Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
 
  29#include <linux/uaccess.h>
  30
 
 
  31#include <asm/mach-loongson64/cpucfg-emul.h>
  32
  33/* Hardware capabilities */
  34unsigned int elf_hwcap __read_mostly;
  35EXPORT_SYMBOL_GPL(elf_hwcap);
  36
  37#ifdef CONFIG_MIPS_FP_SUPPORT
  38
  39/*
  40 * Get the FPU Implementation/Revision.
  41 */
  42static inline unsigned long cpu_get_fpu_id(void)
  43{
  44	unsigned long tmp, fpu_id;
  45
  46	tmp = read_c0_status();
  47	__enable_fpu(FPU_AS_IS);
  48	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  49	write_c0_status(tmp);
  50	return fpu_id;
  51}
  52
  53/*
  54 * Check if the CPU has an external FPU.
  55 */
  56static inline int __cpu_has_fpu(void)
  57{
  58	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  59}
  60
  61/*
  62 * Determine the FCSR mask for FPU hardware.
  63 */
  64static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  65{
  66	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  67
  68	fcsr = c->fpu_csr31;
  69	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  70
  71	sr = read_c0_status();
  72	__enable_fpu(FPU_AS_IS);
  73
  74	fcsr0 = fcsr & mask;
  75	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  76	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  77
  78	fcsr1 = fcsr | ~mask;
  79	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  80	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  81
  82	write_32bit_cp1_register(CP1_STATUS, fcsr);
  83
  84	write_c0_status(sr);
  85
  86	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  87}
  88
  89/*
  90 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
  91 * supported by FPU hardware.
  92 */
  93static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
  94{
  95	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
  96			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
  97			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
  98			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
  99		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 100
 101		sr = read_c0_status();
 102		__enable_fpu(FPU_AS_IS);
 103
 104		fir = read_32bit_cp1_register(CP1_REVISION);
 105		if (fir & MIPS_FPIR_HAS2008) {
 106			fcsr = read_32bit_cp1_register(CP1_STATUS);
 107
 108			/*
 109			 * MAC2008 toolchain never landed in real world, so we're only
 110			 * testing wether it can be disabled and don't try to enabled
 111			 * it.
 112			 */
 113			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008);
 114			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 115			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 116
 117			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 118			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 119			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 120
 121			write_32bit_cp1_register(CP1_STATUS, fcsr);
 122
 123			if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) {
 124				/*
 125				 * The bit for MAC2008 might be reused by R6 in future,
 126				 * so we only test for R2-R5.
 127				 */
 128				if (fcsr0 & FPU_CSR_MAC2008)
 129					c->options |= MIPS_CPU_MAC_2008_ONLY;
 130			}
 131
 132			if (!(fcsr0 & FPU_CSR_NAN2008))
 133				c->options |= MIPS_CPU_NAN_LEGACY;
 134			if (fcsr1 & FPU_CSR_NAN2008)
 135				c->options |= MIPS_CPU_NAN_2008;
 136
 137			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 138				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 139			else
 140				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 141
 142			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 143				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 144			else
 145				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 146		} else {
 147			c->options |= MIPS_CPU_NAN_LEGACY;
 148		}
 149
 150		write_c0_status(sr);
 151	} else {
 152		c->options |= MIPS_CPU_NAN_LEGACY;
 153	}
 154}
 155
 156/*
 157 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 158 * ABS.fmt/NEG.fmt execution mode.
 159 */
 160static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 161
 162/*
 163 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 164 * to support by the FPU emulator according to the IEEE 754 conformance
 165 * mode selected.  Note that "relaxed" straps the emulator so that it
 166 * allows 2008-NaN binaries even for legacy processors.
 167 */
 168static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 169{
 170	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 171	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 172	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 173
 174	switch (ieee754) {
 175	case STRICT:
 176		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 177				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 178				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 179				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 180			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 181		} else {
 182			c->options |= MIPS_CPU_NAN_LEGACY;
 183			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 184		}
 185		break;
 186	case LEGACY:
 187		c->options |= MIPS_CPU_NAN_LEGACY;
 188		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		break;
 190	case STD2008:
 191		c->options |= MIPS_CPU_NAN_2008;
 192		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 193		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 194		break;
 195	case RELAXED:
 196		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 197		break;
 198	}
 199}
 200
 201/*
 202 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 203 * according to the "ieee754=" parameter.
 204 */
 205static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 206{
 207	switch (ieee754) {
 208	case STRICT:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !!cpu_has_nan_2008;
 211		break;
 212	case LEGACY:
 213		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 214		mips_use_nan_2008 = !cpu_has_nan_legacy;
 215		break;
 216	case STD2008:
 217		mips_use_nan_legacy = !cpu_has_nan_2008;
 218		mips_use_nan_2008 = !!cpu_has_nan_2008;
 219		break;
 220	case RELAXED:
 221		mips_use_nan_legacy = true;
 222		mips_use_nan_2008 = true;
 223		break;
 224	}
 225}
 226
 227/*
 228 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 229 * settings:
 230 *
 231 * strict:  accept binaries that request a NaN encoding supported by the FPU
 232 * legacy:  only accept legacy-NaN binaries
 233 * 2008:    only accept 2008-NaN binaries
 234 * relaxed: accept any binaries regardless of whether supported by the FPU
 235 */
 236static int __init ieee754_setup(char *s)
 237{
 238	if (!s)
 239		return -1;
 240	else if (!strcmp(s, "strict"))
 241		ieee754 = STRICT;
 242	else if (!strcmp(s, "legacy"))
 243		ieee754 = LEGACY;
 244	else if (!strcmp(s, "2008"))
 245		ieee754 = STD2008;
 246	else if (!strcmp(s, "relaxed"))
 247		ieee754 = RELAXED;
 248	else
 249		return -1;
 250
 251	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 252		cpu_set_nofpu_2008(&boot_cpu_data);
 253	cpu_set_nan_2008(&boot_cpu_data);
 254
 255	return 0;
 256}
 257
 258early_param("ieee754", ieee754_setup);
 259
 260/*
 261 * Set the FIR feature flags for the FPU emulator.
 262 */
 263static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 264{
 265	u32 value;
 266
 267	value = 0;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 269			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 270			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 271			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 272		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 273	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 274			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 275			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 276		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 277	if (c->options & MIPS_CPU_NAN_2008)
 278		value |= MIPS_FPIR_HAS2008;
 279	c->fpu_id = value;
 280}
 281
 282/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 283static unsigned int mips_nofpu_msk31;
 284
 285/*
 286 * Set options for FPU hardware.
 287 */
 288static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 289{
 290	c->fpu_id = cpu_get_fpu_id();
 291	mips_nofpu_msk31 = c->fpu_msk31;
 292
 293	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 294			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 295			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 296			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 297		if (c->fpu_id & MIPS_FPIR_3D)
 298			c->ases |= MIPS_ASE_MIPS3D;
 299		if (c->fpu_id & MIPS_FPIR_UFRP)
 300			c->options |= MIPS_CPU_UFR;
 301		if (c->fpu_id & MIPS_FPIR_FREP)
 302			c->options |= MIPS_CPU_FRE;
 303	}
 304
 305	cpu_set_fpu_fcsr_mask(c);
 306	cpu_set_fpu_2008(c);
 307	cpu_set_nan_2008(c);
 308}
 309
 310/*
 311 * Set options for the FPU emulator.
 312 */
 313static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 314{
 315	c->options &= ~MIPS_CPU_FPU;
 316	c->fpu_msk31 = mips_nofpu_msk31;
 317
 318	cpu_set_nofpu_2008(c);
 319	cpu_set_nan_2008(c);
 320	cpu_set_nofpu_id(c);
 321}
 322
 323static int mips_fpu_disabled;
 324
 325static int __init fpu_disable(char *s)
 326{
 327	cpu_set_nofpu_opts(&boot_cpu_data);
 328	mips_fpu_disabled = 1;
 329
 330	return 1;
 331}
 332
 333__setup("nofpu", fpu_disable);
 334
 335#else /* !CONFIG_MIPS_FP_SUPPORT */
 336
 337#define mips_fpu_disabled 1
 338
 339static inline unsigned long cpu_get_fpu_id(void)
 340{
 341	return FPIR_IMP_NONE;
 342}
 343
 344static inline int __cpu_has_fpu(void)
 345{
 346	return 0;
 347}
 348
 349static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 350{
 351	/* no-op */
 352}
 353
 354static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 355{
 356	/* no-op */
 357}
 358
 359#endif /* CONFIG_MIPS_FP_SUPPORT */
 360
 361static inline unsigned long cpu_get_msa_id(void)
 362{
 363	unsigned long status, msa_id;
 364
 365	status = read_c0_status();
 366	__enable_fpu(FPU_64BIT);
 367	enable_msa();
 368	msa_id = read_msa_ir();
 369	disable_msa();
 370	write_c0_status(status);
 371	return msa_id;
 372}
 373
 374static int mips_dsp_disabled;
 375
 376static int __init dsp_disable(char *s)
 377{
 378	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 379	mips_dsp_disabled = 1;
 380
 381	return 1;
 382}
 383
 384__setup("nodsp", dsp_disable);
 385
 386static int mips_htw_disabled;
 387
 388static int __init htw_disable(char *s)
 389{
 390	mips_htw_disabled = 1;
 391	cpu_data[0].options &= ~MIPS_CPU_HTW;
 392	write_c0_pwctl(read_c0_pwctl() &
 393		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 394
 395	return 1;
 396}
 397
 398__setup("nohtw", htw_disable);
 399
 400static int mips_ftlb_disabled;
 401static int mips_has_ftlb_configured;
 402
 403enum ftlb_flags {
 404	FTLB_EN		= 1 << 0,
 405	FTLB_SET_PROB	= 1 << 1,
 406};
 407
 408static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 409
 410static int __init ftlb_disable(char *s)
 411{
 412	unsigned int config4, mmuextdef;
 413
 414	/*
 415	 * If the core hasn't done any FTLB configuration, there is nothing
 416	 * for us to do here.
 417	 */
 418	if (!mips_has_ftlb_configured)
 419		return 1;
 420
 421	/* Disable it in the boot cpu */
 422	if (set_ftlb_enable(&cpu_data[0], 0)) {
 423		pr_warn("Can't turn FTLB off\n");
 424		return 1;
 425	}
 426
 427	config4 = read_c0_config4();
 428
 429	/* Check that FTLB has been disabled */
 430	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 431	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 432	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 433		/* This should never happen */
 434		pr_warn("FTLB could not be disabled!\n");
 435		return 1;
 436	}
 437
 438	mips_ftlb_disabled = 1;
 439	mips_has_ftlb_configured = 0;
 440
 441	/*
 442	 * noftlb is mainly used for debug purposes so print
 443	 * an informative message instead of using pr_debug()
 444	 */
 445	pr_info("FTLB has been disabled\n");
 446
 447	/*
 448	 * Some of these bits are duplicated in the decode_config4.
 449	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 450	 * once FTLB has been disabled so undo what decode_config4 did.
 451	 */
 452	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 453			       cpu_data[0].tlbsizeftlbsets;
 454	cpu_data[0].tlbsizeftlbsets = 0;
 455	cpu_data[0].tlbsizeftlbways = 0;
 456
 457	return 1;
 458}
 459
 460__setup("noftlb", ftlb_disable);
 461
 462/*
 463 * Check if the CPU has per tc perf counters
 464 */
 465static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 466{
 467	if (read_c0_config7() & MTI_CONF7_PTC)
 468		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 469}
 470
 471static inline void check_errata(void)
 472{
 473	struct cpuinfo_mips *c = &current_cpu_data;
 474
 475	switch (current_cpu_type()) {
 476	case CPU_34K:
 477		/*
 478		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 479		 * This code only handles VPE0, any SMP/RTOS code
 480		 * making use of VPE1 will be responsable for that VPE.
 481		 */
 482		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 483			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 484		break;
 485	default:
 486		break;
 487	}
 488}
 489
 490void __init check_bugs32(void)
 491{
 492	check_errata();
 493}
 494
 495/*
 496 * Probe whether cpu has config register by trying to play with
 497 * alternate cache bit and see whether it matters.
 498 * It's used by cpu_probe to distinguish between R3000A and R3081.
 499 */
 500static inline int cpu_has_confreg(void)
 501{
 502#ifdef CONFIG_CPU_R3000
 503	extern unsigned long r3k_cache_size(unsigned long);
 504	unsigned long size1, size2;
 505	unsigned long cfg = read_c0_conf();
 506
 507	size1 = r3k_cache_size(ST0_ISC);
 508	write_c0_conf(cfg ^ R30XX_CONF_AC);
 509	size2 = r3k_cache_size(ST0_ISC);
 510	write_c0_conf(cfg);
 511	return size1 != size2;
 512#else
 513	return 0;
 514#endif
 515}
 516
 517static inline void set_elf_platform(int cpu, const char *plat)
 518{
 519	if (cpu == 0)
 520		__elf_platform = plat;
 521}
 522
 523static inline void set_elf_base_platform(const char *plat)
 524{
 525	if (__elf_base_platform == NULL) {
 526		__elf_base_platform = plat;
 527	}
 528}
 529
 530static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 531{
 532#ifdef __NEED_VMBITS_PROBE
 533	write_c0_entryhi(0x3fffffffffffe000ULL);
 534	back_to_back_c0_hazard();
 535	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 536#endif
 537}
 538
 539static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 540{
 541	switch (isa) {
 542	case MIPS_CPU_ISA_M64R5:
 543		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 544		set_elf_base_platform("mips64r5");
 545		fallthrough;
 546	case MIPS_CPU_ISA_M64R2:
 547		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 548		set_elf_base_platform("mips64r2");
 549		fallthrough;
 550	case MIPS_CPU_ISA_M64R1:
 551		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 552		set_elf_base_platform("mips64");
 553		fallthrough;
 554	case MIPS_CPU_ISA_V:
 555		c->isa_level |= MIPS_CPU_ISA_V;
 556		set_elf_base_platform("mips5");
 557		fallthrough;
 558	case MIPS_CPU_ISA_IV:
 559		c->isa_level |= MIPS_CPU_ISA_IV;
 560		set_elf_base_platform("mips4");
 561		fallthrough;
 562	case MIPS_CPU_ISA_III:
 563		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 564		set_elf_base_platform("mips3");
 565		break;
 566
 567	/* R6 incompatible with everything else */
 568	case MIPS_CPU_ISA_M64R6:
 569		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 570		set_elf_base_platform("mips64r6");
 571		fallthrough;
 572	case MIPS_CPU_ISA_M32R6:
 573		c->isa_level |= MIPS_CPU_ISA_M32R6;
 574		set_elf_base_platform("mips32r6");
 575		/* Break here so we don't add incompatible ISAs */
 576		break;
 577	case MIPS_CPU_ISA_M32R5:
 578		c->isa_level |= MIPS_CPU_ISA_M32R5;
 579		set_elf_base_platform("mips32r5");
 580		fallthrough;
 581	case MIPS_CPU_ISA_M32R2:
 582		c->isa_level |= MIPS_CPU_ISA_M32R2;
 583		set_elf_base_platform("mips32r2");
 584		fallthrough;
 585	case MIPS_CPU_ISA_M32R1:
 586		c->isa_level |= MIPS_CPU_ISA_M32R1;
 587		set_elf_base_platform("mips32");
 588		fallthrough;
 589	case MIPS_CPU_ISA_II:
 590		c->isa_level |= MIPS_CPU_ISA_II;
 591		set_elf_base_platform("mips2");
 592		break;
 593	}
 594}
 595
 596static char unknown_isa[] = KERN_ERR \
 597	"Unsupported ISA type, c0.config0: %d.";
 598
 599static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 600{
 601
 602	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 603
 604	/*
 605	 * 0 = All TLBWR instructions go to FTLB
 606	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 607	 * FTLB and 1 goes to the VTLB.
 608	 * 2 = 7:1: As above with 7:1 ratio.
 609	 * 3 = 3:1: As above with 3:1 ratio.
 610	 *
 611	 * Use the linear midpoint as the probability threshold.
 612	 */
 613	if (probability >= 12)
 614		return 1;
 615	else if (probability >= 6)
 616		return 2;
 617	else
 618		/*
 619		 * So FTLB is less than 4 times bigger than VTLB.
 620		 * A 3:1 ratio can still be useful though.
 621		 */
 622		return 3;
 623}
 624
 625static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 626{
 627	unsigned int config;
 628
 629	/* It's implementation dependent how the FTLB can be enabled */
 630	switch (c->cputype) {
 631	case CPU_PROAPTIV:
 632	case CPU_P5600:
 633	case CPU_P6600:
 634		/* proAptiv & related cores use Config6 to enable the FTLB */
 635		config = read_c0_config6();
 636
 637		if (flags & FTLB_EN)
 638			config |= MTI_CONF6_FTLBEN;
 639		else
 640			config &= ~MTI_CONF6_FTLBEN;
 641
 642		if (flags & FTLB_SET_PROB) {
 643			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 644			config |= calculate_ftlb_probability(c)
 645				  << MTI_CONF6_FTLBP_SHIFT;
 646		}
 647
 648		write_c0_config6(config);
 649		back_to_back_c0_hazard();
 650		break;
 651	case CPU_I6400:
 652	case CPU_I6500:
 653		/* There's no way to disable the FTLB */
 654		if (!(flags & FTLB_EN))
 655			return 1;
 656		return 0;
 657	case CPU_LOONGSON64:
 658		/* Flush ITLB, DTLB, VTLB and FTLB */
 659		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 660			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 661		/* Loongson-3 cores use Config6 to enable the FTLB */
 662		config = read_c0_config6();
 663		if (flags & FTLB_EN)
 664			/* Enable FTLB */
 665			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 666		else
 667			/* Disable FTLB */
 668			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 669		break;
 670	default:
 671		return 1;
 672	}
 673
 674	return 0;
 675}
 676
 677static int mm_config(struct cpuinfo_mips *c)
 678{
 679	unsigned int config0, update, mm;
 680
 681	config0 = read_c0_config();
 682	mm = config0 & MIPS_CONF_MM;
 683
 684	/*
 685	 * It's implementation dependent what type of write-merge is supported
 686	 * and whether it can be enabled/disabled. If it is settable lets make
 687	 * the merging allowed by default. Some platforms might have
 688	 * write-through caching unsupported. In this case just ignore the
 689	 * CP0.Config.MM bit field value.
 690	 */
 691	switch (c->cputype) {
 692	case CPU_24K:
 693	case CPU_34K:
 694	case CPU_74K:
 695	case CPU_P5600:
 696	case CPU_P6600:
 697		c->options |= MIPS_CPU_MM_FULL;
 698		update = MIPS_CONF_MM_FULL;
 699		break;
 700	case CPU_1004K:
 701	case CPU_1074K:
 702	case CPU_INTERAPTIV:
 703	case CPU_PROAPTIV:
 704		mm = 0;
 705		fallthrough;
 706	default:
 707		update = 0;
 708		break;
 709	}
 710
 711	if (update) {
 712		config0 = (config0 & ~MIPS_CONF_MM) | update;
 713		write_c0_config(config0);
 714	} else if (mm == MIPS_CONF_MM_SYSAD) {
 715		c->options |= MIPS_CPU_MM_SYSAD;
 716	} else if (mm == MIPS_CONF_MM_FULL) {
 717		c->options |= MIPS_CPU_MM_FULL;
 718	}
 719
 720	return 0;
 721}
 722
 723static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 724{
 725	unsigned int config0;
 726	int isa, mt;
 727
 728	config0 = read_c0_config();
 729
 730	/*
 731	 * Look for Standard TLB or Dual VTLB and FTLB
 732	 */
 733	mt = config0 & MIPS_CONF_MT;
 734	if (mt == MIPS_CONF_MT_TLB)
 735		c->options |= MIPS_CPU_TLB;
 736	else if (mt == MIPS_CONF_MT_FTLB)
 737		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 738
 739	isa = (config0 & MIPS_CONF_AT) >> 13;
 740	switch (isa) {
 741	case 0:
 742		switch ((config0 & MIPS_CONF_AR) >> 10) {
 743		case 0:
 744			set_isa(c, MIPS_CPU_ISA_M32R1);
 745			break;
 746		case 1:
 747			set_isa(c, MIPS_CPU_ISA_M32R2);
 748			break;
 749		case 2:
 750			set_isa(c, MIPS_CPU_ISA_M32R6);
 751			break;
 752		default:
 753			goto unknown;
 754		}
 755		break;
 756	case 2:
 757		switch ((config0 & MIPS_CONF_AR) >> 10) {
 758		case 0:
 759			set_isa(c, MIPS_CPU_ISA_M64R1);
 760			break;
 761		case 1:
 762			set_isa(c, MIPS_CPU_ISA_M64R2);
 763			break;
 764		case 2:
 765			set_isa(c, MIPS_CPU_ISA_M64R6);
 766			break;
 767		default:
 768			goto unknown;
 769		}
 770		break;
 771	default:
 772		goto unknown;
 773	}
 774
 775	return config0 & MIPS_CONF_M;
 776
 777unknown:
 778	panic(unknown_isa, config0);
 779}
 780
 781static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 782{
 783	unsigned int config1;
 784
 785	config1 = read_c0_config1();
 786
 787	if (config1 & MIPS_CONF1_MD)
 788		c->ases |= MIPS_ASE_MDMX;
 789	if (config1 & MIPS_CONF1_PC)
 790		c->options |= MIPS_CPU_PERF;
 791	if (config1 & MIPS_CONF1_WR)
 792		c->options |= MIPS_CPU_WATCH;
 793	if (config1 & MIPS_CONF1_CA)
 794		c->ases |= MIPS_ASE_MIPS16;
 795	if (config1 & MIPS_CONF1_EP)
 796		c->options |= MIPS_CPU_EJTAG;
 797	if (config1 & MIPS_CONF1_FP) {
 798		c->options |= MIPS_CPU_FPU;
 799		c->options |= MIPS_CPU_32FPR;
 800	}
 801	if (cpu_has_tlb) {
 802		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 803		c->tlbsizevtlb = c->tlbsize;
 804		c->tlbsizeftlbsets = 0;
 805	}
 806
 807	return config1 & MIPS_CONF_M;
 808}
 809
 810static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 811{
 812	unsigned int config2;
 813
 814	config2 = read_c0_config2();
 815
 816	if (config2 & MIPS_CONF2_SL)
 817		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 818
 819	return config2 & MIPS_CONF_M;
 820}
 821
 822static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 823{
 824	unsigned int config3;
 825
 826	config3 = read_c0_config3();
 827
 828	if (config3 & MIPS_CONF3_SM) {
 829		c->ases |= MIPS_ASE_SMARTMIPS;
 830		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 831	}
 832	if (config3 & MIPS_CONF3_RXI)
 833		c->options |= MIPS_CPU_RIXI;
 834	if (config3 & MIPS_CONF3_CTXTC)
 835		c->options |= MIPS_CPU_CTXTC;
 836	if (config3 & MIPS_CONF3_DSP)
 837		c->ases |= MIPS_ASE_DSP;
 838	if (config3 & MIPS_CONF3_DSP2P) {
 839		c->ases |= MIPS_ASE_DSP2P;
 840		if (cpu_has_mips_r6)
 841			c->ases |= MIPS_ASE_DSP3;
 842	}
 843	if (config3 & MIPS_CONF3_VINT)
 844		c->options |= MIPS_CPU_VINT;
 845	if (config3 & MIPS_CONF3_VEIC)
 846		c->options |= MIPS_CPU_VEIC;
 847	if (config3 & MIPS_CONF3_LPA)
 848		c->options |= MIPS_CPU_LPA;
 849	if (config3 & MIPS_CONF3_MT)
 850		c->ases |= MIPS_ASE_MIPSMT;
 851	if (config3 & MIPS_CONF3_ULRI)
 852		c->options |= MIPS_CPU_ULRI;
 853	if (config3 & MIPS_CONF3_ISA)
 854		c->options |= MIPS_CPU_MICROMIPS;
 855	if (config3 & MIPS_CONF3_VZ)
 856		c->ases |= MIPS_ASE_VZ;
 857	if (config3 & MIPS_CONF3_SC)
 858		c->options |= MIPS_CPU_SEGMENTS;
 859	if (config3 & MIPS_CONF3_BI)
 860		c->options |= MIPS_CPU_BADINSTR;
 861	if (config3 & MIPS_CONF3_BP)
 862		c->options |= MIPS_CPU_BADINSTRP;
 863	if (config3 & MIPS_CONF3_MSA)
 864		c->ases |= MIPS_ASE_MSA;
 865	if (config3 & MIPS_CONF3_PW) {
 866		c->htw_seq = 0;
 867		c->options |= MIPS_CPU_HTW;
 868	}
 869	if (config3 & MIPS_CONF3_CDMM)
 870		c->options |= MIPS_CPU_CDMM;
 871	if (config3 & MIPS_CONF3_SP)
 872		c->options |= MIPS_CPU_SP;
 873
 874	return config3 & MIPS_CONF_M;
 875}
 876
 877static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 878{
 879	unsigned int config4;
 880	unsigned int newcf4;
 881	unsigned int mmuextdef;
 882	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 883	unsigned long asid_mask;
 884
 885	config4 = read_c0_config4();
 886
 887	if (cpu_has_tlb) {
 888		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 889			c->options |= MIPS_CPU_TLBINV;
 890
 891		/*
 892		 * R6 has dropped the MMUExtDef field from config4.
 893		 * On R6 the fields always describe the FTLB, and only if it is
 894		 * present according to Config.MT.
 895		 */
 896		if (!cpu_has_mips_r6)
 897			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 898		else if (cpu_has_ftlb)
 899			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 900		else
 901			mmuextdef = 0;
 902
 903		switch (mmuextdef) {
 904		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 905			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 906			c->tlbsizevtlb = c->tlbsize;
 907			break;
 908		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 909			c->tlbsizevtlb +=
 910				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 911				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 912			c->tlbsize = c->tlbsizevtlb;
 913			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 914			fallthrough;
 915		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 916			if (mips_ftlb_disabled)
 917				break;
 918			newcf4 = (config4 & ~ftlb_page) |
 919				(page_size_ftlb(mmuextdef) <<
 920				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 921			write_c0_config4(newcf4);
 922			back_to_back_c0_hazard();
 923			config4 = read_c0_config4();
 924			if (config4 != newcf4) {
 925				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 926				       PAGE_SIZE, config4);
 927				/* Switch FTLB off */
 928				set_ftlb_enable(c, 0);
 929				mips_ftlb_disabled = 1;
 930				break;
 931			}
 932			c->tlbsizeftlbsets = 1 <<
 933				((config4 & MIPS_CONF4_FTLBSETS) >>
 934				 MIPS_CONF4_FTLBSETS_SHIFT);
 935			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 936					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 937			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 938			mips_has_ftlb_configured = 1;
 939			break;
 940		}
 941	}
 942
 943	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 944				>> MIPS_CONF4_KSCREXIST_SHIFT;
 945
 946	asid_mask = MIPS_ENTRYHI_ASID;
 947	if (config4 & MIPS_CONF4_AE)
 948		asid_mask |= MIPS_ENTRYHI_ASIDX;
 949	set_cpu_asid_mask(c, asid_mask);
 950
 951	/*
 952	 * Warn if the computed ASID mask doesn't match the mask the kernel
 953	 * is built for. This may indicate either a serious problem or an
 954	 * easy optimisation opportunity, but either way should be addressed.
 955	 */
 956	WARN_ON(asid_mask != cpu_asid_mask(c));
 957
 958	return config4 & MIPS_CONF_M;
 959}
 960
 961static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 962{
 963	unsigned int config5, max_mmid_width;
 964	unsigned long asid_mask;
 965
 966	config5 = read_c0_config5();
 967	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 968
 969	if (cpu_has_mips_r6) {
 970		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 971			config5 |= MIPS_CONF5_MI;
 972		else
 973			config5 &= ~MIPS_CONF5_MI;
 974	}
 975
 976	write_c0_config5(config5);
 977
 978	if (config5 & MIPS_CONF5_EVA)
 979		c->options |= MIPS_CPU_EVA;
 980	if (config5 & MIPS_CONF5_MRP)
 981		c->options |= MIPS_CPU_MAAR;
 982	if (config5 & MIPS_CONF5_LLB)
 983		c->options |= MIPS_CPU_RW_LLB;
 984	if (config5 & MIPS_CONF5_MVH)
 985		c->options |= MIPS_CPU_MVH;
 986	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 987		c->options |= MIPS_CPU_VP;
 988	if (config5 & MIPS_CONF5_CA2)
 989		c->ases |= MIPS_ASE_MIPS16E2;
 990
 991	if (config5 & MIPS_CONF5_CRCP)
 992		elf_hwcap |= HWCAP_MIPS_CRC32;
 993
 994	if (cpu_has_mips_r6) {
 995		/* Ensure the write to config5 above takes effect */
 996		back_to_back_c0_hazard();
 997
 998		/* Check whether we successfully enabled MMID support */
 999		config5 = read_c0_config5();
1000		if (config5 & MIPS_CONF5_MI)
1001			c->options |= MIPS_CPU_MMID;
1002
1003		/*
1004		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
1005		 * for the CPU we're running on, or if CPUs in an SMP system
1006		 * have inconsistent MMID support.
1007		 */
1008		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
1009
1010		if (cpu_has_mmid) {
1011			write_c0_memorymapid(~0ul);
1012			back_to_back_c0_hazard();
1013			asid_mask = read_c0_memorymapid();
1014
1015			/*
1016			 * We maintain a bitmap to track MMID allocation, and
1017			 * need a sensible upper bound on the size of that
1018			 * bitmap. The initial CPU with MMID support (I6500)
1019			 * supports 16 bit MMIDs, which gives us an 8KiB
1020			 * bitmap. The architecture recommends that hardware
1021			 * support 32 bit MMIDs, which would give us a 512MiB
1022			 * bitmap - that's too big in most cases.
1023			 *
1024			 * Cap MMID width at 16 bits for now & we can revisit
1025			 * this if & when hardware supports anything wider.
1026			 */
1027			max_mmid_width = 16;
1028			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
1029				pr_info("Capping MMID width at %d bits",
1030					max_mmid_width);
1031				asid_mask = GENMASK(max_mmid_width - 1, 0);
1032			}
1033
1034			set_cpu_asid_mask(c, asid_mask);
1035		}
1036	}
1037
1038	return config5 & MIPS_CONF_M;
1039}
1040
1041static void decode_configs(struct cpuinfo_mips *c)
1042{
1043	int ok;
1044
1045	/* MIPS32 or MIPS64 compliant CPU.  */
1046	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
1047		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
1048
1049	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
1050
1051	/* Enable FTLB if present and not disabled */
1052	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
1053
1054	ok = decode_config0(c);			/* Read Config registers.  */
1055	BUG_ON(!ok);				/* Arch spec violation!	 */
1056	if (ok)
1057		ok = decode_config1(c);
1058	if (ok)
1059		ok = decode_config2(c);
1060	if (ok)
1061		ok = decode_config3(c);
1062	if (ok)
1063		ok = decode_config4(c);
1064	if (ok)
1065		ok = decode_config5(c);
1066
1067	/* Probe the EBase.WG bit */
1068	if (cpu_has_mips_r2_r6) {
1069		u64 ebase;
1070		unsigned int status;
1071
1072		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
1073		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
1074					 : (s32)read_c0_ebase();
1075		if (ebase & MIPS_EBASE_WG) {
1076			/* WG bit already set, we can avoid the clumsy probe */
1077			c->options |= MIPS_CPU_EBASE_WG;
1078		} else {
1079			/* Its UNDEFINED to change EBase while BEV=0 */
1080			status = read_c0_status();
1081			write_c0_status(status | ST0_BEV);
1082			irq_enable_hazard();
1083			/*
1084			 * On pre-r6 cores, this may well clobber the upper bits
1085			 * of EBase. This is hard to avoid without potentially
1086			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
1087			 */
1088			if (cpu_has_mips64r6)
1089				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
1090			else
1091				write_c0_ebase(ebase | MIPS_EBASE_WG);
1092			back_to_back_c0_hazard();
1093			/* Restore BEV */
1094			write_c0_status(status);
1095			if (read_c0_ebase() & MIPS_EBASE_WG) {
1096				c->options |= MIPS_CPU_EBASE_WG;
1097				write_c0_ebase(ebase);
1098			}
1099		}
1100	}
1101
1102	/* configure the FTLB write probability */
1103	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1104
1105	mips_probe_watch_registers(c);
1106
1107#ifndef CONFIG_MIPS_CPS
1108	if (cpu_has_mips_r2_r6) {
1109		unsigned int core;
1110
1111		core = get_ebase_cpunum();
1112		if (cpu_has_mipsmt)
1113			core >>= fls(core_nvpes()) - 1;
1114		cpu_set_core(c, core);
1115	}
1116#endif
1117}
1118
1119/*
1120 * Probe for certain guest capabilities by writing config bits and reading back.
1121 * Finally write back the original value.
1122 */
1123#define probe_gc0_config(name, maxconf, bits)				\
1124do {									\
1125	unsigned int tmp;						\
1126	tmp = read_gc0_##name();					\
1127	write_gc0_##name(tmp | (bits));					\
1128	back_to_back_c0_hazard();					\
1129	maxconf = read_gc0_##name();					\
1130	write_gc0_##name(tmp);						\
1131} while (0)
1132
1133/*
1134 * Probe for dynamic guest capabilities by changing certain config bits and
1135 * reading back to see if they change. Finally write back the original value.
1136 */
1137#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1138do {									\
1139	maxconf = read_gc0_##name();					\
1140	write_gc0_##name(maxconf ^ (bits));				\
1141	back_to_back_c0_hazard();					\
1142	dynconf = maxconf ^ read_gc0_##name();				\
1143	write_gc0_##name(maxconf);					\
1144	maxconf |= dynconf;						\
1145} while (0)
1146
1147static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1148{
1149	unsigned int config0;
1150
1151	probe_gc0_config(config, config0, MIPS_CONF_M);
1152
1153	if (config0 & MIPS_CONF_M)
1154		c->guest.conf |= BIT(1);
1155	return config0 & MIPS_CONF_M;
1156}
1157
1158static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1159{
1160	unsigned int config1, config1_dyn;
1161
1162	probe_gc0_config_dyn(config1, config1, config1_dyn,
1163			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1164			     MIPS_CONF1_FP);
1165
1166	if (config1 & MIPS_CONF1_FP)
1167		c->guest.options |= MIPS_CPU_FPU;
1168	if (config1_dyn & MIPS_CONF1_FP)
1169		c->guest.options_dyn |= MIPS_CPU_FPU;
1170
1171	if (config1 & MIPS_CONF1_WR)
1172		c->guest.options |= MIPS_CPU_WATCH;
1173	if (config1_dyn & MIPS_CONF1_WR)
1174		c->guest.options_dyn |= MIPS_CPU_WATCH;
1175
1176	if (config1 & MIPS_CONF1_PC)
1177		c->guest.options |= MIPS_CPU_PERF;
1178	if (config1_dyn & MIPS_CONF1_PC)
1179		c->guest.options_dyn |= MIPS_CPU_PERF;
1180
1181	if (config1 & MIPS_CONF_M)
1182		c->guest.conf |= BIT(2);
1183	return config1 & MIPS_CONF_M;
1184}
1185
1186static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1187{
1188	unsigned int config2;
1189
1190	probe_gc0_config(config2, config2, MIPS_CONF_M);
1191
1192	if (config2 & MIPS_CONF_M)
1193		c->guest.conf |= BIT(3);
1194	return config2 & MIPS_CONF_M;
1195}
1196
1197static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1198{
1199	unsigned int config3, config3_dyn;
1200
1201	probe_gc0_config_dyn(config3, config3, config3_dyn,
1202			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1203			     MIPS_CONF3_CTXTC);
1204
1205	if (config3 & MIPS_CONF3_CTXTC)
1206		c->guest.options |= MIPS_CPU_CTXTC;
1207	if (config3_dyn & MIPS_CONF3_CTXTC)
1208		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1209
1210	if (config3 & MIPS_CONF3_PW)
1211		c->guest.options |= MIPS_CPU_HTW;
1212
1213	if (config3 & MIPS_CONF3_ULRI)
1214		c->guest.options |= MIPS_CPU_ULRI;
1215
1216	if (config3 & MIPS_CONF3_SC)
1217		c->guest.options |= MIPS_CPU_SEGMENTS;
1218
1219	if (config3 & MIPS_CONF3_BI)
1220		c->guest.options |= MIPS_CPU_BADINSTR;
1221	if (config3 & MIPS_CONF3_BP)
1222		c->guest.options |= MIPS_CPU_BADINSTRP;
1223
1224	if (config3 & MIPS_CONF3_MSA)
1225		c->guest.ases |= MIPS_ASE_MSA;
1226	if (config3_dyn & MIPS_CONF3_MSA)
1227		c->guest.ases_dyn |= MIPS_ASE_MSA;
1228
1229	if (config3 & MIPS_CONF_M)
1230		c->guest.conf |= BIT(4);
1231	return config3 & MIPS_CONF_M;
1232}
1233
1234static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1235{
1236	unsigned int config4;
1237
1238	probe_gc0_config(config4, config4,
1239			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1240
1241	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1242				>> MIPS_CONF4_KSCREXIST_SHIFT;
1243
1244	if (config4 & MIPS_CONF_M)
1245		c->guest.conf |= BIT(5);
1246	return config4 & MIPS_CONF_M;
1247}
1248
1249static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1250{
1251	unsigned int config5, config5_dyn;
1252
1253	probe_gc0_config_dyn(config5, config5, config5_dyn,
1254			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1255
1256	if (config5 & MIPS_CONF5_MRP)
1257		c->guest.options |= MIPS_CPU_MAAR;
1258	if (config5_dyn & MIPS_CONF5_MRP)
1259		c->guest.options_dyn |= MIPS_CPU_MAAR;
1260
1261	if (config5 & MIPS_CONF5_LLB)
1262		c->guest.options |= MIPS_CPU_RW_LLB;
1263
1264	if (config5 & MIPS_CONF5_MVH)
1265		c->guest.options |= MIPS_CPU_MVH;
1266
1267	if (config5 & MIPS_CONF_M)
1268		c->guest.conf |= BIT(6);
1269	return config5 & MIPS_CONF_M;
1270}
1271
1272static inline void decode_guest_configs(struct cpuinfo_mips *c)
1273{
1274	unsigned int ok;
1275
1276	ok = decode_guest_config0(c);
1277	if (ok)
1278		ok = decode_guest_config1(c);
1279	if (ok)
1280		ok = decode_guest_config2(c);
1281	if (ok)
1282		ok = decode_guest_config3(c);
1283	if (ok)
1284		ok = decode_guest_config4(c);
1285	if (ok)
1286		decode_guest_config5(c);
1287}
1288
1289static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1290{
1291	unsigned int guestctl0, temp;
1292
1293	guestctl0 = read_c0_guestctl0();
1294
1295	if (guestctl0 & MIPS_GCTL0_G0E)
1296		c->options |= MIPS_CPU_GUESTCTL0EXT;
1297	if (guestctl0 & MIPS_GCTL0_G1)
1298		c->options |= MIPS_CPU_GUESTCTL1;
1299	if (guestctl0 & MIPS_GCTL0_G2)
1300		c->options |= MIPS_CPU_GUESTCTL2;
1301	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1302		c->options |= MIPS_CPU_GUESTID;
1303
1304		/*
1305		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1306		 * first, otherwise all data accesses will be fully virtualised
1307		 * as if they were performed by guest mode.
1308		 */
1309		write_c0_guestctl1(0);
1310		tlbw_use_hazard();
1311
1312		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1313		back_to_back_c0_hazard();
1314		temp = read_c0_guestctl0();
1315
1316		if (temp & MIPS_GCTL0_DRG) {
1317			write_c0_guestctl0(guestctl0);
1318			c->options |= MIPS_CPU_DRG;
1319		}
1320	}
1321}
1322
1323static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1324{
1325	if (cpu_has_guestid) {
1326		/* determine the number of bits of GuestID available */
1327		write_c0_guestctl1(MIPS_GCTL1_ID);
1328		back_to_back_c0_hazard();
1329		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1330						>> MIPS_GCTL1_ID_SHIFT;
1331		write_c0_guestctl1(0);
1332	}
1333}
1334
1335static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1336{
1337	/* determine the number of bits of GTOffset available */
1338	write_c0_gtoffset(0xffffffff);
1339	back_to_back_c0_hazard();
1340	c->gtoffset_mask = read_c0_gtoffset();
1341	write_c0_gtoffset(0);
1342}
1343
1344static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1345{
1346	cpu_probe_guestctl0(c);
1347	if (cpu_has_guestctl1)
1348		cpu_probe_guestctl1(c);
1349
1350	cpu_probe_gtoffset(c);
1351
1352	decode_guest_configs(c);
1353}
1354
1355#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1356		| MIPS_CPU_COUNTER)
1357
1358static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1359{
1360	switch (c->processor_id & PRID_IMP_MASK) {
1361	case PRID_IMP_R2000:
1362		c->cputype = CPU_R2000;
1363		__cpu_name[cpu] = "R2000";
1364		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1365		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1366			     MIPS_CPU_NOFPUEX;
1367		if (__cpu_has_fpu())
1368			c->options |= MIPS_CPU_FPU;
1369		c->tlbsize = 64;
1370		break;
1371	case PRID_IMP_R3000:
1372		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1373			if (cpu_has_confreg()) {
1374				c->cputype = CPU_R3081E;
1375				__cpu_name[cpu] = "R3081";
1376			} else {
1377				c->cputype = CPU_R3000A;
1378				__cpu_name[cpu] = "R3000A";
1379			}
1380		} else {
1381			c->cputype = CPU_R3000;
1382			__cpu_name[cpu] = "R3000";
1383		}
1384		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1385		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1386			     MIPS_CPU_NOFPUEX;
1387		if (__cpu_has_fpu())
1388			c->options |= MIPS_CPU_FPU;
1389		c->tlbsize = 64;
1390		break;
1391	case PRID_IMP_R4000:
1392		if (read_c0_config() & CONF_SC) {
1393			if ((c->processor_id & PRID_REV_MASK) >=
1394			    PRID_REV_R4400) {
1395				c->cputype = CPU_R4400PC;
1396				__cpu_name[cpu] = "R4400PC";
1397			} else {
1398				c->cputype = CPU_R4000PC;
1399				__cpu_name[cpu] = "R4000PC";
1400			}
1401		} else {
1402			int cca = read_c0_config() & CONF_CM_CMASK;
1403			int mc;
1404
1405			/*
1406			 * SC and MC versions can't be reliably told apart,
1407			 * but only the latter support coherent caching
1408			 * modes so assume the firmware has set the KSEG0
1409			 * coherency attribute reasonably (if uncached, we
1410			 * assume SC).
1411			 */
1412			switch (cca) {
1413			case CONF_CM_CACHABLE_CE:
1414			case CONF_CM_CACHABLE_COW:
1415			case CONF_CM_CACHABLE_CUW:
1416				mc = 1;
1417				break;
1418			default:
1419				mc = 0;
1420				break;
1421			}
1422			if ((c->processor_id & PRID_REV_MASK) >=
1423			    PRID_REV_R4400) {
1424				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1425				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1426			} else {
1427				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1428				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1429			}
1430		}
1431
1432		set_isa(c, MIPS_CPU_ISA_III);
1433		c->fpu_msk31 |= FPU_CSR_CONDX;
1434		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1435			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1436			     MIPS_CPU_LLSC;
1437		c->tlbsize = 48;
1438		break;
1439	case PRID_IMP_VR41XX:
 
 
1440		set_isa(c, MIPS_CPU_ISA_III);
1441		c->fpu_msk31 |= FPU_CSR_CONDX;
1442		c->options = R4K_OPTS;
 
1443		c->tlbsize = 32;
1444		switch (c->processor_id & 0xf0) {
1445		case PRID_REV_VR4111:
1446			c->cputype = CPU_VR4111;
1447			__cpu_name[cpu] = "NEC VR4111";
1448			break;
1449		case PRID_REV_VR4121:
1450			c->cputype = CPU_VR4121;
1451			__cpu_name[cpu] = "NEC VR4121";
1452			break;
1453		case PRID_REV_VR4122:
1454			if ((c->processor_id & 0xf) < 0x3) {
1455				c->cputype = CPU_VR4122;
1456				__cpu_name[cpu] = "NEC VR4122";
1457			} else {
1458				c->cputype = CPU_VR4181A;
1459				__cpu_name[cpu] = "NEC VR4181A";
1460			}
1461			break;
1462		case PRID_REV_VR4130:
1463			if ((c->processor_id & 0xf) < 0x4) {
1464				c->cputype = CPU_VR4131;
1465				__cpu_name[cpu] = "NEC VR4131";
1466			} else {
1467				c->cputype = CPU_VR4133;
1468				c->options |= MIPS_CPU_LLSC;
1469				__cpu_name[cpu] = "NEC VR4133";
1470			}
1471			break;
1472		default:
1473			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1474			c->cputype = CPU_VR41XX;
1475			__cpu_name[cpu] = "NEC Vr41xx";
1476			break;
1477		}
1478		break;
1479	case PRID_IMP_R4600:
1480		c->cputype = CPU_R4600;
1481		__cpu_name[cpu] = "R4600";
1482		set_isa(c, MIPS_CPU_ISA_III);
1483		c->fpu_msk31 |= FPU_CSR_CONDX;
1484		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1485			     MIPS_CPU_LLSC;
1486		c->tlbsize = 48;
1487		break;
1488	#if 0
1489	case PRID_IMP_R4650:
1490		/*
1491		 * This processor doesn't have an MMU, so it's not
1492		 * "real easy" to run Linux on it. It is left purely
1493		 * for documentation.  Commented out because it shares
1494		 * it's c0_prid id number with the TX3900.
1495		 */
1496		c->cputype = CPU_R4650;
1497		__cpu_name[cpu] = "R4650";
1498		set_isa(c, MIPS_CPU_ISA_III);
1499		c->fpu_msk31 |= FPU_CSR_CONDX;
1500		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1501		c->tlbsize = 48;
1502		break;
1503	#endif
1504	case PRID_IMP_TX39:
1505		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1506		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1507
1508		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1509			c->cputype = CPU_TX3927;
1510			__cpu_name[cpu] = "TX3927";
1511			c->tlbsize = 64;
1512		} else {
1513			switch (c->processor_id & PRID_REV_MASK) {
1514			case PRID_REV_TX3912:
1515				c->cputype = CPU_TX3912;
1516				__cpu_name[cpu] = "TX3912";
1517				c->tlbsize = 32;
1518				break;
1519			case PRID_REV_TX3922:
1520				c->cputype = CPU_TX3922;
1521				__cpu_name[cpu] = "TX3922";
1522				c->tlbsize = 64;
1523				break;
1524			}
1525		}
1526		break;
1527	case PRID_IMP_R4700:
1528		c->cputype = CPU_R4700;
1529		__cpu_name[cpu] = "R4700";
1530		set_isa(c, MIPS_CPU_ISA_III);
1531		c->fpu_msk31 |= FPU_CSR_CONDX;
1532		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1533			     MIPS_CPU_LLSC;
1534		c->tlbsize = 48;
1535		break;
1536	case PRID_IMP_TX49:
1537		c->cputype = CPU_TX49XX;
1538		__cpu_name[cpu] = "R49XX";
1539		set_isa(c, MIPS_CPU_ISA_III);
1540		c->fpu_msk31 |= FPU_CSR_CONDX;
1541		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1542		if (!(c->processor_id & 0x08))
1543			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1544		c->tlbsize = 48;
1545		break;
1546	case PRID_IMP_R5000:
1547		c->cputype = CPU_R5000;
1548		__cpu_name[cpu] = "R5000";
1549		set_isa(c, MIPS_CPU_ISA_IV);
1550		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1551			     MIPS_CPU_LLSC;
1552		c->tlbsize = 48;
1553		break;
1554	case PRID_IMP_R5500:
1555		c->cputype = CPU_R5500;
1556		__cpu_name[cpu] = "R5500";
1557		set_isa(c, MIPS_CPU_ISA_IV);
1558		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1559			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1560		c->tlbsize = 48;
1561		break;
1562	case PRID_IMP_NEVADA:
1563		c->cputype = CPU_NEVADA;
1564		__cpu_name[cpu] = "Nevada";
1565		set_isa(c, MIPS_CPU_ISA_IV);
1566		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1567			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1568		c->tlbsize = 48;
1569		break;
1570	case PRID_IMP_RM7000:
1571		c->cputype = CPU_RM7000;
1572		__cpu_name[cpu] = "RM7000";
1573		set_isa(c, MIPS_CPU_ISA_IV);
1574		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1575			     MIPS_CPU_LLSC;
1576		/*
1577		 * Undocumented RM7000:	 Bit 29 in the info register of
1578		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1579		 * entries.
1580		 *
1581		 * 29	   1 =>	   64 entry JTLB
1582		 *	   0 =>	   48 entry JTLB
1583		 */
1584		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1585		break;
1586	case PRID_IMP_R10000:
1587		c->cputype = CPU_R10000;
1588		__cpu_name[cpu] = "R10000";
1589		set_isa(c, MIPS_CPU_ISA_IV);
1590		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1591			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1592			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1593			     MIPS_CPU_LLSC;
1594		c->tlbsize = 64;
1595		break;
1596	case PRID_IMP_R12000:
1597		c->cputype = CPU_R12000;
1598		__cpu_name[cpu] = "R12000";
1599		set_isa(c, MIPS_CPU_ISA_IV);
1600		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1601			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1602			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1603			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1604		c->tlbsize = 64;
 
1605		break;
1606	case PRID_IMP_R14000:
1607		if (((c->processor_id >> 4) & 0x0f) > 2) {
1608			c->cputype = CPU_R16000;
1609			__cpu_name[cpu] = "R16000";
1610		} else {
1611			c->cputype = CPU_R14000;
1612			__cpu_name[cpu] = "R14000";
1613		}
1614		set_isa(c, MIPS_CPU_ISA_IV);
1615		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1616			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1617			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1618			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1619		c->tlbsize = 64;
 
1620		break;
1621	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1622		switch (c->processor_id & PRID_REV_MASK) {
1623		case PRID_REV_LOONGSON2E:
1624			c->cputype = CPU_LOONGSON2EF;
1625			__cpu_name[cpu] = "ICT Loongson-2";
1626			set_elf_platform(cpu, "loongson2e");
1627			set_isa(c, MIPS_CPU_ISA_III);
1628			c->fpu_msk31 |= FPU_CSR_CONDX;
1629			break;
1630		case PRID_REV_LOONGSON2F:
1631			c->cputype = CPU_LOONGSON2EF;
1632			__cpu_name[cpu] = "ICT Loongson-2";
1633			set_elf_platform(cpu, "loongson2f");
1634			set_isa(c, MIPS_CPU_ISA_III);
1635			c->fpu_msk31 |= FPU_CSR_CONDX;
1636			break;
1637		case PRID_REV_LOONGSON3A_R1:
1638			c->cputype = CPU_LOONGSON64;
1639			__cpu_name[cpu] = "ICT Loongson-3";
1640			set_elf_platform(cpu, "loongson3a");
1641			set_isa(c, MIPS_CPU_ISA_M64R1);
1642			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1643				MIPS_ASE_LOONGSON_EXT);
1644			break;
1645		case PRID_REV_LOONGSON3B_R1:
1646		case PRID_REV_LOONGSON3B_R2:
1647			c->cputype = CPU_LOONGSON64;
1648			__cpu_name[cpu] = "ICT Loongson-3";
1649			set_elf_platform(cpu, "loongson3b");
1650			set_isa(c, MIPS_CPU_ISA_M64R1);
1651			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1652				MIPS_ASE_LOONGSON_EXT);
1653			break;
1654		}
1655
1656		c->options = R4K_OPTS |
1657			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1658			     MIPS_CPU_32FPR;
1659		c->tlbsize = 64;
1660		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1661		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1662		break;
1663	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1664		decode_configs(c);
1665
1666		c->cputype = CPU_LOONGSON32;
1667
1668		switch (c->processor_id & PRID_REV_MASK) {
1669		case PRID_REV_LOONGSON1B:
1670			__cpu_name[cpu] = "Loongson 1B";
1671			break;
1672		}
1673
1674		break;
1675	}
1676}
1677
1678static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1679{
1680	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1681	switch (c->processor_id & PRID_IMP_MASK) {
1682	case PRID_IMP_QEMU_GENERIC:
1683		c->writecombine = _CACHE_UNCACHED;
1684		c->cputype = CPU_QEMU_GENERIC;
1685		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1686		break;
1687	case PRID_IMP_4KC:
1688		c->cputype = CPU_4KC;
1689		c->writecombine = _CACHE_UNCACHED;
1690		__cpu_name[cpu] = "MIPS 4Kc";
1691		break;
1692	case PRID_IMP_4KEC:
1693	case PRID_IMP_4KECR2:
1694		c->cputype = CPU_4KEC;
1695		c->writecombine = _CACHE_UNCACHED;
1696		__cpu_name[cpu] = "MIPS 4KEc";
1697		break;
1698	case PRID_IMP_4KSC:
1699	case PRID_IMP_4KSD:
1700		c->cputype = CPU_4KSC;
1701		c->writecombine = _CACHE_UNCACHED;
1702		__cpu_name[cpu] = "MIPS 4KSc";
1703		break;
1704	case PRID_IMP_5KC:
1705		c->cputype = CPU_5KC;
1706		c->writecombine = _CACHE_UNCACHED;
1707		__cpu_name[cpu] = "MIPS 5Kc";
1708		break;
1709	case PRID_IMP_5KE:
1710		c->cputype = CPU_5KE;
1711		c->writecombine = _CACHE_UNCACHED;
1712		__cpu_name[cpu] = "MIPS 5KE";
1713		break;
1714	case PRID_IMP_20KC:
1715		c->cputype = CPU_20KC;
1716		c->writecombine = _CACHE_UNCACHED;
1717		__cpu_name[cpu] = "MIPS 20Kc";
1718		break;
1719	case PRID_IMP_24K:
1720		c->cputype = CPU_24K;
1721		c->writecombine = _CACHE_UNCACHED;
1722		__cpu_name[cpu] = "MIPS 24Kc";
1723		break;
1724	case PRID_IMP_24KE:
1725		c->cputype = CPU_24K;
1726		c->writecombine = _CACHE_UNCACHED;
1727		__cpu_name[cpu] = "MIPS 24KEc";
1728		break;
1729	case PRID_IMP_25KF:
1730		c->cputype = CPU_25KF;
1731		c->writecombine = _CACHE_UNCACHED;
1732		__cpu_name[cpu] = "MIPS 25Kc";
1733		break;
1734	case PRID_IMP_34K:
1735		c->cputype = CPU_34K;
1736		c->writecombine = _CACHE_UNCACHED;
1737		__cpu_name[cpu] = "MIPS 34Kc";
1738		cpu_set_mt_per_tc_perf(c);
1739		break;
1740	case PRID_IMP_74K:
1741		c->cputype = CPU_74K;
1742		c->writecombine = _CACHE_UNCACHED;
1743		__cpu_name[cpu] = "MIPS 74Kc";
1744		break;
1745	case PRID_IMP_M14KC:
1746		c->cputype = CPU_M14KC;
1747		c->writecombine = _CACHE_UNCACHED;
1748		__cpu_name[cpu] = "MIPS M14Kc";
1749		break;
1750	case PRID_IMP_M14KEC:
1751		c->cputype = CPU_M14KEC;
1752		c->writecombine = _CACHE_UNCACHED;
1753		__cpu_name[cpu] = "MIPS M14KEc";
1754		break;
1755	case PRID_IMP_1004K:
1756		c->cputype = CPU_1004K;
1757		c->writecombine = _CACHE_UNCACHED;
1758		__cpu_name[cpu] = "MIPS 1004Kc";
1759		cpu_set_mt_per_tc_perf(c);
1760		break;
1761	case PRID_IMP_1074K:
1762		c->cputype = CPU_1074K;
1763		c->writecombine = _CACHE_UNCACHED;
1764		__cpu_name[cpu] = "MIPS 1074Kc";
1765		break;
1766	case PRID_IMP_INTERAPTIV_UP:
1767		c->cputype = CPU_INTERAPTIV;
1768		__cpu_name[cpu] = "MIPS interAptiv";
1769		cpu_set_mt_per_tc_perf(c);
1770		break;
1771	case PRID_IMP_INTERAPTIV_MP:
1772		c->cputype = CPU_INTERAPTIV;
1773		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1774		cpu_set_mt_per_tc_perf(c);
1775		break;
1776	case PRID_IMP_PROAPTIV_UP:
1777		c->cputype = CPU_PROAPTIV;
1778		__cpu_name[cpu] = "MIPS proAptiv";
1779		break;
1780	case PRID_IMP_PROAPTIV_MP:
1781		c->cputype = CPU_PROAPTIV;
1782		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1783		break;
1784	case PRID_IMP_P5600:
1785		c->cputype = CPU_P5600;
1786		__cpu_name[cpu] = "MIPS P5600";
1787		break;
1788	case PRID_IMP_P6600:
1789		c->cputype = CPU_P6600;
1790		__cpu_name[cpu] = "MIPS P6600";
1791		break;
1792	case PRID_IMP_I6400:
1793		c->cputype = CPU_I6400;
1794		__cpu_name[cpu] = "MIPS I6400";
1795		break;
1796	case PRID_IMP_I6500:
1797		c->cputype = CPU_I6500;
1798		__cpu_name[cpu] = "MIPS I6500";
1799		break;
1800	case PRID_IMP_M5150:
1801		c->cputype = CPU_M5150;
1802		__cpu_name[cpu] = "MIPS M5150";
1803		break;
1804	case PRID_IMP_M6250:
1805		c->cputype = CPU_M6250;
1806		__cpu_name[cpu] = "MIPS M6250";
1807		break;
1808	}
1809
1810	decode_configs(c);
1811
1812	spram_config();
1813
1814	mm_config(c);
1815
1816	switch (__get_cpu_type(c->cputype)) {
1817	case CPU_M5150:
1818	case CPU_P5600:
1819		set_isa(c, MIPS_CPU_ISA_M32R5);
1820		break;
1821	case CPU_I6500:
1822		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1823		fallthrough;
1824	case CPU_I6400:
1825		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1826		fallthrough;
1827	default:
1828		break;
1829	}
1830
1831	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1832	 * cache/FTLB parity exceptions.
1833	 */
1834	switch (__get_cpu_type(c->cputype)) {
1835	case CPU_PROAPTIV:
1836	case CPU_P5600:
1837	case CPU_P6600:
1838	case CPU_I6400:
1839	case CPU_I6500:
1840		c->options |= MIPS_CPU_FTLBPAREX;
1841		break;
1842	}
1843}
1844
1845static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1846{
1847	decode_configs(c);
1848	switch (c->processor_id & PRID_IMP_MASK) {
1849	case PRID_IMP_AU1_REV1:
1850	case PRID_IMP_AU1_REV2:
1851		c->cputype = CPU_ALCHEMY;
1852		switch ((c->processor_id >> 24) & 0xff) {
1853		case 0:
1854			__cpu_name[cpu] = "Au1000";
1855			break;
1856		case 1:
1857			__cpu_name[cpu] = "Au1500";
1858			break;
1859		case 2:
1860			__cpu_name[cpu] = "Au1100";
1861			break;
1862		case 3:
1863			__cpu_name[cpu] = "Au1550";
1864			break;
1865		case 4:
1866			__cpu_name[cpu] = "Au1200";
1867			if ((c->processor_id & PRID_REV_MASK) == 2)
1868				__cpu_name[cpu] = "Au1250";
1869			break;
1870		case 5:
1871			__cpu_name[cpu] = "Au1210";
1872			break;
1873		default:
1874			__cpu_name[cpu] = "Au1xxx";
1875			break;
1876		}
1877		break;
 
 
 
 
1878	}
1879}
1880
1881static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1882{
1883	decode_configs(c);
1884
1885	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1886	switch (c->processor_id & PRID_IMP_MASK) {
1887	case PRID_IMP_SB1:
1888		c->cputype = CPU_SB1;
1889		__cpu_name[cpu] = "SiByte SB1";
1890		/* FPU in pass1 is known to have issues. */
1891		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1892			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1893		break;
1894	case PRID_IMP_SB1A:
1895		c->cputype = CPU_SB1A;
1896		__cpu_name[cpu] = "SiByte SB1A";
1897		break;
1898	}
1899}
1900
1901static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1902{
1903	decode_configs(c);
1904	switch (c->processor_id & PRID_IMP_MASK) {
1905	case PRID_IMP_SR71000:
1906		c->cputype = CPU_SR71000;
1907		__cpu_name[cpu] = "Sandcraft SR71000";
1908		c->scache.ways = 8;
1909		c->tlbsize = 64;
1910		break;
1911	}
1912}
1913
1914static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1915{
1916	decode_configs(c);
1917	switch (c->processor_id & PRID_IMP_MASK) {
1918	case PRID_IMP_PR4450:
1919		c->cputype = CPU_PR4450;
1920		__cpu_name[cpu] = "Philips PR4450";
1921		set_isa(c, MIPS_CPU_ISA_M32R1);
1922		break;
1923	}
1924}
1925
1926static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1927{
1928	decode_configs(c);
1929	switch (c->processor_id & PRID_IMP_MASK) {
1930	case PRID_IMP_BMIPS32_REV4:
1931	case PRID_IMP_BMIPS32_REV8:
1932		c->cputype = CPU_BMIPS32;
1933		__cpu_name[cpu] = "Broadcom BMIPS32";
1934		set_elf_platform(cpu, "bmips32");
1935		break;
1936	case PRID_IMP_BMIPS3300:
1937	case PRID_IMP_BMIPS3300_ALT:
1938	case PRID_IMP_BMIPS3300_BUG:
1939		c->cputype = CPU_BMIPS3300;
1940		__cpu_name[cpu] = "Broadcom BMIPS3300";
1941		set_elf_platform(cpu, "bmips3300");
 
1942		break;
1943	case PRID_IMP_BMIPS43XX: {
1944		int rev = c->processor_id & PRID_REV_MASK;
1945
1946		if (rev >= PRID_REV_BMIPS4380_LO &&
1947				rev <= PRID_REV_BMIPS4380_HI) {
1948			c->cputype = CPU_BMIPS4380;
1949			__cpu_name[cpu] = "Broadcom BMIPS4380";
1950			set_elf_platform(cpu, "bmips4380");
1951			c->options |= MIPS_CPU_RIXI;
 
1952		} else {
1953			c->cputype = CPU_BMIPS4350;
1954			__cpu_name[cpu] = "Broadcom BMIPS4350";
1955			set_elf_platform(cpu, "bmips4350");
1956		}
1957		break;
1958	}
1959	case PRID_IMP_BMIPS5000:
1960	case PRID_IMP_BMIPS5200:
1961		c->cputype = CPU_BMIPS5000;
1962		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1963			__cpu_name[cpu] = "Broadcom BMIPS5200";
1964		else
1965			__cpu_name[cpu] = "Broadcom BMIPS5000";
1966		set_elf_platform(cpu, "bmips5000");
1967		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
 
1968		break;
1969	}
1970}
1971
1972static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1973{
1974	decode_configs(c);
 
 
1975	switch (c->processor_id & PRID_IMP_MASK) {
1976	case PRID_IMP_CAVIUM_CN38XX:
1977	case PRID_IMP_CAVIUM_CN31XX:
1978	case PRID_IMP_CAVIUM_CN30XX:
1979		c->cputype = CPU_CAVIUM_OCTEON;
1980		__cpu_name[cpu] = "Cavium Octeon";
1981		goto platform;
1982	case PRID_IMP_CAVIUM_CN58XX:
1983	case PRID_IMP_CAVIUM_CN56XX:
1984	case PRID_IMP_CAVIUM_CN50XX:
1985	case PRID_IMP_CAVIUM_CN52XX:
1986		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1987		__cpu_name[cpu] = "Cavium Octeon+";
1988platform:
1989		set_elf_platform(cpu, "octeon");
1990		break;
1991	case PRID_IMP_CAVIUM_CN61XX:
1992	case PRID_IMP_CAVIUM_CN63XX:
1993	case PRID_IMP_CAVIUM_CN66XX:
1994	case PRID_IMP_CAVIUM_CN68XX:
1995	case PRID_IMP_CAVIUM_CNF71XX:
1996		c->cputype = CPU_CAVIUM_OCTEON2;
1997		__cpu_name[cpu] = "Cavium Octeon II";
1998		set_elf_platform(cpu, "octeon2");
1999		break;
2000	case PRID_IMP_CAVIUM_CN70XX:
2001	case PRID_IMP_CAVIUM_CN73XX:
2002	case PRID_IMP_CAVIUM_CNF75XX:
2003	case PRID_IMP_CAVIUM_CN78XX:
2004		c->cputype = CPU_CAVIUM_OCTEON3;
2005		__cpu_name[cpu] = "Cavium Octeon III";
2006		set_elf_platform(cpu, "octeon3");
2007		break;
2008	default:
2009		printk(KERN_INFO "Unknown Octeon chip!\n");
2010		c->cputype = CPU_UNKNOWN;
2011		break;
2012	}
2013}
2014
2015#ifdef CONFIG_CPU_LOONGSON64
2016#include <loongson_regs.h>
2017
2018static inline void decode_cpucfg(struct cpuinfo_mips *c)
2019{
2020	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
2021	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
2022	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
2023
2024	if (cfg1 & LOONGSON_CFG1_MMI)
2025		c->ases |= MIPS_ASE_LOONGSON_MMI;
2026
2027	if (cfg2 & LOONGSON_CFG2_LEXT1)
2028		c->ases |= MIPS_ASE_LOONGSON_EXT;
2029
2030	if (cfg2 & LOONGSON_CFG2_LEXT2)
2031		c->ases |= MIPS_ASE_LOONGSON_EXT2;
2032
2033	if (cfg2 & LOONGSON_CFG2_LSPW) {
2034		c->options |= MIPS_CPU_LDPTE;
2035		c->guest.options |= MIPS_CPU_LDPTE;
2036	}
2037
2038	if (cfg3 & LOONGSON_CFG3_LCAMP)
2039		c->ases |= MIPS_ASE_LOONGSON_CAM;
2040}
2041
2042static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
2043{
2044	decode_configs(c);
2045
2046	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
 
2047	c->options |= MIPS_CPU_GSEXCEX;
2048
2049	switch (c->processor_id & PRID_IMP_MASK) {
2050	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
2051		switch (c->processor_id & PRID_REV_MASK) {
2052		case PRID_REV_LOONGSON2K_R1_0:
2053		case PRID_REV_LOONGSON2K_R1_1:
2054		case PRID_REV_LOONGSON2K_R1_2:
2055		case PRID_REV_LOONGSON2K_R1_3:
2056			c->cputype = CPU_LOONGSON64;
2057			__cpu_name[cpu] = "Loongson-2K";
2058			set_elf_platform(cpu, "gs264e");
2059			set_isa(c, MIPS_CPU_ISA_M64R2);
2060			break;
2061		}
2062		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2063		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
2064				MIPS_ASE_LOONGSON_EXT2);
2065		break;
2066	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
2067		switch (c->processor_id & PRID_REV_MASK) {
2068		case PRID_REV_LOONGSON3A_R2_0:
2069		case PRID_REV_LOONGSON3A_R2_1:
2070			c->cputype = CPU_LOONGSON64;
2071			__cpu_name[cpu] = "ICT Loongson-3";
2072			set_elf_platform(cpu, "loongson3a");
2073			set_isa(c, MIPS_CPU_ISA_M64R2);
2074			break;
2075		case PRID_REV_LOONGSON3A_R3_0:
2076		case PRID_REV_LOONGSON3A_R3_1:
2077			c->cputype = CPU_LOONGSON64;
2078			__cpu_name[cpu] = "ICT Loongson-3";
2079			set_elf_platform(cpu, "loongson3a");
2080			set_isa(c, MIPS_CPU_ISA_M64R2);
2081			break;
2082		}
2083		/*
2084		 * Loongson-3 Classic did not implement MIPS standard TLBINV
2085		 * but implemented TLBINVF and EHINV. As currently we're only
2086		 * using these two features, enable MIPS_CPU_TLBINV as well.
2087		 *
2088		 * Also some early Loongson-3A2000 had wrong TLB type in Config
2089		 * register, we correct it here.
2090		 */
2091		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
2092		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2093		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
2094			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
2095		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
 
 
2096		break;
2097	case PRID_IMP_LOONGSON_64G:
2098		c->cputype = CPU_LOONGSON64;
2099		__cpu_name[cpu] = "ICT Loongson-3";
2100		set_elf_platform(cpu, "loongson3a");
2101		set_isa(c, MIPS_CPU_ISA_M64R2);
2102		decode_cpucfg(c);
2103		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
 
2104		break;
2105	default:
2106		panic("Unknown Loongson Processor ID!");
2107		break;
2108	}
2109}
2110#else
2111static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
2112#endif
2113
2114static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
2115{
2116	decode_configs(c);
2117
2118	/*
2119	 * XBurst misses a config2 register, so config3 decode was skipped in
2120	 * decode_configs().
2121	 */
2122	decode_config3(c);
2123
2124	/* XBurst does not implement the CP0 counter. */
2125	c->options &= ~MIPS_CPU_COUNTER;
2126	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
 
 
 
2127
2128	switch (c->processor_id & PRID_IMP_MASK) {
2129
2130	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
2131	case PRID_IMP_XBURST_REV1:
2132
2133		/*
2134		 * The XBurst core by default attempts to avoid branch target
2135		 * buffer lookups by detecting & special casing loops. This
2136		 * feature will cause BogoMIPS and lpj calculate in error.
2137		 * Set cp0 config7 bit 4 to disable this feature.
2138		 */
2139		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
2140
2141		switch (c->processor_id & PRID_COMP_MASK) {
2142
2143		/*
2144		 * The config0 register in the XBurst CPUs with a processor ID of
2145		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
2146		 * but they don't actually support this ISA.
2147		 */
2148		case PRID_COMP_INGENIC_D0:
2149			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
2150			break;
 
 
 
 
 
2151
2152		/*
2153		 * The config0 register in the XBurst CPUs with a processor ID of
2154		 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this
2155		 * mode is not compatible with the MIPS standard, it will cause
2156		 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S)
2157		 * when starting the init process. After chip reset, the default
2158		 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to
2159		 * switch back to VTLB mode to prevent getting stuck.
 
2160		 */
2161		case PRID_COMP_INGENIC_D1:
2162			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
2163			break;
2164
2165		default:
2166			break;
2167		}
2168		fallthrough;
2169
2170	/* XBurst®1 with MXU2.0 SIMD ISA */
2171	case PRID_IMP_XBURST_REV2:
 
 
2172		c->cputype = CPU_XBURST;
2173		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2174		__cpu_name[cpu] = "Ingenic XBurst";
2175		break;
2176
2177	/* XBurst®2 with MXU2.1 SIMD ISA */
2178	case PRID_IMP_XBURST2:
2179		c->cputype = CPU_XBURST;
2180		__cpu_name[cpu] = "Ingenic XBurst II";
2181		break;
2182
2183	default:
2184		panic("Unknown Ingenic Processor ID!");
2185		break;
2186	}
2187}
2188
2189static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
2190{
2191	decode_configs(c);
2192
2193	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
2194		c->cputype = CPU_ALCHEMY;
2195		__cpu_name[cpu] = "Au1300";
2196		/* following stuff is not for Alchemy */
2197		return;
2198	}
2199
2200	c->options = (MIPS_CPU_TLB	 |
2201			MIPS_CPU_4KEX	 |
2202			MIPS_CPU_COUNTER |
2203			MIPS_CPU_DIVEC	 |
2204			MIPS_CPU_WATCH	 |
2205			MIPS_CPU_EJTAG	 |
2206			MIPS_CPU_LLSC);
2207
2208	switch (c->processor_id & PRID_IMP_MASK) {
2209	case PRID_IMP_NETLOGIC_XLP2XX:
2210	case PRID_IMP_NETLOGIC_XLP9XX:
2211	case PRID_IMP_NETLOGIC_XLP5XX:
2212		c->cputype = CPU_XLP;
2213		__cpu_name[cpu] = "Broadcom XLPII";
2214		break;
2215
2216	case PRID_IMP_NETLOGIC_XLP8XX:
2217	case PRID_IMP_NETLOGIC_XLP3XX:
2218		c->cputype = CPU_XLP;
2219		__cpu_name[cpu] = "Netlogic XLP";
2220		break;
2221
2222	case PRID_IMP_NETLOGIC_XLR732:
2223	case PRID_IMP_NETLOGIC_XLR716:
2224	case PRID_IMP_NETLOGIC_XLR532:
2225	case PRID_IMP_NETLOGIC_XLR308:
2226	case PRID_IMP_NETLOGIC_XLR532C:
2227	case PRID_IMP_NETLOGIC_XLR516C:
2228	case PRID_IMP_NETLOGIC_XLR508C:
2229	case PRID_IMP_NETLOGIC_XLR308C:
2230		c->cputype = CPU_XLR;
2231		__cpu_name[cpu] = "Netlogic XLR";
2232		break;
2233
2234	case PRID_IMP_NETLOGIC_XLS608:
2235	case PRID_IMP_NETLOGIC_XLS408:
2236	case PRID_IMP_NETLOGIC_XLS404:
2237	case PRID_IMP_NETLOGIC_XLS208:
2238	case PRID_IMP_NETLOGIC_XLS204:
2239	case PRID_IMP_NETLOGIC_XLS108:
2240	case PRID_IMP_NETLOGIC_XLS104:
2241	case PRID_IMP_NETLOGIC_XLS616B:
2242	case PRID_IMP_NETLOGIC_XLS608B:
2243	case PRID_IMP_NETLOGIC_XLS416B:
2244	case PRID_IMP_NETLOGIC_XLS412B:
2245	case PRID_IMP_NETLOGIC_XLS408B:
2246	case PRID_IMP_NETLOGIC_XLS404B:
2247		c->cputype = CPU_XLR;
2248		__cpu_name[cpu] = "Netlogic XLS";
2249		break;
2250
2251	default:
2252		pr_info("Unknown Netlogic chip id [%02x]!\n",
2253		       c->processor_id);
2254		c->cputype = CPU_XLR;
2255		break;
2256	}
2257
2258	if (c->cputype == CPU_XLP) {
2259		set_isa(c, MIPS_CPU_ISA_M64R2);
2260		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2261		/* This will be updated again after all threads are woken up */
2262		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2263	} else {
2264		set_isa(c, MIPS_CPU_ISA_M64R1);
2265		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2266	}
2267	c->kscratch_mask = 0xf;
2268}
2269
2270#ifdef CONFIG_64BIT
2271/* For use by uaccess.h */
2272u64 __ua_limit;
2273EXPORT_SYMBOL(__ua_limit);
2274#endif
2275
2276const char *__cpu_name[NR_CPUS];
2277const char *__elf_platform;
2278const char *__elf_base_platform;
2279
2280void cpu_probe(void)
2281{
2282	struct cpuinfo_mips *c = &current_cpu_data;
2283	unsigned int cpu = smp_processor_id();
2284
2285	/*
2286	 * Set a default elf platform, cpu probe may later
2287	 * overwrite it with a more precise value
2288	 */
2289	set_elf_platform(cpu, "mips");
2290
2291	c->processor_id = PRID_IMP_UNKNOWN;
2292	c->fpu_id	= FPIR_IMP_NONE;
2293	c->cputype	= CPU_UNKNOWN;
2294	c->writecombine = _CACHE_UNCACHED;
2295
2296	c->fpu_csr31	= FPU_CSR_RN;
2297	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2298
2299	c->processor_id = read_c0_prid();
2300	switch (c->processor_id & PRID_COMP_MASK) {
2301	case PRID_COMP_LEGACY:
2302		cpu_probe_legacy(c, cpu);
2303		break;
2304	case PRID_COMP_MIPS:
2305		cpu_probe_mips(c, cpu);
2306		break;
2307	case PRID_COMP_ALCHEMY:
 
2308		cpu_probe_alchemy(c, cpu);
2309		break;
2310	case PRID_COMP_SIBYTE:
2311		cpu_probe_sibyte(c, cpu);
2312		break;
2313	case PRID_COMP_BROADCOM:
2314		cpu_probe_broadcom(c, cpu);
2315		break;
2316	case PRID_COMP_SANDCRAFT:
2317		cpu_probe_sandcraft(c, cpu);
2318		break;
2319	case PRID_COMP_NXP:
2320		cpu_probe_nxp(c, cpu);
2321		break;
2322	case PRID_COMP_CAVIUM:
2323		cpu_probe_cavium(c, cpu);
2324		break;
2325	case PRID_COMP_LOONGSON:
2326		cpu_probe_loongson(c, cpu);
2327		break;
2328	case PRID_COMP_INGENIC_13:
2329	case PRID_COMP_INGENIC_D0:
2330	case PRID_COMP_INGENIC_D1:
2331	case PRID_COMP_INGENIC_E1:
2332		cpu_probe_ingenic(c, cpu);
2333		break;
2334	case PRID_COMP_NETLOGIC:
2335		cpu_probe_netlogic(c, cpu);
2336		break;
2337	}
2338
2339	BUG_ON(!__cpu_name[cpu]);
2340	BUG_ON(c->cputype == CPU_UNKNOWN);
2341
2342	/*
2343	 * Platform code can force the cpu type to optimize code
2344	 * generation. In that case be sure the cpu type is correctly
2345	 * manually setup otherwise it could trigger some nasty bugs.
2346	 */
2347	BUG_ON(current_cpu_type() != c->cputype);
2348
2349	if (cpu_has_rixi) {
2350		/* Enable the RIXI exceptions */
2351		set_c0_pagegrain(PG_IEC);
2352		back_to_back_c0_hazard();
2353		/* Verify the IEC bit is set */
2354		if (read_c0_pagegrain() & PG_IEC)
2355			c->options |= MIPS_CPU_RIXIEX;
2356	}
2357
2358	if (mips_fpu_disabled)
2359		c->options &= ~MIPS_CPU_FPU;
2360
2361	if (mips_dsp_disabled)
2362		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2363
2364	if (mips_htw_disabled) {
2365		c->options &= ~MIPS_CPU_HTW;
2366		write_c0_pwctl(read_c0_pwctl() &
2367			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2368	}
2369
2370	if (c->options & MIPS_CPU_FPU)
2371		cpu_set_fpu_opts(c);
2372	else
2373		cpu_set_nofpu_opts(c);
2374
2375	if (cpu_has_bp_ghist)
2376		write_c0_r10k_diag(read_c0_r10k_diag() |
2377				   R10K_DIAG_E_GHIST);
2378
2379	if (cpu_has_mips_r2_r6) {
2380		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2381		/* R2 has Performance Counter Interrupt indicator */
2382		c->options |= MIPS_CPU_PCI;
2383	}
2384	else
2385		c->srsets = 1;
2386
2387	if (cpu_has_mips_r6)
2388		elf_hwcap |= HWCAP_MIPS_R6;
2389
2390	if (cpu_has_msa) {
2391		c->msa_id = cpu_get_msa_id();
2392		WARN(c->msa_id & MSA_IR_WRPF,
2393		     "Vector register partitioning unimplemented!");
2394		elf_hwcap |= HWCAP_MIPS_MSA;
2395	}
2396
2397	if (cpu_has_mips16)
2398		elf_hwcap |= HWCAP_MIPS_MIPS16;
2399
2400	if (cpu_has_mdmx)
2401		elf_hwcap |= HWCAP_MIPS_MDMX;
2402
2403	if (cpu_has_mips3d)
2404		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2405
2406	if (cpu_has_smartmips)
2407		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2408
2409	if (cpu_has_dsp)
2410		elf_hwcap |= HWCAP_MIPS_DSP;
2411
2412	if (cpu_has_dsp2)
2413		elf_hwcap |= HWCAP_MIPS_DSP2;
2414
2415	if (cpu_has_dsp3)
2416		elf_hwcap |= HWCAP_MIPS_DSP3;
2417
2418	if (cpu_has_mips16e2)
2419		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2420
2421	if (cpu_has_loongson_mmi)
2422		elf_hwcap |= HWCAP_LOONGSON_MMI;
2423
2424	if (cpu_has_loongson_ext)
2425		elf_hwcap |= HWCAP_LOONGSON_EXT;
2426
2427	if (cpu_has_loongson_ext2)
2428		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2429
2430	if (cpu_has_vz)
2431		cpu_probe_vz(c);
2432
2433	cpu_probe_vmbits(c);
2434
2435	/* Synthesize CPUCFG data if running on Loongson processors;
2436	 * no-op otherwise.
2437	 *
2438	 * This looks at previously probed features, so keep this at bottom.
2439	 */
2440	loongson3_cpucfg_synthesize_data(c);
2441
2442#ifdef CONFIG_64BIT
2443	if (cpu == 0)
2444		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2445#endif
 
 
2446}
2447
2448void cpu_report(void)
2449{
2450	struct cpuinfo_mips *c = &current_cpu_data;
2451
2452	pr_info("CPU%d revision is: %08x (%s)\n",
2453		smp_processor_id(), c->processor_id, cpu_name_string());
2454	if (c->options & MIPS_CPU_FPU)
2455		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2456	if (cpu_has_msa)
2457		pr_info("MSA revision is: %08x\n", c->msa_id);
2458}
2459
2460void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2461{
2462	/* Ensure the core number fits in the field */
2463	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2464			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2465
2466	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2467	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2468}
2469
2470void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2471{
2472	/* Ensure the core number fits in the field */
2473	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2474
2475	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2476	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2477}
2478
2479void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2480{
2481	/* Ensure the VP(E) ID fits in the field */
2482	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2483
2484	/* Ensure we're not using VP(E)s without support */
2485	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2486		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2487
2488	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2489	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2490}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <asm/traps.h>
  30#include <linux/uaccess.h>
  31
  32#include "fpu-probe.h"
  33
  34#include <asm/mach-loongson64/cpucfg-emul.h>
  35
  36/* Hardware capabilities */
  37unsigned int elf_hwcap __read_mostly;
  38EXPORT_SYMBOL_GPL(elf_hwcap);
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40static inline unsigned long cpu_get_msa_id(void)
  41{
  42	unsigned long status, msa_id;
  43
  44	status = read_c0_status();
  45	__enable_fpu(FPU_64BIT);
  46	enable_msa();
  47	msa_id = read_msa_ir();
  48	disable_msa();
  49	write_c0_status(status);
  50	return msa_id;
  51}
  52
  53static int mips_dsp_disabled;
  54
  55static int __init dsp_disable(char *s)
  56{
  57	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
  58	mips_dsp_disabled = 1;
  59
  60	return 1;
  61}
  62
  63__setup("nodsp", dsp_disable);
  64
  65static int mips_htw_disabled;
  66
  67static int __init htw_disable(char *s)
  68{
  69	mips_htw_disabled = 1;
  70	cpu_data[0].options &= ~MIPS_CPU_HTW;
  71	write_c0_pwctl(read_c0_pwctl() &
  72		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
  73
  74	return 1;
  75}
  76
  77__setup("nohtw", htw_disable);
  78
  79static int mips_ftlb_disabled;
  80static int mips_has_ftlb_configured;
  81
  82enum ftlb_flags {
  83	FTLB_EN		= 1 << 0,
  84	FTLB_SET_PROB	= 1 << 1,
  85};
  86
  87static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
  88
  89static int __init ftlb_disable(char *s)
  90{
  91	unsigned int config4, mmuextdef;
  92
  93	/*
  94	 * If the core hasn't done any FTLB configuration, there is nothing
  95	 * for us to do here.
  96	 */
  97	if (!mips_has_ftlb_configured)
  98		return 1;
  99
 100	/* Disable it in the boot cpu */
 101	if (set_ftlb_enable(&cpu_data[0], 0)) {
 102		pr_warn("Can't turn FTLB off\n");
 103		return 1;
 104	}
 105
 106	config4 = read_c0_config4();
 107
 108	/* Check that FTLB has been disabled */
 109	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 110	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 111	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 112		/* This should never happen */
 113		pr_warn("FTLB could not be disabled!\n");
 114		return 1;
 115	}
 116
 117	mips_ftlb_disabled = 1;
 118	mips_has_ftlb_configured = 0;
 119
 120	/*
 121	 * noftlb is mainly used for debug purposes so print
 122	 * an informative message instead of using pr_debug()
 123	 */
 124	pr_info("FTLB has been disabled\n");
 125
 126	/*
 127	 * Some of these bits are duplicated in the decode_config4.
 128	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 129	 * once FTLB has been disabled so undo what decode_config4 did.
 130	 */
 131	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 132			       cpu_data[0].tlbsizeftlbsets;
 133	cpu_data[0].tlbsizeftlbsets = 0;
 134	cpu_data[0].tlbsizeftlbways = 0;
 135
 136	return 1;
 137}
 138
 139__setup("noftlb", ftlb_disable);
 140
 141/*
 142 * Check if the CPU has per tc perf counters
 143 */
 144static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 145{
 146	if (read_c0_config7() & MTI_CONF7_PTC)
 147		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 148}
 149
 150static inline void check_errata(void)
 151{
 152	struct cpuinfo_mips *c = &current_cpu_data;
 153
 154	switch (current_cpu_type()) {
 155	case CPU_34K:
 156		/*
 157		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 158		 * This code only handles VPE0, any SMP/RTOS code
 159		 * making use of VPE1 will be responsible for that VPE.
 160		 */
 161		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 162			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 163		break;
 164	default:
 165		break;
 166	}
 167}
 168
 169void __init check_bugs32(void)
 170{
 171	check_errata();
 172}
 173
 174/*
 175 * Probe whether cpu has config register by trying to play with
 176 * alternate cache bit and see whether it matters.
 177 * It's used by cpu_probe to distinguish between R3000A and R3081.
 178 */
 179static inline int cpu_has_confreg(void)
 180{
 181#ifdef CONFIG_CPU_R3000
 
 182	unsigned long size1, size2;
 183	unsigned long cfg = read_c0_conf();
 184
 185	size1 = r3k_cache_size(ST0_ISC);
 186	write_c0_conf(cfg ^ R30XX_CONF_AC);
 187	size2 = r3k_cache_size(ST0_ISC);
 188	write_c0_conf(cfg);
 189	return size1 != size2;
 190#else
 191	return 0;
 192#endif
 193}
 194
 195static inline void set_elf_platform(int cpu, const char *plat)
 196{
 197	if (cpu == 0)
 198		__elf_platform = plat;
 199}
 200
 201static inline void set_elf_base_platform(const char *plat)
 202{
 203	if (__elf_base_platform == NULL) {
 204		__elf_base_platform = plat;
 205	}
 206}
 207
 208static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 209{
 210#ifdef __NEED_VMBITS_PROBE
 211	write_c0_entryhi(0x3fffffffffffe000ULL);
 212	back_to_back_c0_hazard();
 213	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 214#endif
 215}
 216
 217static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 218{
 219	switch (isa) {
 220	case MIPS_CPU_ISA_M64R5:
 221		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 222		set_elf_base_platform("mips64r5");
 223		fallthrough;
 224	case MIPS_CPU_ISA_M64R2:
 225		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 226		set_elf_base_platform("mips64r2");
 227		fallthrough;
 228	case MIPS_CPU_ISA_M64R1:
 229		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 230		set_elf_base_platform("mips64");
 231		fallthrough;
 232	case MIPS_CPU_ISA_V:
 233		c->isa_level |= MIPS_CPU_ISA_V;
 234		set_elf_base_platform("mips5");
 235		fallthrough;
 236	case MIPS_CPU_ISA_IV:
 237		c->isa_level |= MIPS_CPU_ISA_IV;
 238		set_elf_base_platform("mips4");
 239		fallthrough;
 240	case MIPS_CPU_ISA_III:
 241		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 242		set_elf_base_platform("mips3");
 243		break;
 244
 245	/* R6 incompatible with everything else */
 246	case MIPS_CPU_ISA_M64R6:
 247		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 248		set_elf_base_platform("mips64r6");
 249		fallthrough;
 250	case MIPS_CPU_ISA_M32R6:
 251		c->isa_level |= MIPS_CPU_ISA_M32R6;
 252		set_elf_base_platform("mips32r6");
 253		/* Break here so we don't add incompatible ISAs */
 254		break;
 255	case MIPS_CPU_ISA_M32R5:
 256		c->isa_level |= MIPS_CPU_ISA_M32R5;
 257		set_elf_base_platform("mips32r5");
 258		fallthrough;
 259	case MIPS_CPU_ISA_M32R2:
 260		c->isa_level |= MIPS_CPU_ISA_M32R2;
 261		set_elf_base_platform("mips32r2");
 262		fallthrough;
 263	case MIPS_CPU_ISA_M32R1:
 264		c->isa_level |= MIPS_CPU_ISA_M32R1;
 265		set_elf_base_platform("mips32");
 266		fallthrough;
 267	case MIPS_CPU_ISA_II:
 268		c->isa_level |= MIPS_CPU_ISA_II;
 269		set_elf_base_platform("mips2");
 270		break;
 271	}
 272}
 273
 274static char unknown_isa[] = KERN_ERR \
 275	"Unsupported ISA type, c0.config0: %d.";
 276
 277static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 278{
 279
 280	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 281
 282	/*
 283	 * 0 = All TLBWR instructions go to FTLB
 284	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 285	 * FTLB and 1 goes to the VTLB.
 286	 * 2 = 7:1: As above with 7:1 ratio.
 287	 * 3 = 3:1: As above with 3:1 ratio.
 288	 *
 289	 * Use the linear midpoint as the probability threshold.
 290	 */
 291	if (probability >= 12)
 292		return 1;
 293	else if (probability >= 6)
 294		return 2;
 295	else
 296		/*
 297		 * So FTLB is less than 4 times bigger than VTLB.
 298		 * A 3:1 ratio can still be useful though.
 299		 */
 300		return 3;
 301}
 302
 303static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 304{
 305	unsigned int config;
 306
 307	/* It's implementation dependent how the FTLB can be enabled */
 308	switch (c->cputype) {
 309	case CPU_PROAPTIV:
 310	case CPU_P5600:
 311	case CPU_P6600:
 312		/* proAptiv & related cores use Config6 to enable the FTLB */
 313		config = read_c0_config6();
 314
 315		if (flags & FTLB_EN)
 316			config |= MTI_CONF6_FTLBEN;
 317		else
 318			config &= ~MTI_CONF6_FTLBEN;
 319
 320		if (flags & FTLB_SET_PROB) {
 321			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 322			config |= calculate_ftlb_probability(c)
 323				  << MTI_CONF6_FTLBP_SHIFT;
 324		}
 325
 326		write_c0_config6(config);
 327		back_to_back_c0_hazard();
 328		break;
 329	case CPU_I6400:
 330	case CPU_I6500:
 331		/* There's no way to disable the FTLB */
 332		if (!(flags & FTLB_EN))
 333			return 1;
 334		return 0;
 335	case CPU_LOONGSON64:
 336		/* Flush ITLB, DTLB, VTLB and FTLB */
 337		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 338			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 339		/* Loongson-3 cores use Config6 to enable the FTLB */
 340		config = read_c0_config6();
 341		if (flags & FTLB_EN)
 342			/* Enable FTLB */
 343			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 344		else
 345			/* Disable FTLB */
 346			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 347		break;
 348	default:
 349		return 1;
 350	}
 351
 352	return 0;
 353}
 354
 355static int mm_config(struct cpuinfo_mips *c)
 356{
 357	unsigned int config0, update, mm;
 358
 359	config0 = read_c0_config();
 360	mm = config0 & MIPS_CONF_MM;
 361
 362	/*
 363	 * It's implementation dependent what type of write-merge is supported
 364	 * and whether it can be enabled/disabled. If it is settable lets make
 365	 * the merging allowed by default. Some platforms might have
 366	 * write-through caching unsupported. In this case just ignore the
 367	 * CP0.Config.MM bit field value.
 368	 */
 369	switch (c->cputype) {
 370	case CPU_24K:
 371	case CPU_34K:
 372	case CPU_74K:
 373	case CPU_P5600:
 374	case CPU_P6600:
 375		c->options |= MIPS_CPU_MM_FULL;
 376		update = MIPS_CONF_MM_FULL;
 377		break;
 378	case CPU_1004K:
 379	case CPU_1074K:
 380	case CPU_INTERAPTIV:
 381	case CPU_PROAPTIV:
 382		mm = 0;
 383		fallthrough;
 384	default:
 385		update = 0;
 386		break;
 387	}
 388
 389	if (update) {
 390		config0 = (config0 & ~MIPS_CONF_MM) | update;
 391		write_c0_config(config0);
 392	} else if (mm == MIPS_CONF_MM_SYSAD) {
 393		c->options |= MIPS_CPU_MM_SYSAD;
 394	} else if (mm == MIPS_CONF_MM_FULL) {
 395		c->options |= MIPS_CPU_MM_FULL;
 396	}
 397
 398	return 0;
 399}
 400
 401static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 402{
 403	unsigned int config0;
 404	int isa, mt;
 405
 406	config0 = read_c0_config();
 407
 408	/*
 409	 * Look for Standard TLB or Dual VTLB and FTLB
 410	 */
 411	mt = config0 & MIPS_CONF_MT;
 412	if (mt == MIPS_CONF_MT_TLB)
 413		c->options |= MIPS_CPU_TLB;
 414	else if (mt == MIPS_CONF_MT_FTLB)
 415		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 416
 417	isa = (config0 & MIPS_CONF_AT) >> 13;
 418	switch (isa) {
 419	case 0:
 420		switch ((config0 & MIPS_CONF_AR) >> 10) {
 421		case 0:
 422			set_isa(c, MIPS_CPU_ISA_M32R1);
 423			break;
 424		case 1:
 425			set_isa(c, MIPS_CPU_ISA_M32R2);
 426			break;
 427		case 2:
 428			set_isa(c, MIPS_CPU_ISA_M32R6);
 429			break;
 430		default:
 431			goto unknown;
 432		}
 433		break;
 434	case 2:
 435		switch ((config0 & MIPS_CONF_AR) >> 10) {
 436		case 0:
 437			set_isa(c, MIPS_CPU_ISA_M64R1);
 438			break;
 439		case 1:
 440			set_isa(c, MIPS_CPU_ISA_M64R2);
 441			break;
 442		case 2:
 443			set_isa(c, MIPS_CPU_ISA_M64R6);
 444			break;
 445		default:
 446			goto unknown;
 447		}
 448		break;
 449	default:
 450		goto unknown;
 451	}
 452
 453	return config0 & MIPS_CONF_M;
 454
 455unknown:
 456	panic(unknown_isa, config0);
 457}
 458
 459static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 460{
 461	unsigned int config1;
 462
 463	config1 = read_c0_config1();
 464
 465	if (config1 & MIPS_CONF1_MD)
 466		c->ases |= MIPS_ASE_MDMX;
 467	if (config1 & MIPS_CONF1_PC)
 468		c->options |= MIPS_CPU_PERF;
 469	if (config1 & MIPS_CONF1_WR)
 470		c->options |= MIPS_CPU_WATCH;
 471	if (config1 & MIPS_CONF1_CA)
 472		c->ases |= MIPS_ASE_MIPS16;
 473	if (config1 & MIPS_CONF1_EP)
 474		c->options |= MIPS_CPU_EJTAG;
 475	if (config1 & MIPS_CONF1_FP) {
 476		c->options |= MIPS_CPU_FPU;
 477		c->options |= MIPS_CPU_32FPR;
 478	}
 479	if (cpu_has_tlb) {
 480		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 481		c->tlbsizevtlb = c->tlbsize;
 482		c->tlbsizeftlbsets = 0;
 483	}
 484
 485	return config1 & MIPS_CONF_M;
 486}
 487
 488static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 489{
 490	unsigned int config2;
 491
 492	config2 = read_c0_config2();
 493
 494	if (config2 & MIPS_CONF2_SL)
 495		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 496
 497	return config2 & MIPS_CONF_M;
 498}
 499
 500static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 501{
 502	unsigned int config3;
 503
 504	config3 = read_c0_config3();
 505
 506	if (config3 & MIPS_CONF3_SM) {
 507		c->ases |= MIPS_ASE_SMARTMIPS;
 508		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 509	}
 510	if (config3 & MIPS_CONF3_RXI)
 511		c->options |= MIPS_CPU_RIXI;
 512	if (config3 & MIPS_CONF3_CTXTC)
 513		c->options |= MIPS_CPU_CTXTC;
 514	if (config3 & MIPS_CONF3_DSP)
 515		c->ases |= MIPS_ASE_DSP;
 516	if (config3 & MIPS_CONF3_DSP2P) {
 517		c->ases |= MIPS_ASE_DSP2P;
 518		if (cpu_has_mips_r6)
 519			c->ases |= MIPS_ASE_DSP3;
 520	}
 521	if (config3 & MIPS_CONF3_VINT)
 522		c->options |= MIPS_CPU_VINT;
 523	if (config3 & MIPS_CONF3_VEIC)
 524		c->options |= MIPS_CPU_VEIC;
 525	if (config3 & MIPS_CONF3_LPA)
 526		c->options |= MIPS_CPU_LPA;
 527	if (config3 & MIPS_CONF3_MT)
 528		c->ases |= MIPS_ASE_MIPSMT;
 529	if (config3 & MIPS_CONF3_ULRI)
 530		c->options |= MIPS_CPU_ULRI;
 531	if (config3 & MIPS_CONF3_ISA)
 532		c->options |= MIPS_CPU_MICROMIPS;
 533	if (config3 & MIPS_CONF3_VZ)
 534		c->ases |= MIPS_ASE_VZ;
 535	if (config3 & MIPS_CONF3_SC)
 536		c->options |= MIPS_CPU_SEGMENTS;
 537	if (config3 & MIPS_CONF3_BI)
 538		c->options |= MIPS_CPU_BADINSTR;
 539	if (config3 & MIPS_CONF3_BP)
 540		c->options |= MIPS_CPU_BADINSTRP;
 541	if (config3 & MIPS_CONF3_MSA)
 542		c->ases |= MIPS_ASE_MSA;
 543	if (config3 & MIPS_CONF3_PW) {
 544		c->htw_seq = 0;
 545		c->options |= MIPS_CPU_HTW;
 546	}
 547	if (config3 & MIPS_CONF3_CDMM)
 548		c->options |= MIPS_CPU_CDMM;
 549	if (config3 & MIPS_CONF3_SP)
 550		c->options |= MIPS_CPU_SP;
 551
 552	return config3 & MIPS_CONF_M;
 553}
 554
 555static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 556{
 557	unsigned int config4;
 558	unsigned int newcf4;
 559	unsigned int mmuextdef;
 560	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 561	unsigned long asid_mask;
 562
 563	config4 = read_c0_config4();
 564
 565	if (cpu_has_tlb) {
 566		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 567			c->options |= MIPS_CPU_TLBINV;
 568
 569		/*
 570		 * R6 has dropped the MMUExtDef field from config4.
 571		 * On R6 the fields always describe the FTLB, and only if it is
 572		 * present according to Config.MT.
 573		 */
 574		if (!cpu_has_mips_r6)
 575			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 576		else if (cpu_has_ftlb)
 577			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 578		else
 579			mmuextdef = 0;
 580
 581		switch (mmuextdef) {
 582		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 583			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 584			c->tlbsizevtlb = c->tlbsize;
 585			break;
 586		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 587			c->tlbsizevtlb +=
 588				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 589				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 590			c->tlbsize = c->tlbsizevtlb;
 591			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 592			fallthrough;
 593		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 594			if (mips_ftlb_disabled)
 595				break;
 596			newcf4 = (config4 & ~ftlb_page) |
 597				(page_size_ftlb(mmuextdef) <<
 598				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 599			write_c0_config4(newcf4);
 600			back_to_back_c0_hazard();
 601			config4 = read_c0_config4();
 602			if (config4 != newcf4) {
 603				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 604				       PAGE_SIZE, config4);
 605				/* Switch FTLB off */
 606				set_ftlb_enable(c, 0);
 607				mips_ftlb_disabled = 1;
 608				break;
 609			}
 610			c->tlbsizeftlbsets = 1 <<
 611				((config4 & MIPS_CONF4_FTLBSETS) >>
 612				 MIPS_CONF4_FTLBSETS_SHIFT);
 613			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 614					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 615			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 616			mips_has_ftlb_configured = 1;
 617			break;
 618		}
 619	}
 620
 621	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 622				>> MIPS_CONF4_KSCREXIST_SHIFT;
 623
 624	asid_mask = MIPS_ENTRYHI_ASID;
 625	if (config4 & MIPS_CONF4_AE)
 626		asid_mask |= MIPS_ENTRYHI_ASIDX;
 627	set_cpu_asid_mask(c, asid_mask);
 628
 629	/*
 630	 * Warn if the computed ASID mask doesn't match the mask the kernel
 631	 * is built for. This may indicate either a serious problem or an
 632	 * easy optimisation opportunity, but either way should be addressed.
 633	 */
 634	WARN_ON(asid_mask != cpu_asid_mask(c));
 635
 636	return config4 & MIPS_CONF_M;
 637}
 638
 639static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 640{
 641	unsigned int config5, max_mmid_width;
 642	unsigned long asid_mask;
 643
 644	config5 = read_c0_config5();
 645	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 646
 647	if (cpu_has_mips_r6) {
 648		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 649			config5 |= MIPS_CONF5_MI;
 650		else
 651			config5 &= ~MIPS_CONF5_MI;
 652	}
 653
 654	write_c0_config5(config5);
 655
 656	if (config5 & MIPS_CONF5_EVA)
 657		c->options |= MIPS_CPU_EVA;
 658	if (config5 & MIPS_CONF5_MRP)
 659		c->options |= MIPS_CPU_MAAR;
 660	if (config5 & MIPS_CONF5_LLB)
 661		c->options |= MIPS_CPU_RW_LLB;
 662	if (config5 & MIPS_CONF5_MVH)
 663		c->options |= MIPS_CPU_MVH;
 664	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 665		c->options |= MIPS_CPU_VP;
 666	if (config5 & MIPS_CONF5_CA2)
 667		c->ases |= MIPS_ASE_MIPS16E2;
 668
 669	if (config5 & MIPS_CONF5_CRCP)
 670		elf_hwcap |= HWCAP_MIPS_CRC32;
 671
 672	if (cpu_has_mips_r6) {
 673		/* Ensure the write to config5 above takes effect */
 674		back_to_back_c0_hazard();
 675
 676		/* Check whether we successfully enabled MMID support */
 677		config5 = read_c0_config5();
 678		if (config5 & MIPS_CONF5_MI)
 679			c->options |= MIPS_CPU_MMID;
 680
 681		/*
 682		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
 683		 * for the CPU we're running on, or if CPUs in an SMP system
 684		 * have inconsistent MMID support.
 685		 */
 686		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
 687
 688		if (cpu_has_mmid) {
 689			write_c0_memorymapid(~0ul);
 690			back_to_back_c0_hazard();
 691			asid_mask = read_c0_memorymapid();
 692
 693			/*
 694			 * We maintain a bitmap to track MMID allocation, and
 695			 * need a sensible upper bound on the size of that
 696			 * bitmap. The initial CPU with MMID support (I6500)
 697			 * supports 16 bit MMIDs, which gives us an 8KiB
 698			 * bitmap. The architecture recommends that hardware
 699			 * support 32 bit MMIDs, which would give us a 512MiB
 700			 * bitmap - that's too big in most cases.
 701			 *
 702			 * Cap MMID width at 16 bits for now & we can revisit
 703			 * this if & when hardware supports anything wider.
 704			 */
 705			max_mmid_width = 16;
 706			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
 707				pr_info("Capping MMID width at %d bits",
 708					max_mmid_width);
 709				asid_mask = GENMASK(max_mmid_width - 1, 0);
 710			}
 711
 712			set_cpu_asid_mask(c, asid_mask);
 713		}
 714	}
 715
 716	return config5 & MIPS_CONF_M;
 717}
 718
 719static void decode_configs(struct cpuinfo_mips *c)
 720{
 721	int ok;
 722
 723	/* MIPS32 or MIPS64 compliant CPU.  */
 724	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 725		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 726
 727	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 728
 729	/* Enable FTLB if present and not disabled */
 730	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 731
 732	ok = decode_config0(c);			/* Read Config registers.  */
 733	BUG_ON(!ok);				/* Arch spec violation!	 */
 734	if (ok)
 735		ok = decode_config1(c);
 736	if (ok)
 737		ok = decode_config2(c);
 738	if (ok)
 739		ok = decode_config3(c);
 740	if (ok)
 741		ok = decode_config4(c);
 742	if (ok)
 743		ok = decode_config5(c);
 744
 745	/* Probe the EBase.WG bit */
 746	if (cpu_has_mips_r2_r6) {
 747		u64 ebase;
 748		unsigned int status;
 749
 750		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 751		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 752					 : (s32)read_c0_ebase();
 753		if (ebase & MIPS_EBASE_WG) {
 754			/* WG bit already set, we can avoid the clumsy probe */
 755			c->options |= MIPS_CPU_EBASE_WG;
 756		} else {
 757			/* Its UNDEFINED to change EBase while BEV=0 */
 758			status = read_c0_status();
 759			write_c0_status(status | ST0_BEV);
 760			irq_enable_hazard();
 761			/*
 762			 * On pre-r6 cores, this may well clobber the upper bits
 763			 * of EBase. This is hard to avoid without potentially
 764			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 765			 */
 766			if (cpu_has_mips64r6)
 767				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 768			else
 769				write_c0_ebase(ebase | MIPS_EBASE_WG);
 770			back_to_back_c0_hazard();
 771			/* Restore BEV */
 772			write_c0_status(status);
 773			if (read_c0_ebase() & MIPS_EBASE_WG) {
 774				c->options |= MIPS_CPU_EBASE_WG;
 775				write_c0_ebase(ebase);
 776			}
 777		}
 778	}
 779
 780	/* configure the FTLB write probability */
 781	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 782
 783	mips_probe_watch_registers(c);
 784
 785#ifndef CONFIG_MIPS_CPS
 786	if (cpu_has_mips_r2_r6) {
 787		unsigned int core;
 788
 789		core = get_ebase_cpunum();
 790		if (cpu_has_mipsmt)
 791			core >>= fls(core_nvpes()) - 1;
 792		cpu_set_core(c, core);
 793	}
 794#endif
 795}
 796
 797/*
 798 * Probe for certain guest capabilities by writing config bits and reading back.
 799 * Finally write back the original value.
 800 */
 801#define probe_gc0_config(name, maxconf, bits)				\
 802do {									\
 803	unsigned int tmp;						\
 804	tmp = read_gc0_##name();					\
 805	write_gc0_##name(tmp | (bits));					\
 806	back_to_back_c0_hazard();					\
 807	maxconf = read_gc0_##name();					\
 808	write_gc0_##name(tmp);						\
 809} while (0)
 810
 811/*
 812 * Probe for dynamic guest capabilities by changing certain config bits and
 813 * reading back to see if they change. Finally write back the original value.
 814 */
 815#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 816do {									\
 817	maxconf = read_gc0_##name();					\
 818	write_gc0_##name(maxconf ^ (bits));				\
 819	back_to_back_c0_hazard();					\
 820	dynconf = maxconf ^ read_gc0_##name();				\
 821	write_gc0_##name(maxconf);					\
 822	maxconf |= dynconf;						\
 823} while (0)
 824
 825static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 826{
 827	unsigned int config0;
 828
 829	probe_gc0_config(config, config0, MIPS_CONF_M);
 830
 831	if (config0 & MIPS_CONF_M)
 832		c->guest.conf |= BIT(1);
 833	return config0 & MIPS_CONF_M;
 834}
 835
 836static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 837{
 838	unsigned int config1, config1_dyn;
 839
 840	probe_gc0_config_dyn(config1, config1, config1_dyn,
 841			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 842			     MIPS_CONF1_FP);
 843
 844	if (config1 & MIPS_CONF1_FP)
 845		c->guest.options |= MIPS_CPU_FPU;
 846	if (config1_dyn & MIPS_CONF1_FP)
 847		c->guest.options_dyn |= MIPS_CPU_FPU;
 848
 849	if (config1 & MIPS_CONF1_WR)
 850		c->guest.options |= MIPS_CPU_WATCH;
 851	if (config1_dyn & MIPS_CONF1_WR)
 852		c->guest.options_dyn |= MIPS_CPU_WATCH;
 853
 854	if (config1 & MIPS_CONF1_PC)
 855		c->guest.options |= MIPS_CPU_PERF;
 856	if (config1_dyn & MIPS_CONF1_PC)
 857		c->guest.options_dyn |= MIPS_CPU_PERF;
 858
 859	if (config1 & MIPS_CONF_M)
 860		c->guest.conf |= BIT(2);
 861	return config1 & MIPS_CONF_M;
 862}
 863
 864static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
 865{
 866	unsigned int config2;
 867
 868	probe_gc0_config(config2, config2, MIPS_CONF_M);
 869
 870	if (config2 & MIPS_CONF_M)
 871		c->guest.conf |= BIT(3);
 872	return config2 & MIPS_CONF_M;
 873}
 874
 875static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
 876{
 877	unsigned int config3, config3_dyn;
 878
 879	probe_gc0_config_dyn(config3, config3, config3_dyn,
 880			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
 881			     MIPS_CONF3_CTXTC);
 882
 883	if (config3 & MIPS_CONF3_CTXTC)
 884		c->guest.options |= MIPS_CPU_CTXTC;
 885	if (config3_dyn & MIPS_CONF3_CTXTC)
 886		c->guest.options_dyn |= MIPS_CPU_CTXTC;
 887
 888	if (config3 & MIPS_CONF3_PW)
 889		c->guest.options |= MIPS_CPU_HTW;
 890
 891	if (config3 & MIPS_CONF3_ULRI)
 892		c->guest.options |= MIPS_CPU_ULRI;
 893
 894	if (config3 & MIPS_CONF3_SC)
 895		c->guest.options |= MIPS_CPU_SEGMENTS;
 896
 897	if (config3 & MIPS_CONF3_BI)
 898		c->guest.options |= MIPS_CPU_BADINSTR;
 899	if (config3 & MIPS_CONF3_BP)
 900		c->guest.options |= MIPS_CPU_BADINSTRP;
 901
 902	if (config3 & MIPS_CONF3_MSA)
 903		c->guest.ases |= MIPS_ASE_MSA;
 904	if (config3_dyn & MIPS_CONF3_MSA)
 905		c->guest.ases_dyn |= MIPS_ASE_MSA;
 906
 907	if (config3 & MIPS_CONF_M)
 908		c->guest.conf |= BIT(4);
 909	return config3 & MIPS_CONF_M;
 910}
 911
 912static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
 913{
 914	unsigned int config4;
 915
 916	probe_gc0_config(config4, config4,
 917			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
 918
 919	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 920				>> MIPS_CONF4_KSCREXIST_SHIFT;
 921
 922	if (config4 & MIPS_CONF_M)
 923		c->guest.conf |= BIT(5);
 924	return config4 & MIPS_CONF_M;
 925}
 926
 927static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
 928{
 929	unsigned int config5, config5_dyn;
 930
 931	probe_gc0_config_dyn(config5, config5, config5_dyn,
 932			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
 933
 934	if (config5 & MIPS_CONF5_MRP)
 935		c->guest.options |= MIPS_CPU_MAAR;
 936	if (config5_dyn & MIPS_CONF5_MRP)
 937		c->guest.options_dyn |= MIPS_CPU_MAAR;
 938
 939	if (config5 & MIPS_CONF5_LLB)
 940		c->guest.options |= MIPS_CPU_RW_LLB;
 941
 942	if (config5 & MIPS_CONF5_MVH)
 943		c->guest.options |= MIPS_CPU_MVH;
 944
 945	if (config5 & MIPS_CONF_M)
 946		c->guest.conf |= BIT(6);
 947	return config5 & MIPS_CONF_M;
 948}
 949
 950static inline void decode_guest_configs(struct cpuinfo_mips *c)
 951{
 952	unsigned int ok;
 953
 954	ok = decode_guest_config0(c);
 955	if (ok)
 956		ok = decode_guest_config1(c);
 957	if (ok)
 958		ok = decode_guest_config2(c);
 959	if (ok)
 960		ok = decode_guest_config3(c);
 961	if (ok)
 962		ok = decode_guest_config4(c);
 963	if (ok)
 964		decode_guest_config5(c);
 965}
 966
 967static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
 968{
 969	unsigned int guestctl0, temp;
 970
 971	guestctl0 = read_c0_guestctl0();
 972
 973	if (guestctl0 & MIPS_GCTL0_G0E)
 974		c->options |= MIPS_CPU_GUESTCTL0EXT;
 975	if (guestctl0 & MIPS_GCTL0_G1)
 976		c->options |= MIPS_CPU_GUESTCTL1;
 977	if (guestctl0 & MIPS_GCTL0_G2)
 978		c->options |= MIPS_CPU_GUESTCTL2;
 979	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
 980		c->options |= MIPS_CPU_GUESTID;
 981
 982		/*
 983		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
 984		 * first, otherwise all data accesses will be fully virtualised
 985		 * as if they were performed by guest mode.
 986		 */
 987		write_c0_guestctl1(0);
 988		tlbw_use_hazard();
 989
 990		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
 991		back_to_back_c0_hazard();
 992		temp = read_c0_guestctl0();
 993
 994		if (temp & MIPS_GCTL0_DRG) {
 995			write_c0_guestctl0(guestctl0);
 996			c->options |= MIPS_CPU_DRG;
 997		}
 998	}
 999}
1000
1001static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1002{
1003	if (cpu_has_guestid) {
1004		/* determine the number of bits of GuestID available */
1005		write_c0_guestctl1(MIPS_GCTL1_ID);
1006		back_to_back_c0_hazard();
1007		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1008						>> MIPS_GCTL1_ID_SHIFT;
1009		write_c0_guestctl1(0);
1010	}
1011}
1012
1013static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1014{
1015	/* determine the number of bits of GTOffset available */
1016	write_c0_gtoffset(0xffffffff);
1017	back_to_back_c0_hazard();
1018	c->gtoffset_mask = read_c0_gtoffset();
1019	write_c0_gtoffset(0);
1020}
1021
1022static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1023{
1024	cpu_probe_guestctl0(c);
1025	if (cpu_has_guestctl1)
1026		cpu_probe_guestctl1(c);
1027
1028	cpu_probe_gtoffset(c);
1029
1030	decode_guest_configs(c);
1031}
1032
1033#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1034		| MIPS_CPU_COUNTER)
1035
1036static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1037{
1038	switch (c->processor_id & PRID_IMP_MASK) {
1039	case PRID_IMP_R2000:
1040		c->cputype = CPU_R2000;
1041		__cpu_name[cpu] = "R2000";
1042		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1043		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1044			     MIPS_CPU_NOFPUEX;
1045		if (__cpu_has_fpu())
1046			c->options |= MIPS_CPU_FPU;
1047		c->tlbsize = 64;
1048		break;
1049	case PRID_IMP_R3000:
1050		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1051			if (cpu_has_confreg()) {
1052				c->cputype = CPU_R3081E;
1053				__cpu_name[cpu] = "R3081";
1054			} else {
1055				c->cputype = CPU_R3000A;
1056				__cpu_name[cpu] = "R3000A";
1057			}
1058		} else {
1059			c->cputype = CPU_R3000;
1060			__cpu_name[cpu] = "R3000";
1061		}
1062		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1063		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1064			     MIPS_CPU_NOFPUEX;
1065		if (__cpu_has_fpu())
1066			c->options |= MIPS_CPU_FPU;
1067		c->tlbsize = 64;
1068		break;
1069	case PRID_IMP_R4000:
1070		if (read_c0_config() & CONF_SC) {
1071			if ((c->processor_id & PRID_REV_MASK) >=
1072			    PRID_REV_R4400) {
1073				c->cputype = CPU_R4400PC;
1074				__cpu_name[cpu] = "R4400PC";
1075			} else {
1076				c->cputype = CPU_R4000PC;
1077				__cpu_name[cpu] = "R4000PC";
1078			}
1079		} else {
1080			int cca = read_c0_config() & CONF_CM_CMASK;
1081			int mc;
1082
1083			/*
1084			 * SC and MC versions can't be reliably told apart,
1085			 * but only the latter support coherent caching
1086			 * modes so assume the firmware has set the KSEG0
1087			 * coherency attribute reasonably (if uncached, we
1088			 * assume SC).
1089			 */
1090			switch (cca) {
1091			case CONF_CM_CACHABLE_CE:
1092			case CONF_CM_CACHABLE_COW:
1093			case CONF_CM_CACHABLE_CUW:
1094				mc = 1;
1095				break;
1096			default:
1097				mc = 0;
1098				break;
1099			}
1100			if ((c->processor_id & PRID_REV_MASK) >=
1101			    PRID_REV_R4400) {
1102				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1103				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1104			} else {
1105				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1106				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1107			}
1108		}
1109
1110		set_isa(c, MIPS_CPU_ISA_III);
1111		c->fpu_msk31 |= FPU_CSR_CONDX;
1112		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1113			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1114			     MIPS_CPU_LLSC;
1115		c->tlbsize = 48;
1116		break;
1117	case PRID_IMP_R4300:
1118		c->cputype = CPU_R4300;
1119		__cpu_name[cpu] = "R4300";
1120		set_isa(c, MIPS_CPU_ISA_III);
1121		c->fpu_msk31 |= FPU_CSR_CONDX;
1122		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1123			     MIPS_CPU_LLSC;
1124		c->tlbsize = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125		break;
1126	case PRID_IMP_R4600:
1127		c->cputype = CPU_R4600;
1128		__cpu_name[cpu] = "R4600";
1129		set_isa(c, MIPS_CPU_ISA_III);
1130		c->fpu_msk31 |= FPU_CSR_CONDX;
1131		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1132			     MIPS_CPU_LLSC;
1133		c->tlbsize = 48;
1134		break;
1135	#if 0
1136	case PRID_IMP_R4650:
1137		/*
1138		 * This processor doesn't have an MMU, so it's not
1139		 * "real easy" to run Linux on it. It is left purely
1140		 * for documentation.  Commented out because it shares
1141		 * its c0_prid id number with the TX3900.
1142		 */
1143		c->cputype = CPU_R4650;
1144		__cpu_name[cpu] = "R4650";
1145		set_isa(c, MIPS_CPU_ISA_III);
1146		c->fpu_msk31 |= FPU_CSR_CONDX;
1147		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1148		c->tlbsize = 48;
1149		break;
1150	#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151	case PRID_IMP_R4700:
1152		c->cputype = CPU_R4700;
1153		__cpu_name[cpu] = "R4700";
1154		set_isa(c, MIPS_CPU_ISA_III);
1155		c->fpu_msk31 |= FPU_CSR_CONDX;
1156		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1157			     MIPS_CPU_LLSC;
1158		c->tlbsize = 48;
1159		break;
1160	case PRID_IMP_TX49:
1161		c->cputype = CPU_TX49XX;
1162		__cpu_name[cpu] = "R49XX";
1163		set_isa(c, MIPS_CPU_ISA_III);
1164		c->fpu_msk31 |= FPU_CSR_CONDX;
1165		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1166		if (!(c->processor_id & 0x08))
1167			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1168		c->tlbsize = 48;
1169		break;
1170	case PRID_IMP_R5000:
1171		c->cputype = CPU_R5000;
1172		__cpu_name[cpu] = "R5000";
1173		set_isa(c, MIPS_CPU_ISA_IV);
1174		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1175			     MIPS_CPU_LLSC;
1176		c->tlbsize = 48;
1177		break;
1178	case PRID_IMP_R5500:
1179		c->cputype = CPU_R5500;
1180		__cpu_name[cpu] = "R5500";
1181		set_isa(c, MIPS_CPU_ISA_IV);
1182		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1183			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1184		c->tlbsize = 48;
1185		break;
1186	case PRID_IMP_NEVADA:
1187		c->cputype = CPU_NEVADA;
1188		__cpu_name[cpu] = "Nevada";
1189		set_isa(c, MIPS_CPU_ISA_IV);
1190		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1191			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1192		c->tlbsize = 48;
1193		break;
1194	case PRID_IMP_RM7000:
1195		c->cputype = CPU_RM7000;
1196		__cpu_name[cpu] = "RM7000";
1197		set_isa(c, MIPS_CPU_ISA_IV);
1198		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1199			     MIPS_CPU_LLSC;
1200		/*
1201		 * Undocumented RM7000:	 Bit 29 in the info register of
1202		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1203		 * entries.
1204		 *
1205		 * 29	   1 =>	   64 entry JTLB
1206		 *	   0 =>	   48 entry JTLB
1207		 */
1208		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1209		break;
1210	case PRID_IMP_R10000:
1211		c->cputype = CPU_R10000;
1212		__cpu_name[cpu] = "R10000";
1213		set_isa(c, MIPS_CPU_ISA_IV);
1214		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1215			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1216			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1217			     MIPS_CPU_LLSC;
1218		c->tlbsize = 64;
1219		break;
1220	case PRID_IMP_R12000:
1221		c->cputype = CPU_R12000;
1222		__cpu_name[cpu] = "R12000";
1223		set_isa(c, MIPS_CPU_ISA_IV);
1224		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1225			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1226			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1227			     MIPS_CPU_LLSC;
1228		c->tlbsize = 64;
1229		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1230		break;
1231	case PRID_IMP_R14000:
1232		if (((c->processor_id >> 4) & 0x0f) > 2) {
1233			c->cputype = CPU_R16000;
1234			__cpu_name[cpu] = "R16000";
1235		} else {
1236			c->cputype = CPU_R14000;
1237			__cpu_name[cpu] = "R14000";
1238		}
1239		set_isa(c, MIPS_CPU_ISA_IV);
1240		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1241			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1242			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1243			     MIPS_CPU_LLSC;
1244		c->tlbsize = 64;
1245		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1246		break;
1247	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1248		switch (c->processor_id & PRID_REV_MASK) {
1249		case PRID_REV_LOONGSON2E:
1250			c->cputype = CPU_LOONGSON2EF;
1251			__cpu_name[cpu] = "ICT Loongson-2";
1252			set_elf_platform(cpu, "loongson2e");
1253			set_isa(c, MIPS_CPU_ISA_III);
1254			c->fpu_msk31 |= FPU_CSR_CONDX;
1255			break;
1256		case PRID_REV_LOONGSON2F:
1257			c->cputype = CPU_LOONGSON2EF;
1258			__cpu_name[cpu] = "ICT Loongson-2";
1259			set_elf_platform(cpu, "loongson2f");
1260			set_isa(c, MIPS_CPU_ISA_III);
1261			c->fpu_msk31 |= FPU_CSR_CONDX;
1262			break;
1263		case PRID_REV_LOONGSON3A_R1:
1264			c->cputype = CPU_LOONGSON64;
1265			__cpu_name[cpu] = "ICT Loongson-3";
1266			set_elf_platform(cpu, "loongson3a");
1267			set_isa(c, MIPS_CPU_ISA_M64R1);
1268			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1269				MIPS_ASE_LOONGSON_EXT);
1270			break;
1271		case PRID_REV_LOONGSON3B_R1:
1272		case PRID_REV_LOONGSON3B_R2:
1273			c->cputype = CPU_LOONGSON64;
1274			__cpu_name[cpu] = "ICT Loongson-3";
1275			set_elf_platform(cpu, "loongson3b");
1276			set_isa(c, MIPS_CPU_ISA_M64R1);
1277			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1278				MIPS_ASE_LOONGSON_EXT);
1279			break;
1280		}
1281
1282		c->options = R4K_OPTS |
1283			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1284			     MIPS_CPU_32FPR;
1285		c->tlbsize = 64;
1286		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1287		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1288		break;
1289	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1290		decode_configs(c);
1291
1292		c->cputype = CPU_LOONGSON32;
1293
1294		switch (c->processor_id & PRID_REV_MASK) {
1295		case PRID_REV_LOONGSON1B:
1296			__cpu_name[cpu] = "Loongson 1B";
1297			break;
1298		}
1299
1300		break;
1301	}
1302}
1303
1304static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1305{
1306	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1307	switch (c->processor_id & PRID_IMP_MASK) {
1308	case PRID_IMP_QEMU_GENERIC:
1309		c->writecombine = _CACHE_UNCACHED;
1310		c->cputype = CPU_QEMU_GENERIC;
1311		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1312		break;
1313	case PRID_IMP_4KC:
1314		c->cputype = CPU_4KC;
1315		c->writecombine = _CACHE_UNCACHED;
1316		__cpu_name[cpu] = "MIPS 4Kc";
1317		break;
1318	case PRID_IMP_4KEC:
1319	case PRID_IMP_4KECR2:
1320		c->cputype = CPU_4KEC;
1321		c->writecombine = _CACHE_UNCACHED;
1322		__cpu_name[cpu] = "MIPS 4KEc";
1323		break;
1324	case PRID_IMP_4KSC:
1325	case PRID_IMP_4KSD:
1326		c->cputype = CPU_4KSC;
1327		c->writecombine = _CACHE_UNCACHED;
1328		__cpu_name[cpu] = "MIPS 4KSc";
1329		break;
1330	case PRID_IMP_5KC:
1331		c->cputype = CPU_5KC;
1332		c->writecombine = _CACHE_UNCACHED;
1333		__cpu_name[cpu] = "MIPS 5Kc";
1334		break;
1335	case PRID_IMP_5KE:
1336		c->cputype = CPU_5KE;
1337		c->writecombine = _CACHE_UNCACHED;
1338		__cpu_name[cpu] = "MIPS 5KE";
1339		break;
1340	case PRID_IMP_20KC:
1341		c->cputype = CPU_20KC;
1342		c->writecombine = _CACHE_UNCACHED;
1343		__cpu_name[cpu] = "MIPS 20Kc";
1344		break;
1345	case PRID_IMP_24K:
1346		c->cputype = CPU_24K;
1347		c->writecombine = _CACHE_UNCACHED;
1348		__cpu_name[cpu] = "MIPS 24Kc";
1349		break;
1350	case PRID_IMP_24KE:
1351		c->cputype = CPU_24K;
1352		c->writecombine = _CACHE_UNCACHED;
1353		__cpu_name[cpu] = "MIPS 24KEc";
1354		break;
1355	case PRID_IMP_25KF:
1356		c->cputype = CPU_25KF;
1357		c->writecombine = _CACHE_UNCACHED;
1358		__cpu_name[cpu] = "MIPS 25Kc";
1359		break;
1360	case PRID_IMP_34K:
1361		c->cputype = CPU_34K;
1362		c->writecombine = _CACHE_UNCACHED;
1363		__cpu_name[cpu] = "MIPS 34Kc";
1364		cpu_set_mt_per_tc_perf(c);
1365		break;
1366	case PRID_IMP_74K:
1367		c->cputype = CPU_74K;
1368		c->writecombine = _CACHE_UNCACHED;
1369		__cpu_name[cpu] = "MIPS 74Kc";
1370		break;
1371	case PRID_IMP_M14KC:
1372		c->cputype = CPU_M14KC;
1373		c->writecombine = _CACHE_UNCACHED;
1374		__cpu_name[cpu] = "MIPS M14Kc";
1375		break;
1376	case PRID_IMP_M14KEC:
1377		c->cputype = CPU_M14KEC;
1378		c->writecombine = _CACHE_UNCACHED;
1379		__cpu_name[cpu] = "MIPS M14KEc";
1380		break;
1381	case PRID_IMP_1004K:
1382		c->cputype = CPU_1004K;
1383		c->writecombine = _CACHE_UNCACHED;
1384		__cpu_name[cpu] = "MIPS 1004Kc";
1385		cpu_set_mt_per_tc_perf(c);
1386		break;
1387	case PRID_IMP_1074K:
1388		c->cputype = CPU_1074K;
1389		c->writecombine = _CACHE_UNCACHED;
1390		__cpu_name[cpu] = "MIPS 1074Kc";
1391		break;
1392	case PRID_IMP_INTERAPTIV_UP:
1393		c->cputype = CPU_INTERAPTIV;
1394		__cpu_name[cpu] = "MIPS interAptiv";
1395		cpu_set_mt_per_tc_perf(c);
1396		break;
1397	case PRID_IMP_INTERAPTIV_MP:
1398		c->cputype = CPU_INTERAPTIV;
1399		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1400		cpu_set_mt_per_tc_perf(c);
1401		break;
1402	case PRID_IMP_PROAPTIV_UP:
1403		c->cputype = CPU_PROAPTIV;
1404		__cpu_name[cpu] = "MIPS proAptiv";
1405		break;
1406	case PRID_IMP_PROAPTIV_MP:
1407		c->cputype = CPU_PROAPTIV;
1408		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1409		break;
1410	case PRID_IMP_P5600:
1411		c->cputype = CPU_P5600;
1412		__cpu_name[cpu] = "MIPS P5600";
1413		break;
1414	case PRID_IMP_P6600:
1415		c->cputype = CPU_P6600;
1416		__cpu_name[cpu] = "MIPS P6600";
1417		break;
1418	case PRID_IMP_I6400:
1419		c->cputype = CPU_I6400;
1420		__cpu_name[cpu] = "MIPS I6400";
1421		break;
1422	case PRID_IMP_I6500:
1423		c->cputype = CPU_I6500;
1424		__cpu_name[cpu] = "MIPS I6500";
1425		break;
1426	case PRID_IMP_M5150:
1427		c->cputype = CPU_M5150;
1428		__cpu_name[cpu] = "MIPS M5150";
1429		break;
1430	case PRID_IMP_M6250:
1431		c->cputype = CPU_M6250;
1432		__cpu_name[cpu] = "MIPS M6250";
1433		break;
1434	}
1435
1436	decode_configs(c);
1437
1438	spram_config();
1439
1440	mm_config(c);
1441
1442	switch (__get_cpu_type(c->cputype)) {
1443	case CPU_M5150:
1444	case CPU_P5600:
1445		set_isa(c, MIPS_CPU_ISA_M32R5);
1446		break;
1447	case CPU_I6500:
1448		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1449		fallthrough;
1450	case CPU_I6400:
1451		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1452		fallthrough;
1453	default:
1454		break;
1455	}
1456
1457	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1458	 * cache/FTLB parity exceptions.
1459	 */
1460	switch (__get_cpu_type(c->cputype)) {
1461	case CPU_PROAPTIV:
1462	case CPU_P5600:
1463	case CPU_P6600:
1464	case CPU_I6400:
1465	case CPU_I6500:
1466		c->options |= MIPS_CPU_FTLBPAREX;
1467		break;
1468	}
1469}
1470
1471static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1472{
1473	decode_configs(c);
1474	switch (c->processor_id & PRID_IMP_MASK) {
1475	case PRID_IMP_AU1_REV1:
1476	case PRID_IMP_AU1_REV2:
1477		c->cputype = CPU_ALCHEMY;
1478		switch ((c->processor_id >> 24) & 0xff) {
1479		case 0:
1480			__cpu_name[cpu] = "Au1000";
1481			break;
1482		case 1:
1483			__cpu_name[cpu] = "Au1500";
1484			break;
1485		case 2:
1486			__cpu_name[cpu] = "Au1100";
1487			break;
1488		case 3:
1489			__cpu_name[cpu] = "Au1550";
1490			break;
1491		case 4:
1492			__cpu_name[cpu] = "Au1200";
1493			if ((c->processor_id & PRID_REV_MASK) == 2)
1494				__cpu_name[cpu] = "Au1250";
1495			break;
1496		case 5:
1497			__cpu_name[cpu] = "Au1210";
1498			break;
1499		default:
1500			__cpu_name[cpu] = "Au1xxx";
1501			break;
1502		}
1503		break;
1504	case PRID_IMP_NETLOGIC_AU13XX:
1505		c->cputype = CPU_ALCHEMY;
1506		__cpu_name[cpu] = "Au1300";
1507		break;
1508	}
1509}
1510
1511static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1512{
1513	decode_configs(c);
1514
1515	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1516	switch (c->processor_id & PRID_IMP_MASK) {
1517	case PRID_IMP_SB1:
1518		c->cputype = CPU_SB1;
1519		__cpu_name[cpu] = "SiByte SB1";
1520		/* FPU in pass1 is known to have issues. */
1521		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1522			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1523		break;
1524	case PRID_IMP_SB1A:
1525		c->cputype = CPU_SB1A;
1526		__cpu_name[cpu] = "SiByte SB1A";
1527		break;
1528	}
1529}
1530
1531static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1532{
1533	decode_configs(c);
1534	switch (c->processor_id & PRID_IMP_MASK) {
1535	case PRID_IMP_SR71000:
1536		c->cputype = CPU_SR71000;
1537		__cpu_name[cpu] = "Sandcraft SR71000";
1538		c->scache.ways = 8;
1539		c->tlbsize = 64;
1540		break;
1541	}
1542}
1543
1544static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1545{
1546	decode_configs(c);
1547	switch (c->processor_id & PRID_IMP_MASK) {
1548	case PRID_IMP_PR4450:
1549		c->cputype = CPU_PR4450;
1550		__cpu_name[cpu] = "Philips PR4450";
1551		set_isa(c, MIPS_CPU_ISA_M32R1);
1552		break;
1553	}
1554}
1555
1556static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1557{
1558	decode_configs(c);
1559	switch (c->processor_id & PRID_IMP_MASK) {
1560	case PRID_IMP_BMIPS32_REV4:
1561	case PRID_IMP_BMIPS32_REV8:
1562		c->cputype = CPU_BMIPS32;
1563		__cpu_name[cpu] = "Broadcom BMIPS32";
1564		set_elf_platform(cpu, "bmips32");
1565		break;
1566	case PRID_IMP_BMIPS3300:
1567	case PRID_IMP_BMIPS3300_ALT:
1568	case PRID_IMP_BMIPS3300_BUG:
1569		c->cputype = CPU_BMIPS3300;
1570		__cpu_name[cpu] = "Broadcom BMIPS3300";
1571		set_elf_platform(cpu, "bmips3300");
1572		reserve_exception_space(0x400, VECTORSPACING * 64);
1573		break;
1574	case PRID_IMP_BMIPS43XX: {
1575		int rev = c->processor_id & PRID_REV_MASK;
1576
1577		if (rev >= PRID_REV_BMIPS4380_LO &&
1578				rev <= PRID_REV_BMIPS4380_HI) {
1579			c->cputype = CPU_BMIPS4380;
1580			__cpu_name[cpu] = "Broadcom BMIPS4380";
1581			set_elf_platform(cpu, "bmips4380");
1582			c->options |= MIPS_CPU_RIXI;
1583			reserve_exception_space(0x400, VECTORSPACING * 64);
1584		} else {
1585			c->cputype = CPU_BMIPS4350;
1586			__cpu_name[cpu] = "Broadcom BMIPS4350";
1587			set_elf_platform(cpu, "bmips4350");
1588		}
1589		break;
1590	}
1591	case PRID_IMP_BMIPS5000:
1592	case PRID_IMP_BMIPS5200:
1593		c->cputype = CPU_BMIPS5000;
1594		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1595			__cpu_name[cpu] = "Broadcom BMIPS5200";
1596		else
1597			__cpu_name[cpu] = "Broadcom BMIPS5000";
1598		set_elf_platform(cpu, "bmips5000");
1599		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1600		reserve_exception_space(0x1000, VECTORSPACING * 64);
1601		break;
1602	}
1603}
1604
1605static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1606{
1607	decode_configs(c);
1608	/* Octeon has different cache interface */
1609	c->options &= ~MIPS_CPU_4K_CACHE;
1610	switch (c->processor_id & PRID_IMP_MASK) {
1611	case PRID_IMP_CAVIUM_CN38XX:
1612	case PRID_IMP_CAVIUM_CN31XX:
1613	case PRID_IMP_CAVIUM_CN30XX:
1614		c->cputype = CPU_CAVIUM_OCTEON;
1615		__cpu_name[cpu] = "Cavium Octeon";
1616		goto platform;
1617	case PRID_IMP_CAVIUM_CN58XX:
1618	case PRID_IMP_CAVIUM_CN56XX:
1619	case PRID_IMP_CAVIUM_CN50XX:
1620	case PRID_IMP_CAVIUM_CN52XX:
1621		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1622		__cpu_name[cpu] = "Cavium Octeon+";
1623platform:
1624		set_elf_platform(cpu, "octeon");
1625		break;
1626	case PRID_IMP_CAVIUM_CN61XX:
1627	case PRID_IMP_CAVIUM_CN63XX:
1628	case PRID_IMP_CAVIUM_CN66XX:
1629	case PRID_IMP_CAVIUM_CN68XX:
1630	case PRID_IMP_CAVIUM_CNF71XX:
1631		c->cputype = CPU_CAVIUM_OCTEON2;
1632		__cpu_name[cpu] = "Cavium Octeon II";
1633		set_elf_platform(cpu, "octeon2");
1634		break;
1635	case PRID_IMP_CAVIUM_CN70XX:
1636	case PRID_IMP_CAVIUM_CN73XX:
1637	case PRID_IMP_CAVIUM_CNF75XX:
1638	case PRID_IMP_CAVIUM_CN78XX:
1639		c->cputype = CPU_CAVIUM_OCTEON3;
1640		__cpu_name[cpu] = "Cavium Octeon III";
1641		set_elf_platform(cpu, "octeon3");
1642		break;
1643	default:
1644		printk(KERN_INFO "Unknown Octeon chip!\n");
1645		c->cputype = CPU_UNKNOWN;
1646		break;
1647	}
1648}
1649
1650#ifdef CONFIG_CPU_LOONGSON64
1651#include <loongson_regs.h>
1652
1653static inline void decode_cpucfg(struct cpuinfo_mips *c)
1654{
1655	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
1656	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
1657	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
1658
1659	if (cfg1 & LOONGSON_CFG1_MMI)
1660		c->ases |= MIPS_ASE_LOONGSON_MMI;
1661
1662	if (cfg2 & LOONGSON_CFG2_LEXT1)
1663		c->ases |= MIPS_ASE_LOONGSON_EXT;
1664
1665	if (cfg2 & LOONGSON_CFG2_LEXT2)
1666		c->ases |= MIPS_ASE_LOONGSON_EXT2;
1667
1668	if (cfg2 & LOONGSON_CFG2_LSPW) {
1669		c->options |= MIPS_CPU_LDPTE;
1670		c->guest.options |= MIPS_CPU_LDPTE;
1671	}
1672
1673	if (cfg3 & LOONGSON_CFG3_LCAMP)
1674		c->ases |= MIPS_ASE_LOONGSON_CAM;
1675}
1676
1677static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1678{
1679	c->cputype = CPU_LOONGSON64;
1680
1681	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
1682	decode_configs(c);
1683	c->options |= MIPS_CPU_GSEXCEX;
1684
1685	switch (c->processor_id & PRID_IMP_MASK) {
1686	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
1687		switch (c->processor_id & PRID_REV_MASK) {
1688		case PRID_REV_LOONGSON2K_R1_0:
1689		case PRID_REV_LOONGSON2K_R1_1:
1690		case PRID_REV_LOONGSON2K_R1_2:
1691		case PRID_REV_LOONGSON2K_R1_3:
 
1692			__cpu_name[cpu] = "Loongson-2K";
1693			set_elf_platform(cpu, "gs264e");
1694			set_isa(c, MIPS_CPU_ISA_M64R2);
1695			break;
1696		}
 
1697		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
1698				MIPS_ASE_LOONGSON_EXT2);
1699		break;
1700	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
1701		switch (c->processor_id & PRID_REV_MASK) {
1702		case PRID_REV_LOONGSON3A_R2_0:
1703		case PRID_REV_LOONGSON3A_R2_1:
 
1704			__cpu_name[cpu] = "ICT Loongson-3";
1705			set_elf_platform(cpu, "loongson3a");
1706			set_isa(c, MIPS_CPU_ISA_M64R2);
1707			break;
1708		case PRID_REV_LOONGSON3A_R3_0:
1709		case PRID_REV_LOONGSON3A_R3_1:
 
1710			__cpu_name[cpu] = "ICT Loongson-3";
1711			set_elf_platform(cpu, "loongson3a");
1712			set_isa(c, MIPS_CPU_ISA_M64R2);
1713			break;
1714		}
1715		/*
1716		 * Loongson-3 Classic did not implement MIPS standard TLBINV
1717		 * but implemented TLBINVF and EHINV. As currently we're only
1718		 * using these two features, enable MIPS_CPU_TLBINV as well.
1719		 *
1720		 * Also some early Loongson-3A2000 had wrong TLB type in Config
1721		 * register, we correct it here.
1722		 */
1723		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
 
1724		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1725			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1726		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
1727		change_c0_config6(LOONGSON_CONF6_EXTIMER | LOONGSON_CONF6_INTIMER,
1728				  LOONGSON_CONF6_INTIMER);
1729		break;
1730	case PRID_IMP_LOONGSON_64G:
 
1731		__cpu_name[cpu] = "ICT Loongson-3";
1732		set_elf_platform(cpu, "loongson3a");
1733		set_isa(c, MIPS_CPU_ISA_M64R2);
1734		decode_cpucfg(c);
1735		change_c0_config6(LOONGSON_CONF6_EXTIMER | LOONGSON_CONF6_INTIMER,
1736				  LOONGSON_CONF6_INTIMER);
1737		break;
1738	default:
1739		panic("Unknown Loongson Processor ID!");
1740		break;
1741	}
1742}
1743#else
1744static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
1745#endif
1746
1747static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1748{
1749	decode_configs(c);
1750
1751	/*
1752	 * XBurst misses a config2 register, so config3 decode was skipped in
1753	 * decode_configs().
1754	 */
1755	decode_config3(c);
1756
1757	/* XBurst does not implement the CP0 counter. */
1758	c->options &= ~MIPS_CPU_COUNTER;
1759	BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter);
1760
1761	/* XBurst has virtually tagged icache */
1762	c->icache.flags |= MIPS_CACHE_VTAG;
1763
1764	switch (c->processor_id & PRID_IMP_MASK) {
1765
1766	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
1767	case PRID_IMP_XBURST_REV1:
1768
1769		/*
1770		 * The XBurst core by default attempts to avoid branch target
1771		 * buffer lookups by detecting & special casing loops. This
1772		 * feature will cause BogoMIPS and lpj calculate in error.
1773		 * Set cp0 config7 bit 4 to disable this feature.
1774		 */
1775		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1776
1777		switch (c->processor_id & PRID_COMP_MASK) {
1778
1779		/*
1780		 * The config0 register in the XBurst CPUs with a processor ID of
1781		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1782		 * but they don't actually support this ISA.
1783		 */
1784		case PRID_COMP_INGENIC_D0:
1785			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1786
1787			/* FPU is not properly detected on JZ4760(B). */
1788			if (c->processor_id == 0x2ed0024f)
1789				c->options |= MIPS_CPU_FPU;
1790
1791			fallthrough;
1792
1793		/*
1794		 * The config0 register in the XBurst CPUs with a processor ID of
1795		 * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned
1796		 * huge page tlb mode, this mode is not compatible with the MIPS
1797		 * standard, it will cause tlbmiss and into an infinite loop
1798		 * (line 21 in the tlb-funcs.S) when starting the init process.
1799		 * After chip reset, the default is HPTLB mode, Write 0xa9000000
1800		 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent
1801		 * getting stuck.
1802		 */
1803		case PRID_COMP_INGENIC_D1:
1804			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
1805			break;
1806
1807		default:
1808			break;
1809		}
1810		fallthrough;
1811
1812	/* XBurst®1 with MXU2.0 SIMD ISA */
1813	case PRID_IMP_XBURST_REV2:
1814		/* Ingenic uses the WA bit to achieve write-combine memory writes */
1815		c->writecombine = _CACHE_CACHABLE_WA;
1816		c->cputype = CPU_XBURST;
 
1817		__cpu_name[cpu] = "Ingenic XBurst";
1818		break;
1819
1820	/* XBurst®2 with MXU2.1 SIMD ISA */
1821	case PRID_IMP_XBURST2:
1822		c->cputype = CPU_XBURST;
1823		__cpu_name[cpu] = "Ingenic XBurst II";
1824		break;
1825
1826	default:
1827		panic("Unknown Ingenic Processor ID!");
1828		break;
1829	}
1830}
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832#ifdef CONFIG_64BIT
1833/* For use by uaccess.h */
1834u64 __ua_limit;
1835EXPORT_SYMBOL(__ua_limit);
1836#endif
1837
1838const char *__cpu_name[NR_CPUS];
1839const char *__elf_platform;
1840const char *__elf_base_platform;
1841
1842void cpu_probe(void)
1843{
1844	struct cpuinfo_mips *c = &current_cpu_data;
1845	unsigned int cpu = smp_processor_id();
1846
1847	/*
1848	 * Set a default elf platform, cpu probe may later
1849	 * overwrite it with a more precise value
1850	 */
1851	set_elf_platform(cpu, "mips");
1852
1853	c->processor_id = PRID_IMP_UNKNOWN;
1854	c->fpu_id	= FPIR_IMP_NONE;
1855	c->cputype	= CPU_UNKNOWN;
1856	c->writecombine = _CACHE_UNCACHED;
1857
1858	c->fpu_csr31	= FPU_CSR_RN;
1859	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1860
1861	c->processor_id = read_c0_prid();
1862	switch (c->processor_id & PRID_COMP_MASK) {
1863	case PRID_COMP_LEGACY:
1864		cpu_probe_legacy(c, cpu);
1865		break;
1866	case PRID_COMP_MIPS:
1867		cpu_probe_mips(c, cpu);
1868		break;
1869	case PRID_COMP_ALCHEMY:
1870	case PRID_COMP_NETLOGIC:
1871		cpu_probe_alchemy(c, cpu);
1872		break;
1873	case PRID_COMP_SIBYTE:
1874		cpu_probe_sibyte(c, cpu);
1875		break;
1876	case PRID_COMP_BROADCOM:
1877		cpu_probe_broadcom(c, cpu);
1878		break;
1879	case PRID_COMP_SANDCRAFT:
1880		cpu_probe_sandcraft(c, cpu);
1881		break;
1882	case PRID_COMP_NXP:
1883		cpu_probe_nxp(c, cpu);
1884		break;
1885	case PRID_COMP_CAVIUM:
1886		cpu_probe_cavium(c, cpu);
1887		break;
1888	case PRID_COMP_LOONGSON:
1889		cpu_probe_loongson(c, cpu);
1890		break;
1891	case PRID_COMP_INGENIC_13:
1892	case PRID_COMP_INGENIC_D0:
1893	case PRID_COMP_INGENIC_D1:
1894	case PRID_COMP_INGENIC_E1:
1895		cpu_probe_ingenic(c, cpu);
1896		break;
 
 
 
1897	}
1898
1899	BUG_ON(!__cpu_name[cpu]);
1900	BUG_ON(c->cputype == CPU_UNKNOWN);
1901
1902	/*
1903	 * Platform code can force the cpu type to optimize code
1904	 * generation. In that case be sure the cpu type is correctly
1905	 * manually setup otherwise it could trigger some nasty bugs.
1906	 */
1907	BUG_ON(current_cpu_type() != c->cputype);
1908
1909	if (cpu_has_rixi) {
1910		/* Enable the RIXI exceptions */
1911		set_c0_pagegrain(PG_IEC);
1912		back_to_back_c0_hazard();
1913		/* Verify the IEC bit is set */
1914		if (read_c0_pagegrain() & PG_IEC)
1915			c->options |= MIPS_CPU_RIXIEX;
1916	}
1917
1918	if (mips_fpu_disabled)
1919		c->options &= ~MIPS_CPU_FPU;
1920
1921	if (mips_dsp_disabled)
1922		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1923
1924	if (mips_htw_disabled) {
1925		c->options &= ~MIPS_CPU_HTW;
1926		write_c0_pwctl(read_c0_pwctl() &
1927			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1928	}
1929
1930	if (c->options & MIPS_CPU_FPU)
1931		cpu_set_fpu_opts(c);
1932	else
1933		cpu_set_nofpu_opts(c);
1934
 
 
 
 
1935	if (cpu_has_mips_r2_r6) {
1936		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1937		/* R2 has Performance Counter Interrupt indicator */
1938		c->options |= MIPS_CPU_PCI;
1939	}
1940	else
1941		c->srsets = 1;
1942
1943	if (cpu_has_mips_r6)
1944		elf_hwcap |= HWCAP_MIPS_R6;
1945
1946	if (cpu_has_msa) {
1947		c->msa_id = cpu_get_msa_id();
1948		WARN(c->msa_id & MSA_IR_WRPF,
1949		     "Vector register partitioning unimplemented!");
1950		elf_hwcap |= HWCAP_MIPS_MSA;
1951	}
1952
1953	if (cpu_has_mips16)
1954		elf_hwcap |= HWCAP_MIPS_MIPS16;
1955
1956	if (cpu_has_mdmx)
1957		elf_hwcap |= HWCAP_MIPS_MDMX;
1958
1959	if (cpu_has_mips3d)
1960		elf_hwcap |= HWCAP_MIPS_MIPS3D;
1961
1962	if (cpu_has_smartmips)
1963		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
1964
1965	if (cpu_has_dsp)
1966		elf_hwcap |= HWCAP_MIPS_DSP;
1967
1968	if (cpu_has_dsp2)
1969		elf_hwcap |= HWCAP_MIPS_DSP2;
1970
1971	if (cpu_has_dsp3)
1972		elf_hwcap |= HWCAP_MIPS_DSP3;
1973
1974	if (cpu_has_mips16e2)
1975		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
1976
1977	if (cpu_has_loongson_mmi)
1978		elf_hwcap |= HWCAP_LOONGSON_MMI;
1979
1980	if (cpu_has_loongson_ext)
1981		elf_hwcap |= HWCAP_LOONGSON_EXT;
1982
1983	if (cpu_has_loongson_ext2)
1984		elf_hwcap |= HWCAP_LOONGSON_EXT2;
1985
1986	if (cpu_has_vz)
1987		cpu_probe_vz(c);
1988
1989	cpu_probe_vmbits(c);
1990
1991	/* Synthesize CPUCFG data if running on Loongson processors;
1992	 * no-op otherwise.
1993	 *
1994	 * This looks at previously probed features, so keep this at bottom.
1995	 */
1996	loongson3_cpucfg_synthesize_data(c);
1997
1998#ifdef CONFIG_64BIT
1999	if (cpu == 0)
2000		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2001#endif
2002
2003	reserve_exception_space(0, 0x1000);
2004}
2005
2006void cpu_report(void)
2007{
2008	struct cpuinfo_mips *c = &current_cpu_data;
2009
2010	pr_info("CPU%d revision is: %08x (%s)\n",
2011		smp_processor_id(), c->processor_id, cpu_name_string());
2012	if (c->options & MIPS_CPU_FPU)
2013		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2014	if (cpu_has_msa)
2015		pr_info("MSA revision is: %08x\n", c->msa_id);
2016}
2017
2018void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2019{
2020	/* Ensure the core number fits in the field */
2021	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2022			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2023
2024	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2025	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2026}
2027
2028void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2029{
2030	/* Ensure the core number fits in the field */
2031	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2032
2033	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2034	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2035}
2036
2037void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2038{
2039	/* Ensure the VP(E) ID fits in the field */
2040	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2041
2042	/* Ensure we're not using VP(E)s without support */
2043	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2044		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2045
2046	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2047	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2048}