Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/list.h>
 13#include <linux/rcupdate.h>
 14#include <linux/slab.h>
 15#include <linux/sched.h>
 16#include <linux/spinlock.h>
 17#include <asm/barrier.h>
 18#include "flask.h"
 19#include "security.h"
 20#include "sidtab.h"
 21
 22struct sidtab_str_cache {
 23	struct rcu_head rcu_member;
 24	struct list_head lru_member;
 25	struct sidtab_entry *parent;
 26	u32 len;
 27	char str[];
 28};
 29
 30#define index_to_sid(index) (index + SECINITSID_NUM + 1)
 31#define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
 32
 33int sidtab_init(struct sidtab *s)
 34{
 35	u32 i;
 36
 37	memset(s->roots, 0, sizeof(s->roots));
 38
 
 
 
 
 39	for (i = 0; i < SECINITSID_NUM; i++)
 40		s->isids[i].set = 0;
 41
 42	s->count = 0;
 43	s->convert = NULL;
 44	hash_init(s->context_to_sid);
 45
 46	spin_lock_init(&s->lock);
 47
 48#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 49	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 50	INIT_LIST_HEAD(&s->cache_lru_list);
 51	spin_lock_init(&s->cache_lock);
 52#endif
 53
 54	return 0;
 55}
 56
 57static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 58{
 59	struct sidtab_entry *entry;
 60	u32 sid = 0;
 61
 62	rcu_read_lock();
 63	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 64		if (entry->hash != hash)
 65			continue;
 66		if (context_cmp(&entry->context, context)) {
 67			sid = entry->sid;
 68			break;
 69		}
 70	}
 71	rcu_read_unlock();
 72	return sid;
 73}
 74
 75int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 76{
 77	struct sidtab_isid_entry *isid;
 78	u32 hash;
 79	int rc;
 80
 81	if (sid == 0 || sid > SECINITSID_NUM)
 82		return -EINVAL;
 83
 84	isid = &s->isids[sid - 1];
 85
 86	rc = context_cpy(&isid->entry.context, context);
 87	if (rc)
 88		return rc;
 89
 90#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 91	isid->entry.cache = NULL;
 92#endif
 93	isid->set = 1;
 94
 95	hash = context_compute_hash(context);
 96
 97	/*
 98	 * Multiple initial sids may map to the same context. Check that this
 99	 * context is not already represented in the context_to_sid hashtable
100	 * to avoid duplicate entries and long linked lists upon hash
101	 * collision.
102	 */
103	if (!context_to_sid(s, context, hash)) {
104		isid->entry.sid = sid;
105		isid->entry.hash = hash;
106		hash_add(s->context_to_sid, &isid->entry.list, hash);
107	}
108
109	return 0;
110}
111
112int sidtab_hash_stats(struct sidtab *sidtab, char *page)
113{
114	int i;
115	int chain_len = 0;
116	int slots_used = 0;
117	int entries = 0;
118	int max_chain_len = 0;
119	int cur_bucket = 0;
120	struct sidtab_entry *entry;
121
122	rcu_read_lock();
123	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
124		entries++;
125		if (i == cur_bucket) {
126			chain_len++;
127			if (chain_len == 1)
128				slots_used++;
129		} else {
130			cur_bucket = i;
131			if (chain_len > max_chain_len)
132				max_chain_len = chain_len;
133			chain_len = 0;
134		}
135	}
136	rcu_read_unlock();
137
138	if (chain_len > max_chain_len)
139		max_chain_len = chain_len;
140
141	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
142			 "longest chain: %d\n", entries,
143			 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
144}
145
146static u32 sidtab_level_from_count(u32 count)
147{
148	u32 capacity = SIDTAB_LEAF_ENTRIES;
149	u32 level = 0;
150
151	while (count > capacity) {
152		capacity <<= SIDTAB_INNER_SHIFT;
153		++level;
154	}
155	return level;
156}
157
158static int sidtab_alloc_roots(struct sidtab *s, u32 level)
159{
160	u32 l;
161
162	if (!s->roots[0].ptr_leaf) {
163		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
164					       GFP_ATOMIC);
165		if (!s->roots[0].ptr_leaf)
166			return -ENOMEM;
167	}
168	for (l = 1; l <= level; ++l)
169		if (!s->roots[l].ptr_inner) {
170			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
171							GFP_ATOMIC);
172			if (!s->roots[l].ptr_inner)
173				return -ENOMEM;
174			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
175		}
176	return 0;
177}
178
179static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
180					     int alloc)
181{
182	union sidtab_entry_inner *entry;
183	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
184
185	/* find the level of the subtree we need */
186	level = sidtab_level_from_count(index + 1);
187	capacity_shift = level * SIDTAB_INNER_SHIFT;
188
189	/* allocate roots if needed */
190	if (alloc && sidtab_alloc_roots(s, level) != 0)
191		return NULL;
192
193	/* lookup inside the subtree */
194	entry = &s->roots[level];
195	while (level != 0) {
196		capacity_shift -= SIDTAB_INNER_SHIFT;
197		--level;
198
199		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
200		leaf_index &= ((u32)1 << capacity_shift) - 1;
201
202		if (!entry->ptr_inner) {
203			if (alloc)
204				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
205							   GFP_ATOMIC);
206			if (!entry->ptr_inner)
207				return NULL;
208		}
209	}
210	if (!entry->ptr_leaf) {
211		if (alloc)
212			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
213						  GFP_ATOMIC);
214		if (!entry->ptr_leaf)
215			return NULL;
216	}
217	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
218}
219
220static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
221{
222	/* read entries only after reading count */
223	u32 count = smp_load_acquire(&s->count);
224
225	if (index >= count)
226		return NULL;
227
228	return sidtab_do_lookup(s, index, 0);
229}
230
231static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
232{
233	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
234}
235
236static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
237					       int force)
238{
239	if (sid != 0) {
240		struct sidtab_entry *entry;
241
 
242		if (sid > SECINITSID_NUM)
243			entry = sidtab_lookup(s, sid_to_index(sid));
244		else
245			entry = sidtab_lookup_initial(s, sid);
246		if (entry && (!entry->context.len || force))
247			return entry;
248	}
249
250	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
251}
252
253struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
254{
255	return sidtab_search_core(s, sid, 0);
256}
257
258struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
259{
260	return sidtab_search_core(s, sid, 1);
261}
262
263int sidtab_context_to_sid(struct sidtab *s, struct context *context,
264			  u32 *sid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265{
266	unsigned long flags;
267	u32 count, hash = context_compute_hash(context);
268	struct sidtab_convert_params *convert;
269	struct sidtab_entry *dst, *dst_convert;
270	int rc;
271
272	*sid = context_to_sid(s, context, hash);
273	if (*sid)
 
 
 
 
 
 
 
 
 
 
 
274		return 0;
 
275
276	/* lock-free search failed: lock, re-search, and insert if not found */
277	spin_lock_irqsave(&s->lock, flags);
278
279	rc = 0;
280	*sid = context_to_sid(s, context, hash);
281	if (*sid)
282		goto out_unlock;
283
284	count = s->count;
285	convert = s->convert;
 
 
 
 
 
 
 
 
 
 
 
 
 
286
287	/* bail out if we already reached max entries */
288	rc = -EOVERFLOW;
289	if (count >= SIDTAB_MAX)
290		goto out_unlock;
291
292	/* insert context into new entry */
293	rc = -ENOMEM;
294	dst = sidtab_do_lookup(s, count, 1);
295	if (!dst)
296		goto out_unlock;
297
298	dst->sid = index_to_sid(count);
299	dst->hash = hash;
300
301	rc = context_cpy(&dst->context, context);
302	if (rc)
303		goto out_unlock;
304
305	/*
306	 * if we are building a new sidtab, we need to convert the context
307	 * and insert it there as well
308	 */
309	if (convert) {
310		rc = -ENOMEM;
311		dst_convert = sidtab_do_lookup(convert->target, count, 1);
312		if (!dst_convert) {
313			context_destroy(&dst->context);
314			goto out_unlock;
315		}
316
317		rc = convert->func(context, &dst_convert->context,
318				   convert->args);
319		if (rc) {
320			context_destroy(&dst->context);
321			goto out_unlock;
322		}
323		dst_convert->sid = index_to_sid(count);
324		dst_convert->hash = context_compute_hash(&dst_convert->context);
325		convert->target->count = count + 1;
326
327		hash_add_rcu(convert->target->context_to_sid,
328			     &dst_convert->list, dst_convert->hash);
329	}
330
331	if (context->len)
332		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
333			context->str);
334
335	*sid = index_to_sid(count);
 
336
337	/* write entries before updating count */
338	smp_store_release(&s->count, count + 1);
339	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
340
341	rc = 0;
342out_unlock:
343	spin_unlock_irqrestore(&s->lock, flags);
344	return rc;
345}
346
347static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
348{
349	struct sidtab_entry *entry;
350	u32 i;
351
352	for (i = 0; i < count; i++) {
353		entry = sidtab_do_lookup(s, i, 0);
354		entry->sid = index_to_sid(i);
355		entry->hash = context_compute_hash(&entry->context);
356
357		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
 
 
 
358	}
 
 
 
 
 
 
359}
360
361static int sidtab_convert_tree(union sidtab_entry_inner *edst,
362			       union sidtab_entry_inner *esrc,
363			       u32 *pos, u32 count, u32 level,
364			       struct sidtab_convert_params *convert)
365{
366	int rc;
367	u32 i;
368
369	if (level != 0) {
370		if (!edst->ptr_inner) {
371			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
372						  GFP_KERNEL);
373			if (!edst->ptr_inner)
374				return -ENOMEM;
375		}
376		i = 0;
377		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
378			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
379						 &esrc->ptr_inner->entries[i],
380						 pos, count, level - 1,
381						 convert);
382			if (rc)
383				return rc;
384			i++;
385		}
386	} else {
387		if (!edst->ptr_leaf) {
388			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
389						 GFP_KERNEL);
390			if (!edst->ptr_leaf)
391				return -ENOMEM;
392		}
393		i = 0;
394		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
395			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
396					   &edst->ptr_leaf->entries[i].context,
397					   convert->args);
398			if (rc)
399				return rc;
400			(*pos)++;
401			i++;
402		}
403		cond_resched();
404	}
405	return 0;
406}
407
408int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
409{
410	unsigned long flags;
411	u32 count, level, pos;
412	int rc;
413
414	spin_lock_irqsave(&s->lock, flags);
415
416	/* concurrent policy loads are not allowed */
417	if (s->convert) {
418		spin_unlock_irqrestore(&s->lock, flags);
419		return -EBUSY;
420	}
421
422	count = s->count;
423	level = sidtab_level_from_count(count);
424
425	/* allocate last leaf in the new sidtab (to avoid race with
426	 * live convert)
427	 */
428	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
429	if (rc) {
430		spin_unlock_irqrestore(&s->lock, flags);
431		return rc;
432	}
433
434	/* set count in case no new entries are added during conversion */
435	params->target->count = count;
436
437	/* enable live convert of new entries */
438	s->convert = params;
439
440	/* we can safely convert the tree outside the lock */
441	spin_unlock_irqrestore(&s->lock, flags);
442
443	pr_info("SELinux:  Converting %u SID table entries...\n", count);
444
445	/* convert all entries not covered by live convert */
446	pos = 0;
447	rc = sidtab_convert_tree(&params->target->roots[level],
448				 &s->roots[level], &pos, count, level, params);
449	if (rc) {
450		/* we need to keep the old table - disable live convert */
451		spin_lock_irqsave(&s->lock, flags);
452		s->convert = NULL;
453		spin_unlock_irqrestore(&s->lock, flags);
454		return rc;
455	}
456	/*
457	 * The hashtable can also be modified in sidtab_context_to_sid()
458	 * so we must re-acquire the lock here.
459	 */
460	spin_lock_irqsave(&s->lock, flags);
461	sidtab_convert_hashtable(params->target, count);
462	spin_unlock_irqrestore(&s->lock, flags);
463
464	return 0;
465}
466
467static void sidtab_destroy_entry(struct sidtab_entry *entry)
468{
469	context_destroy(&entry->context);
470#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
471	kfree(rcu_dereference_raw(entry->cache));
472#endif
473}
474
475static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
476{
477	u32 i;
478
479	if (level != 0) {
480		struct sidtab_node_inner *node = entry.ptr_inner;
481
482		if (!node)
483			return;
484
485		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
486			sidtab_destroy_tree(node->entries[i], level - 1);
487		kfree(node);
488	} else {
489		struct sidtab_node_leaf *node = entry.ptr_leaf;
490
491		if (!node)
492			return;
493
494		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
495			sidtab_destroy_entry(&node->entries[i]);
496		kfree(node);
497	}
498}
499
500void sidtab_destroy(struct sidtab *s)
501{
502	u32 i, level;
503
504	for (i = 0; i < SECINITSID_NUM; i++)
505		if (s->isids[i].set)
506			sidtab_destroy_entry(&s->isids[i].entry);
507
508	level = SIDTAB_MAX_LEVEL;
509	while (level && !s->roots[level].ptr_inner)
510		--level;
511
512	sidtab_destroy_tree(s->roots[level], level);
513	/*
514	 * The context_to_sid hashtable's objects are all shared
515	 * with the isids array and context tree, and so don't need
516	 * to be cleaned up here.
517	 */
518}
519
520#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
521
522void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
523			const char *str, u32 str_len)
524{
525	struct sidtab_str_cache *cache, *victim = NULL;
526	unsigned long flags;
527
528	/* do not cache invalid contexts */
529	if (entry->context.len)
530		return;
531
532	spin_lock_irqsave(&s->cache_lock, flags);
533
534	cache = rcu_dereference_protected(entry->cache,
535					  lockdep_is_held(&s->cache_lock));
536	if (cache) {
537		/* entry in cache - just bump to the head of LRU list */
538		list_move(&cache->lru_member, &s->cache_lru_list);
539		goto out_unlock;
540	}
541
542	cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
543	if (!cache)
544		goto out_unlock;
545
546	if (s->cache_free_slots == 0) {
547		/* pop a cache entry from the tail and free it */
548		victim = container_of(s->cache_lru_list.prev,
549				      struct sidtab_str_cache, lru_member);
550		list_del(&victim->lru_member);
551		rcu_assign_pointer(victim->parent->cache, NULL);
552	} else {
553		s->cache_free_slots--;
554	}
555	cache->parent = entry;
556	cache->len = str_len;
557	memcpy(cache->str, str, str_len);
558	list_add(&cache->lru_member, &s->cache_lru_list);
559
560	rcu_assign_pointer(entry->cache, cache);
561
562out_unlock:
563	spin_unlock_irqrestore(&s->cache_lock, flags);
564	kfree_rcu(victim, rcu_member);
565}
566
567int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
568		       char **out, u32 *out_len)
569{
570	struct sidtab_str_cache *cache;
571	int rc = 0;
572
573	if (entry->context.len)
574		return -ENOENT; /* do not cache invalid contexts */
575
576	rcu_read_lock();
577
578	cache = rcu_dereference(entry->cache);
579	if (!cache) {
580		rc = -ENOENT;
581	} else {
582		*out_len = cache->len;
583		if (out) {
584			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
585			if (!*out)
586				rc = -ENOMEM;
587		}
588	}
589
590	rcu_read_unlock();
591
592	if (!rc && out)
593		sidtab_sid2str_put(s, entry, *out, *out_len);
594	return rc;
595}
596
597#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 
 
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/spinlock.h>
 15#include <asm/barrier.h>
 16#include "flask.h"
 17#include "security.h"
 18#include "sidtab.h"
 19
 
 
 
 
 
 
 
 
 
 
 
 20int sidtab_init(struct sidtab *s)
 21{
 22	u32 i;
 23
 24	memset(s->roots, 0, sizeof(s->roots));
 25
 26	/* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
 27	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
 28		s->rcache[i] = SIDTAB_MAX;
 29
 30	for (i = 0; i < SECINITSID_NUM; i++)
 31		s->isids[i].set = 0;
 32
 33	s->count = 0;
 34	s->convert = NULL;
 
 35
 36	spin_lock_init(&s->lock);
 
 
 
 
 
 
 
 37	return 0;
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 41{
 42	struct sidtab_isid_entry *entry;
 
 43	int rc;
 44
 45	if (sid == 0 || sid > SECINITSID_NUM)
 46		return -EINVAL;
 47
 48	entry = &s->isids[sid - 1];
 49
 50	rc = context_cpy(&entry->context, context);
 51	if (rc)
 52		return rc;
 53
 54	entry->set = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55	return 0;
 56}
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static u32 sidtab_level_from_count(u32 count)
 59{
 60	u32 capacity = SIDTAB_LEAF_ENTRIES;
 61	u32 level = 0;
 62
 63	while (count > capacity) {
 64		capacity <<= SIDTAB_INNER_SHIFT;
 65		++level;
 66	}
 67	return level;
 68}
 69
 70static int sidtab_alloc_roots(struct sidtab *s, u32 level)
 71{
 72	u32 l;
 73
 74	if (!s->roots[0].ptr_leaf) {
 75		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 76					       GFP_ATOMIC);
 77		if (!s->roots[0].ptr_leaf)
 78			return -ENOMEM;
 79	}
 80	for (l = 1; l <= level; ++l)
 81		if (!s->roots[l].ptr_inner) {
 82			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 83							GFP_ATOMIC);
 84			if (!s->roots[l].ptr_inner)
 85				return -ENOMEM;
 86			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
 87		}
 88	return 0;
 89}
 90
 91static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
 
 92{
 93	union sidtab_entry_inner *entry;
 94	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
 95
 96	/* find the level of the subtree we need */
 97	level = sidtab_level_from_count(index + 1);
 98	capacity_shift = level * SIDTAB_INNER_SHIFT;
 99
100	/* allocate roots if needed */
101	if (alloc && sidtab_alloc_roots(s, level) != 0)
102		return NULL;
103
104	/* lookup inside the subtree */
105	entry = &s->roots[level];
106	while (level != 0) {
107		capacity_shift -= SIDTAB_INNER_SHIFT;
108		--level;
109
110		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111		leaf_index &= ((u32)1 << capacity_shift) - 1;
112
113		if (!entry->ptr_inner) {
114			if (alloc)
115				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116							   GFP_ATOMIC);
117			if (!entry->ptr_inner)
118				return NULL;
119		}
120	}
121	if (!entry->ptr_leaf) {
122		if (alloc)
123			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124						  GFP_ATOMIC);
125		if (!entry->ptr_leaf)
126			return NULL;
127	}
128	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129}
130
131static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132{
133	/* read entries only after reading count */
134	u32 count = smp_load_acquire(&s->count);
135
136	if (index >= count)
137		return NULL;
138
139	return sidtab_do_lookup(s, index, 0);
140}
141
142static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
143{
144	return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
145}
146
147static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 
148{
149	struct context *context;
 
150
151	if (sid != 0) {
152		if (sid > SECINITSID_NUM)
153			context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
154		else
155			context = sidtab_lookup_initial(s, sid);
156		if (context && (!context->len || force))
157			return context;
158	}
159
160	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
161}
162
163struct context *sidtab_search(struct sidtab *s, u32 sid)
164{
165	return sidtab_search_core(s, sid, 0);
166}
167
168struct context *sidtab_search_force(struct sidtab *s, u32 sid)
169{
170	return sidtab_search_core(s, sid, 1);
171}
172
173static int sidtab_find_context(union sidtab_entry_inner entry,
174			       u32 *pos, u32 count, u32 level,
175			       struct context *context, u32 *index)
176{
177	int rc;
178	u32 i;
179
180	if (level != 0) {
181		struct sidtab_node_inner *node = entry.ptr_inner;
182
183		i = 0;
184		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
185			rc = sidtab_find_context(node->entries[i],
186						 pos, count, level - 1,
187						 context, index);
188			if (rc == 0)
189				return 0;
190			i++;
191		}
192	} else {
193		struct sidtab_node_leaf *node = entry.ptr_leaf;
194
195		i = 0;
196		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
197			if (context_cmp(&node->entries[i].context, context)) {
198				*index = *pos;
199				return 0;
200			}
201			(*pos)++;
202			i++;
203		}
204	}
205	return -ENOENT;
206}
207
208static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
209{
210	while (pos > 0) {
211		WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
212		--pos;
213	}
214	WRITE_ONCE(s->rcache[0], index);
215}
216
217static void sidtab_rcache_push(struct sidtab *s, u32 index)
218{
219	sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
220}
221
222static int sidtab_rcache_search(struct sidtab *s, struct context *context,
223				u32 *index)
224{
225	u32 i;
226
227	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
228		u32 v = READ_ONCE(s->rcache[i]);
229
230		if (v >= SIDTAB_MAX)
231			continue;
232
233		if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
234			sidtab_rcache_update(s, v, i);
235			*index = v;
236			return 0;
237		}
238	}
239	return -ENOENT;
240}
241
242static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
243				 u32 *index)
244{
245	unsigned long flags;
246	u32 count, count_locked, level, pos;
247	struct sidtab_convert_params *convert;
248	struct context *dst, *dst_convert;
249	int rc;
250
251	rc = sidtab_rcache_search(s, context, index);
252	if (rc == 0)
253		return 0;
254
255	/* read entries only after reading count */
256	count = smp_load_acquire(&s->count);
257	level = sidtab_level_from_count(count);
258
259	pos = 0;
260	rc = sidtab_find_context(s->roots[level], &pos, count, level,
261				 context, index);
262	if (rc == 0) {
263		sidtab_rcache_push(s, *index);
264		return 0;
265	}
266
267	/* lock-free search failed: lock, re-search, and insert if not found */
268	spin_lock_irqsave(&s->lock, flags);
269
 
 
 
 
 
 
270	convert = s->convert;
271	count_locked = s->count;
272	level = sidtab_level_from_count(count_locked);
273
274	/* if count has changed before we acquired the lock, then catch up */
275	while (count < count_locked) {
276		if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
277			sidtab_rcache_push(s, count);
278			*index = count;
279			rc = 0;
280			goto out_unlock;
281		}
282		++count;
283	}
284
285	/* bail out if we already reached max entries */
286	rc = -EOVERFLOW;
287	if (count >= SIDTAB_MAX)
288		goto out_unlock;
289
290	/* insert context into new entry */
291	rc = -ENOMEM;
292	dst = sidtab_do_lookup(s, count, 1);
293	if (!dst)
294		goto out_unlock;
295
296	rc = context_cpy(dst, context);
 
 
 
297	if (rc)
298		goto out_unlock;
299
300	/*
301	 * if we are building a new sidtab, we need to convert the context
302	 * and insert it there as well
303	 */
304	if (convert) {
305		rc = -ENOMEM;
306		dst_convert = sidtab_do_lookup(convert->target, count, 1);
307		if (!dst_convert) {
308			context_destroy(dst);
309			goto out_unlock;
310		}
311
312		rc = convert->func(context, dst_convert, convert->args);
 
313		if (rc) {
314			context_destroy(dst);
315			goto out_unlock;
316		}
 
 
 
317
318		/* at this point we know the insert won't fail */
319		convert->target->count = count + 1;
320	}
321
322	if (context->len)
323		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
324			context->str);
325
326	sidtab_rcache_push(s, count);
327	*index = count;
328
329	/* write entries before writing new count */
330	smp_store_release(&s->count, count + 1);
 
331
332	rc = 0;
333out_unlock:
334	spin_unlock_irqrestore(&s->lock, flags);
335	return rc;
336}
337
338int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
339{
340	int rc;
341	u32 i;
342
343	for (i = 0; i < SECINITSID_NUM; i++) {
344		struct sidtab_isid_entry *entry = &s->isids[i];
 
 
345
346		if (entry->set && context_cmp(context, &entry->context)) {
347			*sid = i + 1;
348			return 0;
349		}
350	}
351
352	rc = sidtab_reverse_lookup(s, context, sid);
353	if (rc)
354		return rc;
355	*sid += SECINITSID_NUM + 1;
356	return 0;
357}
358
359static int sidtab_convert_tree(union sidtab_entry_inner *edst,
360			       union sidtab_entry_inner *esrc,
361			       u32 *pos, u32 count, u32 level,
362			       struct sidtab_convert_params *convert)
363{
364	int rc;
365	u32 i;
366
367	if (level != 0) {
368		if (!edst->ptr_inner) {
369			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
370						  GFP_KERNEL);
371			if (!edst->ptr_inner)
372				return -ENOMEM;
373		}
374		i = 0;
375		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
376			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
377						 &esrc->ptr_inner->entries[i],
378						 pos, count, level - 1,
379						 convert);
380			if (rc)
381				return rc;
382			i++;
383		}
384	} else {
385		if (!edst->ptr_leaf) {
386			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
387						 GFP_KERNEL);
388			if (!edst->ptr_leaf)
389				return -ENOMEM;
390		}
391		i = 0;
392		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
393			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
394					   &edst->ptr_leaf->entries[i].context,
395					   convert->args);
396			if (rc)
397				return rc;
398			(*pos)++;
399			i++;
400		}
401		cond_resched();
402	}
403	return 0;
404}
405
406int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
407{
408	unsigned long flags;
409	u32 count, level, pos;
410	int rc;
411
412	spin_lock_irqsave(&s->lock, flags);
413
414	/* concurrent policy loads are not allowed */
415	if (s->convert) {
416		spin_unlock_irqrestore(&s->lock, flags);
417		return -EBUSY;
418	}
419
420	count = s->count;
421	level = sidtab_level_from_count(count);
422
423	/* allocate last leaf in the new sidtab (to avoid race with
424	 * live convert)
425	 */
426	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
427	if (rc) {
428		spin_unlock_irqrestore(&s->lock, flags);
429		return rc;
430	}
431
432	/* set count in case no new entries are added during conversion */
433	params->target->count = count;
434
435	/* enable live convert of new entries */
436	s->convert = params;
437
438	/* we can safely do the rest of the conversion outside the lock */
439	spin_unlock_irqrestore(&s->lock, flags);
440
441	pr_info("SELinux:  Converting %u SID table entries...\n", count);
442
443	/* convert all entries not covered by live convert */
444	pos = 0;
445	rc = sidtab_convert_tree(&params->target->roots[level],
446				 &s->roots[level], &pos, count, level, params);
447	if (rc) {
448		/* we need to keep the old table - disable live convert */
449		spin_lock_irqsave(&s->lock, flags);
450		s->convert = NULL;
451		spin_unlock_irqrestore(&s->lock, flags);
 
452	}
453	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454}
455
456static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
457{
458	u32 i;
459
460	if (level != 0) {
461		struct sidtab_node_inner *node = entry.ptr_inner;
462
463		if (!node)
464			return;
465
466		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
467			sidtab_destroy_tree(node->entries[i], level - 1);
468		kfree(node);
469	} else {
470		struct sidtab_node_leaf *node = entry.ptr_leaf;
471
472		if (!node)
473			return;
474
475		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
476			context_destroy(&node->entries[i].context);
477		kfree(node);
478	}
479}
480
481void sidtab_destroy(struct sidtab *s)
482{
483	u32 i, level;
484
485	for (i = 0; i < SECINITSID_NUM; i++)
486		if (s->isids[i].set)
487			context_destroy(&s->isids[i].context);
488
489	level = SIDTAB_MAX_LEVEL;
490	while (level && !s->roots[level].ptr_inner)
491		--level;
492
493	sidtab_destroy_tree(s->roots[level], level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494}