Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16#include <asm/hw_irq.h>
17#include <asm/exception-64s.h>
18#include <asm/ptrace.h>
19#include <asm/cpuidle.h>
20#include <asm/head-64.h>
21#include <asm/feature-fixups.h>
22#include <asm/kup.h>
23
24/* PACA save area offsets (exgen, exmc, etc) */
25#define EX_R9 0
26#define EX_R10 8
27#define EX_R11 16
28#define EX_R12 24
29#define EX_R13 32
30#define EX_DAR 40
31#define EX_DSISR 48
32#define EX_CCR 52
33#define EX_CFAR 56
34#define EX_PPR 64
35#define EX_CTR 72
36.if EX_SIZE != 10
37 .error "EX_SIZE is wrong"
38.endif
39
40/*
41 * Following are fixed section helper macros.
42 *
43 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors
44 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
45 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
46 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
47 * EXC_COMMON - After switching to virtual, relocated mode.
48 */
49
50#define EXC_REAL_BEGIN(name, start, size) \
51 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
52
53#define EXC_REAL_END(name, start, size) \
54 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
55
56#define EXC_VIRT_BEGIN(name, start, size) \
57 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
58
59#define EXC_VIRT_END(name, start, size) \
60 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
61
62#define EXC_COMMON_BEGIN(name) \
63 USE_TEXT_SECTION(); \
64 .balign IFETCH_ALIGN_BYTES; \
65 .global name; \
66 _ASM_NOKPROBE_SYMBOL(name); \
67 DEFINE_FIXED_SYMBOL(name); \
68name:
69
70#define TRAMP_REAL_BEGIN(name) \
71 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
72
73#define TRAMP_VIRT_BEGIN(name) \
74 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
75
76#define EXC_REAL_NONE(start, size) \
77 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
78 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
79
80#define EXC_VIRT_NONE(start, size) \
81 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
82 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
83
84/*
85 * We're short on space and time in the exception prolog, so we can't
86 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
87 * Instead we get the base of the kernel from paca->kernelbase and or in the low
88 * part of label. This requires that the label be within 64KB of kernelbase, and
89 * that kernelbase be 64K aligned.
90 */
91#define LOAD_HANDLER(reg, label) \
92 ld reg,PACAKBASE(r13); /* get high part of &label */ \
93 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
94
95#define __LOAD_HANDLER(reg, label) \
96 ld reg,PACAKBASE(r13); \
97 ori reg,reg,(ABS_ADDR(label))@l
98
99/*
100 * Branches from unrelocated code (e.g., interrupts) to labels outside
101 * head-y require >64K offsets.
102 */
103#define __LOAD_FAR_HANDLER(reg, label) \
104 ld reg,PACAKBASE(r13); \
105 ori reg,reg,(ABS_ADDR(label))@l; \
106 addis reg,reg,(ABS_ADDR(label))@h
107
108/*
109 * Branch to label using its 0xC000 address. This results in instruction
110 * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
111 * on using mtmsr rather than rfid.
112 *
113 * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
114 * load KBASE for a slight optimisation.
115 */
116#define BRANCH_TO_C000(reg, label) \
117 __LOAD_FAR_HANDLER(reg, label); \
118 mtctr reg; \
119 bctr
120
121/*
122 * Interrupt code generation macros
123 */
124#define IVEC .L_IVEC_\name\() /* Interrupt vector address */
125#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
126#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
127#define IAREA .L_IAREA_\name\() /* PACA save area */
128#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
129#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
130#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
131#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
132#define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
133#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
134#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
135#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
136#define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
137#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
138#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
139#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
140#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
141#define __ISTACK(name) .L_ISTACK_ ## name
142#define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
143#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
144
145#define INT_DEFINE_BEGIN(n) \
146.macro int_define_ ## n name
147
148#define INT_DEFINE_END(n) \
149.endm ; \
150int_define_ ## n n ; \
151do_define_int n
152
153.macro do_define_int name
154 .ifndef IVEC
155 .error "IVEC not defined"
156 .endif
157 .ifndef IHSRR
158 IHSRR=0
159 .endif
160 .ifndef IHSRR_IF_HVMODE
161 IHSRR_IF_HVMODE=0
162 .endif
163 .ifndef IAREA
164 IAREA=PACA_EXGEN
165 .endif
166 .ifndef IVIRT
167 IVIRT=1
168 .endif
169 .ifndef IISIDE
170 IISIDE=0
171 .endif
172 .ifndef IDAR
173 IDAR=0
174 .endif
175 .ifndef IDSISR
176 IDSISR=0
177 .endif
178 .ifndef ISET_RI
179 ISET_RI=1
180 .endif
181 .ifndef IBRANCH_TO_COMMON
182 IBRANCH_TO_COMMON=1
183 .endif
184 .ifndef IREALMODE_COMMON
185 IREALMODE_COMMON=0
186 .else
187 .if ! IBRANCH_TO_COMMON
188 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
189 .endif
190 .endif
191 .ifndef IMASK
192 IMASK=0
193 .endif
194 .ifndef IKVM_SKIP
195 IKVM_SKIP=0
196 .endif
197 .ifndef IKVM_REAL
198 IKVM_REAL=0
199 .endif
200 .ifndef IKVM_VIRT
201 IKVM_VIRT=0
202 .endif
203 .ifndef ISTACK
204 ISTACK=1
205 .endif
206 .ifndef IRECONCILE
207 IRECONCILE=1
208 .endif
209 .ifndef IKUAP
210 IKUAP=1
211 .endif
212.endm
213
214#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
216/*
217 * All interrupts which set HSRR registers, as well as SRESET and MCE and
218 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
219 * so they all generally need to test whether they were taken in guest context.
220 *
221 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
222 * taken with MSR[HV]=0.
223 *
224 * Interrupts which set SRR registers (with the above exceptions) do not
225 * elevate to MSR[HV]=1 mode, though most can be taken when running with
226 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
227 * not need to test whether a guest is running because they get delivered to
228 * the guest directly, including nested HV KVM guests.
229 *
230 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
231 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
232 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
233 * delivered to the real-mode entry point, therefore such interrupts only test
234 * KVM in their real mode handlers, and only when PR KVM is possible.
235 *
236 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
237 * delivered in real-mode when the MMU is in hash mode because the MMU
238 * registers are not set appropriately to translate host addresses. In nested
239 * radix mode these can be delivered in virt-mode as the host translations are
240 * used implicitly (see: effective LPID, effective PID).
241 */
242
243/*
244 * If an interrupt is taken while a guest is running, it is immediately routed
245 * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
246 * to kvmppc_interrupt_hv, which handles the PR guest case.
247 */
248#define kvmppc_interrupt kvmppc_interrupt_hv
249#else
250#define kvmppc_interrupt kvmppc_interrupt_pr
251#endif
252
253.macro KVMTEST name
254 lbz r10,HSTATE_IN_GUEST(r13)
255 cmpwi r10,0
256 bne \name\()_kvm
257.endm
258
259.macro GEN_KVM name
260 .balign IFETCH_ALIGN_BYTES
261\name\()_kvm:
262
263 .if IKVM_SKIP
264 cmpwi r10,KVM_GUEST_MODE_SKIP
265 beq 89f
266 .else
267BEGIN_FTR_SECTION
268 ld r10,IAREA+EX_CFAR(r13)
269 std r10,HSTATE_CFAR(r13)
270END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
271 .endif
272
273 ld r10,IAREA+EX_CTR(r13)
274 mtctr r10
275BEGIN_FTR_SECTION
276 ld r10,IAREA+EX_PPR(r13)
277 std r10,HSTATE_PPR(r13)
278END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
279 ld r11,IAREA+EX_R11(r13)
280 ld r12,IAREA+EX_R12(r13)
281 std r12,HSTATE_SCRATCH0(r13)
282 sldi r12,r9,32
283 ld r9,IAREA+EX_R9(r13)
284 ld r10,IAREA+EX_R10(r13)
285 /* HSRR variants have the 0x2 bit added to their trap number */
286 .if IHSRR_IF_HVMODE
287 BEGIN_FTR_SECTION
288 ori r12,r12,(IVEC + 0x2)
289 FTR_SECTION_ELSE
290 ori r12,r12,(IVEC)
291 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
292 .elseif IHSRR
293 ori r12,r12,(IVEC+ 0x2)
294 .else
295 ori r12,r12,(IVEC)
296 .endif
297 b kvmppc_interrupt
298
299 .if IKVM_SKIP
30089: mtocrf 0x80,r9
301 ld r10,IAREA+EX_CTR(r13)
302 mtctr r10
303 ld r9,IAREA+EX_R9(r13)
304 ld r10,IAREA+EX_R10(r13)
305 ld r11,IAREA+EX_R11(r13)
306 ld r12,IAREA+EX_R12(r13)
307 .if IHSRR_IF_HVMODE
308 BEGIN_FTR_SECTION
309 b kvmppc_skip_Hinterrupt
310 FTR_SECTION_ELSE
311 b kvmppc_skip_interrupt
312 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
313 .elseif IHSRR
314 b kvmppc_skip_Hinterrupt
315 .else
316 b kvmppc_skip_interrupt
317 .endif
318 .endif
319.endm
320
321#else
322.macro KVMTEST name
323.endm
324.macro GEN_KVM name
325.endm
326#endif
327
328/*
329 * This is the BOOK3S interrupt entry code macro.
330 *
331 * This can result in one of several things happening:
332 * - Branch to the _common handler, relocated, in virtual mode.
333 * These are normal interrupts (synchronous and asynchronous) handled by
334 * the kernel.
335 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
336 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
337 * / intended for host or guest kernel, but KVM must always be involved
338 * because the machine state is set for guest execution.
339 * - Branch to the masked handler, unrelocated.
340 * These occur when maskable asynchronous interrupts are taken with the
341 * irq_soft_mask set.
342 * - Branch to an "early" handler in real mode but relocated.
343 * This is done if early=1. MCE and HMI use these to handle errors in real
344 * mode.
345 * - Fall through and continue executing in real, unrelocated mode.
346 * This is done if early=2.
347 */
348
349.macro GEN_BRANCH_TO_COMMON name, virt
350 .if IREALMODE_COMMON
351 LOAD_HANDLER(r10, \name\()_common)
352 mtctr r10
353 bctr
354 .else
355 .if \virt
356#ifndef CONFIG_RELOCATABLE
357 b \name\()_common_virt
358#else
359 LOAD_HANDLER(r10, \name\()_common_virt)
360 mtctr r10
361 bctr
362#endif
363 .else
364 LOAD_HANDLER(r10, \name\()_common_real)
365 mtctr r10
366 bctr
367 .endif
368 .endif
369.endm
370
371.macro GEN_INT_ENTRY name, virt, ool=0
372 SET_SCRATCH0(r13) /* save r13 */
373 GET_PACA(r13)
374 std r9,IAREA+EX_R9(r13) /* save r9 */
375BEGIN_FTR_SECTION
376 mfspr r9,SPRN_PPR
377END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
378 HMT_MEDIUM
379 std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
380BEGIN_FTR_SECTION
381 mfspr r10,SPRN_CFAR
382END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
383 .if \ool
384 .if !\virt
385 b tramp_real_\name
386 .pushsection .text
387 TRAMP_REAL_BEGIN(tramp_real_\name)
388 .else
389 b tramp_virt_\name
390 .pushsection .text
391 TRAMP_VIRT_BEGIN(tramp_virt_\name)
392 .endif
393 .endif
394
395BEGIN_FTR_SECTION
396 std r9,IAREA+EX_PPR(r13)
397END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
398BEGIN_FTR_SECTION
399 std r10,IAREA+EX_CFAR(r13)
400END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
401 INTERRUPT_TO_KERNEL
402 mfctr r10
403 std r10,IAREA+EX_CTR(r13)
404 mfcr r9
405 std r11,IAREA+EX_R11(r13)
406 std r12,IAREA+EX_R12(r13)
407
408 /*
409 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
410 * because a d-side MCE will clobber those registers so is
411 * not recoverable if they are live.
412 */
413 GET_SCRATCH0(r10)
414 std r10,IAREA+EX_R13(r13)
415 .if IDAR && !IISIDE
416 .if IHSRR
417 mfspr r10,SPRN_HDAR
418 .else
419 mfspr r10,SPRN_DAR
420 .endif
421 std r10,IAREA+EX_DAR(r13)
422 .endif
423 .if IDSISR && !IISIDE
424 .if IHSRR
425 mfspr r10,SPRN_HDSISR
426 .else
427 mfspr r10,SPRN_DSISR
428 .endif
429 stw r10,IAREA+EX_DSISR(r13)
430 .endif
431
432 .if IHSRR_IF_HVMODE
433 BEGIN_FTR_SECTION
434 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
435 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
436 FTR_SECTION_ELSE
437 mfspr r11,SPRN_SRR0 /* save SRR0 */
438 mfspr r12,SPRN_SRR1 /* and SRR1 */
439 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
440 .elseif IHSRR
441 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
442 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
443 .else
444 mfspr r11,SPRN_SRR0 /* save SRR0 */
445 mfspr r12,SPRN_SRR1 /* and SRR1 */
446 .endif
447
448 .if IBRANCH_TO_COMMON
449 GEN_BRANCH_TO_COMMON \name \virt
450 .endif
451
452 .if \ool
453 .popsection
454 .endif
455.endm
456
457/*
458 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
459 * entry, except in the case of the real-mode handlers which require
460 * __GEN_REALMODE_COMMON_ENTRY.
461 *
462 * This switches to virtual mode and sets MSR[RI].
463 */
464.macro __GEN_COMMON_ENTRY name
465DEFINE_FIXED_SYMBOL(\name\()_common_real)
466\name\()_common_real:
467 .if IKVM_REAL
468 KVMTEST \name
469 .endif
470
471 ld r10,PACAKMSR(r13) /* get MSR value for kernel */
472 /* MSR[RI] is clear iff using SRR regs */
473 .if IHSRR == EXC_HV_OR_STD
474 BEGIN_FTR_SECTION
475 xori r10,r10,MSR_RI
476 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
477 .elseif ! IHSRR
478 xori r10,r10,MSR_RI
479 .endif
480 mtmsrd r10
481
482 .if IVIRT
483 .if IKVM_VIRT
484 b 1f /* skip the virt test coming from real */
485 .endif
486
487 .balign IFETCH_ALIGN_BYTES
488DEFINE_FIXED_SYMBOL(\name\()_common_virt)
489\name\()_common_virt:
490 .if IKVM_VIRT
491 KVMTEST \name
4921:
493 .endif
494 .endif /* IVIRT */
495.endm
496
497/*
498 * Don't switch to virt mode. Used for early MCE and HMI handlers that
499 * want to run in real mode.
500 */
501.macro __GEN_REALMODE_COMMON_ENTRY name
502DEFINE_FIXED_SYMBOL(\name\()_common_real)
503\name\()_common_real:
504 .if IKVM_REAL
505 KVMTEST \name
506 .endif
507.endm
508
509.macro __GEN_COMMON_BODY name
510 .if IMASK
511 .if ! ISTACK
512 .error "No support for masked interrupt to use custom stack"
513 .endif
514
515 /* If coming from user, skip soft-mask tests. */
516 andi. r10,r12,MSR_PR
517 bne 2f
518
519 /* Kernel code running below __end_interrupts is implicitly
520 * soft-masked */
521 LOAD_HANDLER(r10, __end_interrupts)
522 cmpld r11,r10
523 li r10,IMASK
524 blt- 1f
525
526 /* Test the soft mask state against our interrupt's bit */
527 lbz r10,PACAIRQSOFTMASK(r13)
5281: andi. r10,r10,IMASK
529 /* Associate vector numbers with bits in paca->irq_happened */
530 .if IVEC == 0x500 || IVEC == 0xea0
531 li r10,PACA_IRQ_EE
532 .elseif IVEC == 0x900
533 li r10,PACA_IRQ_DEC
534 .elseif IVEC == 0xa00 || IVEC == 0xe80
535 li r10,PACA_IRQ_DBELL
536 .elseif IVEC == 0xe60
537 li r10,PACA_IRQ_HMI
538 .elseif IVEC == 0xf00
539 li r10,PACA_IRQ_PMI
540 .else
541 .abort "Bad maskable vector"
542 .endif
543
544 .if IHSRR_IF_HVMODE
545 BEGIN_FTR_SECTION
546 bne masked_Hinterrupt
547 FTR_SECTION_ELSE
548 bne masked_interrupt
549 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
550 .elseif IHSRR
551 bne masked_Hinterrupt
552 .else
553 bne masked_interrupt
554 .endif
555 .endif
556
557 .if ISTACK
558 andi. r10,r12,MSR_PR /* See if coming from user */
5592: mr r10,r1 /* Save r1 */
560 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
561 beq- 100f
562 ld r1,PACAKSAVE(r13) /* kernel stack to use */
563100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
564 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
565 .endif
566
567 std r9,_CCR(r1) /* save CR in stackframe */
568 std r11,_NIP(r1) /* save SRR0 in stackframe */
569 std r12,_MSR(r1) /* save SRR1 in stackframe */
570 std r10,0(r1) /* make stack chain pointer */
571 std r0,GPR0(r1) /* save r0 in stackframe */
572 std r10,GPR1(r1) /* save r1 in stackframe */
573
574 .if ISET_RI
575 li r10,MSR_RI
576 mtmsrd r10,1 /* Set MSR_RI */
577 .endif
578
579 .if ISTACK
580 .if IKUAP
581 kuap_save_amr_and_lock r9, r10, cr1, cr0
582 .endif
583 beq 101f /* if from kernel mode */
584 ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
585BEGIN_FTR_SECTION
586 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
587 std r9,_PPR(r1)
588END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
589101:
590 .else
591 .if IKUAP
592 kuap_save_amr_and_lock r9, r10, cr1
593 .endif
594 .endif
595
596 /* Save original regs values from save area to stack frame. */
597 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
598 ld r10,IAREA+EX_R10(r13)
599 std r9,GPR9(r1)
600 std r10,GPR10(r1)
601 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
602 ld r10,IAREA+EX_R12(r13)
603 ld r11,IAREA+EX_R13(r13)
604 std r9,GPR11(r1)
605 std r10,GPR12(r1)
606 std r11,GPR13(r1)
607
608 SAVE_NVGPRS(r1)
609
610 .if IDAR
611 .if IISIDE
612 ld r10,_NIP(r1)
613 .else
614 ld r10,IAREA+EX_DAR(r13)
615 .endif
616 std r10,_DAR(r1)
617 .endif
618
619 .if IDSISR
620 .if IISIDE
621 ld r10,_MSR(r1)
622 lis r11,DSISR_SRR1_MATCH_64S@h
623 and r10,r10,r11
624 .else
625 lwz r10,IAREA+EX_DSISR(r13)
626 .endif
627 std r10,_DSISR(r1)
628 .endif
629
630BEGIN_FTR_SECTION
631 ld r10,IAREA+EX_CFAR(r13)
632 std r10,ORIG_GPR3(r1)
633END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
634 ld r10,IAREA+EX_CTR(r13)
635 std r10,_CTR(r1)
636 std r2,GPR2(r1) /* save r2 in stackframe */
637 SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
638 SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
639 mflr r9 /* Get LR, later save to stack */
640 ld r2,PACATOC(r13) /* get kernel TOC into r2 */
641 std r9,_LINK(r1)
642 lbz r10,PACAIRQSOFTMASK(r13)
643 mfspr r11,SPRN_XER /* save XER in stackframe */
644 std r10,SOFTE(r1)
645 std r11,_XER(r1)
646 li r9,IVEC
647 std r9,_TRAP(r1) /* set trap number */
648 li r10,0
649 ld r11,exception_marker@toc(r2)
650 std r10,RESULT(r1) /* clear regs->result */
651 std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
652
653 .if ISTACK
654 ACCOUNT_STOLEN_TIME
655 .endif
656
657 .if IRECONCILE
658 RECONCILE_IRQ_STATE(r10, r11)
659 .endif
660.endm
661
662/*
663 * On entry r13 points to the paca, r9-r13 are saved in the paca,
664 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
665 * SRR1, and relocation is on.
666 *
667 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
668 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
669 */
670.macro GEN_COMMON name
671 __GEN_COMMON_ENTRY \name
672 __GEN_COMMON_BODY \name
673.endm
674
675/*
676 * Restore all registers including H/SRR0/1 saved in a stack frame of a
677 * standard exception.
678 */
679.macro EXCEPTION_RESTORE_REGS hsrr=0
680 /* Move original SRR0 and SRR1 into the respective regs */
681 ld r9,_MSR(r1)
682 .if \hsrr
683 mtspr SPRN_HSRR1,r9
684 .else
685 mtspr SPRN_SRR1,r9
686 .endif
687 ld r9,_NIP(r1)
688 .if \hsrr
689 mtspr SPRN_HSRR0,r9
690 .else
691 mtspr SPRN_SRR0,r9
692 .endif
693 ld r9,_CTR(r1)
694 mtctr r9
695 ld r9,_XER(r1)
696 mtxer r9
697 ld r9,_LINK(r1)
698 mtlr r9
699 ld r9,_CCR(r1)
700 mtcr r9
701 REST_8GPRS(2, r1)
702 REST_4GPRS(10, r1)
703 REST_GPR(0, r1)
704 /* restore original r1. */
705 ld r1,GPR1(r1)
706.endm
707
708#define RUNLATCH_ON \
709BEGIN_FTR_SECTION \
710 ld r3, PACA_THREAD_INFO(r13); \
711 ld r4,TI_LOCAL_FLAGS(r3); \
712 andi. r0,r4,_TLF_RUNLATCH; \
713 beql ppc64_runlatch_on_trampoline; \
714END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
715
716/*
717 * When the idle code in power4_idle puts the CPU into NAP mode,
718 * it has to do so in a loop, and relies on the external interrupt
719 * and decrementer interrupt entry code to get it out of the loop.
720 * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
721 * to signal that it is in the loop and needs help to get out.
722 */
723#ifdef CONFIG_PPC_970_NAP
724#define FINISH_NAP \
725BEGIN_FTR_SECTION \
726 ld r11, PACA_THREAD_INFO(r13); \
727 ld r9,TI_LOCAL_FLAGS(r11); \
728 andi. r10,r9,_TLF_NAPPING; \
729 bnel power4_fixup_nap; \
730END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
731#else
732#define FINISH_NAP
733#endif
734
735/*
736 * There are a few constraints to be concerned with.
737 * - Real mode exceptions code/data must be located at their physical location.
738 * - Virtual mode exceptions must be mapped at their 0xc000... location.
739 * - Fixed location code must not call directly beyond the __end_interrupts
740 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
741 * must be used.
742 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
743 * virtual 0xc00...
744 * - Conditional branch targets must be within +/-32K of caller.
745 *
746 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
747 * therefore don't have to run in physically located code or rfid to
748 * virtual mode kernel code. However on relocatable kernels they do have
749 * to branch to KERNELBASE offset because the rest of the kernel (outside
750 * the exception vectors) may be located elsewhere.
751 *
752 * Virtual exceptions correspond with physical, except their entry points
753 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
754 * offset applied. Virtual exceptions are enabled with the Alternate
755 * Interrupt Location (AIL) bit set in the LPCR. However this does not
756 * guarantee they will be delivered virtually. Some conditions (see the ISA)
757 * cause exceptions to be delivered in real mode.
758 *
759 * The scv instructions are a special case. They get a 0x3000 offset applied.
760 * scv exceptions have unique reentrancy properties, see below.
761 *
762 * It's impossible to receive interrupts below 0x300 via AIL.
763 *
764 * KVM: None of the virtual exceptions are from the guest. Anything that
765 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
766 *
767 *
768 * We layout physical memory as follows:
769 * 0x0000 - 0x00ff : Secondary processor spin code
770 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
771 * 0x1900 - 0x2fff : Real mode trampolines
772 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
773 * 0x5900 - 0x6fff : Relon mode trampolines
774 * 0x7000 - 0x7fff : FWNMI data area
775 * 0x8000 - .... : Common interrupt handlers, remaining early
776 * setup code, rest of kernel.
777 *
778 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
779 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
780 * vectors there.
781 */
782OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
783OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
784OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
785OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
786
787#ifdef CONFIG_PPC_POWERNV
788 .globl start_real_trampolines
789 .globl end_real_trampolines
790 .globl start_virt_trampolines
791 .globl end_virt_trampolines
792#endif
793
794#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
795/*
796 * Data area reserved for FWNMI option.
797 * This address (0x7000) is fixed by the RPA.
798 * pseries and powernv need to keep the whole page from
799 * 0x7000 to 0x8000 free for use by the firmware
800 */
801ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
802OPEN_TEXT_SECTION(0x8000)
803#else
804OPEN_TEXT_SECTION(0x7000)
805#endif
806
807USE_FIXED_SECTION(real_vectors)
808
809/*
810 * This is the start of the interrupt handlers for pSeries
811 * This code runs with relocation off.
812 * Code from here to __end_interrupts gets copied down to real
813 * address 0x100 when we are running a relocatable kernel.
814 * Therefore any relative branches in this section must only
815 * branch to labels in this section.
816 */
817 .globl __start_interrupts
818__start_interrupts:
819
820/**
821 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
822 * This is a synchronous interrupt invoked with the "scv" instruction. The
823 * system call does not alter the HV bit, so it is directed to the OS.
824 *
825 * Handling:
826 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
827 * In particular, this means we can take a maskable interrupt at any point
828 * in the scv handler, which is unlike any other interrupt. This is solved
829 * by treating the instruction addresses below __end_interrupts as being
830 * soft-masked.
831 *
832 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
833 * ensure scv is never executed with relocation off, which means AIL-0
834 * should never happen.
835 *
836 * Before leaving the below __end_interrupts text, at least of the following
837 * must be true:
838 * - MSR[PR]=1 (i.e., return to userspace)
839 * - MSR_EE|MSR_RI is set (no reentrant exceptions)
840 * - Standard kernel environment is set up (stack, paca, etc)
841 *
842 * Call convention:
843 *
844 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
845 */
846EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
847 /* SCV 0 */
848 mr r9,r13
849 GET_PACA(r13)
850 mflr r11
851 mfctr r12
852 li r10,IRQS_ALL_DISABLED
853 stb r10,PACAIRQSOFTMASK(r13)
854#ifdef CONFIG_RELOCATABLE
855 b system_call_vectored_tramp
856#else
857 b system_call_vectored_common
858#endif
859 nop
860
861 /* SCV 1 - 127 */
862 .rept 127
863 mr r9,r13
864 GET_PACA(r13)
865 mflr r11
866 mfctr r12
867 li r10,IRQS_ALL_DISABLED
868 stb r10,PACAIRQSOFTMASK(r13)
869 li r0,-1 /* cause failure */
870#ifdef CONFIG_RELOCATABLE
871 b system_call_vectored_sigill_tramp
872#else
873 b system_call_vectored_sigill
874#endif
875 .endr
876EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
877
878#ifdef CONFIG_RELOCATABLE
879TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
880 __LOAD_HANDLER(r10, system_call_vectored_common)
881 mtctr r10
882 bctr
883
884TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
885 __LOAD_HANDLER(r10, system_call_vectored_sigill)
886 mtctr r10
887 bctr
888#endif
889
890
891/* No virt vectors corresponding with 0x0..0x100 */
892EXC_VIRT_NONE(0x4000, 0x100)
893
894
895/**
896 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
897 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
898 * It is caused by:
899 * - Wake from power-saving state, on powernv.
900 * - An NMI from another CPU, triggered by firmware or hypercall.
901 * - As crash/debug signal injected from BMC, firmware or hypervisor.
902 *
903 * Handling:
904 * Power-save wakeup is the only performance critical path, so this is
905 * determined quickly as possible first. In this case volatile registers
906 * can be discarded and SPRs like CFAR don't need to be read.
907 *
908 * If not a powersave wakeup, then it's run as a regular interrupt, however
909 * it uses its own stack and PACA save area to preserve the regular kernel
910 * environment for debugging.
911 *
912 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
913 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
914 * correct to switch to virtual mode to run the regular interrupt handler
915 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
916 * is clear).
917 *
918 * FWNMI:
919 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
920 * entry point with a different register set up. Some hypervisors will
921 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
922 *
923 * KVM:
924 * Unlike most SRR interrupts, this may be taken by the host while executing
925 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
926 * mode and then raise the sreset.
927 */
928INT_DEFINE_BEGIN(system_reset)
929 IVEC=0x100
930 IAREA=PACA_EXNMI
931 IVIRT=0 /* no virt entry point */
932 /*
933 * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
934 * being used, so a nested NMI exception would corrupt it.
935 */
936 ISET_RI=0
937 ISTACK=0
938 IRECONCILE=0
939 IKVM_REAL=1
940INT_DEFINE_END(system_reset)
941
942EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
943#ifdef CONFIG_PPC_P7_NAP
944 /*
945 * If running native on arch 2.06 or later, check if we are waking up
946 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
947 * bits 46:47. A non-0 value indicates that we are coming from a power
948 * saving state. The idle wakeup handler initially runs in real mode,
949 * but we branch to the 0xc000... address so we can turn on relocation
950 * with mtmsrd later, after SPRs are restored.
951 *
952 * Careful to minimise cost for the fast path (idle wakeup) while
953 * also avoiding clobbering CFAR for the debug path (non-idle).
954 *
955 * For the idle wake case volatile registers can be clobbered, which
956 * is why we use those initially. If it turns out to not be an idle
957 * wake, carefully put everything back the way it was, so we can use
958 * common exception macros to handle it.
959 */
960BEGIN_FTR_SECTION
961 SET_SCRATCH0(r13)
962 GET_PACA(r13)
963 std r3,PACA_EXNMI+0*8(r13)
964 std r4,PACA_EXNMI+1*8(r13)
965 std r5,PACA_EXNMI+2*8(r13)
966 mfspr r3,SPRN_SRR1
967 mfocrf r4,0x80
968 rlwinm. r5,r3,47-31,30,31
969 bne+ system_reset_idle_wake
970 /* Not powersave wakeup. Restore regs for regular interrupt handler. */
971 mtocrf 0x80,r4
972 ld r3,PACA_EXNMI+0*8(r13)
973 ld r4,PACA_EXNMI+1*8(r13)
974 ld r5,PACA_EXNMI+2*8(r13)
975 GET_SCRATCH0(r13)
976END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
977#endif
978
979 GEN_INT_ENTRY system_reset, virt=0
980 /*
981 * In theory, we should not enable relocation here if it was disabled
982 * in SRR1, because the MMU may not be configured to support it (e.g.,
983 * SLB may have been cleared). In practice, there should only be a few
984 * small windows where that's the case, and sreset is considered to
985 * be dangerous anyway.
986 */
987EXC_REAL_END(system_reset, 0x100, 0x100)
988EXC_VIRT_NONE(0x4100, 0x100)
989
990#ifdef CONFIG_PPC_P7_NAP
991TRAMP_REAL_BEGIN(system_reset_idle_wake)
992 /* We are waking up from idle, so may clobber any volatile register */
993 cmpwi cr1,r5,2
994 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
995 BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
996#endif
997
998#ifdef CONFIG_PPC_PSERIES
999/*
1000 * Vectors for the FWNMI option. Share common code.
1001 */
1002TRAMP_REAL_BEGIN(system_reset_fwnmi)
1003 /* XXX: fwnmi guest could run a nested/PR guest, so why no test? */
1004 __IKVM_REAL(system_reset)=0
1005 GEN_INT_ENTRY system_reset, virt=0
1006
1007#endif /* CONFIG_PPC_PSERIES */
1008
1009EXC_COMMON_BEGIN(system_reset_common)
1010 __GEN_COMMON_ENTRY system_reset
1011 /*
1012 * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
1013 * to recover, but nested NMI will notice in_nmi and not recover
1014 * because of the use of the NMI stack. in_nmi reentrancy is tested in
1015 * system_reset_exception.
1016 */
1017 lhz r10,PACA_IN_NMI(r13)
1018 addi r10,r10,1
1019 sth r10,PACA_IN_NMI(r13)
1020 li r10,MSR_RI
1021 mtmsrd r10,1
1022
1023 mr r10,r1
1024 ld r1,PACA_NMI_EMERG_SP(r13)
1025 subi r1,r1,INT_FRAME_SIZE
1026 __GEN_COMMON_BODY system_reset
1027 /*
1028 * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
1029 * the right thing. We do not want to reconcile because that goes
1030 * through irq tracing which we don't want in NMI.
1031 *
1032 * Save PACAIRQHAPPENED to RESULT (otherwise unused), and set HARD_DIS
1033 * as we are running with MSR[EE]=0.
1034 */
1035 li r10,IRQS_ALL_DISABLED
1036 stb r10,PACAIRQSOFTMASK(r13)
1037 lbz r10,PACAIRQHAPPENED(r13)
1038 std r10,RESULT(r1)
1039 ori r10,r10,PACA_IRQ_HARD_DIS
1040 stb r10,PACAIRQHAPPENED(r13)
1041
1042 addi r3,r1,STACK_FRAME_OVERHEAD
1043 bl system_reset_exception
1044
1045 /* Clear MSR_RI before setting SRR0 and SRR1. */
1046 li r9,0
1047 mtmsrd r9,1
1048
1049 /*
1050 * MSR_RI is clear, now we can decrement paca->in_nmi.
1051 */
1052 lhz r10,PACA_IN_NMI(r13)
1053 subi r10,r10,1
1054 sth r10,PACA_IN_NMI(r13)
1055
1056 /*
1057 * Restore soft mask settings.
1058 */
1059 ld r10,RESULT(r1)
1060 stb r10,PACAIRQHAPPENED(r13)
1061 ld r10,SOFTE(r1)
1062 stb r10,PACAIRQSOFTMASK(r13)
1063
1064 kuap_restore_amr r9, r10
1065 EXCEPTION_RESTORE_REGS
1066 RFI_TO_USER_OR_KERNEL
1067
1068 GEN_KVM system_reset
1069
1070
1071/**
1072 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1073 * This is a non-maskable interrupt always taken in real-mode. It can be
1074 * synchronous or asynchronous, caused by hardware or software, and it may be
1075 * taken in a power-saving state.
1076 *
1077 * Handling:
1078 * Similarly to system reset, this uses its own stack and PACA save area,
1079 * the difference is re-entrancy is allowed on the machine check stack.
1080 *
1081 * machine_check_early is run in real mode, and carefully decodes the
1082 * machine check and tries to handle it (e.g., flush the SLB if there was an
1083 * error detected there), determines if it was recoverable and logs the
1084 * event.
1085 *
1086 * This early code does not "reconcile" irq soft-mask state like SRESET or
1087 * regular interrupts do, so irqs_disabled() among other things may not work
1088 * properly (irq disable/enable already doesn't work because irq tracing can
1089 * not work in real mode).
1090 *
1091 * Then, depending on the execution context when the interrupt is taken, there
1092 * are 3 main actions:
1093 * - Executing in kernel mode. The event is queued with irq_work, which means
1094 * it is handled when it is next safe to do so (i.e., the kernel has enabled
1095 * interrupts), which could be immediately when the interrupt returns. This
1096 * avoids nasty issues like switching to virtual mode when the MMU is in a
1097 * bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1098 * but it has different priorities). Check to see if the CPU was in power
1099 * save, and return via the wake up code if it was.
1100 *
1101 * - Executing in user mode. machine_check_exception is run like a normal
1102 * interrupt handler, which processes the data generated by the early handler.
1103 *
1104 * - Executing in guest mode. The interrupt is run with its KVM test, and
1105 * branches to KVM to deal with. KVM may queue the event for the host
1106 * to report later.
1107 *
1108 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1109 * or SCRATCH0 is in use, it may cause a crash.
1110 *
1111 * KVM:
1112 * See SRESET.
1113 */
1114INT_DEFINE_BEGIN(machine_check_early)
1115 IVEC=0x200
1116 IAREA=PACA_EXMC
1117 IVIRT=0 /* no virt entry point */
1118 IREALMODE_COMMON=1
1119 /*
1120 * MSR_RI is not enabled, because PACA_EXMC is being used, so a
1121 * nested machine check corrupts it. machine_check_common enables
1122 * MSR_RI.
1123 */
1124 ISET_RI=0
1125 ISTACK=0
1126 IDAR=1
1127 IDSISR=1
1128 IRECONCILE=0
1129 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1130INT_DEFINE_END(machine_check_early)
1131
1132INT_DEFINE_BEGIN(machine_check)
1133 IVEC=0x200
1134 IAREA=PACA_EXMC
1135 IVIRT=0 /* no virt entry point */
1136 ISET_RI=0
1137 IDAR=1
1138 IDSISR=1
1139 IKVM_SKIP=1
1140 IKVM_REAL=1
1141INT_DEFINE_END(machine_check)
1142
1143EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1144 GEN_INT_ENTRY machine_check_early, virt=0
1145EXC_REAL_END(machine_check, 0x200, 0x100)
1146EXC_VIRT_NONE(0x4200, 0x100)
1147
1148#ifdef CONFIG_PPC_PSERIES
1149TRAMP_REAL_BEGIN(machine_check_fwnmi)
1150 /* See comment at machine_check exception, don't turn on RI */
1151 GEN_INT_ENTRY machine_check_early, virt=0
1152#endif
1153
1154#define MACHINE_CHECK_HANDLER_WINDUP \
1155 /* Clear MSR_RI before setting SRR0 and SRR1. */\
1156 li r9,0; \
1157 mtmsrd r9,1; /* Clear MSR_RI */ \
1158 /* Decrement paca->in_mce now RI is clear. */ \
1159 lhz r12,PACA_IN_MCE(r13); \
1160 subi r12,r12,1; \
1161 sth r12,PACA_IN_MCE(r13); \
1162 EXCEPTION_RESTORE_REGS
1163
1164EXC_COMMON_BEGIN(machine_check_early_common)
1165 __GEN_REALMODE_COMMON_ENTRY machine_check_early
1166
1167 /*
1168 * Switch to mc_emergency stack and handle re-entrancy (we limit
1169 * the nested MCE upto level 4 to avoid stack overflow).
1170 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1171 *
1172 * We use paca->in_mce to check whether this is the first entry or
1173 * nested machine check. We increment paca->in_mce to track nested
1174 * machine checks.
1175 *
1176 * If this is the first entry then set stack pointer to
1177 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1178 * stack frame on mc_emergency stack.
1179 *
1180 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1181 * checkstop if we get another machine check exception before we do
1182 * rfid with MSR_ME=1.
1183 *
1184 * This interrupt can wake directly from idle. If that is the case,
1185 * the machine check is handled then the idle wakeup code is called
1186 * to restore state.
1187 */
1188 lhz r10,PACA_IN_MCE(r13)
1189 cmpwi r10,0 /* Are we in nested machine check */
1190 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
1191 addi r10,r10,1 /* increment paca->in_mce */
1192 sth r10,PACA_IN_MCE(r13)
1193
1194 mr r10,r1 /* Save r1 */
1195 bne 1f
1196 /* First machine check entry */
1197 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
11981: /* Limit nested MCE to level 4 to avoid stack overflow */
1199 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
1200 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1201
1202 __GEN_COMMON_BODY machine_check_early
1203
1204BEGIN_FTR_SECTION
1205 bl enable_machine_check
1206END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1207 li r10,MSR_RI
1208 mtmsrd r10,1
1209
1210 /*
1211 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
1212 * system_reset_common)
1213 */
1214 li r10,IRQS_ALL_DISABLED
1215 stb r10,PACAIRQSOFTMASK(r13)
1216 lbz r10,PACAIRQHAPPENED(r13)
1217 std r10,RESULT(r1)
1218 ori r10,r10,PACA_IRQ_HARD_DIS
1219 stb r10,PACAIRQHAPPENED(r13)
1220
1221 addi r3,r1,STACK_FRAME_OVERHEAD
1222 bl machine_check_early
1223 std r3,RESULT(r1) /* Save result */
1224 ld r12,_MSR(r1)
1225
1226 /*
1227 * Restore soft mask settings.
1228 */
1229 ld r10,RESULT(r1)
1230 stb r10,PACAIRQHAPPENED(r13)
1231 ld r10,SOFTE(r1)
1232 stb r10,PACAIRQSOFTMASK(r13)
1233
1234#ifdef CONFIG_PPC_P7_NAP
1235 /*
1236 * Check if thread was in power saving mode. We come here when any
1237 * of the following is true:
1238 * a. thread wasn't in power saving mode
1239 * b. thread was in power saving mode with no state loss,
1240 * supervisor state loss or hypervisor state loss.
1241 *
1242 * Go back to nap/sleep/winkle mode again if (b) is true.
1243 */
1244BEGIN_FTR_SECTION
1245 rlwinm. r11,r12,47-31,30,31
1246 bne machine_check_idle_common
1247END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1248#endif
1249
1250#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1251 /*
1252 * Check if we are coming from guest. If yes, then run the normal
1253 * exception handler which will take the
1254 * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
1255 * to guest.
1256 */
1257 lbz r11,HSTATE_IN_GUEST(r13)
1258 cmpwi r11,0 /* Check if coming from guest */
1259 bne mce_deliver /* continue if we are. */
1260#endif
1261
1262 /*
1263 * Check if we are coming from userspace. If yes, then run the normal
1264 * exception handler which will deliver the MC event to this kernel.
1265 */
1266 andi. r11,r12,MSR_PR /* See if coming from user. */
1267 bne mce_deliver /* continue in V mode if we are. */
1268
1269 /*
1270 * At this point we are coming from kernel context.
1271 * Queue up the MCE event and return from the interrupt.
1272 * But before that, check if this is an un-recoverable exception.
1273 * If yes, then stay on emergency stack and panic.
1274 */
1275 andi. r11,r12,MSR_RI
1276 beq unrecoverable_mce
1277
1278 /*
1279 * Check if we have successfully handled/recovered from error, if not
1280 * then stay on emergency stack and panic.
1281 */
1282 ld r3,RESULT(r1) /* Load result */
1283 cmpdi r3,0 /* see if we handled MCE successfully */
1284 beq unrecoverable_mce /* if !handled then panic */
1285
1286 /*
1287 * Return from MC interrupt.
1288 * Queue up the MCE event so that we can log it later, while
1289 * returning from kernel or opal call.
1290 */
1291 bl machine_check_queue_event
1292 MACHINE_CHECK_HANDLER_WINDUP
1293 RFI_TO_KERNEL
1294
1295mce_deliver:
1296 /*
1297 * This is a host user or guest MCE. Restore all registers, then
1298 * run the "late" handler. For host user, this will run the
1299 * machine_check_exception handler in virtual mode like a normal
1300 * interrupt handler. For guest, this will trigger the KVM test
1301 * and branch to the KVM interrupt similarly to other interrupts.
1302 */
1303BEGIN_FTR_SECTION
1304 ld r10,ORIG_GPR3(r1)
1305 mtspr SPRN_CFAR,r10
1306END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1307 MACHINE_CHECK_HANDLER_WINDUP
1308 GEN_INT_ENTRY machine_check, virt=0
1309
1310EXC_COMMON_BEGIN(machine_check_common)
1311 /*
1312 * Machine check is different because we use a different
1313 * save area: PACA_EXMC instead of PACA_EXGEN.
1314 */
1315 GEN_COMMON machine_check
1316
1317 FINISH_NAP
1318 /* Enable MSR_RI when finished with PACA_EXMC */
1319 li r10,MSR_RI
1320 mtmsrd r10,1
1321 addi r3,r1,STACK_FRAME_OVERHEAD
1322 bl machine_check_exception
1323 b interrupt_return
1324
1325 GEN_KVM machine_check
1326
1327
1328#ifdef CONFIG_PPC_P7_NAP
1329/*
1330 * This is an idle wakeup. Low level machine check has already been
1331 * done. Queue the event then call the idle code to do the wake up.
1332 */
1333EXC_COMMON_BEGIN(machine_check_idle_common)
1334 bl machine_check_queue_event
1335
1336 /*
1337 * GPR-loss wakeups are relatively straightforward, because the
1338 * idle sleep code has saved all non-volatile registers on its
1339 * own stack, and r1 in PACAR1.
1340 *
1341 * For no-loss wakeups the r1 and lr registers used by the
1342 * early machine check handler have to be restored first. r2 is
1343 * the kernel TOC, so no need to restore it.
1344 *
1345 * Then decrement MCE nesting after finishing with the stack.
1346 */
1347 ld r3,_MSR(r1)
1348 ld r4,_LINK(r1)
1349 ld r1,GPR1(r1)
1350
1351 lhz r11,PACA_IN_MCE(r13)
1352 subi r11,r11,1
1353 sth r11,PACA_IN_MCE(r13)
1354
1355 mtlr r4
1356 rlwinm r10,r3,47-31,30,31
1357 cmpwi cr1,r10,2
1358 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
1359 b idle_return_gpr_loss
1360#endif
1361
1362EXC_COMMON_BEGIN(unrecoverable_mce)
1363 /*
1364 * We are going down. But there are chances that we might get hit by
1365 * another MCE during panic path and we may run into unstable state
1366 * with no way out. Hence, turn ME bit off while going down, so that
1367 * when another MCE is hit during panic path, system will checkstop
1368 * and hypervisor will get restarted cleanly by SP.
1369 */
1370BEGIN_FTR_SECTION
1371 li r10,0 /* clear MSR_RI */
1372 mtmsrd r10,1
1373 bl disable_machine_check
1374END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1375 ld r10,PACAKMSR(r13)
1376 li r3,MSR_ME
1377 andc r10,r10,r3
1378 mtmsrd r10
1379
1380 lhz r12,PACA_IN_MCE(r13)
1381 subi r12,r12,1
1382 sth r12,PACA_IN_MCE(r13)
1383
1384 /* Invoke machine_check_exception to print MCE event and panic. */
1385 addi r3,r1,STACK_FRAME_OVERHEAD
1386 bl machine_check_exception
1387
1388 /*
1389 * We will not reach here. Even if we did, there is no way out.
1390 * Call unrecoverable_exception and die.
1391 */
1392 addi r3,r1,STACK_FRAME_OVERHEAD
1393 bl unrecoverable_exception
1394 b .
1395
1396
1397/**
1398 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1399 * This is a synchronous interrupt generated due to a data access exception,
1400 * e.g., a load orstore which does not have a valid page table entry with
1401 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1402 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1403 *
1404 * Handling:
1405 * - Hash MMU
1406 * Go to do_hash_page first to see if the HPT can be filled from an entry in
1407 * the Linux page table. Hash faults can hit in kernel mode in a fairly
1408 * arbitrary state (e.g., interrupts disabled, locks held) when accessing
1409 * "non-bolted" regions, e.g., vmalloc space. However these should always be
1410 * backed by Linux page tables.
1411 *
1412 * If none is found, do a Linux page fault. Linux page faults can happen in
1413 * kernel mode due to user copy operations of course.
1414 *
1415 * - Radix MMU
1416 * The hardware loads from the Linux page table directly, so a fault goes
1417 * immediately to Linux page fault.
1418 *
1419 * Conditions like DAWR match are handled on the way in to Linux page fault.
1420 */
1421INT_DEFINE_BEGIN(data_access)
1422 IVEC=0x300
1423 IDAR=1
1424 IDSISR=1
1425#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1426 IKVM_SKIP=1
1427 IKVM_REAL=1
1428#endif
1429INT_DEFINE_END(data_access)
1430
1431EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1432 GEN_INT_ENTRY data_access, virt=0
1433EXC_REAL_END(data_access, 0x300, 0x80)
1434EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1435 GEN_INT_ENTRY data_access, virt=1
1436EXC_VIRT_END(data_access, 0x4300, 0x80)
1437EXC_COMMON_BEGIN(data_access_common)
1438 GEN_COMMON data_access
1439 ld r4,_DAR(r1)
1440 ld r5,_DSISR(r1)
1441BEGIN_MMU_FTR_SECTION
1442 ld r6,_MSR(r1)
1443 li r3,0x300
1444 b do_hash_page /* Try to handle as hpte fault */
1445MMU_FTR_SECTION_ELSE
1446 b handle_page_fault
1447ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1448
1449 GEN_KVM data_access
1450
1451
1452/**
1453 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1454 * This is a synchronous interrupt in response to an MMU fault missing SLB
1455 * entry for HPT, or an address outside RPT translation range.
1456 *
1457 * Handling:
1458 * - HPT:
1459 * This refills the SLB, or reports an access fault similarly to a bad page
1460 * fault. When coming from user-mode, the SLB handler may access any kernel
1461 * data, though it may itself take a DSLB. When coming from kernel mode,
1462 * recursive faults must be avoided so access is restricted to the kernel
1463 * image text/data, kernel stack, and any data allocated below
1464 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1465 * on user-handler data structures.
1466 *
1467 * A dedicated save area EXSLB is used (XXX: but it actually need not be
1468 * these days, we could use EXGEN).
1469 */
1470INT_DEFINE_BEGIN(data_access_slb)
1471 IVEC=0x380
1472 IAREA=PACA_EXSLB
1473 IRECONCILE=0
1474 IDAR=1
1475#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1476 IKVM_SKIP=1
1477 IKVM_REAL=1
1478#endif
1479INT_DEFINE_END(data_access_slb)
1480
1481EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1482 GEN_INT_ENTRY data_access_slb, virt=0
1483EXC_REAL_END(data_access_slb, 0x380, 0x80)
1484EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1485 GEN_INT_ENTRY data_access_slb, virt=1
1486EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1487EXC_COMMON_BEGIN(data_access_slb_common)
1488 GEN_COMMON data_access_slb
1489 ld r4,_DAR(r1)
1490 addi r3,r1,STACK_FRAME_OVERHEAD
1491BEGIN_MMU_FTR_SECTION
1492 /* HPT case, do SLB fault */
1493 bl do_slb_fault
1494 cmpdi r3,0
1495 bne- 1f
1496 b fast_interrupt_return
14971: /* Error case */
1498MMU_FTR_SECTION_ELSE
1499 /* Radix case, access is outside page table range */
1500 li r3,-EFAULT
1501ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1502 std r3,RESULT(r1)
1503 RECONCILE_IRQ_STATE(r10, r11)
1504 ld r4,_DAR(r1)
1505 ld r5,RESULT(r1)
1506 addi r3,r1,STACK_FRAME_OVERHEAD
1507 bl do_bad_slb_fault
1508 b interrupt_return
1509
1510 GEN_KVM data_access_slb
1511
1512
1513/**
1514 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1515 * This is a synchronous interrupt in response to an MMU fault due to an
1516 * instruction fetch.
1517 *
1518 * Handling:
1519 * Similar to DSI, though in response to fetch. The faulting address is found
1520 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1521 */
1522INT_DEFINE_BEGIN(instruction_access)
1523 IVEC=0x400
1524 IISIDE=1
1525 IDAR=1
1526 IDSISR=1
1527#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1528 IKVM_REAL=1
1529#endif
1530INT_DEFINE_END(instruction_access)
1531
1532EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1533 GEN_INT_ENTRY instruction_access, virt=0
1534EXC_REAL_END(instruction_access, 0x400, 0x80)
1535EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1536 GEN_INT_ENTRY instruction_access, virt=1
1537EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1538EXC_COMMON_BEGIN(instruction_access_common)
1539 GEN_COMMON instruction_access
1540 ld r4,_DAR(r1)
1541 ld r5,_DSISR(r1)
1542BEGIN_MMU_FTR_SECTION
1543 ld r6,_MSR(r1)
1544 li r3,0x400
1545 b do_hash_page /* Try to handle as hpte fault */
1546MMU_FTR_SECTION_ELSE
1547 b handle_page_fault
1548ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1549
1550 GEN_KVM instruction_access
1551
1552
1553/**
1554 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1555 * This is a synchronous interrupt in response to an MMU fault due to an
1556 * instruction fetch.
1557 *
1558 * Handling:
1559 * Similar to DSLB, though in response to fetch. The faulting address is found
1560 * in SRR0 (rather than DAR).
1561 */
1562INT_DEFINE_BEGIN(instruction_access_slb)
1563 IVEC=0x480
1564 IAREA=PACA_EXSLB
1565 IRECONCILE=0
1566 IISIDE=1
1567 IDAR=1
1568#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1569 IKVM_REAL=1
1570#endif
1571INT_DEFINE_END(instruction_access_slb)
1572
1573EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1574 GEN_INT_ENTRY instruction_access_slb, virt=0
1575EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1576EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1577 GEN_INT_ENTRY instruction_access_slb, virt=1
1578EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1579EXC_COMMON_BEGIN(instruction_access_slb_common)
1580 GEN_COMMON instruction_access_slb
1581 ld r4,_DAR(r1)
1582 addi r3,r1,STACK_FRAME_OVERHEAD
1583BEGIN_MMU_FTR_SECTION
1584 /* HPT case, do SLB fault */
1585 bl do_slb_fault
1586 cmpdi r3,0
1587 bne- 1f
1588 b fast_interrupt_return
15891: /* Error case */
1590MMU_FTR_SECTION_ELSE
1591 /* Radix case, access is outside page table range */
1592 li r3,-EFAULT
1593ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1594 std r3,RESULT(r1)
1595 RECONCILE_IRQ_STATE(r10, r11)
1596 ld r4,_DAR(r1)
1597 ld r5,RESULT(r1)
1598 addi r3,r1,STACK_FRAME_OVERHEAD
1599 bl do_bad_slb_fault
1600 b interrupt_return
1601
1602 GEN_KVM instruction_access_slb
1603
1604
1605/**
1606 * Interrupt 0x500 - External Interrupt.
1607 * This is an asynchronous maskable interrupt in response to an "external
1608 * exception" from the interrupt controller or hypervisor (e.g., device
1609 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1610 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1611 *
1612 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1613 * interrupts are delivered with HSRR registers, guests use SRRs, which
1614 * reqiures IHSRR_IF_HVMODE.
1615 *
1616 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1617 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1618 * rather than External Interrupts.
1619 *
1620 * Handling:
1621 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1622 * because registers at the time of the interrupt are not so important as it is
1623 * asynchronous.
1624 *
1625 * If soft masked, the masked handler will note the pending interrupt for
1626 * replay, and clear MSR[EE] in the interrupted context.
1627 */
1628INT_DEFINE_BEGIN(hardware_interrupt)
1629 IVEC=0x500
1630 IHSRR_IF_HVMODE=1
1631 IMASK=IRQS_DISABLED
1632 IKVM_REAL=1
1633 IKVM_VIRT=1
1634INT_DEFINE_END(hardware_interrupt)
1635
1636EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1637 GEN_INT_ENTRY hardware_interrupt, virt=0
1638EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1639EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1640 GEN_INT_ENTRY hardware_interrupt, virt=1
1641EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1642EXC_COMMON_BEGIN(hardware_interrupt_common)
1643 GEN_COMMON hardware_interrupt
1644 FINISH_NAP
1645 RUNLATCH_ON
1646 addi r3,r1,STACK_FRAME_OVERHEAD
1647 bl do_IRQ
1648 b interrupt_return
1649
1650 GEN_KVM hardware_interrupt
1651
1652
1653/**
1654 * Interrupt 0x600 - Alignment Interrupt
1655 * This is a synchronous interrupt in response to data alignment fault.
1656 */
1657INT_DEFINE_BEGIN(alignment)
1658 IVEC=0x600
1659 IDAR=1
1660 IDSISR=1
1661#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1662 IKVM_REAL=1
1663#endif
1664INT_DEFINE_END(alignment)
1665
1666EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1667 GEN_INT_ENTRY alignment, virt=0
1668EXC_REAL_END(alignment, 0x600, 0x100)
1669EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1670 GEN_INT_ENTRY alignment, virt=1
1671EXC_VIRT_END(alignment, 0x4600, 0x100)
1672EXC_COMMON_BEGIN(alignment_common)
1673 GEN_COMMON alignment
1674 addi r3,r1,STACK_FRAME_OVERHEAD
1675 bl alignment_exception
1676 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1677 b interrupt_return
1678
1679 GEN_KVM alignment
1680
1681
1682/**
1683 * Interrupt 0x700 - Program Interrupt (program check).
1684 * This is a synchronous interrupt in response to various instruction faults:
1685 * traps, privilege errors, TM errors, floating point exceptions.
1686 *
1687 * Handling:
1688 * This interrupt may use the "emergency stack" in some cases when being taken
1689 * from kernel context, which complicates handling.
1690 */
1691INT_DEFINE_BEGIN(program_check)
1692 IVEC=0x700
1693#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1694 IKVM_REAL=1
1695#endif
1696INT_DEFINE_END(program_check)
1697
1698EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1699 GEN_INT_ENTRY program_check, virt=0
1700EXC_REAL_END(program_check, 0x700, 0x100)
1701EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1702 GEN_INT_ENTRY program_check, virt=1
1703EXC_VIRT_END(program_check, 0x4700, 0x100)
1704EXC_COMMON_BEGIN(program_check_common)
1705 __GEN_COMMON_ENTRY program_check
1706
1707 /*
1708 * It's possible to receive a TM Bad Thing type program check with
1709 * userspace register values (in particular r1), but with SRR1 reporting
1710 * that we came from the kernel. Normally that would confuse the bad
1711 * stack logic, and we would report a bad kernel stack pointer. Instead
1712 * we switch to the emergency stack if we're taking a TM Bad Thing from
1713 * the kernel.
1714 */
1715
1716 andi. r10,r12,MSR_PR
1717 bne 2f /* If userspace, go normal path */
1718
1719 andis. r10,r12,(SRR1_PROGTM)@h
1720 bne 1f /* If TM, emergency */
1721
1722 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
1723 blt 2f /* normal path if not */
1724
1725 /* Use the emergency stack */
17261: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
1727 /* 3 in EXCEPTION_PROLOG_COMMON */
1728 mr r10,r1 /* Save r1 */
1729 ld r1,PACAEMERGSP(r13) /* Use emergency stack */
1730 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1731 __ISTACK(program_check)=0
1732 __GEN_COMMON_BODY program_check
1733 b 3f
17342:
1735 __ISTACK(program_check)=1
1736 __GEN_COMMON_BODY program_check
17373:
1738 addi r3,r1,STACK_FRAME_OVERHEAD
1739 bl program_check_exception
1740 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1741 b interrupt_return
1742
1743 GEN_KVM program_check
1744
1745
1746/*
1747 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1748 * This is a synchronous interrupt in response to executing an fp instruction
1749 * with MSR[FP]=0.
1750 *
1751 * Handling:
1752 * This will load FP registers and enable the FP bit if coming from userspace,
1753 * otherwise report a bad kernel use of FP.
1754 */
1755INT_DEFINE_BEGIN(fp_unavailable)
1756 IVEC=0x800
1757 IRECONCILE=0
1758#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1759 IKVM_REAL=1
1760#endif
1761INT_DEFINE_END(fp_unavailable)
1762
1763EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1764 GEN_INT_ENTRY fp_unavailable, virt=0
1765EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1766EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1767 GEN_INT_ENTRY fp_unavailable, virt=1
1768EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1769EXC_COMMON_BEGIN(fp_unavailable_common)
1770 GEN_COMMON fp_unavailable
1771 bne 1f /* if from user, just load it up */
1772 RECONCILE_IRQ_STATE(r10, r11)
1773 addi r3,r1,STACK_FRAME_OVERHEAD
1774 bl kernel_fp_unavailable_exception
17750: trap
1776 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
17771:
1778#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1779BEGIN_FTR_SECTION
1780 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
1781 * transaction), go do TM stuff
1782 */
1783 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
1784 bne- 2f
1785END_FTR_SECTION_IFSET(CPU_FTR_TM)
1786#endif
1787 bl load_up_fpu
1788 b fast_interrupt_return
1789#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
17902: /* User process was in a transaction */
1791 RECONCILE_IRQ_STATE(r10, r11)
1792 addi r3,r1,STACK_FRAME_OVERHEAD
1793 bl fp_unavailable_tm
1794 b interrupt_return
1795#endif
1796
1797 GEN_KVM fp_unavailable
1798
1799
1800/**
1801 * Interrupt 0x900 - Decrementer Interrupt.
1802 * This is an asynchronous interrupt in response to a decrementer exception
1803 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1804 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1805 * local_irq_disable()).
1806 *
1807 * Handling:
1808 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1809 *
1810 * If soft masked, the masked handler will note the pending interrupt for
1811 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1812 * in the interrupted context.
1813 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1814 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1815 * on the emergency stack.
1816 */
1817INT_DEFINE_BEGIN(decrementer)
1818 IVEC=0x900
1819 IMASK=IRQS_DISABLED
1820#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1821 IKVM_REAL=1
1822#endif
1823INT_DEFINE_END(decrementer)
1824
1825EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1826 GEN_INT_ENTRY decrementer, virt=0
1827EXC_REAL_END(decrementer, 0x900, 0x80)
1828EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1829 GEN_INT_ENTRY decrementer, virt=1
1830EXC_VIRT_END(decrementer, 0x4900, 0x80)
1831EXC_COMMON_BEGIN(decrementer_common)
1832 GEN_COMMON decrementer
1833 FINISH_NAP
1834 RUNLATCH_ON
1835 addi r3,r1,STACK_FRAME_OVERHEAD
1836 bl timer_interrupt
1837 b interrupt_return
1838
1839 GEN_KVM decrementer
1840
1841
1842/**
1843 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1844 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1845 * register.
1846 *
1847 * Handling:
1848 * Linux does not use this outside KVM where it's used to keep a host timer
1849 * while the guest is given control of DEC. It should normally be caught by
1850 * the KVM test and routed there.
1851 */
1852INT_DEFINE_BEGIN(hdecrementer)
1853 IVEC=0x980
1854 IHSRR=1
1855 ISTACK=0
1856 IRECONCILE=0
1857 IKVM_REAL=1
1858 IKVM_VIRT=1
1859INT_DEFINE_END(hdecrementer)
1860
1861EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1862 GEN_INT_ENTRY hdecrementer, virt=0
1863EXC_REAL_END(hdecrementer, 0x980, 0x80)
1864EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1865 GEN_INT_ENTRY hdecrementer, virt=1
1866EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1867EXC_COMMON_BEGIN(hdecrementer_common)
1868 __GEN_COMMON_ENTRY hdecrementer
1869 /*
1870 * Hypervisor decrementer interrupts not caught by the KVM test
1871 * shouldn't occur but are sometimes left pending on exit from a KVM
1872 * guest. We don't need to do anything to clear them, as they are
1873 * edge-triggered.
1874 *
1875 * Be careful to avoid touching the kernel stack.
1876 */
1877 ld r10,PACA_EXGEN+EX_CTR(r13)
1878 mtctr r10
1879 mtcrf 0x80,r9
1880 ld r9,PACA_EXGEN+EX_R9(r13)
1881 ld r10,PACA_EXGEN+EX_R10(r13)
1882 ld r11,PACA_EXGEN+EX_R11(r13)
1883 ld r12,PACA_EXGEN+EX_R12(r13)
1884 ld r13,PACA_EXGEN+EX_R13(r13)
1885 HRFI_TO_KERNEL
1886
1887 GEN_KVM hdecrementer
1888
1889
1890/**
1891 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1892 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1893 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1894 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1895 *
1896 * Handling:
1897 * Guests may use this for IPIs between threads in a core if the
1898 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1899 *
1900 * If soft masked, the masked handler will note the pending interrupt for
1901 * replay, leaving MSR[EE] enabled in the interrupted context because the
1902 * doorbells are edge triggered.
1903 */
1904INT_DEFINE_BEGIN(doorbell_super)
1905 IVEC=0xa00
1906 IMASK=IRQS_DISABLED
1907#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1908 IKVM_REAL=1
1909#endif
1910INT_DEFINE_END(doorbell_super)
1911
1912EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1913 GEN_INT_ENTRY doorbell_super, virt=0
1914EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1915EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1916 GEN_INT_ENTRY doorbell_super, virt=1
1917EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1918EXC_COMMON_BEGIN(doorbell_super_common)
1919 GEN_COMMON doorbell_super
1920 FINISH_NAP
1921 RUNLATCH_ON
1922 addi r3,r1,STACK_FRAME_OVERHEAD
1923#ifdef CONFIG_PPC_DOORBELL
1924 bl doorbell_exception
1925#else
1926 bl unknown_exception
1927#endif
1928 b interrupt_return
1929
1930 GEN_KVM doorbell_super
1931
1932
1933EXC_REAL_NONE(0xb00, 0x100)
1934EXC_VIRT_NONE(0x4b00, 0x100)
1935
1936/**
1937 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1938 * This is a synchronous interrupt invoked with the "sc" instruction. The
1939 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1940 * is directed to the currently running OS. The hypercall is invoked with
1941 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1942 *
1943 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1944 * 0x4c00 virtual mode.
1945 *
1946 * Handling:
1947 * If the KVM test fires then it was due to a hypercall and is accordingly
1948 * routed to KVM. Otherwise this executes a normal Linux system call.
1949 *
1950 * Call convention:
1951 *
1952 * syscall and hypercalls register conventions are documented in
1953 * Documentation/powerpc/syscall64-abi.rst and
1954 * Documentation/powerpc/papr_hcalls.rst respectively.
1955 *
1956 * The intersection of volatile registers that don't contain possible
1957 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1958 * without saving, though xer is not a good idea to use, as hardware may
1959 * interpret some bits so it may be costly to change them.
1960 */
1961INT_DEFINE_BEGIN(system_call)
1962 IVEC=0xc00
1963 IKVM_REAL=1
1964 IKVM_VIRT=1
1965INT_DEFINE_END(system_call)
1966
1967.macro SYSTEM_CALL virt
1968#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1969 /*
1970 * There is a little bit of juggling to get syscall and hcall
1971 * working well. Save r13 in ctr to avoid using SPRG scratch
1972 * register.
1973 *
1974 * Userspace syscalls have already saved the PPR, hcalls must save
1975 * it before setting HMT_MEDIUM.
1976 */
1977 mtctr r13
1978 GET_PACA(r13)
1979 std r10,PACA_EXGEN+EX_R10(r13)
1980 INTERRUPT_TO_KERNEL
1981 KVMTEST system_call /* uses r10, branch to system_call_kvm */
1982 mfctr r9
1983#else
1984 mr r9,r13
1985 GET_PACA(r13)
1986 INTERRUPT_TO_KERNEL
1987#endif
1988
1989#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1990BEGIN_FTR_SECTION
1991 cmpdi r0,0x1ebe
1992 beq- 1f
1993END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1994#endif
1995
1996 /* We reach here with PACA in r13, r13 in r9. */
1997 mfspr r11,SPRN_SRR0
1998 mfspr r12,SPRN_SRR1
1999
2000 HMT_MEDIUM
2001
2002 .if ! \virt
2003 __LOAD_HANDLER(r10, system_call_common)
2004 mtspr SPRN_SRR0,r10
2005 ld r10,PACAKMSR(r13)
2006 mtspr SPRN_SRR1,r10
2007 RFI_TO_KERNEL
2008 b . /* prevent speculative execution */
2009 .else
2010 li r10,MSR_RI
2011 mtmsrd r10,1 /* Set RI (EE=0) */
2012#ifdef CONFIG_RELOCATABLE
2013 __LOAD_HANDLER(r10, system_call_common)
2014 mtctr r10
2015 bctr
2016#else
2017 b system_call_common
2018#endif
2019 .endif
2020
2021#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
2022 /* Fast LE/BE switch system call */
20231: mfspr r12,SPRN_SRR1
2024 xori r12,r12,MSR_LE
2025 mtspr SPRN_SRR1,r12
2026 mr r13,r9
2027 RFI_TO_USER /* return to userspace */
2028 b . /* prevent speculative execution */
2029#endif
2030.endm
2031
2032EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
2033 SYSTEM_CALL 0
2034EXC_REAL_END(system_call, 0xc00, 0x100)
2035EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
2036 SYSTEM_CALL 1
2037EXC_VIRT_END(system_call, 0x4c00, 0x100)
2038
2039#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2040TRAMP_REAL_BEGIN(system_call_kvm)
2041 /*
2042 * This is a hcall, so register convention is as above, with these
2043 * differences:
2044 * r13 = PACA
2045 * ctr = orig r13
2046 * orig r10 saved in PACA
2047 */
2048 /*
2049 * Save the PPR (on systems that support it) before changing to
2050 * HMT_MEDIUM. That allows the KVM code to save that value into the
2051 * guest state (it is the guest's PPR value).
2052 */
2053BEGIN_FTR_SECTION
2054 mfspr r10,SPRN_PPR
2055 std r10,HSTATE_PPR(r13)
2056END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2057 HMT_MEDIUM
2058 mfctr r10
2059 SET_SCRATCH0(r10)
2060 mfcr r10
2061 std r12,HSTATE_SCRATCH0(r13)
2062 sldi r12,r10,32
2063 ori r12,r12,0xc00
2064#ifdef CONFIG_RELOCATABLE
2065 /*
2066 * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
2067 * outside the head section.
2068 */
2069 __LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
2070 mtctr r10
2071 ld r10,PACA_EXGEN+EX_R10(r13)
2072 bctr
2073#else
2074 ld r10,PACA_EXGEN+EX_R10(r13)
2075 b kvmppc_interrupt
2076#endif
2077#endif
2078
2079
2080/**
2081 * Interrupt 0xd00 - Trace Interrupt.
2082 * This is a synchronous interrupt in response to instruction step or
2083 * breakpoint faults.
2084 */
2085INT_DEFINE_BEGIN(single_step)
2086 IVEC=0xd00
2087#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2088 IKVM_REAL=1
2089#endif
2090INT_DEFINE_END(single_step)
2091
2092EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2093 GEN_INT_ENTRY single_step, virt=0
2094EXC_REAL_END(single_step, 0xd00, 0x100)
2095EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2096 GEN_INT_ENTRY single_step, virt=1
2097EXC_VIRT_END(single_step, 0x4d00, 0x100)
2098EXC_COMMON_BEGIN(single_step_common)
2099 GEN_COMMON single_step
2100 addi r3,r1,STACK_FRAME_OVERHEAD
2101 bl single_step_exception
2102 b interrupt_return
2103
2104 GEN_KVM single_step
2105
2106
2107/**
2108 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2109 * This is a synchronous interrupt in response to an MMU fault caused by a
2110 * guest data access.
2111 *
2112 * Handling:
2113 * This should always get routed to KVM. In radix MMU mode, this is caused
2114 * by a guest nested radix access that can't be performed due to the
2115 * partition scope page table. In hash mode, this can be caused by guests
2116 * running with translation disabled (virtual real mode) or with VPM enabled.
2117 * KVM will update the page table structures or disallow the access.
2118 */
2119INT_DEFINE_BEGIN(h_data_storage)
2120 IVEC=0xe00
2121 IHSRR=1
2122 IDAR=1
2123 IDSISR=1
2124 IKVM_SKIP=1
2125 IKVM_REAL=1
2126 IKVM_VIRT=1
2127INT_DEFINE_END(h_data_storage)
2128
2129EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2130 GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2131EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2132EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2133 GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2134EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2135EXC_COMMON_BEGIN(h_data_storage_common)
2136 GEN_COMMON h_data_storage
2137 addi r3,r1,STACK_FRAME_OVERHEAD
2138BEGIN_MMU_FTR_SECTION
2139 ld r4,_DAR(r1)
2140 li r5,SIGSEGV
2141 bl bad_page_fault
2142MMU_FTR_SECTION_ELSE
2143 bl unknown_exception
2144ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2145 b interrupt_return
2146
2147 GEN_KVM h_data_storage
2148
2149
2150/**
2151 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2152 * This is a synchronous interrupt in response to an MMU fault caused by a
2153 * guest instruction fetch, similar to HDSI.
2154 */
2155INT_DEFINE_BEGIN(h_instr_storage)
2156 IVEC=0xe20
2157 IHSRR=1
2158 IKVM_REAL=1
2159 IKVM_VIRT=1
2160INT_DEFINE_END(h_instr_storage)
2161
2162EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2163 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2164EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2165EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2166 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2167EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2168EXC_COMMON_BEGIN(h_instr_storage_common)
2169 GEN_COMMON h_instr_storage
2170 addi r3,r1,STACK_FRAME_OVERHEAD
2171 bl unknown_exception
2172 b interrupt_return
2173
2174 GEN_KVM h_instr_storage
2175
2176
2177/**
2178 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2179 */
2180INT_DEFINE_BEGIN(emulation_assist)
2181 IVEC=0xe40
2182 IHSRR=1
2183 IKVM_REAL=1
2184 IKVM_VIRT=1
2185INT_DEFINE_END(emulation_assist)
2186
2187EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2188 GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2189EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2190EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2191 GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2192EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2193EXC_COMMON_BEGIN(emulation_assist_common)
2194 GEN_COMMON emulation_assist
2195 addi r3,r1,STACK_FRAME_OVERHEAD
2196 bl emulation_assist_interrupt
2197 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2198 b interrupt_return
2199
2200 GEN_KVM emulation_assist
2201
2202
2203/**
2204 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2205 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2206 * Exception. It is always taken in real mode but uses HSRR registers
2207 * unlike SRESET and MCE.
2208 *
2209 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2210 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2211 *
2212 * Handling:
2213 * This is a special case, this is handled similarly to machine checks, with an
2214 * initial real mode handler that is not soft-masked, which attempts to fix the
2215 * problem. Then a regular handler which is soft-maskable and reports the
2216 * problem.
2217 *
2218 * The emergency stack is used for the early real mode handler.
2219 *
2220 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2221 * either use soft-masking for the MCE, or use irq_work for the HMI.
2222 *
2223 * KVM:
2224 * Unlike MCE, this calls into KVM without calling the real mode handler
2225 * first.
2226 */
2227INT_DEFINE_BEGIN(hmi_exception_early)
2228 IVEC=0xe60
2229 IHSRR=1
2230 IREALMODE_COMMON=1
2231 ISTACK=0
2232 IRECONCILE=0
2233 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2234 IKVM_REAL=1
2235INT_DEFINE_END(hmi_exception_early)
2236
2237INT_DEFINE_BEGIN(hmi_exception)
2238 IVEC=0xe60
2239 IHSRR=1
2240 IMASK=IRQS_DISABLED
2241 IKVM_REAL=1
2242INT_DEFINE_END(hmi_exception)
2243
2244EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2245 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2246EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2247EXC_VIRT_NONE(0x4e60, 0x20)
2248
2249EXC_COMMON_BEGIN(hmi_exception_early_common)
2250 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2251
2252 mr r10,r1 /* Save r1 */
2253 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
2254 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
2255
2256 __GEN_COMMON_BODY hmi_exception_early
2257
2258 addi r3,r1,STACK_FRAME_OVERHEAD
2259 bl hmi_exception_realmode
2260 cmpdi cr0,r3,0
2261 bne 1f
2262
2263 EXCEPTION_RESTORE_REGS hsrr=1
2264 HRFI_TO_USER_OR_KERNEL
2265
22661:
2267 /*
2268 * Go to virtual mode and pull the HMI event information from
2269 * firmware.
2270 */
2271 EXCEPTION_RESTORE_REGS hsrr=1
2272 GEN_INT_ENTRY hmi_exception, virt=0
2273
2274 GEN_KVM hmi_exception_early
2275
2276EXC_COMMON_BEGIN(hmi_exception_common)
2277 GEN_COMMON hmi_exception
2278 FINISH_NAP
2279 RUNLATCH_ON
2280 addi r3,r1,STACK_FRAME_OVERHEAD
2281 bl handle_hmi_exception
2282 b interrupt_return
2283
2284 GEN_KVM hmi_exception
2285
2286
2287/**
2288 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2289 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2290 * Similar to the 0xa00 doorbell but for host rather than guest.
2291 */
2292INT_DEFINE_BEGIN(h_doorbell)
2293 IVEC=0xe80
2294 IHSRR=1
2295 IMASK=IRQS_DISABLED
2296 IKVM_REAL=1
2297 IKVM_VIRT=1
2298INT_DEFINE_END(h_doorbell)
2299
2300EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2301 GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2302EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2303EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2304 GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2305EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2306EXC_COMMON_BEGIN(h_doorbell_common)
2307 GEN_COMMON h_doorbell
2308 FINISH_NAP
2309 RUNLATCH_ON
2310 addi r3,r1,STACK_FRAME_OVERHEAD
2311#ifdef CONFIG_PPC_DOORBELL
2312 bl doorbell_exception
2313#else
2314 bl unknown_exception
2315#endif
2316 b interrupt_return
2317
2318 GEN_KVM h_doorbell
2319
2320
2321/**
2322 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2323 * This is an asynchronous interrupt in response to an "external exception".
2324 * Similar to 0x500 but for host only.
2325 */
2326INT_DEFINE_BEGIN(h_virt_irq)
2327 IVEC=0xea0
2328 IHSRR=1
2329 IMASK=IRQS_DISABLED
2330 IKVM_REAL=1
2331 IKVM_VIRT=1
2332INT_DEFINE_END(h_virt_irq)
2333
2334EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2335 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2336EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2337EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2338 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2339EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2340EXC_COMMON_BEGIN(h_virt_irq_common)
2341 GEN_COMMON h_virt_irq
2342 FINISH_NAP
2343 RUNLATCH_ON
2344 addi r3,r1,STACK_FRAME_OVERHEAD
2345 bl do_IRQ
2346 b interrupt_return
2347
2348 GEN_KVM h_virt_irq
2349
2350
2351EXC_REAL_NONE(0xec0, 0x20)
2352EXC_VIRT_NONE(0x4ec0, 0x20)
2353EXC_REAL_NONE(0xee0, 0x20)
2354EXC_VIRT_NONE(0x4ee0, 0x20)
2355
2356
2357/*
2358 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2359 * This is an asynchronous interrupt in response to a PMU exception.
2360 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2361 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2362 *
2363 * Handling:
2364 * This calls into the perf subsystem.
2365 *
2366 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2367 * runs under local_irq_disable. However it may be soft-masked in
2368 * powerpc-specific code.
2369 *
2370 * If soft masked, the masked handler will note the pending interrupt for
2371 * replay, and clear MSR[EE] in the interrupted context.
2372 */
2373INT_DEFINE_BEGIN(performance_monitor)
2374 IVEC=0xf00
2375 IMASK=IRQS_PMI_DISABLED
2376#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2377 IKVM_REAL=1
2378#endif
2379INT_DEFINE_END(performance_monitor)
2380
2381EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2382 GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2383EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2384EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2385 GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2386EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2387EXC_COMMON_BEGIN(performance_monitor_common)
2388 GEN_COMMON performance_monitor
2389 FINISH_NAP
2390 RUNLATCH_ON
2391 addi r3,r1,STACK_FRAME_OVERHEAD
2392 bl performance_monitor_exception
2393 b interrupt_return
2394
2395 GEN_KVM performance_monitor
2396
2397
2398/**
2399 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2400 * This is a synchronous interrupt in response to
2401 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2402 * Similar to FP unavailable.
2403 */
2404INT_DEFINE_BEGIN(altivec_unavailable)
2405 IVEC=0xf20
2406 IRECONCILE=0
2407#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2408 IKVM_REAL=1
2409#endif
2410INT_DEFINE_END(altivec_unavailable)
2411
2412EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2413 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2414EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2415EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2416 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2417EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2418EXC_COMMON_BEGIN(altivec_unavailable_common)
2419 GEN_COMMON altivec_unavailable
2420#ifdef CONFIG_ALTIVEC
2421BEGIN_FTR_SECTION
2422 beq 1f
2423#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2424 BEGIN_FTR_SECTION_NESTED(69)
2425 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2426 * transaction), go do TM stuff
2427 */
2428 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2429 bne- 2f
2430 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2431#endif
2432 bl load_up_altivec
2433 b fast_interrupt_return
2434#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24352: /* User process was in a transaction */
2436 RECONCILE_IRQ_STATE(r10, r11)
2437 addi r3,r1,STACK_FRAME_OVERHEAD
2438 bl altivec_unavailable_tm
2439 b interrupt_return
2440#endif
24411:
2442END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2443#endif
2444 RECONCILE_IRQ_STATE(r10, r11)
2445 addi r3,r1,STACK_FRAME_OVERHEAD
2446 bl altivec_unavailable_exception
2447 b interrupt_return
2448
2449 GEN_KVM altivec_unavailable
2450
2451
2452/**
2453 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2454 * This is a synchronous interrupt in response to
2455 * executing a VSX instruction with MSR[VSX]=0.
2456 * Similar to FP unavailable.
2457 */
2458INT_DEFINE_BEGIN(vsx_unavailable)
2459 IVEC=0xf40
2460 IRECONCILE=0
2461#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2462 IKVM_REAL=1
2463#endif
2464INT_DEFINE_END(vsx_unavailable)
2465
2466EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2467 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2468EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2469EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2470 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2471EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2472EXC_COMMON_BEGIN(vsx_unavailable_common)
2473 GEN_COMMON vsx_unavailable
2474#ifdef CONFIG_VSX
2475BEGIN_FTR_SECTION
2476 beq 1f
2477#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2478 BEGIN_FTR_SECTION_NESTED(69)
2479 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2480 * transaction), go do TM stuff
2481 */
2482 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2483 bne- 2f
2484 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2485#endif
2486 b load_up_vsx
2487#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24882: /* User process was in a transaction */
2489 RECONCILE_IRQ_STATE(r10, r11)
2490 addi r3,r1,STACK_FRAME_OVERHEAD
2491 bl vsx_unavailable_tm
2492 b interrupt_return
2493#endif
24941:
2495END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2496#endif
2497 RECONCILE_IRQ_STATE(r10, r11)
2498 addi r3,r1,STACK_FRAME_OVERHEAD
2499 bl vsx_unavailable_exception
2500 b interrupt_return
2501
2502 GEN_KVM vsx_unavailable
2503
2504
2505/**
2506 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2507 * This is a synchronous interrupt in response to
2508 * executing an instruction without access to the facility that can be
2509 * resolved by the OS (e.g., FSCR, MSR).
2510 * Similar to FP unavailable.
2511 */
2512INT_DEFINE_BEGIN(facility_unavailable)
2513 IVEC=0xf60
2514#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2515 IKVM_REAL=1
2516#endif
2517INT_DEFINE_END(facility_unavailable)
2518
2519EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2520 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2521EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2522EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2523 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2524EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2525EXC_COMMON_BEGIN(facility_unavailable_common)
2526 GEN_COMMON facility_unavailable
2527 addi r3,r1,STACK_FRAME_OVERHEAD
2528 bl facility_unavailable_exception
2529 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2530 b interrupt_return
2531
2532 GEN_KVM facility_unavailable
2533
2534
2535/**
2536 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2537 * This is a synchronous interrupt in response to
2538 * executing an instruction without access to the facility that can only
2539 * be resolved in HV mode (e.g., HFSCR).
2540 * Similar to FP unavailable.
2541 */
2542INT_DEFINE_BEGIN(h_facility_unavailable)
2543 IVEC=0xf80
2544 IHSRR=1
2545 IKVM_REAL=1
2546 IKVM_VIRT=1
2547INT_DEFINE_END(h_facility_unavailable)
2548
2549EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2550 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2551EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2552EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2553 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2554EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2555EXC_COMMON_BEGIN(h_facility_unavailable_common)
2556 GEN_COMMON h_facility_unavailable
2557 addi r3,r1,STACK_FRAME_OVERHEAD
2558 bl facility_unavailable_exception
2559 REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2560 b interrupt_return
2561
2562 GEN_KVM h_facility_unavailable
2563
2564
2565EXC_REAL_NONE(0xfa0, 0x20)
2566EXC_VIRT_NONE(0x4fa0, 0x20)
2567EXC_REAL_NONE(0xfc0, 0x20)
2568EXC_VIRT_NONE(0x4fc0, 0x20)
2569EXC_REAL_NONE(0xfe0, 0x20)
2570EXC_VIRT_NONE(0x4fe0, 0x20)
2571
2572EXC_REAL_NONE(0x1000, 0x100)
2573EXC_VIRT_NONE(0x5000, 0x100)
2574EXC_REAL_NONE(0x1100, 0x100)
2575EXC_VIRT_NONE(0x5100, 0x100)
2576
2577#ifdef CONFIG_CBE_RAS
2578INT_DEFINE_BEGIN(cbe_system_error)
2579 IVEC=0x1200
2580 IHSRR=1
2581 IKVM_SKIP=1
2582 IKVM_REAL=1
2583INT_DEFINE_END(cbe_system_error)
2584
2585EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2586 GEN_INT_ENTRY cbe_system_error, virt=0
2587EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2588EXC_VIRT_NONE(0x5200, 0x100)
2589EXC_COMMON_BEGIN(cbe_system_error_common)
2590 GEN_COMMON cbe_system_error
2591 addi r3,r1,STACK_FRAME_OVERHEAD
2592 bl cbe_system_error_exception
2593 b interrupt_return
2594
2595 GEN_KVM cbe_system_error
2596
2597#else /* CONFIG_CBE_RAS */
2598EXC_REAL_NONE(0x1200, 0x100)
2599EXC_VIRT_NONE(0x5200, 0x100)
2600#endif
2601
2602
2603INT_DEFINE_BEGIN(instruction_breakpoint)
2604 IVEC=0x1300
2605#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2606 IKVM_SKIP=1
2607 IKVM_REAL=1
2608#endif
2609INT_DEFINE_END(instruction_breakpoint)
2610
2611EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2612 GEN_INT_ENTRY instruction_breakpoint, virt=0
2613EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2614EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2615 GEN_INT_ENTRY instruction_breakpoint, virt=1
2616EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2617EXC_COMMON_BEGIN(instruction_breakpoint_common)
2618 GEN_COMMON instruction_breakpoint
2619 addi r3,r1,STACK_FRAME_OVERHEAD
2620 bl instruction_breakpoint_exception
2621 b interrupt_return
2622
2623 GEN_KVM instruction_breakpoint
2624
2625
2626EXC_REAL_NONE(0x1400, 0x100)
2627EXC_VIRT_NONE(0x5400, 0x100)
2628
2629/**
2630 * Interrupt 0x1500 - Soft Patch Interrupt
2631 *
2632 * Handling:
2633 * This is an implementation specific interrupt which can be used for a
2634 * range of exceptions.
2635 *
2636 * This interrupt handler is unique in that it runs the denormal assist
2637 * code even for guests (and even in guest context) without going to KVM,
2638 * for speed. POWER9 does not raise denorm exceptions, so this special case
2639 * could be phased out in future to reduce special cases.
2640 */
2641INT_DEFINE_BEGIN(denorm_exception)
2642 IVEC=0x1500
2643 IHSRR=1
2644 IBRANCH_TO_COMMON=0
2645 IKVM_REAL=1
2646INT_DEFINE_END(denorm_exception)
2647
2648EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2649 GEN_INT_ENTRY denorm_exception, virt=0
2650#ifdef CONFIG_PPC_DENORMALISATION
2651 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2652 bne+ denorm_assist
2653#endif
2654 GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2655EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2656#ifdef CONFIG_PPC_DENORMALISATION
2657EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2658 GEN_INT_ENTRY denorm_exception, virt=1
2659 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2660 bne+ denorm_assist
2661 GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2662EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2663#else
2664EXC_VIRT_NONE(0x5500, 0x100)
2665#endif
2666
2667#ifdef CONFIG_PPC_DENORMALISATION
2668TRAMP_REAL_BEGIN(denorm_assist)
2669BEGIN_FTR_SECTION
2670/*
2671 * To denormalise we need to move a copy of the register to itself.
2672 * For POWER6 do that here for all FP regs.
2673 */
2674 mfmsr r10
2675 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2676 xori r10,r10,(MSR_FE0|MSR_FE1)
2677 mtmsrd r10
2678 sync
2679
2680 .Lreg=0
2681 .rept 32
2682 fmr .Lreg,.Lreg
2683 .Lreg=.Lreg+1
2684 .endr
2685
2686FTR_SECTION_ELSE
2687/*
2688 * To denormalise we need to move a copy of the register to itself.
2689 * For POWER7 do that here for the first 32 VSX registers only.
2690 */
2691 mfmsr r10
2692 oris r10,r10,MSR_VSX@h
2693 mtmsrd r10
2694 sync
2695
2696 .Lreg=0
2697 .rept 32
2698 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2699 .Lreg=.Lreg+1
2700 .endr
2701
2702ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2703
2704BEGIN_FTR_SECTION
2705 b denorm_done
2706END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2707/*
2708 * To denormalise we need to move a copy of the register to itself.
2709 * For POWER8 we need to do that for all 64 VSX registers
2710 */
2711 .Lreg=32
2712 .rept 32
2713 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2714 .Lreg=.Lreg+1
2715 .endr
2716
2717denorm_done:
2718 mfspr r11,SPRN_HSRR0
2719 subi r11,r11,4
2720 mtspr SPRN_HSRR0,r11
2721 mtcrf 0x80,r9
2722 ld r9,PACA_EXGEN+EX_R9(r13)
2723BEGIN_FTR_SECTION
2724 ld r10,PACA_EXGEN+EX_PPR(r13)
2725 mtspr SPRN_PPR,r10
2726END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2727BEGIN_FTR_SECTION
2728 ld r10,PACA_EXGEN+EX_CFAR(r13)
2729 mtspr SPRN_CFAR,r10
2730END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2731 ld r10,PACA_EXGEN+EX_R10(r13)
2732 ld r11,PACA_EXGEN+EX_R11(r13)
2733 ld r12,PACA_EXGEN+EX_R12(r13)
2734 ld r13,PACA_EXGEN+EX_R13(r13)
2735 HRFI_TO_UNKNOWN
2736 b .
2737#endif
2738
2739EXC_COMMON_BEGIN(denorm_exception_common)
2740 GEN_COMMON denorm_exception
2741 addi r3,r1,STACK_FRAME_OVERHEAD
2742 bl unknown_exception
2743 b interrupt_return
2744
2745 GEN_KVM denorm_exception
2746
2747
2748#ifdef CONFIG_CBE_RAS
2749INT_DEFINE_BEGIN(cbe_maintenance)
2750 IVEC=0x1600
2751 IHSRR=1
2752 IKVM_SKIP=1
2753 IKVM_REAL=1
2754INT_DEFINE_END(cbe_maintenance)
2755
2756EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2757 GEN_INT_ENTRY cbe_maintenance, virt=0
2758EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2759EXC_VIRT_NONE(0x5600, 0x100)
2760EXC_COMMON_BEGIN(cbe_maintenance_common)
2761 GEN_COMMON cbe_maintenance
2762 addi r3,r1,STACK_FRAME_OVERHEAD
2763 bl cbe_maintenance_exception
2764 b interrupt_return
2765
2766 GEN_KVM cbe_maintenance
2767
2768#else /* CONFIG_CBE_RAS */
2769EXC_REAL_NONE(0x1600, 0x100)
2770EXC_VIRT_NONE(0x5600, 0x100)
2771#endif
2772
2773
2774INT_DEFINE_BEGIN(altivec_assist)
2775 IVEC=0x1700
2776#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2777 IKVM_REAL=1
2778#endif
2779INT_DEFINE_END(altivec_assist)
2780
2781EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2782 GEN_INT_ENTRY altivec_assist, virt=0
2783EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2784EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2785 GEN_INT_ENTRY altivec_assist, virt=1
2786EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2787EXC_COMMON_BEGIN(altivec_assist_common)
2788 GEN_COMMON altivec_assist
2789 addi r3,r1,STACK_FRAME_OVERHEAD
2790#ifdef CONFIG_ALTIVEC
2791 bl altivec_assist_exception
2792 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2793#else
2794 bl unknown_exception
2795#endif
2796 b interrupt_return
2797
2798 GEN_KVM altivec_assist
2799
2800
2801#ifdef CONFIG_CBE_RAS
2802INT_DEFINE_BEGIN(cbe_thermal)
2803 IVEC=0x1800
2804 IHSRR=1
2805 IKVM_SKIP=1
2806 IKVM_REAL=1
2807INT_DEFINE_END(cbe_thermal)
2808
2809EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2810 GEN_INT_ENTRY cbe_thermal, virt=0
2811EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2812EXC_VIRT_NONE(0x5800, 0x100)
2813EXC_COMMON_BEGIN(cbe_thermal_common)
2814 GEN_COMMON cbe_thermal
2815 addi r3,r1,STACK_FRAME_OVERHEAD
2816 bl cbe_thermal_exception
2817 b interrupt_return
2818
2819 GEN_KVM cbe_thermal
2820
2821#else /* CONFIG_CBE_RAS */
2822EXC_REAL_NONE(0x1800, 0x100)
2823EXC_VIRT_NONE(0x5800, 0x100)
2824#endif
2825
2826
2827#ifdef CONFIG_PPC_WATCHDOG
2828
2829INT_DEFINE_BEGIN(soft_nmi)
2830 IVEC=0x900
2831 ISTACK=0
2832 IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
2833INT_DEFINE_END(soft_nmi)
2834
2835/*
2836 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2837 * stack is one that is usable by maskable interrupts so long as MSR_EE
2838 * remains off. It is used for recovery when something has corrupted the
2839 * normal kernel stack, for example. The "soft NMI" must not use the process
2840 * stack because we want irq disabled sections to avoid touching the stack
2841 * at all (other than PMU interrupts), so use the emergency stack for this,
2842 * and run it entirely with interrupts hard disabled.
2843 */
2844EXC_COMMON_BEGIN(soft_nmi_common)
2845 mfspr r11,SPRN_SRR0
2846 mr r10,r1
2847 ld r1,PACAEMERGSP(r13)
2848 subi r1,r1,INT_FRAME_SIZE
2849 __GEN_COMMON_BODY soft_nmi
2850
2851 /*
2852 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
2853 * system_reset_common)
2854 */
2855 li r10,IRQS_ALL_DISABLED
2856 stb r10,PACAIRQSOFTMASK(r13)
2857 lbz r10,PACAIRQHAPPENED(r13)
2858 std r10,RESULT(r1)
2859 ori r10,r10,PACA_IRQ_HARD_DIS
2860 stb r10,PACAIRQHAPPENED(r13)
2861
2862 addi r3,r1,STACK_FRAME_OVERHEAD
2863 bl soft_nmi_interrupt
2864
2865 /* Clear MSR_RI before setting SRR0 and SRR1. */
2866 li r9,0
2867 mtmsrd r9,1
2868
2869 /*
2870 * Restore soft mask settings.
2871 */
2872 ld r10,RESULT(r1)
2873 stb r10,PACAIRQHAPPENED(r13)
2874 ld r10,SOFTE(r1)
2875 stb r10,PACAIRQSOFTMASK(r13)
2876
2877 kuap_restore_amr r9, r10
2878 EXCEPTION_RESTORE_REGS hsrr=0
2879 RFI_TO_KERNEL
2880
2881#endif /* CONFIG_PPC_WATCHDOG */
2882
2883/*
2884 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2885 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2886 * - If it was a doorbell we return immediately since doorbells are edge
2887 * triggered and won't automatically refire.
2888 * - If it was a HMI we return immediately since we handled it in realmode
2889 * and it won't refire.
2890 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2891 * This is called with r10 containing the value to OR to the paca field.
2892 */
2893.macro MASKED_INTERRUPT hsrr=0
2894 .if \hsrr
2895masked_Hinterrupt:
2896 .else
2897masked_interrupt:
2898 .endif
2899 lbz r11,PACAIRQHAPPENED(r13)
2900 or r11,r11,r10
2901 stb r11,PACAIRQHAPPENED(r13)
2902 cmpwi r10,PACA_IRQ_DEC
2903 bne 1f
2904 lis r10,0x7fff
2905 ori r10,r10,0xffff
2906 mtspr SPRN_DEC,r10
2907#ifdef CONFIG_PPC_WATCHDOG
2908 b soft_nmi_common
2909#else
2910 b 2f
2911#endif
29121: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
2913 beq 2f
2914 xori r12,r12,MSR_EE /* clear MSR_EE */
2915 .if \hsrr
2916 mtspr SPRN_HSRR1,r12
2917 .else
2918 mtspr SPRN_SRR1,r12
2919 .endif
2920 ori r11,r11,PACA_IRQ_HARD_DIS
2921 stb r11,PACAIRQHAPPENED(r13)
29222: /* done */
2923 ld r10,PACA_EXGEN+EX_CTR(r13)
2924 mtctr r10
2925 mtcrf 0x80,r9
2926 std r1,PACAR1(r13)
2927 ld r9,PACA_EXGEN+EX_R9(r13)
2928 ld r10,PACA_EXGEN+EX_R10(r13)
2929 ld r11,PACA_EXGEN+EX_R11(r13)
2930 ld r12,PACA_EXGEN+EX_R12(r13)
2931 ld r13,PACA_EXGEN+EX_R13(r13)
2932 /* May return to masked low address where r13 is not set up */
2933 .if \hsrr
2934 HRFI_TO_KERNEL
2935 .else
2936 RFI_TO_KERNEL
2937 .endif
2938 b .
2939.endm
2940
2941TRAMP_REAL_BEGIN(stf_barrier_fallback)
2942 std r9,PACA_EXRFI+EX_R9(r13)
2943 std r10,PACA_EXRFI+EX_R10(r13)
2944 sync
2945 ld r9,PACA_EXRFI+EX_R9(r13)
2946 ld r10,PACA_EXRFI+EX_R10(r13)
2947 ori 31,31,0
2948 .rept 14
2949 b 1f
29501:
2951 .endr
2952 blr
2953
2954TRAMP_REAL_BEGIN(rfi_flush_fallback)
2955 SET_SCRATCH0(r13);
2956 GET_PACA(r13);
2957 std r1,PACA_EXRFI+EX_R12(r13)
2958 ld r1,PACAKSAVE(r13)
2959 std r9,PACA_EXRFI+EX_R9(r13)
2960 std r10,PACA_EXRFI+EX_R10(r13)
2961 std r11,PACA_EXRFI+EX_R11(r13)
2962 mfctr r9
2963 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2964 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2965 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2966 mtctr r11
2967 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2968
2969 /* order ld/st prior to dcbt stop all streams with flushing */
2970 sync
2971
2972 /*
2973 * The load adresses are at staggered offsets within cachelines,
2974 * which suits some pipelines better (on others it should not
2975 * hurt).
2976 */
29771:
2978 ld r11,(0x80 + 8)*0(r10)
2979 ld r11,(0x80 + 8)*1(r10)
2980 ld r11,(0x80 + 8)*2(r10)
2981 ld r11,(0x80 + 8)*3(r10)
2982 ld r11,(0x80 + 8)*4(r10)
2983 ld r11,(0x80 + 8)*5(r10)
2984 ld r11,(0x80 + 8)*6(r10)
2985 ld r11,(0x80 + 8)*7(r10)
2986 addi r10,r10,0x80*8
2987 bdnz 1b
2988
2989 mtctr r9
2990 ld r9,PACA_EXRFI+EX_R9(r13)
2991 ld r10,PACA_EXRFI+EX_R10(r13)
2992 ld r11,PACA_EXRFI+EX_R11(r13)
2993 ld r1,PACA_EXRFI+EX_R12(r13)
2994 GET_SCRATCH0(r13);
2995 rfid
2996
2997TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2998 SET_SCRATCH0(r13);
2999 GET_PACA(r13);
3000 std r1,PACA_EXRFI+EX_R12(r13)
3001 ld r1,PACAKSAVE(r13)
3002 std r9,PACA_EXRFI+EX_R9(r13)
3003 std r10,PACA_EXRFI+EX_R10(r13)
3004 std r11,PACA_EXRFI+EX_R11(r13)
3005 mfctr r9
3006 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3007 ld r11,PACA_L1D_FLUSH_SIZE(r13)
3008 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3009 mtctr r11
3010 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3011
3012 /* order ld/st prior to dcbt stop all streams with flushing */
3013 sync
3014
3015 /*
3016 * The load adresses are at staggered offsets within cachelines,
3017 * which suits some pipelines better (on others it should not
3018 * hurt).
3019 */
30201:
3021 ld r11,(0x80 + 8)*0(r10)
3022 ld r11,(0x80 + 8)*1(r10)
3023 ld r11,(0x80 + 8)*2(r10)
3024 ld r11,(0x80 + 8)*3(r10)
3025 ld r11,(0x80 + 8)*4(r10)
3026 ld r11,(0x80 + 8)*5(r10)
3027 ld r11,(0x80 + 8)*6(r10)
3028 ld r11,(0x80 + 8)*7(r10)
3029 addi r10,r10,0x80*8
3030 bdnz 1b
3031
3032 mtctr r9
3033 ld r9,PACA_EXRFI+EX_R9(r13)
3034 ld r10,PACA_EXRFI+EX_R10(r13)
3035 ld r11,PACA_EXRFI+EX_R11(r13)
3036 ld r1,PACA_EXRFI+EX_R12(r13)
3037 GET_SCRATCH0(r13);
3038 hrfid
3039
3040TRAMP_REAL_BEGIN(rfscv_flush_fallback)
3041 /* system call volatile */
3042 mr r7,r13
3043 GET_PACA(r13);
3044 mr r8,r1
3045 ld r1,PACAKSAVE(r13)
3046 mfctr r9
3047 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3048 ld r11,PACA_L1D_FLUSH_SIZE(r13)
3049 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3050 mtctr r11
3051 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3052
3053 /* order ld/st prior to dcbt stop all streams with flushing */
3054 sync
3055
3056 /*
3057 * The load adresses are at staggered offsets within cachelines,
3058 * which suits some pipelines better (on others it should not
3059 * hurt).
3060 */
30611:
3062 ld r11,(0x80 + 8)*0(r10)
3063 ld r11,(0x80 + 8)*1(r10)
3064 ld r11,(0x80 + 8)*2(r10)
3065 ld r11,(0x80 + 8)*3(r10)
3066 ld r11,(0x80 + 8)*4(r10)
3067 ld r11,(0x80 + 8)*5(r10)
3068 ld r11,(0x80 + 8)*6(r10)
3069 ld r11,(0x80 + 8)*7(r10)
3070 addi r10,r10,0x80*8
3071 bdnz 1b
3072
3073 mtctr r9
3074 li r9,0
3075 li r10,0
3076 li r11,0
3077 mr r1,r8
3078 mr r13,r7
3079 RFSCV
3080
3081USE_TEXT_SECTION()
3082 MASKED_INTERRUPT
3083 MASKED_INTERRUPT hsrr=1
3084
3085#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3086kvmppc_skip_interrupt:
3087 /*
3088 * Here all GPRs are unchanged from when the interrupt happened
3089 * except for r13, which is saved in SPRG_SCRATCH0.
3090 */
3091 mfspr r13, SPRN_SRR0
3092 addi r13, r13, 4
3093 mtspr SPRN_SRR0, r13
3094 GET_SCRATCH0(r13)
3095 RFI_TO_KERNEL
3096 b .
3097
3098kvmppc_skip_Hinterrupt:
3099 /*
3100 * Here all GPRs are unchanged from when the interrupt happened
3101 * except for r13, which is saved in SPRG_SCRATCH0.
3102 */
3103 mfspr r13, SPRN_HSRR0
3104 addi r13, r13, 4
3105 mtspr SPRN_HSRR0, r13
3106 GET_SCRATCH0(r13)
3107 HRFI_TO_KERNEL
3108 b .
3109#endif
3110
3111 /*
3112 * Relocation-on interrupts: A subset of the interrupts can be delivered
3113 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
3114 * it. Addresses are the same as the original interrupt addresses, but
3115 * offset by 0xc000000000004000.
3116 * It's impossible to receive interrupts below 0x300 via this mechanism.
3117 * KVM: None of these traps are from the guest ; anything that escalated
3118 * to HV=1 from HV=0 is delivered via real mode handlers.
3119 */
3120
3121 /*
3122 * This uses the standard macro, since the original 0x300 vector
3123 * only has extra guff for STAB-based processors -- which never
3124 * come here.
3125 */
3126
3127EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
3128 b __ppc64_runlatch_on
3129
3130USE_FIXED_SECTION(virt_trampolines)
3131 /*
3132 * All code below __end_interrupts is treated as soft-masked. If
3133 * any code runs here with MSR[EE]=1, it must then cope with pending
3134 * soft interrupt being raised (i.e., by ensuring it is replayed).
3135 *
3136 * The __end_interrupts marker must be past the out-of-line (OOL)
3137 * handlers, so that they are copied to real address 0x100 when running
3138 * a relocatable kernel. This ensures they can be reached from the short
3139 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3140 * directly, without using LOAD_HANDLER().
3141 */
3142 .align 7
3143 .globl __end_interrupts
3144__end_interrupts:
3145DEFINE_FIXED_SYMBOL(__end_interrupts)
3146
3147#ifdef CONFIG_PPC_970_NAP
3148 /*
3149 * Called by exception entry code if _TLF_NAPPING was set, this clears
3150 * the NAPPING flag, and redirects the exception exit to
3151 * power4_fixup_nap_return.
3152 */
3153 .globl power4_fixup_nap
3154EXC_COMMON_BEGIN(power4_fixup_nap)
3155 andc r9,r9,r10
3156 std r9,TI_LOCAL_FLAGS(r11)
3157 LOAD_REG_ADDR(r10, power4_idle_nap_return)
3158 std r10,_NIP(r1)
3159 blr
3160
3161power4_idle_nap_return:
3162 blr
3163#endif
3164
3165CLOSE_FIXED_SECTION(real_vectors);
3166CLOSE_FIXED_SECTION(real_trampolines);
3167CLOSE_FIXED_SECTION(virt_vectors);
3168CLOSE_FIXED_SECTION(virt_trampolines);
3169
3170USE_TEXT_SECTION()
3171
3172/* MSR[RI] should be clear because this uses SRR[01] */
3173enable_machine_check:
3174 mflr r0
3175 bcl 20,31,$+4
31760: mflr r3
3177 addi r3,r3,(1f - 0b)
3178 mtspr SPRN_SRR0,r3
3179 mfmsr r3
3180 ori r3,r3,MSR_ME
3181 mtspr SPRN_SRR1,r3
3182 RFI_TO_KERNEL
31831: mtlr r0
3184 blr
3185
3186/* MSR[RI] should be clear because this uses SRR[01] */
3187disable_machine_check:
3188 mflr r0
3189 bcl 20,31,$+4
31900: mflr r3
3191 addi r3,r3,(1f - 0b)
3192 mtspr SPRN_SRR0,r3
3193 mfmsr r3
3194 li r4,MSR_ME
3195 andc r3,r3,r4
3196 mtspr SPRN_SRR1,r3
3197 RFI_TO_KERNEL
31981: mtlr r0
3199 blr
3200
3201/*
3202 * Hash table stuff
3203 */
3204 .balign IFETCH_ALIGN_BYTES
3205do_hash_page:
3206#ifdef CONFIG_PPC_BOOK3S_64
3207 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
3208 ori r0,r0,DSISR_BAD_FAULT_64S@l
3209 and. r0,r5,r0 /* weird error? */
3210 bne- handle_page_fault /* if not, try to insert a HPTE */
3211
3212 /*
3213 * If we are in an "NMI" (e.g., an interrupt when soft-disabled), then
3214 * don't call hash_page, just fail the fault. This is required to
3215 * prevent re-entrancy problems in the hash code, namely perf
3216 * interrupts hitting while something holds H_PAGE_BUSY, and taking a
3217 * hash fault. See the comment in hash_preload().
3218 */
3219 ld r11, PACA_THREAD_INFO(r13)
3220 lwz r0,TI_PREEMPT(r11)
3221 andis. r0,r0,NMI_MASK@h
3222 bne 77f
3223
3224 /*
3225 * r3 contains the trap number
3226 * r4 contains the faulting address
3227 * r5 contains dsisr
3228 * r6 msr
3229 *
3230 * at return r3 = 0 for success, 1 for page fault, negative for error
3231 */
3232 bl __hash_page /* build HPTE if possible */
3233 cmpdi r3,0 /* see if __hash_page succeeded */
3234
3235 /* Success */
3236 beq interrupt_return /* Return from exception on success */
3237
3238 /* Error */
3239 blt- 13f
3240
3241 /* Reload DAR/DSISR into r4/r5 for the DABR check below */
3242 ld r4,_DAR(r1)
3243 ld r5,_DSISR(r1)
3244#endif /* CONFIG_PPC_BOOK3S_64 */
3245
3246/* Here we have a page fault that hash_page can't handle. */
3247handle_page_fault:
324811: andis. r0,r5,DSISR_DABRMATCH@h
3249 bne- handle_dabr_fault
3250 addi r3,r1,STACK_FRAME_OVERHEAD
3251 bl do_page_fault
3252 cmpdi r3,0
3253 beq+ interrupt_return
3254 mr r5,r3
3255 addi r3,r1,STACK_FRAME_OVERHEAD
3256 ld r4,_DAR(r1)
3257 bl bad_page_fault
3258 b interrupt_return
3259
3260/* We have a data breakpoint exception - handle it */
3261handle_dabr_fault:
3262 ld r4,_DAR(r1)
3263 ld r5,_DSISR(r1)
3264 addi r3,r1,STACK_FRAME_OVERHEAD
3265 bl do_break
3266 /*
3267 * do_break() may have changed the NV GPRS while handling a breakpoint.
3268 * If so, we need to restore them with their updated values.
3269 */
3270 REST_NVGPRS(r1)
3271 b interrupt_return
3272
3273
3274#ifdef CONFIG_PPC_BOOK3S_64
3275/* We have a page fault that hash_page could handle but HV refused
3276 * the PTE insertion
3277 */
327813: mr r5,r3
3279 addi r3,r1,STACK_FRAME_OVERHEAD
3280 ld r4,_DAR(r1)
3281 bl low_hash_fault
3282 b interrupt_return
3283#endif
3284
3285/*
3286 * We come here as a result of a DSI at a point where we don't want
3287 * to call hash_page, such as when we are accessing memory (possibly
3288 * user memory) inside a PMU interrupt that occurred while interrupts
3289 * were soft-disabled. We want to invoke the exception handler for
3290 * the access, or panic if there isn't a handler.
3291 */
329277: addi r3,r1,STACK_FRAME_OVERHEAD
3293 li r5,SIGSEGV
3294 bl bad_page_fault
3295 b interrupt_return
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16#include <linux/linkage.h>
17#include <asm/hw_irq.h>
18#include <asm/exception-64s.h>
19#include <asm/ptrace.h>
20#include <asm/cpuidle.h>
21#include <asm/head-64.h>
22#include <asm/feature-fixups.h>
23#include <asm/kup.h>
24
25/*
26 * Following are fixed section helper macros.
27 *
28 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors
29 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
30 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
31 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
32 * EXC_COMMON - After switching to virtual, relocated mode.
33 */
34
35#define EXC_REAL_BEGIN(name, start, size) \
36 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
37
38#define EXC_REAL_END(name, start, size) \
39 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
40
41#define EXC_VIRT_BEGIN(name, start, size) \
42 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
43
44#define EXC_VIRT_END(name, start, size) \
45 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
46
47#define EXC_COMMON_BEGIN(name) \
48 USE_TEXT_SECTION(); \
49 .balign IFETCH_ALIGN_BYTES; \
50 .global name; \
51 _ASM_NOKPROBE_SYMBOL(name); \
52 DEFINE_FIXED_SYMBOL(name, text); \
53name:
54
55#define TRAMP_REAL_BEGIN(name) \
56 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
57
58#define TRAMP_VIRT_BEGIN(name) \
59 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
60
61#define EXC_REAL_NONE(start, size) \
62 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
63 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
64
65#define EXC_VIRT_NONE(start, size) \
66 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
67 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
68
69/*
70 * We're short on space and time in the exception prolog, so we can't
71 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
72 * Instead we get the base of the kernel from paca->kernelbase and or in the low
73 * part of label. This requires that the label be within 64KB of kernelbase, and
74 * that kernelbase be 64K aligned.
75 */
76#define LOAD_HANDLER(reg, label) \
77 ld reg,PACAKBASE(r13); /* get high part of &label */ \
78 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
79
80#define __LOAD_HANDLER(reg, label, section) \
81 ld reg,PACAKBASE(r13); \
82 ori reg,reg,(ABS_ADDR(label, section))@l
83
84/*
85 * Branches from unrelocated code (e.g., interrupts) to labels outside
86 * head-y require >64K offsets.
87 */
88#define __LOAD_FAR_HANDLER(reg, label, section) \
89 ld reg,PACAKBASE(r13); \
90 ori reg,reg,(ABS_ADDR(label, section))@l; \
91 addis reg,reg,(ABS_ADDR(label, section))@h
92
93/*
94 * Interrupt code generation macros
95 */
96#define IVEC .L_IVEC_\name\() /* Interrupt vector address */
97#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
98#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
99#define IAREA .L_IAREA_\name\() /* PACA save area */
100#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
101#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
102#define ICFAR .L_ICFAR_\name\() /* Uses CFAR */
103#define ICFAR_IF_HVMODE .L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */
104#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
105#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
106#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
107#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
108#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
109#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
110#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
111#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
112#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
113#define __ISTACK(name) .L_ISTACK_ ## name
114#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
115#define IMSR_R12 .L_IMSR_R12_\name\() /* Assumes MSR saved to r12 */
116
117#define INT_DEFINE_BEGIN(n) \
118.macro int_define_ ## n name
119
120#define INT_DEFINE_END(n) \
121.endm ; \
122int_define_ ## n n ; \
123do_define_int n
124
125.macro do_define_int name
126 .ifndef IVEC
127 .error "IVEC not defined"
128 .endif
129 .ifndef IHSRR
130 IHSRR=0
131 .endif
132 .ifndef IHSRR_IF_HVMODE
133 IHSRR_IF_HVMODE=0
134 .endif
135 .ifndef IAREA
136 IAREA=PACA_EXGEN
137 .endif
138 .ifndef IVIRT
139 IVIRT=1
140 .endif
141 .ifndef IISIDE
142 IISIDE=0
143 .endif
144 .ifndef ICFAR
145 ICFAR=1
146 .endif
147 .ifndef ICFAR_IF_HVMODE
148 ICFAR_IF_HVMODE=0
149 .endif
150 .ifndef IDAR
151 IDAR=0
152 .endif
153 .ifndef IDSISR
154 IDSISR=0
155 .endif
156 .ifndef IBRANCH_TO_COMMON
157 IBRANCH_TO_COMMON=1
158 .endif
159 .ifndef IREALMODE_COMMON
160 IREALMODE_COMMON=0
161 .else
162 .if ! IBRANCH_TO_COMMON
163 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
164 .endif
165 .endif
166 .ifndef IMASK
167 IMASK=0
168 .endif
169 .ifndef IKVM_REAL
170 IKVM_REAL=0
171 .endif
172 .ifndef IKVM_VIRT
173 IKVM_VIRT=0
174 .endif
175 .ifndef ISTACK
176 ISTACK=1
177 .endif
178 .ifndef IKUAP
179 IKUAP=1
180 .endif
181 .ifndef IMSR_R12
182 IMSR_R12=0
183 .endif
184.endm
185
186/*
187 * All interrupts which set HSRR registers, as well as SRESET and MCE and
188 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
189 * so they all generally need to test whether they were taken in guest context.
190 *
191 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
192 * taken with MSR[HV]=0.
193 *
194 * Interrupts which set SRR registers (with the above exceptions) do not
195 * elevate to MSR[HV]=1 mode, though most can be taken when running with
196 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
197 * not need to test whether a guest is running because they get delivered to
198 * the guest directly, including nested HV KVM guests.
199 *
200 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
201 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
202 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
203 * delivered to the real-mode entry point, therefore such interrupts only test
204 * KVM in their real mode handlers, and only when PR KVM is possible.
205 *
206 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
207 * delivered in real-mode when the MMU is in hash mode because the MMU
208 * registers are not set appropriately to translate host addresses. In nested
209 * radix mode these can be delivered in virt-mode as the host translations are
210 * used implicitly (see: effective LPID, effective PID).
211 */
212
213/*
214 * If an interrupt is taken while a guest is running, it is immediately routed
215 * to KVM to handle.
216 */
217
218.macro KVMTEST name handler
219#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
220 lbz r10,HSTATE_IN_GUEST(r13)
221 cmpwi r10,0
222 /* HSRR variants have the 0x2 bit added to their trap number */
223 .if IHSRR_IF_HVMODE
224 BEGIN_FTR_SECTION
225 li r10,(IVEC + 0x2)
226 FTR_SECTION_ELSE
227 li r10,(IVEC)
228 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
229 .elseif IHSRR
230 li r10,(IVEC + 0x2)
231 .else
232 li r10,(IVEC)
233 .endif
234 bne \handler
235#endif
236.endm
237
238/*
239 * This is the BOOK3S interrupt entry code macro.
240 *
241 * This can result in one of several things happening:
242 * - Branch to the _common handler, relocated, in virtual mode.
243 * These are normal interrupts (synchronous and asynchronous) handled by
244 * the kernel.
245 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
246 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
247 * / intended for host or guest kernel, but KVM must always be involved
248 * because the machine state is set for guest execution.
249 * - Branch to the masked handler, unrelocated.
250 * These occur when maskable asynchronous interrupts are taken with the
251 * irq_soft_mask set.
252 * - Branch to an "early" handler in real mode but relocated.
253 * This is done if early=1. MCE and HMI use these to handle errors in real
254 * mode.
255 * - Fall through and continue executing in real, unrelocated mode.
256 * This is done if early=2.
257 */
258
259.macro GEN_BRANCH_TO_COMMON name, virt
260 .if IREALMODE_COMMON
261 LOAD_HANDLER(r10, \name\()_common)
262 mtctr r10
263 bctr
264 .else
265 .if \virt
266#ifndef CONFIG_RELOCATABLE
267 b \name\()_common_virt
268#else
269 LOAD_HANDLER(r10, \name\()_common_virt)
270 mtctr r10
271 bctr
272#endif
273 .else
274 LOAD_HANDLER(r10, \name\()_common_real)
275 mtctr r10
276 bctr
277 .endif
278 .endif
279.endm
280
281.macro GEN_INT_ENTRY name, virt, ool=0
282 SET_SCRATCH0(r13) /* save r13 */
283 GET_PACA(r13)
284 std r9,IAREA+EX_R9(r13) /* save r9 */
285BEGIN_FTR_SECTION
286 mfspr r9,SPRN_PPR
287END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
288 HMT_MEDIUM
289 std r10,IAREA+EX_R10(r13) /* save r10 */
290 .if ICFAR
291BEGIN_FTR_SECTION
292 mfspr r10,SPRN_CFAR
293END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
294 .elseif ICFAR_IF_HVMODE
295BEGIN_FTR_SECTION
296 BEGIN_FTR_SECTION_NESTED(69)
297 mfspr r10,SPRN_CFAR
298 END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
299FTR_SECTION_ELSE
300 BEGIN_FTR_SECTION_NESTED(69)
301 li r10,0
302 END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
303ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
304 .endif
305 .if \ool
306 .if !\virt
307 b tramp_real_\name
308 .pushsection .text
309 TRAMP_REAL_BEGIN(tramp_real_\name)
310 .else
311 b tramp_virt_\name
312 .pushsection .text
313 TRAMP_VIRT_BEGIN(tramp_virt_\name)
314 .endif
315 .endif
316
317BEGIN_FTR_SECTION
318 std r9,IAREA+EX_PPR(r13)
319END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
320 .if ICFAR || ICFAR_IF_HVMODE
321BEGIN_FTR_SECTION
322 std r10,IAREA+EX_CFAR(r13)
323END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
324 .endif
325 INTERRUPT_TO_KERNEL
326 mfctr r10
327 std r10,IAREA+EX_CTR(r13)
328 mfcr r9
329 std r11,IAREA+EX_R11(r13) /* save r11 - r12 */
330 std r12,IAREA+EX_R12(r13)
331
332 /*
333 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
334 * because a d-side MCE will clobber those registers so is
335 * not recoverable if they are live.
336 */
337 GET_SCRATCH0(r10)
338 std r10,IAREA+EX_R13(r13)
339 .if IDAR && !IISIDE
340 .if IHSRR
341 mfspr r10,SPRN_HDAR
342 .else
343 mfspr r10,SPRN_DAR
344 .endif
345 std r10,IAREA+EX_DAR(r13)
346 .endif
347 .if IDSISR && !IISIDE
348 .if IHSRR
349 mfspr r10,SPRN_HDSISR
350 .else
351 mfspr r10,SPRN_DSISR
352 .endif
353 stw r10,IAREA+EX_DSISR(r13)
354 .endif
355
356 .if IHSRR_IF_HVMODE
357 BEGIN_FTR_SECTION
358 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
359 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
360 FTR_SECTION_ELSE
361 mfspr r11,SPRN_SRR0 /* save SRR0 */
362 mfspr r12,SPRN_SRR1 /* and SRR1 */
363 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
364 .elseif IHSRR
365 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
366 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
367 .else
368 mfspr r11,SPRN_SRR0 /* save SRR0 */
369 mfspr r12,SPRN_SRR1 /* and SRR1 */
370 .endif
371
372 .if IBRANCH_TO_COMMON
373 GEN_BRANCH_TO_COMMON \name \virt
374 .endif
375
376 .if \ool
377 .popsection
378 .endif
379.endm
380
381/*
382 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
383 * entry, except in the case of the real-mode handlers which require
384 * __GEN_REALMODE_COMMON_ENTRY.
385 *
386 * This switches to virtual mode and sets MSR[RI].
387 */
388.macro __GEN_COMMON_ENTRY name
389DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
390\name\()_common_real:
391 .if IKVM_REAL
392 KVMTEST \name kvm_interrupt
393 .endif
394
395 ld r10,PACAKMSR(r13) /* get MSR value for kernel */
396 /* MSR[RI] is clear iff using SRR regs */
397 .if IHSRR_IF_HVMODE
398 BEGIN_FTR_SECTION
399 xori r10,r10,MSR_RI
400 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
401 .elseif ! IHSRR
402 xori r10,r10,MSR_RI
403 .endif
404 mtmsrd r10
405
406 .if IVIRT
407 .if IKVM_VIRT
408 b 1f /* skip the virt test coming from real */
409 .endif
410
411 .balign IFETCH_ALIGN_BYTES
412DEFINE_FIXED_SYMBOL(\name\()_common_virt, text)
413\name\()_common_virt:
414 .if IKVM_VIRT
415 KVMTEST \name kvm_interrupt
4161:
417 .endif
418 .endif /* IVIRT */
419.endm
420
421/*
422 * Don't switch to virt mode. Used for early MCE and HMI handlers that
423 * want to run in real mode.
424 */
425.macro __GEN_REALMODE_COMMON_ENTRY name
426DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
427\name\()_common_real:
428 .if IKVM_REAL
429 KVMTEST \name kvm_interrupt
430 .endif
431.endm
432
433.macro __GEN_COMMON_BODY name
434 .if IMASK
435 .if ! ISTACK
436 .error "No support for masked interrupt to use custom stack"
437 .endif
438
439 /* If coming from user, skip soft-mask tests. */
440 andi. r10,r12,MSR_PR
441 bne 3f
442
443 /*
444 * Kernel code running below __end_soft_masked may be
445 * implicitly soft-masked if it is within the regions
446 * in the soft mask table.
447 */
448 LOAD_HANDLER(r10, __end_soft_masked)
449 cmpld r11,r10
450 bge+ 1f
451
452 /* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */
453 mtctr r12
454 stw r9,PACA_EXGEN+EX_CCR(r13)
455 SEARCH_SOFT_MASK_TABLE
456 cmpdi r12,0
457 mfctr r12 /* Restore r12 to SRR1 */
458 lwz r9,PACA_EXGEN+EX_CCR(r13)
459 beq 1f /* Not in soft-mask table */
460 li r10,IMASK
461 b 2f /* In soft-mask table, always mask */
462
463 /* Test the soft mask state against our interrupt's bit */
4641: lbz r10,PACAIRQSOFTMASK(r13)
4652: andi. r10,r10,IMASK
466 /* Associate vector numbers with bits in paca->irq_happened */
467 .if IVEC == 0x500 || IVEC == 0xea0
468 li r10,PACA_IRQ_EE
469 .elseif IVEC == 0x900
470 li r10,PACA_IRQ_DEC
471 .elseif IVEC == 0xa00 || IVEC == 0xe80
472 li r10,PACA_IRQ_DBELL
473 .elseif IVEC == 0xe60
474 li r10,PACA_IRQ_HMI
475 .elseif IVEC == 0xf00
476 li r10,PACA_IRQ_PMI
477 .else
478 .abort "Bad maskable vector"
479 .endif
480
481 .if IHSRR_IF_HVMODE
482 BEGIN_FTR_SECTION
483 bne masked_Hinterrupt
484 FTR_SECTION_ELSE
485 bne masked_interrupt
486 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
487 .elseif IHSRR
488 bne masked_Hinterrupt
489 .else
490 bne masked_interrupt
491 .endif
492 .endif
493
494 .if ISTACK
495 andi. r10,r12,MSR_PR /* See if coming from user */
4963: mr r10,r1 /* Save r1 */
497 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
498 beq- 100f
499 ld r1,PACAKSAVE(r13) /* kernel stack to use */
500100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
501 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
502 .endif
503
504 std r9,_CCR(r1) /* save CR in stackframe */
505 std r11,_NIP(r1) /* save SRR0 in stackframe */
506 std r12,_MSR(r1) /* save SRR1 in stackframe */
507 std r10,0(r1) /* make stack chain pointer */
508 std r0,GPR0(r1) /* save r0 in stackframe */
509 std r10,GPR1(r1) /* save r1 in stackframe */
510 SANITIZE_GPR(0)
511
512 /* Mark our [H]SRRs valid for return */
513 li r10,1
514 .if IHSRR_IF_HVMODE
515 BEGIN_FTR_SECTION
516 stb r10,PACAHSRR_VALID(r13)
517 FTR_SECTION_ELSE
518 stb r10,PACASRR_VALID(r13)
519 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
520 .elseif IHSRR
521 stb r10,PACAHSRR_VALID(r13)
522 .else
523 stb r10,PACASRR_VALID(r13)
524 .endif
525
526 .if ISTACK
527 .if IKUAP
528 kuap_save_amr_and_lock r9, r10, cr1, cr0
529 .endif
530 beq 101f /* if from kernel mode */
531BEGIN_FTR_SECTION
532 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
533 std r9,_PPR(r1)
534END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
535101:
536 .else
537 .if IKUAP
538 kuap_save_amr_and_lock r9, r10, cr1
539 .endif
540 .endif
541
542 /* Save original regs values from save area to stack frame. */
543 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
544 ld r10,IAREA+EX_R10(r13)
545 std r9,GPR9(r1)
546 std r10,GPR10(r1)
547 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
548 ld r10,IAREA+EX_R12(r13)
549 ld r11,IAREA+EX_R13(r13)
550 std r9,GPR11(r1)
551 std r10,GPR12(r1)
552 std r11,GPR13(r1)
553 .if !IMSR_R12
554 SANITIZE_GPRS(9, 12)
555 .else
556 SANITIZE_GPRS(9, 11)
557 .endif
558
559 SAVE_NVGPRS(r1)
560 SANITIZE_NVGPRS()
561
562 .if IDAR
563 .if IISIDE
564 ld r10,_NIP(r1)
565 .else
566 ld r10,IAREA+EX_DAR(r13)
567 .endif
568 std r10,_DAR(r1)
569 .endif
570
571 .if IDSISR
572 .if IISIDE
573 ld r10,_MSR(r1)
574 lis r11,DSISR_SRR1_MATCH_64S@h
575 and r10,r10,r11
576 .else
577 lwz r10,IAREA+EX_DSISR(r13)
578 .endif
579 std r10,_DSISR(r1)
580 .endif
581
582BEGIN_FTR_SECTION
583 .if ICFAR || ICFAR_IF_HVMODE
584 ld r10,IAREA+EX_CFAR(r13)
585 .else
586 li r10,0
587 .endif
588 std r10,ORIG_GPR3(r1)
589END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
590 ld r10,IAREA+EX_CTR(r13)
591 std r10,_CTR(r1)
592 SAVE_GPRS(2, 8, r1) /* save r2 - r8 in stackframe */
593 SANITIZE_GPRS(2, 8)
594 mflr r9 /* Get LR, later save to stack */
595 LOAD_PACA_TOC() /* get kernel TOC into r2 */
596 std r9,_LINK(r1)
597 lbz r10,PACAIRQSOFTMASK(r13)
598 mfspr r11,SPRN_XER /* save XER in stackframe */
599 std r10,SOFTE(r1)
600 std r11,_XER(r1)
601 li r9,IVEC
602 std r9,_TRAP(r1) /* set trap number */
603 li r10,0
604 LOAD_REG_IMMEDIATE(r11, STACK_FRAME_REGS_MARKER)
605 std r10,RESULT(r1) /* clear regs->result */
606 std r11,STACK_INT_FRAME_MARKER(r1) /* mark the frame */
607.endm
608
609/*
610 * On entry r13 points to the paca, r9-r13 are saved in the paca,
611 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
612 * SRR1, and relocation is on.
613 *
614 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
615 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
616 */
617.macro GEN_COMMON name
618 __GEN_COMMON_ENTRY \name
619 __GEN_COMMON_BODY \name
620.endm
621
622.macro SEARCH_RESTART_TABLE
623#ifdef CONFIG_RELOCATABLE
624 mr r12,r2
625 LOAD_PACA_TOC()
626 LOAD_REG_ADDR(r9, __start___restart_table)
627 LOAD_REG_ADDR(r10, __stop___restart_table)
628 mr r2,r12
629#else
630 LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table)
631 LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table)
632#endif
633300:
634 cmpd r9,r10
635 beq 302f
636 ld r12,0(r9)
637 cmpld r11,r12
638 blt 301f
639 ld r12,8(r9)
640 cmpld r11,r12
641 bge 301f
642 ld r12,16(r9)
643 b 303f
644301:
645 addi r9,r9,24
646 b 300b
647302:
648 li r12,0
649303:
650.endm
651
652.macro SEARCH_SOFT_MASK_TABLE
653#ifdef CONFIG_RELOCATABLE
654 mr r12,r2
655 LOAD_PACA_TOC()
656 LOAD_REG_ADDR(r9, __start___soft_mask_table)
657 LOAD_REG_ADDR(r10, __stop___soft_mask_table)
658 mr r2,r12
659#else
660 LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table)
661 LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table)
662#endif
663300:
664 cmpd r9,r10
665 beq 302f
666 ld r12,0(r9)
667 cmpld r11,r12
668 blt 301f
669 ld r12,8(r9)
670 cmpld r11,r12
671 bge 301f
672 li r12,1
673 b 303f
674301:
675 addi r9,r9,16
676 b 300b
677302:
678 li r12,0
679303:
680.endm
681
682/*
683 * Restore all registers including H/SRR0/1 saved in a stack frame of a
684 * standard exception.
685 */
686.macro EXCEPTION_RESTORE_REGS hsrr=0
687 /* Move original SRR0 and SRR1 into the respective regs */
688 ld r9,_MSR(r1)
689 li r10,0
690 .if \hsrr
691 mtspr SPRN_HSRR1,r9
692 stb r10,PACAHSRR_VALID(r13)
693 .else
694 mtspr SPRN_SRR1,r9
695 stb r10,PACASRR_VALID(r13)
696 .endif
697 ld r9,_NIP(r1)
698 .if \hsrr
699 mtspr SPRN_HSRR0,r9
700 .else
701 mtspr SPRN_SRR0,r9
702 .endif
703 ld r9,_CTR(r1)
704 mtctr r9
705 ld r9,_XER(r1)
706 mtxer r9
707 ld r9,_LINK(r1)
708 mtlr r9
709 ld r9,_CCR(r1)
710 mtcr r9
711 SANITIZE_RESTORE_NVGPRS()
712 REST_GPRS(2, 13, r1)
713 REST_GPR(0, r1)
714 /* restore original r1. */
715 ld r1,GPR1(r1)
716.endm
717
718/*
719 * EARLY_BOOT_FIXUP - Fix real-mode interrupt with wrong endian in early boot.
720 *
721 * There's a short window during boot where although the kernel is running
722 * little endian, any exceptions will cause the CPU to switch back to big
723 * endian. For example a WARN() boils down to a trap instruction, which will
724 * cause a program check, and we end up here but with the CPU in big endian
725 * mode. The first instruction of the program check handler (in GEN_INT_ENTRY
726 * below) is an mtsprg, which when executed in the wrong endian is an lhzu with
727 * a ~3GB displacement from r3. The content of r3 is random, so that is a load
728 * from some random location, and depending on the system can easily lead to a
729 * checkstop, or an infinitely recursive page fault.
730 *
731 * So to handle that case we have a trampoline here that can detect we are in
732 * the wrong endian and flip us back to the correct endian. We can't flip
733 * MSR[LE] using mtmsr, so we have to use rfid. That requires backing up SRR0/1
734 * as well as a GPR. To do that we use SPRG0/2/3, as SPRG1 is already used for
735 * the paca. SPRG3 is user readable, but this trampoline is only active very
736 * early in boot, and SPRG3 will be reinitialised in vdso_getcpu_init() before
737 * userspace starts.
738 */
739.macro EARLY_BOOT_FIXUP
740BEGIN_FTR_SECTION
741#ifdef CONFIG_CPU_LITTLE_ENDIAN
742 tdi 0,0,0x48 // Trap never, or in reverse endian: b . + 8
743 b 2f // Skip trampoline if endian is correct
744 .long 0xa643707d // mtsprg 0, r11 Backup r11
745 .long 0xa6027a7d // mfsrr0 r11
746 .long 0xa643727d // mtsprg 2, r11 Backup SRR0 in SPRG2
747 .long 0xa6027b7d // mfsrr1 r11
748 .long 0xa643737d // mtsprg 3, r11 Backup SRR1 in SPRG3
749 .long 0xa600607d // mfmsr r11
750 .long 0x01006b69 // xori r11, r11, 1 Invert MSR[LE]
751 .long 0xa6037b7d // mtsrr1 r11
752 /*
753 * This is 'li r11,1f' where 1f is the absolute address of that
754 * label, byteswapped into the SI field of the instruction.
755 */
756 .long 0x00006039 | \
757 ((ABS_ADDR(1f, real_vectors) & 0x00ff) << 24) | \
758 ((ABS_ADDR(1f, real_vectors) & 0xff00) << 8)
759 .long 0xa6037a7d // mtsrr0 r11
760 .long 0x2400004c // rfid
7611:
762 mfsprg r11, 3
763 mtsrr1 r11 // Restore SRR1
764 mfsprg r11, 2
765 mtsrr0 r11 // Restore SRR0
766 mfsprg r11, 0 // Restore r11
7672:
768#endif
769 /*
770 * program check could hit at any time, and pseries can not block
771 * MSR[ME] in early boot. So check if there is anything useful in r13
772 * yet, and spin forever if not.
773 */
774 mtsprg 0, r11
775 mfcr r11
776 cmpdi r13, 0
777 beq .
778 mtcr r11
779 mfsprg r11, 0
780END_FTR_SECTION(0, 1) // nop out after boot
781.endm
782
783/*
784 * There are a few constraints to be concerned with.
785 * - Real mode exceptions code/data must be located at their physical location.
786 * - Virtual mode exceptions must be mapped at their 0xc000... location.
787 * - Fixed location code must not call directly beyond the __end_interrupts
788 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
789 * must be used.
790 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
791 * virtual 0xc00...
792 * - Conditional branch targets must be within +/-32K of caller.
793 *
794 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
795 * therefore don't have to run in physically located code or rfid to
796 * virtual mode kernel code. However on relocatable kernels they do have
797 * to branch to KERNELBASE offset because the rest of the kernel (outside
798 * the exception vectors) may be located elsewhere.
799 *
800 * Virtual exceptions correspond with physical, except their entry points
801 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
802 * offset applied. Virtual exceptions are enabled with the Alternate
803 * Interrupt Location (AIL) bit set in the LPCR. However this does not
804 * guarantee they will be delivered virtually. Some conditions (see the ISA)
805 * cause exceptions to be delivered in real mode.
806 *
807 * The scv instructions are a special case. They get a 0x3000 offset applied.
808 * scv exceptions have unique reentrancy properties, see below.
809 *
810 * It's impossible to receive interrupts below 0x300 via AIL.
811 *
812 * KVM: None of the virtual exceptions are from the guest. Anything that
813 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
814 *
815 *
816 * We layout physical memory as follows:
817 * 0x0000 - 0x00ff : Secondary processor spin code
818 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
819 * 0x1900 - 0x2fff : Real mode trampolines
820 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
821 * 0x5900 - 0x6fff : Relon mode trampolines
822 * 0x7000 - 0x7fff : FWNMI data area
823 * 0x8000 - .... : Common interrupt handlers, remaining early
824 * setup code, rest of kernel.
825 *
826 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
827 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
828 * vectors there.
829 */
830OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
831OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
832OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
833OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
834
835#ifdef CONFIG_PPC_POWERNV
836 .globl start_real_trampolines
837 .globl end_real_trampolines
838 .globl start_virt_trampolines
839 .globl end_virt_trampolines
840#endif
841
842#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
843/*
844 * Data area reserved for FWNMI option.
845 * This address (0x7000) is fixed by the RPA.
846 * pseries and powernv need to keep the whole page from
847 * 0x7000 to 0x8000 free for use by the firmware
848 */
849ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
850OPEN_TEXT_SECTION(0x8000)
851#else
852OPEN_TEXT_SECTION(0x7000)
853#endif
854
855USE_FIXED_SECTION(real_vectors)
856
857/*
858 * This is the start of the interrupt handlers for pSeries
859 * This code runs with relocation off.
860 * Code from here to __end_interrupts gets copied down to real
861 * address 0x100 when we are running a relocatable kernel.
862 * Therefore any relative branches in this section must only
863 * branch to labels in this section.
864 */
865 .globl __start_interrupts
866__start_interrupts:
867
868/**
869 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
870 * This is a synchronous interrupt invoked with the "scv" instruction. The
871 * system call does not alter the HV bit, so it is directed to the OS.
872 *
873 * Handling:
874 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
875 * In particular, this means we can take a maskable interrupt at any point
876 * in the scv handler, which is unlike any other interrupt. This is solved
877 * by treating the instruction addresses in the handler as being soft-masked,
878 * by adding a SOFT_MASK_TABLE entry for them.
879 *
880 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
881 * ensure scv is never executed with relocation off, which means AIL-0
882 * should never happen.
883 *
884 * Before leaving the following inside-__end_soft_masked text, at least of the
885 * following must be true:
886 * - MSR[PR]=1 (i.e., return to userspace)
887 * - MSR_EE|MSR_RI is clear (no reentrant exceptions)
888 * - Standard kernel environment is set up (stack, paca, etc)
889 *
890 * KVM:
891 * These interrupts do not elevate HV 0->1, so HV is not involved. PR KVM
892 * ensures that FSCR[SCV] is disabled whenever it has to force AIL off.
893 *
894 * Call convention:
895 *
896 * syscall register convention is in Documentation/arch/powerpc/syscall64-abi.rst
897 */
898EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
899 /* SCV 0 */
900 mr r9,r13
901 GET_PACA(r13)
902 mflr r11
903 mfctr r12
904 li r10,IRQS_ALL_DISABLED
905 stb r10,PACAIRQSOFTMASK(r13)
906#ifdef CONFIG_RELOCATABLE
907 b system_call_vectored_tramp
908#else
909 b system_call_vectored_common
910#endif
911 nop
912
913 /* SCV 1 - 127 */
914 .rept 127
915 mr r9,r13
916 GET_PACA(r13)
917 mflr r11
918 mfctr r12
919 li r10,IRQS_ALL_DISABLED
920 stb r10,PACAIRQSOFTMASK(r13)
921 li r0,-1 /* cause failure */
922#ifdef CONFIG_RELOCATABLE
923 b system_call_vectored_sigill_tramp
924#else
925 b system_call_vectored_sigill
926#endif
927 .endr
928EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
929
930// Treat scv vectors as soft-masked, see comment above.
931// Use absolute values rather than labels here, so they don't get relocated,
932// because this code runs unrelocated.
933SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000)
934
935#ifdef CONFIG_RELOCATABLE
936TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
937 __LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines)
938 mtctr r10
939 bctr
940
941TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
942 __LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines)
943 mtctr r10
944 bctr
945#endif
946
947
948/* No virt vectors corresponding with 0x0..0x100 */
949EXC_VIRT_NONE(0x4000, 0x100)
950
951
952/**
953 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
954 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
955 * It is caused by:
956 * - Wake from power-saving state, on powernv.
957 * - An NMI from another CPU, triggered by firmware or hypercall.
958 * - As crash/debug signal injected from BMC, firmware or hypervisor.
959 *
960 * Handling:
961 * Power-save wakeup is the only performance critical path, so this is
962 * determined quickly as possible first. In this case volatile registers
963 * can be discarded and SPRs like CFAR don't need to be read.
964 *
965 * If not a powersave wakeup, then it's run as a regular interrupt, however
966 * it uses its own stack and PACA save area to preserve the regular kernel
967 * environment for debugging.
968 *
969 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
970 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
971 * correct to switch to virtual mode to run the regular interrupt handler
972 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
973 * is clear).
974 *
975 * FWNMI:
976 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
977 * entry point with a different register set up. Some hypervisors will
978 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
979 *
980 * KVM:
981 * Unlike most SRR interrupts, this may be taken by the host while executing
982 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
983 * mode and then raise the sreset.
984 */
985INT_DEFINE_BEGIN(system_reset)
986 IVEC=0x100
987 IAREA=PACA_EXNMI
988 IVIRT=0 /* no virt entry point */
989 ISTACK=0
990 IKVM_REAL=1
991INT_DEFINE_END(system_reset)
992
993EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
994#ifdef CONFIG_PPC_P7_NAP
995 /*
996 * If running native on arch 2.06 or later, check if we are waking up
997 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
998 * bits 46:47. A non-0 value indicates that we are coming from a power
999 * saving state. The idle wakeup handler initially runs in real mode,
1000 * but we branch to the 0xc000... address so we can turn on relocation
1001 * with mtmsrd later, after SPRs are restored.
1002 *
1003 * Careful to minimise cost for the fast path (idle wakeup) while
1004 * also avoiding clobbering CFAR for the debug path (non-idle).
1005 *
1006 * For the idle wake case volatile registers can be clobbered, which
1007 * is why we use those initially. If it turns out to not be an idle
1008 * wake, carefully put everything back the way it was, so we can use
1009 * common exception macros to handle it.
1010 */
1011BEGIN_FTR_SECTION
1012 SET_SCRATCH0(r13)
1013 GET_PACA(r13)
1014 std r3,PACA_EXNMI+0*8(r13)
1015 std r4,PACA_EXNMI+1*8(r13)
1016 std r5,PACA_EXNMI+2*8(r13)
1017 mfspr r3,SPRN_SRR1
1018 mfocrf r4,0x80
1019 rlwinm. r5,r3,47-31,30,31
1020 bne+ system_reset_idle_wake
1021 /* Not powersave wakeup. Restore regs for regular interrupt handler. */
1022 mtocrf 0x80,r4
1023 ld r3,PACA_EXNMI+0*8(r13)
1024 ld r4,PACA_EXNMI+1*8(r13)
1025 ld r5,PACA_EXNMI+2*8(r13)
1026 GET_SCRATCH0(r13)
1027END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1028#endif
1029
1030 GEN_INT_ENTRY system_reset, virt=0
1031 /*
1032 * In theory, we should not enable relocation here if it was disabled
1033 * in SRR1, because the MMU may not be configured to support it (e.g.,
1034 * SLB may have been cleared). In practice, there should only be a few
1035 * small windows where that's the case, and sreset is considered to
1036 * be dangerous anyway.
1037 */
1038EXC_REAL_END(system_reset, 0x100, 0x100)
1039EXC_VIRT_NONE(0x4100, 0x100)
1040
1041#ifdef CONFIG_PPC_P7_NAP
1042TRAMP_REAL_BEGIN(system_reset_idle_wake)
1043 /* We are waking up from idle, so may clobber any volatile register */
1044 cmpwi cr1,r5,2
1045 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
1046 __LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines)
1047 mtctr r12
1048 bctr
1049#endif
1050
1051#ifdef CONFIG_PPC_PSERIES
1052/*
1053 * Vectors for the FWNMI option. Share common code.
1054 */
1055TRAMP_REAL_BEGIN(system_reset_fwnmi)
1056 GEN_INT_ENTRY system_reset, virt=0
1057
1058#endif /* CONFIG_PPC_PSERIES */
1059
1060EXC_COMMON_BEGIN(system_reset_common)
1061 __GEN_COMMON_ENTRY system_reset
1062 /*
1063 * Increment paca->in_nmi. When the interrupt entry wrapper later
1064 * enable MSR_RI, then SLB or MCE will be able to recover, but a nested
1065 * NMI will notice in_nmi and not recover because of the use of the NMI
1066 * stack. in_nmi reentrancy is tested in system_reset_exception.
1067 */
1068 lhz r10,PACA_IN_NMI(r13)
1069 addi r10,r10,1
1070 sth r10,PACA_IN_NMI(r13)
1071
1072 mr r10,r1
1073 ld r1,PACA_NMI_EMERG_SP(r13)
1074 subi r1,r1,INT_FRAME_SIZE
1075 __GEN_COMMON_BODY system_reset
1076
1077 addi r3,r1,STACK_INT_FRAME_REGS
1078 bl CFUNC(system_reset_exception)
1079
1080 /* Clear MSR_RI before setting SRR0 and SRR1. */
1081 li r9,0
1082 mtmsrd r9,1
1083
1084 /*
1085 * MSR_RI is clear, now we can decrement paca->in_nmi.
1086 */
1087 lhz r10,PACA_IN_NMI(r13)
1088 subi r10,r10,1
1089 sth r10,PACA_IN_NMI(r13)
1090
1091 kuap_kernel_restore r9, r10
1092 EXCEPTION_RESTORE_REGS
1093 RFI_TO_USER_OR_KERNEL
1094
1095
1096/**
1097 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1098 * This is a non-maskable interrupt always taken in real-mode. It can be
1099 * synchronous or asynchronous, caused by hardware or software, and it may be
1100 * taken in a power-saving state.
1101 *
1102 * Handling:
1103 * Similarly to system reset, this uses its own stack and PACA save area,
1104 * the difference is re-entrancy is allowed on the machine check stack.
1105 *
1106 * machine_check_early is run in real mode, and carefully decodes the
1107 * machine check and tries to handle it (e.g., flush the SLB if there was an
1108 * error detected there), determines if it was recoverable and logs the
1109 * event.
1110 *
1111 * This early code does not "reconcile" irq soft-mask state like SRESET or
1112 * regular interrupts do, so irqs_disabled() among other things may not work
1113 * properly (irq disable/enable already doesn't work because irq tracing can
1114 * not work in real mode).
1115 *
1116 * Then, depending on the execution context when the interrupt is taken, there
1117 * are 3 main actions:
1118 * - Executing in kernel mode. The event is queued with irq_work, which means
1119 * it is handled when it is next safe to do so (i.e., the kernel has enabled
1120 * interrupts), which could be immediately when the interrupt returns. This
1121 * avoids nasty issues like switching to virtual mode when the MMU is in a
1122 * bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1123 * but it has different priorities). Check to see if the CPU was in power
1124 * save, and return via the wake up code if it was.
1125 *
1126 * - Executing in user mode. machine_check_exception is run like a normal
1127 * interrupt handler, which processes the data generated by the early handler.
1128 *
1129 * - Executing in guest mode. The interrupt is run with its KVM test, and
1130 * branches to KVM to deal with. KVM may queue the event for the host
1131 * to report later.
1132 *
1133 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1134 * or SCRATCH0 is in use, it may cause a crash.
1135 *
1136 * KVM:
1137 * See SRESET.
1138 */
1139INT_DEFINE_BEGIN(machine_check_early)
1140 IVEC=0x200
1141 IAREA=PACA_EXMC
1142 IVIRT=0 /* no virt entry point */
1143 IREALMODE_COMMON=1
1144 ISTACK=0
1145 IDAR=1
1146 IDSISR=1
1147 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1148INT_DEFINE_END(machine_check_early)
1149
1150INT_DEFINE_BEGIN(machine_check)
1151 IVEC=0x200
1152 IAREA=PACA_EXMC
1153 IVIRT=0 /* no virt entry point */
1154 IDAR=1
1155 IDSISR=1
1156 IKVM_REAL=1
1157INT_DEFINE_END(machine_check)
1158
1159EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1160 EARLY_BOOT_FIXUP
1161 GEN_INT_ENTRY machine_check_early, virt=0
1162EXC_REAL_END(machine_check, 0x200, 0x100)
1163EXC_VIRT_NONE(0x4200, 0x100)
1164
1165#ifdef CONFIG_PPC_PSERIES
1166TRAMP_REAL_BEGIN(machine_check_fwnmi)
1167 /* See comment at machine_check exception, don't turn on RI */
1168 GEN_INT_ENTRY machine_check_early, virt=0
1169#endif
1170
1171#define MACHINE_CHECK_HANDLER_WINDUP \
1172 /* Clear MSR_RI before setting SRR0 and SRR1. */\
1173 li r9,0; \
1174 mtmsrd r9,1; /* Clear MSR_RI */ \
1175 /* Decrement paca->in_mce now RI is clear. */ \
1176 lhz r12,PACA_IN_MCE(r13); \
1177 subi r12,r12,1; \
1178 sth r12,PACA_IN_MCE(r13); \
1179 EXCEPTION_RESTORE_REGS
1180
1181EXC_COMMON_BEGIN(machine_check_early_common)
1182 __GEN_REALMODE_COMMON_ENTRY machine_check_early
1183
1184 /*
1185 * Switch to mc_emergency stack and handle re-entrancy (we limit
1186 * the nested MCE upto level 4 to avoid stack overflow).
1187 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1188 *
1189 * We use paca->in_mce to check whether this is the first entry or
1190 * nested machine check. We increment paca->in_mce to track nested
1191 * machine checks.
1192 *
1193 * If this is the first entry then set stack pointer to
1194 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1195 * stack frame on mc_emergency stack.
1196 *
1197 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1198 * checkstop if we get another machine check exception before we do
1199 * rfid with MSR_ME=1.
1200 *
1201 * This interrupt can wake directly from idle. If that is the case,
1202 * the machine check is handled then the idle wakeup code is called
1203 * to restore state.
1204 */
1205 lhz r10,PACA_IN_MCE(r13)
1206 cmpwi r10,0 /* Are we in nested machine check */
1207 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
1208 addi r10,r10,1 /* increment paca->in_mce */
1209 sth r10,PACA_IN_MCE(r13)
1210
1211 mr r10,r1 /* Save r1 */
1212 bne 1f
1213 /* First machine check entry */
1214 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
12151: /* Limit nested MCE to level 4 to avoid stack overflow */
1216 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
1217 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1218
1219 __GEN_COMMON_BODY machine_check_early
1220
1221BEGIN_FTR_SECTION
1222 bl enable_machine_check
1223END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1224 addi r3,r1,STACK_INT_FRAME_REGS
1225BEGIN_FTR_SECTION
1226 bl CFUNC(machine_check_early_boot)
1227END_FTR_SECTION(0, 1) // nop out after boot
1228 bl CFUNC(machine_check_early)
1229 std r3,RESULT(r1) /* Save result */
1230 ld r12,_MSR(r1)
1231
1232#ifdef CONFIG_PPC_P7_NAP
1233 /*
1234 * Check if thread was in power saving mode. We come here when any
1235 * of the following is true:
1236 * a. thread wasn't in power saving mode
1237 * b. thread was in power saving mode with no state loss,
1238 * supervisor state loss or hypervisor state loss.
1239 *
1240 * Go back to nap/sleep/winkle mode again if (b) is true.
1241 */
1242BEGIN_FTR_SECTION
1243 rlwinm. r11,r12,47-31,30,31
1244 bne machine_check_idle_common
1245END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1246#endif
1247
1248#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1249 /*
1250 * Check if we are coming from guest. If yes, then run the normal
1251 * exception handler which will take the
1252 * machine_check_kvm->kvm_interrupt branch to deliver the MC event
1253 * to guest.
1254 */
1255 lbz r11,HSTATE_IN_GUEST(r13)
1256 cmpwi r11,0 /* Check if coming from guest */
1257 bne mce_deliver /* continue if we are. */
1258#endif
1259
1260 /*
1261 * Check if we are coming from userspace. If yes, then run the normal
1262 * exception handler which will deliver the MC event to this kernel.
1263 */
1264 andi. r11,r12,MSR_PR /* See if coming from user. */
1265 bne mce_deliver /* continue in V mode if we are. */
1266
1267 /*
1268 * At this point we are coming from kernel context.
1269 * Queue up the MCE event and return from the interrupt.
1270 * But before that, check if this is an un-recoverable exception.
1271 * If yes, then stay on emergency stack and panic.
1272 */
1273 andi. r11,r12,MSR_RI
1274 beq unrecoverable_mce
1275
1276 /*
1277 * Check if we have successfully handled/recovered from error, if not
1278 * then stay on emergency stack and panic.
1279 */
1280 ld r3,RESULT(r1) /* Load result */
1281 cmpdi r3,0 /* see if we handled MCE successfully */
1282 beq unrecoverable_mce /* if !handled then panic */
1283
1284 /*
1285 * Return from MC interrupt.
1286 * Queue up the MCE event so that we can log it later, while
1287 * returning from kernel or opal call.
1288 */
1289 bl CFUNC(machine_check_queue_event)
1290 MACHINE_CHECK_HANDLER_WINDUP
1291 RFI_TO_KERNEL
1292
1293mce_deliver:
1294 /*
1295 * This is a host user or guest MCE. Restore all registers, then
1296 * run the "late" handler. For host user, this will run the
1297 * machine_check_exception handler in virtual mode like a normal
1298 * interrupt handler. For guest, this will trigger the KVM test
1299 * and branch to the KVM interrupt similarly to other interrupts.
1300 */
1301BEGIN_FTR_SECTION
1302 ld r10,ORIG_GPR3(r1)
1303 mtspr SPRN_CFAR,r10
1304END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1305 MACHINE_CHECK_HANDLER_WINDUP
1306 GEN_INT_ENTRY machine_check, virt=0
1307
1308EXC_COMMON_BEGIN(machine_check_common)
1309 /*
1310 * Machine check is different because we use a different
1311 * save area: PACA_EXMC instead of PACA_EXGEN.
1312 */
1313 GEN_COMMON machine_check
1314 addi r3,r1,STACK_INT_FRAME_REGS
1315 bl CFUNC(machine_check_exception_async)
1316 b interrupt_return_srr
1317
1318
1319#ifdef CONFIG_PPC_P7_NAP
1320/*
1321 * This is an idle wakeup. Low level machine check has already been
1322 * done. Queue the event then call the idle code to do the wake up.
1323 */
1324EXC_COMMON_BEGIN(machine_check_idle_common)
1325 bl CFUNC(machine_check_queue_event)
1326
1327 /*
1328 * GPR-loss wakeups are relatively straightforward, because the
1329 * idle sleep code has saved all non-volatile registers on its
1330 * own stack, and r1 in PACAR1.
1331 *
1332 * For no-loss wakeups the r1 and lr registers used by the
1333 * early machine check handler have to be restored first. r2 is
1334 * the kernel TOC, so no need to restore it.
1335 *
1336 * Then decrement MCE nesting after finishing with the stack.
1337 */
1338 ld r3,_MSR(r1)
1339 ld r4,_LINK(r1)
1340 ld r1,GPR1(r1)
1341
1342 lhz r11,PACA_IN_MCE(r13)
1343 subi r11,r11,1
1344 sth r11,PACA_IN_MCE(r13)
1345
1346 mtlr r4
1347 rlwinm r10,r3,47-31,30,31
1348 cmpwi cr1,r10,2
1349 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
1350 b idle_return_gpr_loss
1351#endif
1352
1353EXC_COMMON_BEGIN(unrecoverable_mce)
1354 /*
1355 * We are going down. But there are chances that we might get hit by
1356 * another MCE during panic path and we may run into unstable state
1357 * with no way out. Hence, turn ME bit off while going down, so that
1358 * when another MCE is hit during panic path, system will checkstop
1359 * and hypervisor will get restarted cleanly by SP.
1360 */
1361BEGIN_FTR_SECTION
1362 li r10,0 /* clear MSR_RI */
1363 mtmsrd r10,1
1364 bl CFUNC(disable_machine_check)
1365END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1366 ld r10,PACAKMSR(r13)
1367 li r3,MSR_ME
1368 andc r10,r10,r3
1369 mtmsrd r10
1370
1371 lhz r12,PACA_IN_MCE(r13)
1372 subi r12,r12,1
1373 sth r12,PACA_IN_MCE(r13)
1374
1375 /*
1376 * Invoke machine_check_exception to print MCE event and panic.
1377 * This is the NMI version of the handler because we are called from
1378 * the early handler which is a true NMI.
1379 */
1380 addi r3,r1,STACK_INT_FRAME_REGS
1381 bl CFUNC(machine_check_exception)
1382
1383 /*
1384 * We will not reach here. Even if we did, there is no way out.
1385 * Call unrecoverable_exception and die.
1386 */
1387 addi r3,r1,STACK_INT_FRAME_REGS
1388 bl CFUNC(unrecoverable_exception)
1389 b .
1390
1391
1392/**
1393 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1394 * This is a synchronous interrupt generated due to a data access exception,
1395 * e.g., a load orstore which does not have a valid page table entry with
1396 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1397 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1398 *
1399 * Handling:
1400 * - Hash MMU
1401 * Go to do_hash_fault, which attempts to fill the HPT from an entry in the
1402 * Linux page table. Hash faults can hit in kernel mode in a fairly
1403 * arbitrary state (e.g., interrupts disabled, locks held) when accessing
1404 * "non-bolted" regions, e.g., vmalloc space. However these should always be
1405 * backed by Linux page table entries.
1406 *
1407 * If no entry is found the Linux page fault handler is invoked (by
1408 * do_hash_fault). Linux page faults can happen in kernel mode due to user
1409 * copy operations of course.
1410 *
1411 * KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
1412 * MMU context, which may cause a DSI in the host, which must go to the
1413 * KVM handler. MSR[IR] is not enabled, so the real-mode handler will
1414 * always be used regardless of AIL setting.
1415 *
1416 * - Radix MMU
1417 * The hardware loads from the Linux page table directly, so a fault goes
1418 * immediately to Linux page fault.
1419 *
1420 * Conditions like DAWR match are handled on the way in to Linux page fault.
1421 */
1422INT_DEFINE_BEGIN(data_access)
1423 IVEC=0x300
1424 IDAR=1
1425 IDSISR=1
1426 IKVM_REAL=1
1427INT_DEFINE_END(data_access)
1428
1429EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1430 GEN_INT_ENTRY data_access, virt=0
1431EXC_REAL_END(data_access, 0x300, 0x80)
1432EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1433 GEN_INT_ENTRY data_access, virt=1
1434EXC_VIRT_END(data_access, 0x4300, 0x80)
1435EXC_COMMON_BEGIN(data_access_common)
1436 GEN_COMMON data_access
1437 ld r4,_DSISR(r1)
1438 addi r3,r1,STACK_INT_FRAME_REGS
1439 andis. r0,r4,DSISR_DABRMATCH@h
1440 bne- 1f
1441#ifdef CONFIG_PPC_64S_HASH_MMU
1442BEGIN_MMU_FTR_SECTION
1443 bl CFUNC(do_hash_fault)
1444MMU_FTR_SECTION_ELSE
1445 bl CFUNC(do_page_fault)
1446ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1447#else
1448 bl CFUNC(do_page_fault)
1449#endif
1450 b interrupt_return_srr
1451
14521: bl CFUNC(do_break)
1453 /*
1454 * do_break() may have changed the NV GPRS while handling a breakpoint.
1455 * If so, we need to restore them with their updated values.
1456 */
1457 HANDLER_RESTORE_NVGPRS()
1458 b interrupt_return_srr
1459
1460
1461/**
1462 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1463 * This is a synchronous interrupt in response to an MMU fault missing SLB
1464 * entry for HPT, or an address outside RPT translation range.
1465 *
1466 * Handling:
1467 * - HPT:
1468 * This refills the SLB, or reports an access fault similarly to a bad page
1469 * fault. When coming from user-mode, the SLB handler may access any kernel
1470 * data, though it may itself take a DSLB. When coming from kernel mode,
1471 * recursive faults must be avoided so access is restricted to the kernel
1472 * image text/data, kernel stack, and any data allocated below
1473 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1474 * on user-handler data structures.
1475 *
1476 * KVM: Same as 0x300, DSLB must test for KVM guest.
1477 */
1478INT_DEFINE_BEGIN(data_access_slb)
1479 IVEC=0x380
1480 IDAR=1
1481 IKVM_REAL=1
1482INT_DEFINE_END(data_access_slb)
1483
1484EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1485 GEN_INT_ENTRY data_access_slb, virt=0
1486EXC_REAL_END(data_access_slb, 0x380, 0x80)
1487EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1488 GEN_INT_ENTRY data_access_slb, virt=1
1489EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1490EXC_COMMON_BEGIN(data_access_slb_common)
1491 GEN_COMMON data_access_slb
1492#ifdef CONFIG_PPC_64S_HASH_MMU
1493BEGIN_MMU_FTR_SECTION
1494 /* HPT case, do SLB fault */
1495 addi r3,r1,STACK_INT_FRAME_REGS
1496 bl CFUNC(do_slb_fault)
1497 cmpdi r3,0
1498 bne- 1f
1499 b fast_interrupt_return_srr
15001: /* Error case */
1501MMU_FTR_SECTION_ELSE
1502 /* Radix case, access is outside page table range */
1503 li r3,-EFAULT
1504ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1505#else
1506 li r3,-EFAULT
1507#endif
1508 std r3,RESULT(r1)
1509 addi r3,r1,STACK_INT_FRAME_REGS
1510 bl CFUNC(do_bad_segment_interrupt)
1511 b interrupt_return_srr
1512
1513
1514/**
1515 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1516 * This is a synchronous interrupt in response to an MMU fault due to an
1517 * instruction fetch.
1518 *
1519 * Handling:
1520 * Similar to DSI, though in response to fetch. The faulting address is found
1521 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1522 */
1523INT_DEFINE_BEGIN(instruction_access)
1524 IVEC=0x400
1525 IISIDE=1
1526 IDAR=1
1527 IDSISR=1
1528#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1529 IKVM_REAL=1
1530#endif
1531INT_DEFINE_END(instruction_access)
1532
1533EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1534 GEN_INT_ENTRY instruction_access, virt=0
1535EXC_REAL_END(instruction_access, 0x400, 0x80)
1536EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1537 GEN_INT_ENTRY instruction_access, virt=1
1538EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1539EXC_COMMON_BEGIN(instruction_access_common)
1540 GEN_COMMON instruction_access
1541 addi r3,r1,STACK_INT_FRAME_REGS
1542#ifdef CONFIG_PPC_64S_HASH_MMU
1543BEGIN_MMU_FTR_SECTION
1544 bl CFUNC(do_hash_fault)
1545MMU_FTR_SECTION_ELSE
1546 bl CFUNC(do_page_fault)
1547ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1548#else
1549 bl CFUNC(do_page_fault)
1550#endif
1551 b interrupt_return_srr
1552
1553
1554/**
1555 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1556 * This is a synchronous interrupt in response to an MMU fault due to an
1557 * instruction fetch.
1558 *
1559 * Handling:
1560 * Similar to DSLB, though in response to fetch. The faulting address is found
1561 * in SRR0 (rather than DAR).
1562 */
1563INT_DEFINE_BEGIN(instruction_access_slb)
1564 IVEC=0x480
1565 IISIDE=1
1566 IDAR=1
1567#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1568 IKVM_REAL=1
1569#endif
1570INT_DEFINE_END(instruction_access_slb)
1571
1572EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1573 GEN_INT_ENTRY instruction_access_slb, virt=0
1574EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1575EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1576 GEN_INT_ENTRY instruction_access_slb, virt=1
1577EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1578EXC_COMMON_BEGIN(instruction_access_slb_common)
1579 GEN_COMMON instruction_access_slb
1580#ifdef CONFIG_PPC_64S_HASH_MMU
1581BEGIN_MMU_FTR_SECTION
1582 /* HPT case, do SLB fault */
1583 addi r3,r1,STACK_INT_FRAME_REGS
1584 bl CFUNC(do_slb_fault)
1585 cmpdi r3,0
1586 bne- 1f
1587 b fast_interrupt_return_srr
15881: /* Error case */
1589MMU_FTR_SECTION_ELSE
1590 /* Radix case, access is outside page table range */
1591 li r3,-EFAULT
1592ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1593#else
1594 li r3,-EFAULT
1595#endif
1596 std r3,RESULT(r1)
1597 addi r3,r1,STACK_INT_FRAME_REGS
1598 bl CFUNC(do_bad_segment_interrupt)
1599 b interrupt_return_srr
1600
1601
1602/**
1603 * Interrupt 0x500 - External Interrupt.
1604 * This is an asynchronous maskable interrupt in response to an "external
1605 * exception" from the interrupt controller or hypervisor (e.g., device
1606 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1607 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1608 *
1609 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1610 * interrupts are delivered with HSRR registers, guests use SRRs, which
1611 * reqiures IHSRR_IF_HVMODE.
1612 *
1613 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1614 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1615 * rather than External Interrupts.
1616 *
1617 * Handling:
1618 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1619 * because registers at the time of the interrupt are not so important as it is
1620 * asynchronous.
1621 *
1622 * If soft masked, the masked handler will note the pending interrupt for
1623 * replay, and clear MSR[EE] in the interrupted context.
1624 *
1625 * CFAR is not required because this is an asynchronous interrupt that in
1626 * general won't have much bearing on the state of the CPU, with the possible
1627 * exception of crash/debug IPIs, but those are generally moving to use SRESET
1628 * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case
1629 * it may be exiting the guest and need CFAR to be saved.
1630 */
1631INT_DEFINE_BEGIN(hardware_interrupt)
1632 IVEC=0x500
1633 IHSRR_IF_HVMODE=1
1634 IMASK=IRQS_DISABLED
1635 IKVM_REAL=1
1636 IKVM_VIRT=1
1637 ICFAR=0
1638#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1639 ICFAR_IF_HVMODE=1
1640#endif
1641INT_DEFINE_END(hardware_interrupt)
1642
1643EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1644 GEN_INT_ENTRY hardware_interrupt, virt=0
1645EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1646EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1647 GEN_INT_ENTRY hardware_interrupt, virt=1
1648EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1649EXC_COMMON_BEGIN(hardware_interrupt_common)
1650 GEN_COMMON hardware_interrupt
1651 addi r3,r1,STACK_INT_FRAME_REGS
1652 bl CFUNC(do_IRQ)
1653 BEGIN_FTR_SECTION
1654 b interrupt_return_hsrr
1655 FTR_SECTION_ELSE
1656 b interrupt_return_srr
1657 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1658
1659
1660/**
1661 * Interrupt 0x600 - Alignment Interrupt
1662 * This is a synchronous interrupt in response to data alignment fault.
1663 */
1664INT_DEFINE_BEGIN(alignment)
1665 IVEC=0x600
1666 IDAR=1
1667 IDSISR=1
1668#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1669 IKVM_REAL=1
1670#endif
1671INT_DEFINE_END(alignment)
1672
1673EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1674 GEN_INT_ENTRY alignment, virt=0
1675EXC_REAL_END(alignment, 0x600, 0x100)
1676EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1677 GEN_INT_ENTRY alignment, virt=1
1678EXC_VIRT_END(alignment, 0x4600, 0x100)
1679EXC_COMMON_BEGIN(alignment_common)
1680 GEN_COMMON alignment
1681 addi r3,r1,STACK_INT_FRAME_REGS
1682 bl CFUNC(alignment_exception)
1683 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */
1684 b interrupt_return_srr
1685
1686
1687/**
1688 * Interrupt 0x700 - Program Interrupt (program check).
1689 * This is a synchronous interrupt in response to various instruction faults:
1690 * traps, privilege errors, TM errors, floating point exceptions.
1691 *
1692 * Handling:
1693 * This interrupt may use the "emergency stack" in some cases when being taken
1694 * from kernel context, which complicates handling.
1695 */
1696INT_DEFINE_BEGIN(program_check)
1697 IVEC=0x700
1698#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1699 IKVM_REAL=1
1700#endif
1701INT_DEFINE_END(program_check)
1702
1703EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1704 EARLY_BOOT_FIXUP
1705 GEN_INT_ENTRY program_check, virt=0
1706EXC_REAL_END(program_check, 0x700, 0x100)
1707EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1708 GEN_INT_ENTRY program_check, virt=1
1709EXC_VIRT_END(program_check, 0x4700, 0x100)
1710EXC_COMMON_BEGIN(program_check_common)
1711 __GEN_COMMON_ENTRY program_check
1712
1713 /*
1714 * It's possible to receive a TM Bad Thing type program check with
1715 * userspace register values (in particular r1), but with SRR1 reporting
1716 * that we came from the kernel. Normally that would confuse the bad
1717 * stack logic, and we would report a bad kernel stack pointer. Instead
1718 * we switch to the emergency stack if we're taking a TM Bad Thing from
1719 * the kernel.
1720 */
1721
1722 andi. r10,r12,MSR_PR
1723 bne .Lnormal_stack /* If userspace, go normal path */
1724
1725 andis. r10,r12,(SRR1_PROGTM)@h
1726 bne .Lemergency_stack /* If TM, emergency */
1727
1728 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
1729 blt .Lnormal_stack /* normal path if not */
1730
1731 /* Use the emergency stack */
1732.Lemergency_stack:
1733 andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
1734 /* 3 in EXCEPTION_PROLOG_COMMON */
1735 mr r10,r1 /* Save r1 */
1736 ld r1,PACAEMERGSP(r13) /* Use emergency stack */
1737 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1738 __ISTACK(program_check)=0
1739 __GEN_COMMON_BODY program_check
1740 b .Ldo_program_check
1741
1742.Lnormal_stack:
1743 __ISTACK(program_check)=1
1744 __GEN_COMMON_BODY program_check
1745
1746.Ldo_program_check:
1747 addi r3,r1,STACK_INT_FRAME_REGS
1748 bl CFUNC(program_check_exception)
1749 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */
1750 b interrupt_return_srr
1751
1752
1753/*
1754 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1755 * This is a synchronous interrupt in response to executing an fp instruction
1756 * with MSR[FP]=0.
1757 *
1758 * Handling:
1759 * This will load FP registers and enable the FP bit if coming from userspace,
1760 * otherwise report a bad kernel use of FP.
1761 */
1762INT_DEFINE_BEGIN(fp_unavailable)
1763 IVEC=0x800
1764#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1765 IKVM_REAL=1
1766#endif
1767 IMSR_R12=1
1768INT_DEFINE_END(fp_unavailable)
1769
1770EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1771 GEN_INT_ENTRY fp_unavailable, virt=0
1772EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1773EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1774 GEN_INT_ENTRY fp_unavailable, virt=1
1775EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1776EXC_COMMON_BEGIN(fp_unavailable_common)
1777 GEN_COMMON fp_unavailable
1778 bne 1f /* if from user, just load it up */
1779 addi r3,r1,STACK_INT_FRAME_REGS
1780 bl CFUNC(kernel_fp_unavailable_exception)
17810: trap
1782 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
17831:
1784#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1785BEGIN_FTR_SECTION
1786 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
1787 * transaction), go do TM stuff
1788 */
1789 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
1790 bne- 2f
1791END_FTR_SECTION_IFSET(CPU_FTR_TM)
1792#endif
1793 bl CFUNC(load_up_fpu)
1794 b fast_interrupt_return_srr
1795#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
17962: /* User process was in a transaction */
1797 addi r3,r1,STACK_INT_FRAME_REGS
1798 bl CFUNC(fp_unavailable_tm)
1799 b interrupt_return_srr
1800#endif
1801
1802
1803/**
1804 * Interrupt 0x900 - Decrementer Interrupt.
1805 * This is an asynchronous interrupt in response to a decrementer exception
1806 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1807 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1808 * local_irq_disable()).
1809 *
1810 * Handling:
1811 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1812 *
1813 * If soft masked, the masked handler will note the pending interrupt for
1814 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1815 * in the interrupted context.
1816 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1817 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1818 * on the emergency stack.
1819 *
1820 * CFAR is not required because this is asynchronous (see hardware_interrupt).
1821 * A watchdog interrupt may like to have CFAR, but usually the interesting
1822 * branch is long gone by that point (e.g., infinite loop).
1823 */
1824INT_DEFINE_BEGIN(decrementer)
1825 IVEC=0x900
1826 IMASK=IRQS_DISABLED
1827#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1828 IKVM_REAL=1
1829#endif
1830 ICFAR=0
1831INT_DEFINE_END(decrementer)
1832
1833EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1834 GEN_INT_ENTRY decrementer, virt=0
1835EXC_REAL_END(decrementer, 0x900, 0x80)
1836EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1837 GEN_INT_ENTRY decrementer, virt=1
1838EXC_VIRT_END(decrementer, 0x4900, 0x80)
1839EXC_COMMON_BEGIN(decrementer_common)
1840 GEN_COMMON decrementer
1841 addi r3,r1,STACK_INT_FRAME_REGS
1842 bl CFUNC(timer_interrupt)
1843 b interrupt_return_srr
1844
1845
1846/**
1847 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1848 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1849 * register.
1850 *
1851 * Handling:
1852 * Linux does not use this outside KVM where it's used to keep a host timer
1853 * while the guest is given control of DEC. It should normally be caught by
1854 * the KVM test and routed there.
1855 */
1856INT_DEFINE_BEGIN(hdecrementer)
1857 IVEC=0x980
1858 IHSRR=1
1859 ISTACK=0
1860 IKVM_REAL=1
1861 IKVM_VIRT=1
1862INT_DEFINE_END(hdecrementer)
1863
1864EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1865 GEN_INT_ENTRY hdecrementer, virt=0
1866EXC_REAL_END(hdecrementer, 0x980, 0x80)
1867EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1868 GEN_INT_ENTRY hdecrementer, virt=1
1869EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1870EXC_COMMON_BEGIN(hdecrementer_common)
1871 __GEN_COMMON_ENTRY hdecrementer
1872 /*
1873 * Hypervisor decrementer interrupts not caught by the KVM test
1874 * shouldn't occur but are sometimes left pending on exit from a KVM
1875 * guest. We don't need to do anything to clear them, as they are
1876 * edge-triggered.
1877 *
1878 * Be careful to avoid touching the kernel stack.
1879 */
1880 li r10,0
1881 stb r10,PACAHSRR_VALID(r13)
1882 ld r10,PACA_EXGEN+EX_CTR(r13)
1883 mtctr r10
1884 mtcrf 0x80,r9
1885 ld r9,PACA_EXGEN+EX_R9(r13)
1886 ld r10,PACA_EXGEN+EX_R10(r13)
1887 ld r11,PACA_EXGEN+EX_R11(r13)
1888 ld r12,PACA_EXGEN+EX_R12(r13)
1889 ld r13,PACA_EXGEN+EX_R13(r13)
1890 HRFI_TO_KERNEL
1891
1892
1893/**
1894 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1895 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1896 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1897 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1898 *
1899 * Handling:
1900 * Guests may use this for IPIs between threads in a core if the
1901 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1902 *
1903 * If soft masked, the masked handler will note the pending interrupt for
1904 * replay, leaving MSR[EE] enabled in the interrupted context because the
1905 * doorbells are edge triggered.
1906 *
1907 * CFAR is not required, similarly to hardware_interrupt.
1908 */
1909INT_DEFINE_BEGIN(doorbell_super)
1910 IVEC=0xa00
1911 IMASK=IRQS_DISABLED
1912#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1913 IKVM_REAL=1
1914#endif
1915 ICFAR=0
1916INT_DEFINE_END(doorbell_super)
1917
1918EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1919 GEN_INT_ENTRY doorbell_super, virt=0
1920EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1921EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1922 GEN_INT_ENTRY doorbell_super, virt=1
1923EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1924EXC_COMMON_BEGIN(doorbell_super_common)
1925 GEN_COMMON doorbell_super
1926 addi r3,r1,STACK_INT_FRAME_REGS
1927#ifdef CONFIG_PPC_DOORBELL
1928 bl CFUNC(doorbell_exception)
1929#else
1930 bl CFUNC(unknown_async_exception)
1931#endif
1932 b interrupt_return_srr
1933
1934
1935EXC_REAL_NONE(0xb00, 0x100)
1936EXC_VIRT_NONE(0x4b00, 0x100)
1937
1938/**
1939 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1940 * This is a synchronous interrupt invoked with the "sc" instruction. The
1941 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1942 * is directed to the currently running OS. The hypercall is invoked with
1943 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1944 *
1945 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1946 * 0x4c00 virtual mode.
1947 *
1948 * Handling:
1949 * If the KVM test fires then it was due to a hypercall and is accordingly
1950 * routed to KVM. Otherwise this executes a normal Linux system call.
1951 *
1952 * Call convention:
1953 *
1954 * syscall and hypercalls register conventions are documented in
1955 * Documentation/arch/powerpc/syscall64-abi.rst and
1956 * Documentation/arch/powerpc/papr_hcalls.rst respectively.
1957 *
1958 * The intersection of volatile registers that don't contain possible
1959 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1960 * without saving, though xer is not a good idea to use, as hardware may
1961 * interpret some bits so it may be costly to change them.
1962 */
1963INT_DEFINE_BEGIN(system_call)
1964 IVEC=0xc00
1965 IKVM_REAL=1
1966 IKVM_VIRT=1
1967 ICFAR=0
1968INT_DEFINE_END(system_call)
1969
1970.macro SYSTEM_CALL virt
1971#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1972 /*
1973 * There is a little bit of juggling to get syscall and hcall
1974 * working well. Save r13 in ctr to avoid using SPRG scratch
1975 * register.
1976 *
1977 * Userspace syscalls have already saved the PPR, hcalls must save
1978 * it before setting HMT_MEDIUM.
1979 */
1980 mtctr r13
1981 GET_PACA(r13)
1982 std r10,PACA_EXGEN+EX_R10(r13)
1983 INTERRUPT_TO_KERNEL
1984 KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */
1985 mfctr r9
1986#else
1987 mr r9,r13
1988 GET_PACA(r13)
1989 INTERRUPT_TO_KERNEL
1990#endif
1991
1992 /* We reach here with PACA in r13, r13 in r9. */
1993 mfspr r11,SPRN_SRR0
1994 mfspr r12,SPRN_SRR1
1995
1996 HMT_MEDIUM
1997
1998 .if ! \virt
1999 __LOAD_HANDLER(r10, system_call_common_real, real_vectors)
2000 mtctr r10
2001 bctr
2002 .else
2003#ifdef CONFIG_RELOCATABLE
2004 __LOAD_HANDLER(r10, system_call_common, virt_vectors)
2005 mtctr r10
2006 bctr
2007#else
2008 b system_call_common
2009#endif
2010 .endif
2011.endm
2012
2013EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
2014 SYSTEM_CALL 0
2015EXC_REAL_END(system_call, 0xc00, 0x100)
2016EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
2017 SYSTEM_CALL 1
2018EXC_VIRT_END(system_call, 0x4c00, 0x100)
2019
2020#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2021TRAMP_REAL_BEGIN(kvm_hcall)
2022 std r9,PACA_EXGEN+EX_R9(r13)
2023 std r11,PACA_EXGEN+EX_R11(r13)
2024 std r12,PACA_EXGEN+EX_R12(r13)
2025 mfcr r9
2026 mfctr r10
2027 std r10,PACA_EXGEN+EX_R13(r13)
2028 li r10,0
2029 std r10,PACA_EXGEN+EX_CFAR(r13)
2030 std r10,PACA_EXGEN+EX_CTR(r13)
2031 /*
2032 * Save the PPR (on systems that support it) before changing to
2033 * HMT_MEDIUM. That allows the KVM code to save that value into the
2034 * guest state (it is the guest's PPR value).
2035 */
2036BEGIN_FTR_SECTION
2037 mfspr r10,SPRN_PPR
2038 std r10,PACA_EXGEN+EX_PPR(r13)
2039END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2040
2041 HMT_MEDIUM
2042
2043#ifdef CONFIG_RELOCATABLE
2044 /*
2045 * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives
2046 * outside the head section.
2047 */
2048 __LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines)
2049 mtctr r10
2050 bctr
2051#else
2052 b kvmppc_hcall
2053#endif
2054#endif
2055
2056/**
2057 * Interrupt 0xd00 - Trace Interrupt.
2058 * This is a synchronous interrupt in response to instruction step or
2059 * breakpoint faults.
2060 */
2061INT_DEFINE_BEGIN(single_step)
2062 IVEC=0xd00
2063#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2064 IKVM_REAL=1
2065#endif
2066INT_DEFINE_END(single_step)
2067
2068EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2069 GEN_INT_ENTRY single_step, virt=0
2070EXC_REAL_END(single_step, 0xd00, 0x100)
2071EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2072 GEN_INT_ENTRY single_step, virt=1
2073EXC_VIRT_END(single_step, 0x4d00, 0x100)
2074EXC_COMMON_BEGIN(single_step_common)
2075 GEN_COMMON single_step
2076 addi r3,r1,STACK_INT_FRAME_REGS
2077 bl CFUNC(single_step_exception)
2078 b interrupt_return_srr
2079
2080
2081/**
2082 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2083 * This is a synchronous interrupt in response to an MMU fault caused by a
2084 * guest data access.
2085 *
2086 * Handling:
2087 * This should always get routed to KVM. In radix MMU mode, this is caused
2088 * by a guest nested radix access that can't be performed due to the
2089 * partition scope page table. In hash mode, this can be caused by guests
2090 * running with translation disabled (virtual real mode) or with VPM enabled.
2091 * KVM will update the page table structures or disallow the access.
2092 */
2093INT_DEFINE_BEGIN(h_data_storage)
2094 IVEC=0xe00
2095 IHSRR=1
2096 IDAR=1
2097 IDSISR=1
2098 IKVM_REAL=1
2099 IKVM_VIRT=1
2100INT_DEFINE_END(h_data_storage)
2101
2102EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2103 GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2104EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2105EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2106 GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2107EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2108EXC_COMMON_BEGIN(h_data_storage_common)
2109 GEN_COMMON h_data_storage
2110 addi r3,r1,STACK_INT_FRAME_REGS
2111BEGIN_MMU_FTR_SECTION
2112 bl CFUNC(do_bad_page_fault_segv)
2113MMU_FTR_SECTION_ELSE
2114 bl CFUNC(unknown_exception)
2115ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2116 b interrupt_return_hsrr
2117
2118
2119/**
2120 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2121 * This is a synchronous interrupt in response to an MMU fault caused by a
2122 * guest instruction fetch, similar to HDSI.
2123 */
2124INT_DEFINE_BEGIN(h_instr_storage)
2125 IVEC=0xe20
2126 IHSRR=1
2127 IKVM_REAL=1
2128 IKVM_VIRT=1
2129INT_DEFINE_END(h_instr_storage)
2130
2131EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2132 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2133EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2134EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2135 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2136EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2137EXC_COMMON_BEGIN(h_instr_storage_common)
2138 GEN_COMMON h_instr_storage
2139 addi r3,r1,STACK_INT_FRAME_REGS
2140 bl CFUNC(unknown_exception)
2141 b interrupt_return_hsrr
2142
2143
2144/**
2145 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2146 */
2147INT_DEFINE_BEGIN(emulation_assist)
2148 IVEC=0xe40
2149 IHSRR=1
2150 IKVM_REAL=1
2151 IKVM_VIRT=1
2152INT_DEFINE_END(emulation_assist)
2153
2154EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2155 GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2156EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2157EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2158 GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2159EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2160EXC_COMMON_BEGIN(emulation_assist_common)
2161 GEN_COMMON emulation_assist
2162 addi r3,r1,STACK_INT_FRAME_REGS
2163 bl CFUNC(emulation_assist_interrupt)
2164 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */
2165 b interrupt_return_hsrr
2166
2167
2168/**
2169 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2170 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2171 * Exception. It is always taken in real mode but uses HSRR registers
2172 * unlike SRESET and MCE.
2173 *
2174 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2175 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2176 *
2177 * Handling:
2178 * This is a special case, this is handled similarly to machine checks, with an
2179 * initial real mode handler that is not soft-masked, which attempts to fix the
2180 * problem. Then a regular handler which is soft-maskable and reports the
2181 * problem.
2182 *
2183 * The emergency stack is used for the early real mode handler.
2184 *
2185 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2186 * either use soft-masking for the MCE, or use irq_work for the HMI.
2187 *
2188 * KVM:
2189 * Unlike MCE, this calls into KVM without calling the real mode handler
2190 * first.
2191 */
2192INT_DEFINE_BEGIN(hmi_exception_early)
2193 IVEC=0xe60
2194 IHSRR=1
2195 IREALMODE_COMMON=1
2196 ISTACK=0
2197 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2198 IKVM_REAL=1
2199INT_DEFINE_END(hmi_exception_early)
2200
2201INT_DEFINE_BEGIN(hmi_exception)
2202 IVEC=0xe60
2203 IHSRR=1
2204 IMASK=IRQS_DISABLED
2205 IKVM_REAL=1
2206INT_DEFINE_END(hmi_exception)
2207
2208EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2209 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2210EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2211EXC_VIRT_NONE(0x4e60, 0x20)
2212
2213EXC_COMMON_BEGIN(hmi_exception_early_common)
2214 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2215
2216 mr r10,r1 /* Save r1 */
2217 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
2218 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
2219
2220 __GEN_COMMON_BODY hmi_exception_early
2221
2222 addi r3,r1,STACK_INT_FRAME_REGS
2223 bl CFUNC(hmi_exception_realmode)
2224 cmpdi cr0,r3,0
2225 bne 1f
2226
2227 EXCEPTION_RESTORE_REGS hsrr=1
2228 HRFI_TO_USER_OR_KERNEL
2229
22301:
2231 /*
2232 * Go to virtual mode and pull the HMI event information from
2233 * firmware.
2234 */
2235 EXCEPTION_RESTORE_REGS hsrr=1
2236 GEN_INT_ENTRY hmi_exception, virt=0
2237
2238EXC_COMMON_BEGIN(hmi_exception_common)
2239 GEN_COMMON hmi_exception
2240 addi r3,r1,STACK_INT_FRAME_REGS
2241 bl CFUNC(handle_hmi_exception)
2242 b interrupt_return_hsrr
2243
2244
2245/**
2246 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2247 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2248 * Similar to the 0xa00 doorbell but for host rather than guest.
2249 *
2250 * CFAR is not required (similar to doorbell_interrupt), unless KVM HV
2251 * is enabled, in which case it may be a guest exit. Most PowerNV kernels
2252 * include KVM support so it would be nice if this could be dynamically
2253 * patched out if KVM was not currently running any guests.
2254 */
2255INT_DEFINE_BEGIN(h_doorbell)
2256 IVEC=0xe80
2257 IHSRR=1
2258 IMASK=IRQS_DISABLED
2259 IKVM_REAL=1
2260 IKVM_VIRT=1
2261#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2262 ICFAR=0
2263#endif
2264INT_DEFINE_END(h_doorbell)
2265
2266EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2267 GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2268EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2269EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2270 GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2271EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2272EXC_COMMON_BEGIN(h_doorbell_common)
2273 GEN_COMMON h_doorbell
2274 addi r3,r1,STACK_INT_FRAME_REGS
2275#ifdef CONFIG_PPC_DOORBELL
2276 bl CFUNC(doorbell_exception)
2277#else
2278 bl CFUNC(unknown_async_exception)
2279#endif
2280 b interrupt_return_hsrr
2281
2282
2283/**
2284 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2285 * This is an asynchronous interrupt in response to an "external exception".
2286 * Similar to 0x500 but for host only.
2287 *
2288 * Like h_doorbell, CFAR is only required for KVM HV because this can be
2289 * a guest exit.
2290 */
2291INT_DEFINE_BEGIN(h_virt_irq)
2292 IVEC=0xea0
2293 IHSRR=1
2294 IMASK=IRQS_DISABLED
2295 IKVM_REAL=1
2296 IKVM_VIRT=1
2297#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2298 ICFAR=0
2299#endif
2300INT_DEFINE_END(h_virt_irq)
2301
2302EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2303 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2304EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2305EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2306 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2307EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2308EXC_COMMON_BEGIN(h_virt_irq_common)
2309 GEN_COMMON h_virt_irq
2310 addi r3,r1,STACK_INT_FRAME_REGS
2311 bl CFUNC(do_IRQ)
2312 b interrupt_return_hsrr
2313
2314
2315EXC_REAL_NONE(0xec0, 0x20)
2316EXC_VIRT_NONE(0x4ec0, 0x20)
2317EXC_REAL_NONE(0xee0, 0x20)
2318EXC_VIRT_NONE(0x4ee0, 0x20)
2319
2320
2321/*
2322 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2323 * This is an asynchronous interrupt in response to a PMU exception.
2324 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2325 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2326 *
2327 * Handling:
2328 * This calls into the perf subsystem.
2329 *
2330 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2331 * runs under local_irq_disable. However it may be soft-masked in
2332 * powerpc-specific code.
2333 *
2334 * If soft masked, the masked handler will note the pending interrupt for
2335 * replay, and clear MSR[EE] in the interrupted context.
2336 *
2337 * CFAR is not used by perf interrupts so not required.
2338 */
2339INT_DEFINE_BEGIN(performance_monitor)
2340 IVEC=0xf00
2341 IMASK=IRQS_PMI_DISABLED
2342#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2343 IKVM_REAL=1
2344#endif
2345 ICFAR=0
2346INT_DEFINE_END(performance_monitor)
2347
2348EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2349 GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2350EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2351EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2352 GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2353EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2354EXC_COMMON_BEGIN(performance_monitor_common)
2355 GEN_COMMON performance_monitor
2356 addi r3,r1,STACK_INT_FRAME_REGS
2357 lbz r4,PACAIRQSOFTMASK(r13)
2358 cmpdi r4,IRQS_ENABLED
2359 bne 1f
2360 bl CFUNC(performance_monitor_exception_async)
2361 b interrupt_return_srr
23621:
2363 bl CFUNC(performance_monitor_exception_nmi)
2364 /* Clear MSR_RI before setting SRR0 and SRR1. */
2365 li r9,0
2366 mtmsrd r9,1
2367
2368 kuap_kernel_restore r9, r10
2369
2370 EXCEPTION_RESTORE_REGS hsrr=0
2371 RFI_TO_KERNEL
2372
2373/**
2374 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2375 * This is a synchronous interrupt in response to
2376 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2377 * Similar to FP unavailable.
2378 */
2379INT_DEFINE_BEGIN(altivec_unavailable)
2380 IVEC=0xf20
2381#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2382 IKVM_REAL=1
2383#endif
2384 IMSR_R12=1
2385INT_DEFINE_END(altivec_unavailable)
2386
2387EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2388 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2389EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2390EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2391 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2392EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2393EXC_COMMON_BEGIN(altivec_unavailable_common)
2394 GEN_COMMON altivec_unavailable
2395#ifdef CONFIG_ALTIVEC
2396BEGIN_FTR_SECTION
2397 beq 1f
2398#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2399 BEGIN_FTR_SECTION_NESTED(69)
2400 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2401 * transaction), go do TM stuff
2402 */
2403 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2404 bne- 2f
2405 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2406#endif
2407 bl CFUNC(load_up_altivec)
2408 b fast_interrupt_return_srr
2409#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24102: /* User process was in a transaction */
2411 addi r3,r1,STACK_INT_FRAME_REGS
2412 bl CFUNC(altivec_unavailable_tm)
2413 b interrupt_return_srr
2414#endif
24151:
2416END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2417#endif
2418 addi r3,r1,STACK_INT_FRAME_REGS
2419 bl CFUNC(altivec_unavailable_exception)
2420 b interrupt_return_srr
2421
2422
2423/**
2424 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2425 * This is a synchronous interrupt in response to
2426 * executing a VSX instruction with MSR[VSX]=0.
2427 * Similar to FP unavailable.
2428 */
2429INT_DEFINE_BEGIN(vsx_unavailable)
2430 IVEC=0xf40
2431#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2432 IKVM_REAL=1
2433#endif
2434 IMSR_R12=1
2435INT_DEFINE_END(vsx_unavailable)
2436
2437EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2438 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2439EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2440EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2441 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2442EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2443EXC_COMMON_BEGIN(vsx_unavailable_common)
2444 GEN_COMMON vsx_unavailable
2445#ifdef CONFIG_VSX
2446BEGIN_FTR_SECTION
2447 beq 1f
2448#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2449 BEGIN_FTR_SECTION_NESTED(69)
2450 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2451 * transaction), go do TM stuff
2452 */
2453 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2454 bne- 2f
2455 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2456#endif
2457 b load_up_vsx
2458#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24592: /* User process was in a transaction */
2460 addi r3,r1,STACK_INT_FRAME_REGS
2461 bl CFUNC(vsx_unavailable_tm)
2462 b interrupt_return_srr
2463#endif
24641:
2465END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2466#endif
2467 addi r3,r1,STACK_INT_FRAME_REGS
2468 bl CFUNC(vsx_unavailable_exception)
2469 b interrupt_return_srr
2470
2471
2472/**
2473 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2474 * This is a synchronous interrupt in response to
2475 * executing an instruction without access to the facility that can be
2476 * resolved by the OS (e.g., FSCR, MSR).
2477 * Similar to FP unavailable.
2478 */
2479INT_DEFINE_BEGIN(facility_unavailable)
2480 IVEC=0xf60
2481#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2482 IKVM_REAL=1
2483#endif
2484INT_DEFINE_END(facility_unavailable)
2485
2486EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2487 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2488EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2489EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2490 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2491EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2492EXC_COMMON_BEGIN(facility_unavailable_common)
2493 GEN_COMMON facility_unavailable
2494 addi r3,r1,STACK_INT_FRAME_REGS
2495 bl CFUNC(facility_unavailable_exception)
2496 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */
2497 b interrupt_return_srr
2498
2499
2500/**
2501 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2502 * This is a synchronous interrupt in response to
2503 * executing an instruction without access to the facility that can only
2504 * be resolved in HV mode (e.g., HFSCR).
2505 * Similar to FP unavailable.
2506 */
2507INT_DEFINE_BEGIN(h_facility_unavailable)
2508 IVEC=0xf80
2509 IHSRR=1
2510 IKVM_REAL=1
2511 IKVM_VIRT=1
2512INT_DEFINE_END(h_facility_unavailable)
2513
2514EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2515 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2516EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2517EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2518 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2519EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2520EXC_COMMON_BEGIN(h_facility_unavailable_common)
2521 GEN_COMMON h_facility_unavailable
2522 addi r3,r1,STACK_INT_FRAME_REGS
2523 bl CFUNC(facility_unavailable_exception)
2524 /* XXX Shouldn't be necessary in practice */
2525 HANDLER_RESTORE_NVGPRS()
2526 b interrupt_return_hsrr
2527
2528
2529EXC_REAL_NONE(0xfa0, 0x20)
2530EXC_VIRT_NONE(0x4fa0, 0x20)
2531EXC_REAL_NONE(0xfc0, 0x20)
2532EXC_VIRT_NONE(0x4fc0, 0x20)
2533EXC_REAL_NONE(0xfe0, 0x20)
2534EXC_VIRT_NONE(0x4fe0, 0x20)
2535
2536EXC_REAL_NONE(0x1000, 0x100)
2537EXC_VIRT_NONE(0x5000, 0x100)
2538EXC_REAL_NONE(0x1100, 0x100)
2539EXC_VIRT_NONE(0x5100, 0x100)
2540
2541#ifdef CONFIG_CBE_RAS
2542INT_DEFINE_BEGIN(cbe_system_error)
2543 IVEC=0x1200
2544 IHSRR=1
2545INT_DEFINE_END(cbe_system_error)
2546
2547EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2548 GEN_INT_ENTRY cbe_system_error, virt=0
2549EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2550EXC_VIRT_NONE(0x5200, 0x100)
2551EXC_COMMON_BEGIN(cbe_system_error_common)
2552 GEN_COMMON cbe_system_error
2553 addi r3,r1,STACK_INT_FRAME_REGS
2554 bl CFUNC(cbe_system_error_exception)
2555 b interrupt_return_hsrr
2556
2557#else /* CONFIG_CBE_RAS */
2558EXC_REAL_NONE(0x1200, 0x100)
2559EXC_VIRT_NONE(0x5200, 0x100)
2560#endif
2561
2562/**
2563 * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt.
2564 * This has been removed from the ISA before 2.01, which is the earliest
2565 * 64-bit BookS ISA supported, however the G5 / 970 implements this
2566 * interrupt with a non-architected feature available through the support
2567 * processor interface.
2568 */
2569INT_DEFINE_BEGIN(instruction_breakpoint)
2570 IVEC=0x1300
2571#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2572 IKVM_REAL=1
2573#endif
2574INT_DEFINE_END(instruction_breakpoint)
2575
2576EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2577 GEN_INT_ENTRY instruction_breakpoint, virt=0
2578EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2579EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2580 GEN_INT_ENTRY instruction_breakpoint, virt=1
2581EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2582EXC_COMMON_BEGIN(instruction_breakpoint_common)
2583 GEN_COMMON instruction_breakpoint
2584 addi r3,r1,STACK_INT_FRAME_REGS
2585 bl CFUNC(instruction_breakpoint_exception)
2586 b interrupt_return_srr
2587
2588
2589EXC_REAL_NONE(0x1400, 0x100)
2590EXC_VIRT_NONE(0x5400, 0x100)
2591
2592/**
2593 * Interrupt 0x1500 - Soft Patch Interrupt
2594 *
2595 * Handling:
2596 * This is an implementation specific interrupt which can be used for a
2597 * range of exceptions.
2598 *
2599 * This interrupt handler is unique in that it runs the denormal assist
2600 * code even for guests (and even in guest context) without going to KVM,
2601 * for speed. POWER9 does not raise denorm exceptions, so this special case
2602 * could be phased out in future to reduce special cases.
2603 */
2604INT_DEFINE_BEGIN(denorm_exception)
2605 IVEC=0x1500
2606 IHSRR=1
2607 IBRANCH_TO_COMMON=0
2608 IKVM_REAL=1
2609INT_DEFINE_END(denorm_exception)
2610
2611EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2612 GEN_INT_ENTRY denorm_exception, virt=0
2613#ifdef CONFIG_PPC_DENORMALISATION
2614 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2615 bne+ denorm_assist
2616#endif
2617 GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2618EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2619#ifdef CONFIG_PPC_DENORMALISATION
2620EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2621 GEN_INT_ENTRY denorm_exception, virt=1
2622 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2623 bne+ denorm_assist
2624 GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2625EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2626#else
2627EXC_VIRT_NONE(0x5500, 0x100)
2628#endif
2629
2630#ifdef CONFIG_PPC_DENORMALISATION
2631TRAMP_REAL_BEGIN(denorm_assist)
2632BEGIN_FTR_SECTION
2633/*
2634 * To denormalise we need to move a copy of the register to itself.
2635 * For POWER6 do that here for all FP regs.
2636 */
2637 mfmsr r10
2638 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2639 xori r10,r10,(MSR_FE0|MSR_FE1)
2640 mtmsrd r10
2641 sync
2642
2643 .Lreg=0
2644 .rept 32
2645 fmr .Lreg,.Lreg
2646 .Lreg=.Lreg+1
2647 .endr
2648
2649FTR_SECTION_ELSE
2650/*
2651 * To denormalise we need to move a copy of the register to itself.
2652 * For POWER7 do that here for the first 32 VSX registers only.
2653 */
2654 mfmsr r10
2655 oris r10,r10,MSR_VSX@h
2656 mtmsrd r10
2657 sync
2658
2659 .Lreg=0
2660 .rept 32
2661 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2662 .Lreg=.Lreg+1
2663 .endr
2664
2665ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2666
2667BEGIN_FTR_SECTION
2668 b denorm_done
2669END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2670/*
2671 * To denormalise we need to move a copy of the register to itself.
2672 * For POWER8 we need to do that for all 64 VSX registers
2673 */
2674 .Lreg=32
2675 .rept 32
2676 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2677 .Lreg=.Lreg+1
2678 .endr
2679
2680denorm_done:
2681 mfspr r11,SPRN_HSRR0
2682 subi r11,r11,4
2683 mtspr SPRN_HSRR0,r11
2684 mtcrf 0x80,r9
2685 ld r9,PACA_EXGEN+EX_R9(r13)
2686BEGIN_FTR_SECTION
2687 ld r10,PACA_EXGEN+EX_PPR(r13)
2688 mtspr SPRN_PPR,r10
2689END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2690BEGIN_FTR_SECTION
2691 ld r10,PACA_EXGEN+EX_CFAR(r13)
2692 mtspr SPRN_CFAR,r10
2693END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2694 li r10,0
2695 stb r10,PACAHSRR_VALID(r13)
2696 ld r10,PACA_EXGEN+EX_R10(r13)
2697 ld r11,PACA_EXGEN+EX_R11(r13)
2698 ld r12,PACA_EXGEN+EX_R12(r13)
2699 ld r13,PACA_EXGEN+EX_R13(r13)
2700 HRFI_TO_UNKNOWN
2701 b .
2702#endif
2703
2704EXC_COMMON_BEGIN(denorm_exception_common)
2705 GEN_COMMON denorm_exception
2706 addi r3,r1,STACK_INT_FRAME_REGS
2707 bl CFUNC(unknown_exception)
2708 b interrupt_return_hsrr
2709
2710
2711#ifdef CONFIG_CBE_RAS
2712INT_DEFINE_BEGIN(cbe_maintenance)
2713 IVEC=0x1600
2714 IHSRR=1
2715INT_DEFINE_END(cbe_maintenance)
2716
2717EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2718 GEN_INT_ENTRY cbe_maintenance, virt=0
2719EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2720EXC_VIRT_NONE(0x5600, 0x100)
2721EXC_COMMON_BEGIN(cbe_maintenance_common)
2722 GEN_COMMON cbe_maintenance
2723 addi r3,r1,STACK_INT_FRAME_REGS
2724 bl CFUNC(cbe_maintenance_exception)
2725 b interrupt_return_hsrr
2726
2727#else /* CONFIG_CBE_RAS */
2728EXC_REAL_NONE(0x1600, 0x100)
2729EXC_VIRT_NONE(0x5600, 0x100)
2730#endif
2731
2732
2733INT_DEFINE_BEGIN(altivec_assist)
2734 IVEC=0x1700
2735#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2736 IKVM_REAL=1
2737#endif
2738INT_DEFINE_END(altivec_assist)
2739
2740EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2741 GEN_INT_ENTRY altivec_assist, virt=0
2742EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2743EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2744 GEN_INT_ENTRY altivec_assist, virt=1
2745EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2746EXC_COMMON_BEGIN(altivec_assist_common)
2747 GEN_COMMON altivec_assist
2748 addi r3,r1,STACK_INT_FRAME_REGS
2749#ifdef CONFIG_ALTIVEC
2750 bl CFUNC(altivec_assist_exception)
2751 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */
2752#else
2753 bl CFUNC(unknown_exception)
2754#endif
2755 b interrupt_return_srr
2756
2757
2758#ifdef CONFIG_CBE_RAS
2759INT_DEFINE_BEGIN(cbe_thermal)
2760 IVEC=0x1800
2761 IHSRR=1
2762INT_DEFINE_END(cbe_thermal)
2763
2764EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2765 GEN_INT_ENTRY cbe_thermal, virt=0
2766EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2767EXC_VIRT_NONE(0x5800, 0x100)
2768EXC_COMMON_BEGIN(cbe_thermal_common)
2769 GEN_COMMON cbe_thermal
2770 addi r3,r1,STACK_INT_FRAME_REGS
2771 bl CFUNC(cbe_thermal_exception)
2772 b interrupt_return_hsrr
2773
2774#else /* CONFIG_CBE_RAS */
2775EXC_REAL_NONE(0x1800, 0x100)
2776EXC_VIRT_NONE(0x5800, 0x100)
2777#endif
2778
2779
2780#ifdef CONFIG_PPC_WATCHDOG
2781
2782INT_DEFINE_BEGIN(soft_nmi)
2783 IVEC=0x900
2784 ISTACK=0
2785 ICFAR=0
2786INT_DEFINE_END(soft_nmi)
2787
2788/*
2789 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2790 * stack is one that is usable by maskable interrupts so long as MSR_EE
2791 * remains off. It is used for recovery when something has corrupted the
2792 * normal kernel stack, for example. The "soft NMI" must not use the process
2793 * stack because we want irq disabled sections to avoid touching the stack
2794 * at all (other than PMU interrupts), so use the emergency stack for this,
2795 * and run it entirely with interrupts hard disabled.
2796 */
2797EXC_COMMON_BEGIN(soft_nmi_common)
2798 mr r10,r1
2799 ld r1,PACAEMERGSP(r13)
2800 subi r1,r1,INT_FRAME_SIZE
2801 __GEN_COMMON_BODY soft_nmi
2802
2803 addi r3,r1,STACK_INT_FRAME_REGS
2804 bl CFUNC(soft_nmi_interrupt)
2805
2806 /* Clear MSR_RI before setting SRR0 and SRR1. */
2807 li r9,0
2808 mtmsrd r9,1
2809
2810 kuap_kernel_restore r9, r10
2811
2812 EXCEPTION_RESTORE_REGS hsrr=0
2813 RFI_TO_KERNEL
2814
2815#endif /* CONFIG_PPC_WATCHDOG */
2816
2817/*
2818 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2819 * - If it was a decrementer interrupt, we bump the dec to max and return.
2820 * - If it was a doorbell we return immediately since doorbells are edge
2821 * triggered and won't automatically refire.
2822 * - If it was a HMI we return immediately since we handled it in realmode
2823 * and it won't refire.
2824 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2825 * This is called with r10 containing the value to OR to the paca field.
2826 */
2827.macro MASKED_INTERRUPT hsrr=0
2828 .if \hsrr
2829masked_Hinterrupt:
2830 .else
2831masked_interrupt:
2832 .endif
2833 stw r9,PACA_EXGEN+EX_CCR(r13)
2834#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
2835 /*
2836 * Ensure there was no previous MUST_HARD_MASK interrupt or
2837 * HARD_DIS setting. If this does fire, the interrupt is still
2838 * masked and MSR[EE] will be cleared on return, so no need to
2839 * panic, but somebody probably enabled MSR[EE] under
2840 * PACA_IRQ_HARD_DIS, mtmsr(mfmsr() | MSR_x) being a common
2841 * cause.
2842 */
2843 lbz r9,PACAIRQHAPPENED(r13)
2844 andi. r9,r9,(PACA_IRQ_MUST_HARD_MASK|PACA_IRQ_HARD_DIS)
28450: tdnei r9,0
2846 EMIT_WARN_ENTRY 0b,__FILE__,__LINE__,(BUGFLAG_WARNING | BUGFLAG_ONCE)
2847#endif
2848 lbz r9,PACAIRQHAPPENED(r13)
2849 or r9,r9,r10
2850 stb r9,PACAIRQHAPPENED(r13)
2851
2852 .if ! \hsrr
2853 cmpwi r10,PACA_IRQ_DEC
2854 bne 1f
2855 LOAD_REG_IMMEDIATE(r9, 0x7fffffff)
2856 mtspr SPRN_DEC,r9
2857#ifdef CONFIG_PPC_WATCHDOG
2858 lwz r9,PACA_EXGEN+EX_CCR(r13)
2859 b soft_nmi_common
2860#else
2861 b 2f
2862#endif
2863 .endif
2864
28651: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
2866 beq 2f
2867 xori r12,r12,MSR_EE /* clear MSR_EE */
2868 .if \hsrr
2869 mtspr SPRN_HSRR1,r12
2870 .else
2871 mtspr SPRN_SRR1,r12
2872 .endif
2873 ori r9,r9,PACA_IRQ_HARD_DIS
2874 stb r9,PACAIRQHAPPENED(r13)
28752: /* done */
2876 li r9,0
2877 .if \hsrr
2878 stb r9,PACAHSRR_VALID(r13)
2879 .else
2880 stb r9,PACASRR_VALID(r13)
2881 .endif
2882
2883 SEARCH_RESTART_TABLE
2884 cmpdi r12,0
2885 beq 3f
2886 .if \hsrr
2887 mtspr SPRN_HSRR0,r12
2888 .else
2889 mtspr SPRN_SRR0,r12
2890 .endif
28913:
2892
2893 ld r9,PACA_EXGEN+EX_CTR(r13)
2894 mtctr r9
2895 lwz r9,PACA_EXGEN+EX_CCR(r13)
2896 mtcrf 0x80,r9
2897 std r1,PACAR1(r13)
2898 ld r9,PACA_EXGEN+EX_R9(r13)
2899 ld r10,PACA_EXGEN+EX_R10(r13)
2900 ld r11,PACA_EXGEN+EX_R11(r13)
2901 ld r12,PACA_EXGEN+EX_R12(r13)
2902 ld r13,PACA_EXGEN+EX_R13(r13)
2903 /* May return to masked low address where r13 is not set up */
2904 .if \hsrr
2905 HRFI_TO_KERNEL
2906 .else
2907 RFI_TO_KERNEL
2908 .endif
2909 b .
2910.endm
2911
2912TRAMP_REAL_BEGIN(stf_barrier_fallback)
2913 std r9,PACA_EXRFI+EX_R9(r13)
2914 std r10,PACA_EXRFI+EX_R10(r13)
2915 sync
2916 ld r9,PACA_EXRFI+EX_R9(r13)
2917 ld r10,PACA_EXRFI+EX_R10(r13)
2918 ori 31,31,0
2919 .rept 14
2920 b 1f
29211:
2922 .endr
2923 blr
2924
2925/* Clobbers r10, r11, ctr */
2926.macro L1D_DISPLACEMENT_FLUSH
2927 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2928 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2929 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2930 mtctr r11
2931 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2932
2933 /* order ld/st prior to dcbt stop all streams with flushing */
2934 sync
2935
2936 /*
2937 * The load addresses are at staggered offsets within cachelines,
2938 * which suits some pipelines better (on others it should not
2939 * hurt).
2940 */
29411:
2942 ld r11,(0x80 + 8)*0(r10)
2943 ld r11,(0x80 + 8)*1(r10)
2944 ld r11,(0x80 + 8)*2(r10)
2945 ld r11,(0x80 + 8)*3(r10)
2946 ld r11,(0x80 + 8)*4(r10)
2947 ld r11,(0x80 + 8)*5(r10)
2948 ld r11,(0x80 + 8)*6(r10)
2949 ld r11,(0x80 + 8)*7(r10)
2950 addi r10,r10,0x80*8
2951 bdnz 1b
2952.endm
2953
2954TRAMP_REAL_BEGIN(entry_flush_fallback)
2955 std r9,PACA_EXRFI+EX_R9(r13)
2956 std r10,PACA_EXRFI+EX_R10(r13)
2957 std r11,PACA_EXRFI+EX_R11(r13)
2958 mfctr r9
2959 L1D_DISPLACEMENT_FLUSH
2960 mtctr r9
2961 ld r9,PACA_EXRFI+EX_R9(r13)
2962 ld r10,PACA_EXRFI+EX_R10(r13)
2963 ld r11,PACA_EXRFI+EX_R11(r13)
2964 blr
2965
2966/*
2967 * The SCV entry flush happens with interrupts enabled, so it must disable
2968 * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10
2969 * (containing LR) does not need to be preserved here because scv entry
2970 * puts 0 in the pt_regs, CTR can be clobbered for the same reason.
2971 */
2972TRAMP_REAL_BEGIN(scv_entry_flush_fallback)
2973 li r10,0
2974 mtmsrd r10,1
2975 lbz r10,PACAIRQHAPPENED(r13)
2976 ori r10,r10,PACA_IRQ_HARD_DIS
2977 stb r10,PACAIRQHAPPENED(r13)
2978 std r11,PACA_EXRFI+EX_R11(r13)
2979 L1D_DISPLACEMENT_FLUSH
2980 ld r11,PACA_EXRFI+EX_R11(r13)
2981 li r10,MSR_RI
2982 mtmsrd r10,1
2983 blr
2984
2985TRAMP_REAL_BEGIN(rfi_flush_fallback)
2986 SET_SCRATCH0(r13);
2987 GET_PACA(r13);
2988 std r1,PACA_EXRFI+EX_R12(r13)
2989 ld r1,PACAKSAVE(r13)
2990 std r9,PACA_EXRFI+EX_R9(r13)
2991 std r10,PACA_EXRFI+EX_R10(r13)
2992 std r11,PACA_EXRFI+EX_R11(r13)
2993 mfctr r9
2994 L1D_DISPLACEMENT_FLUSH
2995 mtctr r9
2996 ld r9,PACA_EXRFI+EX_R9(r13)
2997 ld r10,PACA_EXRFI+EX_R10(r13)
2998 ld r11,PACA_EXRFI+EX_R11(r13)
2999 ld r1,PACA_EXRFI+EX_R12(r13)
3000 GET_SCRATCH0(r13);
3001 rfid
3002
3003TRAMP_REAL_BEGIN(hrfi_flush_fallback)
3004 SET_SCRATCH0(r13);
3005 GET_PACA(r13);
3006 std r1,PACA_EXRFI+EX_R12(r13)
3007 ld r1,PACAKSAVE(r13)
3008 std r9,PACA_EXRFI+EX_R9(r13)
3009 std r10,PACA_EXRFI+EX_R10(r13)
3010 std r11,PACA_EXRFI+EX_R11(r13)
3011 mfctr r9
3012 L1D_DISPLACEMENT_FLUSH
3013 mtctr r9
3014 ld r9,PACA_EXRFI+EX_R9(r13)
3015 ld r10,PACA_EXRFI+EX_R10(r13)
3016 ld r11,PACA_EXRFI+EX_R11(r13)
3017 ld r1,PACA_EXRFI+EX_R12(r13)
3018 GET_SCRATCH0(r13);
3019 hrfid
3020
3021TRAMP_REAL_BEGIN(rfscv_flush_fallback)
3022 /* system call volatile */
3023 mr r7,r13
3024 GET_PACA(r13);
3025 mr r8,r1
3026 ld r1,PACAKSAVE(r13)
3027 mfctr r9
3028 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3029 ld r11,PACA_L1D_FLUSH_SIZE(r13)
3030 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3031 mtctr r11
3032 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3033
3034 /* order ld/st prior to dcbt stop all streams with flushing */
3035 sync
3036
3037 /*
3038 * The load adresses are at staggered offsets within cachelines,
3039 * which suits some pipelines better (on others it should not
3040 * hurt).
3041 */
30421:
3043 ld r11,(0x80 + 8)*0(r10)
3044 ld r11,(0x80 + 8)*1(r10)
3045 ld r11,(0x80 + 8)*2(r10)
3046 ld r11,(0x80 + 8)*3(r10)
3047 ld r11,(0x80 + 8)*4(r10)
3048 ld r11,(0x80 + 8)*5(r10)
3049 ld r11,(0x80 + 8)*6(r10)
3050 ld r11,(0x80 + 8)*7(r10)
3051 addi r10,r10,0x80*8
3052 bdnz 1b
3053
3054 mtctr r9
3055 li r9,0
3056 li r10,0
3057 li r11,0
3058 mr r1,r8
3059 mr r13,r7
3060 RFSCV
3061
3062USE_TEXT_SECTION()
3063
3064#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3065kvm_interrupt:
3066 /*
3067 * The conditional branch in KVMTEST can't reach all the way,
3068 * make a stub.
3069 */
3070 b kvmppc_interrupt
3071#endif
3072
3073_GLOBAL(do_uaccess_flush)
3074 UACCESS_FLUSH_FIXUP_SECTION
3075 nop
3076 nop
3077 nop
3078 blr
3079 L1D_DISPLACEMENT_FLUSH
3080 blr
3081_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
3082EXPORT_SYMBOL(do_uaccess_flush)
3083
3084
3085MASKED_INTERRUPT
3086MASKED_INTERRUPT hsrr=1
3087
3088USE_FIXED_SECTION(virt_trampolines)
3089 /*
3090 * All code below __end_soft_masked is treated as soft-masked. If
3091 * any code runs here with MSR[EE]=1, it must then cope with pending
3092 * soft interrupt being raised (i.e., by ensuring it is replayed).
3093 *
3094 * The __end_interrupts marker must be past the out-of-line (OOL)
3095 * handlers, so that they are copied to real address 0x100 when running
3096 * a relocatable kernel. This ensures they can be reached from the short
3097 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3098 * directly, without using LOAD_HANDLER().
3099 */
3100 .align 7
3101 .globl __end_interrupts
3102__end_interrupts:
3103DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines)
3104
3105CLOSE_FIXED_SECTION(real_vectors);
3106CLOSE_FIXED_SECTION(real_trampolines);
3107CLOSE_FIXED_SECTION(virt_vectors);
3108CLOSE_FIXED_SECTION(virt_trampolines);
3109
3110USE_TEXT_SECTION()
3111
3112/* MSR[RI] should be clear because this uses SRR[01] */
3113_GLOBAL(enable_machine_check)
3114 mflr r0
3115 bcl 20,31,$+4
31160: mflr r3
3117 addi r3,r3,(1f - 0b)
3118 mtspr SPRN_SRR0,r3
3119 mfmsr r3
3120 ori r3,r3,MSR_ME
3121 mtspr SPRN_SRR1,r3
3122 RFI_TO_KERNEL
31231: mtlr r0
3124 blr
3125
3126/* MSR[RI] should be clear because this uses SRR[01] */
3127SYM_FUNC_START_LOCAL(disable_machine_check)
3128 mflr r0
3129 bcl 20,31,$+4
31300: mflr r3
3131 addi r3,r3,(1f - 0b)
3132 mtspr SPRN_SRR0,r3
3133 mfmsr r3
3134 li r4,MSR_ME
3135 andc r3,r3,r4
3136 mtspr SPRN_SRR1,r3
3137 RFI_TO_KERNEL
31381: mtlr r0
3139 blr
3140SYM_FUNC_END(disable_machine_check)