Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  29 *           anon_vma->rwsem
  30 *             mm->page_table_lock or pte_lock
  31 *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
  32 *               swap_lock (in swap_duplicate, swap_info_get)
  33 *                 mmlist_lock (in mmput, drain_mmlist and others)
  34 *                 mapping->private_lock (in __set_page_dirty_buffers)
  35 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  36 *                     i_pages lock (widely used)
  37 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  40 *                   i_pages lock (widely used, in set_page_dirty,
  41 *                             in arch-dependent flush_dcache_mmap_lock,
  42 *                             within bdi.wb->list_lock in __sync_single_inode)
  43 *
  44 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  45 *   ->tasklist_lock
  46 *     pte map lock
  47 *
  48 * * hugetlbfs PageHuge() pages take locks in this order:
  49 *         mapping->i_mmap_rwsem
  50 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  51 *             page->flags PG_locked (lock_page)
  52 */
  53
  54#include <linux/mm.h>
  55#include <linux/sched/mm.h>
  56#include <linux/sched/task.h>
  57#include <linux/pagemap.h>
  58#include <linux/swap.h>
  59#include <linux/swapops.h>
  60#include <linux/slab.h>
  61#include <linux/init.h>
  62#include <linux/ksm.h>
  63#include <linux/rmap.h>
  64#include <linux/rcupdate.h>
  65#include <linux/export.h>
  66#include <linux/memcontrol.h>
  67#include <linux/mmu_notifier.h>
  68#include <linux/migrate.h>
  69#include <linux/hugetlb.h>
  70#include <linux/huge_mm.h>
  71#include <linux/backing-dev.h>
  72#include <linux/page_idle.h>
  73#include <linux/memremap.h>
  74#include <linux/userfaultfd_k.h>
  75
  76#include <asm/tlbflush.h>
  77
  78#include <trace/events/tlb.h>
  79
  80#include "internal.h"
  81
  82static struct kmem_cache *anon_vma_cachep;
  83static struct kmem_cache *anon_vma_chain_cachep;
  84
  85static inline struct anon_vma *anon_vma_alloc(void)
  86{
  87	struct anon_vma *anon_vma;
  88
  89	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  90	if (anon_vma) {
  91		atomic_set(&anon_vma->refcount, 1);
  92		anon_vma->degree = 1;	/* Reference for first vma */
  93		anon_vma->parent = anon_vma;
  94		/*
  95		 * Initialise the anon_vma root to point to itself. If called
  96		 * from fork, the root will be reset to the parents anon_vma.
  97		 */
  98		anon_vma->root = anon_vma;
  99	}
 100
 101	return anon_vma;
 102}
 103
 104static inline void anon_vma_free(struct anon_vma *anon_vma)
 105{
 106	VM_BUG_ON(atomic_read(&anon_vma->refcount));
 107
 108	/*
 109	 * Synchronize against page_lock_anon_vma_read() such that
 110	 * we can safely hold the lock without the anon_vma getting
 111	 * freed.
 112	 *
 113	 * Relies on the full mb implied by the atomic_dec_and_test() from
 114	 * put_anon_vma() against the acquire barrier implied by
 115	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 116	 *
 117	 * page_lock_anon_vma_read()	VS	put_anon_vma()
 118	 *   down_read_trylock()		  atomic_dec_and_test()
 119	 *   LOCK				  MB
 120	 *   atomic_read()			  rwsem_is_locked()
 121	 *
 122	 * LOCK should suffice since the actual taking of the lock must
 123	 * happen _before_ what follows.
 124	 */
 125	might_sleep();
 126	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 127		anon_vma_lock_write(anon_vma);
 128		anon_vma_unlock_write(anon_vma);
 129	}
 130
 131	kmem_cache_free(anon_vma_cachep, anon_vma);
 132}
 133
 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 135{
 136	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 137}
 138
 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 140{
 141	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 142}
 143
 144static void anon_vma_chain_link(struct vm_area_struct *vma,
 145				struct anon_vma_chain *avc,
 146				struct anon_vma *anon_vma)
 147{
 148	avc->vma = vma;
 149	avc->anon_vma = anon_vma;
 150	list_add(&avc->same_vma, &vma->anon_vma_chain);
 151	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 152}
 153
 154/**
 155 * __anon_vma_prepare - attach an anon_vma to a memory region
 156 * @vma: the memory region in question
 157 *
 158 * This makes sure the memory mapping described by 'vma' has
 159 * an 'anon_vma' attached to it, so that we can associate the
 160 * anonymous pages mapped into it with that anon_vma.
 161 *
 162 * The common case will be that we already have one, which
 163 * is handled inline by anon_vma_prepare(). But if
 164 * not we either need to find an adjacent mapping that we
 165 * can re-use the anon_vma from (very common when the only
 166 * reason for splitting a vma has been mprotect()), or we
 167 * allocate a new one.
 168 *
 169 * Anon-vma allocations are very subtle, because we may have
 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 171 * and that may actually touch the spinlock even in the newly
 172 * allocated vma (it depends on RCU to make sure that the
 173 * anon_vma isn't actually destroyed).
 174 *
 175 * As a result, we need to do proper anon_vma locking even
 176 * for the new allocation. At the same time, we do not want
 177 * to do any locking for the common case of already having
 178 * an anon_vma.
 179 *
 180 * This must be called with the mmap_lock held for reading.
 181 */
 182int __anon_vma_prepare(struct vm_area_struct *vma)
 183{
 184	struct mm_struct *mm = vma->vm_mm;
 185	struct anon_vma *anon_vma, *allocated;
 186	struct anon_vma_chain *avc;
 187
 188	might_sleep();
 189
 190	avc = anon_vma_chain_alloc(GFP_KERNEL);
 191	if (!avc)
 192		goto out_enomem;
 193
 194	anon_vma = find_mergeable_anon_vma(vma);
 195	allocated = NULL;
 196	if (!anon_vma) {
 197		anon_vma = anon_vma_alloc();
 198		if (unlikely(!anon_vma))
 199			goto out_enomem_free_avc;
 200		allocated = anon_vma;
 201	}
 202
 203	anon_vma_lock_write(anon_vma);
 204	/* page_table_lock to protect against threads */
 205	spin_lock(&mm->page_table_lock);
 206	if (likely(!vma->anon_vma)) {
 207		vma->anon_vma = anon_vma;
 208		anon_vma_chain_link(vma, avc, anon_vma);
 209		/* vma reference or self-parent link for new root */
 210		anon_vma->degree++;
 211		allocated = NULL;
 212		avc = NULL;
 213	}
 214	spin_unlock(&mm->page_table_lock);
 215	anon_vma_unlock_write(anon_vma);
 216
 217	if (unlikely(allocated))
 218		put_anon_vma(allocated);
 219	if (unlikely(avc))
 220		anon_vma_chain_free(avc);
 221
 222	return 0;
 223
 224 out_enomem_free_avc:
 225	anon_vma_chain_free(avc);
 226 out_enomem:
 227	return -ENOMEM;
 228}
 229
 230/*
 231 * This is a useful helper function for locking the anon_vma root as
 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 233 * have the same vma.
 234 *
 235 * Such anon_vma's should have the same root, so you'd expect to see
 236 * just a single mutex_lock for the whole traversal.
 237 */
 238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 239{
 240	struct anon_vma *new_root = anon_vma->root;
 241	if (new_root != root) {
 242		if (WARN_ON_ONCE(root))
 243			up_write(&root->rwsem);
 244		root = new_root;
 245		down_write(&root->rwsem);
 246	}
 247	return root;
 248}
 249
 250static inline void unlock_anon_vma_root(struct anon_vma *root)
 251{
 252	if (root)
 253		up_write(&root->rwsem);
 254}
 255
 256/*
 257 * Attach the anon_vmas from src to dst.
 258 * Returns 0 on success, -ENOMEM on failure.
 259 *
 260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
 261 * anon_vma_fork(). The first three want an exact copy of src, while the last
 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
 265 *
 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 269 * case of constantly forking task. On the other hand, an anon_vma with more
 270 * than one child isn't reused even if there was no alive vma, thus rmap
 271 * walker has a good chance of avoiding scanning the whole hierarchy when it
 272 * searches where page is mapped.
 273 */
 274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 275{
 276	struct anon_vma_chain *avc, *pavc;
 277	struct anon_vma *root = NULL;
 278
 279	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 280		struct anon_vma *anon_vma;
 281
 282		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 283		if (unlikely(!avc)) {
 284			unlock_anon_vma_root(root);
 285			root = NULL;
 286			avc = anon_vma_chain_alloc(GFP_KERNEL);
 287			if (!avc)
 288				goto enomem_failure;
 289		}
 290		anon_vma = pavc->anon_vma;
 291		root = lock_anon_vma_root(root, anon_vma);
 292		anon_vma_chain_link(dst, avc, anon_vma);
 293
 294		/*
 295		 * Reuse existing anon_vma if its degree lower than two,
 296		 * that means it has no vma and only one anon_vma child.
 297		 *
 298		 * Do not chose parent anon_vma, otherwise first child
 299		 * will always reuse it. Root anon_vma is never reused:
 300		 * it has self-parent reference and at least one child.
 301		 */
 302		if (!dst->anon_vma && src->anon_vma &&
 303		    anon_vma != src->anon_vma && anon_vma->degree < 2)
 304			dst->anon_vma = anon_vma;
 305	}
 306	if (dst->anon_vma)
 307		dst->anon_vma->degree++;
 308	unlock_anon_vma_root(root);
 309	return 0;
 310
 311 enomem_failure:
 312	/*
 313	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 314	 * decremented in unlink_anon_vmas().
 315	 * We can safely do this because callers of anon_vma_clone() don't care
 316	 * about dst->anon_vma if anon_vma_clone() failed.
 317	 */
 318	dst->anon_vma = NULL;
 319	unlink_anon_vmas(dst);
 320	return -ENOMEM;
 321}
 322
 323/*
 324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 325 * the corresponding VMA in the parent process is attached to.
 326 * Returns 0 on success, non-zero on failure.
 327 */
 328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 329{
 330	struct anon_vma_chain *avc;
 331	struct anon_vma *anon_vma;
 332	int error;
 333
 334	/* Don't bother if the parent process has no anon_vma here. */
 335	if (!pvma->anon_vma)
 336		return 0;
 337
 338	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 339	vma->anon_vma = NULL;
 340
 341	/*
 342	 * First, attach the new VMA to the parent VMA's anon_vmas,
 343	 * so rmap can find non-COWed pages in child processes.
 344	 */
 345	error = anon_vma_clone(vma, pvma);
 346	if (error)
 347		return error;
 348
 349	/* An existing anon_vma has been reused, all done then. */
 350	if (vma->anon_vma)
 351		return 0;
 352
 353	/* Then add our own anon_vma. */
 354	anon_vma = anon_vma_alloc();
 355	if (!anon_vma)
 356		goto out_error;
 357	avc = anon_vma_chain_alloc(GFP_KERNEL);
 358	if (!avc)
 359		goto out_error_free_anon_vma;
 360
 361	/*
 362	 * The root anon_vma's spinlock is the lock actually used when we
 363	 * lock any of the anon_vmas in this anon_vma tree.
 364	 */
 365	anon_vma->root = pvma->anon_vma->root;
 366	anon_vma->parent = pvma->anon_vma;
 367	/*
 368	 * With refcounts, an anon_vma can stay around longer than the
 369	 * process it belongs to. The root anon_vma needs to be pinned until
 370	 * this anon_vma is freed, because the lock lives in the root.
 371	 */
 372	get_anon_vma(anon_vma->root);
 373	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 374	vma->anon_vma = anon_vma;
 375	anon_vma_lock_write(anon_vma);
 376	anon_vma_chain_link(vma, avc, anon_vma);
 377	anon_vma->parent->degree++;
 378	anon_vma_unlock_write(anon_vma);
 379
 380	return 0;
 381
 382 out_error_free_anon_vma:
 383	put_anon_vma(anon_vma);
 384 out_error:
 385	unlink_anon_vmas(vma);
 386	return -ENOMEM;
 387}
 388
 389void unlink_anon_vmas(struct vm_area_struct *vma)
 390{
 391	struct anon_vma_chain *avc, *next;
 392	struct anon_vma *root = NULL;
 393
 394	/*
 395	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 396	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 397	 */
 398	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 399		struct anon_vma *anon_vma = avc->anon_vma;
 400
 401		root = lock_anon_vma_root(root, anon_vma);
 402		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 403
 404		/*
 405		 * Leave empty anon_vmas on the list - we'll need
 406		 * to free them outside the lock.
 407		 */
 408		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 409			anon_vma->parent->degree--;
 410			continue;
 411		}
 412
 413		list_del(&avc->same_vma);
 414		anon_vma_chain_free(avc);
 415	}
 416	if (vma->anon_vma)
 417		vma->anon_vma->degree--;
 418	unlock_anon_vma_root(root);
 419
 420	/*
 421	 * Iterate the list once more, it now only contains empty and unlinked
 422	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 423	 * needing to write-acquire the anon_vma->root->rwsem.
 424	 */
 425	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 426		struct anon_vma *anon_vma = avc->anon_vma;
 427
 428		VM_WARN_ON(anon_vma->degree);
 429		put_anon_vma(anon_vma);
 430
 431		list_del(&avc->same_vma);
 432		anon_vma_chain_free(avc);
 433	}
 434}
 435
 436static void anon_vma_ctor(void *data)
 437{
 438	struct anon_vma *anon_vma = data;
 439
 440	init_rwsem(&anon_vma->rwsem);
 441	atomic_set(&anon_vma->refcount, 0);
 442	anon_vma->rb_root = RB_ROOT_CACHED;
 443}
 444
 445void __init anon_vma_init(void)
 446{
 447	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 448			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 449			anon_vma_ctor);
 450	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 451			SLAB_PANIC|SLAB_ACCOUNT);
 452}
 453
 454/*
 455 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 456 *
 457 * Since there is no serialization what so ever against page_remove_rmap()
 458 * the best this function can do is return a locked anon_vma that might
 459 * have been relevant to this page.
 460 *
 461 * The page might have been remapped to a different anon_vma or the anon_vma
 462 * returned may already be freed (and even reused).
 463 *
 464 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 465 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 466 * ensure that any anon_vma obtained from the page will still be valid for as
 467 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 468 *
 469 * All users of this function must be very careful when walking the anon_vma
 470 * chain and verify that the page in question is indeed mapped in it
 471 * [ something equivalent to page_mapped_in_vma() ].
 472 *
 473 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 474 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 475 * if there is a mapcount, we can dereference the anon_vma after observing
 476 * those.
 477 */
 478struct anon_vma *page_get_anon_vma(struct page *page)
 479{
 480	struct anon_vma *anon_vma = NULL;
 481	unsigned long anon_mapping;
 482
 483	rcu_read_lock();
 484	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 485	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 486		goto out;
 487	if (!page_mapped(page))
 488		goto out;
 489
 490	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 491	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 492		anon_vma = NULL;
 493		goto out;
 494	}
 495
 496	/*
 497	 * If this page is still mapped, then its anon_vma cannot have been
 498	 * freed.  But if it has been unmapped, we have no security against the
 499	 * anon_vma structure being freed and reused (for another anon_vma:
 500	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 501	 * above cannot corrupt).
 502	 */
 503	if (!page_mapped(page)) {
 504		rcu_read_unlock();
 505		put_anon_vma(anon_vma);
 506		return NULL;
 507	}
 508out:
 509	rcu_read_unlock();
 510
 511	return anon_vma;
 512}
 513
 514/*
 515 * Similar to page_get_anon_vma() except it locks the anon_vma.
 516 *
 517 * Its a little more complex as it tries to keep the fast path to a single
 518 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 519 * reference like with page_get_anon_vma() and then block on the mutex.
 520 */
 521struct anon_vma *page_lock_anon_vma_read(struct page *page)
 522{
 523	struct anon_vma *anon_vma = NULL;
 524	struct anon_vma *root_anon_vma;
 525	unsigned long anon_mapping;
 526
 527	rcu_read_lock();
 528	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 529	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 530		goto out;
 531	if (!page_mapped(page))
 532		goto out;
 533
 534	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 535	root_anon_vma = READ_ONCE(anon_vma->root);
 536	if (down_read_trylock(&root_anon_vma->rwsem)) {
 537		/*
 538		 * If the page is still mapped, then this anon_vma is still
 539		 * its anon_vma, and holding the mutex ensures that it will
 540		 * not go away, see anon_vma_free().
 541		 */
 542		if (!page_mapped(page)) {
 543			up_read(&root_anon_vma->rwsem);
 544			anon_vma = NULL;
 545		}
 546		goto out;
 547	}
 548
 549	/* trylock failed, we got to sleep */
 550	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 551		anon_vma = NULL;
 552		goto out;
 553	}
 554
 555	if (!page_mapped(page)) {
 556		rcu_read_unlock();
 557		put_anon_vma(anon_vma);
 558		return NULL;
 559	}
 560
 561	/* we pinned the anon_vma, its safe to sleep */
 562	rcu_read_unlock();
 563	anon_vma_lock_read(anon_vma);
 564
 565	if (atomic_dec_and_test(&anon_vma->refcount)) {
 566		/*
 567		 * Oops, we held the last refcount, release the lock
 568		 * and bail -- can't simply use put_anon_vma() because
 569		 * we'll deadlock on the anon_vma_lock_write() recursion.
 570		 */
 571		anon_vma_unlock_read(anon_vma);
 572		__put_anon_vma(anon_vma);
 573		anon_vma = NULL;
 574	}
 575
 576	return anon_vma;
 577
 578out:
 579	rcu_read_unlock();
 580	return anon_vma;
 581}
 582
 583void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 584{
 585	anon_vma_unlock_read(anon_vma);
 586}
 587
 588#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 589/*
 590 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 591 * important if a PTE was dirty when it was unmapped that it's flushed
 592 * before any IO is initiated on the page to prevent lost writes. Similarly,
 593 * it must be flushed before freeing to prevent data leakage.
 594 */
 595void try_to_unmap_flush(void)
 596{
 597	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 598
 599	if (!tlb_ubc->flush_required)
 600		return;
 601
 602	arch_tlbbatch_flush(&tlb_ubc->arch);
 603	tlb_ubc->flush_required = false;
 604	tlb_ubc->writable = false;
 605}
 606
 607/* Flush iff there are potentially writable TLB entries that can race with IO */
 608void try_to_unmap_flush_dirty(void)
 609{
 610	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 611
 612	if (tlb_ubc->writable)
 613		try_to_unmap_flush();
 614}
 615
 616static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 617{
 618	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 619
 620	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 621	tlb_ubc->flush_required = true;
 622
 623	/*
 624	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 625	 * before the PTE is cleared.
 626	 */
 627	barrier();
 628	mm->tlb_flush_batched = true;
 629
 630	/*
 631	 * If the PTE was dirty then it's best to assume it's writable. The
 632	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 633	 * before the page is queued for IO.
 634	 */
 635	if (writable)
 636		tlb_ubc->writable = true;
 637}
 638
 639/*
 640 * Returns true if the TLB flush should be deferred to the end of a batch of
 641 * unmap operations to reduce IPIs.
 642 */
 643static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 644{
 645	bool should_defer = false;
 646
 647	if (!(flags & TTU_BATCH_FLUSH))
 648		return false;
 649
 650	/* If remote CPUs need to be flushed then defer batch the flush */
 651	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 652		should_defer = true;
 653	put_cpu();
 654
 655	return should_defer;
 656}
 657
 658/*
 659 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 660 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 661 * operation such as mprotect or munmap to race between reclaim unmapping
 662 * the page and flushing the page. If this race occurs, it potentially allows
 663 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 664 * batching in flight would be expensive during reclaim so instead track
 665 * whether TLB batching occurred in the past and if so then do a flush here
 666 * if required. This will cost one additional flush per reclaim cycle paid
 667 * by the first operation at risk such as mprotect and mumap.
 668 *
 669 * This must be called under the PTL so that an access to tlb_flush_batched
 670 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 671 * via the PTL.
 672 */
 673void flush_tlb_batched_pending(struct mm_struct *mm)
 674{
 675	if (data_race(mm->tlb_flush_batched)) {
 676		flush_tlb_mm(mm);
 677
 678		/*
 679		 * Do not allow the compiler to re-order the clearing of
 680		 * tlb_flush_batched before the tlb is flushed.
 681		 */
 682		barrier();
 683		mm->tlb_flush_batched = false;
 684	}
 685}
 686#else
 687static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 688{
 689}
 690
 691static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 692{
 693	return false;
 694}
 695#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 696
 697/*
 698 * At what user virtual address is page expected in vma?
 699 * Caller should check the page is actually part of the vma.
 700 */
 701unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 702{
 703	unsigned long address;
 704	if (PageAnon(page)) {
 705		struct anon_vma *page__anon_vma = page_anon_vma(page);
 706		/*
 707		 * Note: swapoff's unuse_vma() is more efficient with this
 708		 * check, and needs it to match anon_vma when KSM is active.
 709		 */
 710		if (!vma->anon_vma || !page__anon_vma ||
 711		    vma->anon_vma->root != page__anon_vma->root)
 712			return -EFAULT;
 713	} else if (page->mapping) {
 714		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 715			return -EFAULT;
 716	} else
 717		return -EFAULT;
 718	address = __vma_address(page, vma);
 719	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 720		return -EFAULT;
 721	return address;
 722}
 723
 724pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 725{
 726	pgd_t *pgd;
 727	p4d_t *p4d;
 728	pud_t *pud;
 729	pmd_t *pmd = NULL;
 730	pmd_t pmde;
 731
 732	pgd = pgd_offset(mm, address);
 733	if (!pgd_present(*pgd))
 734		goto out;
 735
 736	p4d = p4d_offset(pgd, address);
 737	if (!p4d_present(*p4d))
 738		goto out;
 739
 740	pud = pud_offset(p4d, address);
 741	if (!pud_present(*pud))
 742		goto out;
 743
 744	pmd = pmd_offset(pud, address);
 745	/*
 746	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 747	 * without holding anon_vma lock for write.  So when looking for a
 748	 * genuine pmde (in which to find pte), test present and !THP together.
 749	 */
 750	pmde = *pmd;
 751	barrier();
 752	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 753		pmd = NULL;
 754out:
 755	return pmd;
 756}
 757
 758struct page_referenced_arg {
 759	int mapcount;
 760	int referenced;
 761	unsigned long vm_flags;
 762	struct mem_cgroup *memcg;
 763};
 764/*
 765 * arg: page_referenced_arg will be passed
 766 */
 767static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 768			unsigned long address, void *arg)
 769{
 770	struct page_referenced_arg *pra = arg;
 771	struct page_vma_mapped_walk pvmw = {
 772		.page = page,
 773		.vma = vma,
 774		.address = address,
 775	};
 776	int referenced = 0;
 777
 778	while (page_vma_mapped_walk(&pvmw)) {
 779		address = pvmw.address;
 780
 781		if (vma->vm_flags & VM_LOCKED) {
 782			page_vma_mapped_walk_done(&pvmw);
 783			pra->vm_flags |= VM_LOCKED;
 784			return false; /* To break the loop */
 785		}
 786
 787		if (pvmw.pte) {
 788			if (ptep_clear_flush_young_notify(vma, address,
 789						pvmw.pte)) {
 790				/*
 791				 * Don't treat a reference through
 792				 * a sequentially read mapping as such.
 793				 * If the page has been used in another mapping,
 794				 * we will catch it; if this other mapping is
 795				 * already gone, the unmap path will have set
 796				 * PG_referenced or activated the page.
 797				 */
 798				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 799					referenced++;
 800			}
 801		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 802			if (pmdp_clear_flush_young_notify(vma, address,
 803						pvmw.pmd))
 804				referenced++;
 805		} else {
 806			/* unexpected pmd-mapped page? */
 807			WARN_ON_ONCE(1);
 808		}
 809
 810		pra->mapcount--;
 811	}
 812
 813	if (referenced)
 814		clear_page_idle(page);
 815	if (test_and_clear_page_young(page))
 816		referenced++;
 817
 818	if (referenced) {
 819		pra->referenced++;
 820		pra->vm_flags |= vma->vm_flags;
 821	}
 822
 823	if (!pra->mapcount)
 824		return false; /* To break the loop */
 825
 826	return true;
 827}
 828
 829static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 830{
 831	struct page_referenced_arg *pra = arg;
 832	struct mem_cgroup *memcg = pra->memcg;
 833
 834	if (!mm_match_cgroup(vma->vm_mm, memcg))
 835		return true;
 836
 837	return false;
 838}
 839
 840/**
 841 * page_referenced - test if the page was referenced
 842 * @page: the page to test
 843 * @is_locked: caller holds lock on the page
 844 * @memcg: target memory cgroup
 845 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 846 *
 847 * Quick test_and_clear_referenced for all mappings to a page,
 848 * returns the number of ptes which referenced the page.
 849 */
 850int page_referenced(struct page *page,
 851		    int is_locked,
 852		    struct mem_cgroup *memcg,
 853		    unsigned long *vm_flags)
 854{
 855	int we_locked = 0;
 856	struct page_referenced_arg pra = {
 857		.mapcount = total_mapcount(page),
 858		.memcg = memcg,
 859	};
 860	struct rmap_walk_control rwc = {
 861		.rmap_one = page_referenced_one,
 862		.arg = (void *)&pra,
 863		.anon_lock = page_lock_anon_vma_read,
 864	};
 865
 866	*vm_flags = 0;
 867	if (!pra.mapcount)
 868		return 0;
 869
 870	if (!page_rmapping(page))
 871		return 0;
 872
 873	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 874		we_locked = trylock_page(page);
 875		if (!we_locked)
 876			return 1;
 877	}
 878
 879	/*
 880	 * If we are reclaiming on behalf of a cgroup, skip
 881	 * counting on behalf of references from different
 882	 * cgroups
 883	 */
 884	if (memcg) {
 885		rwc.invalid_vma = invalid_page_referenced_vma;
 886	}
 887
 888	rmap_walk(page, &rwc);
 889	*vm_flags = pra.vm_flags;
 890
 891	if (we_locked)
 892		unlock_page(page);
 893
 894	return pra.referenced;
 895}
 896
 897static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 898			    unsigned long address, void *arg)
 899{
 900	struct page_vma_mapped_walk pvmw = {
 901		.page = page,
 902		.vma = vma,
 903		.address = address,
 904		.flags = PVMW_SYNC,
 905	};
 906	struct mmu_notifier_range range;
 907	int *cleaned = arg;
 908
 909	/*
 910	 * We have to assume the worse case ie pmd for invalidation. Note that
 911	 * the page can not be free from this function.
 912	 */
 913	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 914				0, vma, vma->vm_mm, address,
 915				min(vma->vm_end, address + page_size(page)));
 916	mmu_notifier_invalidate_range_start(&range);
 917
 918	while (page_vma_mapped_walk(&pvmw)) {
 919		int ret = 0;
 920
 921		address = pvmw.address;
 922		if (pvmw.pte) {
 923			pte_t entry;
 924			pte_t *pte = pvmw.pte;
 925
 926			if (!pte_dirty(*pte) && !pte_write(*pte))
 927				continue;
 928
 929			flush_cache_page(vma, address, pte_pfn(*pte));
 930			entry = ptep_clear_flush(vma, address, pte);
 931			entry = pte_wrprotect(entry);
 932			entry = pte_mkclean(entry);
 933			set_pte_at(vma->vm_mm, address, pte, entry);
 934			ret = 1;
 935		} else {
 936#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 937			pmd_t *pmd = pvmw.pmd;
 938			pmd_t entry;
 939
 940			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 941				continue;
 942
 943			flush_cache_page(vma, address, page_to_pfn(page));
 944			entry = pmdp_invalidate(vma, address, pmd);
 945			entry = pmd_wrprotect(entry);
 946			entry = pmd_mkclean(entry);
 947			set_pmd_at(vma->vm_mm, address, pmd, entry);
 948			ret = 1;
 949#else
 950			/* unexpected pmd-mapped page? */
 951			WARN_ON_ONCE(1);
 952#endif
 953		}
 954
 955		/*
 956		 * No need to call mmu_notifier_invalidate_range() as we are
 957		 * downgrading page table protection not changing it to point
 958		 * to a new page.
 959		 *
 960		 * See Documentation/vm/mmu_notifier.rst
 961		 */
 962		if (ret)
 963			(*cleaned)++;
 964	}
 965
 966	mmu_notifier_invalidate_range_end(&range);
 967
 968	return true;
 969}
 970
 971static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 972{
 973	if (vma->vm_flags & VM_SHARED)
 974		return false;
 975
 976	return true;
 977}
 978
 979int page_mkclean(struct page *page)
 980{
 981	int cleaned = 0;
 982	struct address_space *mapping;
 983	struct rmap_walk_control rwc = {
 984		.arg = (void *)&cleaned,
 985		.rmap_one = page_mkclean_one,
 986		.invalid_vma = invalid_mkclean_vma,
 987	};
 988
 989	BUG_ON(!PageLocked(page));
 990
 991	if (!page_mapped(page))
 992		return 0;
 993
 994	mapping = page_mapping(page);
 995	if (!mapping)
 996		return 0;
 997
 998	rmap_walk(page, &rwc);
 999
1000	return cleaned;
1001}
1002EXPORT_SYMBOL_GPL(page_mkclean);
1003
1004/**
1005 * page_move_anon_rmap - move a page to our anon_vma
1006 * @page:	the page to move to our anon_vma
1007 * @vma:	the vma the page belongs to
1008 *
1009 * When a page belongs exclusively to one process after a COW event,
1010 * that page can be moved into the anon_vma that belongs to just that
1011 * process, so the rmap code will not search the parent or sibling
1012 * processes.
1013 */
1014void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1015{
1016	struct anon_vma *anon_vma = vma->anon_vma;
1017
1018	page = compound_head(page);
1019
1020	VM_BUG_ON_PAGE(!PageLocked(page), page);
1021	VM_BUG_ON_VMA(!anon_vma, vma);
1022
1023	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1024	/*
1025	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1026	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1027	 * PageAnon()) will not see one without the other.
1028	 */
1029	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1030}
1031
1032/**
1033 * __page_set_anon_rmap - set up new anonymous rmap
1034 * @page:	Page or Hugepage to add to rmap
1035 * @vma:	VM area to add page to.
1036 * @address:	User virtual address of the mapping	
1037 * @exclusive:	the page is exclusively owned by the current process
1038 */
1039static void __page_set_anon_rmap(struct page *page,
1040	struct vm_area_struct *vma, unsigned long address, int exclusive)
1041{
1042	struct anon_vma *anon_vma = vma->anon_vma;
1043
1044	BUG_ON(!anon_vma);
1045
1046	if (PageAnon(page))
1047		return;
1048
1049	/*
1050	 * If the page isn't exclusively mapped into this vma,
1051	 * we must use the _oldest_ possible anon_vma for the
1052	 * page mapping!
1053	 */
1054	if (!exclusive)
1055		anon_vma = anon_vma->root;
1056
1057	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1058	page->mapping = (struct address_space *) anon_vma;
1059	page->index = linear_page_index(vma, address);
1060}
1061
1062/**
1063 * __page_check_anon_rmap - sanity check anonymous rmap addition
1064 * @page:	the page to add the mapping to
1065 * @vma:	the vm area in which the mapping is added
1066 * @address:	the user virtual address mapped
1067 */
1068static void __page_check_anon_rmap(struct page *page,
1069	struct vm_area_struct *vma, unsigned long address)
1070{
 
1071	/*
1072	 * The page's anon-rmap details (mapping and index) are guaranteed to
1073	 * be set up correctly at this point.
1074	 *
1075	 * We have exclusion against page_add_anon_rmap because the caller
1076	 * always holds the page locked, except if called from page_dup_rmap,
1077	 * in which case the page is already known to be setup.
1078	 *
1079	 * We have exclusion against page_add_new_anon_rmap because those pages
1080	 * are initially only visible via the pagetables, and the pte is locked
1081	 * over the call to page_add_new_anon_rmap.
1082	 */
1083	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1084	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1085		       page);
1086}
1087
1088/**
1089 * page_add_anon_rmap - add pte mapping to an anonymous page
1090 * @page:	the page to add the mapping to
1091 * @vma:	the vm area in which the mapping is added
1092 * @address:	the user virtual address mapped
1093 * @compound:	charge the page as compound or small page
1094 *
1095 * The caller needs to hold the pte lock, and the page must be locked in
1096 * the anon_vma case: to serialize mapping,index checking after setting,
1097 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1098 * (but PageKsm is never downgraded to PageAnon).
1099 */
1100void page_add_anon_rmap(struct page *page,
1101	struct vm_area_struct *vma, unsigned long address, bool compound)
1102{
1103	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1104}
1105
1106/*
1107 * Special version of the above for do_swap_page, which often runs
1108 * into pages that are exclusively owned by the current process.
1109 * Everybody else should continue to use page_add_anon_rmap above.
1110 */
1111void do_page_add_anon_rmap(struct page *page,
1112	struct vm_area_struct *vma, unsigned long address, int flags)
1113{
1114	bool compound = flags & RMAP_COMPOUND;
1115	bool first;
1116
1117	if (unlikely(PageKsm(page)))
1118		lock_page_memcg(page);
1119	else
1120		VM_BUG_ON_PAGE(!PageLocked(page), page);
1121
1122	if (compound) {
1123		atomic_t *mapcount;
1124		VM_BUG_ON_PAGE(!PageLocked(page), page);
1125		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1126		mapcount = compound_mapcount_ptr(page);
1127		first = atomic_inc_and_test(mapcount);
1128	} else {
1129		first = atomic_inc_and_test(&page->_mapcount);
1130	}
1131
1132	if (first) {
1133		int nr = compound ? thp_nr_pages(page) : 1;
1134		/*
1135		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1136		 * these counters are not modified in interrupt context, and
1137		 * pte lock(a spinlock) is held, which implies preemption
1138		 * disabled.
1139		 */
1140		if (compound)
1141			__inc_lruvec_page_state(page, NR_ANON_THPS);
1142		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1143	}
1144
1145	if (unlikely(PageKsm(page))) {
1146		unlock_page_memcg(page);
1147		return;
1148	}
 
1149
1150	/* address might be in next vma when migration races vma_adjust */
1151	if (first)
1152		__page_set_anon_rmap(page, vma, address,
1153				flags & RMAP_EXCLUSIVE);
1154	else
1155		__page_check_anon_rmap(page, vma, address);
1156}
1157
1158/**
1159 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1160 * @page:	the page to add the mapping to
1161 * @vma:	the vm area in which the mapping is added
1162 * @address:	the user virtual address mapped
1163 * @compound:	charge the page as compound or small page
1164 *
1165 * Same as page_add_anon_rmap but must only be called on *new* pages.
1166 * This means the inc-and-test can be bypassed.
1167 * Page does not have to be locked.
1168 */
1169void page_add_new_anon_rmap(struct page *page,
1170	struct vm_area_struct *vma, unsigned long address, bool compound)
1171{
1172	int nr = compound ? thp_nr_pages(page) : 1;
1173
1174	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1175	__SetPageSwapBacked(page);
1176	if (compound) {
1177		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1178		/* increment count (starts at -1) */
1179		atomic_set(compound_mapcount_ptr(page), 0);
1180		if (hpage_pincount_available(page))
1181			atomic_set(compound_pincount_ptr(page), 0);
1182
1183		__inc_lruvec_page_state(page, NR_ANON_THPS);
1184	} else {
1185		/* Anon THP always mapped first with PMD */
1186		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1187		/* increment count (starts at -1) */
1188		atomic_set(&page->_mapcount, 0);
1189	}
1190	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1191	__page_set_anon_rmap(page, vma, address, 1);
1192}
1193
1194/**
1195 * page_add_file_rmap - add pte mapping to a file page
1196 * @page: the page to add the mapping to
1197 * @compound: charge the page as compound or small page
1198 *
1199 * The caller needs to hold the pte lock.
1200 */
1201void page_add_file_rmap(struct page *page, bool compound)
1202{
1203	int i, nr = 1;
1204
1205	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1206	lock_page_memcg(page);
1207	if (compound && PageTransHuge(page)) {
1208		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1209			if (atomic_inc_and_test(&page[i]._mapcount))
1210				nr++;
1211		}
1212		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1213			goto out;
1214		if (PageSwapBacked(page))
1215			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1216		else
1217			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1218	} else {
1219		if (PageTransCompound(page) && page_mapping(page)) {
1220			VM_WARN_ON_ONCE(!PageLocked(page));
1221
1222			SetPageDoubleMap(compound_head(page));
1223			if (PageMlocked(page))
1224				clear_page_mlock(compound_head(page));
1225		}
1226		if (!atomic_inc_and_test(&page->_mapcount))
1227			goto out;
1228	}
1229	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1230out:
1231	unlock_page_memcg(page);
1232}
1233
1234static void page_remove_file_rmap(struct page *page, bool compound)
1235{
1236	int i, nr = 1;
1237
1238	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
 
1239
1240	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1241	if (unlikely(PageHuge(page))) {
1242		/* hugetlb pages are always mapped with pmds */
1243		atomic_dec(compound_mapcount_ptr(page));
1244		return;
1245	}
1246
1247	/* page still mapped by someone else? */
1248	if (compound && PageTransHuge(page)) {
1249		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1250			if (atomic_add_negative(-1, &page[i]._mapcount))
1251				nr++;
1252		}
1253		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1254			return;
1255		if (PageSwapBacked(page))
1256			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1257		else
1258			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1259	} else {
1260		if (!atomic_add_negative(-1, &page->_mapcount))
1261			return;
1262	}
1263
1264	/*
1265	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1266	 * these counters are not modified in interrupt context, and
1267	 * pte lock(a spinlock) is held, which implies preemption disabled.
1268	 */
1269	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1270
1271	if (unlikely(PageMlocked(page)))
1272		clear_page_mlock(page);
 
 
1273}
1274
1275static void page_remove_anon_compound_rmap(struct page *page)
1276{
1277	int i, nr;
1278
1279	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1280		return;
1281
1282	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1283	if (unlikely(PageHuge(page)))
1284		return;
1285
1286	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1287		return;
1288
1289	__dec_lruvec_page_state(page, NR_ANON_THPS);
1290
1291	if (TestClearPageDoubleMap(page)) {
1292		/*
1293		 * Subpages can be mapped with PTEs too. Check how many of
1294		 * them are still mapped.
1295		 */
1296		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1297			if (atomic_add_negative(-1, &page[i]._mapcount))
1298				nr++;
1299		}
1300
1301		/*
1302		 * Queue the page for deferred split if at least one small
1303		 * page of the compound page is unmapped, but at least one
1304		 * small page is still mapped.
1305		 */
1306		if (nr && nr < HPAGE_PMD_NR)
1307			deferred_split_huge_page(page);
1308	} else {
1309		nr = HPAGE_PMD_NR;
1310	}
1311
1312	if (unlikely(PageMlocked(page)))
1313		clear_page_mlock(page);
1314
1315	if (nr)
1316		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
 
 
1317}
1318
1319/**
1320 * page_remove_rmap - take down pte mapping from a page
1321 * @page:	page to remove mapping from
1322 * @compound:	uncharge the page as compound or small page
1323 *
1324 * The caller needs to hold the pte lock.
1325 */
1326void page_remove_rmap(struct page *page, bool compound)
1327{
1328	lock_page_memcg(page);
1329
1330	if (!PageAnon(page)) {
1331		page_remove_file_rmap(page, compound);
1332		goto out;
1333	}
1334
1335	if (compound) {
1336		page_remove_anon_compound_rmap(page);
1337		goto out;
1338	}
1339
1340	/* page still mapped by someone else? */
1341	if (!atomic_add_negative(-1, &page->_mapcount))
1342		goto out;
1343
1344	/*
1345	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1346	 * these counters are not modified in interrupt context, and
1347	 * pte lock(a spinlock) is held, which implies preemption disabled.
1348	 */
1349	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1350
1351	if (unlikely(PageMlocked(page)))
1352		clear_page_mlock(page);
1353
1354	if (PageTransCompound(page))
1355		deferred_split_huge_page(compound_head(page));
1356
1357	/*
1358	 * It would be tidy to reset the PageAnon mapping here,
1359	 * but that might overwrite a racing page_add_anon_rmap
1360	 * which increments mapcount after us but sets mapping
1361	 * before us: so leave the reset to free_unref_page,
1362	 * and remember that it's only reliable while mapped.
1363	 * Leaving it set also helps swapoff to reinstate ptes
1364	 * faster for those pages still in swapcache.
1365	 */
1366out:
1367	unlock_page_memcg(page);
1368}
1369
1370/*
1371 * @arg: enum ttu_flags will be passed to this argument
1372 */
1373static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1374		     unsigned long address, void *arg)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	struct page_vma_mapped_walk pvmw = {
1378		.page = page,
1379		.vma = vma,
1380		.address = address,
1381	};
1382	pte_t pteval;
1383	struct page *subpage;
1384	bool ret = true;
1385	struct mmu_notifier_range range;
1386	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1387
1388	/* munlock has nothing to gain from examining un-locked vmas */
1389	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1390		return true;
1391
1392	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1393	    is_zone_device_page(page) && !is_device_private_page(page))
1394		return true;
1395
1396	if (flags & TTU_SPLIT_HUGE_PMD) {
1397		split_huge_pmd_address(vma, address,
1398				flags & TTU_SPLIT_FREEZE, page);
1399	}
1400
1401	/*
1402	 * For THP, we have to assume the worse case ie pmd for invalidation.
1403	 * For hugetlb, it could be much worse if we need to do pud
1404	 * invalidation in the case of pmd sharing.
1405	 *
1406	 * Note that the page can not be free in this function as call of
1407	 * try_to_unmap() must hold a reference on the page.
1408	 */
1409	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1410				address,
1411				min(vma->vm_end, address + page_size(page)));
1412	if (PageHuge(page)) {
1413		/*
1414		 * If sharing is possible, start and end will be adjusted
1415		 * accordingly.
1416		 *
1417		 * If called for a huge page, caller must hold i_mmap_rwsem
1418		 * in write mode as it is possible to call huge_pmd_unshare.
1419		 */
1420		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1421						     &range.end);
1422	}
1423	mmu_notifier_invalidate_range_start(&range);
1424
1425	while (page_vma_mapped_walk(&pvmw)) {
1426#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1427		/* PMD-mapped THP migration entry */
1428		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1429			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1430
1431			set_pmd_migration_entry(&pvmw, page);
1432			continue;
1433		}
1434#endif
1435
1436		/*
1437		 * If the page is mlock()d, we cannot swap it out.
1438		 * If it's recently referenced (perhaps page_referenced
1439		 * skipped over this mm) then we should reactivate it.
1440		 */
1441		if (!(flags & TTU_IGNORE_MLOCK)) {
1442			if (vma->vm_flags & VM_LOCKED) {
1443				/* PTE-mapped THP are never mlocked */
1444				if (!PageTransCompound(page)) {
1445					/*
1446					 * Holding pte lock, we do *not* need
1447					 * mmap_lock here
1448					 */
1449					mlock_vma_page(page);
1450				}
1451				ret = false;
1452				page_vma_mapped_walk_done(&pvmw);
1453				break;
1454			}
1455			if (flags & TTU_MUNLOCK)
1456				continue;
1457		}
1458
1459		/* Unexpected PMD-mapped THP? */
1460		VM_BUG_ON_PAGE(!pvmw.pte, page);
1461
1462		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1463		address = pvmw.address;
1464
1465		if (PageHuge(page)) {
1466			/*
1467			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1468			 * held in write mode.  Caller needs to explicitly
1469			 * do this outside rmap routines.
1470			 */
1471			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1472			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1473				/*
1474				 * huge_pmd_unshare unmapped an entire PMD
1475				 * page.  There is no way of knowing exactly
1476				 * which PMDs may be cached for this mm, so
1477				 * we must flush them all.  start/end were
1478				 * already adjusted above to cover this range.
1479				 */
1480				flush_cache_range(vma, range.start, range.end);
1481				flush_tlb_range(vma, range.start, range.end);
1482				mmu_notifier_invalidate_range(mm, range.start,
1483							      range.end);
1484
1485				/*
1486				 * The ref count of the PMD page was dropped
1487				 * which is part of the way map counting
1488				 * is done for shared PMDs.  Return 'true'
1489				 * here.  When there is no other sharing,
1490				 * huge_pmd_unshare returns false and we will
1491				 * unmap the actual page and drop map count
1492				 * to zero.
1493				 */
1494				page_vma_mapped_walk_done(&pvmw);
1495				break;
1496			}
1497		}
1498
1499		if (IS_ENABLED(CONFIG_MIGRATION) &&
1500		    (flags & TTU_MIGRATION) &&
1501		    is_zone_device_page(page)) {
1502			swp_entry_t entry;
1503			pte_t swp_pte;
1504
1505			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1506
1507			/*
1508			 * Store the pfn of the page in a special migration
1509			 * pte. do_swap_page() will wait until the migration
1510			 * pte is removed and then restart fault handling.
1511			 */
1512			entry = make_migration_entry(page, 0);
1513			swp_pte = swp_entry_to_pte(entry);
1514
1515			/*
1516			 * pteval maps a zone device page and is therefore
1517			 * a swap pte.
1518			 */
1519			if (pte_swp_soft_dirty(pteval))
1520				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1521			if (pte_swp_uffd_wp(pteval))
1522				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1523			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1524			/*
1525			 * No need to invalidate here it will synchronize on
1526			 * against the special swap migration pte.
1527			 *
1528			 * The assignment to subpage above was computed from a
1529			 * swap PTE which results in an invalid pointer.
1530			 * Since only PAGE_SIZE pages can currently be
1531			 * migrated, just set it to page. This will need to be
1532			 * changed when hugepage migrations to device private
1533			 * memory are supported.
1534			 */
1535			subpage = page;
1536			goto discard;
1537		}
1538
1539		if (!(flags & TTU_IGNORE_ACCESS)) {
1540			if (ptep_clear_flush_young_notify(vma, address,
1541						pvmw.pte)) {
1542				ret = false;
1543				page_vma_mapped_walk_done(&pvmw);
1544				break;
1545			}
1546		}
1547
1548		/* Nuke the page table entry. */
1549		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1550		if (should_defer_flush(mm, flags)) {
1551			/*
1552			 * We clear the PTE but do not flush so potentially
1553			 * a remote CPU could still be writing to the page.
1554			 * If the entry was previously clean then the
1555			 * architecture must guarantee that a clear->dirty
1556			 * transition on a cached TLB entry is written through
1557			 * and traps if the PTE is unmapped.
1558			 */
1559			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1560
1561			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1562		} else {
1563			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1564		}
1565
1566		/* Move the dirty bit to the page. Now the pte is gone. */
1567		if (pte_dirty(pteval))
1568			set_page_dirty(page);
1569
1570		/* Update high watermark before we lower rss */
1571		update_hiwater_rss(mm);
1572
1573		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1574			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1575			if (PageHuge(page)) {
1576				hugetlb_count_sub(compound_nr(page), mm);
1577				set_huge_swap_pte_at(mm, address,
1578						     pvmw.pte, pteval,
1579						     vma_mmu_pagesize(vma));
1580			} else {
1581				dec_mm_counter(mm, mm_counter(page));
1582				set_pte_at(mm, address, pvmw.pte, pteval);
1583			}
1584
1585		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1586			/*
1587			 * The guest indicated that the page content is of no
1588			 * interest anymore. Simply discard the pte, vmscan
1589			 * will take care of the rest.
1590			 * A future reference will then fault in a new zero
1591			 * page. When userfaultfd is active, we must not drop
1592			 * this page though, as its main user (postcopy
1593			 * migration) will not expect userfaults on already
1594			 * copied pages.
1595			 */
1596			dec_mm_counter(mm, mm_counter(page));
1597			/* We have to invalidate as we cleared the pte */
1598			mmu_notifier_invalidate_range(mm, address,
1599						      address + PAGE_SIZE);
1600		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1601				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1602			swp_entry_t entry;
1603			pte_t swp_pte;
1604
1605			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1606				set_pte_at(mm, address, pvmw.pte, pteval);
1607				ret = false;
1608				page_vma_mapped_walk_done(&pvmw);
1609				break;
1610			}
1611
1612			/*
1613			 * Store the pfn of the page in a special migration
1614			 * pte. do_swap_page() will wait until the migration
1615			 * pte is removed and then restart fault handling.
1616			 */
1617			entry = make_migration_entry(subpage,
1618					pte_write(pteval));
1619			swp_pte = swp_entry_to_pte(entry);
1620			if (pte_soft_dirty(pteval))
1621				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1622			if (pte_uffd_wp(pteval))
1623				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1624			set_pte_at(mm, address, pvmw.pte, swp_pte);
1625			/*
1626			 * No need to invalidate here it will synchronize on
1627			 * against the special swap migration pte.
1628			 */
1629		} else if (PageAnon(page)) {
1630			swp_entry_t entry = { .val = page_private(subpage) };
1631			pte_t swp_pte;
1632			/*
1633			 * Store the swap location in the pte.
1634			 * See handle_pte_fault() ...
1635			 */
1636			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1637				WARN_ON_ONCE(1);
1638				ret = false;
1639				/* We have to invalidate as we cleared the pte */
1640				mmu_notifier_invalidate_range(mm, address,
1641							address + PAGE_SIZE);
1642				page_vma_mapped_walk_done(&pvmw);
1643				break;
1644			}
1645
1646			/* MADV_FREE page check */
1647			if (!PageSwapBacked(page)) {
1648				if (!PageDirty(page)) {
1649					/* Invalidate as we cleared the pte */
1650					mmu_notifier_invalidate_range(mm,
1651						address, address + PAGE_SIZE);
1652					dec_mm_counter(mm, MM_ANONPAGES);
1653					goto discard;
1654				}
1655
1656				/*
1657				 * If the page was redirtied, it cannot be
1658				 * discarded. Remap the page to page table.
1659				 */
1660				set_pte_at(mm, address, pvmw.pte, pteval);
1661				SetPageSwapBacked(page);
1662				ret = false;
1663				page_vma_mapped_walk_done(&pvmw);
1664				break;
1665			}
1666
1667			if (swap_duplicate(entry) < 0) {
1668				set_pte_at(mm, address, pvmw.pte, pteval);
1669				ret = false;
1670				page_vma_mapped_walk_done(&pvmw);
1671				break;
1672			}
1673			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1674				set_pte_at(mm, address, pvmw.pte, pteval);
1675				ret = false;
1676				page_vma_mapped_walk_done(&pvmw);
1677				break;
1678			}
1679			if (list_empty(&mm->mmlist)) {
1680				spin_lock(&mmlist_lock);
1681				if (list_empty(&mm->mmlist))
1682					list_add(&mm->mmlist, &init_mm.mmlist);
1683				spin_unlock(&mmlist_lock);
1684			}
1685			dec_mm_counter(mm, MM_ANONPAGES);
1686			inc_mm_counter(mm, MM_SWAPENTS);
1687			swp_pte = swp_entry_to_pte(entry);
1688			if (pte_soft_dirty(pteval))
1689				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1690			if (pte_uffd_wp(pteval))
1691				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1692			set_pte_at(mm, address, pvmw.pte, swp_pte);
1693			/* Invalidate as we cleared the pte */
1694			mmu_notifier_invalidate_range(mm, address,
1695						      address + PAGE_SIZE);
1696		} else {
1697			/*
1698			 * This is a locked file-backed page, thus it cannot
1699			 * be removed from the page cache and replaced by a new
1700			 * page before mmu_notifier_invalidate_range_end, so no
1701			 * concurrent thread might update its page table to
1702			 * point at new page while a device still is using this
1703			 * page.
1704			 *
1705			 * See Documentation/vm/mmu_notifier.rst
1706			 */
1707			dec_mm_counter(mm, mm_counter_file(page));
1708		}
1709discard:
1710		/*
1711		 * No need to call mmu_notifier_invalidate_range() it has be
1712		 * done above for all cases requiring it to happen under page
1713		 * table lock before mmu_notifier_invalidate_range_end()
1714		 *
1715		 * See Documentation/vm/mmu_notifier.rst
1716		 */
1717		page_remove_rmap(subpage, PageHuge(page));
1718		put_page(page);
1719	}
1720
1721	mmu_notifier_invalidate_range_end(&range);
1722
1723	return ret;
1724}
1725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1726static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1727{
1728	return vma_is_temporary_stack(vma);
1729}
1730
1731static int page_mapcount_is_zero(struct page *page)
1732{
1733	return !total_mapcount(page);
1734}
1735
1736/**
1737 * try_to_unmap - try to remove all page table mappings to a page
1738 * @page: the page to get unmapped
1739 * @flags: action and flags
1740 *
1741 * Tries to remove all the page table entries which are mapping this
1742 * page, used in the pageout path.  Caller must hold the page lock.
1743 *
1744 * If unmap is successful, return true. Otherwise, false.
1745 */
1746bool try_to_unmap(struct page *page, enum ttu_flags flags)
1747{
1748	struct rmap_walk_control rwc = {
1749		.rmap_one = try_to_unmap_one,
1750		.arg = (void *)flags,
1751		.done = page_mapcount_is_zero,
1752		.anon_lock = page_lock_anon_vma_read,
1753	};
1754
1755	/*
1756	 * During exec, a temporary VMA is setup and later moved.
1757	 * The VMA is moved under the anon_vma lock but not the
1758	 * page tables leading to a race where migration cannot
1759	 * find the migration ptes. Rather than increasing the
1760	 * locking requirements of exec(), migration skips
1761	 * temporary VMAs until after exec() completes.
1762	 */
1763	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1764	    && !PageKsm(page) && PageAnon(page))
1765		rwc.invalid_vma = invalid_migration_vma;
1766
1767	if (flags & TTU_RMAP_LOCKED)
1768		rmap_walk_locked(page, &rwc);
1769	else
1770		rmap_walk(page, &rwc);
1771
1772	return !page_mapcount(page) ? true : false;
1773}
1774
1775static int page_not_mapped(struct page *page)
1776{
1777	return !page_mapped(page);
1778};
1779
1780/**
1781 * try_to_munlock - try to munlock a page
1782 * @page: the page to be munlocked
1783 *
1784 * Called from munlock code.  Checks all of the VMAs mapping the page
1785 * to make sure nobody else has this page mlocked. The page will be
1786 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1787 */
1788
1789void try_to_munlock(struct page *page)
1790{
1791	struct rmap_walk_control rwc = {
1792		.rmap_one = try_to_unmap_one,
1793		.arg = (void *)TTU_MUNLOCK,
1794		.done = page_not_mapped,
1795		.anon_lock = page_lock_anon_vma_read,
1796
1797	};
1798
1799	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1800	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1801
1802	rmap_walk(page, &rwc);
1803}
1804
1805void __put_anon_vma(struct anon_vma *anon_vma)
1806{
1807	struct anon_vma *root = anon_vma->root;
1808
1809	anon_vma_free(anon_vma);
1810	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1811		anon_vma_free(root);
1812}
1813
1814static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1815					struct rmap_walk_control *rwc)
1816{
1817	struct anon_vma *anon_vma;
1818
1819	if (rwc->anon_lock)
1820		return rwc->anon_lock(page);
1821
1822	/*
1823	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1824	 * because that depends on page_mapped(); but not all its usages
1825	 * are holding mmap_lock. Users without mmap_lock are required to
1826	 * take a reference count to prevent the anon_vma disappearing
1827	 */
1828	anon_vma = page_anon_vma(page);
1829	if (!anon_vma)
1830		return NULL;
1831
1832	anon_vma_lock_read(anon_vma);
1833	return anon_vma;
1834}
1835
1836/*
1837 * rmap_walk_anon - do something to anonymous page using the object-based
1838 * rmap method
1839 * @page: the page to be handled
1840 * @rwc: control variable according to each walk type
1841 *
1842 * Find all the mappings of a page using the mapping pointer and the vma chains
1843 * contained in the anon_vma struct it points to.
1844 *
1845 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1846 * where the page was found will be held for write.  So, we won't recheck
1847 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1848 * LOCKED.
1849 */
1850static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1851		bool locked)
1852{
1853	struct anon_vma *anon_vma;
1854	pgoff_t pgoff_start, pgoff_end;
1855	struct anon_vma_chain *avc;
1856
1857	if (locked) {
1858		anon_vma = page_anon_vma(page);
1859		/* anon_vma disappear under us? */
1860		VM_BUG_ON_PAGE(!anon_vma, page);
1861	} else {
1862		anon_vma = rmap_walk_anon_lock(page, rwc);
1863	}
1864	if (!anon_vma)
1865		return;
1866
1867	pgoff_start = page_to_pgoff(page);
1868	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1869	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1870			pgoff_start, pgoff_end) {
1871		struct vm_area_struct *vma = avc->vma;
1872		unsigned long address = vma_address(page, vma);
1873
1874		cond_resched();
1875
1876		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1877			continue;
1878
1879		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1880			break;
1881		if (rwc->done && rwc->done(page))
1882			break;
1883	}
1884
1885	if (!locked)
1886		anon_vma_unlock_read(anon_vma);
1887}
1888
1889/*
1890 * rmap_walk_file - do something to file page using the object-based rmap method
1891 * @page: the page to be handled
1892 * @rwc: control variable according to each walk type
1893 *
1894 * Find all the mappings of a page using the mapping pointer and the vma chains
1895 * contained in the address_space struct it points to.
1896 *
1897 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1898 * where the page was found will be held for write.  So, we won't recheck
1899 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1900 * LOCKED.
1901 */
1902static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1903		bool locked)
1904{
1905	struct address_space *mapping = page_mapping(page);
1906	pgoff_t pgoff_start, pgoff_end;
1907	struct vm_area_struct *vma;
1908
1909	/*
1910	 * The page lock not only makes sure that page->mapping cannot
1911	 * suddenly be NULLified by truncation, it makes sure that the
1912	 * structure at mapping cannot be freed and reused yet,
1913	 * so we can safely take mapping->i_mmap_rwsem.
1914	 */
1915	VM_BUG_ON_PAGE(!PageLocked(page), page);
1916
1917	if (!mapping)
1918		return;
1919
1920	pgoff_start = page_to_pgoff(page);
1921	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1922	if (!locked)
1923		i_mmap_lock_read(mapping);
1924	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1925			pgoff_start, pgoff_end) {
1926		unsigned long address = vma_address(page, vma);
1927
1928		cond_resched();
1929
1930		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1931			continue;
1932
1933		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1934			goto done;
1935		if (rwc->done && rwc->done(page))
1936			goto done;
1937	}
1938
1939done:
1940	if (!locked)
1941		i_mmap_unlock_read(mapping);
1942}
1943
1944void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1945{
1946	if (unlikely(PageKsm(page)))
1947		rmap_walk_ksm(page, rwc);
1948	else if (PageAnon(page))
1949		rmap_walk_anon(page, rwc, false);
1950	else
1951		rmap_walk_file(page, rwc, false);
1952}
1953
1954/* Like rmap_walk, but caller holds relevant rmap lock */
1955void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1956{
1957	/* no ksm support for now */
1958	VM_BUG_ON_PAGE(PageKsm(page), page);
1959	if (PageAnon(page))
1960		rmap_walk_anon(page, rwc, true);
1961	else
1962		rmap_walk_file(page, rwc, true);
1963}
1964
1965#ifdef CONFIG_HUGETLB_PAGE
1966/*
1967 * The following two functions are for anonymous (private mapped) hugepages.
1968 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1969 * and no lru code, because we handle hugepages differently from common pages.
1970 */
1971void hugepage_add_anon_rmap(struct page *page,
1972			    struct vm_area_struct *vma, unsigned long address)
1973{
1974	struct anon_vma *anon_vma = vma->anon_vma;
1975	int first;
1976
1977	BUG_ON(!PageLocked(page));
1978	BUG_ON(!anon_vma);
1979	/* address might be in next vma when migration races vma_adjust */
1980	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1981	if (first)
1982		__page_set_anon_rmap(page, vma, address, 0);
1983}
1984
1985void hugepage_add_new_anon_rmap(struct page *page,
1986			struct vm_area_struct *vma, unsigned long address)
1987{
1988	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1989	atomic_set(compound_mapcount_ptr(page), 0);
1990	if (hpage_pincount_available(page))
1991		atomic_set(compound_pincount_ptr(page), 0);
1992
1993	__page_set_anon_rmap(page, vma, address, 1);
1994}
1995#endif /* CONFIG_HUGETLB_PAGE */
v5.4
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
 
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     i_pages lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   i_pages lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
 
 
 
 
 
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/huge_mm.h>
  65#include <linux/backing-dev.h>
  66#include <linux/page_idle.h>
  67#include <linux/memremap.h>
  68#include <linux/userfaultfd_k.h>
  69
  70#include <asm/tlbflush.h>
  71
  72#include <trace/events/tlb.h>
  73
  74#include "internal.h"
  75
  76static struct kmem_cache *anon_vma_cachep;
  77static struct kmem_cache *anon_vma_chain_cachep;
  78
  79static inline struct anon_vma *anon_vma_alloc(void)
  80{
  81	struct anon_vma *anon_vma;
  82
  83	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  84	if (anon_vma) {
  85		atomic_set(&anon_vma->refcount, 1);
  86		anon_vma->degree = 1;	/* Reference for first vma */
  87		anon_vma->parent = anon_vma;
  88		/*
  89		 * Initialise the anon_vma root to point to itself. If called
  90		 * from fork, the root will be reset to the parents anon_vma.
  91		 */
  92		anon_vma->root = anon_vma;
  93	}
  94
  95	return anon_vma;
  96}
  97
  98static inline void anon_vma_free(struct anon_vma *anon_vma)
  99{
 100	VM_BUG_ON(atomic_read(&anon_vma->refcount));
 101
 102	/*
 103	 * Synchronize against page_lock_anon_vma_read() such that
 104	 * we can safely hold the lock without the anon_vma getting
 105	 * freed.
 106	 *
 107	 * Relies on the full mb implied by the atomic_dec_and_test() from
 108	 * put_anon_vma() against the acquire barrier implied by
 109	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 110	 *
 111	 * page_lock_anon_vma_read()	VS	put_anon_vma()
 112	 *   down_read_trylock()		  atomic_dec_and_test()
 113	 *   LOCK				  MB
 114	 *   atomic_read()			  rwsem_is_locked()
 115	 *
 116	 * LOCK should suffice since the actual taking of the lock must
 117	 * happen _before_ what follows.
 118	 */
 119	might_sleep();
 120	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 121		anon_vma_lock_write(anon_vma);
 122		anon_vma_unlock_write(anon_vma);
 123	}
 124
 125	kmem_cache_free(anon_vma_cachep, anon_vma);
 126}
 127
 128static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 129{
 130	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 131}
 132
 133static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 134{
 135	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 136}
 137
 138static void anon_vma_chain_link(struct vm_area_struct *vma,
 139				struct anon_vma_chain *avc,
 140				struct anon_vma *anon_vma)
 141{
 142	avc->vma = vma;
 143	avc->anon_vma = anon_vma;
 144	list_add(&avc->same_vma, &vma->anon_vma_chain);
 145	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 146}
 147
 148/**
 149 * __anon_vma_prepare - attach an anon_vma to a memory region
 150 * @vma: the memory region in question
 151 *
 152 * This makes sure the memory mapping described by 'vma' has
 153 * an 'anon_vma' attached to it, so that we can associate the
 154 * anonymous pages mapped into it with that anon_vma.
 155 *
 156 * The common case will be that we already have one, which
 157 * is handled inline by anon_vma_prepare(). But if
 158 * not we either need to find an adjacent mapping that we
 159 * can re-use the anon_vma from (very common when the only
 160 * reason for splitting a vma has been mprotect()), or we
 161 * allocate a new one.
 162 *
 163 * Anon-vma allocations are very subtle, because we may have
 164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 165 * and that may actually touch the spinlock even in the newly
 166 * allocated vma (it depends on RCU to make sure that the
 167 * anon_vma isn't actually destroyed).
 168 *
 169 * As a result, we need to do proper anon_vma locking even
 170 * for the new allocation. At the same time, we do not want
 171 * to do any locking for the common case of already having
 172 * an anon_vma.
 173 *
 174 * This must be called with the mmap_sem held for reading.
 175 */
 176int __anon_vma_prepare(struct vm_area_struct *vma)
 177{
 178	struct mm_struct *mm = vma->vm_mm;
 179	struct anon_vma *anon_vma, *allocated;
 180	struct anon_vma_chain *avc;
 181
 182	might_sleep();
 183
 184	avc = anon_vma_chain_alloc(GFP_KERNEL);
 185	if (!avc)
 186		goto out_enomem;
 187
 188	anon_vma = find_mergeable_anon_vma(vma);
 189	allocated = NULL;
 190	if (!anon_vma) {
 191		anon_vma = anon_vma_alloc();
 192		if (unlikely(!anon_vma))
 193			goto out_enomem_free_avc;
 194		allocated = anon_vma;
 195	}
 196
 197	anon_vma_lock_write(anon_vma);
 198	/* page_table_lock to protect against threads */
 199	spin_lock(&mm->page_table_lock);
 200	if (likely(!vma->anon_vma)) {
 201		vma->anon_vma = anon_vma;
 202		anon_vma_chain_link(vma, avc, anon_vma);
 203		/* vma reference or self-parent link for new root */
 204		anon_vma->degree++;
 205		allocated = NULL;
 206		avc = NULL;
 207	}
 208	spin_unlock(&mm->page_table_lock);
 209	anon_vma_unlock_write(anon_vma);
 210
 211	if (unlikely(allocated))
 212		put_anon_vma(allocated);
 213	if (unlikely(avc))
 214		anon_vma_chain_free(avc);
 215
 216	return 0;
 217
 218 out_enomem_free_avc:
 219	anon_vma_chain_free(avc);
 220 out_enomem:
 221	return -ENOMEM;
 222}
 223
 224/*
 225 * This is a useful helper function for locking the anon_vma root as
 226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 227 * have the same vma.
 228 *
 229 * Such anon_vma's should have the same root, so you'd expect to see
 230 * just a single mutex_lock for the whole traversal.
 231 */
 232static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 233{
 234	struct anon_vma *new_root = anon_vma->root;
 235	if (new_root != root) {
 236		if (WARN_ON_ONCE(root))
 237			up_write(&root->rwsem);
 238		root = new_root;
 239		down_write(&root->rwsem);
 240	}
 241	return root;
 242}
 243
 244static inline void unlock_anon_vma_root(struct anon_vma *root)
 245{
 246	if (root)
 247		up_write(&root->rwsem);
 248}
 249
 250/*
 251 * Attach the anon_vmas from src to dst.
 252 * Returns 0 on success, -ENOMEM on failure.
 253 *
 254 * If dst->anon_vma is NULL this function tries to find and reuse existing
 255 * anon_vma which has no vmas and only one child anon_vma. This prevents
 256 * degradation of anon_vma hierarchy to endless linear chain in case of
 257 * constantly forking task. On the other hand, an anon_vma with more than one
 258 * child isn't reused even if there was no alive vma, thus rmap walker has a
 259 * good chance of avoiding scanning the whole hierarchy when it searches where
 260 * page is mapped.
 
 
 
 
 
 
 261 */
 262int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 263{
 264	struct anon_vma_chain *avc, *pavc;
 265	struct anon_vma *root = NULL;
 266
 267	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 268		struct anon_vma *anon_vma;
 269
 270		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 271		if (unlikely(!avc)) {
 272			unlock_anon_vma_root(root);
 273			root = NULL;
 274			avc = anon_vma_chain_alloc(GFP_KERNEL);
 275			if (!avc)
 276				goto enomem_failure;
 277		}
 278		anon_vma = pavc->anon_vma;
 279		root = lock_anon_vma_root(root, anon_vma);
 280		anon_vma_chain_link(dst, avc, anon_vma);
 281
 282		/*
 283		 * Reuse existing anon_vma if its degree lower than two,
 284		 * that means it has no vma and only one anon_vma child.
 285		 *
 286		 * Do not chose parent anon_vma, otherwise first child
 287		 * will always reuse it. Root anon_vma is never reused:
 288		 * it has self-parent reference and at least one child.
 289		 */
 290		if (!dst->anon_vma && anon_vma != src->anon_vma &&
 291				anon_vma->degree < 2)
 292			dst->anon_vma = anon_vma;
 293	}
 294	if (dst->anon_vma)
 295		dst->anon_vma->degree++;
 296	unlock_anon_vma_root(root);
 297	return 0;
 298
 299 enomem_failure:
 300	/*
 301	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 302	 * decremented in unlink_anon_vmas().
 303	 * We can safely do this because callers of anon_vma_clone() don't care
 304	 * about dst->anon_vma if anon_vma_clone() failed.
 305	 */
 306	dst->anon_vma = NULL;
 307	unlink_anon_vmas(dst);
 308	return -ENOMEM;
 309}
 310
 311/*
 312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 313 * the corresponding VMA in the parent process is attached to.
 314 * Returns 0 on success, non-zero on failure.
 315 */
 316int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 317{
 318	struct anon_vma_chain *avc;
 319	struct anon_vma *anon_vma;
 320	int error;
 321
 322	/* Don't bother if the parent process has no anon_vma here. */
 323	if (!pvma->anon_vma)
 324		return 0;
 325
 326	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 327	vma->anon_vma = NULL;
 328
 329	/*
 330	 * First, attach the new VMA to the parent VMA's anon_vmas,
 331	 * so rmap can find non-COWed pages in child processes.
 332	 */
 333	error = anon_vma_clone(vma, pvma);
 334	if (error)
 335		return error;
 336
 337	/* An existing anon_vma has been reused, all done then. */
 338	if (vma->anon_vma)
 339		return 0;
 340
 341	/* Then add our own anon_vma. */
 342	anon_vma = anon_vma_alloc();
 343	if (!anon_vma)
 344		goto out_error;
 345	avc = anon_vma_chain_alloc(GFP_KERNEL);
 346	if (!avc)
 347		goto out_error_free_anon_vma;
 348
 349	/*
 350	 * The root anon_vma's spinlock is the lock actually used when we
 351	 * lock any of the anon_vmas in this anon_vma tree.
 352	 */
 353	anon_vma->root = pvma->anon_vma->root;
 354	anon_vma->parent = pvma->anon_vma;
 355	/*
 356	 * With refcounts, an anon_vma can stay around longer than the
 357	 * process it belongs to. The root anon_vma needs to be pinned until
 358	 * this anon_vma is freed, because the lock lives in the root.
 359	 */
 360	get_anon_vma(anon_vma->root);
 361	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 362	vma->anon_vma = anon_vma;
 363	anon_vma_lock_write(anon_vma);
 364	anon_vma_chain_link(vma, avc, anon_vma);
 365	anon_vma->parent->degree++;
 366	anon_vma_unlock_write(anon_vma);
 367
 368	return 0;
 369
 370 out_error_free_anon_vma:
 371	put_anon_vma(anon_vma);
 372 out_error:
 373	unlink_anon_vmas(vma);
 374	return -ENOMEM;
 375}
 376
 377void unlink_anon_vmas(struct vm_area_struct *vma)
 378{
 379	struct anon_vma_chain *avc, *next;
 380	struct anon_vma *root = NULL;
 381
 382	/*
 383	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 384	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 385	 */
 386	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 387		struct anon_vma *anon_vma = avc->anon_vma;
 388
 389		root = lock_anon_vma_root(root, anon_vma);
 390		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 391
 392		/*
 393		 * Leave empty anon_vmas on the list - we'll need
 394		 * to free them outside the lock.
 395		 */
 396		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 397			anon_vma->parent->degree--;
 398			continue;
 399		}
 400
 401		list_del(&avc->same_vma);
 402		anon_vma_chain_free(avc);
 403	}
 404	if (vma->anon_vma)
 405		vma->anon_vma->degree--;
 406	unlock_anon_vma_root(root);
 407
 408	/*
 409	 * Iterate the list once more, it now only contains empty and unlinked
 410	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 411	 * needing to write-acquire the anon_vma->root->rwsem.
 412	 */
 413	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 414		struct anon_vma *anon_vma = avc->anon_vma;
 415
 416		VM_WARN_ON(anon_vma->degree);
 417		put_anon_vma(anon_vma);
 418
 419		list_del(&avc->same_vma);
 420		anon_vma_chain_free(avc);
 421	}
 422}
 423
 424static void anon_vma_ctor(void *data)
 425{
 426	struct anon_vma *anon_vma = data;
 427
 428	init_rwsem(&anon_vma->rwsem);
 429	atomic_set(&anon_vma->refcount, 0);
 430	anon_vma->rb_root = RB_ROOT_CACHED;
 431}
 432
 433void __init anon_vma_init(void)
 434{
 435	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 436			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 437			anon_vma_ctor);
 438	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 439			SLAB_PANIC|SLAB_ACCOUNT);
 440}
 441
 442/*
 443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 444 *
 445 * Since there is no serialization what so ever against page_remove_rmap()
 446 * the best this function can do is return a locked anon_vma that might
 447 * have been relevant to this page.
 448 *
 449 * The page might have been remapped to a different anon_vma or the anon_vma
 450 * returned may already be freed (and even reused).
 451 *
 452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 454 * ensure that any anon_vma obtained from the page will still be valid for as
 455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 456 *
 457 * All users of this function must be very careful when walking the anon_vma
 458 * chain and verify that the page in question is indeed mapped in it
 459 * [ something equivalent to page_mapped_in_vma() ].
 460 *
 461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 462 * that the anon_vma pointer from page->mapping is valid if there is a
 463 * mapcount, we can dereference the anon_vma after observing those.
 
 464 */
 465struct anon_vma *page_get_anon_vma(struct page *page)
 466{
 467	struct anon_vma *anon_vma = NULL;
 468	unsigned long anon_mapping;
 469
 470	rcu_read_lock();
 471	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 472	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 473		goto out;
 474	if (!page_mapped(page))
 475		goto out;
 476
 477	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 478	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 479		anon_vma = NULL;
 480		goto out;
 481	}
 482
 483	/*
 484	 * If this page is still mapped, then its anon_vma cannot have been
 485	 * freed.  But if it has been unmapped, we have no security against the
 486	 * anon_vma structure being freed and reused (for another anon_vma:
 487	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 488	 * above cannot corrupt).
 489	 */
 490	if (!page_mapped(page)) {
 491		rcu_read_unlock();
 492		put_anon_vma(anon_vma);
 493		return NULL;
 494	}
 495out:
 496	rcu_read_unlock();
 497
 498	return anon_vma;
 499}
 500
 501/*
 502 * Similar to page_get_anon_vma() except it locks the anon_vma.
 503 *
 504 * Its a little more complex as it tries to keep the fast path to a single
 505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 506 * reference like with page_get_anon_vma() and then block on the mutex.
 507 */
 508struct anon_vma *page_lock_anon_vma_read(struct page *page)
 509{
 510	struct anon_vma *anon_vma = NULL;
 511	struct anon_vma *root_anon_vma;
 512	unsigned long anon_mapping;
 513
 514	rcu_read_lock();
 515	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 516	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 517		goto out;
 518	if (!page_mapped(page))
 519		goto out;
 520
 521	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 522	root_anon_vma = READ_ONCE(anon_vma->root);
 523	if (down_read_trylock(&root_anon_vma->rwsem)) {
 524		/*
 525		 * If the page is still mapped, then this anon_vma is still
 526		 * its anon_vma, and holding the mutex ensures that it will
 527		 * not go away, see anon_vma_free().
 528		 */
 529		if (!page_mapped(page)) {
 530			up_read(&root_anon_vma->rwsem);
 531			anon_vma = NULL;
 532		}
 533		goto out;
 534	}
 535
 536	/* trylock failed, we got to sleep */
 537	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 538		anon_vma = NULL;
 539		goto out;
 540	}
 541
 542	if (!page_mapped(page)) {
 543		rcu_read_unlock();
 544		put_anon_vma(anon_vma);
 545		return NULL;
 546	}
 547
 548	/* we pinned the anon_vma, its safe to sleep */
 549	rcu_read_unlock();
 550	anon_vma_lock_read(anon_vma);
 551
 552	if (atomic_dec_and_test(&anon_vma->refcount)) {
 553		/*
 554		 * Oops, we held the last refcount, release the lock
 555		 * and bail -- can't simply use put_anon_vma() because
 556		 * we'll deadlock on the anon_vma_lock_write() recursion.
 557		 */
 558		anon_vma_unlock_read(anon_vma);
 559		__put_anon_vma(anon_vma);
 560		anon_vma = NULL;
 561	}
 562
 563	return anon_vma;
 564
 565out:
 566	rcu_read_unlock();
 567	return anon_vma;
 568}
 569
 570void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 571{
 572	anon_vma_unlock_read(anon_vma);
 573}
 574
 575#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 576/*
 577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 578 * important if a PTE was dirty when it was unmapped that it's flushed
 579 * before any IO is initiated on the page to prevent lost writes. Similarly,
 580 * it must be flushed before freeing to prevent data leakage.
 581 */
 582void try_to_unmap_flush(void)
 583{
 584	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 585
 586	if (!tlb_ubc->flush_required)
 587		return;
 588
 589	arch_tlbbatch_flush(&tlb_ubc->arch);
 590	tlb_ubc->flush_required = false;
 591	tlb_ubc->writable = false;
 592}
 593
 594/* Flush iff there are potentially writable TLB entries that can race with IO */
 595void try_to_unmap_flush_dirty(void)
 596{
 597	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 598
 599	if (tlb_ubc->writable)
 600		try_to_unmap_flush();
 601}
 602
 603static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 604{
 605	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 606
 607	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 608	tlb_ubc->flush_required = true;
 609
 610	/*
 611	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 612	 * before the PTE is cleared.
 613	 */
 614	barrier();
 615	mm->tlb_flush_batched = true;
 616
 617	/*
 618	 * If the PTE was dirty then it's best to assume it's writable. The
 619	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 620	 * before the page is queued for IO.
 621	 */
 622	if (writable)
 623		tlb_ubc->writable = true;
 624}
 625
 626/*
 627 * Returns true if the TLB flush should be deferred to the end of a batch of
 628 * unmap operations to reduce IPIs.
 629 */
 630static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 631{
 632	bool should_defer = false;
 633
 634	if (!(flags & TTU_BATCH_FLUSH))
 635		return false;
 636
 637	/* If remote CPUs need to be flushed then defer batch the flush */
 638	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 639		should_defer = true;
 640	put_cpu();
 641
 642	return should_defer;
 643}
 644
 645/*
 646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 648 * operation such as mprotect or munmap to race between reclaim unmapping
 649 * the page and flushing the page. If this race occurs, it potentially allows
 650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 651 * batching in flight would be expensive during reclaim so instead track
 652 * whether TLB batching occurred in the past and if so then do a flush here
 653 * if required. This will cost one additional flush per reclaim cycle paid
 654 * by the first operation at risk such as mprotect and mumap.
 655 *
 656 * This must be called under the PTL so that an access to tlb_flush_batched
 657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 658 * via the PTL.
 659 */
 660void flush_tlb_batched_pending(struct mm_struct *mm)
 661{
 662	if (mm->tlb_flush_batched) {
 663		flush_tlb_mm(mm);
 664
 665		/*
 666		 * Do not allow the compiler to re-order the clearing of
 667		 * tlb_flush_batched before the tlb is flushed.
 668		 */
 669		barrier();
 670		mm->tlb_flush_batched = false;
 671	}
 672}
 673#else
 674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 675{
 676}
 677
 678static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 679{
 680	return false;
 681}
 682#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 683
 684/*
 685 * At what user virtual address is page expected in vma?
 686 * Caller should check the page is actually part of the vma.
 687 */
 688unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 689{
 690	unsigned long address;
 691	if (PageAnon(page)) {
 692		struct anon_vma *page__anon_vma = page_anon_vma(page);
 693		/*
 694		 * Note: swapoff's unuse_vma() is more efficient with this
 695		 * check, and needs it to match anon_vma when KSM is active.
 696		 */
 697		if (!vma->anon_vma || !page__anon_vma ||
 698		    vma->anon_vma->root != page__anon_vma->root)
 699			return -EFAULT;
 700	} else if (page->mapping) {
 701		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 702			return -EFAULT;
 703	} else
 704		return -EFAULT;
 705	address = __vma_address(page, vma);
 706	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 707		return -EFAULT;
 708	return address;
 709}
 710
 711pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 712{
 713	pgd_t *pgd;
 714	p4d_t *p4d;
 715	pud_t *pud;
 716	pmd_t *pmd = NULL;
 717	pmd_t pmde;
 718
 719	pgd = pgd_offset(mm, address);
 720	if (!pgd_present(*pgd))
 721		goto out;
 722
 723	p4d = p4d_offset(pgd, address);
 724	if (!p4d_present(*p4d))
 725		goto out;
 726
 727	pud = pud_offset(p4d, address);
 728	if (!pud_present(*pud))
 729		goto out;
 730
 731	pmd = pmd_offset(pud, address);
 732	/*
 733	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 734	 * without holding anon_vma lock for write.  So when looking for a
 735	 * genuine pmde (in which to find pte), test present and !THP together.
 736	 */
 737	pmde = *pmd;
 738	barrier();
 739	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 740		pmd = NULL;
 741out:
 742	return pmd;
 743}
 744
 745struct page_referenced_arg {
 746	int mapcount;
 747	int referenced;
 748	unsigned long vm_flags;
 749	struct mem_cgroup *memcg;
 750};
 751/*
 752 * arg: page_referenced_arg will be passed
 753 */
 754static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 755			unsigned long address, void *arg)
 756{
 757	struct page_referenced_arg *pra = arg;
 758	struct page_vma_mapped_walk pvmw = {
 759		.page = page,
 760		.vma = vma,
 761		.address = address,
 762	};
 763	int referenced = 0;
 764
 765	while (page_vma_mapped_walk(&pvmw)) {
 766		address = pvmw.address;
 767
 768		if (vma->vm_flags & VM_LOCKED) {
 769			page_vma_mapped_walk_done(&pvmw);
 770			pra->vm_flags |= VM_LOCKED;
 771			return false; /* To break the loop */
 772		}
 773
 774		if (pvmw.pte) {
 775			if (ptep_clear_flush_young_notify(vma, address,
 776						pvmw.pte)) {
 777				/*
 778				 * Don't treat a reference through
 779				 * a sequentially read mapping as such.
 780				 * If the page has been used in another mapping,
 781				 * we will catch it; if this other mapping is
 782				 * already gone, the unmap path will have set
 783				 * PG_referenced or activated the page.
 784				 */
 785				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 786					referenced++;
 787			}
 788		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 789			if (pmdp_clear_flush_young_notify(vma, address,
 790						pvmw.pmd))
 791				referenced++;
 792		} else {
 793			/* unexpected pmd-mapped page? */
 794			WARN_ON_ONCE(1);
 795		}
 796
 797		pra->mapcount--;
 798	}
 799
 800	if (referenced)
 801		clear_page_idle(page);
 802	if (test_and_clear_page_young(page))
 803		referenced++;
 804
 805	if (referenced) {
 806		pra->referenced++;
 807		pra->vm_flags |= vma->vm_flags;
 808	}
 809
 810	if (!pra->mapcount)
 811		return false; /* To break the loop */
 812
 813	return true;
 814}
 815
 816static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 817{
 818	struct page_referenced_arg *pra = arg;
 819	struct mem_cgroup *memcg = pra->memcg;
 820
 821	if (!mm_match_cgroup(vma->vm_mm, memcg))
 822		return true;
 823
 824	return false;
 825}
 826
 827/**
 828 * page_referenced - test if the page was referenced
 829 * @page: the page to test
 830 * @is_locked: caller holds lock on the page
 831 * @memcg: target memory cgroup
 832 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 833 *
 834 * Quick test_and_clear_referenced for all mappings to a page,
 835 * returns the number of ptes which referenced the page.
 836 */
 837int page_referenced(struct page *page,
 838		    int is_locked,
 839		    struct mem_cgroup *memcg,
 840		    unsigned long *vm_flags)
 841{
 842	int we_locked = 0;
 843	struct page_referenced_arg pra = {
 844		.mapcount = total_mapcount(page),
 845		.memcg = memcg,
 846	};
 847	struct rmap_walk_control rwc = {
 848		.rmap_one = page_referenced_one,
 849		.arg = (void *)&pra,
 850		.anon_lock = page_lock_anon_vma_read,
 851	};
 852
 853	*vm_flags = 0;
 854	if (!pra.mapcount)
 855		return 0;
 856
 857	if (!page_rmapping(page))
 858		return 0;
 859
 860	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 861		we_locked = trylock_page(page);
 862		if (!we_locked)
 863			return 1;
 864	}
 865
 866	/*
 867	 * If we are reclaiming on behalf of a cgroup, skip
 868	 * counting on behalf of references from different
 869	 * cgroups
 870	 */
 871	if (memcg) {
 872		rwc.invalid_vma = invalid_page_referenced_vma;
 873	}
 874
 875	rmap_walk(page, &rwc);
 876	*vm_flags = pra.vm_flags;
 877
 878	if (we_locked)
 879		unlock_page(page);
 880
 881	return pra.referenced;
 882}
 883
 884static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 885			    unsigned long address, void *arg)
 886{
 887	struct page_vma_mapped_walk pvmw = {
 888		.page = page,
 889		.vma = vma,
 890		.address = address,
 891		.flags = PVMW_SYNC,
 892	};
 893	struct mmu_notifier_range range;
 894	int *cleaned = arg;
 895
 896	/*
 897	 * We have to assume the worse case ie pmd for invalidation. Note that
 898	 * the page can not be free from this function.
 899	 */
 900	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 901				0, vma, vma->vm_mm, address,
 902				min(vma->vm_end, address + page_size(page)));
 903	mmu_notifier_invalidate_range_start(&range);
 904
 905	while (page_vma_mapped_walk(&pvmw)) {
 906		int ret = 0;
 907
 908		address = pvmw.address;
 909		if (pvmw.pte) {
 910			pte_t entry;
 911			pte_t *pte = pvmw.pte;
 912
 913			if (!pte_dirty(*pte) && !pte_write(*pte))
 914				continue;
 915
 916			flush_cache_page(vma, address, pte_pfn(*pte));
 917			entry = ptep_clear_flush(vma, address, pte);
 918			entry = pte_wrprotect(entry);
 919			entry = pte_mkclean(entry);
 920			set_pte_at(vma->vm_mm, address, pte, entry);
 921			ret = 1;
 922		} else {
 923#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 924			pmd_t *pmd = pvmw.pmd;
 925			pmd_t entry;
 926
 927			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 928				continue;
 929
 930			flush_cache_page(vma, address, page_to_pfn(page));
 931			entry = pmdp_invalidate(vma, address, pmd);
 932			entry = pmd_wrprotect(entry);
 933			entry = pmd_mkclean(entry);
 934			set_pmd_at(vma->vm_mm, address, pmd, entry);
 935			ret = 1;
 936#else
 937			/* unexpected pmd-mapped page? */
 938			WARN_ON_ONCE(1);
 939#endif
 940		}
 941
 942		/*
 943		 * No need to call mmu_notifier_invalidate_range() as we are
 944		 * downgrading page table protection not changing it to point
 945		 * to a new page.
 946		 *
 947		 * See Documentation/vm/mmu_notifier.rst
 948		 */
 949		if (ret)
 950			(*cleaned)++;
 951	}
 952
 953	mmu_notifier_invalidate_range_end(&range);
 954
 955	return true;
 956}
 957
 958static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 959{
 960	if (vma->vm_flags & VM_SHARED)
 961		return false;
 962
 963	return true;
 964}
 965
 966int page_mkclean(struct page *page)
 967{
 968	int cleaned = 0;
 969	struct address_space *mapping;
 970	struct rmap_walk_control rwc = {
 971		.arg = (void *)&cleaned,
 972		.rmap_one = page_mkclean_one,
 973		.invalid_vma = invalid_mkclean_vma,
 974	};
 975
 976	BUG_ON(!PageLocked(page));
 977
 978	if (!page_mapped(page))
 979		return 0;
 980
 981	mapping = page_mapping(page);
 982	if (!mapping)
 983		return 0;
 984
 985	rmap_walk(page, &rwc);
 986
 987	return cleaned;
 988}
 989EXPORT_SYMBOL_GPL(page_mkclean);
 990
 991/**
 992 * page_move_anon_rmap - move a page to our anon_vma
 993 * @page:	the page to move to our anon_vma
 994 * @vma:	the vma the page belongs to
 995 *
 996 * When a page belongs exclusively to one process after a COW event,
 997 * that page can be moved into the anon_vma that belongs to just that
 998 * process, so the rmap code will not search the parent or sibling
 999 * processes.
1000 */
1001void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1002{
1003	struct anon_vma *anon_vma = vma->anon_vma;
1004
1005	page = compound_head(page);
1006
1007	VM_BUG_ON_PAGE(!PageLocked(page), page);
1008	VM_BUG_ON_VMA(!anon_vma, vma);
1009
1010	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1011	/*
1012	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1013	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1014	 * PageAnon()) will not see one without the other.
1015	 */
1016	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1017}
1018
1019/**
1020 * __page_set_anon_rmap - set up new anonymous rmap
1021 * @page:	Page or Hugepage to add to rmap
1022 * @vma:	VM area to add page to.
1023 * @address:	User virtual address of the mapping	
1024 * @exclusive:	the page is exclusively owned by the current process
1025 */
1026static void __page_set_anon_rmap(struct page *page,
1027	struct vm_area_struct *vma, unsigned long address, int exclusive)
1028{
1029	struct anon_vma *anon_vma = vma->anon_vma;
1030
1031	BUG_ON(!anon_vma);
1032
1033	if (PageAnon(page))
1034		return;
1035
1036	/*
1037	 * If the page isn't exclusively mapped into this vma,
1038	 * we must use the _oldest_ possible anon_vma for the
1039	 * page mapping!
1040	 */
1041	if (!exclusive)
1042		anon_vma = anon_vma->root;
1043
1044	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1045	page->mapping = (struct address_space *) anon_vma;
1046	page->index = linear_page_index(vma, address);
1047}
1048
1049/**
1050 * __page_check_anon_rmap - sanity check anonymous rmap addition
1051 * @page:	the page to add the mapping to
1052 * @vma:	the vm area in which the mapping is added
1053 * @address:	the user virtual address mapped
1054 */
1055static void __page_check_anon_rmap(struct page *page,
1056	struct vm_area_struct *vma, unsigned long address)
1057{
1058#ifdef CONFIG_DEBUG_VM
1059	/*
1060	 * The page's anon-rmap details (mapping and index) are guaranteed to
1061	 * be set up correctly at this point.
1062	 *
1063	 * We have exclusion against page_add_anon_rmap because the caller
1064	 * always holds the page locked, except if called from page_dup_rmap,
1065	 * in which case the page is already known to be setup.
1066	 *
1067	 * We have exclusion against page_add_new_anon_rmap because those pages
1068	 * are initially only visible via the pagetables, and the pte is locked
1069	 * over the call to page_add_new_anon_rmap.
1070	 */
1071	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1072	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1073#endif
1074}
1075
1076/**
1077 * page_add_anon_rmap - add pte mapping to an anonymous page
1078 * @page:	the page to add the mapping to
1079 * @vma:	the vm area in which the mapping is added
1080 * @address:	the user virtual address mapped
1081 * @compound:	charge the page as compound or small page
1082 *
1083 * The caller needs to hold the pte lock, and the page must be locked in
1084 * the anon_vma case: to serialize mapping,index checking after setting,
1085 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1086 * (but PageKsm is never downgraded to PageAnon).
1087 */
1088void page_add_anon_rmap(struct page *page,
1089	struct vm_area_struct *vma, unsigned long address, bool compound)
1090{
1091	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1092}
1093
1094/*
1095 * Special version of the above for do_swap_page, which often runs
1096 * into pages that are exclusively owned by the current process.
1097 * Everybody else should continue to use page_add_anon_rmap above.
1098 */
1099void do_page_add_anon_rmap(struct page *page,
1100	struct vm_area_struct *vma, unsigned long address, int flags)
1101{
1102	bool compound = flags & RMAP_COMPOUND;
1103	bool first;
1104
 
 
 
 
 
1105	if (compound) {
1106		atomic_t *mapcount;
1107		VM_BUG_ON_PAGE(!PageLocked(page), page);
1108		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1109		mapcount = compound_mapcount_ptr(page);
1110		first = atomic_inc_and_test(mapcount);
1111	} else {
1112		first = atomic_inc_and_test(&page->_mapcount);
1113	}
1114
1115	if (first) {
1116		int nr = compound ? hpage_nr_pages(page) : 1;
1117		/*
1118		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1119		 * these counters are not modified in interrupt context, and
1120		 * pte lock(a spinlock) is held, which implies preemption
1121		 * disabled.
1122		 */
1123		if (compound)
1124			__inc_node_page_state(page, NR_ANON_THPS);
1125		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1126	}
1127	if (unlikely(PageKsm(page)))
 
 
1128		return;
1129
1130	VM_BUG_ON_PAGE(!PageLocked(page), page);
1131
1132	/* address might be in next vma when migration races vma_adjust */
1133	if (first)
1134		__page_set_anon_rmap(page, vma, address,
1135				flags & RMAP_EXCLUSIVE);
1136	else
1137		__page_check_anon_rmap(page, vma, address);
1138}
1139
1140/**
1141 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1142 * @page:	the page to add the mapping to
1143 * @vma:	the vm area in which the mapping is added
1144 * @address:	the user virtual address mapped
1145 * @compound:	charge the page as compound or small page
1146 *
1147 * Same as page_add_anon_rmap but must only be called on *new* pages.
1148 * This means the inc-and-test can be bypassed.
1149 * Page does not have to be locked.
1150 */
1151void page_add_new_anon_rmap(struct page *page,
1152	struct vm_area_struct *vma, unsigned long address, bool compound)
1153{
1154	int nr = compound ? hpage_nr_pages(page) : 1;
1155
1156	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1157	__SetPageSwapBacked(page);
1158	if (compound) {
1159		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1160		/* increment count (starts at -1) */
1161		atomic_set(compound_mapcount_ptr(page), 0);
1162		__inc_node_page_state(page, NR_ANON_THPS);
 
 
 
1163	} else {
1164		/* Anon THP always mapped first with PMD */
1165		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1166		/* increment count (starts at -1) */
1167		atomic_set(&page->_mapcount, 0);
1168	}
1169	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1170	__page_set_anon_rmap(page, vma, address, 1);
1171}
1172
1173/**
1174 * page_add_file_rmap - add pte mapping to a file page
1175 * @page: the page to add the mapping to
1176 * @compound: charge the page as compound or small page
1177 *
1178 * The caller needs to hold the pte lock.
1179 */
1180void page_add_file_rmap(struct page *page, bool compound)
1181{
1182	int i, nr = 1;
1183
1184	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1185	lock_page_memcg(page);
1186	if (compound && PageTransHuge(page)) {
1187		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1188			if (atomic_inc_and_test(&page[i]._mapcount))
1189				nr++;
1190		}
1191		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1192			goto out;
1193		if (PageSwapBacked(page))
1194			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1195		else
1196			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1197	} else {
1198		if (PageTransCompound(page) && page_mapping(page)) {
1199			VM_WARN_ON_ONCE(!PageLocked(page));
1200
1201			SetPageDoubleMap(compound_head(page));
1202			if (PageMlocked(page))
1203				clear_page_mlock(compound_head(page));
1204		}
1205		if (!atomic_inc_and_test(&page->_mapcount))
1206			goto out;
1207	}
1208	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1209out:
1210	unlock_page_memcg(page);
1211}
1212
1213static void page_remove_file_rmap(struct page *page, bool compound)
1214{
1215	int i, nr = 1;
1216
1217	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218	lock_page_memcg(page);
1219
1220	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221	if (unlikely(PageHuge(page))) {
1222		/* hugetlb pages are always mapped with pmds */
1223		atomic_dec(compound_mapcount_ptr(page));
1224		goto out;
1225	}
1226
1227	/* page still mapped by someone else? */
1228	if (compound && PageTransHuge(page)) {
1229		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230			if (atomic_add_negative(-1, &page[i]._mapcount))
1231				nr++;
1232		}
1233		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234			goto out;
1235		if (PageSwapBacked(page))
1236			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1237		else
1238			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1239	} else {
1240		if (!atomic_add_negative(-1, &page->_mapcount))
1241			goto out;
1242	}
1243
1244	/*
1245	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1246	 * these counters are not modified in interrupt context, and
1247	 * pte lock(a spinlock) is held, which implies preemption disabled.
1248	 */
1249	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1250
1251	if (unlikely(PageMlocked(page)))
1252		clear_page_mlock(page);
1253out:
1254	unlock_page_memcg(page);
1255}
1256
1257static void page_remove_anon_compound_rmap(struct page *page)
1258{
1259	int i, nr;
1260
1261	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1262		return;
1263
1264	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1265	if (unlikely(PageHuge(page)))
1266		return;
1267
1268	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1269		return;
1270
1271	__dec_node_page_state(page, NR_ANON_THPS);
1272
1273	if (TestClearPageDoubleMap(page)) {
1274		/*
1275		 * Subpages can be mapped with PTEs too. Check how many of
1276		 * themi are still mapped.
1277		 */
1278		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1279			if (atomic_add_negative(-1, &page[i]._mapcount))
1280				nr++;
1281		}
 
 
 
 
 
 
 
 
1282	} else {
1283		nr = HPAGE_PMD_NR;
1284	}
1285
1286	if (unlikely(PageMlocked(page)))
1287		clear_page_mlock(page);
1288
1289	if (nr) {
1290		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1291		deferred_split_huge_page(page);
1292	}
1293}
1294
1295/**
1296 * page_remove_rmap - take down pte mapping from a page
1297 * @page:	page to remove mapping from
1298 * @compound:	uncharge the page as compound or small page
1299 *
1300 * The caller needs to hold the pte lock.
1301 */
1302void page_remove_rmap(struct page *page, bool compound)
1303{
1304	if (!PageAnon(page))
1305		return page_remove_file_rmap(page, compound);
 
 
 
 
1306
1307	if (compound)
1308		return page_remove_anon_compound_rmap(page);
 
 
1309
1310	/* page still mapped by someone else? */
1311	if (!atomic_add_negative(-1, &page->_mapcount))
1312		return;
1313
1314	/*
1315	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1316	 * these counters are not modified in interrupt context, and
1317	 * pte lock(a spinlock) is held, which implies preemption disabled.
1318	 */
1319	__dec_node_page_state(page, NR_ANON_MAPPED);
1320
1321	if (unlikely(PageMlocked(page)))
1322		clear_page_mlock(page);
1323
1324	if (PageTransCompound(page))
1325		deferred_split_huge_page(compound_head(page));
1326
1327	/*
1328	 * It would be tidy to reset the PageAnon mapping here,
1329	 * but that might overwrite a racing page_add_anon_rmap
1330	 * which increments mapcount after us but sets mapping
1331	 * before us: so leave the reset to free_unref_page,
1332	 * and remember that it's only reliable while mapped.
1333	 * Leaving it set also helps swapoff to reinstate ptes
1334	 * faster for those pages still in swapcache.
1335	 */
 
 
1336}
1337
1338/*
1339 * @arg: enum ttu_flags will be passed to this argument
1340 */
1341static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1342		     unsigned long address, void *arg)
1343{
1344	struct mm_struct *mm = vma->vm_mm;
1345	struct page_vma_mapped_walk pvmw = {
1346		.page = page,
1347		.vma = vma,
1348		.address = address,
1349	};
1350	pte_t pteval;
1351	struct page *subpage;
1352	bool ret = true;
1353	struct mmu_notifier_range range;
1354	enum ttu_flags flags = (enum ttu_flags)arg;
1355
1356	/* munlock has nothing to gain from examining un-locked vmas */
1357	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1358		return true;
1359
1360	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1361	    is_zone_device_page(page) && !is_device_private_page(page))
1362		return true;
1363
1364	if (flags & TTU_SPLIT_HUGE_PMD) {
1365		split_huge_pmd_address(vma, address,
1366				flags & TTU_SPLIT_FREEZE, page);
1367	}
1368
1369	/*
1370	 * For THP, we have to assume the worse case ie pmd for invalidation.
1371	 * For hugetlb, it could be much worse if we need to do pud
1372	 * invalidation in the case of pmd sharing.
1373	 *
1374	 * Note that the page can not be free in this function as call of
1375	 * try_to_unmap() must hold a reference on the page.
1376	 */
1377	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1378				address,
1379				min(vma->vm_end, address + page_size(page)));
1380	if (PageHuge(page)) {
1381		/*
1382		 * If sharing is possible, start and end will be adjusted
1383		 * accordingly.
 
 
 
1384		 */
1385		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1386						     &range.end);
1387	}
1388	mmu_notifier_invalidate_range_start(&range);
1389
1390	while (page_vma_mapped_walk(&pvmw)) {
1391#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1392		/* PMD-mapped THP migration entry */
1393		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1394			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1395
1396			set_pmd_migration_entry(&pvmw, page);
1397			continue;
1398		}
1399#endif
1400
1401		/*
1402		 * If the page is mlock()d, we cannot swap it out.
1403		 * If it's recently referenced (perhaps page_referenced
1404		 * skipped over this mm) then we should reactivate it.
1405		 */
1406		if (!(flags & TTU_IGNORE_MLOCK)) {
1407			if (vma->vm_flags & VM_LOCKED) {
1408				/* PTE-mapped THP are never mlocked */
1409				if (!PageTransCompound(page)) {
1410					/*
1411					 * Holding pte lock, we do *not* need
1412					 * mmap_sem here
1413					 */
1414					mlock_vma_page(page);
1415				}
1416				ret = false;
1417				page_vma_mapped_walk_done(&pvmw);
1418				break;
1419			}
1420			if (flags & TTU_MUNLOCK)
1421				continue;
1422		}
1423
1424		/* Unexpected PMD-mapped THP? */
1425		VM_BUG_ON_PAGE(!pvmw.pte, page);
1426
1427		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1428		address = pvmw.address;
1429
1430		if (PageHuge(page)) {
1431			if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
 
 
 
 
 
 
1432				/*
1433				 * huge_pmd_unshare unmapped an entire PMD
1434				 * page.  There is no way of knowing exactly
1435				 * which PMDs may be cached for this mm, so
1436				 * we must flush them all.  start/end were
1437				 * already adjusted above to cover this range.
1438				 */
1439				flush_cache_range(vma, range.start, range.end);
1440				flush_tlb_range(vma, range.start, range.end);
1441				mmu_notifier_invalidate_range(mm, range.start,
1442							      range.end);
1443
1444				/*
1445				 * The ref count of the PMD page was dropped
1446				 * which is part of the way map counting
1447				 * is done for shared PMDs.  Return 'true'
1448				 * here.  When there is no other sharing,
1449				 * huge_pmd_unshare returns false and we will
1450				 * unmap the actual page and drop map count
1451				 * to zero.
1452				 */
1453				page_vma_mapped_walk_done(&pvmw);
1454				break;
1455			}
1456		}
1457
1458		if (IS_ENABLED(CONFIG_MIGRATION) &&
1459		    (flags & TTU_MIGRATION) &&
1460		    is_zone_device_page(page)) {
1461			swp_entry_t entry;
1462			pte_t swp_pte;
1463
1464			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1465
1466			/*
1467			 * Store the pfn of the page in a special migration
1468			 * pte. do_swap_page() will wait until the migration
1469			 * pte is removed and then restart fault handling.
1470			 */
1471			entry = make_migration_entry(page, 0);
1472			swp_pte = swp_entry_to_pte(entry);
1473			if (pte_soft_dirty(pteval))
 
 
 
 
 
1474				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 
 
1475			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1476			/*
1477			 * No need to invalidate here it will synchronize on
1478			 * against the special swap migration pte.
1479			 *
1480			 * The assignment to subpage above was computed from a
1481			 * swap PTE which results in an invalid pointer.
1482			 * Since only PAGE_SIZE pages can currently be
1483			 * migrated, just set it to page. This will need to be
1484			 * changed when hugepage migrations to device private
1485			 * memory are supported.
1486			 */
1487			subpage = page;
1488			goto discard;
1489		}
1490
1491		if (!(flags & TTU_IGNORE_ACCESS)) {
1492			if (ptep_clear_flush_young_notify(vma, address,
1493						pvmw.pte)) {
1494				ret = false;
1495				page_vma_mapped_walk_done(&pvmw);
1496				break;
1497			}
1498		}
1499
1500		/* Nuke the page table entry. */
1501		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1502		if (should_defer_flush(mm, flags)) {
1503			/*
1504			 * We clear the PTE but do not flush so potentially
1505			 * a remote CPU could still be writing to the page.
1506			 * If the entry was previously clean then the
1507			 * architecture must guarantee that a clear->dirty
1508			 * transition on a cached TLB entry is written through
1509			 * and traps if the PTE is unmapped.
1510			 */
1511			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1512
1513			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1514		} else {
1515			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1516		}
1517
1518		/* Move the dirty bit to the page. Now the pte is gone. */
1519		if (pte_dirty(pteval))
1520			set_page_dirty(page);
1521
1522		/* Update high watermark before we lower rss */
1523		update_hiwater_rss(mm);
1524
1525		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1526			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1527			if (PageHuge(page)) {
1528				hugetlb_count_sub(compound_nr(page), mm);
1529				set_huge_swap_pte_at(mm, address,
1530						     pvmw.pte, pteval,
1531						     vma_mmu_pagesize(vma));
1532			} else {
1533				dec_mm_counter(mm, mm_counter(page));
1534				set_pte_at(mm, address, pvmw.pte, pteval);
1535			}
1536
1537		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1538			/*
1539			 * The guest indicated that the page content is of no
1540			 * interest anymore. Simply discard the pte, vmscan
1541			 * will take care of the rest.
1542			 * A future reference will then fault in a new zero
1543			 * page. When userfaultfd is active, we must not drop
1544			 * this page though, as its main user (postcopy
1545			 * migration) will not expect userfaults on already
1546			 * copied pages.
1547			 */
1548			dec_mm_counter(mm, mm_counter(page));
1549			/* We have to invalidate as we cleared the pte */
1550			mmu_notifier_invalidate_range(mm, address,
1551						      address + PAGE_SIZE);
1552		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1553				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1554			swp_entry_t entry;
1555			pte_t swp_pte;
1556
1557			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1558				set_pte_at(mm, address, pvmw.pte, pteval);
1559				ret = false;
1560				page_vma_mapped_walk_done(&pvmw);
1561				break;
1562			}
1563
1564			/*
1565			 * Store the pfn of the page in a special migration
1566			 * pte. do_swap_page() will wait until the migration
1567			 * pte is removed and then restart fault handling.
1568			 */
1569			entry = make_migration_entry(subpage,
1570					pte_write(pteval));
1571			swp_pte = swp_entry_to_pte(entry);
1572			if (pte_soft_dirty(pteval))
1573				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 
 
1574			set_pte_at(mm, address, pvmw.pte, swp_pte);
1575			/*
1576			 * No need to invalidate here it will synchronize on
1577			 * against the special swap migration pte.
1578			 */
1579		} else if (PageAnon(page)) {
1580			swp_entry_t entry = { .val = page_private(subpage) };
1581			pte_t swp_pte;
1582			/*
1583			 * Store the swap location in the pte.
1584			 * See handle_pte_fault() ...
1585			 */
1586			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1587				WARN_ON_ONCE(1);
1588				ret = false;
1589				/* We have to invalidate as we cleared the pte */
1590				mmu_notifier_invalidate_range(mm, address,
1591							address + PAGE_SIZE);
1592				page_vma_mapped_walk_done(&pvmw);
1593				break;
1594			}
1595
1596			/* MADV_FREE page check */
1597			if (!PageSwapBacked(page)) {
1598				if (!PageDirty(page)) {
1599					/* Invalidate as we cleared the pte */
1600					mmu_notifier_invalidate_range(mm,
1601						address, address + PAGE_SIZE);
1602					dec_mm_counter(mm, MM_ANONPAGES);
1603					goto discard;
1604				}
1605
1606				/*
1607				 * If the page was redirtied, it cannot be
1608				 * discarded. Remap the page to page table.
1609				 */
1610				set_pte_at(mm, address, pvmw.pte, pteval);
1611				SetPageSwapBacked(page);
1612				ret = false;
1613				page_vma_mapped_walk_done(&pvmw);
1614				break;
1615			}
1616
1617			if (swap_duplicate(entry) < 0) {
1618				set_pte_at(mm, address, pvmw.pte, pteval);
1619				ret = false;
1620				page_vma_mapped_walk_done(&pvmw);
1621				break;
1622			}
1623			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1624				set_pte_at(mm, address, pvmw.pte, pteval);
1625				ret = false;
1626				page_vma_mapped_walk_done(&pvmw);
1627				break;
1628			}
1629			if (list_empty(&mm->mmlist)) {
1630				spin_lock(&mmlist_lock);
1631				if (list_empty(&mm->mmlist))
1632					list_add(&mm->mmlist, &init_mm.mmlist);
1633				spin_unlock(&mmlist_lock);
1634			}
1635			dec_mm_counter(mm, MM_ANONPAGES);
1636			inc_mm_counter(mm, MM_SWAPENTS);
1637			swp_pte = swp_entry_to_pte(entry);
1638			if (pte_soft_dirty(pteval))
1639				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 
 
1640			set_pte_at(mm, address, pvmw.pte, swp_pte);
1641			/* Invalidate as we cleared the pte */
1642			mmu_notifier_invalidate_range(mm, address,
1643						      address + PAGE_SIZE);
1644		} else {
1645			/*
1646			 * This is a locked file-backed page, thus it cannot
1647			 * be removed from the page cache and replaced by a new
1648			 * page before mmu_notifier_invalidate_range_end, so no
1649			 * concurrent thread might update its page table to
1650			 * point at new page while a device still is using this
1651			 * page.
1652			 *
1653			 * See Documentation/vm/mmu_notifier.rst
1654			 */
1655			dec_mm_counter(mm, mm_counter_file(page));
1656		}
1657discard:
1658		/*
1659		 * No need to call mmu_notifier_invalidate_range() it has be
1660		 * done above for all cases requiring it to happen under page
1661		 * table lock before mmu_notifier_invalidate_range_end()
1662		 *
1663		 * See Documentation/vm/mmu_notifier.rst
1664		 */
1665		page_remove_rmap(subpage, PageHuge(page));
1666		put_page(page);
1667	}
1668
1669	mmu_notifier_invalidate_range_end(&range);
1670
1671	return ret;
1672}
1673
1674bool is_vma_temporary_stack(struct vm_area_struct *vma)
1675{
1676	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1677
1678	if (!maybe_stack)
1679		return false;
1680
1681	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1682						VM_STACK_INCOMPLETE_SETUP)
1683		return true;
1684
1685	return false;
1686}
1687
1688static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1689{
1690	return is_vma_temporary_stack(vma);
1691}
1692
1693static int page_mapcount_is_zero(struct page *page)
1694{
1695	return !total_mapcount(page);
1696}
1697
1698/**
1699 * try_to_unmap - try to remove all page table mappings to a page
1700 * @page: the page to get unmapped
1701 * @flags: action and flags
1702 *
1703 * Tries to remove all the page table entries which are mapping this
1704 * page, used in the pageout path.  Caller must hold the page lock.
1705 *
1706 * If unmap is successful, return true. Otherwise, false.
1707 */
1708bool try_to_unmap(struct page *page, enum ttu_flags flags)
1709{
1710	struct rmap_walk_control rwc = {
1711		.rmap_one = try_to_unmap_one,
1712		.arg = (void *)flags,
1713		.done = page_mapcount_is_zero,
1714		.anon_lock = page_lock_anon_vma_read,
1715	};
1716
1717	/*
1718	 * During exec, a temporary VMA is setup and later moved.
1719	 * The VMA is moved under the anon_vma lock but not the
1720	 * page tables leading to a race where migration cannot
1721	 * find the migration ptes. Rather than increasing the
1722	 * locking requirements of exec(), migration skips
1723	 * temporary VMAs until after exec() completes.
1724	 */
1725	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1726	    && !PageKsm(page) && PageAnon(page))
1727		rwc.invalid_vma = invalid_migration_vma;
1728
1729	if (flags & TTU_RMAP_LOCKED)
1730		rmap_walk_locked(page, &rwc);
1731	else
1732		rmap_walk(page, &rwc);
1733
1734	return !page_mapcount(page) ? true : false;
1735}
1736
1737static int page_not_mapped(struct page *page)
1738{
1739	return !page_mapped(page);
1740};
1741
1742/**
1743 * try_to_munlock - try to munlock a page
1744 * @page: the page to be munlocked
1745 *
1746 * Called from munlock code.  Checks all of the VMAs mapping the page
1747 * to make sure nobody else has this page mlocked. The page will be
1748 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1749 */
1750
1751void try_to_munlock(struct page *page)
1752{
1753	struct rmap_walk_control rwc = {
1754		.rmap_one = try_to_unmap_one,
1755		.arg = (void *)TTU_MUNLOCK,
1756		.done = page_not_mapped,
1757		.anon_lock = page_lock_anon_vma_read,
1758
1759	};
1760
1761	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1762	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1763
1764	rmap_walk(page, &rwc);
1765}
1766
1767void __put_anon_vma(struct anon_vma *anon_vma)
1768{
1769	struct anon_vma *root = anon_vma->root;
1770
1771	anon_vma_free(anon_vma);
1772	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1773		anon_vma_free(root);
1774}
1775
1776static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1777					struct rmap_walk_control *rwc)
1778{
1779	struct anon_vma *anon_vma;
1780
1781	if (rwc->anon_lock)
1782		return rwc->anon_lock(page);
1783
1784	/*
1785	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1786	 * because that depends on page_mapped(); but not all its usages
1787	 * are holding mmap_sem. Users without mmap_sem are required to
1788	 * take a reference count to prevent the anon_vma disappearing
1789	 */
1790	anon_vma = page_anon_vma(page);
1791	if (!anon_vma)
1792		return NULL;
1793
1794	anon_vma_lock_read(anon_vma);
1795	return anon_vma;
1796}
1797
1798/*
1799 * rmap_walk_anon - do something to anonymous page using the object-based
1800 * rmap method
1801 * @page: the page to be handled
1802 * @rwc: control variable according to each walk type
1803 *
1804 * Find all the mappings of a page using the mapping pointer and the vma chains
1805 * contained in the anon_vma struct it points to.
1806 *
1807 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1808 * where the page was found will be held for write.  So, we won't recheck
1809 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1810 * LOCKED.
1811 */
1812static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1813		bool locked)
1814{
1815	struct anon_vma *anon_vma;
1816	pgoff_t pgoff_start, pgoff_end;
1817	struct anon_vma_chain *avc;
1818
1819	if (locked) {
1820		anon_vma = page_anon_vma(page);
1821		/* anon_vma disappear under us? */
1822		VM_BUG_ON_PAGE(!anon_vma, page);
1823	} else {
1824		anon_vma = rmap_walk_anon_lock(page, rwc);
1825	}
1826	if (!anon_vma)
1827		return;
1828
1829	pgoff_start = page_to_pgoff(page);
1830	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1831	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1832			pgoff_start, pgoff_end) {
1833		struct vm_area_struct *vma = avc->vma;
1834		unsigned long address = vma_address(page, vma);
1835
1836		cond_resched();
1837
1838		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1839			continue;
1840
1841		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1842			break;
1843		if (rwc->done && rwc->done(page))
1844			break;
1845	}
1846
1847	if (!locked)
1848		anon_vma_unlock_read(anon_vma);
1849}
1850
1851/*
1852 * rmap_walk_file - do something to file page using the object-based rmap method
1853 * @page: the page to be handled
1854 * @rwc: control variable according to each walk type
1855 *
1856 * Find all the mappings of a page using the mapping pointer and the vma chains
1857 * contained in the address_space struct it points to.
1858 *
1859 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1860 * where the page was found will be held for write.  So, we won't recheck
1861 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1862 * LOCKED.
1863 */
1864static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1865		bool locked)
1866{
1867	struct address_space *mapping = page_mapping(page);
1868	pgoff_t pgoff_start, pgoff_end;
1869	struct vm_area_struct *vma;
1870
1871	/*
1872	 * The page lock not only makes sure that page->mapping cannot
1873	 * suddenly be NULLified by truncation, it makes sure that the
1874	 * structure at mapping cannot be freed and reused yet,
1875	 * so we can safely take mapping->i_mmap_rwsem.
1876	 */
1877	VM_BUG_ON_PAGE(!PageLocked(page), page);
1878
1879	if (!mapping)
1880		return;
1881
1882	pgoff_start = page_to_pgoff(page);
1883	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1884	if (!locked)
1885		i_mmap_lock_read(mapping);
1886	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1887			pgoff_start, pgoff_end) {
1888		unsigned long address = vma_address(page, vma);
1889
1890		cond_resched();
1891
1892		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1893			continue;
1894
1895		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1896			goto done;
1897		if (rwc->done && rwc->done(page))
1898			goto done;
1899	}
1900
1901done:
1902	if (!locked)
1903		i_mmap_unlock_read(mapping);
1904}
1905
1906void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1907{
1908	if (unlikely(PageKsm(page)))
1909		rmap_walk_ksm(page, rwc);
1910	else if (PageAnon(page))
1911		rmap_walk_anon(page, rwc, false);
1912	else
1913		rmap_walk_file(page, rwc, false);
1914}
1915
1916/* Like rmap_walk, but caller holds relevant rmap lock */
1917void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1918{
1919	/* no ksm support for now */
1920	VM_BUG_ON_PAGE(PageKsm(page), page);
1921	if (PageAnon(page))
1922		rmap_walk_anon(page, rwc, true);
1923	else
1924		rmap_walk_file(page, rwc, true);
1925}
1926
1927#ifdef CONFIG_HUGETLB_PAGE
1928/*
1929 * The following two functions are for anonymous (private mapped) hugepages.
1930 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1931 * and no lru code, because we handle hugepages differently from common pages.
1932 */
1933void hugepage_add_anon_rmap(struct page *page,
1934			    struct vm_area_struct *vma, unsigned long address)
1935{
1936	struct anon_vma *anon_vma = vma->anon_vma;
1937	int first;
1938
1939	BUG_ON(!PageLocked(page));
1940	BUG_ON(!anon_vma);
1941	/* address might be in next vma when migration races vma_adjust */
1942	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1943	if (first)
1944		__page_set_anon_rmap(page, vma, address, 0);
1945}
1946
1947void hugepage_add_new_anon_rmap(struct page *page,
1948			struct vm_area_struct *vma, unsigned long address)
1949{
1950	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1951	atomic_set(compound_mapcount_ptr(page), 0);
 
 
 
1952	__page_set_anon_rmap(page, vma, address, 1);
1953}
1954#endif /* CONFIG_HUGETLB_PAGE */