 | BPF_JLE | BPF_K:
1490	case BPF_JMP | BPF_JNE | BPF_K:
1491	case BPF_JMP32 | BPF_JNE | BPF_K:
1492	case BPF_JMP | BPF_JSGT | BPF_K:
1493	case BPF_JMP32 | BPF_JSGT | BPF_K:
1494	case BPF_JMP | BPF_JSLT | BPF_K:
1495	case BPF_JMP32 | BPF_JSLT | BPF_K:
1496	case BPF_JMP | BPF_JSGE | BPF_K:
1497	case BPF_JMP32 | BPF_JSGE | BPF_K:
1498	case BPF_JMP | BPF_JSLE | BPF_K:
1499	case BPF_JMP32 | BPF_JSLE | BPF_K:
1500		rvoff = rv_offset(i, off, ctx);
1501		s = ctx->ninsns;
1502		if (imm)
1503			emit_imm(RV_REG_T1, imm, ctx);
1504		rs = imm ? RV_REG_T1 : RV_REG_ZERO;
 
 
 
 
1505		if (!is64) {
1506			if (is_signed_bpf_cond(BPF_OP(code))) {
1507				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1508				/* rs has been sign extended */
1509			} else {
1510				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1511				if (imm)
1512					emit_zextw(rs, rs, ctx);
1513			}
1514		}
1515		e = ctx->ninsns;
1516
1517		/* Adjust for extra insns */
1518		rvoff -= ninsns_rvoff(e - s);
1519		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1520		break;
1521
1522	case BPF_JMP | BPF_JSET | BPF_K:
1523	case BPF_JMP32 | BPF_JSET | BPF_K:
1524		rvoff = rv_offset(i, off, ctx);
1525		s = ctx->ninsns;
1526		if (is_12b_int(imm)) {
1527			emit_andi(RV_REG_T1, rd, imm, ctx);
1528		} else {
1529			emit_imm(RV_REG_T1, imm, ctx);
1530			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1531		}
1532		/* For jset32, we should clear the upper 32 bits of t1, but
1533		 * sign-extension is sufficient here and saves one instruction,
1534		 * as t1 is used only in comparison against zero.
1535		 */
1536		if (!is64 && imm < 0)
1537			emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1538		e = ctx->ninsns;
1539		rvoff -= ninsns_rvoff(e - s);
1540		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1541		break;
1542
1543	/* function call */
1544	case BPF_JMP | BPF_CALL:
1545	{
1546		bool fixed_addr;
1547		u64 addr;
1548
1549		/* Inline calls to bpf_get_smp_processor_id()
1550		 *
1551		 * RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1552		 * at offset 0 in task_struct.
1553		 * Load cpu from thread_info:
1554		 *     Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1555		 *
1556		 * This replicates the implementation of raw_smp_processor_id() on RISCV
1557		 */
1558		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1559			/* Load current CPU number in R0 */
1560			emit_ld(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1561				RV_REG_TP, ctx);
1562			break;
1563		}
1564
1565		mark_call(ctx);
1566		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1567					    &addr, &fixed_addr);
1568		if (ret < 0)
1569			return ret;
1570
1571		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1572			const struct btf_func_model *fm;
1573			int idx;
1574
1575			fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1576			if (!fm)
1577				return -EINVAL;
1578
1579			for (idx = 0; idx < fm->nr_args; idx++) {
1580				u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1581
1582				if (fm->arg_size[idx] == sizeof(int))
1583					emit_sextw(reg, reg, ctx);
1584			}
1585		}
1586
1587		ret = emit_call(addr, fixed_addr, ctx);
1588		if (ret)
1589			return ret;
1590
1591		if (insn->src_reg != BPF_PSEUDO_CALL)
1592			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1593		break;
1594	}
1595	/* tail call */
1596	case BPF_JMP | BPF_TAIL_CALL:
1597		if (emit_bpf_tail_call(i, ctx))
1598			return -1;
1599		break;
1600
1601	/* function return */
1602	case BPF_JMP | BPF_EXIT:
1603		if (i == ctx->prog->len - 1)
1604			break;
1605
1606		rvoff = epilogue_offset(ctx);
1607		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1608		if (ret)
1609			return ret;
1610		break;
1611
1612	/* dst = imm64 */
1613	case BPF_LD | BPF_IMM | BPF_DW:
1614	{
1615		struct bpf_insn insn1 = insn[1];
1616		u64 imm64;
1617
1618		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1619		if (bpf_pseudo_func(insn)) {
1620			/* fixed-length insns for extra jit pass */
1621			ret = emit_addr(rd, imm64, extra_pass, ctx);
1622			if (ret)
1623				return ret;
1624		} else {
1625			emit_imm(rd, imm64, ctx);
1626		}
1627
1628		return 1;
1629	}
1630
1631	/* LDX: dst = *(unsigned size *)(src + off) */
1632	case BPF_LDX | BPF_MEM | BPF_B:
1633	case BPF_LDX | BPF_MEM | BPF_H:
1634	case BPF_LDX | BPF_MEM | BPF_W:
1635	case BPF_LDX | BPF_MEM | BPF_DW:
1636	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1637	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1638	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1639	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1640	/* LDSX: dst = *(signed size *)(src + off) */
1641	case BPF_LDX | BPF_MEMSX | BPF_B:
1642	case BPF_LDX | BPF_MEMSX | BPF_H:
1643	case BPF_LDX | BPF_MEMSX | BPF_W:
1644	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1645	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1646	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1647	/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1648	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1649	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1650	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1651	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1652	{
1653		int insn_len, insns_start;
1654		bool sign_ext;
1655
1656		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1657			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1658
1659		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1660			emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1661			rs = RV_REG_T2;
1662		}
1663
1664		switch (BPF_SIZE(code)) {
1665		case BPF_B:
1666			if (is_12b_int(off)) {
1667				insns_start = ctx->ninsns;
1668				if (sign_ext)
1669					emit(rv_lb(rd, off, rs), ctx);
1670				else
1671					emit(rv_lbu(rd, off, rs), ctx);
1672				insn_len = ctx->ninsns - insns_start;
1673				break;
1674			}
1675
1676			emit_imm(RV_REG_T1, off, ctx);
1677			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1678			insns_start = ctx->ninsns;
1679			if (sign_ext)
1680				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1681			else
1682				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1683			insn_len = ctx->ninsns - insns_start;
1684			break;
1685		case BPF_H:
1686			if (is_12b_int(off)) {
1687				insns_start = ctx->ninsns;
1688				if (sign_ext)
1689					emit(rv_lh(rd, off, rs), ctx);
1690				else
1691					emit(rv_lhu(rd, off, rs), ctx);
1692				insn_len = ctx->ninsns - insns_start;
1693				break;
1694			}
1695
1696			emit_imm(RV_REG_T1, off, ctx);
1697			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1698			insns_start = ctx->ninsns;
1699			if (sign_ext)
1700				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1701			else
1702				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1703			insn_len = ctx->ninsns - insns_start;
 
1704			break;
1705		case BPF_W:
1706			if (is_12b_int(off)) {
1707				insns_start = ctx->ninsns;
1708				if (sign_ext)
1709					emit(rv_lw(rd, off, rs), ctx);
1710				else
1711					emit(rv_lwu(rd, off, rs), ctx);
1712				insn_len = ctx->ninsns - insns_start;
1713				break;
1714			}
1715
1716			emit_imm(RV_REG_T1, off, ctx);
1717			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1718			insns_start = ctx->ninsns;
1719			if (sign_ext)
1720				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1721			else
1722				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1723			insn_len = ctx->ninsns - insns_start;
1724			break;
1725		case BPF_DW:
1726			if (is_12b_int(off)) {
1727				insns_start = ctx->ninsns;
1728				emit_ld(rd, off, rs, ctx);
1729				insn_len = ctx->ninsns - insns_start;
1730				break;
1731			}
1732
1733			emit_imm(RV_REG_T1, off, ctx);
1734			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1735			insns_start = ctx->ninsns;
1736			emit_ld(rd, 0, RV_REG_T1, ctx);
1737			insn_len = ctx->ninsns - insns_start;
1738			break;
1739		}
1740
1741		ret = add_exception_handler(insn, ctx, rd, insn_len);
1742		if (ret)
1743			return ret;
1744
1745		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1746			return 1;
1747		break;
1748	}
1749	/* speculation barrier */
1750	case BPF_ST | BPF_NOSPEC:
1751		break;
1752
1753	/* ST: *(size *)(dst + off) = imm */
1754	case BPF_ST | BPF_MEM | BPF_B:
1755		emit_imm(RV_REG_T1, imm, ctx);
1756		if (is_12b_int(off)) {
1757			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1758			break;
1759		}
1760
1761		emit_imm(RV_REG_T2, off, ctx);
1762		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1763		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1764		break;
1765
1766	case BPF_ST | BPF_MEM | BPF_H:
1767		emit_imm(RV_REG_T1, imm, ctx);
1768		if (is_12b_int(off)) {
1769			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1770			break;
1771		}
1772
1773		emit_imm(RV_REG_T2, off, ctx);
1774		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1775		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1776		break;
1777	case BPF_ST | BPF_MEM | BPF_W:
1778		emit_imm(RV_REG_T1, imm, ctx);
1779		if (is_12b_int(off)) {
1780			emit_sw(rd, off, RV_REG_T1, ctx);
1781			break;
1782		}
1783
1784		emit_imm(RV_REG_T2, off, ctx);
1785		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1786		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1787		break;
1788	case BPF_ST | BPF_MEM | BPF_DW:
1789		emit_imm(RV_REG_T1, imm, ctx);
1790		if (is_12b_int(off)) {
1791			emit_sd(rd, off, RV_REG_T1, ctx);
1792			break;
1793		}
1794
1795		emit_imm(RV_REG_T2, off, ctx);
1796		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1797		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1798		break;
1799
1800	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1801	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1802	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1803	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1804	{
1805		int insn_len, insns_start;
1806
1807		emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1808		rd = RV_REG_T3;
1809
1810		/* Load imm to a register then store it */
1811		emit_imm(RV_REG_T1, imm, ctx);
1812
1813		switch (BPF_SIZE(code)) {
1814		case BPF_B:
1815			if (is_12b_int(off)) {
1816				insns_start = ctx->ninsns;
1817				emit(rv_sb(rd, off, RV_REG_T1), ctx);
1818				insn_len = ctx->ninsns - insns_start;
1819				break;
1820			}
1821
1822			emit_imm(RV_REG_T2, off, ctx);
1823			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1824			insns_start = ctx->ninsns;
1825			emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1826			insn_len = ctx->ninsns - insns_start;
1827			break;
1828		case BPF_H:
1829			if (is_12b_int(off)) {
1830				insns_start = ctx->ninsns;
1831				emit(rv_sh(rd, off, RV_REG_T1), ctx);
1832				insn_len = ctx->ninsns - insns_start;
1833				break;
1834			}
1835
1836			emit_imm(RV_REG_T2, off, ctx);
1837			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1838			insns_start = ctx->ninsns;
1839			emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1840			insn_len = ctx->ninsns - insns_start;
1841			break;
1842		case BPF_W:
1843			if (is_12b_int(off)) {
1844				insns_start = ctx->ninsns;
1845				emit_sw(rd, off, RV_REG_T1, ctx);
1846				insn_len = ctx->ninsns - insns_start;
1847				break;
1848			}
1849
1850			emit_imm(RV_REG_T2, off, ctx);
1851			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1852			insns_start = ctx->ninsns;
1853			emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1854			insn_len = ctx->ninsns - insns_start;
1855			break;
1856		case BPF_DW:
1857			if (is_12b_int(off)) {
1858				insns_start = ctx->ninsns;
1859				emit_sd(rd, off, RV_REG_T1, ctx);
1860				insn_len = ctx->ninsns - insns_start;
1861				break;
1862			}
1863
1864			emit_imm(RV_REG_T2, off, ctx);
1865			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1866			insns_start = ctx->ninsns;
1867			emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1868			insn_len = ctx->ninsns - insns_start;
1869			break;
1870		}
1871
1872		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1873					    insn_len);
1874		if (ret)
1875			return ret;
1876
1877		break;
1878	}
1879
1880	/* STX: *(size *)(dst + off) = src */
1881	case BPF_STX | BPF_MEM | BPF_B:
1882		if (is_12b_int(off)) {
1883			emit(rv_sb(rd, off, rs), ctx);
1884			break;
1885		}
1886
1887		emit_imm(RV_REG_T1, off, ctx);
1888		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1889		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1890		break;
1891	case BPF_STX | BPF_MEM | BPF_H:
1892		if (is_12b_int(off)) {
1893			emit(rv_sh(rd, off, rs), ctx);
1894			break;
1895		}
1896
1897		emit_imm(RV_REG_T1, off, ctx);
1898		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1899		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1900		break;
1901	case BPF_STX | BPF_MEM | BPF_W:
1902		if (is_12b_int(off)) {
1903			emit_sw(rd, off, rs, ctx);
1904			break;
1905		}
1906
1907		emit_imm(RV_REG_T1, off, ctx);
1908		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1909		emit_sw(RV_REG_T1, 0, rs, ctx);
1910		break;
1911	case BPF_STX | BPF_MEM | BPF_DW:
1912		if (is_12b_int(off)) {
1913			emit_sd(rd, off, rs, ctx);
1914			break;
1915		}
1916
1917		emit_imm(RV_REG_T1, off, ctx);
1918		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1919		emit_sd(RV_REG_T1, 0, rs, ctx);
1920		break;
1921	case BPF_STX | BPF_ATOMIC | BPF_W:
1922	case BPF_STX | BPF_ATOMIC | BPF_DW:
1923		emit_atomic(rd, rs, off, imm,
1924			    BPF_SIZE(code) == BPF_DW, ctx);
1925		break;
1926
1927	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1928	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1929	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1930	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1931	{
1932		int insn_len, insns_start;
1933
1934		emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1935		rd = RV_REG_T2;
1936
1937		switch (BPF_SIZE(code)) {
1938		case BPF_B:
1939			if (is_12b_int(off)) {
1940				insns_start = ctx->ninsns;
1941				emit(rv_sb(rd, off, rs), ctx);
1942				insn_len = ctx->ninsns - insns_start;
1943				break;
1944			}
1945
1946			emit_imm(RV_REG_T1, off, ctx);
1947			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1948			insns_start = ctx->ninsns;
1949			emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1950			insn_len = ctx->ninsns - insns_start;
1951			break;
1952		case BPF_H:
1953			if (is_12b_int(off)) {
1954				insns_start = ctx->ninsns;
1955				emit(rv_sh(rd, off, rs), ctx);
1956				insn_len = ctx->ninsns - insns_start;
1957				break;
1958			}
1959
1960			emit_imm(RV_REG_T1, off, ctx);
1961			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1962			insns_start = ctx->ninsns;
1963			emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1964			insn_len = ctx->ninsns - insns_start;
1965			break;
1966		case BPF_W:
1967			if (is_12b_int(off)) {
1968				insns_start = ctx->ninsns;
1969				emit_sw(rd, off, rs, ctx);
1970				insn_len = ctx->ninsns - insns_start;
1971				break;
1972			}
1973
1974			emit_imm(RV_REG_T1, off, ctx);
1975			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1976			insns_start = ctx->ninsns;
1977			emit_sw(RV_REG_T1, 0, rs, ctx);
1978			insn_len = ctx->ninsns - insns_start;
1979			break;
1980		case BPF_DW:
1981			if (is_12b_int(off)) {
1982				insns_start = ctx->ninsns;
1983				emit_sd(rd, off, rs, ctx);
1984				insn_len = ctx->ninsns - insns_start;
1985				break;
1986			}
1987
1988			emit_imm(RV_REG_T1, off, ctx);
1989			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1990			insns_start = ctx->ninsns;
1991			emit_sd(RV_REG_T1, 0, rs, ctx);
1992			insn_len = ctx->ninsns - insns_start;
1993			break;
1994		}
1995
1996		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
1997					    insn_len);
1998		if (ret)
1999			return ret;
2000
2001		break;
2002	}
2003
2004	default:
2005		pr_err("bpf-jit: unknown opcode %02x\n", code);
2006		return -EINVAL;
2007	}
2008
2009	return 0;
2010}
2011
2012void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
2013{
2014	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
2015
2016	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
2017	if (bpf_stack_adjust)
2018		mark_fp(ctx);
2019
2020	if (seen_reg(RV_REG_RA, ctx))
2021		stack_adjust += 8;
2022	stack_adjust += 8; /* RV_REG_FP */
2023	if (seen_reg(RV_REG_S1, ctx))
2024		stack_adjust += 8;
2025	if (seen_reg(RV_REG_S2, ctx))
2026		stack_adjust += 8;
2027	if (seen_reg(RV_REG_S3, ctx))
2028		stack_adjust += 8;
2029	if (seen_reg(RV_REG_S4, ctx))
2030		stack_adjust += 8;
2031	if (seen_reg(RV_REG_S5, ctx))
2032		stack_adjust += 8;
2033	if (seen_reg(RV_REG_S6, ctx))
2034		stack_adjust += 8;
2035	if (ctx->arena_vm_start)
2036		stack_adjust += 8;
2037
2038	stack_adjust = round_up(stack_adjust, STACK_ALIGN);
2039	stack_adjust += bpf_stack_adjust;
2040
2041	store_offset = stack_adjust - 8;
2042
2043	/* emit kcfi type preamble immediately before the  first insn */
2044	emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
2045
2046	/* nops reserved for auipc+jalr pair */
2047	for (i = 0; i < RV_FENTRY_NINSNS; i++)
2048		emit(rv_nop(), ctx);
2049
2050	/* First instruction is always setting the tail-call-counter
2051	 * (TCC) register. This instruction is skipped for tail calls.
2052	 * Force using a 4-byte (non-compressed) instruction.
2053	 */
2054	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
2055
2056	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
2057
2058	if (seen_reg(RV_REG_RA, ctx)) {
2059		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
2060		store_offset -= 8;
2061	}
2062	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
2063	store_offset -= 8;
2064	if (seen_reg(RV_REG_S1, ctx)) {
2065		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
2066		store_offset -= 8;
2067	}
2068	if (seen_reg(RV_REG_S2, ctx)) {
2069		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2070		store_offset -= 8;
2071	}
2072	if (seen_reg(RV_REG_S3, ctx)) {
2073		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2074		store_offset -= 8;
2075	}
2076	if (seen_reg(RV_REG_S4, ctx)) {
2077		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2078		store_offset -= 8;
2079	}
2080	if (seen_reg(RV_REG_S5, ctx)) {
2081		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2082		store_offset -= 8;
2083	}
2084	if (seen_reg(RV_REG_S6, ctx)) {
2085		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2086		store_offset -= 8;
2087	}
2088	if (ctx->arena_vm_start) {
2089		emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2090		store_offset -= 8;
2091	}
2092
2093	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2094
2095	if (bpf_stack_adjust)
2096		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2097
2098	/* Program contains calls and tail calls, so RV_REG_TCC need
2099	 * to be saved across calls.
2100	 */
2101	if (seen_tail_call(ctx) && seen_call(ctx))
2102		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2103
2104	ctx->stack_size = stack_adjust;
2105
2106	if (ctx->arena_vm_start)
2107		emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2108}
2109
2110void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2111{
2112	__build_epilogue(false, ctx);
2113}
2114
2115bool bpf_jit_supports_kfunc_call(void)
2116{
2117	return true;
 
 
 
2118}
2119
2120bool bpf_jit_supports_ptr_xchg(void)
2121{
2122	return true;
2123}
2124
2125bool bpf_jit_supports_arena(void)
2126{
2127	return true;
2128}
2129
2130bool bpf_jit_supports_percpu_insn(void)
2131{
2132	return true;
2133}
2134
2135bool bpf_jit_inlines_helper_call(s32 imm)
2136{
2137	switch (imm) {
2138	case BPF_FUNC_get_smp_processor_id:
2139		return true;
2140	default:
2141		return false;
2142	}
2143}