Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
12#include <linux/pm_runtime.h>
13#include <linux/sched/signal.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16
17#include "tb.h"
18
19/* Switch NVM support */
20
21#define NVM_CSS 0x10
22
23struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27};
28
29enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
32};
33
34/*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39static LIST_HEAD(nvm_auth_status_cache);
40static DEFINE_MUTEX(nvm_auth_status_lock);
41
42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43{
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 if (uuid_equal(&st->uuid, sw->uuid))
48 return st;
49 }
50
51 return NULL;
52}
53
54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55{
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63}
64
65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66{
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88}
89
90static void nvm_clear_auth_status(const struct tb_switch *sw)
91{
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101}
102
103static int nvm_validate_and_write(struct tb_switch *sw)
104{
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
162 if (tb_switch_is_usb4(sw))
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
169}
170
171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172{
173 int ret = 0;
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
179 */
180 if (!sw->safe_mode) {
181 u32 status;
182
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
209}
210
211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
225 }
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 int ret;
334
335 pm_runtime_get_sync(&sw->dev);
336
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
340 }
341
342 ret = nvm_read(sw, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345out:
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
348
349 return ret;
350}
351
352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
354{
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
358
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
361
362 /*
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
367 */
368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 mutex_unlock(&sw->tb->lock);
370
371 return ret;
372}
373
374static int tb_switch_nvm_add(struct tb_switch *sw)
375{
376 struct tb_nvm *nvm;
377 u32 val;
378 int ret;
379
380 if (!nvm_readable(sw))
381 return 0;
382
383 /*
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
387 */
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
394 }
395
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
399
400 /*
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
404 */
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
407
408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 if (ret)
410 goto err_nvm;
411
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
415
416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 if (ret)
418 goto err_nvm;
419
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
422
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
426 }
427
428 if (!sw->no_nvm_upgrade) {
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
433 }
434
435 sw->nvm = nvm;
436 return 0;
437
438err_nvm:
439 tb_nvm_free(nvm);
440 return ret;
441}
442
443static void tb_switch_nvm_remove(struct tb_switch *sw)
444{
445 struct tb_nvm *nvm;
446
447 nvm = sw->nvm;
448 sw->nvm = NULL;
449
450 if (!nvm)
451 return;
452
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
456
457 tb_nvm_free(nvm);
458}
459
460/* port utility functions */
461
462static const char *tb_port_type(struct tb_regs_port_header *port)
463{
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
475 }
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
488 }
489}
490
491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492{
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
502}
503
504/**
505 * tb_port_state() - get connectedness state of a port
506 *
507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508 *
509 * Return: Returns an enum tb_port_state on success or an error code on failure.
510 */
511static int tb_port_state(struct tb_port *port)
512{
513 struct tb_cap_phy phy;
514 int res;
515 if (port->cap_phy == 0) {
516 tb_port_WARN(port, "does not have a PHY\n");
517 return -EINVAL;
518 }
519 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 if (res)
521 return res;
522 return phy.state;
523}
524
525/**
526 * tb_wait_for_port() - wait for a port to become ready
527 *
528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529 * wait_if_unplugged is set then we also wait if the port is in state
530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531 * switch resume). Otherwise we only wait if a device is registered but the link
532 * has not yet been established.
533 *
534 * Return: Returns an error code on failure. Returns 0 if the port is not
535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536 * if the port is connected and in state TB_PORT_UP.
537 */
538int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539{
540 int retries = 10;
541 int state;
542 if (!port->cap_phy) {
543 tb_port_WARN(port, "does not have PHY\n");
544 return -EINVAL;
545 }
546 if (tb_is_upstream_port(port)) {
547 tb_port_WARN(port, "is the upstream port\n");
548 return -EINVAL;
549 }
550
551 while (retries--) {
552 state = tb_port_state(port);
553 if (state < 0)
554 return state;
555 if (state == TB_PORT_DISABLED) {
556 tb_port_dbg(port, "is disabled (state: 0)\n");
557 return 0;
558 }
559 if (state == TB_PORT_UNPLUGGED) {
560 if (wait_if_unplugged) {
561 /* used during resume */
562 tb_port_dbg(port,
563 "is unplugged (state: 7), retrying...\n");
564 msleep(100);
565 continue;
566 }
567 tb_port_dbg(port, "is unplugged (state: 7)\n");
568 return 0;
569 }
570 if (state == TB_PORT_UP) {
571 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 return 1;
573 }
574
575 /*
576 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 * time.
578 */
579 tb_port_dbg(port,
580 "is connected, link is not up (state: %d), retrying...\n",
581 state);
582 msleep(100);
583 }
584 tb_port_warn(port,
585 "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 return 0;
587}
588
589/**
590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591 *
592 * Change the number of NFC credits allocated to @port by @credits. To remove
593 * NFC credits pass a negative amount of credits.
594 *
595 * Return: Returns 0 on success or an error code on failure.
596 */
597int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598{
599 u32 nfc_credits;
600
601 if (credits == 0 || port->sw->is_unplugged)
602 return 0;
603
604 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
605 nfc_credits += credits;
606
607 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
608 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
609
610 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
611 port->config.nfc_credits |= nfc_credits;
612
613 return tb_port_write(port, &port->config.nfc_credits,
614 TB_CFG_PORT, ADP_CS_4, 1);
615}
616
617/**
618 * tb_port_set_initial_credits() - Set initial port link credits allocated
619 * @port: Port to set the initial credits
620 * @credits: Number of credits to to allocate
621 *
622 * Set initial credits value to be used for ingress shared buffering.
623 */
624int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
625{
626 u32 data;
627 int ret;
628
629 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
630 if (ret)
631 return ret;
632
633 data &= ~ADP_CS_5_LCA_MASK;
634 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
635
636 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637}
638
639/**
640 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
641 *
642 * Return: Returns 0 on success or an error code on failure.
643 */
644int tb_port_clear_counter(struct tb_port *port, int counter)
645{
646 u32 zero[3] = { 0, 0, 0 };
647 tb_port_dbg(port, "clearing counter %d\n", counter);
648 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
649}
650
651/**
652 * tb_port_unlock() - Unlock downstream port
653 * @port: Port to unlock
654 *
655 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
656 * downstream router accessible for CM.
657 */
658int tb_port_unlock(struct tb_port *port)
659{
660 if (tb_switch_is_icm(port->sw))
661 return 0;
662 if (!tb_port_is_null(port))
663 return -EINVAL;
664 if (tb_switch_is_usb4(port->sw))
665 return usb4_port_unlock(port);
666 return 0;
667}
668
669/**
670 * tb_init_port() - initialize a port
671 *
672 * This is a helper method for tb_switch_alloc. Does not check or initialize
673 * any downstream switches.
674 *
675 * Return: Returns 0 on success or an error code on failure.
676 */
677static int tb_init_port(struct tb_port *port)
678{
679 int res;
680 int cap;
681
682 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
683 if (res) {
684 if (res == -ENODEV) {
685 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
686 port->port);
687 port->disabled = true;
688 return 0;
689 }
690 return res;
691 }
692
693 /* Port 0 is the switch itself and has no PHY. */
694 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
695 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
696
697 if (cap > 0)
698 port->cap_phy = cap;
699 else
700 tb_port_WARN(port, "non switch port without a PHY\n");
701
702 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
703 if (cap > 0)
704 port->cap_usb4 = cap;
705 } else if (port->port != 0) {
706 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
707 if (cap > 0)
708 port->cap_adap = cap;
709 }
710
711 tb_dump_port(port->sw->tb, &port->config);
712
713 /* Control port does not need HopID allocation */
714 if (port->port) {
715 ida_init(&port->in_hopids);
716 ida_init(&port->out_hopids);
717 }
718
719 INIT_LIST_HEAD(&port->list);
720 return 0;
721
722}
723
724static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
725 int max_hopid)
726{
727 int port_max_hopid;
728 struct ida *ida;
729
730 if (in) {
731 port_max_hopid = port->config.max_in_hop_id;
732 ida = &port->in_hopids;
733 } else {
734 port_max_hopid = port->config.max_out_hop_id;
735 ida = &port->out_hopids;
736 }
737
738 /*
739 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
740 * reserved.
741 */
742 if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
743 min_hopid = TB_PATH_MIN_HOPID;
744
745 if (max_hopid < 0 || max_hopid > port_max_hopid)
746 max_hopid = port_max_hopid;
747
748 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
749}
750
751/**
752 * tb_port_alloc_in_hopid() - Allocate input HopID from port
753 * @port: Port to allocate HopID for
754 * @min_hopid: Minimum acceptable input HopID
755 * @max_hopid: Maximum acceptable input HopID
756 *
757 * Return: HopID between @min_hopid and @max_hopid or negative errno in
758 * case of error.
759 */
760int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
761{
762 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
763}
764
765/**
766 * tb_port_alloc_out_hopid() - Allocate output HopID from port
767 * @port: Port to allocate HopID for
768 * @min_hopid: Minimum acceptable output HopID
769 * @max_hopid: Maximum acceptable output HopID
770 *
771 * Return: HopID between @min_hopid and @max_hopid or negative errno in
772 * case of error.
773 */
774int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
775{
776 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
777}
778
779/**
780 * tb_port_release_in_hopid() - Release allocated input HopID from port
781 * @port: Port whose HopID to release
782 * @hopid: HopID to release
783 */
784void tb_port_release_in_hopid(struct tb_port *port, int hopid)
785{
786 ida_simple_remove(&port->in_hopids, hopid);
787}
788
789/**
790 * tb_port_release_out_hopid() - Release allocated output HopID from port
791 * @port: Port whose HopID to release
792 * @hopid: HopID to release
793 */
794void tb_port_release_out_hopid(struct tb_port *port, int hopid)
795{
796 ida_simple_remove(&port->out_hopids, hopid);
797}
798
799static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
800 const struct tb_switch *sw)
801{
802 u64 mask = (1ULL << parent->config.depth * 8) - 1;
803 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
804}
805
806/**
807 * tb_next_port_on_path() - Return next port for given port on a path
808 * @start: Start port of the walk
809 * @end: End port of the walk
810 * @prev: Previous port (%NULL if this is the first)
811 *
812 * This function can be used to walk from one port to another if they
813 * are connected through zero or more switches. If the @prev is dual
814 * link port, the function follows that link and returns another end on
815 * that same link.
816 *
817 * If the @end port has been reached, return %NULL.
818 *
819 * Domain tb->lock must be held when this function is called.
820 */
821struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
822 struct tb_port *prev)
823{
824 struct tb_port *next;
825
826 if (!prev)
827 return start;
828
829 if (prev->sw == end->sw) {
830 if (prev == end)
831 return NULL;
832 return end;
833 }
834
835 if (tb_switch_is_reachable(prev->sw, end->sw)) {
836 next = tb_port_at(tb_route(end->sw), prev->sw);
837 /* Walk down the topology if next == prev */
838 if (prev->remote &&
839 (next == prev || next->dual_link_port == prev))
840 next = prev->remote;
841 } else {
842 if (tb_is_upstream_port(prev)) {
843 next = prev->remote;
844 } else {
845 next = tb_upstream_port(prev->sw);
846 /*
847 * Keep the same link if prev and next are both
848 * dual link ports.
849 */
850 if (next->dual_link_port &&
851 next->link_nr != prev->link_nr) {
852 next = next->dual_link_port;
853 }
854 }
855 }
856
857 return next != prev ? next : NULL;
858}
859
860/**
861 * tb_port_get_link_speed() - Get current link speed
862 * @port: Port to check (USB4 or CIO)
863 *
864 * Returns link speed in Gb/s or negative errno in case of failure.
865 */
866int tb_port_get_link_speed(struct tb_port *port)
867{
868 u32 val, speed;
869 int ret;
870
871 if (!port->cap_phy)
872 return -EINVAL;
873
874 ret = tb_port_read(port, &val, TB_CFG_PORT,
875 port->cap_phy + LANE_ADP_CS_1, 1);
876 if (ret)
877 return ret;
878
879 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
880 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
881 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
882}
883
884static int tb_port_get_link_width(struct tb_port *port)
885{
886 u32 val;
887 int ret;
888
889 if (!port->cap_phy)
890 return -EINVAL;
891
892 ret = tb_port_read(port, &val, TB_CFG_PORT,
893 port->cap_phy + LANE_ADP_CS_1, 1);
894 if (ret)
895 return ret;
896
897 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
898 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
899}
900
901static bool tb_port_is_width_supported(struct tb_port *port, int width)
902{
903 u32 phy, widths;
904 int ret;
905
906 if (!port->cap_phy)
907 return false;
908
909 ret = tb_port_read(port, &phy, TB_CFG_PORT,
910 port->cap_phy + LANE_ADP_CS_0, 1);
911 if (ret)
912 return false;
913
914 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
915 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
916
917 return !!(widths & width);
918}
919
920static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
921{
922 u32 val;
923 int ret;
924
925 if (!port->cap_phy)
926 return -EINVAL;
927
928 ret = tb_port_read(port, &val, TB_CFG_PORT,
929 port->cap_phy + LANE_ADP_CS_1, 1);
930 if (ret)
931 return ret;
932
933 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
934 switch (width) {
935 case 1:
936 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
937 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
938 break;
939 case 2:
940 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
941 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
942 break;
943 default:
944 return -EINVAL;
945 }
946
947 val |= LANE_ADP_CS_1_LB;
948
949 return tb_port_write(port, &val, TB_CFG_PORT,
950 port->cap_phy + LANE_ADP_CS_1, 1);
951}
952
953static int tb_port_lane_bonding_enable(struct tb_port *port)
954{
955 int ret;
956
957 /*
958 * Enable lane bonding for both links if not already enabled by
959 * for example the boot firmware.
960 */
961 ret = tb_port_get_link_width(port);
962 if (ret == 1) {
963 ret = tb_port_set_link_width(port, 2);
964 if (ret)
965 return ret;
966 }
967
968 ret = tb_port_get_link_width(port->dual_link_port);
969 if (ret == 1) {
970 ret = tb_port_set_link_width(port->dual_link_port, 2);
971 if (ret) {
972 tb_port_set_link_width(port, 1);
973 return ret;
974 }
975 }
976
977 port->bonded = true;
978 port->dual_link_port->bonded = true;
979
980 return 0;
981}
982
983static void tb_port_lane_bonding_disable(struct tb_port *port)
984{
985 port->dual_link_port->bonded = false;
986 port->bonded = false;
987
988 tb_port_set_link_width(port->dual_link_port, 1);
989 tb_port_set_link_width(port, 1);
990}
991
992/**
993 * tb_port_is_enabled() - Is the adapter port enabled
994 * @port: Port to check
995 */
996bool tb_port_is_enabled(struct tb_port *port)
997{
998 switch (port->config.type) {
999 case TB_TYPE_PCIE_UP:
1000 case TB_TYPE_PCIE_DOWN:
1001 return tb_pci_port_is_enabled(port);
1002
1003 case TB_TYPE_DP_HDMI_IN:
1004 case TB_TYPE_DP_HDMI_OUT:
1005 return tb_dp_port_is_enabled(port);
1006
1007 case TB_TYPE_USB3_UP:
1008 case TB_TYPE_USB3_DOWN:
1009 return tb_usb3_port_is_enabled(port);
1010
1011 default:
1012 return false;
1013 }
1014}
1015
1016/**
1017 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1018 * @port: USB3 adapter port to check
1019 */
1020bool tb_usb3_port_is_enabled(struct tb_port *port)
1021{
1022 u32 data;
1023
1024 if (tb_port_read(port, &data, TB_CFG_PORT,
1025 port->cap_adap + ADP_USB3_CS_0, 1))
1026 return false;
1027
1028 return !!(data & ADP_USB3_CS_0_PE);
1029}
1030
1031/**
1032 * tb_usb3_port_enable() - Enable USB3 adapter port
1033 * @port: USB3 adapter port to enable
1034 * @enable: Enable/disable the USB3 adapter
1035 */
1036int tb_usb3_port_enable(struct tb_port *port, bool enable)
1037{
1038 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1039 : ADP_USB3_CS_0_V;
1040
1041 if (!port->cap_adap)
1042 return -ENXIO;
1043 return tb_port_write(port, &word, TB_CFG_PORT,
1044 port->cap_adap + ADP_USB3_CS_0, 1);
1045}
1046
1047/**
1048 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1049 * @port: PCIe port to check
1050 */
1051bool tb_pci_port_is_enabled(struct tb_port *port)
1052{
1053 u32 data;
1054
1055 if (tb_port_read(port, &data, TB_CFG_PORT,
1056 port->cap_adap + ADP_PCIE_CS_0, 1))
1057 return false;
1058
1059 return !!(data & ADP_PCIE_CS_0_PE);
1060}
1061
1062/**
1063 * tb_pci_port_enable() - Enable PCIe adapter port
1064 * @port: PCIe port to enable
1065 * @enable: Enable/disable the PCIe adapter
1066 */
1067int tb_pci_port_enable(struct tb_port *port, bool enable)
1068{
1069 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1070 if (!port->cap_adap)
1071 return -ENXIO;
1072 return tb_port_write(port, &word, TB_CFG_PORT,
1073 port->cap_adap + ADP_PCIE_CS_0, 1);
1074}
1075
1076/**
1077 * tb_dp_port_hpd_is_active() - Is HPD already active
1078 * @port: DP out port to check
1079 *
1080 * Checks if the DP OUT adapter port has HDP bit already set.
1081 */
1082int tb_dp_port_hpd_is_active(struct tb_port *port)
1083{
1084 u32 data;
1085 int ret;
1086
1087 ret = tb_port_read(port, &data, TB_CFG_PORT,
1088 port->cap_adap + ADP_DP_CS_2, 1);
1089 if (ret)
1090 return ret;
1091
1092 return !!(data & ADP_DP_CS_2_HDP);
1093}
1094
1095/**
1096 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1097 * @port: Port to clear HPD
1098 *
1099 * If the DP IN port has HDP set, this function can be used to clear it.
1100 */
1101int tb_dp_port_hpd_clear(struct tb_port *port)
1102{
1103 u32 data;
1104 int ret;
1105
1106 ret = tb_port_read(port, &data, TB_CFG_PORT,
1107 port->cap_adap + ADP_DP_CS_3, 1);
1108 if (ret)
1109 return ret;
1110
1111 data |= ADP_DP_CS_3_HDPC;
1112 return tb_port_write(port, &data, TB_CFG_PORT,
1113 port->cap_adap + ADP_DP_CS_3, 1);
1114}
1115
1116/**
1117 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1118 * @port: DP IN/OUT port to set hops
1119 * @video: Video Hop ID
1120 * @aux_tx: AUX TX Hop ID
1121 * @aux_rx: AUX RX Hop ID
1122 *
1123 * Programs specified Hop IDs for DP IN/OUT port.
1124 */
1125int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1126 unsigned int aux_tx, unsigned int aux_rx)
1127{
1128 u32 data[2];
1129 int ret;
1130
1131 ret = tb_port_read(port, data, TB_CFG_PORT,
1132 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1133 if (ret)
1134 return ret;
1135
1136 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1137 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1138 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1139
1140 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1141 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1142 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1143 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1144 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1145
1146 return tb_port_write(port, data, TB_CFG_PORT,
1147 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1148}
1149
1150/**
1151 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1152 * @port: DP adapter port to check
1153 */
1154bool tb_dp_port_is_enabled(struct tb_port *port)
1155{
1156 u32 data[2];
1157
1158 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1159 ARRAY_SIZE(data)))
1160 return false;
1161
1162 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1163}
1164
1165/**
1166 * tb_dp_port_enable() - Enables/disables DP paths of a port
1167 * @port: DP IN/OUT port
1168 * @enable: Enable/disable DP path
1169 *
1170 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1171 * calling this function.
1172 */
1173int tb_dp_port_enable(struct tb_port *port, bool enable)
1174{
1175 u32 data[2];
1176 int ret;
1177
1178 ret = tb_port_read(port, data, TB_CFG_PORT,
1179 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1180 if (ret)
1181 return ret;
1182
1183 if (enable)
1184 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1185 else
1186 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1187
1188 return tb_port_write(port, data, TB_CFG_PORT,
1189 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1190}
1191
1192/* switch utility functions */
1193
1194static const char *tb_switch_generation_name(const struct tb_switch *sw)
1195{
1196 switch (sw->generation) {
1197 case 1:
1198 return "Thunderbolt 1";
1199 case 2:
1200 return "Thunderbolt 2";
1201 case 3:
1202 return "Thunderbolt 3";
1203 case 4:
1204 return "USB4";
1205 default:
1206 return "Unknown";
1207 }
1208}
1209
1210static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1211{
1212 const struct tb_regs_switch_header *regs = &sw->config;
1213
1214 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1215 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1216 regs->revision, regs->thunderbolt_version);
1217 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1218 tb_dbg(tb, " Config:\n");
1219 tb_dbg(tb,
1220 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1221 regs->upstream_port_number, regs->depth,
1222 (((u64) regs->route_hi) << 32) | regs->route_lo,
1223 regs->enabled, regs->plug_events_delay);
1224 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1225 regs->__unknown1, regs->__unknown4);
1226}
1227
1228/**
1229 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1230 *
1231 * Return: Returns 0 on success or an error code on failure.
1232 */
1233int tb_switch_reset(struct tb *tb, u64 route)
1234{
1235 struct tb_cfg_result res;
1236 struct tb_regs_switch_header header = {
1237 header.route_hi = route >> 32,
1238 header.route_lo = route,
1239 header.enabled = true,
1240 };
1241 tb_dbg(tb, "resetting switch at %llx\n", route);
1242 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1243 0, 2, 2, 2);
1244 if (res.err)
1245 return res.err;
1246 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1247 if (res.err > 0)
1248 return -EIO;
1249 return res.err;
1250}
1251
1252/**
1253 * tb_plug_events_active() - enable/disable plug events on a switch
1254 *
1255 * Also configures a sane plug_events_delay of 255ms.
1256 *
1257 * Return: Returns 0 on success or an error code on failure.
1258 */
1259static int tb_plug_events_active(struct tb_switch *sw, bool active)
1260{
1261 u32 data;
1262 int res;
1263
1264 if (tb_switch_is_icm(sw))
1265 return 0;
1266
1267 sw->config.plug_events_delay = 0xff;
1268 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1269 if (res)
1270 return res;
1271
1272 /* Plug events are always enabled in USB4 */
1273 if (tb_switch_is_usb4(sw))
1274 return 0;
1275
1276 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1277 if (res)
1278 return res;
1279
1280 if (active) {
1281 data = data & 0xFFFFFF83;
1282 switch (sw->config.device_id) {
1283 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1284 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1285 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1286 break;
1287 default:
1288 data |= 4;
1289 }
1290 } else {
1291 data = data | 0x7c;
1292 }
1293 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1294 sw->cap_plug_events + 1, 1);
1295}
1296
1297static ssize_t authorized_show(struct device *dev,
1298 struct device_attribute *attr,
1299 char *buf)
1300{
1301 struct tb_switch *sw = tb_to_switch(dev);
1302
1303 return sprintf(buf, "%u\n", sw->authorized);
1304}
1305
1306static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1307{
1308 int ret = -EINVAL;
1309
1310 if (!mutex_trylock(&sw->tb->lock))
1311 return restart_syscall();
1312
1313 if (sw->authorized)
1314 goto unlock;
1315
1316 switch (val) {
1317 /* Approve switch */
1318 case 1:
1319 if (sw->key)
1320 ret = tb_domain_approve_switch_key(sw->tb, sw);
1321 else
1322 ret = tb_domain_approve_switch(sw->tb, sw);
1323 break;
1324
1325 /* Challenge switch */
1326 case 2:
1327 if (sw->key)
1328 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1329 break;
1330
1331 default:
1332 break;
1333 }
1334
1335 if (!ret) {
1336 sw->authorized = val;
1337 /* Notify status change to the userspace */
1338 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1339 }
1340
1341unlock:
1342 mutex_unlock(&sw->tb->lock);
1343 return ret;
1344}
1345
1346static ssize_t authorized_store(struct device *dev,
1347 struct device_attribute *attr,
1348 const char *buf, size_t count)
1349{
1350 struct tb_switch *sw = tb_to_switch(dev);
1351 unsigned int val;
1352 ssize_t ret;
1353
1354 ret = kstrtouint(buf, 0, &val);
1355 if (ret)
1356 return ret;
1357 if (val > 2)
1358 return -EINVAL;
1359
1360 pm_runtime_get_sync(&sw->dev);
1361 ret = tb_switch_set_authorized(sw, val);
1362 pm_runtime_mark_last_busy(&sw->dev);
1363 pm_runtime_put_autosuspend(&sw->dev);
1364
1365 return ret ? ret : count;
1366}
1367static DEVICE_ATTR_RW(authorized);
1368
1369static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1370 char *buf)
1371{
1372 struct tb_switch *sw = tb_to_switch(dev);
1373
1374 return sprintf(buf, "%u\n", sw->boot);
1375}
1376static DEVICE_ATTR_RO(boot);
1377
1378static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1379 char *buf)
1380{
1381 struct tb_switch *sw = tb_to_switch(dev);
1382
1383 return sprintf(buf, "%#x\n", sw->device);
1384}
1385static DEVICE_ATTR_RO(device);
1386
1387static ssize_t
1388device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1389{
1390 struct tb_switch *sw = tb_to_switch(dev);
1391
1392 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1393}
1394static DEVICE_ATTR_RO(device_name);
1395
1396static ssize_t
1397generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1398{
1399 struct tb_switch *sw = tb_to_switch(dev);
1400
1401 return sprintf(buf, "%u\n", sw->generation);
1402}
1403static DEVICE_ATTR_RO(generation);
1404
1405static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1406 char *buf)
1407{
1408 struct tb_switch *sw = tb_to_switch(dev);
1409 ssize_t ret;
1410
1411 if (!mutex_trylock(&sw->tb->lock))
1412 return restart_syscall();
1413
1414 if (sw->key)
1415 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1416 else
1417 ret = sprintf(buf, "\n");
1418
1419 mutex_unlock(&sw->tb->lock);
1420 return ret;
1421}
1422
1423static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1424 const char *buf, size_t count)
1425{
1426 struct tb_switch *sw = tb_to_switch(dev);
1427 u8 key[TB_SWITCH_KEY_SIZE];
1428 ssize_t ret = count;
1429 bool clear = false;
1430
1431 if (!strcmp(buf, "\n"))
1432 clear = true;
1433 else if (hex2bin(key, buf, sizeof(key)))
1434 return -EINVAL;
1435
1436 if (!mutex_trylock(&sw->tb->lock))
1437 return restart_syscall();
1438
1439 if (sw->authorized) {
1440 ret = -EBUSY;
1441 } else {
1442 kfree(sw->key);
1443 if (clear) {
1444 sw->key = NULL;
1445 } else {
1446 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1447 if (!sw->key)
1448 ret = -ENOMEM;
1449 }
1450 }
1451
1452 mutex_unlock(&sw->tb->lock);
1453 return ret;
1454}
1455static DEVICE_ATTR(key, 0600, key_show, key_store);
1456
1457static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1458 char *buf)
1459{
1460 struct tb_switch *sw = tb_to_switch(dev);
1461
1462 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1463}
1464
1465/*
1466 * Currently all lanes must run at the same speed but we expose here
1467 * both directions to allow possible asymmetric links in the future.
1468 */
1469static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1470static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1471
1472static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1473 char *buf)
1474{
1475 struct tb_switch *sw = tb_to_switch(dev);
1476
1477 return sprintf(buf, "%u\n", sw->link_width);
1478}
1479
1480/*
1481 * Currently link has same amount of lanes both directions (1 or 2) but
1482 * expose them separately to allow possible asymmetric links in the future.
1483 */
1484static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1485static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1486
1487static ssize_t nvm_authenticate_show(struct device *dev,
1488 struct device_attribute *attr, char *buf)
1489{
1490 struct tb_switch *sw = tb_to_switch(dev);
1491 u32 status;
1492
1493 nvm_get_auth_status(sw, &status);
1494 return sprintf(buf, "%#x\n", status);
1495}
1496
1497static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1498 bool disconnect)
1499{
1500 struct tb_switch *sw = tb_to_switch(dev);
1501 int val;
1502 int ret;
1503
1504 pm_runtime_get_sync(&sw->dev);
1505
1506 if (!mutex_trylock(&sw->tb->lock)) {
1507 ret = restart_syscall();
1508 goto exit_rpm;
1509 }
1510
1511 /* If NVMem devices are not yet added */
1512 if (!sw->nvm) {
1513 ret = -EAGAIN;
1514 goto exit_unlock;
1515 }
1516
1517 ret = kstrtoint(buf, 10, &val);
1518 if (ret)
1519 goto exit_unlock;
1520
1521 /* Always clear the authentication status */
1522 nvm_clear_auth_status(sw);
1523
1524 if (val > 0) {
1525 if (!sw->nvm->flushed) {
1526 if (!sw->nvm->buf) {
1527 ret = -EINVAL;
1528 goto exit_unlock;
1529 }
1530
1531 ret = nvm_validate_and_write(sw);
1532 if (ret || val == WRITE_ONLY)
1533 goto exit_unlock;
1534 }
1535 if (val == WRITE_AND_AUTHENTICATE) {
1536 if (disconnect) {
1537 ret = tb_lc_force_power(sw);
1538 } else {
1539 sw->nvm->authenticating = true;
1540 ret = nvm_authenticate(sw);
1541 }
1542 }
1543 }
1544
1545exit_unlock:
1546 mutex_unlock(&sw->tb->lock);
1547exit_rpm:
1548 pm_runtime_mark_last_busy(&sw->dev);
1549 pm_runtime_put_autosuspend(&sw->dev);
1550
1551 return ret;
1552}
1553
1554static ssize_t nvm_authenticate_store(struct device *dev,
1555 struct device_attribute *attr, const char *buf, size_t count)
1556{
1557 int ret = nvm_authenticate_sysfs(dev, buf, false);
1558 if (ret)
1559 return ret;
1560 return count;
1561}
1562static DEVICE_ATTR_RW(nvm_authenticate);
1563
1564static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1565 struct device_attribute *attr, char *buf)
1566{
1567 return nvm_authenticate_show(dev, attr, buf);
1568}
1569
1570static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1571 struct device_attribute *attr, const char *buf, size_t count)
1572{
1573 int ret;
1574
1575 ret = nvm_authenticate_sysfs(dev, buf, true);
1576 return ret ? ret : count;
1577}
1578static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1579
1580static ssize_t nvm_version_show(struct device *dev,
1581 struct device_attribute *attr, char *buf)
1582{
1583 struct tb_switch *sw = tb_to_switch(dev);
1584 int ret;
1585
1586 if (!mutex_trylock(&sw->tb->lock))
1587 return restart_syscall();
1588
1589 if (sw->safe_mode)
1590 ret = -ENODATA;
1591 else if (!sw->nvm)
1592 ret = -EAGAIN;
1593 else
1594 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1595
1596 mutex_unlock(&sw->tb->lock);
1597
1598 return ret;
1599}
1600static DEVICE_ATTR_RO(nvm_version);
1601
1602static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1603 char *buf)
1604{
1605 struct tb_switch *sw = tb_to_switch(dev);
1606
1607 return sprintf(buf, "%#x\n", sw->vendor);
1608}
1609static DEVICE_ATTR_RO(vendor);
1610
1611static ssize_t
1612vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1613{
1614 struct tb_switch *sw = tb_to_switch(dev);
1615
1616 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1617}
1618static DEVICE_ATTR_RO(vendor_name);
1619
1620static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1621 char *buf)
1622{
1623 struct tb_switch *sw = tb_to_switch(dev);
1624
1625 return sprintf(buf, "%pUb\n", sw->uuid);
1626}
1627static DEVICE_ATTR_RO(unique_id);
1628
1629static struct attribute *switch_attrs[] = {
1630 &dev_attr_authorized.attr,
1631 &dev_attr_boot.attr,
1632 &dev_attr_device.attr,
1633 &dev_attr_device_name.attr,
1634 &dev_attr_generation.attr,
1635 &dev_attr_key.attr,
1636 &dev_attr_nvm_authenticate.attr,
1637 &dev_attr_nvm_authenticate_on_disconnect.attr,
1638 &dev_attr_nvm_version.attr,
1639 &dev_attr_rx_speed.attr,
1640 &dev_attr_rx_lanes.attr,
1641 &dev_attr_tx_speed.attr,
1642 &dev_attr_tx_lanes.attr,
1643 &dev_attr_vendor.attr,
1644 &dev_attr_vendor_name.attr,
1645 &dev_attr_unique_id.attr,
1646 NULL,
1647};
1648
1649static umode_t switch_attr_is_visible(struct kobject *kobj,
1650 struct attribute *attr, int n)
1651{
1652 struct device *dev = container_of(kobj, struct device, kobj);
1653 struct tb_switch *sw = tb_to_switch(dev);
1654
1655 if (attr == &dev_attr_device.attr) {
1656 if (!sw->device)
1657 return 0;
1658 } else if (attr == &dev_attr_device_name.attr) {
1659 if (!sw->device_name)
1660 return 0;
1661 } else if (attr == &dev_attr_vendor.attr) {
1662 if (!sw->vendor)
1663 return 0;
1664 } else if (attr == &dev_attr_vendor_name.attr) {
1665 if (!sw->vendor_name)
1666 return 0;
1667 } else if (attr == &dev_attr_key.attr) {
1668 if (tb_route(sw) &&
1669 sw->tb->security_level == TB_SECURITY_SECURE &&
1670 sw->security_level == TB_SECURITY_SECURE)
1671 return attr->mode;
1672 return 0;
1673 } else if (attr == &dev_attr_rx_speed.attr ||
1674 attr == &dev_attr_rx_lanes.attr ||
1675 attr == &dev_attr_tx_speed.attr ||
1676 attr == &dev_attr_tx_lanes.attr) {
1677 if (tb_route(sw))
1678 return attr->mode;
1679 return 0;
1680 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1681 if (nvm_upgradeable(sw))
1682 return attr->mode;
1683 return 0;
1684 } else if (attr == &dev_attr_nvm_version.attr) {
1685 if (nvm_readable(sw))
1686 return attr->mode;
1687 return 0;
1688 } else if (attr == &dev_attr_boot.attr) {
1689 if (tb_route(sw))
1690 return attr->mode;
1691 return 0;
1692 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1693 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1694 return attr->mode;
1695 return 0;
1696 }
1697
1698 return sw->safe_mode ? 0 : attr->mode;
1699}
1700
1701static struct attribute_group switch_group = {
1702 .is_visible = switch_attr_is_visible,
1703 .attrs = switch_attrs,
1704};
1705
1706static const struct attribute_group *switch_groups[] = {
1707 &switch_group,
1708 NULL,
1709};
1710
1711static void tb_switch_release(struct device *dev)
1712{
1713 struct tb_switch *sw = tb_to_switch(dev);
1714 struct tb_port *port;
1715
1716 dma_port_free(sw->dma_port);
1717
1718 tb_switch_for_each_port(sw, port) {
1719 if (!port->disabled) {
1720 ida_destroy(&port->in_hopids);
1721 ida_destroy(&port->out_hopids);
1722 }
1723 }
1724
1725 kfree(sw->uuid);
1726 kfree(sw->device_name);
1727 kfree(sw->vendor_name);
1728 kfree(sw->ports);
1729 kfree(sw->drom);
1730 kfree(sw->key);
1731 kfree(sw);
1732}
1733
1734/*
1735 * Currently only need to provide the callbacks. Everything else is handled
1736 * in the connection manager.
1737 */
1738static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1739{
1740 struct tb_switch *sw = tb_to_switch(dev);
1741 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1742
1743 if (cm_ops->runtime_suspend_switch)
1744 return cm_ops->runtime_suspend_switch(sw);
1745
1746 return 0;
1747}
1748
1749static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1750{
1751 struct tb_switch *sw = tb_to_switch(dev);
1752 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1753
1754 if (cm_ops->runtime_resume_switch)
1755 return cm_ops->runtime_resume_switch(sw);
1756 return 0;
1757}
1758
1759static const struct dev_pm_ops tb_switch_pm_ops = {
1760 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1761 NULL)
1762};
1763
1764struct device_type tb_switch_type = {
1765 .name = "thunderbolt_device",
1766 .release = tb_switch_release,
1767 .pm = &tb_switch_pm_ops,
1768};
1769
1770static int tb_switch_get_generation(struct tb_switch *sw)
1771{
1772 switch (sw->config.device_id) {
1773 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1774 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1775 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1776 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1777 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1778 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1779 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1780 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1781 return 1;
1782
1783 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1784 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1785 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1786 return 2;
1787
1788 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1789 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1790 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1793 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1794 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1795 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1796 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1797 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1798 return 3;
1799
1800 default:
1801 if (tb_switch_is_usb4(sw))
1802 return 4;
1803
1804 /*
1805 * For unknown switches assume generation to be 1 to be
1806 * on the safe side.
1807 */
1808 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1809 sw->config.device_id);
1810 return 1;
1811 }
1812}
1813
1814static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1815{
1816 int max_depth;
1817
1818 if (tb_switch_is_usb4(sw) ||
1819 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1820 max_depth = USB4_SWITCH_MAX_DEPTH;
1821 else
1822 max_depth = TB_SWITCH_MAX_DEPTH;
1823
1824 return depth > max_depth;
1825}
1826
1827/**
1828 * tb_switch_alloc() - allocate a switch
1829 * @tb: Pointer to the owning domain
1830 * @parent: Parent device for this switch
1831 * @route: Route string for this switch
1832 *
1833 * Allocates and initializes a switch. Will not upload configuration to
1834 * the switch. For that you need to call tb_switch_configure()
1835 * separately. The returned switch should be released by calling
1836 * tb_switch_put().
1837 *
1838 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1839 * failure.
1840 */
1841struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1842 u64 route)
1843{
1844 struct tb_switch *sw;
1845 int upstream_port;
1846 int i, ret, depth;
1847
1848 /* Unlock the downstream port so we can access the switch below */
1849 if (route) {
1850 struct tb_switch *parent_sw = tb_to_switch(parent);
1851 struct tb_port *down;
1852
1853 down = tb_port_at(route, parent_sw);
1854 tb_port_unlock(down);
1855 }
1856
1857 depth = tb_route_length(route);
1858
1859 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1860 if (upstream_port < 0)
1861 return ERR_PTR(upstream_port);
1862
1863 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1864 if (!sw)
1865 return ERR_PTR(-ENOMEM);
1866
1867 sw->tb = tb;
1868 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1869 if (ret)
1870 goto err_free_sw_ports;
1871
1872 sw->generation = tb_switch_get_generation(sw);
1873
1874 tb_dbg(tb, "current switch config:\n");
1875 tb_dump_switch(tb, sw);
1876
1877 /* configure switch */
1878 sw->config.upstream_port_number = upstream_port;
1879 sw->config.depth = depth;
1880 sw->config.route_hi = upper_32_bits(route);
1881 sw->config.route_lo = lower_32_bits(route);
1882 sw->config.enabled = 0;
1883
1884 /* Make sure we do not exceed maximum topology limit */
1885 if (tb_switch_exceeds_max_depth(sw, depth)) {
1886 ret = -EADDRNOTAVAIL;
1887 goto err_free_sw_ports;
1888 }
1889
1890 /* initialize ports */
1891 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1892 GFP_KERNEL);
1893 if (!sw->ports) {
1894 ret = -ENOMEM;
1895 goto err_free_sw_ports;
1896 }
1897
1898 for (i = 0; i <= sw->config.max_port_number; i++) {
1899 /* minimum setup for tb_find_cap and tb_drom_read to work */
1900 sw->ports[i].sw = sw;
1901 sw->ports[i].port = i;
1902 }
1903
1904 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1905 if (ret > 0)
1906 sw->cap_plug_events = ret;
1907
1908 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1909 if (ret > 0)
1910 sw->cap_lc = ret;
1911
1912 /* Root switch is always authorized */
1913 if (!route)
1914 sw->authorized = true;
1915
1916 device_initialize(&sw->dev);
1917 sw->dev.parent = parent;
1918 sw->dev.bus = &tb_bus_type;
1919 sw->dev.type = &tb_switch_type;
1920 sw->dev.groups = switch_groups;
1921 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1922
1923 return sw;
1924
1925err_free_sw_ports:
1926 kfree(sw->ports);
1927 kfree(sw);
1928
1929 return ERR_PTR(ret);
1930}
1931
1932/**
1933 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1934 * @tb: Pointer to the owning domain
1935 * @parent: Parent device for this switch
1936 * @route: Route string for this switch
1937 *
1938 * This creates a switch in safe mode. This means the switch pretty much
1939 * lacks all capabilities except DMA configuration port before it is
1940 * flashed with a valid NVM firmware.
1941 *
1942 * The returned switch must be released by calling tb_switch_put().
1943 *
1944 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1945 */
1946struct tb_switch *
1947tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1948{
1949 struct tb_switch *sw;
1950
1951 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1952 if (!sw)
1953 return ERR_PTR(-ENOMEM);
1954
1955 sw->tb = tb;
1956 sw->config.depth = tb_route_length(route);
1957 sw->config.route_hi = upper_32_bits(route);
1958 sw->config.route_lo = lower_32_bits(route);
1959 sw->safe_mode = true;
1960
1961 device_initialize(&sw->dev);
1962 sw->dev.parent = parent;
1963 sw->dev.bus = &tb_bus_type;
1964 sw->dev.type = &tb_switch_type;
1965 sw->dev.groups = switch_groups;
1966 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1967
1968 return sw;
1969}
1970
1971/**
1972 * tb_switch_configure() - Uploads configuration to the switch
1973 * @sw: Switch to configure
1974 *
1975 * Call this function before the switch is added to the system. It will
1976 * upload configuration to the switch and makes it available for the
1977 * connection manager to use. Can be called to the switch again after
1978 * resume from low power states to re-initialize it.
1979 *
1980 * Return: %0 in case of success and negative errno in case of failure
1981 */
1982int tb_switch_configure(struct tb_switch *sw)
1983{
1984 struct tb *tb = sw->tb;
1985 u64 route;
1986 int ret;
1987
1988 route = tb_route(sw);
1989
1990 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1991 sw->config.enabled ? "restoring " : "initializing", route,
1992 tb_route_length(route), sw->config.upstream_port_number);
1993
1994 sw->config.enabled = 1;
1995
1996 if (tb_switch_is_usb4(sw)) {
1997 /*
1998 * For USB4 devices, we need to program the CM version
1999 * accordingly so that it knows to expose all the
2000 * additional capabilities.
2001 */
2002 sw->config.cmuv = USB4_VERSION_1_0;
2003
2004 /* Enumerate the switch */
2005 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2006 ROUTER_CS_1, 4);
2007 if (ret)
2008 return ret;
2009
2010 ret = usb4_switch_setup(sw);
2011 if (ret)
2012 return ret;
2013
2014 ret = usb4_switch_configure_link(sw);
2015 } else {
2016 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2017 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2018 sw->config.vendor_id);
2019
2020 if (!sw->cap_plug_events) {
2021 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2022 return -ENODEV;
2023 }
2024
2025 /* Enumerate the switch */
2026 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2027 ROUTER_CS_1, 3);
2028 if (ret)
2029 return ret;
2030
2031 ret = tb_lc_configure_link(sw);
2032 }
2033 if (ret)
2034 return ret;
2035
2036 return tb_plug_events_active(sw, true);
2037}
2038
2039static int tb_switch_set_uuid(struct tb_switch *sw)
2040{
2041 bool uid = false;
2042 u32 uuid[4];
2043 int ret;
2044
2045 if (sw->uuid)
2046 return 0;
2047
2048 if (tb_switch_is_usb4(sw)) {
2049 ret = usb4_switch_read_uid(sw, &sw->uid);
2050 if (ret)
2051 return ret;
2052 uid = true;
2053 } else {
2054 /*
2055 * The newer controllers include fused UUID as part of
2056 * link controller specific registers
2057 */
2058 ret = tb_lc_read_uuid(sw, uuid);
2059 if (ret) {
2060 if (ret != -EINVAL)
2061 return ret;
2062 uid = true;
2063 }
2064 }
2065
2066 if (uid) {
2067 /*
2068 * ICM generates UUID based on UID and fills the upper
2069 * two words with ones. This is not strictly following
2070 * UUID format but we want to be compatible with it so
2071 * we do the same here.
2072 */
2073 uuid[0] = sw->uid & 0xffffffff;
2074 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2075 uuid[2] = 0xffffffff;
2076 uuid[3] = 0xffffffff;
2077 }
2078
2079 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2080 if (!sw->uuid)
2081 return -ENOMEM;
2082 return 0;
2083}
2084
2085static int tb_switch_add_dma_port(struct tb_switch *sw)
2086{
2087 u32 status;
2088 int ret;
2089
2090 switch (sw->generation) {
2091 case 2:
2092 /* Only root switch can be upgraded */
2093 if (tb_route(sw))
2094 return 0;
2095
2096 fallthrough;
2097 case 3:
2098 ret = tb_switch_set_uuid(sw);
2099 if (ret)
2100 return ret;
2101 break;
2102
2103 default:
2104 /*
2105 * DMA port is the only thing available when the switch
2106 * is in safe mode.
2107 */
2108 if (!sw->safe_mode)
2109 return 0;
2110 break;
2111 }
2112
2113 /* Root switch DMA port requires running firmware */
2114 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2115 return 0;
2116
2117 sw->dma_port = dma_port_alloc(sw);
2118 if (!sw->dma_port)
2119 return 0;
2120
2121 if (sw->no_nvm_upgrade)
2122 return 0;
2123
2124 /*
2125 * If there is status already set then authentication failed
2126 * when the dma_port_flash_update_auth() returned. Power cycling
2127 * is not needed (it was done already) so only thing we do here
2128 * is to unblock runtime PM of the root port.
2129 */
2130 nvm_get_auth_status(sw, &status);
2131 if (status) {
2132 if (!tb_route(sw))
2133 nvm_authenticate_complete_dma_port(sw);
2134 return 0;
2135 }
2136
2137 /*
2138 * Check status of the previous flash authentication. If there
2139 * is one we need to power cycle the switch in any case to make
2140 * it functional again.
2141 */
2142 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2143 if (ret <= 0)
2144 return ret;
2145
2146 /* Now we can allow root port to suspend again */
2147 if (!tb_route(sw))
2148 nvm_authenticate_complete_dma_port(sw);
2149
2150 if (status) {
2151 tb_sw_info(sw, "switch flash authentication failed\n");
2152 nvm_set_auth_status(sw, status);
2153 }
2154
2155 tb_sw_info(sw, "power cycling the switch now\n");
2156 dma_port_power_cycle(sw->dma_port);
2157
2158 /*
2159 * We return error here which causes the switch adding failure.
2160 * It should appear back after power cycle is complete.
2161 */
2162 return -ESHUTDOWN;
2163}
2164
2165static void tb_switch_default_link_ports(struct tb_switch *sw)
2166{
2167 int i;
2168
2169 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2170 struct tb_port *port = &sw->ports[i];
2171 struct tb_port *subordinate;
2172
2173 if (!tb_port_is_null(port))
2174 continue;
2175
2176 /* Check for the subordinate port */
2177 if (i == sw->config.max_port_number ||
2178 !tb_port_is_null(&sw->ports[i + 1]))
2179 continue;
2180
2181 /* Link them if not already done so (by DROM) */
2182 subordinate = &sw->ports[i + 1];
2183 if (!port->dual_link_port && !subordinate->dual_link_port) {
2184 port->link_nr = 0;
2185 port->dual_link_port = subordinate;
2186 subordinate->link_nr = 1;
2187 subordinate->dual_link_port = port;
2188
2189 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2190 port->port, subordinate->port);
2191 }
2192 }
2193}
2194
2195static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2196{
2197 const struct tb_port *up = tb_upstream_port(sw);
2198
2199 if (!up->dual_link_port || !up->dual_link_port->remote)
2200 return false;
2201
2202 if (tb_switch_is_usb4(sw))
2203 return usb4_switch_lane_bonding_possible(sw);
2204 return tb_lc_lane_bonding_possible(sw);
2205}
2206
2207static int tb_switch_update_link_attributes(struct tb_switch *sw)
2208{
2209 struct tb_port *up;
2210 bool change = false;
2211 int ret;
2212
2213 if (!tb_route(sw) || tb_switch_is_icm(sw))
2214 return 0;
2215
2216 up = tb_upstream_port(sw);
2217
2218 ret = tb_port_get_link_speed(up);
2219 if (ret < 0)
2220 return ret;
2221 if (sw->link_speed != ret)
2222 change = true;
2223 sw->link_speed = ret;
2224
2225 ret = tb_port_get_link_width(up);
2226 if (ret < 0)
2227 return ret;
2228 if (sw->link_width != ret)
2229 change = true;
2230 sw->link_width = ret;
2231
2232 /* Notify userspace that there is possible link attribute change */
2233 if (device_is_registered(&sw->dev) && change)
2234 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2235
2236 return 0;
2237}
2238
2239/**
2240 * tb_switch_lane_bonding_enable() - Enable lane bonding
2241 * @sw: Switch to enable lane bonding
2242 *
2243 * Connection manager can call this function to enable lane bonding of a
2244 * switch. If conditions are correct and both switches support the feature,
2245 * lanes are bonded. It is safe to call this to any switch.
2246 */
2247int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2248{
2249 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2250 struct tb_port *up, *down;
2251 u64 route = tb_route(sw);
2252 int ret;
2253
2254 if (!route)
2255 return 0;
2256
2257 if (!tb_switch_lane_bonding_possible(sw))
2258 return 0;
2259
2260 up = tb_upstream_port(sw);
2261 down = tb_port_at(route, parent);
2262
2263 if (!tb_port_is_width_supported(up, 2) ||
2264 !tb_port_is_width_supported(down, 2))
2265 return 0;
2266
2267 ret = tb_port_lane_bonding_enable(up);
2268 if (ret) {
2269 tb_port_warn(up, "failed to enable lane bonding\n");
2270 return ret;
2271 }
2272
2273 ret = tb_port_lane_bonding_enable(down);
2274 if (ret) {
2275 tb_port_warn(down, "failed to enable lane bonding\n");
2276 tb_port_lane_bonding_disable(up);
2277 return ret;
2278 }
2279
2280 tb_switch_update_link_attributes(sw);
2281
2282 tb_sw_dbg(sw, "lane bonding enabled\n");
2283 return ret;
2284}
2285
2286/**
2287 * tb_switch_lane_bonding_disable() - Disable lane bonding
2288 * @sw: Switch whose lane bonding to disable
2289 *
2290 * Disables lane bonding between @sw and parent. This can be called even
2291 * if lanes were not bonded originally.
2292 */
2293void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2294{
2295 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2296 struct tb_port *up, *down;
2297
2298 if (!tb_route(sw))
2299 return;
2300
2301 up = tb_upstream_port(sw);
2302 if (!up->bonded)
2303 return;
2304
2305 down = tb_port_at(tb_route(sw), parent);
2306
2307 tb_port_lane_bonding_disable(up);
2308 tb_port_lane_bonding_disable(down);
2309
2310 tb_switch_update_link_attributes(sw);
2311 tb_sw_dbg(sw, "lane bonding disabled\n");
2312}
2313
2314/**
2315 * tb_switch_add() - Add a switch to the domain
2316 * @sw: Switch to add
2317 *
2318 * This is the last step in adding switch to the domain. It will read
2319 * identification information from DROM and initializes ports so that
2320 * they can be used to connect other switches. The switch will be
2321 * exposed to the userspace when this function successfully returns. To
2322 * remove and release the switch, call tb_switch_remove().
2323 *
2324 * Return: %0 in case of success and negative errno in case of failure
2325 */
2326int tb_switch_add(struct tb_switch *sw)
2327{
2328 int i, ret;
2329
2330 /*
2331 * Initialize DMA control port now before we read DROM. Recent
2332 * host controllers have more complete DROM on NVM that includes
2333 * vendor and model identification strings which we then expose
2334 * to the userspace. NVM can be accessed through DMA
2335 * configuration based mailbox.
2336 */
2337 ret = tb_switch_add_dma_port(sw);
2338 if (ret) {
2339 dev_err(&sw->dev, "failed to add DMA port\n");
2340 return ret;
2341 }
2342
2343 if (!sw->safe_mode) {
2344 /* read drom */
2345 ret = tb_drom_read(sw);
2346 if (ret) {
2347 dev_err(&sw->dev, "reading DROM failed\n");
2348 return ret;
2349 }
2350 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2351
2352 ret = tb_switch_set_uuid(sw);
2353 if (ret) {
2354 dev_err(&sw->dev, "failed to set UUID\n");
2355 return ret;
2356 }
2357
2358 for (i = 0; i <= sw->config.max_port_number; i++) {
2359 if (sw->ports[i].disabled) {
2360 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2361 continue;
2362 }
2363 ret = tb_init_port(&sw->ports[i]);
2364 if (ret) {
2365 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2366 return ret;
2367 }
2368 }
2369
2370 tb_switch_default_link_ports(sw);
2371
2372 ret = tb_switch_update_link_attributes(sw);
2373 if (ret)
2374 return ret;
2375
2376 ret = tb_switch_tmu_init(sw);
2377 if (ret)
2378 return ret;
2379 }
2380
2381 ret = device_add(&sw->dev);
2382 if (ret) {
2383 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2384 return ret;
2385 }
2386
2387 if (tb_route(sw)) {
2388 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2389 sw->vendor, sw->device);
2390 if (sw->vendor_name && sw->device_name)
2391 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2392 sw->device_name);
2393 }
2394
2395 ret = tb_switch_nvm_add(sw);
2396 if (ret) {
2397 dev_err(&sw->dev, "failed to add NVM devices\n");
2398 device_del(&sw->dev);
2399 return ret;
2400 }
2401
2402 pm_runtime_set_active(&sw->dev);
2403 if (sw->rpm) {
2404 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2405 pm_runtime_use_autosuspend(&sw->dev);
2406 pm_runtime_mark_last_busy(&sw->dev);
2407 pm_runtime_enable(&sw->dev);
2408 pm_request_autosuspend(&sw->dev);
2409 }
2410
2411 return 0;
2412}
2413
2414/**
2415 * tb_switch_remove() - Remove and release a switch
2416 * @sw: Switch to remove
2417 *
2418 * This will remove the switch from the domain and release it after last
2419 * reference count drops to zero. If there are switches connected below
2420 * this switch, they will be removed as well.
2421 */
2422void tb_switch_remove(struct tb_switch *sw)
2423{
2424 struct tb_port *port;
2425
2426 if (sw->rpm) {
2427 pm_runtime_get_sync(&sw->dev);
2428 pm_runtime_disable(&sw->dev);
2429 }
2430
2431 /* port 0 is the switch itself and never has a remote */
2432 tb_switch_for_each_port(sw, port) {
2433 if (tb_port_has_remote(port)) {
2434 tb_switch_remove(port->remote->sw);
2435 port->remote = NULL;
2436 } else if (port->xdomain) {
2437 tb_xdomain_remove(port->xdomain);
2438 port->xdomain = NULL;
2439 }
2440
2441 /* Remove any downstream retimers */
2442 tb_retimer_remove_all(port);
2443 }
2444
2445 if (!sw->is_unplugged)
2446 tb_plug_events_active(sw, false);
2447
2448 if (tb_switch_is_usb4(sw))
2449 usb4_switch_unconfigure_link(sw);
2450 else
2451 tb_lc_unconfigure_link(sw);
2452
2453 tb_switch_nvm_remove(sw);
2454
2455 if (tb_route(sw))
2456 dev_info(&sw->dev, "device disconnected\n");
2457 device_unregister(&sw->dev);
2458}
2459
2460/**
2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2462 */
2463void tb_sw_set_unplugged(struct tb_switch *sw)
2464{
2465 struct tb_port *port;
2466
2467 if (sw == sw->tb->root_switch) {
2468 tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 return;
2470 }
2471 if (sw->is_unplugged) {
2472 tb_sw_WARN(sw, "is_unplugged already set\n");
2473 return;
2474 }
2475 sw->is_unplugged = true;
2476 tb_switch_for_each_port(sw, port) {
2477 if (tb_port_has_remote(port))
2478 tb_sw_set_unplugged(port->remote->sw);
2479 else if (port->xdomain)
2480 port->xdomain->is_unplugged = true;
2481 }
2482}
2483
2484int tb_switch_resume(struct tb_switch *sw)
2485{
2486 struct tb_port *port;
2487 int err;
2488
2489 tb_sw_dbg(sw, "resuming switch\n");
2490
2491 /*
2492 * Check for UID of the connected switches except for root
2493 * switch which we assume cannot be removed.
2494 */
2495 if (tb_route(sw)) {
2496 u64 uid;
2497
2498 /*
2499 * Check first that we can still read the switch config
2500 * space. It may be that there is now another domain
2501 * connected.
2502 */
2503 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 if (err < 0) {
2505 tb_sw_info(sw, "switch not present anymore\n");
2506 return err;
2507 }
2508
2509 if (tb_switch_is_usb4(sw))
2510 err = usb4_switch_read_uid(sw, &uid);
2511 else
2512 err = tb_drom_read_uid_only(sw, &uid);
2513 if (err) {
2514 tb_sw_warn(sw, "uid read failed\n");
2515 return err;
2516 }
2517 if (sw->uid != uid) {
2518 tb_sw_info(sw,
2519 "changed while suspended (uid %#llx -> %#llx)\n",
2520 sw->uid, uid);
2521 return -ENODEV;
2522 }
2523 }
2524
2525 err = tb_switch_configure(sw);
2526 if (err)
2527 return err;
2528
2529 /* check for surviving downstream switches */
2530 tb_switch_for_each_port(sw, port) {
2531 if (!tb_port_has_remote(port) && !port->xdomain)
2532 continue;
2533
2534 if (tb_wait_for_port(port, true) <= 0) {
2535 tb_port_warn(port,
2536 "lost during suspend, disconnecting\n");
2537 if (tb_port_has_remote(port))
2538 tb_sw_set_unplugged(port->remote->sw);
2539 else if (port->xdomain)
2540 port->xdomain->is_unplugged = true;
2541 } else if (tb_port_has_remote(port) || port->xdomain) {
2542 /*
2543 * Always unlock the port so the downstream
2544 * switch/domain is accessible.
2545 */
2546 if (tb_port_unlock(port))
2547 tb_port_warn(port, "failed to unlock port\n");
2548 if (port->remote && tb_switch_resume(port->remote->sw)) {
2549 tb_port_warn(port,
2550 "lost during suspend, disconnecting\n");
2551 tb_sw_set_unplugged(port->remote->sw);
2552 }
2553 }
2554 }
2555 return 0;
2556}
2557
2558void tb_switch_suspend(struct tb_switch *sw)
2559{
2560 struct tb_port *port;
2561 int err;
2562
2563 err = tb_plug_events_active(sw, false);
2564 if (err)
2565 return;
2566
2567 tb_switch_for_each_port(sw, port) {
2568 if (tb_port_has_remote(port))
2569 tb_switch_suspend(port->remote->sw);
2570 }
2571
2572 if (tb_switch_is_usb4(sw))
2573 usb4_switch_set_sleep(sw);
2574 else
2575 tb_lc_set_sleep(sw);
2576}
2577
2578/**
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2581 * @in: DP IN port
2582 *
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2585 */
2586bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587{
2588 if (tb_switch_is_usb4(sw))
2589 return usb4_switch_query_dp_resource(sw, in);
2590 return tb_lc_dp_sink_query(sw, in);
2591}
2592
2593/**
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2596 * @in: DP IN port
2597 *
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2601 */
2602int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603{
2604 if (tb_switch_is_usb4(sw))
2605 return usb4_switch_alloc_dp_resource(sw, in);
2606 return tb_lc_dp_sink_alloc(sw, in);
2607}
2608
2609/**
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2612 * @in: DP IN port
2613 *
2614 * De-allocates DP resource that was previously allocated for DP
2615 * tunneling.
2616 */
2617void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618{
2619 int ret;
2620
2621 if (tb_switch_is_usb4(sw))
2622 ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 else
2624 ret = tb_lc_dp_sink_dealloc(sw, in);
2625
2626 if (ret)
2627 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 in->port);
2629}
2630
2631struct tb_sw_lookup {
2632 struct tb *tb;
2633 u8 link;
2634 u8 depth;
2635 const uuid_t *uuid;
2636 u64 route;
2637};
2638
2639static int tb_switch_match(struct device *dev, const void *data)
2640{
2641 struct tb_switch *sw = tb_to_switch(dev);
2642 const struct tb_sw_lookup *lookup = data;
2643
2644 if (!sw)
2645 return 0;
2646 if (sw->tb != lookup->tb)
2647 return 0;
2648
2649 if (lookup->uuid)
2650 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651
2652 if (lookup->route) {
2653 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 sw->config.route_hi == upper_32_bits(lookup->route);
2655 }
2656
2657 /* Root switch is matched only by depth */
2658 if (!lookup->depth)
2659 return !sw->depth;
2660
2661 return sw->link == lookup->link && sw->depth == lookup->depth;
2662}
2663
2664/**
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2669 *
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2672 */
2673struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674{
2675 struct tb_sw_lookup lookup;
2676 struct device *dev;
2677
2678 memset(&lookup, 0, sizeof(lookup));
2679 lookup.tb = tb;
2680 lookup.link = link;
2681 lookup.depth = depth;
2682
2683 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 if (dev)
2685 return tb_to_switch(dev);
2686
2687 return NULL;
2688}
2689
2690/**
2691 * tb_switch_find_by_uuid() - Find switch by UUID
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2694 *
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2697 */
2698struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2699{
2700 struct tb_sw_lookup lookup;
2701 struct device *dev;
2702
2703 memset(&lookup, 0, sizeof(lookup));
2704 lookup.tb = tb;
2705 lookup.uuid = uuid;
2706
2707 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 if (dev)
2709 return tb_to_switch(dev);
2710
2711 return NULL;
2712}
2713
2714/**
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2718 *
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2721 */
2722struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723{
2724 struct tb_sw_lookup lookup;
2725 struct device *dev;
2726
2727 if (!route)
2728 return tb_switch_get(tb->root_switch);
2729
2730 memset(&lookup, 0, sizeof(lookup));
2731 lookup.tb = tb;
2732 lookup.route = route;
2733
2734 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 if (dev)
2736 return tb_to_switch(dev);
2737
2738 return NULL;
2739}
2740
2741/**
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2745 */
2746struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 enum tb_port_type type)
2748{
2749 struct tb_port *port;
2750
2751 tb_switch_for_each_port(sw, port) {
2752 if (port->config.type == type)
2753 return port;
2754 }
2755
2756 return NULL;
2757}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
12#include <linux/pm_runtime.h>
13#include <linux/sched/signal.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17
18#include "tb.h"
19
20/* Switch NVM support */
21
22#define NVM_DEVID 0x05
23#define NVM_VERSION 0x08
24#define NVM_CSS 0x10
25#define NVM_FLASH_SIZE 0x45
26
27#define NVM_MIN_SIZE SZ_32K
28#define NVM_MAX_SIZE SZ_512K
29
30static DEFINE_IDA(nvm_ida);
31
32struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36};
37
38/*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43static LIST_HEAD(nvm_auth_status_cache);
44static DEFINE_MUTEX(nvm_auth_status_lock);
45
46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47{
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56}
57
58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59{
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67}
68
69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70{
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92}
93
94static void nvm_clear_auth_status(const struct tb_switch *sw)
95{
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105}
106
107static int nvm_validate_and_write(struct tb_switch *sw)
108{
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167}
168
169static int nvm_authenticate_host(struct tb_switch *sw)
170{
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_all_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196}
197
198static int nvm_authenticate_device(struct tb_switch *sw)
199{
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233}
234
235static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237{
238 struct tb_switch *sw = priv;
239 int ret;
240
241 pm_runtime_get_sync(&sw->dev);
242
243 if (!mutex_trylock(&sw->tb->lock)) {
244 ret = restart_syscall();
245 goto out;
246 }
247
248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
249 mutex_unlock(&sw->tb->lock);
250
251out:
252 pm_runtime_mark_last_busy(&sw->dev);
253 pm_runtime_put_autosuspend(&sw->dev);
254
255 return ret;
256}
257
258static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
259 size_t bytes)
260{
261 struct tb_switch *sw = priv;
262 int ret = 0;
263
264 if (!mutex_trylock(&sw->tb->lock))
265 return restart_syscall();
266
267 /*
268 * Since writing the NVM image might require some special steps,
269 * for example when CSS headers are written, we cache the image
270 * locally here and handle the special cases when the user asks
271 * us to authenticate the image.
272 */
273 if (!sw->nvm->buf) {
274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
275 if (!sw->nvm->buf) {
276 ret = -ENOMEM;
277 goto unlock;
278 }
279 }
280
281 sw->nvm->buf_data_size = offset + bytes;
282 memcpy(sw->nvm->buf + offset, val, bytes);
283
284unlock:
285 mutex_unlock(&sw->tb->lock);
286
287 return ret;
288}
289
290static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
291 size_t size, bool active)
292{
293 struct nvmem_config config;
294
295 memset(&config, 0, sizeof(config));
296
297 if (active) {
298 config.name = "nvm_active";
299 config.reg_read = tb_switch_nvm_read;
300 config.read_only = true;
301 } else {
302 config.name = "nvm_non_active";
303 config.reg_write = tb_switch_nvm_write;
304 config.root_only = true;
305 }
306
307 config.id = id;
308 config.stride = 4;
309 config.word_size = 4;
310 config.size = size;
311 config.dev = &sw->dev;
312 config.owner = THIS_MODULE;
313 config.priv = sw;
314
315 return nvmem_register(&config);
316}
317
318static int tb_switch_nvm_add(struct tb_switch *sw)
319{
320 struct nvmem_device *nvm_dev;
321 struct tb_switch_nvm *nvm;
322 u32 val;
323 int ret;
324
325 if (!sw->dma_port)
326 return 0;
327
328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
329 if (!nvm)
330 return -ENOMEM;
331
332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
333
334 /*
335 * If the switch is in safe-mode the only accessible portion of
336 * the NVM is the non-active one where userspace is expected to
337 * write new functional NVM.
338 */
339 if (!sw->safe_mode) {
340 u32 nvm_size, hdr_size;
341
342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
343 sizeof(val));
344 if (ret)
345 goto err_ida;
346
347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
348 nvm_size = (SZ_1M << (val & 7)) / 8;
349 nvm_size = (nvm_size - hdr_size) / 2;
350
351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
352 sizeof(val));
353 if (ret)
354 goto err_ida;
355
356 nvm->major = val >> 16;
357 nvm->minor = val >> 8;
358
359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_ida;
363 }
364 nvm->active = nvm_dev;
365 }
366
367 if (!sw->no_nvm_upgrade) {
368 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
369 if (IS_ERR(nvm_dev)) {
370 ret = PTR_ERR(nvm_dev);
371 goto err_nvm_active;
372 }
373 nvm->non_active = nvm_dev;
374 }
375
376 sw->nvm = nvm;
377 return 0;
378
379err_nvm_active:
380 if (nvm->active)
381 nvmem_unregister(nvm->active);
382err_ida:
383 ida_simple_remove(&nvm_ida, nvm->id);
384 kfree(nvm);
385
386 return ret;
387}
388
389static void tb_switch_nvm_remove(struct tb_switch *sw)
390{
391 struct tb_switch_nvm *nvm;
392
393 nvm = sw->nvm;
394 sw->nvm = NULL;
395
396 if (!nvm)
397 return;
398
399 /* Remove authentication status in case the switch is unplugged */
400 if (!nvm->authenticating)
401 nvm_clear_auth_status(sw);
402
403 if (nvm->non_active)
404 nvmem_unregister(nvm->non_active);
405 if (nvm->active)
406 nvmem_unregister(nvm->active);
407 ida_simple_remove(&nvm_ida, nvm->id);
408 vfree(nvm->buf);
409 kfree(nvm);
410}
411
412/* port utility functions */
413
414static const char *tb_port_type(struct tb_regs_port_header *port)
415{
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441}
442
443static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
444{
445 tb_dbg(tb,
446 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
447 port->port_number, port->vendor_id, port->device_id,
448 port->revision, port->thunderbolt_version, tb_port_type(port),
449 port->type);
450 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
451 port->max_in_hop_id, port->max_out_hop_id);
452 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
453 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
454}
455
456/**
457 * tb_port_state() - get connectedness state of a port
458 *
459 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
460 *
461 * Return: Returns an enum tb_port_state on success or an error code on failure.
462 */
463static int tb_port_state(struct tb_port *port)
464{
465 struct tb_cap_phy phy;
466 int res;
467 if (port->cap_phy == 0) {
468 tb_port_WARN(port, "does not have a PHY\n");
469 return -EINVAL;
470 }
471 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
472 if (res)
473 return res;
474 return phy.state;
475}
476
477/**
478 * tb_wait_for_port() - wait for a port to become ready
479 *
480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
481 * wait_if_unplugged is set then we also wait if the port is in state
482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
483 * switch resume). Otherwise we only wait if a device is registered but the link
484 * has not yet been established.
485 *
486 * Return: Returns an error code on failure. Returns 0 if the port is not
487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
488 * if the port is connected and in state TB_PORT_UP.
489 */
490int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
491{
492 int retries = 10;
493 int state;
494 if (!port->cap_phy) {
495 tb_port_WARN(port, "does not have PHY\n");
496 return -EINVAL;
497 }
498 if (tb_is_upstream_port(port)) {
499 tb_port_WARN(port, "is the upstream port\n");
500 return -EINVAL;
501 }
502
503 while (retries--) {
504 state = tb_port_state(port);
505 if (state < 0)
506 return state;
507 if (state == TB_PORT_DISABLED) {
508 tb_port_dbg(port, "is disabled (state: 0)\n");
509 return 0;
510 }
511 if (state == TB_PORT_UNPLUGGED) {
512 if (wait_if_unplugged) {
513 /* used during resume */
514 tb_port_dbg(port,
515 "is unplugged (state: 7), retrying...\n");
516 msleep(100);
517 continue;
518 }
519 tb_port_dbg(port, "is unplugged (state: 7)\n");
520 return 0;
521 }
522 if (state == TB_PORT_UP) {
523 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
524 return 1;
525 }
526
527 /*
528 * After plug-in the state is TB_PORT_CONNECTING. Give it some
529 * time.
530 */
531 tb_port_dbg(port,
532 "is connected, link is not up (state: %d), retrying...\n",
533 state);
534 msleep(100);
535 }
536 tb_port_warn(port,
537 "failed to reach state TB_PORT_UP. Ignoring port...\n");
538 return 0;
539}
540
541/**
542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
543 *
544 * Change the number of NFC credits allocated to @port by @credits. To remove
545 * NFC credits pass a negative amount of credits.
546 *
547 * Return: Returns 0 on success or an error code on failure.
548 */
549int tb_port_add_nfc_credits(struct tb_port *port, int credits)
550{
551 u32 nfc_credits;
552
553 if (credits == 0 || port->sw->is_unplugged)
554 return 0;
555
556 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
557 nfc_credits += credits;
558
559 tb_port_dbg(port, "adding %d NFC credits to %lu",
560 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
561
562 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
563 port->config.nfc_credits |= nfc_credits;
564
565 return tb_port_write(port, &port->config.nfc_credits,
566 TB_CFG_PORT, 4, 1);
567}
568
569/**
570 * tb_port_set_initial_credits() - Set initial port link credits allocated
571 * @port: Port to set the initial credits
572 * @credits: Number of credits to to allocate
573 *
574 * Set initial credits value to be used for ingress shared buffering.
575 */
576int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
577{
578 u32 data;
579 int ret;
580
581 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
582 if (ret)
583 return ret;
584
585 data &= ~TB_PORT_LCA_MASK;
586 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
587
588 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
589}
590
591/**
592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
593 *
594 * Return: Returns 0 on success or an error code on failure.
595 */
596int tb_port_clear_counter(struct tb_port *port, int counter)
597{
598 u32 zero[3] = { 0, 0, 0 };
599 tb_port_dbg(port, "clearing counter %d\n", counter);
600 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
601}
602
603/**
604 * tb_init_port() - initialize a port
605 *
606 * This is a helper method for tb_switch_alloc. Does not check or initialize
607 * any downstream switches.
608 *
609 * Return: Returns 0 on success or an error code on failure.
610 */
611static int tb_init_port(struct tb_port *port)
612{
613 int res;
614 int cap;
615
616 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
617 if (res) {
618 if (res == -ENODEV) {
619 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
620 port->port);
621 return 0;
622 }
623 return res;
624 }
625
626 /* Port 0 is the switch itself and has no PHY. */
627 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
628 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
629
630 if (cap > 0)
631 port->cap_phy = cap;
632 else
633 tb_port_WARN(port, "non switch port without a PHY\n");
634 } else if (port->port != 0) {
635 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
636 if (cap > 0)
637 port->cap_adap = cap;
638 }
639
640 tb_dump_port(port->sw->tb, &port->config);
641
642 /* Control port does not need HopID allocation */
643 if (port->port) {
644 ida_init(&port->in_hopids);
645 ida_init(&port->out_hopids);
646 }
647
648 return 0;
649
650}
651
652static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
653 int max_hopid)
654{
655 int port_max_hopid;
656 struct ida *ida;
657
658 if (in) {
659 port_max_hopid = port->config.max_in_hop_id;
660 ida = &port->in_hopids;
661 } else {
662 port_max_hopid = port->config.max_out_hop_id;
663 ida = &port->out_hopids;
664 }
665
666 /* HopIDs 0-7 are reserved */
667 if (min_hopid < TB_PATH_MIN_HOPID)
668 min_hopid = TB_PATH_MIN_HOPID;
669
670 if (max_hopid < 0 || max_hopid > port_max_hopid)
671 max_hopid = port_max_hopid;
672
673 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
674}
675
676/**
677 * tb_port_alloc_in_hopid() - Allocate input HopID from port
678 * @port: Port to allocate HopID for
679 * @min_hopid: Minimum acceptable input HopID
680 * @max_hopid: Maximum acceptable input HopID
681 *
682 * Return: HopID between @min_hopid and @max_hopid or negative errno in
683 * case of error.
684 */
685int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
686{
687 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
688}
689
690/**
691 * tb_port_alloc_out_hopid() - Allocate output HopID from port
692 * @port: Port to allocate HopID for
693 * @min_hopid: Minimum acceptable output HopID
694 * @max_hopid: Maximum acceptable output HopID
695 *
696 * Return: HopID between @min_hopid and @max_hopid or negative errno in
697 * case of error.
698 */
699int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
700{
701 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
702}
703
704/**
705 * tb_port_release_in_hopid() - Release allocated input HopID from port
706 * @port: Port whose HopID to release
707 * @hopid: HopID to release
708 */
709void tb_port_release_in_hopid(struct tb_port *port, int hopid)
710{
711 ida_simple_remove(&port->in_hopids, hopid);
712}
713
714/**
715 * tb_port_release_out_hopid() - Release allocated output HopID from port
716 * @port: Port whose HopID to release
717 * @hopid: HopID to release
718 */
719void tb_port_release_out_hopid(struct tb_port *port, int hopid)
720{
721 ida_simple_remove(&port->out_hopids, hopid);
722}
723
724/**
725 * tb_next_port_on_path() - Return next port for given port on a path
726 * @start: Start port of the walk
727 * @end: End port of the walk
728 * @prev: Previous port (%NULL if this is the first)
729 *
730 * This function can be used to walk from one port to another if they
731 * are connected through zero or more switches. If the @prev is dual
732 * link port, the function follows that link and returns another end on
733 * that same link.
734 *
735 * If the @end port has been reached, return %NULL.
736 *
737 * Domain tb->lock must be held when this function is called.
738 */
739struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
740 struct tb_port *prev)
741{
742 struct tb_port *next;
743
744 if (!prev)
745 return start;
746
747 if (prev->sw == end->sw) {
748 if (prev == end)
749 return NULL;
750 return end;
751 }
752
753 if (start->sw->config.depth < end->sw->config.depth) {
754 if (prev->remote &&
755 prev->remote->sw->config.depth > prev->sw->config.depth)
756 next = prev->remote;
757 else
758 next = tb_port_at(tb_route(end->sw), prev->sw);
759 } else {
760 if (tb_is_upstream_port(prev)) {
761 next = prev->remote;
762 } else {
763 next = tb_upstream_port(prev->sw);
764 /*
765 * Keep the same link if prev and next are both
766 * dual link ports.
767 */
768 if (next->dual_link_port &&
769 next->link_nr != prev->link_nr) {
770 next = next->dual_link_port;
771 }
772 }
773 }
774
775 return next;
776}
777
778/**
779 * tb_port_is_enabled() - Is the adapter port enabled
780 * @port: Port to check
781 */
782bool tb_port_is_enabled(struct tb_port *port)
783{
784 switch (port->config.type) {
785 case TB_TYPE_PCIE_UP:
786 case TB_TYPE_PCIE_DOWN:
787 return tb_pci_port_is_enabled(port);
788
789 case TB_TYPE_DP_HDMI_IN:
790 case TB_TYPE_DP_HDMI_OUT:
791 return tb_dp_port_is_enabled(port);
792
793 default:
794 return false;
795 }
796}
797
798/**
799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
800 * @port: PCIe port to check
801 */
802bool tb_pci_port_is_enabled(struct tb_port *port)
803{
804 u32 data;
805
806 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
807 return false;
808
809 return !!(data & TB_PCI_EN);
810}
811
812/**
813 * tb_pci_port_enable() - Enable PCIe adapter port
814 * @port: PCIe port to enable
815 * @enable: Enable/disable the PCIe adapter
816 */
817int tb_pci_port_enable(struct tb_port *port, bool enable)
818{
819 u32 word = enable ? TB_PCI_EN : 0x0;
820 if (!port->cap_adap)
821 return -ENXIO;
822 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
823}
824
825/**
826 * tb_dp_port_hpd_is_active() - Is HPD already active
827 * @port: DP out port to check
828 *
829 * Checks if the DP OUT adapter port has HDP bit already set.
830 */
831int tb_dp_port_hpd_is_active(struct tb_port *port)
832{
833 u32 data;
834 int ret;
835
836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
837 if (ret)
838 return ret;
839
840 return !!(data & TB_DP_HDP);
841}
842
843/**
844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
845 * @port: Port to clear HPD
846 *
847 * If the DP IN port has HDP set, this function can be used to clear it.
848 */
849int tb_dp_port_hpd_clear(struct tb_port *port)
850{
851 u32 data;
852 int ret;
853
854 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
855 if (ret)
856 return ret;
857
858 data |= TB_DP_HPDC;
859 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
860}
861
862/**
863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
864 * @port: DP IN/OUT port to set hops
865 * @video: Video Hop ID
866 * @aux_tx: AUX TX Hop ID
867 * @aux_rx: AUX RX Hop ID
868 *
869 * Programs specified Hop IDs for DP IN/OUT port.
870 */
871int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
872 unsigned int aux_tx, unsigned int aux_rx)
873{
874 u32 data[2];
875 int ret;
876
877 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
878 ARRAY_SIZE(data));
879 if (ret)
880 return ret;
881
882 data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
883 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
884
885 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
886 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
887 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
888
889 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
890 ARRAY_SIZE(data));
891}
892
893/**
894 * tb_dp_port_is_enabled() - Is DP adapter port enabled
895 * @port: DP adapter port to check
896 */
897bool tb_dp_port_is_enabled(struct tb_port *port)
898{
899 u32 data[2];
900
901 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
902 ARRAY_SIZE(data)))
903 return false;
904
905 return !!(data[0] & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
906}
907
908/**
909 * tb_dp_port_enable() - Enables/disables DP paths of a port
910 * @port: DP IN/OUT port
911 * @enable: Enable/disable DP path
912 *
913 * Once Hop IDs are programmed DP paths can be enabled or disabled by
914 * calling this function.
915 */
916int tb_dp_port_enable(struct tb_port *port, bool enable)
917{
918 u32 data[2];
919 int ret;
920
921 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
922 ARRAY_SIZE(data));
923 if (ret)
924 return ret;
925
926 if (enable)
927 data[0] |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
928 else
929 data[0] &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
930
931 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
932 ARRAY_SIZE(data));
933}
934
935/* switch utility functions */
936
937static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
938{
939 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
940 sw->vendor_id, sw->device_id, sw->revision,
941 sw->thunderbolt_version);
942 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
943 tb_dbg(tb, " Config:\n");
944 tb_dbg(tb,
945 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
946 sw->upstream_port_number, sw->depth,
947 (((u64) sw->route_hi) << 32) | sw->route_lo,
948 sw->enabled, sw->plug_events_delay);
949 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
950 sw->__unknown1, sw->__unknown4);
951}
952
953/**
954 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
955 *
956 * Return: Returns 0 on success or an error code on failure.
957 */
958int tb_switch_reset(struct tb *tb, u64 route)
959{
960 struct tb_cfg_result res;
961 struct tb_regs_switch_header header = {
962 header.route_hi = route >> 32,
963 header.route_lo = route,
964 header.enabled = true,
965 };
966 tb_dbg(tb, "resetting switch at %llx\n", route);
967 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
968 0, 2, 2, 2);
969 if (res.err)
970 return res.err;
971 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
972 if (res.err > 0)
973 return -EIO;
974 return res.err;
975}
976
977/**
978 * tb_plug_events_active() - enable/disable plug events on a switch
979 *
980 * Also configures a sane plug_events_delay of 255ms.
981 *
982 * Return: Returns 0 on success or an error code on failure.
983 */
984static int tb_plug_events_active(struct tb_switch *sw, bool active)
985{
986 u32 data;
987 int res;
988
989 if (!sw->config.enabled)
990 return 0;
991
992 sw->config.plug_events_delay = 0xff;
993 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
994 if (res)
995 return res;
996
997 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
998 if (res)
999 return res;
1000
1001 if (active) {
1002 data = data & 0xFFFFFF83;
1003 switch (sw->config.device_id) {
1004 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1005 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1006 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1007 break;
1008 default:
1009 data |= 4;
1010 }
1011 } else {
1012 data = data | 0x7c;
1013 }
1014 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1015 sw->cap_plug_events + 1, 1);
1016}
1017
1018static ssize_t authorized_show(struct device *dev,
1019 struct device_attribute *attr,
1020 char *buf)
1021{
1022 struct tb_switch *sw = tb_to_switch(dev);
1023
1024 return sprintf(buf, "%u\n", sw->authorized);
1025}
1026
1027static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1028{
1029 int ret = -EINVAL;
1030
1031 if (!mutex_trylock(&sw->tb->lock))
1032 return restart_syscall();
1033
1034 if (sw->authorized)
1035 goto unlock;
1036
1037 switch (val) {
1038 /* Approve switch */
1039 case 1:
1040 if (sw->key)
1041 ret = tb_domain_approve_switch_key(sw->tb, sw);
1042 else
1043 ret = tb_domain_approve_switch(sw->tb, sw);
1044 break;
1045
1046 /* Challenge switch */
1047 case 2:
1048 if (sw->key)
1049 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1050 break;
1051
1052 default:
1053 break;
1054 }
1055
1056 if (!ret) {
1057 sw->authorized = val;
1058 /* Notify status change to the userspace */
1059 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1060 }
1061
1062unlock:
1063 mutex_unlock(&sw->tb->lock);
1064 return ret;
1065}
1066
1067static ssize_t authorized_store(struct device *dev,
1068 struct device_attribute *attr,
1069 const char *buf, size_t count)
1070{
1071 struct tb_switch *sw = tb_to_switch(dev);
1072 unsigned int val;
1073 ssize_t ret;
1074
1075 ret = kstrtouint(buf, 0, &val);
1076 if (ret)
1077 return ret;
1078 if (val > 2)
1079 return -EINVAL;
1080
1081 pm_runtime_get_sync(&sw->dev);
1082 ret = tb_switch_set_authorized(sw, val);
1083 pm_runtime_mark_last_busy(&sw->dev);
1084 pm_runtime_put_autosuspend(&sw->dev);
1085
1086 return ret ? ret : count;
1087}
1088static DEVICE_ATTR_RW(authorized);
1089
1090static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1091 char *buf)
1092{
1093 struct tb_switch *sw = tb_to_switch(dev);
1094
1095 return sprintf(buf, "%u\n", sw->boot);
1096}
1097static DEVICE_ATTR_RO(boot);
1098
1099static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1100 char *buf)
1101{
1102 struct tb_switch *sw = tb_to_switch(dev);
1103
1104 return sprintf(buf, "%#x\n", sw->device);
1105}
1106static DEVICE_ATTR_RO(device);
1107
1108static ssize_t
1109device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1110{
1111 struct tb_switch *sw = tb_to_switch(dev);
1112
1113 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1114}
1115static DEVICE_ATTR_RO(device_name);
1116
1117static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1118 char *buf)
1119{
1120 struct tb_switch *sw = tb_to_switch(dev);
1121 ssize_t ret;
1122
1123 if (!mutex_trylock(&sw->tb->lock))
1124 return restart_syscall();
1125
1126 if (sw->key)
1127 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1128 else
1129 ret = sprintf(buf, "\n");
1130
1131 mutex_unlock(&sw->tb->lock);
1132 return ret;
1133}
1134
1135static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1136 const char *buf, size_t count)
1137{
1138 struct tb_switch *sw = tb_to_switch(dev);
1139 u8 key[TB_SWITCH_KEY_SIZE];
1140 ssize_t ret = count;
1141 bool clear = false;
1142
1143 if (!strcmp(buf, "\n"))
1144 clear = true;
1145 else if (hex2bin(key, buf, sizeof(key)))
1146 return -EINVAL;
1147
1148 if (!mutex_trylock(&sw->tb->lock))
1149 return restart_syscall();
1150
1151 if (sw->authorized) {
1152 ret = -EBUSY;
1153 } else {
1154 kfree(sw->key);
1155 if (clear) {
1156 sw->key = NULL;
1157 } else {
1158 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1159 if (!sw->key)
1160 ret = -ENOMEM;
1161 }
1162 }
1163
1164 mutex_unlock(&sw->tb->lock);
1165 return ret;
1166}
1167static DEVICE_ATTR(key, 0600, key_show, key_store);
1168
1169static void nvm_authenticate_start(struct tb_switch *sw)
1170{
1171 struct pci_dev *root_port;
1172
1173 /*
1174 * During host router NVM upgrade we should not allow root port to
1175 * go into D3cold because some root ports cannot trigger PME
1176 * itself. To be on the safe side keep the root port in D0 during
1177 * the whole upgrade process.
1178 */
1179 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1180 if (root_port)
1181 pm_runtime_get_noresume(&root_port->dev);
1182}
1183
1184static void nvm_authenticate_complete(struct tb_switch *sw)
1185{
1186 struct pci_dev *root_port;
1187
1188 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1189 if (root_port)
1190 pm_runtime_put(&root_port->dev);
1191}
1192
1193static ssize_t nvm_authenticate_show(struct device *dev,
1194 struct device_attribute *attr, char *buf)
1195{
1196 struct tb_switch *sw = tb_to_switch(dev);
1197 u32 status;
1198
1199 nvm_get_auth_status(sw, &status);
1200 return sprintf(buf, "%#x\n", status);
1201}
1202
1203static ssize_t nvm_authenticate_store(struct device *dev,
1204 struct device_attribute *attr, const char *buf, size_t count)
1205{
1206 struct tb_switch *sw = tb_to_switch(dev);
1207 bool val;
1208 int ret;
1209
1210 pm_runtime_get_sync(&sw->dev);
1211
1212 if (!mutex_trylock(&sw->tb->lock)) {
1213 ret = restart_syscall();
1214 goto exit_rpm;
1215 }
1216
1217 /* If NVMem devices are not yet added */
1218 if (!sw->nvm) {
1219 ret = -EAGAIN;
1220 goto exit_unlock;
1221 }
1222
1223 ret = kstrtobool(buf, &val);
1224 if (ret)
1225 goto exit_unlock;
1226
1227 /* Always clear the authentication status */
1228 nvm_clear_auth_status(sw);
1229
1230 if (val) {
1231 if (!sw->nvm->buf) {
1232 ret = -EINVAL;
1233 goto exit_unlock;
1234 }
1235
1236 ret = nvm_validate_and_write(sw);
1237 if (ret)
1238 goto exit_unlock;
1239
1240 sw->nvm->authenticating = true;
1241
1242 if (!tb_route(sw)) {
1243 /*
1244 * Keep root port from suspending as long as the
1245 * NVM upgrade process is running.
1246 */
1247 nvm_authenticate_start(sw);
1248 ret = nvm_authenticate_host(sw);
1249 if (ret)
1250 nvm_authenticate_complete(sw);
1251 } else {
1252 ret = nvm_authenticate_device(sw);
1253 }
1254 }
1255
1256exit_unlock:
1257 mutex_unlock(&sw->tb->lock);
1258exit_rpm:
1259 pm_runtime_mark_last_busy(&sw->dev);
1260 pm_runtime_put_autosuspend(&sw->dev);
1261
1262 if (ret)
1263 return ret;
1264 return count;
1265}
1266static DEVICE_ATTR_RW(nvm_authenticate);
1267
1268static ssize_t nvm_version_show(struct device *dev,
1269 struct device_attribute *attr, char *buf)
1270{
1271 struct tb_switch *sw = tb_to_switch(dev);
1272 int ret;
1273
1274 if (!mutex_trylock(&sw->tb->lock))
1275 return restart_syscall();
1276
1277 if (sw->safe_mode)
1278 ret = -ENODATA;
1279 else if (!sw->nvm)
1280 ret = -EAGAIN;
1281 else
1282 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1283
1284 mutex_unlock(&sw->tb->lock);
1285
1286 return ret;
1287}
1288static DEVICE_ATTR_RO(nvm_version);
1289
1290static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1291 char *buf)
1292{
1293 struct tb_switch *sw = tb_to_switch(dev);
1294
1295 return sprintf(buf, "%#x\n", sw->vendor);
1296}
1297static DEVICE_ATTR_RO(vendor);
1298
1299static ssize_t
1300vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1301{
1302 struct tb_switch *sw = tb_to_switch(dev);
1303
1304 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1305}
1306static DEVICE_ATTR_RO(vendor_name);
1307
1308static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1309 char *buf)
1310{
1311 struct tb_switch *sw = tb_to_switch(dev);
1312
1313 return sprintf(buf, "%pUb\n", sw->uuid);
1314}
1315static DEVICE_ATTR_RO(unique_id);
1316
1317static struct attribute *switch_attrs[] = {
1318 &dev_attr_authorized.attr,
1319 &dev_attr_boot.attr,
1320 &dev_attr_device.attr,
1321 &dev_attr_device_name.attr,
1322 &dev_attr_key.attr,
1323 &dev_attr_nvm_authenticate.attr,
1324 &dev_attr_nvm_version.attr,
1325 &dev_attr_vendor.attr,
1326 &dev_attr_vendor_name.attr,
1327 &dev_attr_unique_id.attr,
1328 NULL,
1329};
1330
1331static umode_t switch_attr_is_visible(struct kobject *kobj,
1332 struct attribute *attr, int n)
1333{
1334 struct device *dev = container_of(kobj, struct device, kobj);
1335 struct tb_switch *sw = tb_to_switch(dev);
1336
1337 if (attr == &dev_attr_device.attr) {
1338 if (!sw->device)
1339 return 0;
1340 } else if (attr == &dev_attr_device_name.attr) {
1341 if (!sw->device_name)
1342 return 0;
1343 } else if (attr == &dev_attr_vendor.attr) {
1344 if (!sw->vendor)
1345 return 0;
1346 } else if (attr == &dev_attr_vendor_name.attr) {
1347 if (!sw->vendor_name)
1348 return 0;
1349 } else if (attr == &dev_attr_key.attr) {
1350 if (tb_route(sw) &&
1351 sw->tb->security_level == TB_SECURITY_SECURE &&
1352 sw->security_level == TB_SECURITY_SECURE)
1353 return attr->mode;
1354 return 0;
1355 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1356 if (sw->dma_port && !sw->no_nvm_upgrade)
1357 return attr->mode;
1358 return 0;
1359 } else if (attr == &dev_attr_nvm_version.attr) {
1360 if (sw->dma_port)
1361 return attr->mode;
1362 return 0;
1363 } else if (attr == &dev_attr_boot.attr) {
1364 if (tb_route(sw))
1365 return attr->mode;
1366 return 0;
1367 }
1368
1369 return sw->safe_mode ? 0 : attr->mode;
1370}
1371
1372static struct attribute_group switch_group = {
1373 .is_visible = switch_attr_is_visible,
1374 .attrs = switch_attrs,
1375};
1376
1377static const struct attribute_group *switch_groups[] = {
1378 &switch_group,
1379 NULL,
1380};
1381
1382static void tb_switch_release(struct device *dev)
1383{
1384 struct tb_switch *sw = tb_to_switch(dev);
1385 int i;
1386
1387 dma_port_free(sw->dma_port);
1388
1389 for (i = 1; i <= sw->config.max_port_number; i++) {
1390 if (!sw->ports[i].disabled) {
1391 ida_destroy(&sw->ports[i].in_hopids);
1392 ida_destroy(&sw->ports[i].out_hopids);
1393 }
1394 }
1395
1396 kfree(sw->uuid);
1397 kfree(sw->device_name);
1398 kfree(sw->vendor_name);
1399 kfree(sw->ports);
1400 kfree(sw->drom);
1401 kfree(sw->key);
1402 kfree(sw);
1403}
1404
1405/*
1406 * Currently only need to provide the callbacks. Everything else is handled
1407 * in the connection manager.
1408 */
1409static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1410{
1411 struct tb_switch *sw = tb_to_switch(dev);
1412 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1413
1414 if (cm_ops->runtime_suspend_switch)
1415 return cm_ops->runtime_suspend_switch(sw);
1416
1417 return 0;
1418}
1419
1420static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1421{
1422 struct tb_switch *sw = tb_to_switch(dev);
1423 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1424
1425 if (cm_ops->runtime_resume_switch)
1426 return cm_ops->runtime_resume_switch(sw);
1427 return 0;
1428}
1429
1430static const struct dev_pm_ops tb_switch_pm_ops = {
1431 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1432 NULL)
1433};
1434
1435struct device_type tb_switch_type = {
1436 .name = "thunderbolt_device",
1437 .release = tb_switch_release,
1438 .pm = &tb_switch_pm_ops,
1439};
1440
1441static int tb_switch_get_generation(struct tb_switch *sw)
1442{
1443 switch (sw->config.device_id) {
1444 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1445 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1446 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1447 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1448 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1449 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1450 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1451 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1452 return 1;
1453
1454 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1455 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1456 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1457 return 2;
1458
1459 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1460 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1461 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1462 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1463 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1464 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1465 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1466 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1467 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1468 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1469 return 3;
1470
1471 default:
1472 /*
1473 * For unknown switches assume generation to be 1 to be
1474 * on the safe side.
1475 */
1476 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1477 sw->config.device_id);
1478 return 1;
1479 }
1480}
1481
1482/**
1483 * tb_switch_alloc() - allocate a switch
1484 * @tb: Pointer to the owning domain
1485 * @parent: Parent device for this switch
1486 * @route: Route string for this switch
1487 *
1488 * Allocates and initializes a switch. Will not upload configuration to
1489 * the switch. For that you need to call tb_switch_configure()
1490 * separately. The returned switch should be released by calling
1491 * tb_switch_put().
1492 *
1493 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1494 * failure.
1495 */
1496struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1497 u64 route)
1498{
1499 struct tb_switch *sw;
1500 int upstream_port;
1501 int i, ret, depth;
1502
1503 /* Make sure we do not exceed maximum topology limit */
1504 depth = tb_route_length(route);
1505 if (depth > TB_SWITCH_MAX_DEPTH)
1506 return ERR_PTR(-EADDRNOTAVAIL);
1507
1508 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1509 if (upstream_port < 0)
1510 return ERR_PTR(upstream_port);
1511
1512 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1513 if (!sw)
1514 return ERR_PTR(-ENOMEM);
1515
1516 sw->tb = tb;
1517 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1518 if (ret)
1519 goto err_free_sw_ports;
1520
1521 tb_dbg(tb, "current switch config:\n");
1522 tb_dump_switch(tb, &sw->config);
1523
1524 /* configure switch */
1525 sw->config.upstream_port_number = upstream_port;
1526 sw->config.depth = depth;
1527 sw->config.route_hi = upper_32_bits(route);
1528 sw->config.route_lo = lower_32_bits(route);
1529 sw->config.enabled = 0;
1530
1531 /* initialize ports */
1532 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1533 GFP_KERNEL);
1534 if (!sw->ports) {
1535 ret = -ENOMEM;
1536 goto err_free_sw_ports;
1537 }
1538
1539 for (i = 0; i <= sw->config.max_port_number; i++) {
1540 /* minimum setup for tb_find_cap and tb_drom_read to work */
1541 sw->ports[i].sw = sw;
1542 sw->ports[i].port = i;
1543 }
1544
1545 sw->generation = tb_switch_get_generation(sw);
1546
1547 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1548 if (ret < 0) {
1549 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1550 goto err_free_sw_ports;
1551 }
1552 sw->cap_plug_events = ret;
1553
1554 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1555 if (ret > 0)
1556 sw->cap_lc = ret;
1557
1558 /* Root switch is always authorized */
1559 if (!route)
1560 sw->authorized = true;
1561
1562 device_initialize(&sw->dev);
1563 sw->dev.parent = parent;
1564 sw->dev.bus = &tb_bus_type;
1565 sw->dev.type = &tb_switch_type;
1566 sw->dev.groups = switch_groups;
1567 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1568
1569 return sw;
1570
1571err_free_sw_ports:
1572 kfree(sw->ports);
1573 kfree(sw);
1574
1575 return ERR_PTR(ret);
1576}
1577
1578/**
1579 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1580 * @tb: Pointer to the owning domain
1581 * @parent: Parent device for this switch
1582 * @route: Route string for this switch
1583 *
1584 * This creates a switch in safe mode. This means the switch pretty much
1585 * lacks all capabilities except DMA configuration port before it is
1586 * flashed with a valid NVM firmware.
1587 *
1588 * The returned switch must be released by calling tb_switch_put().
1589 *
1590 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1591 */
1592struct tb_switch *
1593tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1594{
1595 struct tb_switch *sw;
1596
1597 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1598 if (!sw)
1599 return ERR_PTR(-ENOMEM);
1600
1601 sw->tb = tb;
1602 sw->config.depth = tb_route_length(route);
1603 sw->config.route_hi = upper_32_bits(route);
1604 sw->config.route_lo = lower_32_bits(route);
1605 sw->safe_mode = true;
1606
1607 device_initialize(&sw->dev);
1608 sw->dev.parent = parent;
1609 sw->dev.bus = &tb_bus_type;
1610 sw->dev.type = &tb_switch_type;
1611 sw->dev.groups = switch_groups;
1612 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1613
1614 return sw;
1615}
1616
1617/**
1618 * tb_switch_configure() - Uploads configuration to the switch
1619 * @sw: Switch to configure
1620 *
1621 * Call this function before the switch is added to the system. It will
1622 * upload configuration to the switch and makes it available for the
1623 * connection manager to use.
1624 *
1625 * Return: %0 in case of success and negative errno in case of failure
1626 */
1627int tb_switch_configure(struct tb_switch *sw)
1628{
1629 struct tb *tb = sw->tb;
1630 u64 route;
1631 int ret;
1632
1633 route = tb_route(sw);
1634 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1635 route, tb_route_length(route), sw->config.upstream_port_number);
1636
1637 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1638 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1639 sw->config.vendor_id);
1640
1641 sw->config.enabled = 1;
1642
1643 /* upload configuration */
1644 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1645 if (ret)
1646 return ret;
1647
1648 ret = tb_lc_configure_link(sw);
1649 if (ret)
1650 return ret;
1651
1652 return tb_plug_events_active(sw, true);
1653}
1654
1655static int tb_switch_set_uuid(struct tb_switch *sw)
1656{
1657 u32 uuid[4];
1658 int ret;
1659
1660 if (sw->uuid)
1661 return 0;
1662
1663 /*
1664 * The newer controllers include fused UUID as part of link
1665 * controller specific registers
1666 */
1667 ret = tb_lc_read_uuid(sw, uuid);
1668 if (ret) {
1669 /*
1670 * ICM generates UUID based on UID and fills the upper
1671 * two words with ones. This is not strictly following
1672 * UUID format but we want to be compatible with it so
1673 * we do the same here.
1674 */
1675 uuid[0] = sw->uid & 0xffffffff;
1676 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1677 uuid[2] = 0xffffffff;
1678 uuid[3] = 0xffffffff;
1679 }
1680
1681 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1682 if (!sw->uuid)
1683 return -ENOMEM;
1684 return 0;
1685}
1686
1687static int tb_switch_add_dma_port(struct tb_switch *sw)
1688{
1689 u32 status;
1690 int ret;
1691
1692 switch (sw->generation) {
1693 case 3:
1694 break;
1695
1696 case 2:
1697 /* Only root switch can be upgraded */
1698 if (tb_route(sw))
1699 return 0;
1700 break;
1701
1702 default:
1703 /*
1704 * DMA port is the only thing available when the switch
1705 * is in safe mode.
1706 */
1707 if (!sw->safe_mode)
1708 return 0;
1709 break;
1710 }
1711
1712 /* Root switch DMA port requires running firmware */
1713 if (!tb_route(sw) && sw->config.enabled)
1714 return 0;
1715
1716 sw->dma_port = dma_port_alloc(sw);
1717 if (!sw->dma_port)
1718 return 0;
1719
1720 if (sw->no_nvm_upgrade)
1721 return 0;
1722
1723 /*
1724 * Check status of the previous flash authentication. If there
1725 * is one we need to power cycle the switch in any case to make
1726 * it functional again.
1727 */
1728 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1729 if (ret <= 0)
1730 return ret;
1731
1732 /* Now we can allow root port to suspend again */
1733 if (!tb_route(sw))
1734 nvm_authenticate_complete(sw);
1735
1736 if (status) {
1737 tb_sw_info(sw, "switch flash authentication failed\n");
1738 ret = tb_switch_set_uuid(sw);
1739 if (ret)
1740 return ret;
1741 nvm_set_auth_status(sw, status);
1742 }
1743
1744 tb_sw_info(sw, "power cycling the switch now\n");
1745 dma_port_power_cycle(sw->dma_port);
1746
1747 /*
1748 * We return error here which causes the switch adding failure.
1749 * It should appear back after power cycle is complete.
1750 */
1751 return -ESHUTDOWN;
1752}
1753
1754/**
1755 * tb_switch_add() - Add a switch to the domain
1756 * @sw: Switch to add
1757 *
1758 * This is the last step in adding switch to the domain. It will read
1759 * identification information from DROM and initializes ports so that
1760 * they can be used to connect other switches. The switch will be
1761 * exposed to the userspace when this function successfully returns. To
1762 * remove and release the switch, call tb_switch_remove().
1763 *
1764 * Return: %0 in case of success and negative errno in case of failure
1765 */
1766int tb_switch_add(struct tb_switch *sw)
1767{
1768 int i, ret;
1769
1770 /*
1771 * Initialize DMA control port now before we read DROM. Recent
1772 * host controllers have more complete DROM on NVM that includes
1773 * vendor and model identification strings which we then expose
1774 * to the userspace. NVM can be accessed through DMA
1775 * configuration based mailbox.
1776 */
1777 ret = tb_switch_add_dma_port(sw);
1778 if (ret)
1779 return ret;
1780
1781 if (!sw->safe_mode) {
1782 /* read drom */
1783 ret = tb_drom_read(sw);
1784 if (ret) {
1785 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1786 return ret;
1787 }
1788 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1789
1790 ret = tb_switch_set_uuid(sw);
1791 if (ret)
1792 return ret;
1793
1794 for (i = 0; i <= sw->config.max_port_number; i++) {
1795 if (sw->ports[i].disabled) {
1796 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1797 continue;
1798 }
1799 ret = tb_init_port(&sw->ports[i]);
1800 if (ret)
1801 return ret;
1802 }
1803 }
1804
1805 ret = device_add(&sw->dev);
1806 if (ret)
1807 return ret;
1808
1809 if (tb_route(sw)) {
1810 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1811 sw->vendor, sw->device);
1812 if (sw->vendor_name && sw->device_name)
1813 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1814 sw->device_name);
1815 }
1816
1817 ret = tb_switch_nvm_add(sw);
1818 if (ret) {
1819 device_del(&sw->dev);
1820 return ret;
1821 }
1822
1823 pm_runtime_set_active(&sw->dev);
1824 if (sw->rpm) {
1825 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1826 pm_runtime_use_autosuspend(&sw->dev);
1827 pm_runtime_mark_last_busy(&sw->dev);
1828 pm_runtime_enable(&sw->dev);
1829 pm_request_autosuspend(&sw->dev);
1830 }
1831
1832 return 0;
1833}
1834
1835/**
1836 * tb_switch_remove() - Remove and release a switch
1837 * @sw: Switch to remove
1838 *
1839 * This will remove the switch from the domain and release it after last
1840 * reference count drops to zero. If there are switches connected below
1841 * this switch, they will be removed as well.
1842 */
1843void tb_switch_remove(struct tb_switch *sw)
1844{
1845 int i;
1846
1847 if (sw->rpm) {
1848 pm_runtime_get_sync(&sw->dev);
1849 pm_runtime_disable(&sw->dev);
1850 }
1851
1852 /* port 0 is the switch itself and never has a remote */
1853 for (i = 1; i <= sw->config.max_port_number; i++) {
1854 if (tb_port_has_remote(&sw->ports[i])) {
1855 tb_switch_remove(sw->ports[i].remote->sw);
1856 sw->ports[i].remote = NULL;
1857 } else if (sw->ports[i].xdomain) {
1858 tb_xdomain_remove(sw->ports[i].xdomain);
1859 sw->ports[i].xdomain = NULL;
1860 }
1861 }
1862
1863 if (!sw->is_unplugged)
1864 tb_plug_events_active(sw, false);
1865 tb_lc_unconfigure_link(sw);
1866
1867 tb_switch_nvm_remove(sw);
1868
1869 if (tb_route(sw))
1870 dev_info(&sw->dev, "device disconnected\n");
1871 device_unregister(&sw->dev);
1872}
1873
1874/**
1875 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1876 */
1877void tb_sw_set_unplugged(struct tb_switch *sw)
1878{
1879 int i;
1880 if (sw == sw->tb->root_switch) {
1881 tb_sw_WARN(sw, "cannot unplug root switch\n");
1882 return;
1883 }
1884 if (sw->is_unplugged) {
1885 tb_sw_WARN(sw, "is_unplugged already set\n");
1886 return;
1887 }
1888 sw->is_unplugged = true;
1889 for (i = 0; i <= sw->config.max_port_number; i++) {
1890 if (tb_port_has_remote(&sw->ports[i]))
1891 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1892 else if (sw->ports[i].xdomain)
1893 sw->ports[i].xdomain->is_unplugged = true;
1894 }
1895}
1896
1897int tb_switch_resume(struct tb_switch *sw)
1898{
1899 int i, err;
1900 tb_sw_dbg(sw, "resuming switch\n");
1901
1902 /*
1903 * Check for UID of the connected switches except for root
1904 * switch which we assume cannot be removed.
1905 */
1906 if (tb_route(sw)) {
1907 u64 uid;
1908
1909 /*
1910 * Check first that we can still read the switch config
1911 * space. It may be that there is now another domain
1912 * connected.
1913 */
1914 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1915 if (err < 0) {
1916 tb_sw_info(sw, "switch not present anymore\n");
1917 return err;
1918 }
1919
1920 err = tb_drom_read_uid_only(sw, &uid);
1921 if (err) {
1922 tb_sw_warn(sw, "uid read failed\n");
1923 return err;
1924 }
1925 if (sw->uid != uid) {
1926 tb_sw_info(sw,
1927 "changed while suspended (uid %#llx -> %#llx)\n",
1928 sw->uid, uid);
1929 return -ENODEV;
1930 }
1931 }
1932
1933 /* upload configuration */
1934 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1935 if (err)
1936 return err;
1937
1938 err = tb_lc_configure_link(sw);
1939 if (err)
1940 return err;
1941
1942 err = tb_plug_events_active(sw, true);
1943 if (err)
1944 return err;
1945
1946 /* check for surviving downstream switches */
1947 for (i = 1; i <= sw->config.max_port_number; i++) {
1948 struct tb_port *port = &sw->ports[i];
1949
1950 if (!tb_port_has_remote(port) && !port->xdomain)
1951 continue;
1952
1953 if (tb_wait_for_port(port, true) <= 0) {
1954 tb_port_warn(port,
1955 "lost during suspend, disconnecting\n");
1956 if (tb_port_has_remote(port))
1957 tb_sw_set_unplugged(port->remote->sw);
1958 else if (port->xdomain)
1959 port->xdomain->is_unplugged = true;
1960 } else if (tb_port_has_remote(port)) {
1961 if (tb_switch_resume(port->remote->sw)) {
1962 tb_port_warn(port,
1963 "lost during suspend, disconnecting\n");
1964 tb_sw_set_unplugged(port->remote->sw);
1965 }
1966 }
1967 }
1968 return 0;
1969}
1970
1971void tb_switch_suspend(struct tb_switch *sw)
1972{
1973 int i, err;
1974 err = tb_plug_events_active(sw, false);
1975 if (err)
1976 return;
1977
1978 for (i = 1; i <= sw->config.max_port_number; i++) {
1979 if (tb_port_has_remote(&sw->ports[i]))
1980 tb_switch_suspend(sw->ports[i].remote->sw);
1981 }
1982
1983 tb_lc_set_sleep(sw);
1984}
1985
1986struct tb_sw_lookup {
1987 struct tb *tb;
1988 u8 link;
1989 u8 depth;
1990 const uuid_t *uuid;
1991 u64 route;
1992};
1993
1994static int tb_switch_match(struct device *dev, const void *data)
1995{
1996 struct tb_switch *sw = tb_to_switch(dev);
1997 const struct tb_sw_lookup *lookup = data;
1998
1999 if (!sw)
2000 return 0;
2001 if (sw->tb != lookup->tb)
2002 return 0;
2003
2004 if (lookup->uuid)
2005 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2006
2007 if (lookup->route) {
2008 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2009 sw->config.route_hi == upper_32_bits(lookup->route);
2010 }
2011
2012 /* Root switch is matched only by depth */
2013 if (!lookup->depth)
2014 return !sw->depth;
2015
2016 return sw->link == lookup->link && sw->depth == lookup->depth;
2017}
2018
2019/**
2020 * tb_switch_find_by_link_depth() - Find switch by link and depth
2021 * @tb: Domain the switch belongs
2022 * @link: Link number the switch is connected
2023 * @depth: Depth of the switch in link
2024 *
2025 * Returned switch has reference count increased so the caller needs to
2026 * call tb_switch_put() when done with the switch.
2027 */
2028struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2029{
2030 struct tb_sw_lookup lookup;
2031 struct device *dev;
2032
2033 memset(&lookup, 0, sizeof(lookup));
2034 lookup.tb = tb;
2035 lookup.link = link;
2036 lookup.depth = depth;
2037
2038 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2039 if (dev)
2040 return tb_to_switch(dev);
2041
2042 return NULL;
2043}
2044
2045/**
2046 * tb_switch_find_by_uuid() - Find switch by UUID
2047 * @tb: Domain the switch belongs
2048 * @uuid: UUID to look for
2049 *
2050 * Returned switch has reference count increased so the caller needs to
2051 * call tb_switch_put() when done with the switch.
2052 */
2053struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2054{
2055 struct tb_sw_lookup lookup;
2056 struct device *dev;
2057
2058 memset(&lookup, 0, sizeof(lookup));
2059 lookup.tb = tb;
2060 lookup.uuid = uuid;
2061
2062 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2063 if (dev)
2064 return tb_to_switch(dev);
2065
2066 return NULL;
2067}
2068
2069/**
2070 * tb_switch_find_by_route() - Find switch by route string
2071 * @tb: Domain the switch belongs
2072 * @route: Route string to look for
2073 *
2074 * Returned switch has reference count increased so the caller needs to
2075 * call tb_switch_put() when done with the switch.
2076 */
2077struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2078{
2079 struct tb_sw_lookup lookup;
2080 struct device *dev;
2081
2082 if (!route)
2083 return tb_switch_get(tb->root_switch);
2084
2085 memset(&lookup, 0, sizeof(lookup));
2086 lookup.tb = tb;
2087 lookup.route = route;
2088
2089 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2090 if (dev)
2091 return tb_to_switch(dev);
2092
2093 return NULL;
2094}
2095
2096void tb_switch_exit(void)
2097{
2098 ida_destroy(&nvm_ida);
2099}