Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * COPYRIGHT (c) 2008
  3 * The Regents of the University of Michigan
  4 * ALL RIGHTS RESERVED
  5 *
  6 * Permission is granted to use, copy, create derivative works
  7 * and redistribute this software and such derivative works
  8 * for any purpose, so long as the name of The University of
  9 * Michigan is not used in any advertising or publicity
 10 * pertaining to the use of distribution of this software
 11 * without specific, written prior authorization.  If the
 12 * above copyright notice or any other identification of the
 13 * University of Michigan is included in any copy of any
 14 * portion of this software, then the disclaimer below must
 15 * also be included.
 16 *
 17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
 18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
 19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
 20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
 21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
 23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
 24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
 25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
 26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
 27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
 28 * SUCH DAMAGES.
 29 */
 30
 31#include <crypto/skcipher.h>
 32#include <linux/types.h>
 33#include <linux/jiffies.h>
 34#include <linux/sunrpc/gss_krb5.h>
 35#include <linux/random.h>
 36#include <linux/pagemap.h>
 37
 38#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 39# define RPCDBG_FACILITY	RPCDBG_AUTH
 40#endif
 41
 42static inline int
 43gss_krb5_padding(int blocksize, int length)
 44{
 45	return blocksize - (length % blocksize);
 46}
 47
 48static inline void
 49gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize)
 50{
 51	int padding = gss_krb5_padding(blocksize, buf->len - offset);
 52	char *p;
 53	struct kvec *iov;
 54
 55	if (buf->page_len || buf->tail[0].iov_len)
 56		iov = &buf->tail[0];
 57	else
 58		iov = &buf->head[0];
 59	p = iov->iov_base + iov->iov_len;
 60	iov->iov_len += padding;
 61	buf->len += padding;
 62	memset(p, padding, padding);
 63}
 64
 65static inline int
 66gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize)
 67{
 68	u8 *ptr;
 69	u8 pad;
 70	size_t len = buf->len;
 71
 72	if (len <= buf->head[0].iov_len) {
 73		pad = *(u8 *)(buf->head[0].iov_base + len - 1);
 74		if (pad > buf->head[0].iov_len)
 75			return -EINVAL;
 76		buf->head[0].iov_len -= pad;
 77		goto out;
 78	} else
 79		len -= buf->head[0].iov_len;
 80	if (len <= buf->page_len) {
 81		unsigned int last = (buf->page_base + len - 1)
 82					>>PAGE_SHIFT;
 83		unsigned int offset = (buf->page_base + len - 1)
 84					& (PAGE_SIZE - 1);
 85		ptr = kmap_atomic(buf->pages[last]);
 86		pad = *(ptr + offset);
 87		kunmap_atomic(ptr);
 88		goto out;
 89	} else
 90		len -= buf->page_len;
 91	BUG_ON(len > buf->tail[0].iov_len);
 92	pad = *(u8 *)(buf->tail[0].iov_base + len - 1);
 93out:
 94	/* XXX: NOTE: we do not adjust the page lengths--they represent
 95	 * a range of data in the real filesystem page cache, and we need
 96	 * to know that range so the xdr code can properly place read data.
 97	 * However adjusting the head length, as we do above, is harmless.
 98	 * In the case of a request that fits into a single page, the server
 99	 * also uses length and head length together to determine the original
100	 * start of the request to copy the request for deferal; so it's
101	 * easier on the server if we adjust head and tail length in tandem.
102	 * It's not really a problem that we don't fool with the page and
103	 * tail lengths, though--at worst badly formed xdr might lead the
104	 * server to attempt to parse the padding.
105	 * XXX: Document all these weird requirements for gss mechanism
106	 * wrap/unwrap functions. */
107	if (pad > blocksize)
108		return -EINVAL;
109	if (buf->len > pad)
110		buf->len -= pad;
111	else
112		return -EINVAL;
113	return 0;
114}
115
116void
117gss_krb5_make_confounder(char *p, u32 conflen)
118{
119	static u64 i = 0;
120	u64 *q = (u64 *)p;
121
122	/* rfc1964 claims this should be "random".  But all that's really
123	 * necessary is that it be unique.  And not even that is necessary in
124	 * our case since our "gssapi" implementation exists only to support
125	 * rpcsec_gss, so we know that the only buffers we will ever encrypt
126	 * already begin with a unique sequence number.  Just to hedge my bets
127	 * I'll make a half-hearted attempt at something unique, but ensuring
128	 * uniqueness would mean worrying about atomicity and rollover, and I
129	 * don't care enough. */
130
131	/* initialize to random value */
132	if (i == 0) {
133		i = prandom_u32();
134		i = (i << 32) | prandom_u32();
135	}
136
137	switch (conflen) {
138	case 16:
139		*q++ = i++;
140		fallthrough;
141	case 8:
142		*q++ = i++;
143		break;
144	default:
145		BUG();
146	}
147}
148
149/* Assumptions: the head and tail of inbuf are ours to play with.
150 * The pages, however, may be real pages in the page cache and we replace
151 * them with scratch pages from **pages before writing to them. */
152/* XXX: obviously the above should be documentation of wrap interface,
153 * and shouldn't be in this kerberos-specific file. */
154
155/* XXX factor out common code with seal/unseal. */
156
157static u32
158gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset,
159		struct xdr_buf *buf, struct page **pages)
160{
161	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
162	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
163					    .data = cksumdata};
164	int			blocksize = 0, plainlen;
165	unsigned char		*ptr, *msg_start;
166	time64_t		now;
167	int			headlen;
168	struct page		**tmp_pages;
169	u32			seq_send;
170	u8			*cksumkey;
171	u32			conflen = kctx->gk5e->conflen;
172
173	dprintk("RPC:       %s\n", __func__);
174
175	now = ktime_get_real_seconds();
176
177	blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
178	gss_krb5_add_padding(buf, offset, blocksize);
179	BUG_ON((buf->len - offset) % blocksize);
180	plainlen = conflen + buf->len - offset;
181
182	headlen = g_token_size(&kctx->mech_used,
183		GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) -
184		(buf->len - offset);
185
186	ptr = buf->head[0].iov_base + offset;
187	/* shift data to make room for header. */
188	xdr_extend_head(buf, offset, headlen);
189
190	/* XXX Would be cleverer to encrypt while copying. */
191	BUG_ON((buf->len - offset - headlen) % blocksize);
192
193	g_make_token_header(&kctx->mech_used,
194				GSS_KRB5_TOK_HDR_LEN +
195				kctx->gk5e->cksumlength + plainlen, &ptr);
196
197
198	/* ptr now at header described in rfc 1964, section 1.2.1: */
199	ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff);
200	ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff);
201
202	msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength;
203
204	/*
205	 * signalg and sealalg are stored as if they were converted from LE
206	 * to host endian, even though they're opaque pairs of bytes according
207	 * to the RFC.
208	 */
209	*(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg);
210	*(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg);
211	ptr[6] = 0xff;
212	ptr[7] = 0xff;
213
214	gss_krb5_make_confounder(msg_start, conflen);
215
216	if (kctx->gk5e->keyed_cksum)
217		cksumkey = kctx->cksum;
218	else
219		cksumkey = NULL;
220
221	/* XXXJBF: UGH!: */
222	tmp_pages = buf->pages;
223	buf->pages = pages;
224	if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen,
225					cksumkey, KG_USAGE_SEAL, &md5cksum))
226		return GSS_S_FAILURE;
227	buf->pages = tmp_pages;
228
229	memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len);
230
231	seq_send = atomic_fetch_inc(&kctx->seq_send);
232
233	/* XXX would probably be more efficient to compute checksum
234	 * and encrypt at the same time: */
235	if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff,
236			       seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8)))
237		return GSS_S_FAILURE;
238
239	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
240		struct crypto_sync_skcipher *cipher;
241		int err;
242		cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
243						    0, 0);
244		if (IS_ERR(cipher))
245			return GSS_S_FAILURE;
246
247		krb5_rc4_setup_enc_key(kctx, cipher, seq_send);
248
249		err = gss_encrypt_xdr_buf(cipher, buf,
250					  offset + headlen - conflen, pages);
251		crypto_free_sync_skcipher(cipher);
252		if (err)
253			return GSS_S_FAILURE;
254	} else {
255		if (gss_encrypt_xdr_buf(kctx->enc, buf,
256					offset + headlen - conflen, pages))
257			return GSS_S_FAILURE;
258	}
259
260	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
261}
262
263static u32
264gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, int len,
265		       struct xdr_buf *buf, unsigned int *slack,
266		       unsigned int *align)
267{
268	int			signalg;
269	int			sealalg;
270	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
271	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
272					    .data = cksumdata};
273	time64_t		now;
274	int			direction;
275	s32			seqnum;
276	unsigned char		*ptr;
277	int			bodysize;
278	void			*data_start, *orig_start;
279	int			data_len;
280	int			blocksize;
281	u32			conflen = kctx->gk5e->conflen;
282	int			crypt_offset;
283	u8			*cksumkey;
284	unsigned int		saved_len = buf->len;
285
286	dprintk("RPC:       gss_unwrap_kerberos\n");
287
288	ptr = (u8 *)buf->head[0].iov_base + offset;
289	if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr,
290					len - offset))
291		return GSS_S_DEFECTIVE_TOKEN;
292
293	if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) ||
294	    (ptr[1] !=  (KG_TOK_WRAP_MSG & 0xff)))
295		return GSS_S_DEFECTIVE_TOKEN;
296
297	/* XXX sanity-check bodysize?? */
298
299	/* get the sign and seal algorithms */
300
301	signalg = ptr[2] + (ptr[3] << 8);
302	if (signalg != kctx->gk5e->signalg)
303		return GSS_S_DEFECTIVE_TOKEN;
304
305	sealalg = ptr[4] + (ptr[5] << 8);
306	if (sealalg != kctx->gk5e->sealalg)
307		return GSS_S_DEFECTIVE_TOKEN;
308
309	if ((ptr[6] != 0xff) || (ptr[7] != 0xff))
310		return GSS_S_DEFECTIVE_TOKEN;
311
312	/*
313	 * Data starts after token header and checksum.  ptr points
314	 * to the beginning of the token header
315	 */
316	crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) -
317					(unsigned char *)buf->head[0].iov_base;
318
319	/*
320	 * Need plaintext seqnum to derive encryption key for arcfour-hmac
321	 */
322	if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN,
323			     ptr + 8, &direction, &seqnum))
324		return GSS_S_BAD_SIG;
325
326	if ((kctx->initiate && direction != 0xff) ||
327	    (!kctx->initiate && direction != 0))
328		return GSS_S_BAD_SIG;
329
330	buf->len = len;
331	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
332		struct crypto_sync_skcipher *cipher;
333		int err;
334
335		cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
336						    0, 0);
337		if (IS_ERR(cipher))
338			return GSS_S_FAILURE;
339
340		krb5_rc4_setup_enc_key(kctx, cipher, seqnum);
341
342		err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset);
343		crypto_free_sync_skcipher(cipher);
344		if (err)
345			return GSS_S_DEFECTIVE_TOKEN;
346	} else {
347		if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset))
348			return GSS_S_DEFECTIVE_TOKEN;
349	}
350
351	if (kctx->gk5e->keyed_cksum)
352		cksumkey = kctx->cksum;
353	else
354		cksumkey = NULL;
355
356	if (make_checksum(kctx, ptr, 8, buf, crypt_offset,
357					cksumkey, KG_USAGE_SEAL, &md5cksum))
358		return GSS_S_FAILURE;
359
360	if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN,
361						kctx->gk5e->cksumlength))
362		return GSS_S_BAD_SIG;
363
364	/* it got through unscathed.  Make sure the context is unexpired */
365
366	now = ktime_get_real_seconds();
367
368	if (now > kctx->endtime)
369		return GSS_S_CONTEXT_EXPIRED;
370
371	/* do sequencing checks */
372
373	/* Copy the data back to the right position.  XXX: Would probably be
374	 * better to copy and encrypt at the same time. */
375
376	blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
377	data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) +
378					conflen;
379	orig_start = buf->head[0].iov_base + offset;
380	data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start;
381	memmove(orig_start, data_start, data_len);
382	buf->head[0].iov_len -= (data_start - orig_start);
383	buf->len = len - (data_start - orig_start);
384
385	if (gss_krb5_remove_padding(buf, blocksize))
386		return GSS_S_DEFECTIVE_TOKEN;
387
388	/* slack must include room for krb5 padding */
389	*slack = XDR_QUADLEN(saved_len - buf->len);
390	/* The GSS blob always precedes the RPC message payload */
391	*align = *slack;
392	return GSS_S_COMPLETE;
393}
394
395/*
396 * We can shift data by up to LOCAL_BUF_LEN bytes in a pass.  If we need
397 * to do more than that, we shift repeatedly.  Kevin Coffman reports
398 * seeing 28 bytes as the value used by Microsoft clients and servers
399 * with AES, so this constant is chosen to allow handling 28 in one pass
400 * without using too much stack space.
401 *
402 * If that proves to a problem perhaps we could use a more clever
403 * algorithm.
404 */
405#define LOCAL_BUF_LEN 32u
406
407static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift)
408{
409	char head[LOCAL_BUF_LEN];
410	char tmp[LOCAL_BUF_LEN];
411	unsigned int this_len, i;
412
413	BUG_ON(shift > LOCAL_BUF_LEN);
414
415	read_bytes_from_xdr_buf(buf, 0, head, shift);
416	for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) {
417		this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift));
418		read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len);
419		write_bytes_to_xdr_buf(buf, i, tmp, this_len);
420	}
421	write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift);
422}
423
424static void _rotate_left(struct xdr_buf *buf, unsigned int shift)
425{
426	int shifted = 0;
427	int this_shift;
428
429	shift %= buf->len;
430	while (shifted < shift) {
431		this_shift = min(shift - shifted, LOCAL_BUF_LEN);
432		rotate_buf_a_little(buf, this_shift);
433		shifted += this_shift;
434	}
435}
436
437static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift)
438{
439	struct xdr_buf subbuf;
440
441	xdr_buf_subsegment(buf, &subbuf, base, buf->len - base);
442	_rotate_left(&subbuf, shift);
443}
444
445static u32
446gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset,
447		     struct xdr_buf *buf, struct page **pages)
448{
449	u8		*ptr, *plainhdr;
450	time64_t	now;
451	u8		flags = 0x00;
452	__be16		*be16ptr;
453	__be64		*be64ptr;
454	u32		err;
455
456	dprintk("RPC:       %s\n", __func__);
457
458	if (kctx->gk5e->encrypt_v2 == NULL)
459		return GSS_S_FAILURE;
460
461	/* make room for gss token header */
462	if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN))
463		return GSS_S_FAILURE;
464
465	/* construct gss token header */
466	ptr = plainhdr = buf->head[0].iov_base + offset;
467	*ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff);
468	*ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff);
469
470	if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0)
471		flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR;
472	if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0)
473		flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY;
474	/* We always do confidentiality in wrap tokens */
475	flags |= KG2_TOKEN_FLAG_SEALED;
476
477	*ptr++ = flags;
478	*ptr++ = 0xff;
479	be16ptr = (__be16 *)ptr;
480
481	*be16ptr++ = 0;
482	/* "inner" token header always uses 0 for RRC */
483	*be16ptr++ = 0;
484
485	be64ptr = (__be64 *)be16ptr;
486	*be64ptr = cpu_to_be64(atomic64_fetch_inc(&kctx->seq_send64));
487
488	err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages);
489	if (err)
490		return err;
491
492	now = ktime_get_real_seconds();
493	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
494}
495
496static u32
497gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, int len,
498		       struct xdr_buf *buf, unsigned int *slack,
499		       unsigned int *align)
500{
501	time64_t	now;
502	u8		*ptr;
503	u8		flags = 0x00;
504	u16		ec, rrc;
505	int		err;
506	u32		headskip, tailskip;
507	u8		decrypted_hdr[GSS_KRB5_TOK_HDR_LEN];
508	unsigned int	movelen;
509
510
511	dprintk("RPC:       %s\n", __func__);
512
513	if (kctx->gk5e->decrypt_v2 == NULL)
514		return GSS_S_FAILURE;
515
516	ptr = buf->head[0].iov_base + offset;
517
518	if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP)
519		return GSS_S_DEFECTIVE_TOKEN;
520
521	flags = ptr[2];
522	if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) ||
523	    (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)))
524		return GSS_S_BAD_SIG;
525
526	if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) {
527		dprintk("%s: token missing expected sealed flag\n", __func__);
528		return GSS_S_DEFECTIVE_TOKEN;
529	}
530
531	if (ptr[3] != 0xff)
532		return GSS_S_DEFECTIVE_TOKEN;
533
534	ec = be16_to_cpup((__be16 *)(ptr + 4));
535	rrc = be16_to_cpup((__be16 *)(ptr + 6));
536
537	/*
538	 * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss
539	 * doesn't want it checked; see page 6 of rfc 2203.
540	 */
541
542	if (rrc != 0)
543		rotate_left(offset + 16, buf, rrc);
544
545	err = (*kctx->gk5e->decrypt_v2)(kctx, offset, len, buf,
546					&headskip, &tailskip);
547	if (err)
548		return GSS_S_FAILURE;
549
550	/*
551	 * Retrieve the decrypted gss token header and verify
552	 * it against the original
553	 */
554	err = read_bytes_from_xdr_buf(buf,
555				len - GSS_KRB5_TOK_HDR_LEN - tailskip,
556				decrypted_hdr, GSS_KRB5_TOK_HDR_LEN);
557	if (err) {
558		dprintk("%s: error %u getting decrypted_hdr\n", __func__, err);
559		return GSS_S_FAILURE;
560	}
561	if (memcmp(ptr, decrypted_hdr, 6)
562				|| memcmp(ptr + 8, decrypted_hdr + 8, 8)) {
563		dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__);
564		return GSS_S_FAILURE;
565	}
566
567	/* do sequencing checks */
568
569	/* it got through unscathed.  Make sure the context is unexpired */
570	now = ktime_get_real_seconds();
571	if (now > kctx->endtime)
572		return GSS_S_CONTEXT_EXPIRED;
573
574	/*
575	 * Move the head data back to the right position in xdr_buf.
576	 * We ignore any "ec" data since it might be in the head or
577	 * the tail, and we really don't need to deal with it.
578	 * Note that buf->head[0].iov_len may indicate the available
579	 * head buffer space rather than that actually occupied.
580	 */
581	movelen = min_t(unsigned int, buf->head[0].iov_len, len);
582	movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip;
583	BUG_ON(offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen >
584							buf->head[0].iov_len);
 
585	memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen);
586	buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip;
587	buf->len = len - (GSS_KRB5_TOK_HDR_LEN + headskip);
588
589	/* Trim off the trailing "extra count" and checksum blob */
590	xdr_buf_trim(buf, ec + GSS_KRB5_TOK_HDR_LEN + tailskip);
591
592	*align = XDR_QUADLEN(GSS_KRB5_TOK_HDR_LEN + headskip);
593	*slack = *align + XDR_QUADLEN(ec + GSS_KRB5_TOK_HDR_LEN + tailskip);
594	return GSS_S_COMPLETE;
595}
596
597u32
598gss_wrap_kerberos(struct gss_ctx *gctx, int offset,
599		  struct xdr_buf *buf, struct page **pages)
600{
601	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
602
603	switch (kctx->enctype) {
604	default:
605		BUG();
606	case ENCTYPE_DES_CBC_RAW:
607	case ENCTYPE_DES3_CBC_RAW:
608	case ENCTYPE_ARCFOUR_HMAC:
609		return gss_wrap_kerberos_v1(kctx, offset, buf, pages);
610	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
611	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
612		return gss_wrap_kerberos_v2(kctx, offset, buf, pages);
613	}
614}
615
616u32
617gss_unwrap_kerberos(struct gss_ctx *gctx, int offset,
618		    int len, struct xdr_buf *buf)
619{
620	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
621
622	switch (kctx->enctype) {
623	default:
624		BUG();
625	case ENCTYPE_DES_CBC_RAW:
626	case ENCTYPE_DES3_CBC_RAW:
627	case ENCTYPE_ARCFOUR_HMAC:
628		return gss_unwrap_kerberos_v1(kctx, offset, len, buf,
629					      &gctx->slack, &gctx->align);
630	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
631	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
632		return gss_unwrap_kerberos_v2(kctx, offset, len, buf,
633					      &gctx->slack, &gctx->align);
634	}
635}
v5.4
  1/*
  2 * COPYRIGHT (c) 2008
  3 * The Regents of the University of Michigan
  4 * ALL RIGHTS RESERVED
  5 *
  6 * Permission is granted to use, copy, create derivative works
  7 * and redistribute this software and such derivative works
  8 * for any purpose, so long as the name of The University of
  9 * Michigan is not used in any advertising or publicity
 10 * pertaining to the use of distribution of this software
 11 * without specific, written prior authorization.  If the
 12 * above copyright notice or any other identification of the
 13 * University of Michigan is included in any copy of any
 14 * portion of this software, then the disclaimer below must
 15 * also be included.
 16 *
 17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
 18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
 19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
 20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
 21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
 23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
 24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
 25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
 26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
 27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
 28 * SUCH DAMAGES.
 29 */
 30
 31#include <crypto/skcipher.h>
 32#include <linux/types.h>
 33#include <linux/jiffies.h>
 34#include <linux/sunrpc/gss_krb5.h>
 35#include <linux/random.h>
 36#include <linux/pagemap.h>
 37
 38#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 39# define RPCDBG_FACILITY	RPCDBG_AUTH
 40#endif
 41
 42static inline int
 43gss_krb5_padding(int blocksize, int length)
 44{
 45	return blocksize - (length % blocksize);
 46}
 47
 48static inline void
 49gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize)
 50{
 51	int padding = gss_krb5_padding(blocksize, buf->len - offset);
 52	char *p;
 53	struct kvec *iov;
 54
 55	if (buf->page_len || buf->tail[0].iov_len)
 56		iov = &buf->tail[0];
 57	else
 58		iov = &buf->head[0];
 59	p = iov->iov_base + iov->iov_len;
 60	iov->iov_len += padding;
 61	buf->len += padding;
 62	memset(p, padding, padding);
 63}
 64
 65static inline int
 66gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize)
 67{
 68	u8 *ptr;
 69	u8 pad;
 70	size_t len = buf->len;
 71
 72	if (len <= buf->head[0].iov_len) {
 73		pad = *(u8 *)(buf->head[0].iov_base + len - 1);
 74		if (pad > buf->head[0].iov_len)
 75			return -EINVAL;
 76		buf->head[0].iov_len -= pad;
 77		goto out;
 78	} else
 79		len -= buf->head[0].iov_len;
 80	if (len <= buf->page_len) {
 81		unsigned int last = (buf->page_base + len - 1)
 82					>>PAGE_SHIFT;
 83		unsigned int offset = (buf->page_base + len - 1)
 84					& (PAGE_SIZE - 1);
 85		ptr = kmap_atomic(buf->pages[last]);
 86		pad = *(ptr + offset);
 87		kunmap_atomic(ptr);
 88		goto out;
 89	} else
 90		len -= buf->page_len;
 91	BUG_ON(len > buf->tail[0].iov_len);
 92	pad = *(u8 *)(buf->tail[0].iov_base + len - 1);
 93out:
 94	/* XXX: NOTE: we do not adjust the page lengths--they represent
 95	 * a range of data in the real filesystem page cache, and we need
 96	 * to know that range so the xdr code can properly place read data.
 97	 * However adjusting the head length, as we do above, is harmless.
 98	 * In the case of a request that fits into a single page, the server
 99	 * also uses length and head length together to determine the original
100	 * start of the request to copy the request for deferal; so it's
101	 * easier on the server if we adjust head and tail length in tandem.
102	 * It's not really a problem that we don't fool with the page and
103	 * tail lengths, though--at worst badly formed xdr might lead the
104	 * server to attempt to parse the padding.
105	 * XXX: Document all these weird requirements for gss mechanism
106	 * wrap/unwrap functions. */
107	if (pad > blocksize)
108		return -EINVAL;
109	if (buf->len > pad)
110		buf->len -= pad;
111	else
112		return -EINVAL;
113	return 0;
114}
115
116void
117gss_krb5_make_confounder(char *p, u32 conflen)
118{
119	static u64 i = 0;
120	u64 *q = (u64 *)p;
121
122	/* rfc1964 claims this should be "random".  But all that's really
123	 * necessary is that it be unique.  And not even that is necessary in
124	 * our case since our "gssapi" implementation exists only to support
125	 * rpcsec_gss, so we know that the only buffers we will ever encrypt
126	 * already begin with a unique sequence number.  Just to hedge my bets
127	 * I'll make a half-hearted attempt at something unique, but ensuring
128	 * uniqueness would mean worrying about atomicity and rollover, and I
129	 * don't care enough. */
130
131	/* initialize to random value */
132	if (i == 0) {
133		i = prandom_u32();
134		i = (i << 32) | prandom_u32();
135	}
136
137	switch (conflen) {
138	case 16:
139		*q++ = i++;
140		/* fall through */
141	case 8:
142		*q++ = i++;
143		break;
144	default:
145		BUG();
146	}
147}
148
149/* Assumptions: the head and tail of inbuf are ours to play with.
150 * The pages, however, may be real pages in the page cache and we replace
151 * them with scratch pages from **pages before writing to them. */
152/* XXX: obviously the above should be documentation of wrap interface,
153 * and shouldn't be in this kerberos-specific file. */
154
155/* XXX factor out common code with seal/unseal. */
156
157static u32
158gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset,
159		struct xdr_buf *buf, struct page **pages)
160{
161	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
162	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
163					    .data = cksumdata};
164	int			blocksize = 0, plainlen;
165	unsigned char		*ptr, *msg_start;
166	s32			now;
167	int			headlen;
168	struct page		**tmp_pages;
169	u32			seq_send;
170	u8			*cksumkey;
171	u32			conflen = kctx->gk5e->conflen;
172
173	dprintk("RPC:       %s\n", __func__);
174
175	now = get_seconds();
176
177	blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
178	gss_krb5_add_padding(buf, offset, blocksize);
179	BUG_ON((buf->len - offset) % blocksize);
180	plainlen = conflen + buf->len - offset;
181
182	headlen = g_token_size(&kctx->mech_used,
183		GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) -
184		(buf->len - offset);
185
186	ptr = buf->head[0].iov_base + offset;
187	/* shift data to make room for header. */
188	xdr_extend_head(buf, offset, headlen);
189
190	/* XXX Would be cleverer to encrypt while copying. */
191	BUG_ON((buf->len - offset - headlen) % blocksize);
192
193	g_make_token_header(&kctx->mech_used,
194				GSS_KRB5_TOK_HDR_LEN +
195				kctx->gk5e->cksumlength + plainlen, &ptr);
196
197
198	/* ptr now at header described in rfc 1964, section 1.2.1: */
199	ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff);
200	ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff);
201
202	msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength;
203
204	/*
205	 * signalg and sealalg are stored as if they were converted from LE
206	 * to host endian, even though they're opaque pairs of bytes according
207	 * to the RFC.
208	 */
209	*(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg);
210	*(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg);
211	ptr[6] = 0xff;
212	ptr[7] = 0xff;
213
214	gss_krb5_make_confounder(msg_start, conflen);
215
216	if (kctx->gk5e->keyed_cksum)
217		cksumkey = kctx->cksum;
218	else
219		cksumkey = NULL;
220
221	/* XXXJBF: UGH!: */
222	tmp_pages = buf->pages;
223	buf->pages = pages;
224	if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen,
225					cksumkey, KG_USAGE_SEAL, &md5cksum))
226		return GSS_S_FAILURE;
227	buf->pages = tmp_pages;
228
229	memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len);
230
231	seq_send = atomic_fetch_inc(&kctx->seq_send);
232
233	/* XXX would probably be more efficient to compute checksum
234	 * and encrypt at the same time: */
235	if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff,
236			       seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8)))
237		return GSS_S_FAILURE;
238
239	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
240		struct crypto_sync_skcipher *cipher;
241		int err;
242		cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
243						    0, 0);
244		if (IS_ERR(cipher))
245			return GSS_S_FAILURE;
246
247		krb5_rc4_setup_enc_key(kctx, cipher, seq_send);
248
249		err = gss_encrypt_xdr_buf(cipher, buf,
250					  offset + headlen - conflen, pages);
251		crypto_free_sync_skcipher(cipher);
252		if (err)
253			return GSS_S_FAILURE;
254	} else {
255		if (gss_encrypt_xdr_buf(kctx->enc, buf,
256					offset + headlen - conflen, pages))
257			return GSS_S_FAILURE;
258	}
259
260	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
261}
262
263static u32
264gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
 
 
265{
266	int			signalg;
267	int			sealalg;
268	char			cksumdata[GSS_KRB5_MAX_CKSUM_LEN];
269	struct xdr_netobj	md5cksum = {.len = sizeof(cksumdata),
270					    .data = cksumdata};
271	s32			now;
272	int			direction;
273	s32			seqnum;
274	unsigned char		*ptr;
275	int			bodysize;
276	void			*data_start, *orig_start;
277	int			data_len;
278	int			blocksize;
279	u32			conflen = kctx->gk5e->conflen;
280	int			crypt_offset;
281	u8			*cksumkey;
 
282
283	dprintk("RPC:       gss_unwrap_kerberos\n");
284
285	ptr = (u8 *)buf->head[0].iov_base + offset;
286	if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr,
287					buf->len - offset))
288		return GSS_S_DEFECTIVE_TOKEN;
289
290	if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) ||
291	    (ptr[1] !=  (KG_TOK_WRAP_MSG & 0xff)))
292		return GSS_S_DEFECTIVE_TOKEN;
293
294	/* XXX sanity-check bodysize?? */
295
296	/* get the sign and seal algorithms */
297
298	signalg = ptr[2] + (ptr[3] << 8);
299	if (signalg != kctx->gk5e->signalg)
300		return GSS_S_DEFECTIVE_TOKEN;
301
302	sealalg = ptr[4] + (ptr[5] << 8);
303	if (sealalg != kctx->gk5e->sealalg)
304		return GSS_S_DEFECTIVE_TOKEN;
305
306	if ((ptr[6] != 0xff) || (ptr[7] != 0xff))
307		return GSS_S_DEFECTIVE_TOKEN;
308
309	/*
310	 * Data starts after token header and checksum.  ptr points
311	 * to the beginning of the token header
312	 */
313	crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) -
314					(unsigned char *)buf->head[0].iov_base;
315
316	/*
317	 * Need plaintext seqnum to derive encryption key for arcfour-hmac
318	 */
319	if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN,
320			     ptr + 8, &direction, &seqnum))
321		return GSS_S_BAD_SIG;
322
323	if ((kctx->initiate && direction != 0xff) ||
324	    (!kctx->initiate && direction != 0))
325		return GSS_S_BAD_SIG;
326
 
327	if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) {
328		struct crypto_sync_skcipher *cipher;
329		int err;
330
331		cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name,
332						    0, 0);
333		if (IS_ERR(cipher))
334			return GSS_S_FAILURE;
335
336		krb5_rc4_setup_enc_key(kctx, cipher, seqnum);
337
338		err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset);
339		crypto_free_sync_skcipher(cipher);
340		if (err)
341			return GSS_S_DEFECTIVE_TOKEN;
342	} else {
343		if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset))
344			return GSS_S_DEFECTIVE_TOKEN;
345	}
346
347	if (kctx->gk5e->keyed_cksum)
348		cksumkey = kctx->cksum;
349	else
350		cksumkey = NULL;
351
352	if (make_checksum(kctx, ptr, 8, buf, crypt_offset,
353					cksumkey, KG_USAGE_SEAL, &md5cksum))
354		return GSS_S_FAILURE;
355
356	if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN,
357						kctx->gk5e->cksumlength))
358		return GSS_S_BAD_SIG;
359
360	/* it got through unscathed.  Make sure the context is unexpired */
361
362	now = get_seconds();
363
364	if (now > kctx->endtime)
365		return GSS_S_CONTEXT_EXPIRED;
366
367	/* do sequencing checks */
368
369	/* Copy the data back to the right position.  XXX: Would probably be
370	 * better to copy and encrypt at the same time. */
371
372	blocksize = crypto_sync_skcipher_blocksize(kctx->enc);
373	data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) +
374					conflen;
375	orig_start = buf->head[0].iov_base + offset;
376	data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start;
377	memmove(orig_start, data_start, data_len);
378	buf->head[0].iov_len -= (data_start - orig_start);
379	buf->len -= (data_start - orig_start);
380
381	if (gss_krb5_remove_padding(buf, blocksize))
382		return GSS_S_DEFECTIVE_TOKEN;
383
 
 
 
 
384	return GSS_S_COMPLETE;
385}
386
387/*
388 * We can shift data by up to LOCAL_BUF_LEN bytes in a pass.  If we need
389 * to do more than that, we shift repeatedly.  Kevin Coffman reports
390 * seeing 28 bytes as the value used by Microsoft clients and servers
391 * with AES, so this constant is chosen to allow handling 28 in one pass
392 * without using too much stack space.
393 *
394 * If that proves to a problem perhaps we could use a more clever
395 * algorithm.
396 */
397#define LOCAL_BUF_LEN 32u
398
399static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift)
400{
401	char head[LOCAL_BUF_LEN];
402	char tmp[LOCAL_BUF_LEN];
403	unsigned int this_len, i;
404
405	BUG_ON(shift > LOCAL_BUF_LEN);
406
407	read_bytes_from_xdr_buf(buf, 0, head, shift);
408	for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) {
409		this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift));
410		read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len);
411		write_bytes_to_xdr_buf(buf, i, tmp, this_len);
412	}
413	write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift);
414}
415
416static void _rotate_left(struct xdr_buf *buf, unsigned int shift)
417{
418	int shifted = 0;
419	int this_shift;
420
421	shift %= buf->len;
422	while (shifted < shift) {
423		this_shift = min(shift - shifted, LOCAL_BUF_LEN);
424		rotate_buf_a_little(buf, this_shift);
425		shifted += this_shift;
426	}
427}
428
429static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift)
430{
431	struct xdr_buf subbuf;
432
433	xdr_buf_subsegment(buf, &subbuf, base, buf->len - base);
434	_rotate_left(&subbuf, shift);
435}
436
437static u32
438gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset,
439		     struct xdr_buf *buf, struct page **pages)
440{
441	u8		*ptr, *plainhdr;
442	s32		now;
443	u8		flags = 0x00;
444	__be16		*be16ptr;
445	__be64		*be64ptr;
446	u32		err;
447
448	dprintk("RPC:       %s\n", __func__);
449
450	if (kctx->gk5e->encrypt_v2 == NULL)
451		return GSS_S_FAILURE;
452
453	/* make room for gss token header */
454	if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN))
455		return GSS_S_FAILURE;
456
457	/* construct gss token header */
458	ptr = plainhdr = buf->head[0].iov_base + offset;
459	*ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff);
460	*ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff);
461
462	if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0)
463		flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR;
464	if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0)
465		flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY;
466	/* We always do confidentiality in wrap tokens */
467	flags |= KG2_TOKEN_FLAG_SEALED;
468
469	*ptr++ = flags;
470	*ptr++ = 0xff;
471	be16ptr = (__be16 *)ptr;
472
473	*be16ptr++ = 0;
474	/* "inner" token header always uses 0 for RRC */
475	*be16ptr++ = 0;
476
477	be64ptr = (__be64 *)be16ptr;
478	*be64ptr = cpu_to_be64(atomic64_fetch_inc(&kctx->seq_send64));
479
480	err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages);
481	if (err)
482		return err;
483
484	now = get_seconds();
485	return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE;
486}
487
488static u32
489gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf)
 
 
490{
491	s32		now;
492	u8		*ptr;
493	u8		flags = 0x00;
494	u16		ec, rrc;
495	int		err;
496	u32		headskip, tailskip;
497	u8		decrypted_hdr[GSS_KRB5_TOK_HDR_LEN];
498	unsigned int	movelen;
499
500
501	dprintk("RPC:       %s\n", __func__);
502
503	if (kctx->gk5e->decrypt_v2 == NULL)
504		return GSS_S_FAILURE;
505
506	ptr = buf->head[0].iov_base + offset;
507
508	if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP)
509		return GSS_S_DEFECTIVE_TOKEN;
510
511	flags = ptr[2];
512	if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) ||
513	    (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)))
514		return GSS_S_BAD_SIG;
515
516	if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) {
517		dprintk("%s: token missing expected sealed flag\n", __func__);
518		return GSS_S_DEFECTIVE_TOKEN;
519	}
520
521	if (ptr[3] != 0xff)
522		return GSS_S_DEFECTIVE_TOKEN;
523
524	ec = be16_to_cpup((__be16 *)(ptr + 4));
525	rrc = be16_to_cpup((__be16 *)(ptr + 6));
526
527	/*
528	 * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss
529	 * doesn't want it checked; see page 6 of rfc 2203.
530	 */
531
532	if (rrc != 0)
533		rotate_left(offset + 16, buf, rrc);
534
535	err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf,
536					&headskip, &tailskip);
537	if (err)
538		return GSS_S_FAILURE;
539
540	/*
541	 * Retrieve the decrypted gss token header and verify
542	 * it against the original
543	 */
544	err = read_bytes_from_xdr_buf(buf,
545				buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip,
546				decrypted_hdr, GSS_KRB5_TOK_HDR_LEN);
547	if (err) {
548		dprintk("%s: error %u getting decrypted_hdr\n", __func__, err);
549		return GSS_S_FAILURE;
550	}
551	if (memcmp(ptr, decrypted_hdr, 6)
552				|| memcmp(ptr + 8, decrypted_hdr + 8, 8)) {
553		dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__);
554		return GSS_S_FAILURE;
555	}
556
557	/* do sequencing checks */
558
559	/* it got through unscathed.  Make sure the context is unexpired */
560	now = get_seconds();
561	if (now > kctx->endtime)
562		return GSS_S_CONTEXT_EXPIRED;
563
564	/*
565	 * Move the head data back to the right position in xdr_buf.
566	 * We ignore any "ec" data since it might be in the head or
567	 * the tail, and we really don't need to deal with it.
568	 * Note that buf->head[0].iov_len may indicate the available
569	 * head buffer space rather than that actually occupied.
570	 */
571	movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len);
572	movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip;
573	if (offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen >
574	    buf->head[0].iov_len)
575		return GSS_S_FAILURE;
576	memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen);
577	buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip;
578	buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip;
579
580	/* Trim off the trailing "extra count" and checksum blob */
581	buf->len -= ec + GSS_KRB5_TOK_HDR_LEN + tailskip;
582
 
 
583	return GSS_S_COMPLETE;
584}
585
586u32
587gss_wrap_kerberos(struct gss_ctx *gctx, int offset,
588		  struct xdr_buf *buf, struct page **pages)
589{
590	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
591
592	switch (kctx->enctype) {
593	default:
594		BUG();
595	case ENCTYPE_DES_CBC_RAW:
596	case ENCTYPE_DES3_CBC_RAW:
597	case ENCTYPE_ARCFOUR_HMAC:
598		return gss_wrap_kerberos_v1(kctx, offset, buf, pages);
599	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
600	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
601		return gss_wrap_kerberos_v2(kctx, offset, buf, pages);
602	}
603}
604
605u32
606gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf)
 
607{
608	struct krb5_ctx	*kctx = gctx->internal_ctx_id;
609
610	switch (kctx->enctype) {
611	default:
612		BUG();
613	case ENCTYPE_DES_CBC_RAW:
614	case ENCTYPE_DES3_CBC_RAW:
615	case ENCTYPE_ARCFOUR_HMAC:
616		return gss_unwrap_kerberos_v1(kctx, offset, buf);
 
617	case ENCTYPE_AES128_CTS_HMAC_SHA1_96:
618	case ENCTYPE_AES256_CTS_HMAC_SHA1_96:
619		return gss_unwrap_kerberos_v2(kctx, offset, buf);
 
620	}
621}