Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/delay.h>
  19#include <linux/property.h>
  20
  21#include "nhi.h"
  22#include "nhi_regs.h"
  23#include "tb.h"
  24
  25#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26
  27#define RING_FIRST_USABLE_HOPID	1
 
 
 
 
 
  28
  29/*
  30 * Minimal number of vectors when we use MSI-X. Two for control channel
  31 * Rx/Tx and the rest four are for cross domain DMA paths.
  32 */
  33#define MSIX_MIN_VECS		6
  34#define MSIX_MAX_VECS		16
  35
  36#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  37
  38static int ring_interrupt_index(struct tb_ring *ring)
  39{
  40	int bit = ring->hop;
  41	if (!ring->is_tx)
  42		bit += ring->nhi->hop_count;
  43	return bit;
  44}
  45
  46/**
  47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  48 *
  49 * ring->nhi->lock must be held.
  50 */
  51static void ring_interrupt_active(struct tb_ring *ring, bool active)
  52{
  53	int reg = REG_RING_INTERRUPT_BASE +
  54		  ring_interrupt_index(ring) / 32 * 4;
  55	int bit = ring_interrupt_index(ring) & 31;
  56	int mask = 1 << bit;
  57	u32 old, new;
  58
  59	if (ring->irq > 0) {
  60		u32 step, shift, ivr, misc;
  61		void __iomem *ivr_base;
  62		int index;
  63
  64		if (ring->is_tx)
  65			index = ring->hop;
  66		else
  67			index = ring->hop + ring->nhi->hop_count;
  68
  69		/*
  70		 * Ask the hardware to clear interrupt status bits automatically
  71		 * since we already know which interrupt was triggered.
  72		 */
  73		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  74		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  75			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  76			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  77		}
  78
  79		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  80		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  81		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  82		ivr = ioread32(ivr_base + step);
  83		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  84		if (active)
  85			ivr |= ring->vector << shift;
  86		iowrite32(ivr, ivr_base + step);
  87	}
  88
  89	old = ioread32(ring->nhi->iobase + reg);
  90	if (active)
  91		new = old | mask;
  92	else
  93		new = old & ~mask;
  94
  95	dev_dbg(&ring->nhi->pdev->dev,
  96		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
  97		active ? "enabling" : "disabling", reg, bit, old, new);
  98
  99	if (new == old)
 100		dev_WARN(&ring->nhi->pdev->dev,
 101					 "interrupt for %s %d is already %s\n",
 102					 RING_TYPE(ring), ring->hop,
 103					 active ? "enabled" : "disabled");
 104	iowrite32(new, ring->nhi->iobase + reg);
 105}
 106
 107/**
 108 * nhi_disable_interrupts() - disable interrupts for all rings
 109 *
 110 * Use only during init and shutdown.
 111 */
 112static void nhi_disable_interrupts(struct tb_nhi *nhi)
 113{
 114	int i = 0;
 115	/* disable interrupts */
 116	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 117		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 118
 119	/* clear interrupt status bits */
 120	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 121		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 122}
 123
 124/* ring helper methods */
 125
 126static void __iomem *ring_desc_base(struct tb_ring *ring)
 127{
 128	void __iomem *io = ring->nhi->iobase;
 129	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 130	io += ring->hop * 16;
 131	return io;
 132}
 133
 134static void __iomem *ring_options_base(struct tb_ring *ring)
 135{
 136	void __iomem *io = ring->nhi->iobase;
 137	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 138	io += ring->hop * 32;
 139	return io;
 140}
 141
 142static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 143{
 144	/*
 145	 * The other 16-bits in the register is read-only and writes to it
 146	 * are ignored by the hardware so we can save one ioread32() by
 147	 * filling the read-only bits with zeroes.
 148	 */
 149	iowrite32(cons, ring_desc_base(ring) + 8);
 150}
 151
 152static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 153{
 154	/* See ring_iowrite_cons() above for explanation */
 155	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 156}
 157
 158static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 159{
 160	iowrite32(value, ring_desc_base(ring) + offset);
 161}
 162
 163static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 164{
 165	iowrite32(value, ring_desc_base(ring) + offset);
 166	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 167}
 168
 169static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 170{
 171	iowrite32(value, ring_options_base(ring) + offset);
 172}
 173
 174static bool ring_full(struct tb_ring *ring)
 175{
 176	return ((ring->head + 1) % ring->size) == ring->tail;
 177}
 178
 179static bool ring_empty(struct tb_ring *ring)
 180{
 181	return ring->head == ring->tail;
 182}
 183
 184/**
 185 * ring_write_descriptors() - post frames from ring->queue to the controller
 186 *
 187 * ring->lock is held.
 188 */
 189static void ring_write_descriptors(struct tb_ring *ring)
 190{
 191	struct ring_frame *frame, *n;
 192	struct ring_desc *descriptor;
 193	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 194		if (ring_full(ring))
 195			break;
 196		list_move_tail(&frame->list, &ring->in_flight);
 197		descriptor = &ring->descriptors[ring->head];
 198		descriptor->phys = frame->buffer_phy;
 199		descriptor->time = 0;
 200		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 201		if (ring->is_tx) {
 202			descriptor->length = frame->size;
 203			descriptor->eof = frame->eof;
 204			descriptor->sof = frame->sof;
 205		}
 206		ring->head = (ring->head + 1) % ring->size;
 207		if (ring->is_tx)
 208			ring_iowrite_prod(ring, ring->head);
 209		else
 210			ring_iowrite_cons(ring, ring->head);
 211	}
 212}
 213
 214/**
 215 * ring_work() - progress completed frames
 216 *
 217 * If the ring is shutting down then all frames are marked as canceled and
 218 * their callbacks are invoked.
 219 *
 220 * Otherwise we collect all completed frame from the ring buffer, write new
 221 * frame to the ring buffer and invoke the callbacks for the completed frames.
 222 */
 223static void ring_work(struct work_struct *work)
 224{
 225	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 226	struct ring_frame *frame;
 227	bool canceled = false;
 228	unsigned long flags;
 229	LIST_HEAD(done);
 230
 231	spin_lock_irqsave(&ring->lock, flags);
 232
 233	if (!ring->running) {
 234		/*  Move all frames to done and mark them as canceled. */
 235		list_splice_tail_init(&ring->in_flight, &done);
 236		list_splice_tail_init(&ring->queue, &done);
 237		canceled = true;
 238		goto invoke_callback;
 239	}
 240
 241	while (!ring_empty(ring)) {
 242		if (!(ring->descriptors[ring->tail].flags
 243				& RING_DESC_COMPLETED))
 244			break;
 245		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 246					 list);
 247		list_move_tail(&frame->list, &done);
 248		if (!ring->is_tx) {
 249			frame->size = ring->descriptors[ring->tail].length;
 250			frame->eof = ring->descriptors[ring->tail].eof;
 251			frame->sof = ring->descriptors[ring->tail].sof;
 252			frame->flags = ring->descriptors[ring->tail].flags;
 253		}
 254		ring->tail = (ring->tail + 1) % ring->size;
 255	}
 256	ring_write_descriptors(ring);
 257
 258invoke_callback:
 259	/* allow callbacks to schedule new work */
 260	spin_unlock_irqrestore(&ring->lock, flags);
 261	while (!list_empty(&done)) {
 262		frame = list_first_entry(&done, typeof(*frame), list);
 263		/*
 264		 * The callback may reenqueue or delete frame.
 265		 * Do not hold on to it.
 266		 */
 267		list_del_init(&frame->list);
 268		if (frame->callback)
 269			frame->callback(ring, frame, canceled);
 270	}
 271}
 272
 273int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 274{
 275	unsigned long flags;
 276	int ret = 0;
 277
 278	spin_lock_irqsave(&ring->lock, flags);
 279	if (ring->running) {
 280		list_add_tail(&frame->list, &ring->queue);
 281		ring_write_descriptors(ring);
 282	} else {
 283		ret = -ESHUTDOWN;
 284	}
 285	spin_unlock_irqrestore(&ring->lock, flags);
 286	return ret;
 287}
 288EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 289
 290/**
 291 * tb_ring_poll() - Poll one completed frame from the ring
 292 * @ring: Ring to poll
 293 *
 294 * This function can be called when @start_poll callback of the @ring
 295 * has been called. It will read one completed frame from the ring and
 296 * return it to the caller. Returns %NULL if there is no more completed
 297 * frames.
 298 */
 299struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 300{
 301	struct ring_frame *frame = NULL;
 302	unsigned long flags;
 303
 304	spin_lock_irqsave(&ring->lock, flags);
 305	if (!ring->running)
 306		goto unlock;
 307	if (ring_empty(ring))
 308		goto unlock;
 309
 310	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 311		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 312					 list);
 313		list_del_init(&frame->list);
 314
 315		if (!ring->is_tx) {
 316			frame->size = ring->descriptors[ring->tail].length;
 317			frame->eof = ring->descriptors[ring->tail].eof;
 318			frame->sof = ring->descriptors[ring->tail].sof;
 319			frame->flags = ring->descriptors[ring->tail].flags;
 320		}
 321
 322		ring->tail = (ring->tail + 1) % ring->size;
 323	}
 324
 325unlock:
 326	spin_unlock_irqrestore(&ring->lock, flags);
 327	return frame;
 328}
 329EXPORT_SYMBOL_GPL(tb_ring_poll);
 330
 331static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 332{
 333	int idx = ring_interrupt_index(ring);
 334	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 335	int bit = idx % 32;
 336	u32 val;
 337
 338	val = ioread32(ring->nhi->iobase + reg);
 339	if (mask)
 340		val &= ~BIT(bit);
 341	else
 342		val |= BIT(bit);
 343	iowrite32(val, ring->nhi->iobase + reg);
 344}
 345
 346/* Both @nhi->lock and @ring->lock should be held */
 347static void __ring_interrupt(struct tb_ring *ring)
 348{
 349	if (!ring->running)
 350		return;
 351
 352	if (ring->start_poll) {
 353		__ring_interrupt_mask(ring, true);
 354		ring->start_poll(ring->poll_data);
 355	} else {
 356		schedule_work(&ring->work);
 357	}
 358}
 359
 360/**
 361 * tb_ring_poll_complete() - Re-start interrupt for the ring
 362 * @ring: Ring to re-start the interrupt
 363 *
 364 * This will re-start (unmask) the ring interrupt once the user is done
 365 * with polling.
 366 */
 367void tb_ring_poll_complete(struct tb_ring *ring)
 368{
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&ring->nhi->lock, flags);
 372	spin_lock(&ring->lock);
 373	if (ring->start_poll)
 374		__ring_interrupt_mask(ring, false);
 375	spin_unlock(&ring->lock);
 376	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 377}
 378EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 379
 380static irqreturn_t ring_msix(int irq, void *data)
 381{
 382	struct tb_ring *ring = data;
 383
 384	spin_lock(&ring->nhi->lock);
 385	spin_lock(&ring->lock);
 386	__ring_interrupt(ring);
 387	spin_unlock(&ring->lock);
 388	spin_unlock(&ring->nhi->lock);
 389
 390	return IRQ_HANDLED;
 391}
 392
 393static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 394{
 395	struct tb_nhi *nhi = ring->nhi;
 396	unsigned long irqflags;
 397	int ret;
 398
 399	if (!nhi->pdev->msix_enabled)
 400		return 0;
 401
 402	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 403	if (ret < 0)
 404		return ret;
 405
 406	ring->vector = ret;
 407
 408	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 409	if (ring->irq < 0)
 410		return ring->irq;
 411
 412	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 413	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 414}
 415
 416static void ring_release_msix(struct tb_ring *ring)
 417{
 418	if (ring->irq <= 0)
 419		return;
 420
 421	free_irq(ring->irq, ring);
 422	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 423	ring->vector = 0;
 424	ring->irq = 0;
 425}
 426
 427static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 428{
 429	int ret = 0;
 430
 431	spin_lock_irq(&nhi->lock);
 432
 433	if (ring->hop < 0) {
 434		unsigned int i;
 435
 436		/*
 437		 * Automatically allocate HopID from the non-reserved
 438		 * range 1 .. hop_count - 1.
 439		 */
 440		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 441			if (ring->is_tx) {
 442				if (!nhi->tx_rings[i]) {
 443					ring->hop = i;
 444					break;
 445				}
 446			} else {
 447				if (!nhi->rx_rings[i]) {
 448					ring->hop = i;
 449					break;
 450				}
 451			}
 452		}
 453	}
 454
 455	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 456		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 457		ret = -EINVAL;
 458		goto err_unlock;
 459	}
 460	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 461		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 462			 ring->hop);
 463		ret = -EBUSY;
 464		goto err_unlock;
 465	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 466		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 467			 ring->hop);
 468		ret = -EBUSY;
 469		goto err_unlock;
 470	}
 471
 472	if (ring->is_tx)
 473		nhi->tx_rings[ring->hop] = ring;
 474	else
 475		nhi->rx_rings[ring->hop] = ring;
 476
 477err_unlock:
 478	spin_unlock_irq(&nhi->lock);
 479
 480	return ret;
 481}
 482
 483static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 484				     bool transmit, unsigned int flags,
 485				     u16 sof_mask, u16 eof_mask,
 486				     void (*start_poll)(void *),
 487				     void *poll_data)
 488{
 489	struct tb_ring *ring = NULL;
 490
 491	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 492		transmit ? "TX" : "RX", hop, size);
 493
 
 
 
 
 494	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 495	if (!ring)
 496		return NULL;
 497
 498	spin_lock_init(&ring->lock);
 499	INIT_LIST_HEAD(&ring->queue);
 500	INIT_LIST_HEAD(&ring->in_flight);
 501	INIT_WORK(&ring->work, ring_work);
 502
 503	ring->nhi = nhi;
 504	ring->hop = hop;
 505	ring->is_tx = transmit;
 506	ring->size = size;
 507	ring->flags = flags;
 508	ring->sof_mask = sof_mask;
 509	ring->eof_mask = eof_mask;
 510	ring->head = 0;
 511	ring->tail = 0;
 512	ring->running = false;
 513	ring->start_poll = start_poll;
 514	ring->poll_data = poll_data;
 515
 516	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 517			size * sizeof(*ring->descriptors),
 518			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 519	if (!ring->descriptors)
 520		goto err_free_ring;
 521
 522	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 523		goto err_free_descs;
 524
 525	if (nhi_alloc_hop(nhi, ring))
 526		goto err_release_msix;
 527
 528	return ring;
 529
 530err_release_msix:
 531	ring_release_msix(ring);
 532err_free_descs:
 533	dma_free_coherent(&ring->nhi->pdev->dev,
 534			  ring->size * sizeof(*ring->descriptors),
 535			  ring->descriptors, ring->descriptors_dma);
 536err_free_ring:
 537	kfree(ring);
 538
 539	return NULL;
 540}
 541
 542/**
 543 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 544 * @nhi: Pointer to the NHI the ring is to be allocated
 545 * @hop: HopID (ring) to allocate
 546 * @size: Number of entries in the ring
 547 * @flags: Flags for the ring
 548 */
 549struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 550				 unsigned int flags)
 551{
 552	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 553}
 554EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 555
 556/**
 557 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 558 * @nhi: Pointer to the NHI the ring is to be allocated
 559 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 560 * @size: Number of entries in the ring
 561 * @flags: Flags for the ring
 562 * @sof_mask: Mask of PDF values that start a frame
 563 * @eof_mask: Mask of PDF values that end a frame
 564 * @start_poll: If not %NULL the ring will call this function when an
 565 *		interrupt is triggered and masked, instead of callback
 566 *		in each Rx frame.
 567 * @poll_data: Optional data passed to @start_poll
 568 */
 569struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 570				 unsigned int flags, u16 sof_mask, u16 eof_mask,
 571				 void (*start_poll)(void *), void *poll_data)
 572{
 573	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 574			     start_poll, poll_data);
 575}
 576EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 577
 578/**
 579 * tb_ring_start() - enable a ring
 580 *
 581 * Must not be invoked in parallel with tb_ring_stop().
 582 */
 583void tb_ring_start(struct tb_ring *ring)
 584{
 585	u16 frame_size;
 586	u32 flags;
 587
 588	spin_lock_irq(&ring->nhi->lock);
 589	spin_lock(&ring->lock);
 590	if (ring->nhi->going_away)
 591		goto err;
 592	if (ring->running) {
 593		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 594		goto err;
 595	}
 596	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 597		RING_TYPE(ring), ring->hop);
 598
 599	if (ring->flags & RING_FLAG_FRAME) {
 600		/* Means 4096 */
 601		frame_size = 0;
 602		flags = RING_FLAG_ENABLE;
 603	} else {
 604		frame_size = TB_FRAME_SIZE;
 605		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 606	}
 607
 
 
 
 
 
 
 
 
 
 
 
 
 
 608	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 609	if (ring->is_tx) {
 610		ring_iowrite32desc(ring, ring->size, 12);
 611		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 612		ring_iowrite32options(ring, flags, 0);
 613	} else {
 614		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 615
 616		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 617		ring_iowrite32options(ring, sof_eof_mask, 4);
 618		ring_iowrite32options(ring, flags, 0);
 619	}
 620	ring_interrupt_active(ring, true);
 621	ring->running = true;
 622err:
 623	spin_unlock(&ring->lock);
 624	spin_unlock_irq(&ring->nhi->lock);
 625}
 626EXPORT_SYMBOL_GPL(tb_ring_start);
 627
 628/**
 629 * tb_ring_stop() - shutdown a ring
 630 *
 631 * Must not be invoked from a callback.
 632 *
 633 * This method will disable the ring. Further calls to
 634 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 635 * called.
 636 *
 637 * All enqueued frames will be canceled and their callbacks will be executed
 638 * with frame->canceled set to true (on the callback thread). This method
 639 * returns only after all callback invocations have finished.
 640 */
 641void tb_ring_stop(struct tb_ring *ring)
 642{
 643	spin_lock_irq(&ring->nhi->lock);
 644	spin_lock(&ring->lock);
 645	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 646		RING_TYPE(ring), ring->hop);
 647	if (ring->nhi->going_away)
 648		goto err;
 649	if (!ring->running) {
 650		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 651			 RING_TYPE(ring), ring->hop);
 652		goto err;
 653	}
 654	ring_interrupt_active(ring, false);
 655
 656	ring_iowrite32options(ring, 0, 0);
 657	ring_iowrite64desc(ring, 0, 0);
 658	ring_iowrite32desc(ring, 0, 8);
 659	ring_iowrite32desc(ring, 0, 12);
 660	ring->head = 0;
 661	ring->tail = 0;
 662	ring->running = false;
 663
 664err:
 665	spin_unlock(&ring->lock);
 666	spin_unlock_irq(&ring->nhi->lock);
 667
 668	/*
 669	 * schedule ring->work to invoke callbacks on all remaining frames.
 670	 */
 671	schedule_work(&ring->work);
 672	flush_work(&ring->work);
 673}
 674EXPORT_SYMBOL_GPL(tb_ring_stop);
 675
 676/*
 677 * tb_ring_free() - free ring
 678 *
 679 * When this method returns all invocations of ring->callback will have
 680 * finished.
 681 *
 682 * Ring must be stopped.
 683 *
 684 * Must NOT be called from ring_frame->callback!
 685 */
 686void tb_ring_free(struct tb_ring *ring)
 687{
 688	spin_lock_irq(&ring->nhi->lock);
 689	/*
 690	 * Dissociate the ring from the NHI. This also ensures that
 691	 * nhi_interrupt_work cannot reschedule ring->work.
 692	 */
 693	if (ring->is_tx)
 694		ring->nhi->tx_rings[ring->hop] = NULL;
 695	else
 696		ring->nhi->rx_rings[ring->hop] = NULL;
 697
 698	if (ring->running) {
 699		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 700			 RING_TYPE(ring), ring->hop);
 701	}
 702	spin_unlock_irq(&ring->nhi->lock);
 703
 704	ring_release_msix(ring);
 705
 706	dma_free_coherent(&ring->nhi->pdev->dev,
 707			  ring->size * sizeof(*ring->descriptors),
 708			  ring->descriptors, ring->descriptors_dma);
 709
 710	ring->descriptors = NULL;
 711	ring->descriptors_dma = 0;
 712
 713
 714	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 715		ring->hop);
 716
 717	/**
 718	 * ring->work can no longer be scheduled (it is scheduled only
 719	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 720	 * to finish before freeing the ring.
 721	 */
 722	flush_work(&ring->work);
 723	kfree(ring);
 724}
 725EXPORT_SYMBOL_GPL(tb_ring_free);
 726
 727/**
 728 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 729 * @nhi: Pointer to the NHI structure
 730 * @cmd: Command to send
 731 * @data: Data to be send with the command
 732 *
 733 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 734 * case of success and negative errno in case of failure.
 735 */
 736int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 737{
 738	ktime_t timeout;
 739	u32 val;
 740
 741	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 742
 743	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 744	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 745	val |= REG_INMAIL_OP_REQUEST | cmd;
 746	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 747
 748	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 749	do {
 750		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 751		if (!(val & REG_INMAIL_OP_REQUEST))
 752			break;
 753		usleep_range(10, 20);
 754	} while (ktime_before(ktime_get(), timeout));
 755
 756	if (val & REG_INMAIL_OP_REQUEST)
 757		return -ETIMEDOUT;
 758	if (val & REG_INMAIL_ERROR)
 759		return -EIO;
 760
 761	return 0;
 762}
 763
 764/**
 765 * nhi_mailbox_mode() - Return current firmware operation mode
 766 * @nhi: Pointer to the NHI structure
 767 *
 768 * The function reads current firmware operation mode using NHI mailbox
 769 * registers and returns it to the caller.
 770 */
 771enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 772{
 773	u32 val;
 774
 775	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 776	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 777	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 778
 779	return (enum nhi_fw_mode)val;
 780}
 781
 782static void nhi_interrupt_work(struct work_struct *work)
 783{
 784	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 785	int value = 0; /* Suppress uninitialized usage warning. */
 786	int bit;
 787	int hop = -1;
 788	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 789	struct tb_ring *ring;
 790
 791	spin_lock_irq(&nhi->lock);
 792
 793	/*
 794	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 795	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 796	 * dwords as required. The registers are cleared on read.
 797	 */
 798	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 799		if (bit % 32 == 0)
 800			value = ioread32(nhi->iobase
 801					 + REG_RING_NOTIFY_BASE
 802					 + 4 * (bit / 32));
 803		if (++hop == nhi->hop_count) {
 804			hop = 0;
 805			type++;
 806		}
 807		if ((value & (1 << (bit % 32))) == 0)
 808			continue;
 809		if (type == 2) {
 810			dev_warn(&nhi->pdev->dev,
 811				 "RX overflow for ring %d\n",
 812				 hop);
 813			continue;
 814		}
 815		if (type == 0)
 816			ring = nhi->tx_rings[hop];
 817		else
 818			ring = nhi->rx_rings[hop];
 819		if (ring == NULL) {
 820			dev_warn(&nhi->pdev->dev,
 821				 "got interrupt for inactive %s ring %d\n",
 822				 type ? "RX" : "TX",
 823				 hop);
 824			continue;
 825		}
 826
 827		spin_lock(&ring->lock);
 828		__ring_interrupt(ring);
 829		spin_unlock(&ring->lock);
 830	}
 831	spin_unlock_irq(&nhi->lock);
 832}
 833
 834static irqreturn_t nhi_msi(int irq, void *data)
 835{
 836	struct tb_nhi *nhi = data;
 837	schedule_work(&nhi->interrupt_work);
 838	return IRQ_HANDLED;
 839}
 840
 841static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 842{
 843	struct pci_dev *pdev = to_pci_dev(dev);
 844	struct tb *tb = pci_get_drvdata(pdev);
 845	struct tb_nhi *nhi = tb->nhi;
 846	int ret;
 847
 848	ret = tb_domain_suspend_noirq(tb);
 849	if (ret)
 850		return ret;
 851
 852	if (nhi->ops && nhi->ops->suspend_noirq) {
 853		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 854		if (ret)
 855			return ret;
 856	}
 857
 858	return 0;
 859}
 860
 861static int nhi_suspend_noirq(struct device *dev)
 862{
 863	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 864}
 865
 866static bool nhi_wake_supported(struct pci_dev *pdev)
 867{
 868	u8 val;
 869
 870	/*
 871	 * If power rails are sustainable for wakeup from S4 this
 872	 * property is set by the BIOS.
 873	 */
 874	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 875		return !!val;
 876
 877	return true;
 878}
 879
 880static int nhi_poweroff_noirq(struct device *dev)
 881{
 882	struct pci_dev *pdev = to_pci_dev(dev);
 883	bool wakeup;
 884
 885	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 886	return __nhi_suspend_noirq(dev, wakeup);
 887}
 888
 889static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 890{
 891	/* Throttling is specified in 256ns increments */
 892	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 893	unsigned int i;
 894
 895	/*
 896	 * Configure interrupt throttling for all vectors even if we
 897	 * only use few.
 898	 */
 899	for (i = 0; i < MSIX_MAX_VECS; i++) {
 900		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 901		iowrite32(throttle, nhi->iobase + reg);
 902	}
 903}
 904
 905static int nhi_resume_noirq(struct device *dev)
 906{
 907	struct pci_dev *pdev = to_pci_dev(dev);
 908	struct tb *tb = pci_get_drvdata(pdev);
 909	struct tb_nhi *nhi = tb->nhi;
 910	int ret;
 911
 912	/*
 913	 * Check that the device is still there. It may be that the user
 914	 * unplugged last device which causes the host controller to go
 915	 * away on PCs.
 916	 */
 917	if (!pci_device_is_present(pdev)) {
 918		nhi->going_away = true;
 919	} else {
 920		if (nhi->ops && nhi->ops->resume_noirq) {
 921			ret = nhi->ops->resume_noirq(nhi);
 922			if (ret)
 923				return ret;
 924		}
 925		nhi_enable_int_throttling(tb->nhi);
 926	}
 927
 928	return tb_domain_resume_noirq(tb);
 929}
 930
 931static int nhi_suspend(struct device *dev)
 932{
 933	struct pci_dev *pdev = to_pci_dev(dev);
 934	struct tb *tb = pci_get_drvdata(pdev);
 935
 936	return tb_domain_suspend(tb);
 937}
 938
 939static void nhi_complete(struct device *dev)
 940{
 941	struct pci_dev *pdev = to_pci_dev(dev);
 942	struct tb *tb = pci_get_drvdata(pdev);
 943
 944	/*
 945	 * If we were runtime suspended when system suspend started,
 946	 * schedule runtime resume now. It should bring the domain back
 947	 * to functional state.
 948	 */
 949	if (pm_runtime_suspended(&pdev->dev))
 950		pm_runtime_resume(&pdev->dev);
 951	else
 952		tb_domain_complete(tb);
 953}
 954
 955static int nhi_runtime_suspend(struct device *dev)
 956{
 957	struct pci_dev *pdev = to_pci_dev(dev);
 958	struct tb *tb = pci_get_drvdata(pdev);
 959	struct tb_nhi *nhi = tb->nhi;
 960	int ret;
 961
 962	ret = tb_domain_runtime_suspend(tb);
 963	if (ret)
 964		return ret;
 965
 966	if (nhi->ops && nhi->ops->runtime_suspend) {
 967		ret = nhi->ops->runtime_suspend(tb->nhi);
 968		if (ret)
 969			return ret;
 970	}
 971	return 0;
 972}
 973
 974static int nhi_runtime_resume(struct device *dev)
 975{
 976	struct pci_dev *pdev = to_pci_dev(dev);
 977	struct tb *tb = pci_get_drvdata(pdev);
 978	struct tb_nhi *nhi = tb->nhi;
 979	int ret;
 980
 981	if (nhi->ops && nhi->ops->runtime_resume) {
 982		ret = nhi->ops->runtime_resume(nhi);
 983		if (ret)
 984			return ret;
 985	}
 986
 987	nhi_enable_int_throttling(nhi);
 988	return tb_domain_runtime_resume(tb);
 989}
 990
 991static void nhi_shutdown(struct tb_nhi *nhi)
 992{
 993	int i;
 994
 995	dev_dbg(&nhi->pdev->dev, "shutdown\n");
 996
 997	for (i = 0; i < nhi->hop_count; i++) {
 998		if (nhi->tx_rings[i])
 999			dev_WARN(&nhi->pdev->dev,
1000				 "TX ring %d is still active\n", i);
1001		if (nhi->rx_rings[i])
1002			dev_WARN(&nhi->pdev->dev,
1003				 "RX ring %d is still active\n", i);
1004	}
1005	nhi_disable_interrupts(nhi);
1006	/*
1007	 * We have to release the irq before calling flush_work. Otherwise an
1008	 * already executing IRQ handler could call schedule_work again.
1009	 */
1010	if (!nhi->pdev->msix_enabled) {
1011		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1012		flush_work(&nhi->interrupt_work);
1013	}
1014	ida_destroy(&nhi->msix_ida);
1015
1016	if (nhi->ops && nhi->ops->shutdown)
1017		nhi->ops->shutdown(nhi);
1018}
1019
1020static int nhi_init_msi(struct tb_nhi *nhi)
1021{
1022	struct pci_dev *pdev = nhi->pdev;
1023	int res, irq, nvec;
1024
1025	/* In case someone left them on. */
1026	nhi_disable_interrupts(nhi);
1027
1028	nhi_enable_int_throttling(nhi);
1029
1030	ida_init(&nhi->msix_ida);
1031
1032	/*
1033	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1034	 * get all MSI-X vectors and if we succeed, each ring will have
1035	 * one MSI-X. If for some reason that does not work out, we
1036	 * fallback to a single MSI.
1037	 */
1038	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1039				     PCI_IRQ_MSIX);
1040	if (nvec < 0) {
1041		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1042		if (nvec < 0)
1043			return nvec;
1044
1045		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1046
1047		irq = pci_irq_vector(nhi->pdev, 0);
1048		if (irq < 0)
1049			return irq;
1050
1051		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1052				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1053		if (res) {
1054			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1055			return res;
1056		}
1057	}
1058
1059	return 0;
1060}
1061
1062static bool nhi_imr_valid(struct pci_dev *pdev)
1063{
1064	u8 val;
1065
1066	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1067		return !!val;
1068
1069	return true;
1070}
1071
1072static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1073{
1074	struct tb_nhi *nhi;
1075	struct tb *tb;
1076	int res;
1077
1078	if (!nhi_imr_valid(pdev)) {
1079		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1080		return -ENODEV;
1081	}
1082
1083	res = pcim_enable_device(pdev);
1084	if (res) {
1085		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1086		return res;
1087	}
1088
1089	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1090	if (res) {
1091		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1092		return res;
1093	}
1094
1095	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1096	if (!nhi)
1097		return -ENOMEM;
1098
1099	nhi->pdev = pdev;
1100	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1101	/* cannot fail - table is allocated bin pcim_iomap_regions */
1102	nhi->iobase = pcim_iomap_table(pdev)[0];
1103	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1104	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
 
 
1105
1106	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1107				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1108	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1109				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1110	if (!nhi->tx_rings || !nhi->rx_rings)
1111		return -ENOMEM;
1112
1113	res = nhi_init_msi(nhi);
1114	if (res) {
1115		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1116		return res;
1117	}
1118
1119	spin_lock_init(&nhi->lock);
1120
1121	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1122	if (res)
1123		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1124	if (res) {
1125		dev_err(&pdev->dev, "failed to set DMA mask\n");
1126		return res;
1127	}
1128
1129	pci_set_master(pdev);
1130
1131	if (nhi->ops && nhi->ops->init) {
1132		res = nhi->ops->init(nhi);
1133		if (res)
1134			return res;
1135	}
1136
1137	tb = icm_probe(nhi);
1138	if (!tb)
1139		tb = tb_probe(nhi);
1140	if (!tb) {
1141		dev_err(&nhi->pdev->dev,
1142			"failed to determine connection manager, aborting\n");
1143		return -ENODEV;
1144	}
1145
1146	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1147
1148	res = tb_domain_add(tb);
1149	if (res) {
1150		/*
1151		 * At this point the RX/TX rings might already have been
1152		 * activated. Do a proper shutdown.
1153		 */
1154		tb_domain_put(tb);
1155		nhi_shutdown(nhi);
1156		return res;
1157	}
1158	pci_set_drvdata(pdev, tb);
1159
1160	pm_runtime_allow(&pdev->dev);
1161	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1162	pm_runtime_use_autosuspend(&pdev->dev);
1163	pm_runtime_put_autosuspend(&pdev->dev);
1164
1165	return 0;
1166}
1167
1168static void nhi_remove(struct pci_dev *pdev)
1169{
1170	struct tb *tb = pci_get_drvdata(pdev);
1171	struct tb_nhi *nhi = tb->nhi;
1172
1173	pm_runtime_get_sync(&pdev->dev);
1174	pm_runtime_dont_use_autosuspend(&pdev->dev);
1175	pm_runtime_forbid(&pdev->dev);
1176
1177	tb_domain_remove(tb);
1178	nhi_shutdown(nhi);
1179}
1180
1181/*
1182 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1183 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1184 * resume_noirq until we are done.
1185 */
1186static const struct dev_pm_ops nhi_pm_ops = {
1187	.suspend_noirq = nhi_suspend_noirq,
1188	.resume_noirq = nhi_resume_noirq,
1189	.freeze_noirq = nhi_suspend_noirq, /*
1190					    * we just disable hotplug, the
1191					    * pci-tunnels stay alive.
1192					    */
1193	.thaw_noirq = nhi_resume_noirq,
1194	.restore_noirq = nhi_resume_noirq,
1195	.suspend = nhi_suspend,
1196	.freeze = nhi_suspend,
1197	.poweroff_noirq = nhi_poweroff_noirq,
1198	.poweroff = nhi_suspend,
1199	.complete = nhi_complete,
1200	.runtime_suspend = nhi_runtime_suspend,
1201	.runtime_resume = nhi_runtime_resume,
1202};
1203
1204static struct pci_device_id nhi_ids[] = {
1205	/*
1206	 * We have to specify class, the TB bridges use the same device and
1207	 * vendor (sub)id on gen 1 and gen 2 controllers.
1208	 */
1209	{
1210		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1211		.vendor = PCI_VENDOR_ID_INTEL,
1212		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1213		.subvendor = 0x2222, .subdevice = 0x1111,
1214	},
1215	{
1216		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1217		.vendor = PCI_VENDOR_ID_INTEL,
1218		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1219		.subvendor = 0x2222, .subdevice = 0x1111,
1220	},
1221	{
1222		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1223		.vendor = PCI_VENDOR_ID_INTEL,
1224		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1225		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1226	},
1227	{
1228		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1229		.vendor = PCI_VENDOR_ID_INTEL,
1230		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1231		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1232	},
1233
1234	/* Thunderbolt 3 */
1235	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1236	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1237	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1238	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1239	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1240	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1241	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1242	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1243	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1244	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1245	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1246	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1247	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1248	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1249	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1250	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1251	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1252	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1253
1254	/* Any USB4 compliant host */
1255	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1256
1257	{ 0,}
1258};
1259
1260MODULE_DEVICE_TABLE(pci, nhi_ids);
1261MODULE_LICENSE("GPL");
1262
1263static struct pci_driver nhi_driver = {
1264	.name = "thunderbolt",
1265	.id_table = nhi_ids,
1266	.probe = nhi_probe,
1267	.remove = nhi_remove,
1268	.shutdown = nhi_remove,
1269	.driver.pm = &nhi_pm_ops,
1270};
1271
1272static int __init nhi_init(void)
1273{
1274	int ret;
1275
1276	ret = tb_domain_init();
1277	if (ret)
1278		return ret;
1279	ret = pci_register_driver(&nhi_driver);
1280	if (ret)
1281		tb_domain_exit();
1282	return ret;
1283}
1284
1285static void __exit nhi_unload(void)
1286{
1287	pci_unregister_driver(&nhi_driver);
1288	tb_domain_exit();
1289}
1290
1291rootfs_initcall(nhi_init);
1292module_exit(nhi_unload);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/delay.h>
  19#include <linux/property.h>
  20
  21#include "nhi.h"
  22#include "nhi_regs.h"
  23#include "tb.h"
  24
  25#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26
  27/*
  28 * Used to enable end-to-end workaround for missing RX packets. Do not
  29 * use this ring for anything else.
  30 */
  31#define RING_E2E_UNUSED_HOPID	2
  32#define RING_FIRST_USABLE_HOPID	TB_PATH_MIN_HOPID
  33
  34/*
  35 * Minimal number of vectors when we use MSI-X. Two for control channel
  36 * Rx/Tx and the rest four are for cross domain DMA paths.
  37 */
  38#define MSIX_MIN_VECS		6
  39#define MSIX_MAX_VECS		16
  40
  41#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  42
  43static int ring_interrupt_index(struct tb_ring *ring)
  44{
  45	int bit = ring->hop;
  46	if (!ring->is_tx)
  47		bit += ring->nhi->hop_count;
  48	return bit;
  49}
  50
  51/**
  52 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  53 *
  54 * ring->nhi->lock must be held.
  55 */
  56static void ring_interrupt_active(struct tb_ring *ring, bool active)
  57{
  58	int reg = REG_RING_INTERRUPT_BASE +
  59		  ring_interrupt_index(ring) / 32 * 4;
  60	int bit = ring_interrupt_index(ring) & 31;
  61	int mask = 1 << bit;
  62	u32 old, new;
  63
  64	if (ring->irq > 0) {
  65		u32 step, shift, ivr, misc;
  66		void __iomem *ivr_base;
  67		int index;
  68
  69		if (ring->is_tx)
  70			index = ring->hop;
  71		else
  72			index = ring->hop + ring->nhi->hop_count;
  73
  74		/*
  75		 * Ask the hardware to clear interrupt status bits automatically
  76		 * since we already know which interrupt was triggered.
  77		 */
  78		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  79		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  80			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  81			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  82		}
  83
  84		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  85		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  86		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  87		ivr = ioread32(ivr_base + step);
  88		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  89		if (active)
  90			ivr |= ring->vector << shift;
  91		iowrite32(ivr, ivr_base + step);
  92	}
  93
  94	old = ioread32(ring->nhi->iobase + reg);
  95	if (active)
  96		new = old | mask;
  97	else
  98		new = old & ~mask;
  99
 100	dev_dbg(&ring->nhi->pdev->dev,
 101		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
 102		active ? "enabling" : "disabling", reg, bit, old, new);
 103
 104	if (new == old)
 105		dev_WARN(&ring->nhi->pdev->dev,
 106					 "interrupt for %s %d is already %s\n",
 107					 RING_TYPE(ring), ring->hop,
 108					 active ? "enabled" : "disabled");
 109	iowrite32(new, ring->nhi->iobase + reg);
 110}
 111
 112/**
 113 * nhi_disable_interrupts() - disable interrupts for all rings
 114 *
 115 * Use only during init and shutdown.
 116 */
 117static void nhi_disable_interrupts(struct tb_nhi *nhi)
 118{
 119	int i = 0;
 120	/* disable interrupts */
 121	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 122		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 123
 124	/* clear interrupt status bits */
 125	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 126		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 127}
 128
 129/* ring helper methods */
 130
 131static void __iomem *ring_desc_base(struct tb_ring *ring)
 132{
 133	void __iomem *io = ring->nhi->iobase;
 134	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 135	io += ring->hop * 16;
 136	return io;
 137}
 138
 139static void __iomem *ring_options_base(struct tb_ring *ring)
 140{
 141	void __iomem *io = ring->nhi->iobase;
 142	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 143	io += ring->hop * 32;
 144	return io;
 145}
 146
 147static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 148{
 149	/*
 150	 * The other 16-bits in the register is read-only and writes to it
 151	 * are ignored by the hardware so we can save one ioread32() by
 152	 * filling the read-only bits with zeroes.
 153	 */
 154	iowrite32(cons, ring_desc_base(ring) + 8);
 155}
 156
 157static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 158{
 159	/* See ring_iowrite_cons() above for explanation */
 160	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 161}
 162
 163static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 164{
 165	iowrite32(value, ring_desc_base(ring) + offset);
 166}
 167
 168static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 169{
 170	iowrite32(value, ring_desc_base(ring) + offset);
 171	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 172}
 173
 174static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 175{
 176	iowrite32(value, ring_options_base(ring) + offset);
 177}
 178
 179static bool ring_full(struct tb_ring *ring)
 180{
 181	return ((ring->head + 1) % ring->size) == ring->tail;
 182}
 183
 184static bool ring_empty(struct tb_ring *ring)
 185{
 186	return ring->head == ring->tail;
 187}
 188
 189/**
 190 * ring_write_descriptors() - post frames from ring->queue to the controller
 191 *
 192 * ring->lock is held.
 193 */
 194static void ring_write_descriptors(struct tb_ring *ring)
 195{
 196	struct ring_frame *frame, *n;
 197	struct ring_desc *descriptor;
 198	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 199		if (ring_full(ring))
 200			break;
 201		list_move_tail(&frame->list, &ring->in_flight);
 202		descriptor = &ring->descriptors[ring->head];
 203		descriptor->phys = frame->buffer_phy;
 204		descriptor->time = 0;
 205		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 206		if (ring->is_tx) {
 207			descriptor->length = frame->size;
 208			descriptor->eof = frame->eof;
 209			descriptor->sof = frame->sof;
 210		}
 211		ring->head = (ring->head + 1) % ring->size;
 212		if (ring->is_tx)
 213			ring_iowrite_prod(ring, ring->head);
 214		else
 215			ring_iowrite_cons(ring, ring->head);
 216	}
 217}
 218
 219/**
 220 * ring_work() - progress completed frames
 221 *
 222 * If the ring is shutting down then all frames are marked as canceled and
 223 * their callbacks are invoked.
 224 *
 225 * Otherwise we collect all completed frame from the ring buffer, write new
 226 * frame to the ring buffer and invoke the callbacks for the completed frames.
 227 */
 228static void ring_work(struct work_struct *work)
 229{
 230	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 231	struct ring_frame *frame;
 232	bool canceled = false;
 233	unsigned long flags;
 234	LIST_HEAD(done);
 235
 236	spin_lock_irqsave(&ring->lock, flags);
 237
 238	if (!ring->running) {
 239		/*  Move all frames to done and mark them as canceled. */
 240		list_splice_tail_init(&ring->in_flight, &done);
 241		list_splice_tail_init(&ring->queue, &done);
 242		canceled = true;
 243		goto invoke_callback;
 244	}
 245
 246	while (!ring_empty(ring)) {
 247		if (!(ring->descriptors[ring->tail].flags
 248				& RING_DESC_COMPLETED))
 249			break;
 250		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 251					 list);
 252		list_move_tail(&frame->list, &done);
 253		if (!ring->is_tx) {
 254			frame->size = ring->descriptors[ring->tail].length;
 255			frame->eof = ring->descriptors[ring->tail].eof;
 256			frame->sof = ring->descriptors[ring->tail].sof;
 257			frame->flags = ring->descriptors[ring->tail].flags;
 258		}
 259		ring->tail = (ring->tail + 1) % ring->size;
 260	}
 261	ring_write_descriptors(ring);
 262
 263invoke_callback:
 264	/* allow callbacks to schedule new work */
 265	spin_unlock_irqrestore(&ring->lock, flags);
 266	while (!list_empty(&done)) {
 267		frame = list_first_entry(&done, typeof(*frame), list);
 268		/*
 269		 * The callback may reenqueue or delete frame.
 270		 * Do not hold on to it.
 271		 */
 272		list_del_init(&frame->list);
 273		if (frame->callback)
 274			frame->callback(ring, frame, canceled);
 275	}
 276}
 277
 278int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 279{
 280	unsigned long flags;
 281	int ret = 0;
 282
 283	spin_lock_irqsave(&ring->lock, flags);
 284	if (ring->running) {
 285		list_add_tail(&frame->list, &ring->queue);
 286		ring_write_descriptors(ring);
 287	} else {
 288		ret = -ESHUTDOWN;
 289	}
 290	spin_unlock_irqrestore(&ring->lock, flags);
 291	return ret;
 292}
 293EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 294
 295/**
 296 * tb_ring_poll() - Poll one completed frame from the ring
 297 * @ring: Ring to poll
 298 *
 299 * This function can be called when @start_poll callback of the @ring
 300 * has been called. It will read one completed frame from the ring and
 301 * return it to the caller. Returns %NULL if there is no more completed
 302 * frames.
 303 */
 304struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 305{
 306	struct ring_frame *frame = NULL;
 307	unsigned long flags;
 308
 309	spin_lock_irqsave(&ring->lock, flags);
 310	if (!ring->running)
 311		goto unlock;
 312	if (ring_empty(ring))
 313		goto unlock;
 314
 315	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 316		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 317					 list);
 318		list_del_init(&frame->list);
 319
 320		if (!ring->is_tx) {
 321			frame->size = ring->descriptors[ring->tail].length;
 322			frame->eof = ring->descriptors[ring->tail].eof;
 323			frame->sof = ring->descriptors[ring->tail].sof;
 324			frame->flags = ring->descriptors[ring->tail].flags;
 325		}
 326
 327		ring->tail = (ring->tail + 1) % ring->size;
 328	}
 329
 330unlock:
 331	spin_unlock_irqrestore(&ring->lock, flags);
 332	return frame;
 333}
 334EXPORT_SYMBOL_GPL(tb_ring_poll);
 335
 336static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 337{
 338	int idx = ring_interrupt_index(ring);
 339	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 340	int bit = idx % 32;
 341	u32 val;
 342
 343	val = ioread32(ring->nhi->iobase + reg);
 344	if (mask)
 345		val &= ~BIT(bit);
 346	else
 347		val |= BIT(bit);
 348	iowrite32(val, ring->nhi->iobase + reg);
 349}
 350
 351/* Both @nhi->lock and @ring->lock should be held */
 352static void __ring_interrupt(struct tb_ring *ring)
 353{
 354	if (!ring->running)
 355		return;
 356
 357	if (ring->start_poll) {
 358		__ring_interrupt_mask(ring, true);
 359		ring->start_poll(ring->poll_data);
 360	} else {
 361		schedule_work(&ring->work);
 362	}
 363}
 364
 365/**
 366 * tb_ring_poll_complete() - Re-start interrupt for the ring
 367 * @ring: Ring to re-start the interrupt
 368 *
 369 * This will re-start (unmask) the ring interrupt once the user is done
 370 * with polling.
 371 */
 372void tb_ring_poll_complete(struct tb_ring *ring)
 373{
 374	unsigned long flags;
 375
 376	spin_lock_irqsave(&ring->nhi->lock, flags);
 377	spin_lock(&ring->lock);
 378	if (ring->start_poll)
 379		__ring_interrupt_mask(ring, false);
 380	spin_unlock(&ring->lock);
 381	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 382}
 383EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 384
 385static irqreturn_t ring_msix(int irq, void *data)
 386{
 387	struct tb_ring *ring = data;
 388
 389	spin_lock(&ring->nhi->lock);
 390	spin_lock(&ring->lock);
 391	__ring_interrupt(ring);
 392	spin_unlock(&ring->lock);
 393	spin_unlock(&ring->nhi->lock);
 394
 395	return IRQ_HANDLED;
 396}
 397
 398static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 399{
 400	struct tb_nhi *nhi = ring->nhi;
 401	unsigned long irqflags;
 402	int ret;
 403
 404	if (!nhi->pdev->msix_enabled)
 405		return 0;
 406
 407	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 408	if (ret < 0)
 409		return ret;
 410
 411	ring->vector = ret;
 412
 413	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 414	if (ring->irq < 0)
 415		return ring->irq;
 416
 417	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 418	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 419}
 420
 421static void ring_release_msix(struct tb_ring *ring)
 422{
 423	if (ring->irq <= 0)
 424		return;
 425
 426	free_irq(ring->irq, ring);
 427	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 428	ring->vector = 0;
 429	ring->irq = 0;
 430}
 431
 432static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 433{
 434	int ret = 0;
 435
 436	spin_lock_irq(&nhi->lock);
 437
 438	if (ring->hop < 0) {
 439		unsigned int i;
 440
 441		/*
 442		 * Automatically allocate HopID from the non-reserved
 443		 * range 8 .. hop_count - 1.
 444		 */
 445		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 446			if (ring->is_tx) {
 447				if (!nhi->tx_rings[i]) {
 448					ring->hop = i;
 449					break;
 450				}
 451			} else {
 452				if (!nhi->rx_rings[i]) {
 453					ring->hop = i;
 454					break;
 455				}
 456			}
 457		}
 458	}
 459
 460	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 461		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 462		ret = -EINVAL;
 463		goto err_unlock;
 464	}
 465	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 466		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 467			 ring->hop);
 468		ret = -EBUSY;
 469		goto err_unlock;
 470	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 471		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 472			 ring->hop);
 473		ret = -EBUSY;
 474		goto err_unlock;
 475	}
 476
 477	if (ring->is_tx)
 478		nhi->tx_rings[ring->hop] = ring;
 479	else
 480		nhi->rx_rings[ring->hop] = ring;
 481
 482err_unlock:
 483	spin_unlock_irq(&nhi->lock);
 484
 485	return ret;
 486}
 487
 488static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 489				     bool transmit, unsigned int flags,
 490				     u16 sof_mask, u16 eof_mask,
 491				     void (*start_poll)(void *),
 492				     void *poll_data)
 493{
 494	struct tb_ring *ring = NULL;
 495
 496	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 497		transmit ? "TX" : "RX", hop, size);
 498
 499	/* Tx Ring 2 is reserved for E2E workaround */
 500	if (transmit && hop == RING_E2E_UNUSED_HOPID)
 501		return NULL;
 502
 503	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 504	if (!ring)
 505		return NULL;
 506
 507	spin_lock_init(&ring->lock);
 508	INIT_LIST_HEAD(&ring->queue);
 509	INIT_LIST_HEAD(&ring->in_flight);
 510	INIT_WORK(&ring->work, ring_work);
 511
 512	ring->nhi = nhi;
 513	ring->hop = hop;
 514	ring->is_tx = transmit;
 515	ring->size = size;
 516	ring->flags = flags;
 517	ring->sof_mask = sof_mask;
 518	ring->eof_mask = eof_mask;
 519	ring->head = 0;
 520	ring->tail = 0;
 521	ring->running = false;
 522	ring->start_poll = start_poll;
 523	ring->poll_data = poll_data;
 524
 525	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 526			size * sizeof(*ring->descriptors),
 527			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 528	if (!ring->descriptors)
 529		goto err_free_ring;
 530
 531	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 532		goto err_free_descs;
 533
 534	if (nhi_alloc_hop(nhi, ring))
 535		goto err_release_msix;
 536
 537	return ring;
 538
 539err_release_msix:
 540	ring_release_msix(ring);
 541err_free_descs:
 542	dma_free_coherent(&ring->nhi->pdev->dev,
 543			  ring->size * sizeof(*ring->descriptors),
 544			  ring->descriptors, ring->descriptors_dma);
 545err_free_ring:
 546	kfree(ring);
 547
 548	return NULL;
 549}
 550
 551/**
 552 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 553 * @nhi: Pointer to the NHI the ring is to be allocated
 554 * @hop: HopID (ring) to allocate
 555 * @size: Number of entries in the ring
 556 * @flags: Flags for the ring
 557 */
 558struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 559				 unsigned int flags)
 560{
 561	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 562}
 563EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 564
 565/**
 566 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 567 * @nhi: Pointer to the NHI the ring is to be allocated
 568 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 569 * @size: Number of entries in the ring
 570 * @flags: Flags for the ring
 571 * @sof_mask: Mask of PDF values that start a frame
 572 * @eof_mask: Mask of PDF values that end a frame
 573 * @start_poll: If not %NULL the ring will call this function when an
 574 *		interrupt is triggered and masked, instead of callback
 575 *		in each Rx frame.
 576 * @poll_data: Optional data passed to @start_poll
 577 */
 578struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 579				 unsigned int flags, u16 sof_mask, u16 eof_mask,
 580				 void (*start_poll)(void *), void *poll_data)
 581{
 582	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 583			     start_poll, poll_data);
 584}
 585EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 586
 587/**
 588 * tb_ring_start() - enable a ring
 589 *
 590 * Must not be invoked in parallel with tb_ring_stop().
 591 */
 592void tb_ring_start(struct tb_ring *ring)
 593{
 594	u16 frame_size;
 595	u32 flags;
 596
 597	spin_lock_irq(&ring->nhi->lock);
 598	spin_lock(&ring->lock);
 599	if (ring->nhi->going_away)
 600		goto err;
 601	if (ring->running) {
 602		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 603		goto err;
 604	}
 605	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 606		RING_TYPE(ring), ring->hop);
 607
 608	if (ring->flags & RING_FLAG_FRAME) {
 609		/* Means 4096 */
 610		frame_size = 0;
 611		flags = RING_FLAG_ENABLE;
 612	} else {
 613		frame_size = TB_FRAME_SIZE;
 614		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 615	}
 616
 617	if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
 618		u32 hop;
 619
 620		/*
 621		 * In order not to lose Rx packets we enable end-to-end
 622		 * workaround which transfers Rx credits to an unused Tx
 623		 * HopID.
 624		 */
 625		hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
 626		hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
 627		flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
 628	}
 629
 630	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 631	if (ring->is_tx) {
 632		ring_iowrite32desc(ring, ring->size, 12);
 633		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 634		ring_iowrite32options(ring, flags, 0);
 635	} else {
 636		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 637
 638		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 639		ring_iowrite32options(ring, sof_eof_mask, 4);
 640		ring_iowrite32options(ring, flags, 0);
 641	}
 642	ring_interrupt_active(ring, true);
 643	ring->running = true;
 644err:
 645	spin_unlock(&ring->lock);
 646	spin_unlock_irq(&ring->nhi->lock);
 647}
 648EXPORT_SYMBOL_GPL(tb_ring_start);
 649
 650/**
 651 * tb_ring_stop() - shutdown a ring
 652 *
 653 * Must not be invoked from a callback.
 654 *
 655 * This method will disable the ring. Further calls to
 656 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 657 * called.
 658 *
 659 * All enqueued frames will be canceled and their callbacks will be executed
 660 * with frame->canceled set to true (on the callback thread). This method
 661 * returns only after all callback invocations have finished.
 662 */
 663void tb_ring_stop(struct tb_ring *ring)
 664{
 665	spin_lock_irq(&ring->nhi->lock);
 666	spin_lock(&ring->lock);
 667	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 668		RING_TYPE(ring), ring->hop);
 669	if (ring->nhi->going_away)
 670		goto err;
 671	if (!ring->running) {
 672		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 673			 RING_TYPE(ring), ring->hop);
 674		goto err;
 675	}
 676	ring_interrupt_active(ring, false);
 677
 678	ring_iowrite32options(ring, 0, 0);
 679	ring_iowrite64desc(ring, 0, 0);
 680	ring_iowrite32desc(ring, 0, 8);
 681	ring_iowrite32desc(ring, 0, 12);
 682	ring->head = 0;
 683	ring->tail = 0;
 684	ring->running = false;
 685
 686err:
 687	spin_unlock(&ring->lock);
 688	spin_unlock_irq(&ring->nhi->lock);
 689
 690	/*
 691	 * schedule ring->work to invoke callbacks on all remaining frames.
 692	 */
 693	schedule_work(&ring->work);
 694	flush_work(&ring->work);
 695}
 696EXPORT_SYMBOL_GPL(tb_ring_stop);
 697
 698/*
 699 * tb_ring_free() - free ring
 700 *
 701 * When this method returns all invocations of ring->callback will have
 702 * finished.
 703 *
 704 * Ring must be stopped.
 705 *
 706 * Must NOT be called from ring_frame->callback!
 707 */
 708void tb_ring_free(struct tb_ring *ring)
 709{
 710	spin_lock_irq(&ring->nhi->lock);
 711	/*
 712	 * Dissociate the ring from the NHI. This also ensures that
 713	 * nhi_interrupt_work cannot reschedule ring->work.
 714	 */
 715	if (ring->is_tx)
 716		ring->nhi->tx_rings[ring->hop] = NULL;
 717	else
 718		ring->nhi->rx_rings[ring->hop] = NULL;
 719
 720	if (ring->running) {
 721		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 722			 RING_TYPE(ring), ring->hop);
 723	}
 724	spin_unlock_irq(&ring->nhi->lock);
 725
 726	ring_release_msix(ring);
 727
 728	dma_free_coherent(&ring->nhi->pdev->dev,
 729			  ring->size * sizeof(*ring->descriptors),
 730			  ring->descriptors, ring->descriptors_dma);
 731
 732	ring->descriptors = NULL;
 733	ring->descriptors_dma = 0;
 734
 735
 736	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 737		ring->hop);
 738
 739	/**
 740	 * ring->work can no longer be scheduled (it is scheduled only
 741	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 742	 * to finish before freeing the ring.
 743	 */
 744	flush_work(&ring->work);
 745	kfree(ring);
 746}
 747EXPORT_SYMBOL_GPL(tb_ring_free);
 748
 749/**
 750 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 751 * @nhi: Pointer to the NHI structure
 752 * @cmd: Command to send
 753 * @data: Data to be send with the command
 754 *
 755 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 756 * case of success and negative errno in case of failure.
 757 */
 758int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 759{
 760	ktime_t timeout;
 761	u32 val;
 762
 763	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 764
 765	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 766	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 767	val |= REG_INMAIL_OP_REQUEST | cmd;
 768	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 769
 770	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 771	do {
 772		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 773		if (!(val & REG_INMAIL_OP_REQUEST))
 774			break;
 775		usleep_range(10, 20);
 776	} while (ktime_before(ktime_get(), timeout));
 777
 778	if (val & REG_INMAIL_OP_REQUEST)
 779		return -ETIMEDOUT;
 780	if (val & REG_INMAIL_ERROR)
 781		return -EIO;
 782
 783	return 0;
 784}
 785
 786/**
 787 * nhi_mailbox_mode() - Return current firmware operation mode
 788 * @nhi: Pointer to the NHI structure
 789 *
 790 * The function reads current firmware operation mode using NHI mailbox
 791 * registers and returns it to the caller.
 792 */
 793enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 794{
 795	u32 val;
 796
 797	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 798	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 799	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 800
 801	return (enum nhi_fw_mode)val;
 802}
 803
 804static void nhi_interrupt_work(struct work_struct *work)
 805{
 806	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 807	int value = 0; /* Suppress uninitialized usage warning. */
 808	int bit;
 809	int hop = -1;
 810	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 811	struct tb_ring *ring;
 812
 813	spin_lock_irq(&nhi->lock);
 814
 815	/*
 816	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 817	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 818	 * dwords as required. The registers are cleared on read.
 819	 */
 820	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 821		if (bit % 32 == 0)
 822			value = ioread32(nhi->iobase
 823					 + REG_RING_NOTIFY_BASE
 824					 + 4 * (bit / 32));
 825		if (++hop == nhi->hop_count) {
 826			hop = 0;
 827			type++;
 828		}
 829		if ((value & (1 << (bit % 32))) == 0)
 830			continue;
 831		if (type == 2) {
 832			dev_warn(&nhi->pdev->dev,
 833				 "RX overflow for ring %d\n",
 834				 hop);
 835			continue;
 836		}
 837		if (type == 0)
 838			ring = nhi->tx_rings[hop];
 839		else
 840			ring = nhi->rx_rings[hop];
 841		if (ring == NULL) {
 842			dev_warn(&nhi->pdev->dev,
 843				 "got interrupt for inactive %s ring %d\n",
 844				 type ? "RX" : "TX",
 845				 hop);
 846			continue;
 847		}
 848
 849		spin_lock(&ring->lock);
 850		__ring_interrupt(ring);
 851		spin_unlock(&ring->lock);
 852	}
 853	spin_unlock_irq(&nhi->lock);
 854}
 855
 856static irqreturn_t nhi_msi(int irq, void *data)
 857{
 858	struct tb_nhi *nhi = data;
 859	schedule_work(&nhi->interrupt_work);
 860	return IRQ_HANDLED;
 861}
 862
 863static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 864{
 865	struct pci_dev *pdev = to_pci_dev(dev);
 866	struct tb *tb = pci_get_drvdata(pdev);
 867	struct tb_nhi *nhi = tb->nhi;
 868	int ret;
 869
 870	ret = tb_domain_suspend_noirq(tb);
 871	if (ret)
 872		return ret;
 873
 874	if (nhi->ops && nhi->ops->suspend_noirq) {
 875		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 876		if (ret)
 877			return ret;
 878	}
 879
 880	return 0;
 881}
 882
 883static int nhi_suspend_noirq(struct device *dev)
 884{
 885	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 886}
 887
 888static bool nhi_wake_supported(struct pci_dev *pdev)
 889{
 890	u8 val;
 891
 892	/*
 893	 * If power rails are sustainable for wakeup from S4 this
 894	 * property is set by the BIOS.
 895	 */
 896	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 897		return !!val;
 898
 899	return true;
 900}
 901
 902static int nhi_poweroff_noirq(struct device *dev)
 903{
 904	struct pci_dev *pdev = to_pci_dev(dev);
 905	bool wakeup;
 906
 907	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 908	return __nhi_suspend_noirq(dev, wakeup);
 909}
 910
 911static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 912{
 913	/* Throttling is specified in 256ns increments */
 914	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 915	unsigned int i;
 916
 917	/*
 918	 * Configure interrupt throttling for all vectors even if we
 919	 * only use few.
 920	 */
 921	for (i = 0; i < MSIX_MAX_VECS; i++) {
 922		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 923		iowrite32(throttle, nhi->iobase + reg);
 924	}
 925}
 926
 927static int nhi_resume_noirq(struct device *dev)
 928{
 929	struct pci_dev *pdev = to_pci_dev(dev);
 930	struct tb *tb = pci_get_drvdata(pdev);
 931	struct tb_nhi *nhi = tb->nhi;
 932	int ret;
 933
 934	/*
 935	 * Check that the device is still there. It may be that the user
 936	 * unplugged last device which causes the host controller to go
 937	 * away on PCs.
 938	 */
 939	if (!pci_device_is_present(pdev)) {
 940		nhi->going_away = true;
 941	} else {
 942		if (nhi->ops && nhi->ops->resume_noirq) {
 943			ret = nhi->ops->resume_noirq(nhi);
 944			if (ret)
 945				return ret;
 946		}
 947		nhi_enable_int_throttling(tb->nhi);
 948	}
 949
 950	return tb_domain_resume_noirq(tb);
 951}
 952
 953static int nhi_suspend(struct device *dev)
 954{
 955	struct pci_dev *pdev = to_pci_dev(dev);
 956	struct tb *tb = pci_get_drvdata(pdev);
 957
 958	return tb_domain_suspend(tb);
 959}
 960
 961static void nhi_complete(struct device *dev)
 962{
 963	struct pci_dev *pdev = to_pci_dev(dev);
 964	struct tb *tb = pci_get_drvdata(pdev);
 965
 966	/*
 967	 * If we were runtime suspended when system suspend started,
 968	 * schedule runtime resume now. It should bring the domain back
 969	 * to functional state.
 970	 */
 971	if (pm_runtime_suspended(&pdev->dev))
 972		pm_runtime_resume(&pdev->dev);
 973	else
 974		tb_domain_complete(tb);
 975}
 976
 977static int nhi_runtime_suspend(struct device *dev)
 978{
 979	struct pci_dev *pdev = to_pci_dev(dev);
 980	struct tb *tb = pci_get_drvdata(pdev);
 981	struct tb_nhi *nhi = tb->nhi;
 982	int ret;
 983
 984	ret = tb_domain_runtime_suspend(tb);
 985	if (ret)
 986		return ret;
 987
 988	if (nhi->ops && nhi->ops->runtime_suspend) {
 989		ret = nhi->ops->runtime_suspend(tb->nhi);
 990		if (ret)
 991			return ret;
 992	}
 993	return 0;
 994}
 995
 996static int nhi_runtime_resume(struct device *dev)
 997{
 998	struct pci_dev *pdev = to_pci_dev(dev);
 999	struct tb *tb = pci_get_drvdata(pdev);
1000	struct tb_nhi *nhi = tb->nhi;
1001	int ret;
1002
1003	if (nhi->ops && nhi->ops->runtime_resume) {
1004		ret = nhi->ops->runtime_resume(nhi);
1005		if (ret)
1006			return ret;
1007	}
1008
1009	nhi_enable_int_throttling(nhi);
1010	return tb_domain_runtime_resume(tb);
1011}
1012
1013static void nhi_shutdown(struct tb_nhi *nhi)
1014{
1015	int i;
1016
1017	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1018
1019	for (i = 0; i < nhi->hop_count; i++) {
1020		if (nhi->tx_rings[i])
1021			dev_WARN(&nhi->pdev->dev,
1022				 "TX ring %d is still active\n", i);
1023		if (nhi->rx_rings[i])
1024			dev_WARN(&nhi->pdev->dev,
1025				 "RX ring %d is still active\n", i);
1026	}
1027	nhi_disable_interrupts(nhi);
1028	/*
1029	 * We have to release the irq before calling flush_work. Otherwise an
1030	 * already executing IRQ handler could call schedule_work again.
1031	 */
1032	if (!nhi->pdev->msix_enabled) {
1033		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1034		flush_work(&nhi->interrupt_work);
1035	}
1036	ida_destroy(&nhi->msix_ida);
1037
1038	if (nhi->ops && nhi->ops->shutdown)
1039		nhi->ops->shutdown(nhi);
1040}
1041
1042static int nhi_init_msi(struct tb_nhi *nhi)
1043{
1044	struct pci_dev *pdev = nhi->pdev;
1045	int res, irq, nvec;
1046
1047	/* In case someone left them on. */
1048	nhi_disable_interrupts(nhi);
1049
1050	nhi_enable_int_throttling(nhi);
1051
1052	ida_init(&nhi->msix_ida);
1053
1054	/*
1055	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1056	 * get all MSI-X vectors and if we succeed, each ring will have
1057	 * one MSI-X. If for some reason that does not work out, we
1058	 * fallback to a single MSI.
1059	 */
1060	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1061				     PCI_IRQ_MSIX);
1062	if (nvec < 0) {
1063		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1064		if (nvec < 0)
1065			return nvec;
1066
1067		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1068
1069		irq = pci_irq_vector(nhi->pdev, 0);
1070		if (irq < 0)
1071			return irq;
1072
1073		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1074				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1075		if (res) {
1076			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1077			return res;
1078		}
1079	}
1080
1081	return 0;
1082}
1083
1084static bool nhi_imr_valid(struct pci_dev *pdev)
1085{
1086	u8 val;
1087
1088	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1089		return !!val;
1090
1091	return true;
1092}
1093
1094static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1095{
1096	struct tb_nhi *nhi;
1097	struct tb *tb;
1098	int res;
1099
1100	if (!nhi_imr_valid(pdev)) {
1101		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1102		return -ENODEV;
1103	}
1104
1105	res = pcim_enable_device(pdev);
1106	if (res) {
1107		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1108		return res;
1109	}
1110
1111	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1112	if (res) {
1113		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1114		return res;
1115	}
1116
1117	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1118	if (!nhi)
1119		return -ENOMEM;
1120
1121	nhi->pdev = pdev;
1122	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1123	/* cannot fail - table is allocated bin pcim_iomap_regions */
1124	nhi->iobase = pcim_iomap_table(pdev)[0];
1125	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1126	if (nhi->hop_count != 12 && nhi->hop_count != 32)
1127		dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1128			 nhi->hop_count);
1129
1130	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1131				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1132	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1133				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1134	if (!nhi->tx_rings || !nhi->rx_rings)
1135		return -ENOMEM;
1136
1137	res = nhi_init_msi(nhi);
1138	if (res) {
1139		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1140		return res;
1141	}
1142
1143	spin_lock_init(&nhi->lock);
1144
1145	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1146	if (res)
1147		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1148	if (res) {
1149		dev_err(&pdev->dev, "failed to set DMA mask\n");
1150		return res;
1151	}
1152
1153	pci_set_master(pdev);
1154
1155	if (nhi->ops && nhi->ops->init) {
1156		res = nhi->ops->init(nhi);
1157		if (res)
1158			return res;
1159	}
1160
1161	tb = icm_probe(nhi);
1162	if (!tb)
1163		tb = tb_probe(nhi);
1164	if (!tb) {
1165		dev_err(&nhi->pdev->dev,
1166			"failed to determine connection manager, aborting\n");
1167		return -ENODEV;
1168	}
1169
1170	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1171
1172	res = tb_domain_add(tb);
1173	if (res) {
1174		/*
1175		 * At this point the RX/TX rings might already have been
1176		 * activated. Do a proper shutdown.
1177		 */
1178		tb_domain_put(tb);
1179		nhi_shutdown(nhi);
1180		return res;
1181	}
1182	pci_set_drvdata(pdev, tb);
1183
1184	pm_runtime_allow(&pdev->dev);
1185	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1186	pm_runtime_use_autosuspend(&pdev->dev);
1187	pm_runtime_put_autosuspend(&pdev->dev);
1188
1189	return 0;
1190}
1191
1192static void nhi_remove(struct pci_dev *pdev)
1193{
1194	struct tb *tb = pci_get_drvdata(pdev);
1195	struct tb_nhi *nhi = tb->nhi;
1196
1197	pm_runtime_get_sync(&pdev->dev);
1198	pm_runtime_dont_use_autosuspend(&pdev->dev);
1199	pm_runtime_forbid(&pdev->dev);
1200
1201	tb_domain_remove(tb);
1202	nhi_shutdown(nhi);
1203}
1204
1205/*
1206 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1207 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1208 * resume_noirq until we are done.
1209 */
1210static const struct dev_pm_ops nhi_pm_ops = {
1211	.suspend_noirq = nhi_suspend_noirq,
1212	.resume_noirq = nhi_resume_noirq,
1213	.freeze_noirq = nhi_suspend_noirq, /*
1214					    * we just disable hotplug, the
1215					    * pci-tunnels stay alive.
1216					    */
1217	.thaw_noirq = nhi_resume_noirq,
1218	.restore_noirq = nhi_resume_noirq,
1219	.suspend = nhi_suspend,
1220	.freeze = nhi_suspend,
1221	.poweroff_noirq = nhi_poweroff_noirq,
1222	.poweroff = nhi_suspend,
1223	.complete = nhi_complete,
1224	.runtime_suspend = nhi_runtime_suspend,
1225	.runtime_resume = nhi_runtime_resume,
1226};
1227
1228static struct pci_device_id nhi_ids[] = {
1229	/*
1230	 * We have to specify class, the TB bridges use the same device and
1231	 * vendor (sub)id on gen 1 and gen 2 controllers.
1232	 */
1233	{
1234		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1235		.vendor = PCI_VENDOR_ID_INTEL,
1236		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1237		.subvendor = 0x2222, .subdevice = 0x1111,
1238	},
1239	{
1240		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1241		.vendor = PCI_VENDOR_ID_INTEL,
1242		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1243		.subvendor = 0x2222, .subdevice = 0x1111,
1244	},
1245	{
1246		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1247		.vendor = PCI_VENDOR_ID_INTEL,
1248		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1249		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1250	},
1251	{
1252		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1253		.vendor = PCI_VENDOR_ID_INTEL,
1254		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1255		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1256	},
1257
1258	/* Thunderbolt 3 */
1259	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1260	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1261	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1262	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1263	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1264	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1265	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1266	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1267	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1268	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1269	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1270	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1271	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1272	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
 
 
 
 
 
 
 
1273
1274	{ 0,}
1275};
1276
1277MODULE_DEVICE_TABLE(pci, nhi_ids);
1278MODULE_LICENSE("GPL");
1279
1280static struct pci_driver nhi_driver = {
1281	.name = "thunderbolt",
1282	.id_table = nhi_ids,
1283	.probe = nhi_probe,
1284	.remove = nhi_remove,
 
1285	.driver.pm = &nhi_pm_ops,
1286};
1287
1288static int __init nhi_init(void)
1289{
1290	int ret;
1291
1292	ret = tb_domain_init();
1293	if (ret)
1294		return ret;
1295	ret = pci_register_driver(&nhi_driver);
1296	if (ret)
1297		tb_domain_exit();
1298	return ret;
1299}
1300
1301static void __exit nhi_unload(void)
1302{
1303	pci_unregister_driver(&nhi_driver);
1304	tb_domain_exit();
1305}
1306
1307rootfs_initcall(nhi_init);
1308module_exit(nhi_unload);