Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/mm.h>
  30#include <linux/vmacache.h>
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
  58#include <linux/tracehook.h>
  59#include <linux/kmod.h>
  60#include <linux/fsnotify.h>
  61#include <linux/fs_struct.h>
 
  62#include <linux/oom.h>
  63#include <linux/compat.h>
  64#include <linux/vmalloc.h>
  65
  66#include <linux/uaccess.h>
  67#include <asm/mmu_context.h>
  68#include <asm/tlb.h>
  69
  70#include <trace/events/task.h>
  71#include "internal.h"
  72
  73#include <trace/events/sched.h>
  74
  75static int bprm_creds_from_file(struct linux_binprm *bprm);
  76
  77int suid_dumpable = 0;
  78
  79static LIST_HEAD(formats);
  80static DEFINE_RWLOCK(binfmt_lock);
  81
  82void __register_binfmt(struct linux_binfmt * fmt, int insert)
  83{
  84	BUG_ON(!fmt);
  85	if (WARN_ON(!fmt->load_binary))
  86		return;
  87	write_lock(&binfmt_lock);
  88	insert ? list_add(&fmt->lh, &formats) :
  89		 list_add_tail(&fmt->lh, &formats);
  90	write_unlock(&binfmt_lock);
  91}
  92
  93EXPORT_SYMBOL(__register_binfmt);
  94
  95void unregister_binfmt(struct linux_binfmt * fmt)
  96{
  97	write_lock(&binfmt_lock);
  98	list_del(&fmt->lh);
  99	write_unlock(&binfmt_lock);
 100}
 101
 102EXPORT_SYMBOL(unregister_binfmt);
 103
 104static inline void put_binfmt(struct linux_binfmt * fmt)
 105{
 106	module_put(fmt->module);
 107}
 108
 109bool path_noexec(const struct path *path)
 110{
 111	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 112	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 113}
 114
 115#ifdef CONFIG_USELIB
 116/*
 117 * Note that a shared library must be both readable and executable due to
 118 * security reasons.
 119 *
 120 * Also note that we take the address to load from from the file itself.
 121 */
 122SYSCALL_DEFINE1(uselib, const char __user *, library)
 123{
 124	struct linux_binfmt *fmt;
 125	struct file *file;
 126	struct filename *tmp = getname(library);
 127	int error = PTR_ERR(tmp);
 128	static const struct open_flags uselib_flags = {
 129		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 130		.acc_mode = MAY_READ | MAY_EXEC,
 131		.intent = LOOKUP_OPEN,
 132		.lookup_flags = LOOKUP_FOLLOW,
 133	};
 134
 135	if (IS_ERR(tmp))
 136		goto out;
 137
 138	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 139	putname(tmp);
 140	error = PTR_ERR(file);
 141	if (IS_ERR(file))
 142		goto out;
 143
 144	/*
 145	 * may_open() has already checked for this, so it should be
 146	 * impossible to trip now. But we need to be extra cautious
 147	 * and check again at the very end too.
 148	 */
 149	error = -EACCES;
 150	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 151			 path_noexec(&file->f_path)))
 152		goto exit;
 153
 154	fsnotify_open(file);
 155
 156	error = -ENOEXEC;
 157
 158	read_lock(&binfmt_lock);
 159	list_for_each_entry(fmt, &formats, lh) {
 160		if (!fmt->load_shlib)
 161			continue;
 162		if (!try_module_get(fmt->module))
 163			continue;
 164		read_unlock(&binfmt_lock);
 165		error = fmt->load_shlib(file);
 166		read_lock(&binfmt_lock);
 167		put_binfmt(fmt);
 168		if (error != -ENOEXEC)
 169			break;
 170	}
 171	read_unlock(&binfmt_lock);
 172exit:
 173	fput(file);
 174out:
 175  	return error;
 176}
 177#endif /* #ifdef CONFIG_USELIB */
 178
 179#ifdef CONFIG_MMU
 180/*
 181 * The nascent bprm->mm is not visible until exec_mmap() but it can
 182 * use a lot of memory, account these pages in current->mm temporary
 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 184 * change the counter back via acct_arg_size(0).
 185 */
 186static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 187{
 188	struct mm_struct *mm = current->mm;
 189	long diff = (long)(pages - bprm->vma_pages);
 190
 191	if (!mm || !diff)
 192		return;
 193
 194	bprm->vma_pages = pages;
 195	add_mm_counter(mm, MM_ANONPAGES, diff);
 196}
 197
 198static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 199		int write)
 200{
 201	struct page *page;
 202	int ret;
 203	unsigned int gup_flags = FOLL_FORCE;
 204
 205#ifdef CONFIG_STACK_GROWSUP
 206	if (write) {
 207		ret = expand_downwards(bprm->vma, pos);
 208		if (ret < 0)
 209			return NULL;
 210	}
 211#endif
 212
 213	if (write)
 214		gup_flags |= FOLL_WRITE;
 215
 216	/*
 217	 * We are doing an exec().  'current' is the process
 218	 * doing the exec and bprm->mm is the new process's mm.
 219	 */
 220	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
 221			&page, NULL, NULL);
 222	if (ret <= 0)
 223		return NULL;
 224
 225	if (write)
 226		acct_arg_size(bprm, vma_pages(bprm->vma));
 227
 228	return page;
 229}
 230
 231static void put_arg_page(struct page *page)
 232{
 233	put_page(page);
 234}
 235
 236static void free_arg_pages(struct linux_binprm *bprm)
 237{
 238}
 239
 240static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 241		struct page *page)
 242{
 243	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 244}
 245
 246static int __bprm_mm_init(struct linux_binprm *bprm)
 247{
 248	int err;
 249	struct vm_area_struct *vma = NULL;
 250	struct mm_struct *mm = bprm->mm;
 251
 252	bprm->vma = vma = vm_area_alloc(mm);
 253	if (!vma)
 254		return -ENOMEM;
 255	vma_set_anonymous(vma);
 256
 257	if (mmap_write_lock_killable(mm)) {
 258		err = -EINTR;
 259		goto err_free;
 260	}
 261
 262	/*
 263	 * Place the stack at the largest stack address the architecture
 264	 * supports. Later, we'll move this to an appropriate place. We don't
 265	 * use STACK_TOP because that can depend on attributes which aren't
 266	 * configured yet.
 267	 */
 268	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 269	vma->vm_end = STACK_TOP_MAX;
 270	vma->vm_start = vma->vm_end - PAGE_SIZE;
 271	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 272	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 273
 274	err = insert_vm_struct(mm, vma);
 275	if (err)
 276		goto err;
 277
 278	mm->stack_vm = mm->total_vm = 1;
 279	mmap_write_unlock(mm);
 
 280	bprm->p = vma->vm_end - sizeof(void *);
 281	return 0;
 282err:
 283	mmap_write_unlock(mm);
 284err_free:
 285	bprm->vma = NULL;
 286	vm_area_free(vma);
 287	return err;
 288}
 289
 290static bool valid_arg_len(struct linux_binprm *bprm, long len)
 291{
 292	return len <= MAX_ARG_STRLEN;
 293}
 294
 295#else
 296
 297static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 298{
 299}
 300
 301static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 302		int write)
 303{
 304	struct page *page;
 305
 306	page = bprm->page[pos / PAGE_SIZE];
 307	if (!page && write) {
 308		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 309		if (!page)
 310			return NULL;
 311		bprm->page[pos / PAGE_SIZE] = page;
 312	}
 313
 314	return page;
 315}
 316
 317static void put_arg_page(struct page *page)
 318{
 319}
 320
 321static void free_arg_page(struct linux_binprm *bprm, int i)
 322{
 323	if (bprm->page[i]) {
 324		__free_page(bprm->page[i]);
 325		bprm->page[i] = NULL;
 326	}
 327}
 328
 329static void free_arg_pages(struct linux_binprm *bprm)
 330{
 331	int i;
 332
 333	for (i = 0; i < MAX_ARG_PAGES; i++)
 334		free_arg_page(bprm, i);
 335}
 336
 337static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 338		struct page *page)
 339{
 340}
 341
 342static int __bprm_mm_init(struct linux_binprm *bprm)
 343{
 344	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 345	return 0;
 346}
 347
 348static bool valid_arg_len(struct linux_binprm *bprm, long len)
 349{
 350	return len <= bprm->p;
 351}
 352
 353#endif /* CONFIG_MMU */
 354
 355/*
 356 * Create a new mm_struct and populate it with a temporary stack
 357 * vm_area_struct.  We don't have enough context at this point to set the stack
 358 * flags, permissions, and offset, so we use temporary values.  We'll update
 359 * them later in setup_arg_pages().
 360 */
 361static int bprm_mm_init(struct linux_binprm *bprm)
 362{
 363	int err;
 364	struct mm_struct *mm = NULL;
 365
 366	bprm->mm = mm = mm_alloc();
 367	err = -ENOMEM;
 368	if (!mm)
 369		goto err;
 370
 371	/* Save current stack limit for all calculations made during exec. */
 372	task_lock(current->group_leader);
 373	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 374	task_unlock(current->group_leader);
 375
 376	err = __bprm_mm_init(bprm);
 377	if (err)
 378		goto err;
 379
 380	return 0;
 381
 382err:
 383	if (mm) {
 384		bprm->mm = NULL;
 385		mmdrop(mm);
 386	}
 387
 388	return err;
 389}
 390
 391struct user_arg_ptr {
 392#ifdef CONFIG_COMPAT
 393	bool is_compat;
 394#endif
 395	union {
 396		const char __user *const __user *native;
 397#ifdef CONFIG_COMPAT
 398		const compat_uptr_t __user *compat;
 399#endif
 400	} ptr;
 401};
 402
 403static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 404{
 405	const char __user *native;
 406
 407#ifdef CONFIG_COMPAT
 408	if (unlikely(argv.is_compat)) {
 409		compat_uptr_t compat;
 410
 411		if (get_user(compat, argv.ptr.compat + nr))
 412			return ERR_PTR(-EFAULT);
 413
 414		return compat_ptr(compat);
 415	}
 416#endif
 417
 418	if (get_user(native, argv.ptr.native + nr))
 419		return ERR_PTR(-EFAULT);
 420
 421	return native;
 422}
 423
 424/*
 425 * count() counts the number of strings in array ARGV.
 426 */
 427static int count(struct user_arg_ptr argv, int max)
 428{
 429	int i = 0;
 430
 431	if (argv.ptr.native != NULL) {
 432		for (;;) {
 433			const char __user *p = get_user_arg_ptr(argv, i);
 434
 435			if (!p)
 436				break;
 437
 438			if (IS_ERR(p))
 439				return -EFAULT;
 440
 441			if (i >= max)
 442				return -E2BIG;
 443			++i;
 444
 445			if (fatal_signal_pending(current))
 446				return -ERESTARTNOHAND;
 447			cond_resched();
 448		}
 449	}
 450	return i;
 451}
 452
 453static int count_strings_kernel(const char *const *argv)
 454{
 455	int i;
 456
 457	if (!argv)
 458		return 0;
 459
 460	for (i = 0; argv[i]; ++i) {
 461		if (i >= MAX_ARG_STRINGS)
 462			return -E2BIG;
 463		if (fatal_signal_pending(current))
 464			return -ERESTARTNOHAND;
 465		cond_resched();
 466	}
 467	return i;
 468}
 469
 470static int bprm_stack_limits(struct linux_binprm *bprm)
 471{
 472	unsigned long limit, ptr_size;
 473
 
 
 
 
 
 
 
 
 474	/*
 475	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 476	 * (whichever is smaller) for the argv+env strings.
 477	 * This ensures that:
 478	 *  - the remaining binfmt code will not run out of stack space,
 479	 *  - the program will have a reasonable amount of stack left
 480	 *    to work from.
 481	 */
 482	limit = _STK_LIM / 4 * 3;
 483	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 484	/*
 485	 * We've historically supported up to 32 pages (ARG_MAX)
 486	 * of argument strings even with small stacks
 487	 */
 488	limit = max_t(unsigned long, limit, ARG_MAX);
 489	/*
 490	 * We must account for the size of all the argv and envp pointers to
 491	 * the argv and envp strings, since they will also take up space in
 492	 * the stack. They aren't stored until much later when we can't
 493	 * signal to the parent that the child has run out of stack space.
 494	 * Instead, calculate it here so it's possible to fail gracefully.
 495	 */
 496	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 497	if (limit <= ptr_size)
 498		return -E2BIG;
 499	limit -= ptr_size;
 500
 501	bprm->argmin = bprm->p - limit;
 502	return 0;
 503}
 504
 505/*
 506 * 'copy_strings()' copies argument/environment strings from the old
 507 * processes's memory to the new process's stack.  The call to get_user_pages()
 508 * ensures the destination page is created and not swapped out.
 509 */
 510static int copy_strings(int argc, struct user_arg_ptr argv,
 511			struct linux_binprm *bprm)
 512{
 513	struct page *kmapped_page = NULL;
 514	char *kaddr = NULL;
 515	unsigned long kpos = 0;
 516	int ret;
 517
 518	while (argc-- > 0) {
 519		const char __user *str;
 520		int len;
 521		unsigned long pos;
 522
 523		ret = -EFAULT;
 524		str = get_user_arg_ptr(argv, argc);
 525		if (IS_ERR(str))
 526			goto out;
 527
 528		len = strnlen_user(str, MAX_ARG_STRLEN);
 529		if (!len)
 530			goto out;
 531
 532		ret = -E2BIG;
 533		if (!valid_arg_len(bprm, len))
 534			goto out;
 535
 536		/* We're going to work our way backwords. */
 537		pos = bprm->p;
 538		str += len;
 539		bprm->p -= len;
 540#ifdef CONFIG_MMU
 541		if (bprm->p < bprm->argmin)
 542			goto out;
 543#endif
 544
 545		while (len > 0) {
 546			int offset, bytes_to_copy;
 547
 548			if (fatal_signal_pending(current)) {
 549				ret = -ERESTARTNOHAND;
 550				goto out;
 551			}
 552			cond_resched();
 553
 554			offset = pos % PAGE_SIZE;
 555			if (offset == 0)
 556				offset = PAGE_SIZE;
 557
 558			bytes_to_copy = offset;
 559			if (bytes_to_copy > len)
 560				bytes_to_copy = len;
 561
 562			offset -= bytes_to_copy;
 563			pos -= bytes_to_copy;
 564			str -= bytes_to_copy;
 565			len -= bytes_to_copy;
 566
 567			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 568				struct page *page;
 569
 570				page = get_arg_page(bprm, pos, 1);
 571				if (!page) {
 572					ret = -E2BIG;
 573					goto out;
 574				}
 575
 576				if (kmapped_page) {
 577					flush_kernel_dcache_page(kmapped_page);
 578					kunmap(kmapped_page);
 579					put_arg_page(kmapped_page);
 580				}
 581				kmapped_page = page;
 582				kaddr = kmap(kmapped_page);
 583				kpos = pos & PAGE_MASK;
 584				flush_arg_page(bprm, kpos, kmapped_page);
 585			}
 586			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 587				ret = -EFAULT;
 588				goto out;
 589			}
 590		}
 591	}
 592	ret = 0;
 593out:
 594	if (kmapped_page) {
 595		flush_kernel_dcache_page(kmapped_page);
 596		kunmap(kmapped_page);
 597		put_arg_page(kmapped_page);
 598	}
 599	return ret;
 600}
 601
 602/*
 603 * Copy and argument/environment string from the kernel to the processes stack.
 604 */
 605int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
 
 606{
 607	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
 608	unsigned long pos = bprm->p;
 609
 610	if (len == 0)
 611		return -EFAULT;
 612	if (!valid_arg_len(bprm, len))
 613		return -E2BIG;
 614
 615	/* We're going to work our way backwards. */
 616	arg += len;
 617	bprm->p -= len;
 618	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
 619		return -E2BIG;
 620
 621	while (len > 0) {
 622		unsigned int bytes_to_copy = min_t(unsigned int, len,
 623				min_not_zero(offset_in_page(pos), PAGE_SIZE));
 624		struct page *page;
 625		char *kaddr;
 626
 627		pos -= bytes_to_copy;
 628		arg -= bytes_to_copy;
 629		len -= bytes_to_copy;
 630
 631		page = get_arg_page(bprm, pos, 1);
 632		if (!page)
 633			return -E2BIG;
 634		kaddr = kmap_atomic(page);
 635		flush_arg_page(bprm, pos & PAGE_MASK, page);
 636		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
 637		flush_kernel_dcache_page(page);
 638		kunmap_atomic(kaddr);
 639		put_arg_page(page);
 640	}
 641
 642	return 0;
 643}
 644EXPORT_SYMBOL(copy_string_kernel);
 645
 646static int copy_strings_kernel(int argc, const char *const *argv,
 647			       struct linux_binprm *bprm)
 648{
 649	while (argc-- > 0) {
 650		int ret = copy_string_kernel(argv[argc], bprm);
 651		if (ret < 0)
 652			return ret;
 653		if (fatal_signal_pending(current))
 654			return -ERESTARTNOHAND;
 655		cond_resched();
 656	}
 657	return 0;
 658}
 
 659
 660#ifdef CONFIG_MMU
 661
 662/*
 663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 664 * the binfmt code determines where the new stack should reside, we shift it to
 665 * its final location.  The process proceeds as follows:
 666 *
 667 * 1) Use shift to calculate the new vma endpoints.
 668 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 669 *    arguments passed to subsequent functions are consistent.
 670 * 3) Move vma's page tables to the new range.
 671 * 4) Free up any cleared pgd range.
 672 * 5) Shrink the vma to cover only the new range.
 673 */
 674static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 675{
 676	struct mm_struct *mm = vma->vm_mm;
 677	unsigned long old_start = vma->vm_start;
 678	unsigned long old_end = vma->vm_end;
 679	unsigned long length = old_end - old_start;
 680	unsigned long new_start = old_start - shift;
 681	unsigned long new_end = old_end - shift;
 682	struct mmu_gather tlb;
 683
 684	BUG_ON(new_start > new_end);
 685
 686	/*
 687	 * ensure there are no vmas between where we want to go
 688	 * and where we are
 689	 */
 690	if (vma != find_vma(mm, new_start))
 691		return -EFAULT;
 692
 693	/*
 694	 * cover the whole range: [new_start, old_end)
 695	 */
 696	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 697		return -ENOMEM;
 698
 699	/*
 700	 * move the page tables downwards, on failure we rely on
 701	 * process cleanup to remove whatever mess we made.
 702	 */
 703	if (length != move_page_tables(vma, old_start,
 704				       vma, new_start, length, false))
 705		return -ENOMEM;
 706
 707	lru_add_drain();
 708	tlb_gather_mmu(&tlb, mm, old_start, old_end);
 709	if (new_end > old_start) {
 710		/*
 711		 * when the old and new regions overlap clear from new_end.
 712		 */
 713		free_pgd_range(&tlb, new_end, old_end, new_end,
 714			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 715	} else {
 716		/*
 717		 * otherwise, clean from old_start; this is done to not touch
 718		 * the address space in [new_end, old_start) some architectures
 719		 * have constraints on va-space that make this illegal (IA64) -
 720		 * for the others its just a little faster.
 721		 */
 722		free_pgd_range(&tlb, old_start, old_end, new_end,
 723			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 724	}
 725	tlb_finish_mmu(&tlb, old_start, old_end);
 726
 727	/*
 728	 * Shrink the vma to just the new range.  Always succeeds.
 729	 */
 730	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 731
 732	return 0;
 733}
 734
 735/*
 736 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 737 * the stack is optionally relocated, and some extra space is added.
 738 */
 739int setup_arg_pages(struct linux_binprm *bprm,
 740		    unsigned long stack_top,
 741		    int executable_stack)
 742{
 743	unsigned long ret;
 744	unsigned long stack_shift;
 745	struct mm_struct *mm = current->mm;
 746	struct vm_area_struct *vma = bprm->vma;
 747	struct vm_area_struct *prev = NULL;
 748	unsigned long vm_flags;
 749	unsigned long stack_base;
 750	unsigned long stack_size;
 751	unsigned long stack_expand;
 752	unsigned long rlim_stack;
 753
 754#ifdef CONFIG_STACK_GROWSUP
 755	/* Limit stack size */
 756	stack_base = bprm->rlim_stack.rlim_max;
 757	if (stack_base > STACK_SIZE_MAX)
 758		stack_base = STACK_SIZE_MAX;
 759
 760	/* Add space for stack randomization. */
 761	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 762
 763	/* Make sure we didn't let the argument array grow too large. */
 764	if (vma->vm_end - vma->vm_start > stack_base)
 765		return -ENOMEM;
 766
 767	stack_base = PAGE_ALIGN(stack_top - stack_base);
 768
 769	stack_shift = vma->vm_start - stack_base;
 770	mm->arg_start = bprm->p - stack_shift;
 771	bprm->p = vma->vm_end - stack_shift;
 772#else
 773	stack_top = arch_align_stack(stack_top);
 774	stack_top = PAGE_ALIGN(stack_top);
 775
 776	if (unlikely(stack_top < mmap_min_addr) ||
 777	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 778		return -ENOMEM;
 779
 780	stack_shift = vma->vm_end - stack_top;
 781
 782	bprm->p -= stack_shift;
 783	mm->arg_start = bprm->p;
 784#endif
 785
 786	if (bprm->loader)
 787		bprm->loader -= stack_shift;
 788	bprm->exec -= stack_shift;
 789
 790	if (mmap_write_lock_killable(mm))
 791		return -EINTR;
 792
 793	vm_flags = VM_STACK_FLAGS;
 794
 795	/*
 796	 * Adjust stack execute permissions; explicitly enable for
 797	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 798	 * (arch default) otherwise.
 799	 */
 800	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 801		vm_flags |= VM_EXEC;
 802	else if (executable_stack == EXSTACK_DISABLE_X)
 803		vm_flags &= ~VM_EXEC;
 804	vm_flags |= mm->def_flags;
 805	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 806
 807	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 808			vm_flags);
 809	if (ret)
 810		goto out_unlock;
 811	BUG_ON(prev != vma);
 812
 813	if (unlikely(vm_flags & VM_EXEC)) {
 814		pr_warn_once("process '%pD4' started with executable stack\n",
 815			     bprm->file);
 816	}
 817
 818	/* Move stack pages down in memory. */
 819	if (stack_shift) {
 820		ret = shift_arg_pages(vma, stack_shift);
 821		if (ret)
 822			goto out_unlock;
 823	}
 824
 825	/* mprotect_fixup is overkill to remove the temporary stack flags */
 826	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 827
 828	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 829	stack_size = vma->vm_end - vma->vm_start;
 830	/*
 831	 * Align this down to a page boundary as expand_stack
 832	 * will align it up.
 833	 */
 834	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 835#ifdef CONFIG_STACK_GROWSUP
 836	if (stack_size + stack_expand > rlim_stack)
 837		stack_base = vma->vm_start + rlim_stack;
 838	else
 839		stack_base = vma->vm_end + stack_expand;
 840#else
 841	if (stack_size + stack_expand > rlim_stack)
 842		stack_base = vma->vm_end - rlim_stack;
 843	else
 844		stack_base = vma->vm_start - stack_expand;
 845#endif
 846	current->mm->start_stack = bprm->p;
 847	ret = expand_stack(vma, stack_base);
 848	if (ret)
 849		ret = -EFAULT;
 850
 851out_unlock:
 852	mmap_write_unlock(mm);
 853	return ret;
 854}
 855EXPORT_SYMBOL(setup_arg_pages);
 856
 857#else
 858
 859/*
 860 * Transfer the program arguments and environment from the holding pages
 861 * onto the stack. The provided stack pointer is adjusted accordingly.
 862 */
 863int transfer_args_to_stack(struct linux_binprm *bprm,
 864			   unsigned long *sp_location)
 865{
 866	unsigned long index, stop, sp;
 867	int ret = 0;
 868
 869	stop = bprm->p >> PAGE_SHIFT;
 870	sp = *sp_location;
 871
 872	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 873		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 874		char *src = kmap(bprm->page[index]) + offset;
 875		sp -= PAGE_SIZE - offset;
 876		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 877			ret = -EFAULT;
 878		kunmap(bprm->page[index]);
 879		if (ret)
 880			goto out;
 881	}
 882
 883	*sp_location = sp;
 884
 885out:
 886	return ret;
 887}
 888EXPORT_SYMBOL(transfer_args_to_stack);
 889
 890#endif /* CONFIG_MMU */
 891
 892static struct file *do_open_execat(int fd, struct filename *name, int flags)
 893{
 894	struct file *file;
 895	int err;
 896	struct open_flags open_exec_flags = {
 897		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 898		.acc_mode = MAY_EXEC,
 899		.intent = LOOKUP_OPEN,
 900		.lookup_flags = LOOKUP_FOLLOW,
 901	};
 902
 903	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 904		return ERR_PTR(-EINVAL);
 905	if (flags & AT_SYMLINK_NOFOLLOW)
 906		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 907	if (flags & AT_EMPTY_PATH)
 908		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 909
 910	file = do_filp_open(fd, name, &open_exec_flags);
 911	if (IS_ERR(file))
 912		goto out;
 913
 914	/*
 915	 * may_open() has already checked for this, so it should be
 916	 * impossible to trip now. But we need to be extra cautious
 917	 * and check again at the very end too.
 918	 */
 919	err = -EACCES;
 920	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 921			 path_noexec(&file->f_path)))
 
 
 922		goto exit;
 923
 924	err = deny_write_access(file);
 925	if (err)
 926		goto exit;
 927
 928	if (name->name[0] != '\0')
 929		fsnotify_open(file);
 930
 931out:
 932	return file;
 933
 934exit:
 935	fput(file);
 936	return ERR_PTR(err);
 937}
 938
 939struct file *open_exec(const char *name)
 940{
 941	struct filename *filename = getname_kernel(name);
 942	struct file *f = ERR_CAST(filename);
 943
 944	if (!IS_ERR(filename)) {
 945		f = do_open_execat(AT_FDCWD, filename, 0);
 946		putname(filename);
 947	}
 948	return f;
 949}
 950EXPORT_SYMBOL(open_exec);
 951
 952int kernel_read_file(struct file *file, void **buf, loff_t *size,
 953		     loff_t max_size, enum kernel_read_file_id id)
 954{
 955	loff_t i_size, pos;
 956	ssize_t bytes = 0;
 957	int ret;
 958
 959	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 960		return -EINVAL;
 961
 962	ret = deny_write_access(file);
 963	if (ret)
 964		return ret;
 965
 966	ret = security_kernel_read_file(file, id);
 967	if (ret)
 968		goto out;
 969
 970	i_size = i_size_read(file_inode(file));
 971	if (i_size <= 0) {
 972		ret = -EINVAL;
 973		goto out;
 974	}
 975	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
 976		ret = -EFBIG;
 977		goto out;
 978	}
 979
 980	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 981		*buf = vmalloc(i_size);
 982	if (!*buf) {
 983		ret = -ENOMEM;
 984		goto out;
 985	}
 986
 987	pos = 0;
 988	while (pos < i_size) {
 989		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
 990		if (bytes < 0) {
 991			ret = bytes;
 992			goto out_free;
 993		}
 994
 995		if (bytes == 0)
 996			break;
 997	}
 998
 999	if (pos != i_size) {
1000		ret = -EIO;
1001		goto out_free;
1002	}
1003
1004	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1005	if (!ret)
1006		*size = pos;
1007
1008out_free:
1009	if (ret < 0) {
1010		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1011			vfree(*buf);
1012			*buf = NULL;
1013		}
1014	}
1015
1016out:
1017	allow_write_access(file);
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(kernel_read_file);
1021
1022int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1023			       loff_t max_size, enum kernel_read_file_id id)
1024{
1025	struct file *file;
1026	int ret;
1027
1028	if (!path || !*path)
1029		return -EINVAL;
1030
1031	file = filp_open(path, O_RDONLY, 0);
1032	if (IS_ERR(file))
1033		return PTR_ERR(file);
1034
1035	ret = kernel_read_file(file, buf, size, max_size, id);
1036	fput(file);
1037	return ret;
1038}
1039EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1040
1041int kernel_read_file_from_path_initns(const char *path, void **buf,
1042				      loff_t *size, loff_t max_size,
1043				      enum kernel_read_file_id id)
1044{
1045	struct file *file;
1046	struct path root;
1047	int ret;
1048
1049	if (!path || !*path)
1050		return -EINVAL;
1051
1052	task_lock(&init_task);
1053	get_fs_root(init_task.fs, &root);
1054	task_unlock(&init_task);
1055
1056	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1057	path_put(&root);
1058	if (IS_ERR(file))
1059		return PTR_ERR(file);
1060
1061	ret = kernel_read_file(file, buf, size, max_size, id);
1062	fput(file);
1063	return ret;
1064}
1065EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1066
1067int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1068			     enum kernel_read_file_id id)
1069{
1070	struct fd f = fdget(fd);
1071	int ret = -EBADF;
1072
1073	if (!f.file)
1074		goto out;
1075
1076	ret = kernel_read_file(f.file, buf, size, max_size, id);
1077out:
1078	fdput(f);
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1082
1083#if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084    defined(CONFIG_BINFMT_ELF_FDPIC)
1085ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1086{
1087	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1088	if (res > 0)
1089		flush_icache_user_range(addr, addr + len);
1090	return res;
1091}
1092EXPORT_SYMBOL(read_code);
1093#endif
1094
1095/*
1096 * Maps the mm_struct mm into the current task struct.
1097 * On success, this function returns with the mutex
1098 * exec_update_mutex locked.
1099 */
1100static int exec_mmap(struct mm_struct *mm)
1101{
1102	struct task_struct *tsk;
1103	struct mm_struct *old_mm, *active_mm;
1104	int ret;
1105
1106	/* Notify parent that we're no longer interested in the old VM */
1107	tsk = current;
1108	old_mm = current->mm;
1109	exec_mm_release(tsk, old_mm);
1110	if (old_mm)
1111		sync_mm_rss(old_mm);
1112
1113	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1114	if (ret)
1115		return ret;
1116
1117	if (old_mm) {
 
1118		/*
1119		 * Make sure that if there is a core dump in progress
1120		 * for the old mm, we get out and die instead of going
1121		 * through with the exec.  We must hold mmap_lock around
1122		 * checking core_state and changing tsk->mm.
1123		 */
1124		mmap_read_lock(old_mm);
1125		if (unlikely(old_mm->core_state)) {
1126			mmap_read_unlock(old_mm);
1127			mutex_unlock(&tsk->signal->exec_update_mutex);
1128			return -EINTR;
1129		}
1130	}
1131
1132	task_lock(tsk);
1133	active_mm = tsk->active_mm;
1134	membarrier_exec_mmap(mm);
1135	tsk->mm = mm;
1136	tsk->active_mm = mm;
1137	activate_mm(active_mm, mm);
1138	tsk->mm->vmacache_seqnum = 0;
1139	vmacache_flush(tsk);
1140	task_unlock(tsk);
1141	if (old_mm) {
1142		mmap_read_unlock(old_mm);
1143		BUG_ON(active_mm != old_mm);
1144		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1145		mm_update_next_owner(old_mm);
1146		mmput(old_mm);
1147		return 0;
1148	}
1149	mmdrop(active_mm);
1150	return 0;
1151}
1152
 
 
 
 
 
 
1153static int de_thread(struct task_struct *tsk)
1154{
1155	struct signal_struct *sig = tsk->signal;
1156	struct sighand_struct *oldsighand = tsk->sighand;
1157	spinlock_t *lock = &oldsighand->siglock;
1158
1159	if (thread_group_empty(tsk))
1160		goto no_thread_group;
1161
1162	/*
1163	 * Kill all other threads in the thread group.
1164	 */
1165	spin_lock_irq(lock);
1166	if (signal_group_exit(sig)) {
1167		/*
1168		 * Another group action in progress, just
1169		 * return so that the signal is processed.
1170		 */
1171		spin_unlock_irq(lock);
1172		return -EAGAIN;
1173	}
1174
1175	sig->group_exit_task = tsk;
1176	sig->notify_count = zap_other_threads(tsk);
1177	if (!thread_group_leader(tsk))
1178		sig->notify_count--;
1179
1180	while (sig->notify_count) {
1181		__set_current_state(TASK_KILLABLE);
1182		spin_unlock_irq(lock);
1183		schedule();
1184		if (__fatal_signal_pending(tsk))
1185			goto killed;
1186		spin_lock_irq(lock);
1187	}
1188	spin_unlock_irq(lock);
1189
1190	/*
1191	 * At this point all other threads have exited, all we have to
1192	 * do is to wait for the thread group leader to become inactive,
1193	 * and to assume its PID:
1194	 */
1195	if (!thread_group_leader(tsk)) {
1196		struct task_struct *leader = tsk->group_leader;
1197
1198		for (;;) {
1199			cgroup_threadgroup_change_begin(tsk);
1200			write_lock_irq(&tasklist_lock);
1201			/*
1202			 * Do this under tasklist_lock to ensure that
1203			 * exit_notify() can't miss ->group_exit_task
1204			 */
1205			sig->notify_count = -1;
1206			if (likely(leader->exit_state))
1207				break;
1208			__set_current_state(TASK_KILLABLE);
1209			write_unlock_irq(&tasklist_lock);
1210			cgroup_threadgroup_change_end(tsk);
1211			schedule();
1212			if (__fatal_signal_pending(tsk))
1213				goto killed;
1214		}
1215
1216		/*
1217		 * The only record we have of the real-time age of a
1218		 * process, regardless of execs it's done, is start_time.
1219		 * All the past CPU time is accumulated in signal_struct
1220		 * from sister threads now dead.  But in this non-leader
1221		 * exec, nothing survives from the original leader thread,
1222		 * whose birth marks the true age of this process now.
1223		 * When we take on its identity by switching to its PID, we
1224		 * also take its birthdate (always earlier than our own).
1225		 */
1226		tsk->start_time = leader->start_time;
1227		tsk->start_boottime = leader->start_boottime;
1228
1229		BUG_ON(!same_thread_group(leader, tsk));
 
1230		/*
1231		 * An exec() starts a new thread group with the
1232		 * TGID of the previous thread group. Rehash the
1233		 * two threads with a switched PID, and release
1234		 * the former thread group leader:
1235		 */
1236
1237		/* Become a process group leader with the old leader's pid.
1238		 * The old leader becomes a thread of the this thread group.
 
 
1239		 */
1240		exchange_tids(tsk, leader);
 
1241		transfer_pid(leader, tsk, PIDTYPE_TGID);
1242		transfer_pid(leader, tsk, PIDTYPE_PGID);
1243		transfer_pid(leader, tsk, PIDTYPE_SID);
1244
1245		list_replace_rcu(&leader->tasks, &tsk->tasks);
1246		list_replace_init(&leader->sibling, &tsk->sibling);
1247
1248		tsk->group_leader = tsk;
1249		leader->group_leader = tsk;
1250
1251		tsk->exit_signal = SIGCHLD;
1252		leader->exit_signal = -1;
1253
1254		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1255		leader->exit_state = EXIT_DEAD;
1256
1257		/*
1258		 * We are going to release_task()->ptrace_unlink() silently,
1259		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1260		 * the tracer wont't block again waiting for this thread.
1261		 */
1262		if (unlikely(leader->ptrace))
1263			__wake_up_parent(leader, leader->parent);
1264		write_unlock_irq(&tasklist_lock);
1265		cgroup_threadgroup_change_end(tsk);
1266
1267		release_task(leader);
1268	}
1269
1270	sig->group_exit_task = NULL;
1271	sig->notify_count = 0;
1272
1273no_thread_group:
1274	/* we have changed execution domain */
1275	tsk->exit_signal = SIGCHLD;
1276
1277	BUG_ON(!thread_group_leader(tsk));
1278	return 0;
1279
1280killed:
1281	/* protects against exit_notify() and __exit_signal() */
1282	read_lock(&tasklist_lock);
1283	sig->group_exit_task = NULL;
1284	sig->notify_count = 0;
1285	read_unlock(&tasklist_lock);
1286	return -EAGAIN;
1287}
1288
1289
1290/*
1291 * This function makes sure the current process has its own signal table,
1292 * so that flush_signal_handlers can later reset the handlers without
1293 * disturbing other processes.  (Other processes might share the signal
1294 * table via the CLONE_SIGHAND option to clone().)
1295 */
1296static int unshare_sighand(struct task_struct *me)
1297{
1298	struct sighand_struct *oldsighand = me->sighand;
1299
1300	if (refcount_read(&oldsighand->count) != 1) {
1301		struct sighand_struct *newsighand;
1302		/*
1303		 * This ->sighand is shared with the CLONE_SIGHAND
1304		 * but not CLONE_THREAD task, switch to the new one.
1305		 */
1306		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1307		if (!newsighand)
1308			return -ENOMEM;
1309
1310		refcount_set(&newsighand->count, 1);
1311		memcpy(newsighand->action, oldsighand->action,
1312		       sizeof(newsighand->action));
1313
1314		write_lock_irq(&tasklist_lock);
1315		spin_lock(&oldsighand->siglock);
1316		rcu_assign_pointer(me->sighand, newsighand);
1317		spin_unlock(&oldsighand->siglock);
1318		write_unlock_irq(&tasklist_lock);
1319
1320		__cleanup_sighand(oldsighand);
1321	}
 
 
1322	return 0;
 
 
 
 
 
 
 
 
1323}
1324
1325char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1326{
1327	task_lock(tsk);
1328	strncpy(buf, tsk->comm, buf_size);
1329	task_unlock(tsk);
1330	return buf;
1331}
1332EXPORT_SYMBOL_GPL(__get_task_comm);
1333
1334/*
1335 * These functions flushes out all traces of the currently running executable
1336 * so that a new one can be started
1337 */
1338
1339void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1340{
1341	task_lock(tsk);
1342	trace_task_rename(tsk, buf);
1343	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1344	task_unlock(tsk);
1345	perf_event_comm(tsk, exec);
1346}
1347
1348/*
1349 * Calling this is the point of no return. None of the failures will be
1350 * seen by userspace since either the process is already taking a fatal
1351 * signal (via de_thread() or coredump), or will have SEGV raised
1352 * (after exec_mmap()) by search_binary_handler (see below).
1353 */
1354int begin_new_exec(struct linux_binprm * bprm)
1355{
1356	struct task_struct *me = current;
1357	int retval;
1358
1359	/* Once we are committed compute the creds */
1360	retval = bprm_creds_from_file(bprm);
1361	if (retval)
1362		return retval;
1363
1364	/*
1365	 * Ensure all future errors are fatal.
 
1366	 */
1367	bprm->point_of_no_return = true;
1368
1369	/*
1370	 * Make this the only thread in the thread group.
1371	 */
1372	retval = de_thread(me);
1373	if (retval)
1374		goto out;
1375
1376	/*
1377	 * Must be called _before_ exec_mmap() as bprm->mm is
1378	 * not visibile until then. This also enables the update
1379	 * to be lockless.
1380	 */
1381	set_mm_exe_file(bprm->mm, bprm->file);
1382
1383	/* If the binary is not readable then enforce mm->dumpable=0 */
1384	would_dump(bprm, bprm->file);
1385	if (bprm->have_execfd)
1386		would_dump(bprm, bprm->executable);
1387
1388	/*
1389	 * Release all of the old mmap stuff
1390	 */
1391	acct_arg_size(bprm, 0);
1392	retval = exec_mmap(bprm->mm);
1393	if (retval)
1394		goto out;
1395
1396	bprm->mm = NULL;
1397
1398#ifdef CONFIG_POSIX_TIMERS
1399	exit_itimers(me->signal);
1400	flush_itimer_signals();
1401#endif
1402
1403	/*
1404	 * Make the signal table private.
 
 
 
1405	 */
1406	retval = unshare_sighand(me);
1407	if (retval)
1408		goto out_unlock;
1409
1410	/*
1411	 * Ensure that the uaccess routines can actually operate on userspace
1412	 * pointers:
1413	 */
1414	force_uaccess_begin();
1415
1416	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
 
1417					PF_NOFREEZE | PF_NO_SETAFFINITY);
1418	flush_thread();
1419	me->personality &= ~bprm->per_clear;
1420
1421	/*
1422	 * We have to apply CLOEXEC before we change whether the process is
1423	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1424	 * trying to access the should-be-closed file descriptors of a process
1425	 * undergoing exec(2).
1426	 */
1427	do_close_on_exec(me->files);
1428
1429	if (bprm->secureexec) {
1430		/* Make sure parent cannot signal privileged process. */
1431		me->pdeath_signal = 0;
1432
1433		/*
1434		 * For secureexec, reset the stack limit to sane default to
1435		 * avoid bad behavior from the prior rlimits. This has to
1436		 * happen before arch_pick_mmap_layout(), which examines
1437		 * RLIMIT_STACK, but after the point of no return to avoid
1438		 * needing to clean up the change on failure.
1439		 */
1440		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1441			bprm->rlim_stack.rlim_cur = _STK_LIM;
1442	}
1443
1444	me->sas_ss_sp = me->sas_ss_size = 0;
1445
1446	/*
1447	 * Figure out dumpability. Note that this checking only of current
1448	 * is wrong, but userspace depends on it. This should be testing
1449	 * bprm->secureexec instead.
1450	 */
1451	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1452	    !(uid_eq(current_euid(), current_uid()) &&
1453	      gid_eq(current_egid(), current_gid())))
1454		set_dumpable(current->mm, suid_dumpable);
1455	else
1456		set_dumpable(current->mm, SUID_DUMP_USER);
1457
1458	perf_event_exec();
1459	__set_task_comm(me, kbasename(bprm->filename), true);
1460
1461	/* An exec changes our domain. We are no longer part of the thread
1462	   group */
1463	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1464	flush_signal_handlers(me, 0);
1465
1466	/*
1467	 * install the new credentials for this executable
1468	 */
1469	security_bprm_committing_creds(bprm);
1470
1471	commit_creds(bprm->cred);
1472	bprm->cred = NULL;
1473
1474	/*
1475	 * Disable monitoring for regular users
1476	 * when executing setuid binaries. Must
1477	 * wait until new credentials are committed
1478	 * by commit_creds() above
1479	 */
1480	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1481		perf_event_exit_task(me);
1482	/*
1483	 * cred_guard_mutex must be held at least to this point to prevent
1484	 * ptrace_attach() from altering our determination of the task's
1485	 * credentials; any time after this it may be unlocked.
1486	 */
1487	security_bprm_committed_creds(bprm);
1488
1489	/* Pass the opened binary to the interpreter. */
1490	if (bprm->have_execfd) {
1491		retval = get_unused_fd_flags(0);
1492		if (retval < 0)
1493			goto out_unlock;
1494		fd_install(retval, bprm->executable);
1495		bprm->executable = NULL;
1496		bprm->execfd = retval;
1497	}
1498	return 0;
1499
1500out_unlock:
1501	mutex_unlock(&me->signal->exec_update_mutex);
1502out:
1503	return retval;
1504}
1505EXPORT_SYMBOL(begin_new_exec);
1506
1507void would_dump(struct linux_binprm *bprm, struct file *file)
1508{
1509	struct inode *inode = file_inode(file);
1510	if (inode_permission(inode, MAY_READ) < 0) {
1511		struct user_namespace *old, *user_ns;
1512		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1513
1514		/* Ensure mm->user_ns contains the executable */
1515		user_ns = old = bprm->mm->user_ns;
1516		while ((user_ns != &init_user_ns) &&
1517		       !privileged_wrt_inode_uidgid(user_ns, inode))
1518			user_ns = user_ns->parent;
1519
1520		if (old != user_ns) {
1521			bprm->mm->user_ns = get_user_ns(user_ns);
1522			put_user_ns(old);
1523		}
1524	}
1525}
1526EXPORT_SYMBOL(would_dump);
1527
1528void setup_new_exec(struct linux_binprm * bprm)
1529{
1530	/* Setup things that can depend upon the personality */
1531	struct task_struct *me = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532
1533	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	arch_setup_new_exec();
 
 
1536
1537	/* Set the new mm task size. We have to do that late because it may
1538	 * depend on TIF_32BIT which is only updated in flush_thread() on
1539	 * some architectures like powerpc
1540	 */
1541	me->mm->task_size = TASK_SIZE;
1542	mutex_unlock(&me->signal->exec_update_mutex);
1543	mutex_unlock(&me->signal->cred_guard_mutex);
 
 
 
1544}
1545EXPORT_SYMBOL(setup_new_exec);
1546
1547/* Runs immediately before start_thread() takes over. */
1548void finalize_exec(struct linux_binprm *bprm)
1549{
1550	/* Store any stack rlimit changes before starting thread. */
1551	task_lock(current->group_leader);
1552	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1553	task_unlock(current->group_leader);
1554}
1555EXPORT_SYMBOL(finalize_exec);
1556
1557/*
1558 * Prepare credentials and lock ->cred_guard_mutex.
1559 * setup_new_exec() commits the new creds and drops the lock.
1560 * Or, if exec fails before, free_bprm() should release ->cred and
1561 * and unlock.
1562 */
1563static int prepare_bprm_creds(struct linux_binprm *bprm)
1564{
1565	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1566		return -ERESTARTNOINTR;
1567
1568	bprm->cred = prepare_exec_creds();
1569	if (likely(bprm->cred))
1570		return 0;
1571
1572	mutex_unlock(&current->signal->cred_guard_mutex);
1573	return -ENOMEM;
1574}
1575
1576static void free_bprm(struct linux_binprm *bprm)
1577{
1578	if (bprm->mm) {
1579		acct_arg_size(bprm, 0);
1580		mmput(bprm->mm);
1581	}
1582	free_arg_pages(bprm);
1583	if (bprm->cred) {
1584		mutex_unlock(&current->signal->cred_guard_mutex);
1585		abort_creds(bprm->cred);
1586	}
1587	if (bprm->file) {
1588		allow_write_access(bprm->file);
1589		fput(bprm->file);
1590	}
1591	if (bprm->executable)
1592		fput(bprm->executable);
1593	/* If a binfmt changed the interp, free it. */
1594	if (bprm->interp != bprm->filename)
1595		kfree(bprm->interp);
1596	kfree(bprm->fdpath);
1597	kfree(bprm);
1598}
1599
1600static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1601{
1602	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1603	int retval = -ENOMEM;
1604	if (!bprm)
1605		goto out;
1606
1607	if (fd == AT_FDCWD || filename->name[0] == '/') {
1608		bprm->filename = filename->name;
1609	} else {
1610		if (filename->name[0] == '\0')
1611			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1612		else
1613			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1614						  fd, filename->name);
1615		if (!bprm->fdpath)
1616			goto out_free;
1617
1618		bprm->filename = bprm->fdpath;
1619	}
1620	bprm->interp = bprm->filename;
1621
1622	retval = bprm_mm_init(bprm);
1623	if (retval)
1624		goto out_free;
1625	return bprm;
1626
1627out_free:
1628	free_bprm(bprm);
1629out:
1630	return ERR_PTR(retval);
1631}
1632
1633int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1634{
1635	/* If a binfmt changed the interp, free it first. */
1636	if (bprm->interp != bprm->filename)
1637		kfree(bprm->interp);
1638	bprm->interp = kstrdup(interp, GFP_KERNEL);
1639	if (!bprm->interp)
1640		return -ENOMEM;
1641	return 0;
1642}
1643EXPORT_SYMBOL(bprm_change_interp);
1644
1645/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646 * determine how safe it is to execute the proposed program
1647 * - the caller must hold ->cred_guard_mutex to protect against
1648 *   PTRACE_ATTACH or seccomp thread-sync
1649 */
1650static void check_unsafe_exec(struct linux_binprm *bprm)
1651{
1652	struct task_struct *p = current, *t;
1653	unsigned n_fs;
1654
1655	if (p->ptrace)
1656		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1657
1658	/*
1659	 * This isn't strictly necessary, but it makes it harder for LSMs to
1660	 * mess up.
1661	 */
1662	if (task_no_new_privs(current))
1663		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1664
1665	t = p;
1666	n_fs = 1;
1667	spin_lock(&p->fs->lock);
1668	rcu_read_lock();
1669	while_each_thread(p, t) {
1670		if (t->fs == p->fs)
1671			n_fs++;
1672	}
1673	rcu_read_unlock();
1674
1675	if (p->fs->users > n_fs)
1676		bprm->unsafe |= LSM_UNSAFE_SHARE;
1677	else
1678		p->fs->in_exec = 1;
1679	spin_unlock(&p->fs->lock);
1680}
1681
1682static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1683{
1684	/* Handle suid and sgid on files */
1685	struct inode *inode;
1686	unsigned int mode;
1687	kuid_t uid;
1688	kgid_t gid;
1689
1690	if (!mnt_may_suid(file->f_path.mnt))
 
 
 
 
 
 
 
 
 
1691		return;
1692
1693	if (task_no_new_privs(current))
1694		return;
1695
1696	inode = file->f_path.dentry->d_inode;
1697	mode = READ_ONCE(inode->i_mode);
1698	if (!(mode & (S_ISUID|S_ISGID)))
1699		return;
1700
1701	/* Be careful if suid/sgid is set */
1702	inode_lock(inode);
1703
1704	/* reload atomically mode/uid/gid now that lock held */
1705	mode = inode->i_mode;
1706	uid = inode->i_uid;
1707	gid = inode->i_gid;
1708	inode_unlock(inode);
1709
1710	/* We ignore suid/sgid if there are no mappings for them in the ns */
1711	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1712		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1713		return;
1714
1715	if (mode & S_ISUID) {
1716		bprm->per_clear |= PER_CLEAR_ON_SETID;
1717		bprm->cred->euid = uid;
1718	}
1719
1720	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1721		bprm->per_clear |= PER_CLEAR_ON_SETID;
1722		bprm->cred->egid = gid;
1723	}
1724}
1725
1726/*
1727 * Compute brpm->cred based upon the final binary.
1728 */
1729static int bprm_creds_from_file(struct linux_binprm *bprm)
1730{
1731	/* Compute creds based on which file? */
1732	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1733
1734	bprm_fill_uid(bprm, file);
1735	return security_bprm_creds_from_file(bprm, file);
1736}
1737
1738/*
1739 * Fill the binprm structure from the inode.
1740 * Read the first BINPRM_BUF_SIZE bytes
1741 *
1742 * This may be called multiple times for binary chains (scripts for example).
1743 */
1744static int prepare_binprm(struct linux_binprm *bprm)
1745{
 
1746	loff_t pos = 0;
1747
 
 
 
 
 
 
 
 
1748	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1749	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1750}
1751
 
 
1752/*
1753 * Arguments are '\0' separated strings found at the location bprm->p
1754 * points to; chop off the first by relocating brpm->p to right after
1755 * the first '\0' encountered.
1756 */
1757int remove_arg_zero(struct linux_binprm *bprm)
1758{
1759	int ret = 0;
1760	unsigned long offset;
1761	char *kaddr;
1762	struct page *page;
1763
1764	if (!bprm->argc)
1765		return 0;
1766
1767	do {
1768		offset = bprm->p & ~PAGE_MASK;
1769		page = get_arg_page(bprm, bprm->p, 0);
1770		if (!page) {
1771			ret = -EFAULT;
1772			goto out;
1773		}
1774		kaddr = kmap_atomic(page);
1775
1776		for (; offset < PAGE_SIZE && kaddr[offset];
1777				offset++, bprm->p++)
1778			;
1779
1780		kunmap_atomic(kaddr);
1781		put_arg_page(page);
1782	} while (offset == PAGE_SIZE);
1783
1784	bprm->p++;
1785	bprm->argc--;
1786	ret = 0;
1787
1788out:
1789	return ret;
1790}
1791EXPORT_SYMBOL(remove_arg_zero);
1792
1793#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1794/*
1795 * cycle the list of binary formats handler, until one recognizes the image
1796 */
1797static int search_binary_handler(struct linux_binprm *bprm)
1798{
1799	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1800	struct linux_binfmt *fmt;
1801	int retval;
1802
1803	retval = prepare_binprm(bprm);
1804	if (retval < 0)
1805		return retval;
1806
1807	retval = security_bprm_check(bprm);
1808	if (retval)
1809		return retval;
1810
1811	retval = -ENOENT;
1812 retry:
1813	read_lock(&binfmt_lock);
1814	list_for_each_entry(fmt, &formats, lh) {
1815		if (!try_module_get(fmt->module))
1816			continue;
1817		read_unlock(&binfmt_lock);
1818
 
1819		retval = fmt->load_binary(bprm);
 
1820
1821		read_lock(&binfmt_lock);
1822		put_binfmt(fmt);
1823		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
 
 
 
 
 
 
1824			read_unlock(&binfmt_lock);
1825			return retval;
1826		}
1827	}
1828	read_unlock(&binfmt_lock);
1829
1830	if (need_retry) {
1831		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1832		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1833			return retval;
1834		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1835			return retval;
1836		need_retry = false;
1837		goto retry;
1838	}
1839
1840	return retval;
1841}
 
1842
1843static int exec_binprm(struct linux_binprm *bprm)
1844{
1845	pid_t old_pid, old_vpid;
1846	int ret, depth;
1847
1848	/* Need to fetch pid before load_binary changes it */
1849	old_pid = current->pid;
1850	rcu_read_lock();
1851	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1852	rcu_read_unlock();
1853
1854	/* This allows 4 levels of binfmt rewrites before failing hard. */
1855	for (depth = 0;; depth++) {
1856		struct file *exec;
1857		if (depth > 5)
1858			return -ELOOP;
1859
1860		ret = search_binary_handler(bprm);
1861		if (ret < 0)
1862			return ret;
1863		if (!bprm->interpreter)
1864			break;
1865
1866		exec = bprm->file;
1867		bprm->file = bprm->interpreter;
1868		bprm->interpreter = NULL;
1869
1870		allow_write_access(exec);
1871		if (unlikely(bprm->have_execfd)) {
1872			if (bprm->executable) {
1873				fput(exec);
1874				return -ENOEXEC;
1875			}
1876			bprm->executable = exec;
1877		} else
1878			fput(exec);
1879	}
1880
1881	audit_bprm(bprm);
1882	trace_sched_process_exec(current, old_pid, bprm);
1883	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1884	proc_exec_connector(current);
1885	return 0;
1886}
1887
1888/*
1889 * sys_execve() executes a new program.
1890 */
1891static int bprm_execve(struct linux_binprm *bprm,
1892		       int fd, struct filename *filename, int flags)
 
 
1893{
1894	struct file *file;
 
1895	struct files_struct *displaced;
1896	int retval;
1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898	retval = unshare_files(&displaced);
1899	if (retval)
1900		return retval;
 
 
 
 
 
1901
1902	retval = prepare_bprm_creds(bprm);
1903	if (retval)
1904		goto out_files;
1905
1906	check_unsafe_exec(bprm);
1907	current->in_execve = 1;
1908
1909	file = do_open_execat(fd, filename, flags);
 
1910	retval = PTR_ERR(file);
1911	if (IS_ERR(file))
1912		goto out_unmark;
1913
1914	sched_exec();
1915
1916	bprm->file = file;
1917	/*
1918	 * Record that a name derived from an O_CLOEXEC fd will be
1919	 * inaccessible after exec. Relies on having exclusive access to
1920	 * current->files (due to unshare_files above).
1921	 */
1922	if (bprm->fdpath &&
1923	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1924		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925
1926	/* Set the unchanging part of bprm->cred */
1927	retval = security_bprm_creds_for_exec(bprm);
1928	if (retval)
 
 
 
 
1929		goto out;
1930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931	retval = exec_binprm(bprm);
1932	if (retval < 0)
1933		goto out;
1934
1935	/* execve succeeded */
1936	current->fs->in_exec = 0;
1937	current->in_execve = 0;
1938	rseq_execve(current);
1939	acct_update_integrals(current);
1940	task_numa_free(current, false);
 
 
 
 
1941	if (displaced)
1942		put_files_struct(displaced);
1943	return retval;
1944
1945out:
1946	/*
1947	 * If past the point of no return ensure the the code never
1948	 * returns to the userspace process.  Use an existing fatal
1949	 * signal if present otherwise terminate the process with
1950	 * SIGSEGV.
1951	 */
1952	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1953		force_sigsegv(SIGSEGV);
1954
1955out_unmark:
1956	current->fs->in_exec = 0;
1957	current->in_execve = 0;
1958
 
 
 
 
1959out_files:
1960	if (displaced)
1961		reset_files_struct(displaced);
1962
 
 
1963	return retval;
1964}
1965
1966static int do_execveat_common(int fd, struct filename *filename,
1967			      struct user_arg_ptr argv,
1968			      struct user_arg_ptr envp,
1969			      int flags)
1970{
1971	struct linux_binprm *bprm;
1972	int retval;
1973
1974	if (IS_ERR(filename))
1975		return PTR_ERR(filename);
1976
1977	/*
1978	 * We move the actual failure in case of RLIMIT_NPROC excess from
1979	 * set*uid() to execve() because too many poorly written programs
1980	 * don't check setuid() return code.  Here we additionally recheck
1981	 * whether NPROC limit is still exceeded.
1982	 */
1983	if ((current->flags & PF_NPROC_EXCEEDED) &&
1984	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1985		retval = -EAGAIN;
1986		goto out_ret;
1987	}
1988
1989	/* We're below the limit (still or again), so we don't want to make
1990	 * further execve() calls fail. */
1991	current->flags &= ~PF_NPROC_EXCEEDED;
1992
1993	bprm = alloc_bprm(fd, filename);
1994	if (IS_ERR(bprm)) {
1995		retval = PTR_ERR(bprm);
1996		goto out_ret;
1997	}
1998
1999	retval = count(argv, MAX_ARG_STRINGS);
2000	if (retval < 0)
2001		goto out_free;
2002	bprm->argc = retval;
2003
2004	retval = count(envp, MAX_ARG_STRINGS);
2005	if (retval < 0)
2006		goto out_free;
2007	bprm->envc = retval;
2008
2009	retval = bprm_stack_limits(bprm);
2010	if (retval < 0)
2011		goto out_free;
2012
2013	retval = copy_string_kernel(bprm->filename, bprm);
2014	if (retval < 0)
2015		goto out_free;
2016	bprm->exec = bprm->p;
2017
2018	retval = copy_strings(bprm->envc, envp, bprm);
2019	if (retval < 0)
2020		goto out_free;
2021
2022	retval = copy_strings(bprm->argc, argv, bprm);
2023	if (retval < 0)
2024		goto out_free;
2025
2026	retval = bprm_execve(bprm, fd, filename, flags);
2027out_free:
2028	free_bprm(bprm);
2029
2030out_ret:
2031	putname(filename);
2032	return retval;
2033}
2034
2035int kernel_execve(const char *kernel_filename,
2036		  const char *const *argv, const char *const *envp)
2037{
2038	struct filename *filename;
2039	struct linux_binprm *bprm;
2040	int fd = AT_FDCWD;
2041	int retval;
2042
2043	filename = getname_kernel(kernel_filename);
2044	if (IS_ERR(filename))
2045		return PTR_ERR(filename);
2046
2047	bprm = alloc_bprm(fd, filename);
2048	if (IS_ERR(bprm)) {
2049		retval = PTR_ERR(bprm);
2050		goto out_ret;
2051	}
2052
2053	retval = count_strings_kernel(argv);
2054	if (retval < 0)
2055		goto out_free;
2056	bprm->argc = retval;
2057
2058	retval = count_strings_kernel(envp);
2059	if (retval < 0)
2060		goto out_free;
2061	bprm->envc = retval;
2062
2063	retval = bprm_stack_limits(bprm);
2064	if (retval < 0)
2065		goto out_free;
2066
2067	retval = copy_string_kernel(bprm->filename, bprm);
2068	if (retval < 0)
2069		goto out_free;
2070	bprm->exec = bprm->p;
2071
2072	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2073	if (retval < 0)
2074		goto out_free;
2075
2076	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2077	if (retval < 0)
2078		goto out_free;
2079
2080	retval = bprm_execve(bprm, fd, filename, 0);
2081out_free:
2082	free_bprm(bprm);
2083out_ret:
2084	putname(filename);
2085	return retval;
2086}
2087
2088static int do_execve(struct filename *filename,
2089	const char __user *const __user *__argv,
2090	const char __user *const __user *__envp)
2091{
2092	struct user_arg_ptr argv = { .ptr.native = __argv };
2093	struct user_arg_ptr envp = { .ptr.native = __envp };
2094	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2095}
2096
2097static int do_execveat(int fd, struct filename *filename,
2098		const char __user *const __user *__argv,
2099		const char __user *const __user *__envp,
2100		int flags)
2101{
2102	struct user_arg_ptr argv = { .ptr.native = __argv };
2103	struct user_arg_ptr envp = { .ptr.native = __envp };
2104
2105	return do_execveat_common(fd, filename, argv, envp, flags);
2106}
2107
2108#ifdef CONFIG_COMPAT
2109static int compat_do_execve(struct filename *filename,
2110	const compat_uptr_t __user *__argv,
2111	const compat_uptr_t __user *__envp)
2112{
2113	struct user_arg_ptr argv = {
2114		.is_compat = true,
2115		.ptr.compat = __argv,
2116	};
2117	struct user_arg_ptr envp = {
2118		.is_compat = true,
2119		.ptr.compat = __envp,
2120	};
2121	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2122}
2123
2124static int compat_do_execveat(int fd, struct filename *filename,
2125			      const compat_uptr_t __user *__argv,
2126			      const compat_uptr_t __user *__envp,
2127			      int flags)
2128{
2129	struct user_arg_ptr argv = {
2130		.is_compat = true,
2131		.ptr.compat = __argv,
2132	};
2133	struct user_arg_ptr envp = {
2134		.is_compat = true,
2135		.ptr.compat = __envp,
2136	};
2137	return do_execveat_common(fd, filename, argv, envp, flags);
2138}
2139#endif
2140
2141void set_binfmt(struct linux_binfmt *new)
2142{
2143	struct mm_struct *mm = current->mm;
2144
2145	if (mm->binfmt)
2146		module_put(mm->binfmt->module);
2147
2148	mm->binfmt = new;
2149	if (new)
2150		__module_get(new->module);
2151}
2152EXPORT_SYMBOL(set_binfmt);
2153
2154/*
2155 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2156 */
2157void set_dumpable(struct mm_struct *mm, int value)
2158{
2159	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2160		return;
2161
2162	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2163}
2164
2165SYSCALL_DEFINE3(execve,
2166		const char __user *, filename,
2167		const char __user *const __user *, argv,
2168		const char __user *const __user *, envp)
2169{
2170	return do_execve(getname(filename), argv, envp);
2171}
2172
2173SYSCALL_DEFINE5(execveat,
2174		int, fd, const char __user *, filename,
2175		const char __user *const __user *, argv,
2176		const char __user *const __user *, envp,
2177		int, flags)
2178{
2179	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2180
2181	return do_execveat(fd,
2182			   getname_flags(filename, lookup_flags, NULL),
2183			   argv, envp, flags);
2184}
2185
2186#ifdef CONFIG_COMPAT
2187COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2188	const compat_uptr_t __user *, argv,
2189	const compat_uptr_t __user *, envp)
2190{
2191	return compat_do_execve(getname(filename), argv, envp);
2192}
2193
2194COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2195		       const char __user *, filename,
2196		       const compat_uptr_t __user *, argv,
2197		       const compat_uptr_t __user *, envp,
2198		       int,  flags)
2199{
2200	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2201
2202	return compat_do_execveat(fd,
2203				  getname_flags(filename, lookup_flags, NULL),
2204				  argv, envp, flags);
2205}
2206#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/mm.h>
  30#include <linux/vmacache.h>
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
  58#include <linux/tracehook.h>
  59#include <linux/kmod.h>
  60#include <linux/fsnotify.h>
  61#include <linux/fs_struct.h>
  62#include <linux/pipe_fs_i.h>
  63#include <linux/oom.h>
  64#include <linux/compat.h>
  65#include <linux/vmalloc.h>
  66
  67#include <linux/uaccess.h>
  68#include <asm/mmu_context.h>
  69#include <asm/tlb.h>
  70
  71#include <trace/events/task.h>
  72#include "internal.h"
  73
  74#include <trace/events/sched.h>
  75
 
 
  76int suid_dumpable = 0;
  77
  78static LIST_HEAD(formats);
  79static DEFINE_RWLOCK(binfmt_lock);
  80
  81void __register_binfmt(struct linux_binfmt * fmt, int insert)
  82{
  83	BUG_ON(!fmt);
  84	if (WARN_ON(!fmt->load_binary))
  85		return;
  86	write_lock(&binfmt_lock);
  87	insert ? list_add(&fmt->lh, &formats) :
  88		 list_add_tail(&fmt->lh, &formats);
  89	write_unlock(&binfmt_lock);
  90}
  91
  92EXPORT_SYMBOL(__register_binfmt);
  93
  94void unregister_binfmt(struct linux_binfmt * fmt)
  95{
  96	write_lock(&binfmt_lock);
  97	list_del(&fmt->lh);
  98	write_unlock(&binfmt_lock);
  99}
 100
 101EXPORT_SYMBOL(unregister_binfmt);
 102
 103static inline void put_binfmt(struct linux_binfmt * fmt)
 104{
 105	module_put(fmt->module);
 106}
 107
 108bool path_noexec(const struct path *path)
 109{
 110	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 111	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 112}
 113
 114#ifdef CONFIG_USELIB
 115/*
 116 * Note that a shared library must be both readable and executable due to
 117 * security reasons.
 118 *
 119 * Also note that we take the address to load from from the file itself.
 120 */
 121SYSCALL_DEFINE1(uselib, const char __user *, library)
 122{
 123	struct linux_binfmt *fmt;
 124	struct file *file;
 125	struct filename *tmp = getname(library);
 126	int error = PTR_ERR(tmp);
 127	static const struct open_flags uselib_flags = {
 128		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 129		.acc_mode = MAY_READ | MAY_EXEC,
 130		.intent = LOOKUP_OPEN,
 131		.lookup_flags = LOOKUP_FOLLOW,
 132	};
 133
 134	if (IS_ERR(tmp))
 135		goto out;
 136
 137	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 138	putname(tmp);
 139	error = PTR_ERR(file);
 140	if (IS_ERR(file))
 141		goto out;
 142
 143	error = -EINVAL;
 144	if (!S_ISREG(file_inode(file)->i_mode))
 145		goto exit;
 146
 
 147	error = -EACCES;
 148	if (path_noexec(&file->f_path))
 
 149		goto exit;
 150
 151	fsnotify_open(file);
 152
 153	error = -ENOEXEC;
 154
 155	read_lock(&binfmt_lock);
 156	list_for_each_entry(fmt, &formats, lh) {
 157		if (!fmt->load_shlib)
 158			continue;
 159		if (!try_module_get(fmt->module))
 160			continue;
 161		read_unlock(&binfmt_lock);
 162		error = fmt->load_shlib(file);
 163		read_lock(&binfmt_lock);
 164		put_binfmt(fmt);
 165		if (error != -ENOEXEC)
 166			break;
 167	}
 168	read_unlock(&binfmt_lock);
 169exit:
 170	fput(file);
 171out:
 172  	return error;
 173}
 174#endif /* #ifdef CONFIG_USELIB */
 175
 176#ifdef CONFIG_MMU
 177/*
 178 * The nascent bprm->mm is not visible until exec_mmap() but it can
 179 * use a lot of memory, account these pages in current->mm temporary
 180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 181 * change the counter back via acct_arg_size(0).
 182 */
 183static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 184{
 185	struct mm_struct *mm = current->mm;
 186	long diff = (long)(pages - bprm->vma_pages);
 187
 188	if (!mm || !diff)
 189		return;
 190
 191	bprm->vma_pages = pages;
 192	add_mm_counter(mm, MM_ANONPAGES, diff);
 193}
 194
 195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 196		int write)
 197{
 198	struct page *page;
 199	int ret;
 200	unsigned int gup_flags = FOLL_FORCE;
 201
 202#ifdef CONFIG_STACK_GROWSUP
 203	if (write) {
 204		ret = expand_downwards(bprm->vma, pos);
 205		if (ret < 0)
 206			return NULL;
 207	}
 208#endif
 209
 210	if (write)
 211		gup_flags |= FOLL_WRITE;
 212
 213	/*
 214	 * We are doing an exec().  'current' is the process
 215	 * doing the exec and bprm->mm is the new process's mm.
 216	 */
 217	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 218			&page, NULL, NULL);
 219	if (ret <= 0)
 220		return NULL;
 221
 222	if (write)
 223		acct_arg_size(bprm, vma_pages(bprm->vma));
 224
 225	return page;
 226}
 227
 228static void put_arg_page(struct page *page)
 229{
 230	put_page(page);
 231}
 232
 233static void free_arg_pages(struct linux_binprm *bprm)
 234{
 235}
 236
 237static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 238		struct page *page)
 239{
 240	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 241}
 242
 243static int __bprm_mm_init(struct linux_binprm *bprm)
 244{
 245	int err;
 246	struct vm_area_struct *vma = NULL;
 247	struct mm_struct *mm = bprm->mm;
 248
 249	bprm->vma = vma = vm_area_alloc(mm);
 250	if (!vma)
 251		return -ENOMEM;
 252	vma_set_anonymous(vma);
 253
 254	if (down_write_killable(&mm->mmap_sem)) {
 255		err = -EINTR;
 256		goto err_free;
 257	}
 258
 259	/*
 260	 * Place the stack at the largest stack address the architecture
 261	 * supports. Later, we'll move this to an appropriate place. We don't
 262	 * use STACK_TOP because that can depend on attributes which aren't
 263	 * configured yet.
 264	 */
 265	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 266	vma->vm_end = STACK_TOP_MAX;
 267	vma->vm_start = vma->vm_end - PAGE_SIZE;
 268	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 269	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 270
 271	err = insert_vm_struct(mm, vma);
 272	if (err)
 273		goto err;
 274
 275	mm->stack_vm = mm->total_vm = 1;
 276	arch_bprm_mm_init(mm, vma);
 277	up_write(&mm->mmap_sem);
 278	bprm->p = vma->vm_end - sizeof(void *);
 279	return 0;
 280err:
 281	up_write(&mm->mmap_sem);
 282err_free:
 283	bprm->vma = NULL;
 284	vm_area_free(vma);
 285	return err;
 286}
 287
 288static bool valid_arg_len(struct linux_binprm *bprm, long len)
 289{
 290	return len <= MAX_ARG_STRLEN;
 291}
 292
 293#else
 294
 295static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 296{
 297}
 298
 299static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 300		int write)
 301{
 302	struct page *page;
 303
 304	page = bprm->page[pos / PAGE_SIZE];
 305	if (!page && write) {
 306		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 307		if (!page)
 308			return NULL;
 309		bprm->page[pos / PAGE_SIZE] = page;
 310	}
 311
 312	return page;
 313}
 314
 315static void put_arg_page(struct page *page)
 316{
 317}
 318
 319static void free_arg_page(struct linux_binprm *bprm, int i)
 320{
 321	if (bprm->page[i]) {
 322		__free_page(bprm->page[i]);
 323		bprm->page[i] = NULL;
 324	}
 325}
 326
 327static void free_arg_pages(struct linux_binprm *bprm)
 328{
 329	int i;
 330
 331	for (i = 0; i < MAX_ARG_PAGES; i++)
 332		free_arg_page(bprm, i);
 333}
 334
 335static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 336		struct page *page)
 337{
 338}
 339
 340static int __bprm_mm_init(struct linux_binprm *bprm)
 341{
 342	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 343	return 0;
 344}
 345
 346static bool valid_arg_len(struct linux_binprm *bprm, long len)
 347{
 348	return len <= bprm->p;
 349}
 350
 351#endif /* CONFIG_MMU */
 352
 353/*
 354 * Create a new mm_struct and populate it with a temporary stack
 355 * vm_area_struct.  We don't have enough context at this point to set the stack
 356 * flags, permissions, and offset, so we use temporary values.  We'll update
 357 * them later in setup_arg_pages().
 358 */
 359static int bprm_mm_init(struct linux_binprm *bprm)
 360{
 361	int err;
 362	struct mm_struct *mm = NULL;
 363
 364	bprm->mm = mm = mm_alloc();
 365	err = -ENOMEM;
 366	if (!mm)
 367		goto err;
 368
 369	/* Save current stack limit for all calculations made during exec. */
 370	task_lock(current->group_leader);
 371	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 372	task_unlock(current->group_leader);
 373
 374	err = __bprm_mm_init(bprm);
 375	if (err)
 376		goto err;
 377
 378	return 0;
 379
 380err:
 381	if (mm) {
 382		bprm->mm = NULL;
 383		mmdrop(mm);
 384	}
 385
 386	return err;
 387}
 388
 389struct user_arg_ptr {
 390#ifdef CONFIG_COMPAT
 391	bool is_compat;
 392#endif
 393	union {
 394		const char __user *const __user *native;
 395#ifdef CONFIG_COMPAT
 396		const compat_uptr_t __user *compat;
 397#endif
 398	} ptr;
 399};
 400
 401static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 402{
 403	const char __user *native;
 404
 405#ifdef CONFIG_COMPAT
 406	if (unlikely(argv.is_compat)) {
 407		compat_uptr_t compat;
 408
 409		if (get_user(compat, argv.ptr.compat + nr))
 410			return ERR_PTR(-EFAULT);
 411
 412		return compat_ptr(compat);
 413	}
 414#endif
 415
 416	if (get_user(native, argv.ptr.native + nr))
 417		return ERR_PTR(-EFAULT);
 418
 419	return native;
 420}
 421
 422/*
 423 * count() counts the number of strings in array ARGV.
 424 */
 425static int count(struct user_arg_ptr argv, int max)
 426{
 427	int i = 0;
 428
 429	if (argv.ptr.native != NULL) {
 430		for (;;) {
 431			const char __user *p = get_user_arg_ptr(argv, i);
 432
 433			if (!p)
 434				break;
 435
 436			if (IS_ERR(p))
 437				return -EFAULT;
 438
 439			if (i >= max)
 440				return -E2BIG;
 441			++i;
 442
 443			if (fatal_signal_pending(current))
 444				return -ERESTARTNOHAND;
 445			cond_resched();
 446		}
 447	}
 448	return i;
 449}
 450
 451static int prepare_arg_pages(struct linux_binprm *bprm,
 452			struct user_arg_ptr argv, struct user_arg_ptr envp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453{
 454	unsigned long limit, ptr_size;
 455
 456	bprm->argc = count(argv, MAX_ARG_STRINGS);
 457	if (bprm->argc < 0)
 458		return bprm->argc;
 459
 460	bprm->envc = count(envp, MAX_ARG_STRINGS);
 461	if (bprm->envc < 0)
 462		return bprm->envc;
 463
 464	/*
 465	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 466	 * (whichever is smaller) for the argv+env strings.
 467	 * This ensures that:
 468	 *  - the remaining binfmt code will not run out of stack space,
 469	 *  - the program will have a reasonable amount of stack left
 470	 *    to work from.
 471	 */
 472	limit = _STK_LIM / 4 * 3;
 473	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 474	/*
 475	 * We've historically supported up to 32 pages (ARG_MAX)
 476	 * of argument strings even with small stacks
 477	 */
 478	limit = max_t(unsigned long, limit, ARG_MAX);
 479	/*
 480	 * We must account for the size of all the argv and envp pointers to
 481	 * the argv and envp strings, since they will also take up space in
 482	 * the stack. They aren't stored until much later when we can't
 483	 * signal to the parent that the child has run out of stack space.
 484	 * Instead, calculate it here so it's possible to fail gracefully.
 485	 */
 486	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 487	if (limit <= ptr_size)
 488		return -E2BIG;
 489	limit -= ptr_size;
 490
 491	bprm->argmin = bprm->p - limit;
 492	return 0;
 493}
 494
 495/*
 496 * 'copy_strings()' copies argument/environment strings from the old
 497 * processes's memory to the new process's stack.  The call to get_user_pages()
 498 * ensures the destination page is created and not swapped out.
 499 */
 500static int copy_strings(int argc, struct user_arg_ptr argv,
 501			struct linux_binprm *bprm)
 502{
 503	struct page *kmapped_page = NULL;
 504	char *kaddr = NULL;
 505	unsigned long kpos = 0;
 506	int ret;
 507
 508	while (argc-- > 0) {
 509		const char __user *str;
 510		int len;
 511		unsigned long pos;
 512
 513		ret = -EFAULT;
 514		str = get_user_arg_ptr(argv, argc);
 515		if (IS_ERR(str))
 516			goto out;
 517
 518		len = strnlen_user(str, MAX_ARG_STRLEN);
 519		if (!len)
 520			goto out;
 521
 522		ret = -E2BIG;
 523		if (!valid_arg_len(bprm, len))
 524			goto out;
 525
 526		/* We're going to work our way backwords. */
 527		pos = bprm->p;
 528		str += len;
 529		bprm->p -= len;
 530#ifdef CONFIG_MMU
 531		if (bprm->p < bprm->argmin)
 532			goto out;
 533#endif
 534
 535		while (len > 0) {
 536			int offset, bytes_to_copy;
 537
 538			if (fatal_signal_pending(current)) {
 539				ret = -ERESTARTNOHAND;
 540				goto out;
 541			}
 542			cond_resched();
 543
 544			offset = pos % PAGE_SIZE;
 545			if (offset == 0)
 546				offset = PAGE_SIZE;
 547
 548			bytes_to_copy = offset;
 549			if (bytes_to_copy > len)
 550				bytes_to_copy = len;
 551
 552			offset -= bytes_to_copy;
 553			pos -= bytes_to_copy;
 554			str -= bytes_to_copy;
 555			len -= bytes_to_copy;
 556
 557			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 558				struct page *page;
 559
 560				page = get_arg_page(bprm, pos, 1);
 561				if (!page) {
 562					ret = -E2BIG;
 563					goto out;
 564				}
 565
 566				if (kmapped_page) {
 567					flush_kernel_dcache_page(kmapped_page);
 568					kunmap(kmapped_page);
 569					put_arg_page(kmapped_page);
 570				}
 571				kmapped_page = page;
 572				kaddr = kmap(kmapped_page);
 573				kpos = pos & PAGE_MASK;
 574				flush_arg_page(bprm, kpos, kmapped_page);
 575			}
 576			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 577				ret = -EFAULT;
 578				goto out;
 579			}
 580		}
 581	}
 582	ret = 0;
 583out:
 584	if (kmapped_page) {
 585		flush_kernel_dcache_page(kmapped_page);
 586		kunmap(kmapped_page);
 587		put_arg_page(kmapped_page);
 588	}
 589	return ret;
 590}
 591
 592/*
 593 * Like copy_strings, but get argv and its values from kernel memory.
 594 */
 595int copy_strings_kernel(int argc, const char *const *__argv,
 596			struct linux_binprm *bprm)
 597{
 598	int r;
 599	mm_segment_t oldfs = get_fs();
 600	struct user_arg_ptr argv = {
 601		.ptr.native = (const char __user *const  __user *)__argv,
 602	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604	set_fs(KERNEL_DS);
 605	r = copy_strings(argc, argv, bprm);
 606	set_fs(oldfs);
 
 
 
 
 
 
 
 607
 608	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 610EXPORT_SYMBOL(copy_strings_kernel);
 611
 612#ifdef CONFIG_MMU
 613
 614/*
 615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 616 * the binfmt code determines where the new stack should reside, we shift it to
 617 * its final location.  The process proceeds as follows:
 618 *
 619 * 1) Use shift to calculate the new vma endpoints.
 620 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 621 *    arguments passed to subsequent functions are consistent.
 622 * 3) Move vma's page tables to the new range.
 623 * 4) Free up any cleared pgd range.
 624 * 5) Shrink the vma to cover only the new range.
 625 */
 626static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 627{
 628	struct mm_struct *mm = vma->vm_mm;
 629	unsigned long old_start = vma->vm_start;
 630	unsigned long old_end = vma->vm_end;
 631	unsigned long length = old_end - old_start;
 632	unsigned long new_start = old_start - shift;
 633	unsigned long new_end = old_end - shift;
 634	struct mmu_gather tlb;
 635
 636	BUG_ON(new_start > new_end);
 637
 638	/*
 639	 * ensure there are no vmas between where we want to go
 640	 * and where we are
 641	 */
 642	if (vma != find_vma(mm, new_start))
 643		return -EFAULT;
 644
 645	/*
 646	 * cover the whole range: [new_start, old_end)
 647	 */
 648	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 649		return -ENOMEM;
 650
 651	/*
 652	 * move the page tables downwards, on failure we rely on
 653	 * process cleanup to remove whatever mess we made.
 654	 */
 655	if (length != move_page_tables(vma, old_start,
 656				       vma, new_start, length, false))
 657		return -ENOMEM;
 658
 659	lru_add_drain();
 660	tlb_gather_mmu(&tlb, mm, old_start, old_end);
 661	if (new_end > old_start) {
 662		/*
 663		 * when the old and new regions overlap clear from new_end.
 664		 */
 665		free_pgd_range(&tlb, new_end, old_end, new_end,
 666			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 667	} else {
 668		/*
 669		 * otherwise, clean from old_start; this is done to not touch
 670		 * the address space in [new_end, old_start) some architectures
 671		 * have constraints on va-space that make this illegal (IA64) -
 672		 * for the others its just a little faster.
 673		 */
 674		free_pgd_range(&tlb, old_start, old_end, new_end,
 675			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 676	}
 677	tlb_finish_mmu(&tlb, old_start, old_end);
 678
 679	/*
 680	 * Shrink the vma to just the new range.  Always succeeds.
 681	 */
 682	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 683
 684	return 0;
 685}
 686
 687/*
 688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 689 * the stack is optionally relocated, and some extra space is added.
 690 */
 691int setup_arg_pages(struct linux_binprm *bprm,
 692		    unsigned long stack_top,
 693		    int executable_stack)
 694{
 695	unsigned long ret;
 696	unsigned long stack_shift;
 697	struct mm_struct *mm = current->mm;
 698	struct vm_area_struct *vma = bprm->vma;
 699	struct vm_area_struct *prev = NULL;
 700	unsigned long vm_flags;
 701	unsigned long stack_base;
 702	unsigned long stack_size;
 703	unsigned long stack_expand;
 704	unsigned long rlim_stack;
 705
 706#ifdef CONFIG_STACK_GROWSUP
 707	/* Limit stack size */
 708	stack_base = bprm->rlim_stack.rlim_max;
 709	if (stack_base > STACK_SIZE_MAX)
 710		stack_base = STACK_SIZE_MAX;
 711
 712	/* Add space for stack randomization. */
 713	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 714
 715	/* Make sure we didn't let the argument array grow too large. */
 716	if (vma->vm_end - vma->vm_start > stack_base)
 717		return -ENOMEM;
 718
 719	stack_base = PAGE_ALIGN(stack_top - stack_base);
 720
 721	stack_shift = vma->vm_start - stack_base;
 722	mm->arg_start = bprm->p - stack_shift;
 723	bprm->p = vma->vm_end - stack_shift;
 724#else
 725	stack_top = arch_align_stack(stack_top);
 726	stack_top = PAGE_ALIGN(stack_top);
 727
 728	if (unlikely(stack_top < mmap_min_addr) ||
 729	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 730		return -ENOMEM;
 731
 732	stack_shift = vma->vm_end - stack_top;
 733
 734	bprm->p -= stack_shift;
 735	mm->arg_start = bprm->p;
 736#endif
 737
 738	if (bprm->loader)
 739		bprm->loader -= stack_shift;
 740	bprm->exec -= stack_shift;
 741
 742	if (down_write_killable(&mm->mmap_sem))
 743		return -EINTR;
 744
 745	vm_flags = VM_STACK_FLAGS;
 746
 747	/*
 748	 * Adjust stack execute permissions; explicitly enable for
 749	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 750	 * (arch default) otherwise.
 751	 */
 752	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 753		vm_flags |= VM_EXEC;
 754	else if (executable_stack == EXSTACK_DISABLE_X)
 755		vm_flags &= ~VM_EXEC;
 756	vm_flags |= mm->def_flags;
 757	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 758
 759	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 760			vm_flags);
 761	if (ret)
 762		goto out_unlock;
 763	BUG_ON(prev != vma);
 764
 
 
 
 
 
 765	/* Move stack pages down in memory. */
 766	if (stack_shift) {
 767		ret = shift_arg_pages(vma, stack_shift);
 768		if (ret)
 769			goto out_unlock;
 770	}
 771
 772	/* mprotect_fixup is overkill to remove the temporary stack flags */
 773	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 774
 775	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 776	stack_size = vma->vm_end - vma->vm_start;
 777	/*
 778	 * Align this down to a page boundary as expand_stack
 779	 * will align it up.
 780	 */
 781	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 782#ifdef CONFIG_STACK_GROWSUP
 783	if (stack_size + stack_expand > rlim_stack)
 784		stack_base = vma->vm_start + rlim_stack;
 785	else
 786		stack_base = vma->vm_end + stack_expand;
 787#else
 788	if (stack_size + stack_expand > rlim_stack)
 789		stack_base = vma->vm_end - rlim_stack;
 790	else
 791		stack_base = vma->vm_start - stack_expand;
 792#endif
 793	current->mm->start_stack = bprm->p;
 794	ret = expand_stack(vma, stack_base);
 795	if (ret)
 796		ret = -EFAULT;
 797
 798out_unlock:
 799	up_write(&mm->mmap_sem);
 800	return ret;
 801}
 802EXPORT_SYMBOL(setup_arg_pages);
 803
 804#else
 805
 806/*
 807 * Transfer the program arguments and environment from the holding pages
 808 * onto the stack. The provided stack pointer is adjusted accordingly.
 809 */
 810int transfer_args_to_stack(struct linux_binprm *bprm,
 811			   unsigned long *sp_location)
 812{
 813	unsigned long index, stop, sp;
 814	int ret = 0;
 815
 816	stop = bprm->p >> PAGE_SHIFT;
 817	sp = *sp_location;
 818
 819	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 820		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 821		char *src = kmap(bprm->page[index]) + offset;
 822		sp -= PAGE_SIZE - offset;
 823		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 824			ret = -EFAULT;
 825		kunmap(bprm->page[index]);
 826		if (ret)
 827			goto out;
 828	}
 829
 830	*sp_location = sp;
 831
 832out:
 833	return ret;
 834}
 835EXPORT_SYMBOL(transfer_args_to_stack);
 836
 837#endif /* CONFIG_MMU */
 838
 839static struct file *do_open_execat(int fd, struct filename *name, int flags)
 840{
 841	struct file *file;
 842	int err;
 843	struct open_flags open_exec_flags = {
 844		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 845		.acc_mode = MAY_EXEC,
 846		.intent = LOOKUP_OPEN,
 847		.lookup_flags = LOOKUP_FOLLOW,
 848	};
 849
 850	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 851		return ERR_PTR(-EINVAL);
 852	if (flags & AT_SYMLINK_NOFOLLOW)
 853		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 854	if (flags & AT_EMPTY_PATH)
 855		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 856
 857	file = do_filp_open(fd, name, &open_exec_flags);
 858	if (IS_ERR(file))
 859		goto out;
 860
 
 
 
 
 
 861	err = -EACCES;
 862	if (!S_ISREG(file_inode(file)->i_mode))
 863		goto exit;
 864
 865	if (path_noexec(&file->f_path))
 866		goto exit;
 867
 868	err = deny_write_access(file);
 869	if (err)
 870		goto exit;
 871
 872	if (name->name[0] != '\0')
 873		fsnotify_open(file);
 874
 875out:
 876	return file;
 877
 878exit:
 879	fput(file);
 880	return ERR_PTR(err);
 881}
 882
 883struct file *open_exec(const char *name)
 884{
 885	struct filename *filename = getname_kernel(name);
 886	struct file *f = ERR_CAST(filename);
 887
 888	if (!IS_ERR(filename)) {
 889		f = do_open_execat(AT_FDCWD, filename, 0);
 890		putname(filename);
 891	}
 892	return f;
 893}
 894EXPORT_SYMBOL(open_exec);
 895
 896int kernel_read_file(struct file *file, void **buf, loff_t *size,
 897		     loff_t max_size, enum kernel_read_file_id id)
 898{
 899	loff_t i_size, pos;
 900	ssize_t bytes = 0;
 901	int ret;
 902
 903	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 904		return -EINVAL;
 905
 906	ret = deny_write_access(file);
 907	if (ret)
 908		return ret;
 909
 910	ret = security_kernel_read_file(file, id);
 911	if (ret)
 912		goto out;
 913
 914	i_size = i_size_read(file_inode(file));
 915	if (i_size <= 0) {
 916		ret = -EINVAL;
 917		goto out;
 918	}
 919	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
 920		ret = -EFBIG;
 921		goto out;
 922	}
 923
 924	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 925		*buf = vmalloc(i_size);
 926	if (!*buf) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	pos = 0;
 932	while (pos < i_size) {
 933		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
 934		if (bytes < 0) {
 935			ret = bytes;
 936			goto out_free;
 937		}
 938
 939		if (bytes == 0)
 940			break;
 941	}
 942
 943	if (pos != i_size) {
 944		ret = -EIO;
 945		goto out_free;
 946	}
 947
 948	ret = security_kernel_post_read_file(file, *buf, i_size, id);
 949	if (!ret)
 950		*size = pos;
 951
 952out_free:
 953	if (ret < 0) {
 954		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 955			vfree(*buf);
 956			*buf = NULL;
 957		}
 958	}
 959
 960out:
 961	allow_write_access(file);
 962	return ret;
 963}
 964EXPORT_SYMBOL_GPL(kernel_read_file);
 965
 966int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
 967			       loff_t max_size, enum kernel_read_file_id id)
 968{
 969	struct file *file;
 970	int ret;
 971
 972	if (!path || !*path)
 973		return -EINVAL;
 974
 975	file = filp_open(path, O_RDONLY, 0);
 976	if (IS_ERR(file))
 977		return PTR_ERR(file);
 978
 979	ret = kernel_read_file(file, buf, size, max_size, id);
 980	fput(file);
 981	return ret;
 982}
 983EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 986			     enum kernel_read_file_id id)
 987{
 988	struct fd f = fdget(fd);
 989	int ret = -EBADF;
 990
 991	if (!f.file)
 992		goto out;
 993
 994	ret = kernel_read_file(f.file, buf, size, max_size, id);
 995out:
 996	fdput(f);
 997	return ret;
 998}
 999EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1000
 
 
1001ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1002{
1003	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1004	if (res > 0)
1005		flush_icache_range(addr, addr + len);
1006	return res;
1007}
1008EXPORT_SYMBOL(read_code);
 
1009
 
 
 
 
 
1010static int exec_mmap(struct mm_struct *mm)
1011{
1012	struct task_struct *tsk;
1013	struct mm_struct *old_mm, *active_mm;
 
1014
1015	/* Notify parent that we're no longer interested in the old VM */
1016	tsk = current;
1017	old_mm = current->mm;
1018	mm_release(tsk, old_mm);
 
 
 
 
 
 
1019
1020	if (old_mm) {
1021		sync_mm_rss(old_mm);
1022		/*
1023		 * Make sure that if there is a core dump in progress
1024		 * for the old mm, we get out and die instead of going
1025		 * through with the exec.  We must hold mmap_sem around
1026		 * checking core_state and changing tsk->mm.
1027		 */
1028		down_read(&old_mm->mmap_sem);
1029		if (unlikely(old_mm->core_state)) {
1030			up_read(&old_mm->mmap_sem);
 
1031			return -EINTR;
1032		}
1033	}
 
1034	task_lock(tsk);
1035	active_mm = tsk->active_mm;
1036	membarrier_exec_mmap(mm);
1037	tsk->mm = mm;
1038	tsk->active_mm = mm;
1039	activate_mm(active_mm, mm);
1040	tsk->mm->vmacache_seqnum = 0;
1041	vmacache_flush(tsk);
1042	task_unlock(tsk);
1043	if (old_mm) {
1044		up_read(&old_mm->mmap_sem);
1045		BUG_ON(active_mm != old_mm);
1046		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1047		mm_update_next_owner(old_mm);
1048		mmput(old_mm);
1049		return 0;
1050	}
1051	mmdrop(active_mm);
1052	return 0;
1053}
1054
1055/*
1056 * This function makes sure the current process has its own signal table,
1057 * so that flush_signal_handlers can later reset the handlers without
1058 * disturbing other processes.  (Other processes might share the signal
1059 * table via the CLONE_SIGHAND option to clone().)
1060 */
1061static int de_thread(struct task_struct *tsk)
1062{
1063	struct signal_struct *sig = tsk->signal;
1064	struct sighand_struct *oldsighand = tsk->sighand;
1065	spinlock_t *lock = &oldsighand->siglock;
1066
1067	if (thread_group_empty(tsk))
1068		goto no_thread_group;
1069
1070	/*
1071	 * Kill all other threads in the thread group.
1072	 */
1073	spin_lock_irq(lock);
1074	if (signal_group_exit(sig)) {
1075		/*
1076		 * Another group action in progress, just
1077		 * return so that the signal is processed.
1078		 */
1079		spin_unlock_irq(lock);
1080		return -EAGAIN;
1081	}
1082
1083	sig->group_exit_task = tsk;
1084	sig->notify_count = zap_other_threads(tsk);
1085	if (!thread_group_leader(tsk))
1086		sig->notify_count--;
1087
1088	while (sig->notify_count) {
1089		__set_current_state(TASK_KILLABLE);
1090		spin_unlock_irq(lock);
1091		schedule();
1092		if (__fatal_signal_pending(tsk))
1093			goto killed;
1094		spin_lock_irq(lock);
1095	}
1096	spin_unlock_irq(lock);
1097
1098	/*
1099	 * At this point all other threads have exited, all we have to
1100	 * do is to wait for the thread group leader to become inactive,
1101	 * and to assume its PID:
1102	 */
1103	if (!thread_group_leader(tsk)) {
1104		struct task_struct *leader = tsk->group_leader;
1105
1106		for (;;) {
1107			cgroup_threadgroup_change_begin(tsk);
1108			write_lock_irq(&tasklist_lock);
1109			/*
1110			 * Do this under tasklist_lock to ensure that
1111			 * exit_notify() can't miss ->group_exit_task
1112			 */
1113			sig->notify_count = -1;
1114			if (likely(leader->exit_state))
1115				break;
1116			__set_current_state(TASK_KILLABLE);
1117			write_unlock_irq(&tasklist_lock);
1118			cgroup_threadgroup_change_end(tsk);
1119			schedule();
1120			if (__fatal_signal_pending(tsk))
1121				goto killed;
1122		}
1123
1124		/*
1125		 * The only record we have of the real-time age of a
1126		 * process, regardless of execs it's done, is start_time.
1127		 * All the past CPU time is accumulated in signal_struct
1128		 * from sister threads now dead.  But in this non-leader
1129		 * exec, nothing survives from the original leader thread,
1130		 * whose birth marks the true age of this process now.
1131		 * When we take on its identity by switching to its PID, we
1132		 * also take its birthdate (always earlier than our own).
1133		 */
1134		tsk->start_time = leader->start_time;
1135		tsk->real_start_time = leader->real_start_time;
1136
1137		BUG_ON(!same_thread_group(leader, tsk));
1138		BUG_ON(has_group_leader_pid(tsk));
1139		/*
1140		 * An exec() starts a new thread group with the
1141		 * TGID of the previous thread group. Rehash the
1142		 * two threads with a switched PID, and release
1143		 * the former thread group leader:
1144		 */
1145
1146		/* Become a process group leader with the old leader's pid.
1147		 * The old leader becomes a thread of the this thread group.
1148		 * Note: The old leader also uses this pid until release_task
1149		 *       is called.  Odd but simple and correct.
1150		 */
1151		tsk->pid = leader->pid;
1152		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1153		transfer_pid(leader, tsk, PIDTYPE_TGID);
1154		transfer_pid(leader, tsk, PIDTYPE_PGID);
1155		transfer_pid(leader, tsk, PIDTYPE_SID);
1156
1157		list_replace_rcu(&leader->tasks, &tsk->tasks);
1158		list_replace_init(&leader->sibling, &tsk->sibling);
1159
1160		tsk->group_leader = tsk;
1161		leader->group_leader = tsk;
1162
1163		tsk->exit_signal = SIGCHLD;
1164		leader->exit_signal = -1;
1165
1166		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1167		leader->exit_state = EXIT_DEAD;
1168
1169		/*
1170		 * We are going to release_task()->ptrace_unlink() silently,
1171		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1172		 * the tracer wont't block again waiting for this thread.
1173		 */
1174		if (unlikely(leader->ptrace))
1175			__wake_up_parent(leader, leader->parent);
1176		write_unlock_irq(&tasklist_lock);
1177		cgroup_threadgroup_change_end(tsk);
1178
1179		release_task(leader);
1180	}
1181
1182	sig->group_exit_task = NULL;
1183	sig->notify_count = 0;
1184
1185no_thread_group:
1186	/* we have changed execution domain */
1187	tsk->exit_signal = SIGCHLD;
1188
1189#ifdef CONFIG_POSIX_TIMERS
1190	exit_itimers(sig);
1191	flush_itimer_signals();
1192#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193
1194	if (refcount_read(&oldsighand->count) != 1) {
1195		struct sighand_struct *newsighand;
1196		/*
1197		 * This ->sighand is shared with the CLONE_SIGHAND
1198		 * but not CLONE_THREAD task, switch to the new one.
1199		 */
1200		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201		if (!newsighand)
1202			return -ENOMEM;
1203
1204		refcount_set(&newsighand->count, 1);
1205		memcpy(newsighand->action, oldsighand->action,
1206		       sizeof(newsighand->action));
1207
1208		write_lock_irq(&tasklist_lock);
1209		spin_lock(&oldsighand->siglock);
1210		rcu_assign_pointer(tsk->sighand, newsighand);
1211		spin_unlock(&oldsighand->siglock);
1212		write_unlock_irq(&tasklist_lock);
1213
1214		__cleanup_sighand(oldsighand);
1215	}
1216
1217	BUG_ON(!thread_group_leader(tsk));
1218	return 0;
1219
1220killed:
1221	/* protects against exit_notify() and __exit_signal() */
1222	read_lock(&tasklist_lock);
1223	sig->group_exit_task = NULL;
1224	sig->notify_count = 0;
1225	read_unlock(&tasklist_lock);
1226	return -EAGAIN;
1227}
1228
1229char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1230{
1231	task_lock(tsk);
1232	strncpy(buf, tsk->comm, buf_size);
1233	task_unlock(tsk);
1234	return buf;
1235}
1236EXPORT_SYMBOL_GPL(__get_task_comm);
1237
1238/*
1239 * These functions flushes out all traces of the currently running executable
1240 * so that a new one can be started
1241 */
1242
1243void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1244{
1245	task_lock(tsk);
1246	trace_task_rename(tsk, buf);
1247	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1248	task_unlock(tsk);
1249	perf_event_comm(tsk, exec);
1250}
1251
1252/*
1253 * Calling this is the point of no return. None of the failures will be
1254 * seen by userspace since either the process is already taking a fatal
1255 * signal (via de_thread() or coredump), or will have SEGV raised
1256 * (after exec_mmap()) by search_binary_handlers (see below).
1257 */
1258int flush_old_exec(struct linux_binprm * bprm)
1259{
 
1260	int retval;
1261
 
 
 
 
 
1262	/*
1263	 * Make sure we have a private signal table and that
1264	 * we are unassociated from the previous thread group.
1265	 */
1266	retval = de_thread(current);
 
 
 
 
 
1267	if (retval)
1268		goto out;
1269
1270	/*
1271	 * Must be called _before_ exec_mmap() as bprm->mm is
1272	 * not visibile until then. This also enables the update
1273	 * to be lockless.
1274	 */
1275	set_mm_exe_file(bprm->mm, bprm->file);
1276
 
 
 
 
 
1277	/*
1278	 * Release all of the old mmap stuff
1279	 */
1280	acct_arg_size(bprm, 0);
1281	retval = exec_mmap(bprm->mm);
1282	if (retval)
1283		goto out;
1284
 
 
 
 
 
 
 
1285	/*
1286	 * After clearing bprm->mm (to mark that current is using the
1287	 * prepared mm now), we have nothing left of the original
1288	 * process. If anything from here on returns an error, the check
1289	 * in search_binary_handler() will SEGV current.
1290	 */
1291	bprm->mm = NULL;
 
 
 
 
 
 
 
 
1292
1293	set_fs(USER_DS);
1294	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1295					PF_NOFREEZE | PF_NO_SETAFFINITY);
1296	flush_thread();
1297	current->personality &= ~bprm->per_clear;
1298
1299	/*
1300	 * We have to apply CLOEXEC before we change whether the process is
1301	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1302	 * trying to access the should-be-closed file descriptors of a process
1303	 * undergoing exec(2).
1304	 */
1305	do_close_on_exec(current->files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	return 0;
1307
 
 
1308out:
1309	return retval;
1310}
1311EXPORT_SYMBOL(flush_old_exec);
1312
1313void would_dump(struct linux_binprm *bprm, struct file *file)
1314{
1315	struct inode *inode = file_inode(file);
1316	if (inode_permission(inode, MAY_READ) < 0) {
1317		struct user_namespace *old, *user_ns;
1318		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1319
1320		/* Ensure mm->user_ns contains the executable */
1321		user_ns = old = bprm->mm->user_ns;
1322		while ((user_ns != &init_user_ns) &&
1323		       !privileged_wrt_inode_uidgid(user_ns, inode))
1324			user_ns = user_ns->parent;
1325
1326		if (old != user_ns) {
1327			bprm->mm->user_ns = get_user_ns(user_ns);
1328			put_user_ns(old);
1329		}
1330	}
1331}
1332EXPORT_SYMBOL(would_dump);
1333
1334void setup_new_exec(struct linux_binprm * bprm)
1335{
1336	/*
1337	 * Once here, prepare_binrpm() will not be called any more, so
1338	 * the final state of setuid/setgid/fscaps can be merged into the
1339	 * secureexec flag.
1340	 */
1341	bprm->secureexec |= bprm->cap_elevated;
1342
1343	if (bprm->secureexec) {
1344		/* Make sure parent cannot signal privileged process. */
1345		current->pdeath_signal = 0;
1346
1347		/*
1348		 * For secureexec, reset the stack limit to sane default to
1349		 * avoid bad behavior from the prior rlimits. This has to
1350		 * happen before arch_pick_mmap_layout(), which examines
1351		 * RLIMIT_STACK, but after the point of no return to avoid
1352		 * needing to clean up the change on failure.
1353		 */
1354		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1355			bprm->rlim_stack.rlim_cur = _STK_LIM;
1356	}
1357
1358	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1359
1360	current->sas_ss_sp = current->sas_ss_size = 0;
1361
1362	/*
1363	 * Figure out dumpability. Note that this checking only of current
1364	 * is wrong, but userspace depends on it. This should be testing
1365	 * bprm->secureexec instead.
1366	 */
1367	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1368	    !(uid_eq(current_euid(), current_uid()) &&
1369	      gid_eq(current_egid(), current_gid())))
1370		set_dumpable(current->mm, suid_dumpable);
1371	else
1372		set_dumpable(current->mm, SUID_DUMP_USER);
1373
1374	arch_setup_new_exec();
1375	perf_event_exec();
1376	__set_task_comm(current, kbasename(bprm->filename), true);
1377
1378	/* Set the new mm task size. We have to do that late because it may
1379	 * depend on TIF_32BIT which is only updated in flush_thread() on
1380	 * some architectures like powerpc
1381	 */
1382	current->mm->task_size = TASK_SIZE;
1383
1384	/* An exec changes our domain. We are no longer part of the thread
1385	   group */
1386	current->self_exec_id++;
1387	flush_signal_handlers(current, 0);
1388}
1389EXPORT_SYMBOL(setup_new_exec);
1390
1391/* Runs immediately before start_thread() takes over. */
1392void finalize_exec(struct linux_binprm *bprm)
1393{
1394	/* Store any stack rlimit changes before starting thread. */
1395	task_lock(current->group_leader);
1396	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1397	task_unlock(current->group_leader);
1398}
1399EXPORT_SYMBOL(finalize_exec);
1400
1401/*
1402 * Prepare credentials and lock ->cred_guard_mutex.
1403 * install_exec_creds() commits the new creds and drops the lock.
1404 * Or, if exec fails before, free_bprm() should release ->cred and
1405 * and unlock.
1406 */
1407static int prepare_bprm_creds(struct linux_binprm *bprm)
1408{
1409	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1410		return -ERESTARTNOINTR;
1411
1412	bprm->cred = prepare_exec_creds();
1413	if (likely(bprm->cred))
1414		return 0;
1415
1416	mutex_unlock(&current->signal->cred_guard_mutex);
1417	return -ENOMEM;
1418}
1419
1420static void free_bprm(struct linux_binprm *bprm)
1421{
 
 
 
 
1422	free_arg_pages(bprm);
1423	if (bprm->cred) {
1424		mutex_unlock(&current->signal->cred_guard_mutex);
1425		abort_creds(bprm->cred);
1426	}
1427	if (bprm->file) {
1428		allow_write_access(bprm->file);
1429		fput(bprm->file);
1430	}
 
 
1431	/* If a binfmt changed the interp, free it. */
1432	if (bprm->interp != bprm->filename)
1433		kfree(bprm->interp);
 
1434	kfree(bprm);
1435}
1436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1438{
1439	/* If a binfmt changed the interp, free it first. */
1440	if (bprm->interp != bprm->filename)
1441		kfree(bprm->interp);
1442	bprm->interp = kstrdup(interp, GFP_KERNEL);
1443	if (!bprm->interp)
1444		return -ENOMEM;
1445	return 0;
1446}
1447EXPORT_SYMBOL(bprm_change_interp);
1448
1449/*
1450 * install the new credentials for this executable
1451 */
1452void install_exec_creds(struct linux_binprm *bprm)
1453{
1454	security_bprm_committing_creds(bprm);
1455
1456	commit_creds(bprm->cred);
1457	bprm->cred = NULL;
1458
1459	/*
1460	 * Disable monitoring for regular users
1461	 * when executing setuid binaries. Must
1462	 * wait until new credentials are committed
1463	 * by commit_creds() above
1464	 */
1465	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1466		perf_event_exit_task(current);
1467	/*
1468	 * cred_guard_mutex must be held at least to this point to prevent
1469	 * ptrace_attach() from altering our determination of the task's
1470	 * credentials; any time after this it may be unlocked.
1471	 */
1472	security_bprm_committed_creds(bprm);
1473	mutex_unlock(&current->signal->cred_guard_mutex);
1474}
1475EXPORT_SYMBOL(install_exec_creds);
1476
1477/*
1478 * determine how safe it is to execute the proposed program
1479 * - the caller must hold ->cred_guard_mutex to protect against
1480 *   PTRACE_ATTACH or seccomp thread-sync
1481 */
1482static void check_unsafe_exec(struct linux_binprm *bprm)
1483{
1484	struct task_struct *p = current, *t;
1485	unsigned n_fs;
1486
1487	if (p->ptrace)
1488		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1489
1490	/*
1491	 * This isn't strictly necessary, but it makes it harder for LSMs to
1492	 * mess up.
1493	 */
1494	if (task_no_new_privs(current))
1495		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1496
1497	t = p;
1498	n_fs = 1;
1499	spin_lock(&p->fs->lock);
1500	rcu_read_lock();
1501	while_each_thread(p, t) {
1502		if (t->fs == p->fs)
1503			n_fs++;
1504	}
1505	rcu_read_unlock();
1506
1507	if (p->fs->users > n_fs)
1508		bprm->unsafe |= LSM_UNSAFE_SHARE;
1509	else
1510		p->fs->in_exec = 1;
1511	spin_unlock(&p->fs->lock);
1512}
1513
1514static void bprm_fill_uid(struct linux_binprm *bprm)
1515{
 
1516	struct inode *inode;
1517	unsigned int mode;
1518	kuid_t uid;
1519	kgid_t gid;
1520
1521	/*
1522	 * Since this can be called multiple times (via prepare_binprm),
1523	 * we must clear any previous work done when setting set[ug]id
1524	 * bits from any earlier bprm->file uses (for example when run
1525	 * first for a setuid script then again for its interpreter).
1526	 */
1527	bprm->cred->euid = current_euid();
1528	bprm->cred->egid = current_egid();
1529
1530	if (!mnt_may_suid(bprm->file->f_path.mnt))
1531		return;
1532
1533	if (task_no_new_privs(current))
1534		return;
1535
1536	inode = bprm->file->f_path.dentry->d_inode;
1537	mode = READ_ONCE(inode->i_mode);
1538	if (!(mode & (S_ISUID|S_ISGID)))
1539		return;
1540
1541	/* Be careful if suid/sgid is set */
1542	inode_lock(inode);
1543
1544	/* reload atomically mode/uid/gid now that lock held */
1545	mode = inode->i_mode;
1546	uid = inode->i_uid;
1547	gid = inode->i_gid;
1548	inode_unlock(inode);
1549
1550	/* We ignore suid/sgid if there are no mappings for them in the ns */
1551	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1552		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1553		return;
1554
1555	if (mode & S_ISUID) {
1556		bprm->per_clear |= PER_CLEAR_ON_SETID;
1557		bprm->cred->euid = uid;
1558	}
1559
1560	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1561		bprm->per_clear |= PER_CLEAR_ON_SETID;
1562		bprm->cred->egid = gid;
1563	}
1564}
1565
1566/*
 
 
 
 
 
 
 
 
 
 
 
 
1567 * Fill the binprm structure from the inode.
1568 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1569 *
1570 * This may be called multiple times for binary chains (scripts for example).
1571 */
1572int prepare_binprm(struct linux_binprm *bprm)
1573{
1574	int retval;
1575	loff_t pos = 0;
1576
1577	bprm_fill_uid(bprm);
1578
1579	/* fill in binprm security blob */
1580	retval = security_bprm_set_creds(bprm);
1581	if (retval)
1582		return retval;
1583	bprm->called_set_creds = 1;
1584
1585	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1586	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1587}
1588
1589EXPORT_SYMBOL(prepare_binprm);
1590
1591/*
1592 * Arguments are '\0' separated strings found at the location bprm->p
1593 * points to; chop off the first by relocating brpm->p to right after
1594 * the first '\0' encountered.
1595 */
1596int remove_arg_zero(struct linux_binprm *bprm)
1597{
1598	int ret = 0;
1599	unsigned long offset;
1600	char *kaddr;
1601	struct page *page;
1602
1603	if (!bprm->argc)
1604		return 0;
1605
1606	do {
1607		offset = bprm->p & ~PAGE_MASK;
1608		page = get_arg_page(bprm, bprm->p, 0);
1609		if (!page) {
1610			ret = -EFAULT;
1611			goto out;
1612		}
1613		kaddr = kmap_atomic(page);
1614
1615		for (; offset < PAGE_SIZE && kaddr[offset];
1616				offset++, bprm->p++)
1617			;
1618
1619		kunmap_atomic(kaddr);
1620		put_arg_page(page);
1621	} while (offset == PAGE_SIZE);
1622
1623	bprm->p++;
1624	bprm->argc--;
1625	ret = 0;
1626
1627out:
1628	return ret;
1629}
1630EXPORT_SYMBOL(remove_arg_zero);
1631
1632#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1633/*
1634 * cycle the list of binary formats handler, until one recognizes the image
1635 */
1636int search_binary_handler(struct linux_binprm *bprm)
1637{
1638	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1639	struct linux_binfmt *fmt;
1640	int retval;
1641
1642	/* This allows 4 levels of binfmt rewrites before failing hard. */
1643	if (bprm->recursion_depth > 5)
1644		return -ELOOP;
1645
1646	retval = security_bprm_check(bprm);
1647	if (retval)
1648		return retval;
1649
1650	retval = -ENOENT;
1651 retry:
1652	read_lock(&binfmt_lock);
1653	list_for_each_entry(fmt, &formats, lh) {
1654		if (!try_module_get(fmt->module))
1655			continue;
1656		read_unlock(&binfmt_lock);
1657
1658		bprm->recursion_depth++;
1659		retval = fmt->load_binary(bprm);
1660		bprm->recursion_depth--;
1661
1662		read_lock(&binfmt_lock);
1663		put_binfmt(fmt);
1664		if (retval < 0 && !bprm->mm) {
1665			/* we got to flush_old_exec() and failed after it */
1666			read_unlock(&binfmt_lock);
1667			force_sigsegv(SIGSEGV);
1668			return retval;
1669		}
1670		if (retval != -ENOEXEC || !bprm->file) {
1671			read_unlock(&binfmt_lock);
1672			return retval;
1673		}
1674	}
1675	read_unlock(&binfmt_lock);
1676
1677	if (need_retry) {
1678		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1679		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1680			return retval;
1681		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1682			return retval;
1683		need_retry = false;
1684		goto retry;
1685	}
1686
1687	return retval;
1688}
1689EXPORT_SYMBOL(search_binary_handler);
1690
1691static int exec_binprm(struct linux_binprm *bprm)
1692{
1693	pid_t old_pid, old_vpid;
1694	int ret;
1695
1696	/* Need to fetch pid before load_binary changes it */
1697	old_pid = current->pid;
1698	rcu_read_lock();
1699	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1700	rcu_read_unlock();
1701
1702	ret = search_binary_handler(bprm);
1703	if (ret >= 0) {
1704		audit_bprm(bprm);
1705		trace_sched_process_exec(current, old_pid, bprm);
1706		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1707		proc_exec_connector(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708	}
1709
1710	return ret;
 
 
 
 
1711}
1712
1713/*
1714 * sys_execve() executes a new program.
1715 */
1716static int __do_execve_file(int fd, struct filename *filename,
1717			    struct user_arg_ptr argv,
1718			    struct user_arg_ptr envp,
1719			    int flags, struct file *file)
1720{
1721	char *pathbuf = NULL;
1722	struct linux_binprm *bprm;
1723	struct files_struct *displaced;
1724	int retval;
1725
1726	if (IS_ERR(filename))
1727		return PTR_ERR(filename);
1728
1729	/*
1730	 * We move the actual failure in case of RLIMIT_NPROC excess from
1731	 * set*uid() to execve() because too many poorly written programs
1732	 * don't check setuid() return code.  Here we additionally recheck
1733	 * whether NPROC limit is still exceeded.
1734	 */
1735	if ((current->flags & PF_NPROC_EXCEEDED) &&
1736	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1737		retval = -EAGAIN;
1738		goto out_ret;
1739	}
1740
1741	/* We're below the limit (still or again), so we don't want to make
1742	 * further execve() calls fail. */
1743	current->flags &= ~PF_NPROC_EXCEEDED;
1744
1745	retval = unshare_files(&displaced);
1746	if (retval)
1747		goto out_ret;
1748
1749	retval = -ENOMEM;
1750	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1751	if (!bprm)
1752		goto out_files;
1753
1754	retval = prepare_bprm_creds(bprm);
1755	if (retval)
1756		goto out_free;
1757
1758	check_unsafe_exec(bprm);
1759	current->in_execve = 1;
1760
1761	if (!file)
1762		file = do_open_execat(fd, filename, flags);
1763	retval = PTR_ERR(file);
1764	if (IS_ERR(file))
1765		goto out_unmark;
1766
1767	sched_exec();
1768
1769	bprm->file = file;
1770	if (!filename) {
1771		bprm->filename = "none";
1772	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1773		bprm->filename = filename->name;
1774	} else {
1775		if (filename->name[0] == '\0')
1776			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1777		else
1778			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1779					    fd, filename->name);
1780		if (!pathbuf) {
1781			retval = -ENOMEM;
1782			goto out_unmark;
1783		}
1784		/*
1785		 * Record that a name derived from an O_CLOEXEC fd will be
1786		 * inaccessible after exec. Relies on having exclusive access to
1787		 * current->files (due to unshare_files above).
1788		 */
1789		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1790			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1791		bprm->filename = pathbuf;
1792	}
1793	bprm->interp = bprm->filename;
1794
1795	retval = bprm_mm_init(bprm);
 
1796	if (retval)
1797		goto out_unmark;
1798
1799	retval = prepare_arg_pages(bprm, argv, envp);
1800	if (retval < 0)
1801		goto out;
1802
1803	retval = prepare_binprm(bprm);
1804	if (retval < 0)
1805		goto out;
1806
1807	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1808	if (retval < 0)
1809		goto out;
1810
1811	bprm->exec = bprm->p;
1812	retval = copy_strings(bprm->envc, envp, bprm);
1813	if (retval < 0)
1814		goto out;
1815
1816	retval = copy_strings(bprm->argc, argv, bprm);
1817	if (retval < 0)
1818		goto out;
1819
1820	would_dump(bprm, bprm->file);
1821
1822	retval = exec_binprm(bprm);
1823	if (retval < 0)
1824		goto out;
1825
1826	/* execve succeeded */
1827	current->fs->in_exec = 0;
1828	current->in_execve = 0;
1829	rseq_execve(current);
1830	acct_update_integrals(current);
1831	task_numa_free(current, false);
1832	free_bprm(bprm);
1833	kfree(pathbuf);
1834	if (filename)
1835		putname(filename);
1836	if (displaced)
1837		put_files_struct(displaced);
1838	return retval;
1839
1840out:
1841	if (bprm->mm) {
1842		acct_arg_size(bprm, 0);
1843		mmput(bprm->mm);
1844	}
 
 
 
 
1845
1846out_unmark:
1847	current->fs->in_exec = 0;
1848	current->in_execve = 0;
1849
1850out_free:
1851	free_bprm(bprm);
1852	kfree(pathbuf);
1853
1854out_files:
1855	if (displaced)
1856		reset_files_struct(displaced);
1857out_ret:
1858	if (filename)
1859		putname(filename);
1860	return retval;
1861}
1862
1863static int do_execveat_common(int fd, struct filename *filename,
1864			      struct user_arg_ptr argv,
1865			      struct user_arg_ptr envp,
1866			      int flags)
1867{
1868	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869}
1870
1871int do_execve_file(struct file *file, void *__argv, void *__envp)
 
1872{
1873	struct user_arg_ptr argv = { .ptr.native = __argv };
1874	struct user_arg_ptr envp = { .ptr.native = __envp };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875
1876	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
 
 
 
 
 
1877}
1878
1879int do_execve(struct filename *filename,
1880	const char __user *const __user *__argv,
1881	const char __user *const __user *__envp)
1882{
1883	struct user_arg_ptr argv = { .ptr.native = __argv };
1884	struct user_arg_ptr envp = { .ptr.native = __envp };
1885	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1886}
1887
1888int do_execveat(int fd, struct filename *filename,
1889		const char __user *const __user *__argv,
1890		const char __user *const __user *__envp,
1891		int flags)
1892{
1893	struct user_arg_ptr argv = { .ptr.native = __argv };
1894	struct user_arg_ptr envp = { .ptr.native = __envp };
1895
1896	return do_execveat_common(fd, filename, argv, envp, flags);
1897}
1898
1899#ifdef CONFIG_COMPAT
1900static int compat_do_execve(struct filename *filename,
1901	const compat_uptr_t __user *__argv,
1902	const compat_uptr_t __user *__envp)
1903{
1904	struct user_arg_ptr argv = {
1905		.is_compat = true,
1906		.ptr.compat = __argv,
1907	};
1908	struct user_arg_ptr envp = {
1909		.is_compat = true,
1910		.ptr.compat = __envp,
1911	};
1912	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1913}
1914
1915static int compat_do_execveat(int fd, struct filename *filename,
1916			      const compat_uptr_t __user *__argv,
1917			      const compat_uptr_t __user *__envp,
1918			      int flags)
1919{
1920	struct user_arg_ptr argv = {
1921		.is_compat = true,
1922		.ptr.compat = __argv,
1923	};
1924	struct user_arg_ptr envp = {
1925		.is_compat = true,
1926		.ptr.compat = __envp,
1927	};
1928	return do_execveat_common(fd, filename, argv, envp, flags);
1929}
1930#endif
1931
1932void set_binfmt(struct linux_binfmt *new)
1933{
1934	struct mm_struct *mm = current->mm;
1935
1936	if (mm->binfmt)
1937		module_put(mm->binfmt->module);
1938
1939	mm->binfmt = new;
1940	if (new)
1941		__module_get(new->module);
1942}
1943EXPORT_SYMBOL(set_binfmt);
1944
1945/*
1946 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1947 */
1948void set_dumpable(struct mm_struct *mm, int value)
1949{
1950	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951		return;
1952
1953	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1954}
1955
1956SYSCALL_DEFINE3(execve,
1957		const char __user *, filename,
1958		const char __user *const __user *, argv,
1959		const char __user *const __user *, envp)
1960{
1961	return do_execve(getname(filename), argv, envp);
1962}
1963
1964SYSCALL_DEFINE5(execveat,
1965		int, fd, const char __user *, filename,
1966		const char __user *const __user *, argv,
1967		const char __user *const __user *, envp,
1968		int, flags)
1969{
1970	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1971
1972	return do_execveat(fd,
1973			   getname_flags(filename, lookup_flags, NULL),
1974			   argv, envp, flags);
1975}
1976
1977#ifdef CONFIG_COMPAT
1978COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1979	const compat_uptr_t __user *, argv,
1980	const compat_uptr_t __user *, envp)
1981{
1982	return compat_do_execve(getname(filename), argv, envp);
1983}
1984
1985COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1986		       const char __user *, filename,
1987		       const compat_uptr_t __user *, argv,
1988		       const compat_uptr_t __user *, envp,
1989		       int,  flags)
1990{
1991	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1992
1993	return compat_do_execveat(fd,
1994				  getname_flags(filename, lookup_flags, NULL),
1995				  argv, envp, flags);
1996}
1997#endif