Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n) ((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225 /*
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
228 */
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
235 */
236 mc146818_get_time(t);
237 return 0;
238}
239
240static int cmos_set_time(struct device *dev, struct rtc_time *t)
241{
242 /* REVISIT: set the "century" register if available
243 *
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
247 */
248 return mc146818_set_time(t);
249}
250
251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252{
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
263 */
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319}
320
321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322{
323 unsigned char rtc_intr;
324
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
327 */
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336}
337
338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339{
340 unsigned char rtc_control;
341
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
344 */
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359}
360
361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362{
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377}
378
379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380{
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444}
445
446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447{
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494 /*
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
497 */
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510}
511
512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513{
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526}
527
528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530static int cmos_procfs(struct device *dev, struct seq_file *seq)
531{
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 */
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562}
563
564#else
565#define cmos_procfs NULL
566#endif
567
568static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575};
576
577static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581};
582
583/*----------------------------------------------------------------*/
584
585/*
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
589 */
590
591#define NVRAM_OFFSET (RTC_REG_D + 1)
592
593static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595{
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612}
613
614static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616{
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
625 */
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644}
645
646/*----------------------------------------------------------------*/
647
648static struct cmos_rtc cmos_rtc;
649
650static irqreturn_t cmos_interrupt(int irq, void *p)
651{
652 unsigned long flags;
653 u8 irqstat;
654 u8 rtc_control;
655
656 spin_lock_irqsave(&rtc_lock, flags);
657
658 /* When the HPET interrupt handler calls us, the interrupt
659 * status is passed as arg1 instead of the irq number. But
660 * always clear irq status, even when HPET is in the way.
661 *
662 * Note that HPET and RTC are almost certainly out of phase,
663 * giving different IRQ status ...
664 */
665 irqstat = CMOS_READ(RTC_INTR_FLAGS);
666 rtc_control = CMOS_READ(RTC_CONTROL);
667 if (use_hpet_alarm())
668 irqstat = (unsigned long)irq & 0xF0;
669
670 /* If we were suspended, RTC_CONTROL may not be accurate since the
671 * bios may have cleared it.
672 */
673 if (!cmos_rtc.suspend_ctrl)
674 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
675 else
676 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
677
678 /* All Linux RTC alarms should be treated as if they were oneshot.
679 * Similar code may be needed in system wakeup paths, in case the
680 * alarm woke the system.
681 */
682 if (irqstat & RTC_AIE) {
683 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
684 rtc_control &= ~RTC_AIE;
685 CMOS_WRITE(rtc_control, RTC_CONTROL);
686 if (use_hpet_alarm())
687 hpet_mask_rtc_irq_bit(RTC_AIE);
688 CMOS_READ(RTC_INTR_FLAGS);
689 }
690 spin_unlock_irqrestore(&rtc_lock, flags);
691
692 if (is_intr(irqstat)) {
693 rtc_update_irq(p, 1, irqstat);
694 return IRQ_HANDLED;
695 } else
696 return IRQ_NONE;
697}
698
699#ifdef CONFIG_PNP
700#define INITSECTION
701
702#else
703#define INITSECTION __init
704#endif
705
706static int INITSECTION
707cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
708{
709 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
710 int retval = 0;
711 unsigned char rtc_control;
712 unsigned address_space;
713 u32 flags = 0;
714 struct nvmem_config nvmem_cfg = {
715 .name = "cmos_nvram",
716 .word_size = 1,
717 .stride = 1,
718 .reg_read = cmos_nvram_read,
719 .reg_write = cmos_nvram_write,
720 .priv = &cmos_rtc,
721 };
722
723 /* there can be only one ... */
724 if (cmos_rtc.dev)
725 return -EBUSY;
726
727 if (!ports)
728 return -ENODEV;
729
730 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
731 *
732 * REVISIT non-x86 systems may instead use memory space resources
733 * (needing ioremap etc), not i/o space resources like this ...
734 */
735 if (RTC_IOMAPPED)
736 ports = request_region(ports->start, resource_size(ports),
737 driver_name);
738 else
739 ports = request_mem_region(ports->start, resource_size(ports),
740 driver_name);
741 if (!ports) {
742 dev_dbg(dev, "i/o registers already in use\n");
743 return -EBUSY;
744 }
745
746 cmos_rtc.irq = rtc_irq;
747 cmos_rtc.iomem = ports;
748
749 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
750 * driver did, but don't reject unknown configs. Old hardware
751 * won't address 128 bytes. Newer chips have multiple banks,
752 * though they may not be listed in one I/O resource.
753 */
754#if defined(CONFIG_ATARI)
755 address_space = 64;
756#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 || defined(__sparc__) || defined(__mips__) \
758 || defined(__powerpc__)
759 address_space = 128;
760#else
761#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
762 address_space = 128;
763#endif
764 if (can_bank2 && ports->end > (ports->start + 1))
765 address_space = 256;
766
767 /* For ACPI systems extension info comes from the FADT. On others,
768 * board specific setup provides it as appropriate. Systems where
769 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
770 * some almost-clones) can provide hooks to make that behave.
771 *
772 * Note that ACPI doesn't preclude putting these registers into
773 * "extended" areas of the chip, including some that we won't yet
774 * expect CMOS_READ and friends to handle.
775 */
776 if (info) {
777 if (info->flags)
778 flags = info->flags;
779 if (info->address_space)
780 address_space = info->address_space;
781
782 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
783 cmos_rtc.day_alrm = info->rtc_day_alarm;
784 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
785 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
786 if (info->rtc_century && info->rtc_century < 128)
787 cmos_rtc.century = info->rtc_century;
788
789 if (info->wake_on && info->wake_off) {
790 cmos_rtc.wake_on = info->wake_on;
791 cmos_rtc.wake_off = info->wake_off;
792 }
793 }
794
795 cmos_rtc.dev = dev;
796 dev_set_drvdata(dev, &cmos_rtc);
797
798 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
799 if (IS_ERR(cmos_rtc.rtc)) {
800 retval = PTR_ERR(cmos_rtc.rtc);
801 goto cleanup0;
802 }
803
804 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
805
806 spin_lock_irq(&rtc_lock);
807
808 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
809 /* force periodic irq to CMOS reset default of 1024Hz;
810 *
811 * REVISIT it's been reported that at least one x86_64 ALI
812 * mobo doesn't use 32KHz here ... for portability we might
813 * need to do something about other clock frequencies.
814 */
815 cmos_rtc.rtc->irq_freq = 1024;
816 if (use_hpet_alarm())
817 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
818 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
819 }
820
821 /* disable irqs */
822 if (is_valid_irq(rtc_irq))
823 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
824
825 rtc_control = CMOS_READ(RTC_CONTROL);
826
827 spin_unlock_irq(&rtc_lock);
828
829 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
830 dev_warn(dev, "only 24-hr supported\n");
831 retval = -ENXIO;
832 goto cleanup1;
833 }
834
835 if (use_hpet_alarm())
836 hpet_rtc_timer_init();
837
838 if (is_valid_irq(rtc_irq)) {
839 irq_handler_t rtc_cmos_int_handler;
840
841 if (use_hpet_alarm()) {
842 rtc_cmos_int_handler = hpet_rtc_interrupt;
843 retval = hpet_register_irq_handler(cmos_interrupt);
844 if (retval) {
845 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
846 dev_warn(dev, "hpet_register_irq_handler "
847 " failed in rtc_init().");
848 goto cleanup1;
849 }
850 } else
851 rtc_cmos_int_handler = cmos_interrupt;
852
853 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
854 0, dev_name(&cmos_rtc.rtc->dev),
855 cmos_rtc.rtc);
856 if (retval < 0) {
857 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
858 goto cleanup1;
859 }
860
861 cmos_rtc.rtc->ops = &cmos_rtc_ops;
862 } else {
863 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
864 }
865
866 cmos_rtc.rtc->nvram_old_abi = true;
867 retval = rtc_register_device(cmos_rtc.rtc);
868 if (retval)
869 goto cleanup2;
870
871 /* export at least the first block of NVRAM */
872 nvmem_cfg.size = address_space - NVRAM_OFFSET;
873 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
874 dev_err(dev, "nvmem registration failed\n");
875
876 dev_info(dev, "%s%s, %d bytes nvram%s\n",
877 !is_valid_irq(rtc_irq) ? "no alarms" :
878 cmos_rtc.mon_alrm ? "alarms up to one year" :
879 cmos_rtc.day_alrm ? "alarms up to one month" :
880 "alarms up to one day",
881 cmos_rtc.century ? ", y3k" : "",
882 nvmem_cfg.size,
883 use_hpet_alarm() ? ", hpet irqs" : "");
884
885 return 0;
886
887cleanup2:
888 if (is_valid_irq(rtc_irq))
889 free_irq(rtc_irq, cmos_rtc.rtc);
890cleanup1:
891 cmos_rtc.dev = NULL;
892cleanup0:
893 if (RTC_IOMAPPED)
894 release_region(ports->start, resource_size(ports));
895 else
896 release_mem_region(ports->start, resource_size(ports));
897 return retval;
898}
899
900static void cmos_do_shutdown(int rtc_irq)
901{
902 spin_lock_irq(&rtc_lock);
903 if (is_valid_irq(rtc_irq))
904 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
905 spin_unlock_irq(&rtc_lock);
906}
907
908static void cmos_do_remove(struct device *dev)
909{
910 struct cmos_rtc *cmos = dev_get_drvdata(dev);
911 struct resource *ports;
912
913 cmos_do_shutdown(cmos->irq);
914
915 if (is_valid_irq(cmos->irq)) {
916 free_irq(cmos->irq, cmos->rtc);
917 if (use_hpet_alarm())
918 hpet_unregister_irq_handler(cmos_interrupt);
919 }
920
921 cmos->rtc = NULL;
922
923 ports = cmos->iomem;
924 if (RTC_IOMAPPED)
925 release_region(ports->start, resource_size(ports));
926 else
927 release_mem_region(ports->start, resource_size(ports));
928 cmos->iomem = NULL;
929
930 cmos->dev = NULL;
931}
932
933static int cmos_aie_poweroff(struct device *dev)
934{
935 struct cmos_rtc *cmos = dev_get_drvdata(dev);
936 struct rtc_time now;
937 time64_t t_now;
938 int retval = 0;
939 unsigned char rtc_control;
940
941 if (!cmos->alarm_expires)
942 return -EINVAL;
943
944 spin_lock_irq(&rtc_lock);
945 rtc_control = CMOS_READ(RTC_CONTROL);
946 spin_unlock_irq(&rtc_lock);
947
948 /* We only care about the situation where AIE is disabled. */
949 if (rtc_control & RTC_AIE)
950 return -EBUSY;
951
952 cmos_read_time(dev, &now);
953 t_now = rtc_tm_to_time64(&now);
954
955 /*
956 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
957 * automatically right after shutdown on some buggy boxes.
958 * This automatic rebooting issue won't happen when the alarm
959 * time is larger than now+1 seconds.
960 *
961 * If the alarm time is equal to now+1 seconds, the issue can be
962 * prevented by cancelling the alarm.
963 */
964 if (cmos->alarm_expires == t_now + 1) {
965 struct rtc_wkalrm alarm;
966
967 /* Cancel the AIE timer by configuring the past time. */
968 rtc_time64_to_tm(t_now - 1, &alarm.time);
969 alarm.enabled = 0;
970 retval = cmos_set_alarm(dev, &alarm);
971 } else if (cmos->alarm_expires > t_now + 1) {
972 retval = -EBUSY;
973 }
974
975 return retval;
976}
977
978static int cmos_suspend(struct device *dev)
979{
980 struct cmos_rtc *cmos = dev_get_drvdata(dev);
981 unsigned char tmp;
982
983 /* only the alarm might be a wakeup event source */
984 spin_lock_irq(&rtc_lock);
985 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
986 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
987 unsigned char mask;
988
989 if (device_may_wakeup(dev))
990 mask = RTC_IRQMASK & ~RTC_AIE;
991 else
992 mask = RTC_IRQMASK;
993 tmp &= ~mask;
994 CMOS_WRITE(tmp, RTC_CONTROL);
995 if (use_hpet_alarm())
996 hpet_mask_rtc_irq_bit(mask);
997 cmos_checkintr(cmos, tmp);
998 }
999 spin_unlock_irq(&rtc_lock);
1000
1001 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1002 cmos->enabled_wake = 1;
1003 if (cmos->wake_on)
1004 cmos->wake_on(dev);
1005 else
1006 enable_irq_wake(cmos->irq);
1007 }
1008
1009 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1010
1011 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1012 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1013 tmp);
1014
1015 return 0;
1016}
1017
1018/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1019 * after a detour through G3 "mechanical off", although the ACPI spec
1020 * says wakeup should only work from G1/S4 "hibernate". To most users,
1021 * distinctions between S4 and S5 are pointless. So when the hardware
1022 * allows, don't draw that distinction.
1023 */
1024static inline int cmos_poweroff(struct device *dev)
1025{
1026 if (!IS_ENABLED(CONFIG_PM))
1027 return -ENOSYS;
1028
1029 return cmos_suspend(dev);
1030}
1031
1032static void cmos_check_wkalrm(struct device *dev)
1033{
1034 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1035 struct rtc_wkalrm current_alarm;
1036 time64_t t_now;
1037 time64_t t_current_expires;
1038 time64_t t_saved_expires;
1039 struct rtc_time now;
1040
1041 /* Check if we have RTC Alarm armed */
1042 if (!(cmos->suspend_ctrl & RTC_AIE))
1043 return;
1044
1045 cmos_read_time(dev, &now);
1046 t_now = rtc_tm_to_time64(&now);
1047
1048 /*
1049 * ACPI RTC wake event is cleared after resume from STR,
1050 * ACK the rtc irq here
1051 */
1052 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1053 cmos_interrupt(0, (void *)cmos->rtc);
1054 return;
1055 }
1056
1057 cmos_read_alarm(dev, ¤t_alarm);
1058 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1059 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1060 if (t_current_expires != t_saved_expires ||
1061 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1062 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1063 }
1064}
1065
1066static void cmos_check_acpi_rtc_status(struct device *dev,
1067 unsigned char *rtc_control);
1068
1069static int __maybe_unused cmos_resume(struct device *dev)
1070{
1071 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1072 unsigned char tmp;
1073
1074 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1075 if (cmos->wake_off)
1076 cmos->wake_off(dev);
1077 else
1078 disable_irq_wake(cmos->irq);
1079 cmos->enabled_wake = 0;
1080 }
1081
1082 /* The BIOS might have changed the alarm, restore it */
1083 cmos_check_wkalrm(dev);
1084
1085 spin_lock_irq(&rtc_lock);
1086 tmp = cmos->suspend_ctrl;
1087 cmos->suspend_ctrl = 0;
1088 /* re-enable any irqs previously active */
1089 if (tmp & RTC_IRQMASK) {
1090 unsigned char mask;
1091
1092 if (device_may_wakeup(dev) && use_hpet_alarm())
1093 hpet_rtc_timer_init();
1094
1095 do {
1096 CMOS_WRITE(tmp, RTC_CONTROL);
1097 if (use_hpet_alarm())
1098 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1099
1100 mask = CMOS_READ(RTC_INTR_FLAGS);
1101 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1102 if (!use_hpet_alarm() || !is_intr(mask))
1103 break;
1104
1105 /* force one-shot behavior if HPET blocked
1106 * the wake alarm's irq
1107 */
1108 rtc_update_irq(cmos->rtc, 1, mask);
1109 tmp &= ~RTC_AIE;
1110 hpet_mask_rtc_irq_bit(RTC_AIE);
1111 } while (mask & RTC_AIE);
1112
1113 if (tmp & RTC_AIE)
1114 cmos_check_acpi_rtc_status(dev, &tmp);
1115 }
1116 spin_unlock_irq(&rtc_lock);
1117
1118 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1119
1120 return 0;
1121}
1122
1123static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1124
1125/*----------------------------------------------------------------*/
1126
1127/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1128 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1129 * probably list them in similar PNPBIOS tables; so PNP is more common.
1130 *
1131 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1132 * predate even PNPBIOS should set up platform_bus devices.
1133 */
1134
1135#ifdef CONFIG_ACPI
1136
1137#include <linux/acpi.h>
1138
1139static u32 rtc_handler(void *context)
1140{
1141 struct device *dev = context;
1142 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1143 unsigned char rtc_control = 0;
1144 unsigned char rtc_intr;
1145 unsigned long flags;
1146
1147
1148 /*
1149 * Always update rtc irq when ACPI is used as RTC Alarm.
1150 * Or else, ACPI SCI is enabled during suspend/resume only,
1151 * update rtc irq in that case.
1152 */
1153 if (cmos_use_acpi_alarm())
1154 cmos_interrupt(0, (void *)cmos->rtc);
1155 else {
1156 /* Fix me: can we use cmos_interrupt() here as well? */
1157 spin_lock_irqsave(&rtc_lock, flags);
1158 if (cmos_rtc.suspend_ctrl)
1159 rtc_control = CMOS_READ(RTC_CONTROL);
1160 if (rtc_control & RTC_AIE) {
1161 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1162 CMOS_WRITE(rtc_control, RTC_CONTROL);
1163 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1164 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1165 }
1166 spin_unlock_irqrestore(&rtc_lock, flags);
1167 }
1168
1169 pm_wakeup_hard_event(dev);
1170 acpi_clear_event(ACPI_EVENT_RTC);
1171 acpi_disable_event(ACPI_EVENT_RTC, 0);
1172 return ACPI_INTERRUPT_HANDLED;
1173}
1174
1175static inline void rtc_wake_setup(struct device *dev)
1176{
1177 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1178 /*
1179 * After the RTC handler is installed, the Fixed_RTC event should
1180 * be disabled. Only when the RTC alarm is set will it be enabled.
1181 */
1182 acpi_clear_event(ACPI_EVENT_RTC);
1183 acpi_disable_event(ACPI_EVENT_RTC, 0);
1184}
1185
1186static void rtc_wake_on(struct device *dev)
1187{
1188 acpi_clear_event(ACPI_EVENT_RTC);
1189 acpi_enable_event(ACPI_EVENT_RTC, 0);
1190}
1191
1192static void rtc_wake_off(struct device *dev)
1193{
1194 acpi_disable_event(ACPI_EVENT_RTC, 0);
1195}
1196
1197#ifdef CONFIG_X86
1198/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1199static void use_acpi_alarm_quirks(void)
1200{
1201 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1202 return;
1203
1204 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1205 return;
1206
1207 if (!is_hpet_enabled())
1208 return;
1209
1210 if (dmi_get_bios_year() < 2015)
1211 return;
1212
1213 use_acpi_alarm = true;
1214}
1215#else
1216static inline void use_acpi_alarm_quirks(void) { }
1217#endif
1218
1219/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1220 * its device node and pass extra config data. This helps its driver use
1221 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1222 * that this board's RTC is wakeup-capable (per ACPI spec).
1223 */
1224static struct cmos_rtc_board_info acpi_rtc_info;
1225
1226static void cmos_wake_setup(struct device *dev)
1227{
1228 if (acpi_disabled)
1229 return;
1230
1231 use_acpi_alarm_quirks();
1232
1233 rtc_wake_setup(dev);
1234 acpi_rtc_info.wake_on = rtc_wake_on;
1235 acpi_rtc_info.wake_off = rtc_wake_off;
1236
1237 /* workaround bug in some ACPI tables */
1238 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1239 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1240 acpi_gbl_FADT.month_alarm);
1241 acpi_gbl_FADT.month_alarm = 0;
1242 }
1243
1244 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1245 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1246 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1247
1248 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1249 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1250 dev_info(dev, "RTC can wake from S4\n");
1251
1252 dev->platform_data = &acpi_rtc_info;
1253
1254 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1255 device_init_wakeup(dev, 1);
1256}
1257
1258static void cmos_check_acpi_rtc_status(struct device *dev,
1259 unsigned char *rtc_control)
1260{
1261 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1262 acpi_event_status rtc_status;
1263 acpi_status status;
1264
1265 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1266 return;
1267
1268 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1269 if (ACPI_FAILURE(status)) {
1270 dev_err(dev, "Could not get RTC status\n");
1271 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1272 unsigned char mask;
1273 *rtc_control &= ~RTC_AIE;
1274 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1275 mask = CMOS_READ(RTC_INTR_FLAGS);
1276 rtc_update_irq(cmos->rtc, 1, mask);
1277 }
1278}
1279
1280#else
1281
1282static void cmos_wake_setup(struct device *dev)
1283{
1284}
1285
1286static void cmos_check_acpi_rtc_status(struct device *dev,
1287 unsigned char *rtc_control)
1288{
1289}
1290
1291#endif
1292
1293#ifdef CONFIG_PNP
1294
1295#include <linux/pnp.h>
1296
1297static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1298{
1299 cmos_wake_setup(&pnp->dev);
1300
1301 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1302 unsigned int irq = 0;
1303#ifdef CONFIG_X86
1304 /* Some machines contain a PNP entry for the RTC, but
1305 * don't define the IRQ. It should always be safe to
1306 * hardcode it on systems with a legacy PIC.
1307 */
1308 if (nr_legacy_irqs())
1309 irq = RTC_IRQ;
1310#endif
1311 return cmos_do_probe(&pnp->dev,
1312 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1313 } else {
1314 return cmos_do_probe(&pnp->dev,
1315 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1316 pnp_irq(pnp, 0));
1317 }
1318}
1319
1320static void cmos_pnp_remove(struct pnp_dev *pnp)
1321{
1322 cmos_do_remove(&pnp->dev);
1323}
1324
1325static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1326{
1327 struct device *dev = &pnp->dev;
1328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1329
1330 if (system_state == SYSTEM_POWER_OFF) {
1331 int retval = cmos_poweroff(dev);
1332
1333 if (cmos_aie_poweroff(dev) < 0 && !retval)
1334 return;
1335 }
1336
1337 cmos_do_shutdown(cmos->irq);
1338}
1339
1340static const struct pnp_device_id rtc_ids[] = {
1341 { .id = "PNP0b00", },
1342 { .id = "PNP0b01", },
1343 { .id = "PNP0b02", },
1344 { },
1345};
1346MODULE_DEVICE_TABLE(pnp, rtc_ids);
1347
1348static struct pnp_driver cmos_pnp_driver = {
1349 .name = driver_name,
1350 .id_table = rtc_ids,
1351 .probe = cmos_pnp_probe,
1352 .remove = cmos_pnp_remove,
1353 .shutdown = cmos_pnp_shutdown,
1354
1355 /* flag ensures resume() gets called, and stops syslog spam */
1356 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1357 .driver = {
1358 .pm = &cmos_pm_ops,
1359 },
1360};
1361
1362#endif /* CONFIG_PNP */
1363
1364#ifdef CONFIG_OF
1365static const struct of_device_id of_cmos_match[] = {
1366 {
1367 .compatible = "motorola,mc146818",
1368 },
1369 { },
1370};
1371MODULE_DEVICE_TABLE(of, of_cmos_match);
1372
1373static __init void cmos_of_init(struct platform_device *pdev)
1374{
1375 struct device_node *node = pdev->dev.of_node;
1376 const __be32 *val;
1377
1378 if (!node)
1379 return;
1380
1381 val = of_get_property(node, "ctrl-reg", NULL);
1382 if (val)
1383 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1384
1385 val = of_get_property(node, "freq-reg", NULL);
1386 if (val)
1387 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1388}
1389#else
1390static inline void cmos_of_init(struct platform_device *pdev) {}
1391#endif
1392/*----------------------------------------------------------------*/
1393
1394/* Platform setup should have set up an RTC device, when PNP is
1395 * unavailable ... this could happen even on (older) PCs.
1396 */
1397
1398static int __init cmos_platform_probe(struct platform_device *pdev)
1399{
1400 struct resource *resource;
1401 int irq;
1402
1403 cmos_of_init(pdev);
1404 cmos_wake_setup(&pdev->dev);
1405
1406 if (RTC_IOMAPPED)
1407 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1408 else
1409 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1410 irq = platform_get_irq(pdev, 0);
1411 if (irq < 0)
1412 irq = -1;
1413
1414 return cmos_do_probe(&pdev->dev, resource, irq);
1415}
1416
1417static int cmos_platform_remove(struct platform_device *pdev)
1418{
1419 cmos_do_remove(&pdev->dev);
1420 return 0;
1421}
1422
1423static void cmos_platform_shutdown(struct platform_device *pdev)
1424{
1425 struct device *dev = &pdev->dev;
1426 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1427
1428 if (system_state == SYSTEM_POWER_OFF) {
1429 int retval = cmos_poweroff(dev);
1430
1431 if (cmos_aie_poweroff(dev) < 0 && !retval)
1432 return;
1433 }
1434
1435 cmos_do_shutdown(cmos->irq);
1436}
1437
1438/* work with hotplug and coldplug */
1439MODULE_ALIAS("platform:rtc_cmos");
1440
1441static struct platform_driver cmos_platform_driver = {
1442 .remove = cmos_platform_remove,
1443 .shutdown = cmos_platform_shutdown,
1444 .driver = {
1445 .name = driver_name,
1446 .pm = &cmos_pm_ops,
1447 .of_match_table = of_match_ptr(of_cmos_match),
1448 }
1449};
1450
1451#ifdef CONFIG_PNP
1452static bool pnp_driver_registered;
1453#endif
1454static bool platform_driver_registered;
1455
1456static int __init cmos_init(void)
1457{
1458 int retval = 0;
1459
1460#ifdef CONFIG_PNP
1461 retval = pnp_register_driver(&cmos_pnp_driver);
1462 if (retval == 0)
1463 pnp_driver_registered = true;
1464#endif
1465
1466 if (!cmos_rtc.dev) {
1467 retval = platform_driver_probe(&cmos_platform_driver,
1468 cmos_platform_probe);
1469 if (retval == 0)
1470 platform_driver_registered = true;
1471 }
1472
1473 if (retval == 0)
1474 return 0;
1475
1476#ifdef CONFIG_PNP
1477 if (pnp_driver_registered)
1478 pnp_unregister_driver(&cmos_pnp_driver);
1479#endif
1480 return retval;
1481}
1482module_init(cmos_init);
1483
1484static void __exit cmos_exit(void)
1485{
1486#ifdef CONFIG_PNP
1487 if (pnp_driver_registered)
1488 pnp_unregister_driver(&cmos_pnp_driver);
1489#endif
1490 if (platform_driver_registered)
1491 platform_driver_unregister(&cmos_platform_driver);
1492}
1493module_exit(cmos_exit);
1494
1495
1496MODULE_AUTHOR("David Brownell");
1497MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1498MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n) ((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225 /*
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
228 */
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
235 */
236 mc146818_get_time(t);
237 return 0;
238}
239
240static int cmos_set_time(struct device *dev, struct rtc_time *t)
241{
242 /* REVISIT: set the "century" register if available
243 *
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
247 */
248 return mc146818_set_time(t);
249}
250
251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252{
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
263 */
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319}
320
321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322{
323 unsigned char rtc_intr;
324
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
327 */
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336}
337
338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339{
340 unsigned char rtc_control;
341
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
344 */
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359}
360
361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362{
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377}
378
379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380{
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444}
445
446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447{
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494 /*
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
497 */
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510}
511
512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513{
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526}
527
528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530static int cmos_procfs(struct device *dev, struct seq_file *seq)
531{
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 */
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562}
563
564#else
565#define cmos_procfs NULL
566#endif
567
568static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575};
576
577static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581};
582
583/*----------------------------------------------------------------*/
584
585/*
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
589 */
590
591#define NVRAM_OFFSET (RTC_REG_D + 1)
592
593static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595{
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612}
613
614static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616{
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
625 */
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644}
645
646/*----------------------------------------------------------------*/
647
648static struct cmos_rtc cmos_rtc;
649
650static irqreturn_t cmos_interrupt(int irq, void *p)
651{
652 u8 irqstat;
653 u8 rtc_control;
654
655 spin_lock(&rtc_lock);
656
657 /* When the HPET interrupt handler calls us, the interrupt
658 * status is passed as arg1 instead of the irq number. But
659 * always clear irq status, even when HPET is in the way.
660 *
661 * Note that HPET and RTC are almost certainly out of phase,
662 * giving different IRQ status ...
663 */
664 irqstat = CMOS_READ(RTC_INTR_FLAGS);
665 rtc_control = CMOS_READ(RTC_CONTROL);
666 if (use_hpet_alarm())
667 irqstat = (unsigned long)irq & 0xF0;
668
669 /* If we were suspended, RTC_CONTROL may not be accurate since the
670 * bios may have cleared it.
671 */
672 if (!cmos_rtc.suspend_ctrl)
673 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
674 else
675 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
676
677 /* All Linux RTC alarms should be treated as if they were oneshot.
678 * Similar code may be needed in system wakeup paths, in case the
679 * alarm woke the system.
680 */
681 if (irqstat & RTC_AIE) {
682 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
683 rtc_control &= ~RTC_AIE;
684 CMOS_WRITE(rtc_control, RTC_CONTROL);
685 if (use_hpet_alarm())
686 hpet_mask_rtc_irq_bit(RTC_AIE);
687 CMOS_READ(RTC_INTR_FLAGS);
688 }
689 spin_unlock(&rtc_lock);
690
691 if (is_intr(irqstat)) {
692 rtc_update_irq(p, 1, irqstat);
693 return IRQ_HANDLED;
694 } else
695 return IRQ_NONE;
696}
697
698#ifdef CONFIG_PNP
699#define INITSECTION
700
701#else
702#define INITSECTION __init
703#endif
704
705static int INITSECTION
706cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
707{
708 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
709 int retval = 0;
710 unsigned char rtc_control;
711 unsigned address_space;
712 u32 flags = 0;
713 struct nvmem_config nvmem_cfg = {
714 .name = "cmos_nvram",
715 .word_size = 1,
716 .stride = 1,
717 .reg_read = cmos_nvram_read,
718 .reg_write = cmos_nvram_write,
719 .priv = &cmos_rtc,
720 };
721
722 /* there can be only one ... */
723 if (cmos_rtc.dev)
724 return -EBUSY;
725
726 if (!ports)
727 return -ENODEV;
728
729 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
730 *
731 * REVISIT non-x86 systems may instead use memory space resources
732 * (needing ioremap etc), not i/o space resources like this ...
733 */
734 if (RTC_IOMAPPED)
735 ports = request_region(ports->start, resource_size(ports),
736 driver_name);
737 else
738 ports = request_mem_region(ports->start, resource_size(ports),
739 driver_name);
740 if (!ports) {
741 dev_dbg(dev, "i/o registers already in use\n");
742 return -EBUSY;
743 }
744
745 cmos_rtc.irq = rtc_irq;
746 cmos_rtc.iomem = ports;
747
748 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
749 * driver did, but don't reject unknown configs. Old hardware
750 * won't address 128 bytes. Newer chips have multiple banks,
751 * though they may not be listed in one I/O resource.
752 */
753#if defined(CONFIG_ATARI)
754 address_space = 64;
755#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
756 || defined(__sparc__) || defined(__mips__) \
757 || defined(__powerpc__)
758 address_space = 128;
759#else
760#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
761 address_space = 128;
762#endif
763 if (can_bank2 && ports->end > (ports->start + 1))
764 address_space = 256;
765
766 /* For ACPI systems extension info comes from the FADT. On others,
767 * board specific setup provides it as appropriate. Systems where
768 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
769 * some almost-clones) can provide hooks to make that behave.
770 *
771 * Note that ACPI doesn't preclude putting these registers into
772 * "extended" areas of the chip, including some that we won't yet
773 * expect CMOS_READ and friends to handle.
774 */
775 if (info) {
776 if (info->flags)
777 flags = info->flags;
778 if (info->address_space)
779 address_space = info->address_space;
780
781 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
782 cmos_rtc.day_alrm = info->rtc_day_alarm;
783 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
784 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
785 if (info->rtc_century && info->rtc_century < 128)
786 cmos_rtc.century = info->rtc_century;
787
788 if (info->wake_on && info->wake_off) {
789 cmos_rtc.wake_on = info->wake_on;
790 cmos_rtc.wake_off = info->wake_off;
791 }
792 }
793
794 cmos_rtc.dev = dev;
795 dev_set_drvdata(dev, &cmos_rtc);
796
797 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
798 if (IS_ERR(cmos_rtc.rtc)) {
799 retval = PTR_ERR(cmos_rtc.rtc);
800 goto cleanup0;
801 }
802
803 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
804
805 spin_lock_irq(&rtc_lock);
806
807 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
808 /* force periodic irq to CMOS reset default of 1024Hz;
809 *
810 * REVISIT it's been reported that at least one x86_64 ALI
811 * mobo doesn't use 32KHz here ... for portability we might
812 * need to do something about other clock frequencies.
813 */
814 cmos_rtc.rtc->irq_freq = 1024;
815 if (use_hpet_alarm())
816 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
817 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
818 }
819
820 /* disable irqs */
821 if (is_valid_irq(rtc_irq))
822 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
823
824 rtc_control = CMOS_READ(RTC_CONTROL);
825
826 spin_unlock_irq(&rtc_lock);
827
828 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
829 dev_warn(dev, "only 24-hr supported\n");
830 retval = -ENXIO;
831 goto cleanup1;
832 }
833
834 if (use_hpet_alarm())
835 hpet_rtc_timer_init();
836
837 if (is_valid_irq(rtc_irq)) {
838 irq_handler_t rtc_cmos_int_handler;
839
840 if (use_hpet_alarm()) {
841 rtc_cmos_int_handler = hpet_rtc_interrupt;
842 retval = hpet_register_irq_handler(cmos_interrupt);
843 if (retval) {
844 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
845 dev_warn(dev, "hpet_register_irq_handler "
846 " failed in rtc_init().");
847 goto cleanup1;
848 }
849 } else
850 rtc_cmos_int_handler = cmos_interrupt;
851
852 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
853 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
854 cmos_rtc.rtc);
855 if (retval < 0) {
856 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
857 goto cleanup1;
858 }
859
860 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 } else {
862 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
863 }
864
865 cmos_rtc.rtc->nvram_old_abi = true;
866 retval = rtc_register_device(cmos_rtc.rtc);
867 if (retval)
868 goto cleanup2;
869
870 /* export at least the first block of NVRAM */
871 nvmem_cfg.size = address_space - NVRAM_OFFSET;
872 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
873 dev_err(dev, "nvmem registration failed\n");
874
875 dev_info(dev, "%s%s, %d bytes nvram%s\n",
876 !is_valid_irq(rtc_irq) ? "no alarms" :
877 cmos_rtc.mon_alrm ? "alarms up to one year" :
878 cmos_rtc.day_alrm ? "alarms up to one month" :
879 "alarms up to one day",
880 cmos_rtc.century ? ", y3k" : "",
881 nvmem_cfg.size,
882 use_hpet_alarm() ? ", hpet irqs" : "");
883
884 return 0;
885
886cleanup2:
887 if (is_valid_irq(rtc_irq))
888 free_irq(rtc_irq, cmos_rtc.rtc);
889cleanup1:
890 cmos_rtc.dev = NULL;
891cleanup0:
892 if (RTC_IOMAPPED)
893 release_region(ports->start, resource_size(ports));
894 else
895 release_mem_region(ports->start, resource_size(ports));
896 return retval;
897}
898
899static void cmos_do_shutdown(int rtc_irq)
900{
901 spin_lock_irq(&rtc_lock);
902 if (is_valid_irq(rtc_irq))
903 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
904 spin_unlock_irq(&rtc_lock);
905}
906
907static void cmos_do_remove(struct device *dev)
908{
909 struct cmos_rtc *cmos = dev_get_drvdata(dev);
910 struct resource *ports;
911
912 cmos_do_shutdown(cmos->irq);
913
914 if (is_valid_irq(cmos->irq)) {
915 free_irq(cmos->irq, cmos->rtc);
916 if (use_hpet_alarm())
917 hpet_unregister_irq_handler(cmos_interrupt);
918 }
919
920 cmos->rtc = NULL;
921
922 ports = cmos->iomem;
923 if (RTC_IOMAPPED)
924 release_region(ports->start, resource_size(ports));
925 else
926 release_mem_region(ports->start, resource_size(ports));
927 cmos->iomem = NULL;
928
929 cmos->dev = NULL;
930}
931
932static int cmos_aie_poweroff(struct device *dev)
933{
934 struct cmos_rtc *cmos = dev_get_drvdata(dev);
935 struct rtc_time now;
936 time64_t t_now;
937 int retval = 0;
938 unsigned char rtc_control;
939
940 if (!cmos->alarm_expires)
941 return -EINVAL;
942
943 spin_lock_irq(&rtc_lock);
944 rtc_control = CMOS_READ(RTC_CONTROL);
945 spin_unlock_irq(&rtc_lock);
946
947 /* We only care about the situation where AIE is disabled. */
948 if (rtc_control & RTC_AIE)
949 return -EBUSY;
950
951 cmos_read_time(dev, &now);
952 t_now = rtc_tm_to_time64(&now);
953
954 /*
955 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
956 * automatically right after shutdown on some buggy boxes.
957 * This automatic rebooting issue won't happen when the alarm
958 * time is larger than now+1 seconds.
959 *
960 * If the alarm time is equal to now+1 seconds, the issue can be
961 * prevented by cancelling the alarm.
962 */
963 if (cmos->alarm_expires == t_now + 1) {
964 struct rtc_wkalrm alarm;
965
966 /* Cancel the AIE timer by configuring the past time. */
967 rtc_time64_to_tm(t_now - 1, &alarm.time);
968 alarm.enabled = 0;
969 retval = cmos_set_alarm(dev, &alarm);
970 } else if (cmos->alarm_expires > t_now + 1) {
971 retval = -EBUSY;
972 }
973
974 return retval;
975}
976
977static int cmos_suspend(struct device *dev)
978{
979 struct cmos_rtc *cmos = dev_get_drvdata(dev);
980 unsigned char tmp;
981
982 /* only the alarm might be a wakeup event source */
983 spin_lock_irq(&rtc_lock);
984 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
985 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
986 unsigned char mask;
987
988 if (device_may_wakeup(dev))
989 mask = RTC_IRQMASK & ~RTC_AIE;
990 else
991 mask = RTC_IRQMASK;
992 tmp &= ~mask;
993 CMOS_WRITE(tmp, RTC_CONTROL);
994 if (use_hpet_alarm())
995 hpet_mask_rtc_irq_bit(mask);
996 cmos_checkintr(cmos, tmp);
997 }
998 spin_unlock_irq(&rtc_lock);
999
1000 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1001 cmos->enabled_wake = 1;
1002 if (cmos->wake_on)
1003 cmos->wake_on(dev);
1004 else
1005 enable_irq_wake(cmos->irq);
1006 }
1007
1008 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009
1010 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1011 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012 tmp);
1013
1014 return 0;
1015}
1016
1017/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1018 * after a detour through G3 "mechanical off", although the ACPI spec
1019 * says wakeup should only work from G1/S4 "hibernate". To most users,
1020 * distinctions between S4 and S5 are pointless. So when the hardware
1021 * allows, don't draw that distinction.
1022 */
1023static inline int cmos_poweroff(struct device *dev)
1024{
1025 if (!IS_ENABLED(CONFIG_PM))
1026 return -ENOSYS;
1027
1028 return cmos_suspend(dev);
1029}
1030
1031static void cmos_check_wkalrm(struct device *dev)
1032{
1033 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034 struct rtc_wkalrm current_alarm;
1035 time64_t t_now;
1036 time64_t t_current_expires;
1037 time64_t t_saved_expires;
1038 struct rtc_time now;
1039
1040 /* Check if we have RTC Alarm armed */
1041 if (!(cmos->suspend_ctrl & RTC_AIE))
1042 return;
1043
1044 cmos_read_time(dev, &now);
1045 t_now = rtc_tm_to_time64(&now);
1046
1047 /*
1048 * ACPI RTC wake event is cleared after resume from STR,
1049 * ACK the rtc irq here
1050 */
1051 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1052 cmos_interrupt(0, (void *)cmos->rtc);
1053 return;
1054 }
1055
1056 cmos_read_alarm(dev, ¤t_alarm);
1057 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1058 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059 if (t_current_expires != t_saved_expires ||
1060 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062 }
1063}
1064
1065static void cmos_check_acpi_rtc_status(struct device *dev,
1066 unsigned char *rtc_control);
1067
1068static int __maybe_unused cmos_resume(struct device *dev)
1069{
1070 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1071 unsigned char tmp;
1072
1073 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1074 if (cmos->wake_off)
1075 cmos->wake_off(dev);
1076 else
1077 disable_irq_wake(cmos->irq);
1078 cmos->enabled_wake = 0;
1079 }
1080
1081 /* The BIOS might have changed the alarm, restore it */
1082 cmos_check_wkalrm(dev);
1083
1084 spin_lock_irq(&rtc_lock);
1085 tmp = cmos->suspend_ctrl;
1086 cmos->suspend_ctrl = 0;
1087 /* re-enable any irqs previously active */
1088 if (tmp & RTC_IRQMASK) {
1089 unsigned char mask;
1090
1091 if (device_may_wakeup(dev) && use_hpet_alarm())
1092 hpet_rtc_timer_init();
1093
1094 do {
1095 CMOS_WRITE(tmp, RTC_CONTROL);
1096 if (use_hpet_alarm())
1097 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1098
1099 mask = CMOS_READ(RTC_INTR_FLAGS);
1100 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1101 if (!use_hpet_alarm() || !is_intr(mask))
1102 break;
1103
1104 /* force one-shot behavior if HPET blocked
1105 * the wake alarm's irq
1106 */
1107 rtc_update_irq(cmos->rtc, 1, mask);
1108 tmp &= ~RTC_AIE;
1109 hpet_mask_rtc_irq_bit(RTC_AIE);
1110 } while (mask & RTC_AIE);
1111
1112 if (tmp & RTC_AIE)
1113 cmos_check_acpi_rtc_status(dev, &tmp);
1114 }
1115 spin_unlock_irq(&rtc_lock);
1116
1117 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1118
1119 return 0;
1120}
1121
1122static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123
1124/*----------------------------------------------------------------*/
1125
1126/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1127 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1128 * probably list them in similar PNPBIOS tables; so PNP is more common.
1129 *
1130 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1131 * predate even PNPBIOS should set up platform_bus devices.
1132 */
1133
1134#ifdef CONFIG_ACPI
1135
1136#include <linux/acpi.h>
1137
1138static u32 rtc_handler(void *context)
1139{
1140 struct device *dev = context;
1141 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142 unsigned char rtc_control = 0;
1143 unsigned char rtc_intr;
1144 unsigned long flags;
1145
1146
1147 /*
1148 * Always update rtc irq when ACPI is used as RTC Alarm.
1149 * Or else, ACPI SCI is enabled during suspend/resume only,
1150 * update rtc irq in that case.
1151 */
1152 if (cmos_use_acpi_alarm())
1153 cmos_interrupt(0, (void *)cmos->rtc);
1154 else {
1155 /* Fix me: can we use cmos_interrupt() here as well? */
1156 spin_lock_irqsave(&rtc_lock, flags);
1157 if (cmos_rtc.suspend_ctrl)
1158 rtc_control = CMOS_READ(RTC_CONTROL);
1159 if (rtc_control & RTC_AIE) {
1160 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161 CMOS_WRITE(rtc_control, RTC_CONTROL);
1162 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164 }
1165 spin_unlock_irqrestore(&rtc_lock, flags);
1166 }
1167
1168 pm_wakeup_hard_event(dev);
1169 acpi_clear_event(ACPI_EVENT_RTC);
1170 acpi_disable_event(ACPI_EVENT_RTC, 0);
1171 return ACPI_INTERRUPT_HANDLED;
1172}
1173
1174static inline void rtc_wake_setup(struct device *dev)
1175{
1176 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1177 /*
1178 * After the RTC handler is installed, the Fixed_RTC event should
1179 * be disabled. Only when the RTC alarm is set will it be enabled.
1180 */
1181 acpi_clear_event(ACPI_EVENT_RTC);
1182 acpi_disable_event(ACPI_EVENT_RTC, 0);
1183}
1184
1185static void rtc_wake_on(struct device *dev)
1186{
1187 acpi_clear_event(ACPI_EVENT_RTC);
1188 acpi_enable_event(ACPI_EVENT_RTC, 0);
1189}
1190
1191static void rtc_wake_off(struct device *dev)
1192{
1193 acpi_disable_event(ACPI_EVENT_RTC, 0);
1194}
1195
1196#ifdef CONFIG_X86
1197/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1198static void use_acpi_alarm_quirks(void)
1199{
1200 int year;
1201
1202 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203 return;
1204
1205 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206 return;
1207
1208 if (!is_hpet_enabled())
1209 return;
1210
1211 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212 use_acpi_alarm = true;
1213}
1214#else
1215static inline void use_acpi_alarm_quirks(void) { }
1216#endif
1217
1218/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1219 * its device node and pass extra config data. This helps its driver use
1220 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1221 * that this board's RTC is wakeup-capable (per ACPI spec).
1222 */
1223static struct cmos_rtc_board_info acpi_rtc_info;
1224
1225static void cmos_wake_setup(struct device *dev)
1226{
1227 if (acpi_disabled)
1228 return;
1229
1230 use_acpi_alarm_quirks();
1231
1232 rtc_wake_setup(dev);
1233 acpi_rtc_info.wake_on = rtc_wake_on;
1234 acpi_rtc_info.wake_off = rtc_wake_off;
1235
1236 /* workaround bug in some ACPI tables */
1237 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239 acpi_gbl_FADT.month_alarm);
1240 acpi_gbl_FADT.month_alarm = 0;
1241 }
1242
1243 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246
1247 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1248 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249 dev_info(dev, "RTC can wake from S4\n");
1250
1251 dev->platform_data = &acpi_rtc_info;
1252
1253 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1254 device_init_wakeup(dev, 1);
1255}
1256
1257static void cmos_check_acpi_rtc_status(struct device *dev,
1258 unsigned char *rtc_control)
1259{
1260 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261 acpi_event_status rtc_status;
1262 acpi_status status;
1263
1264 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265 return;
1266
1267 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268 if (ACPI_FAILURE(status)) {
1269 dev_err(dev, "Could not get RTC status\n");
1270 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271 unsigned char mask;
1272 *rtc_control &= ~RTC_AIE;
1273 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274 mask = CMOS_READ(RTC_INTR_FLAGS);
1275 rtc_update_irq(cmos->rtc, 1, mask);
1276 }
1277}
1278
1279#else
1280
1281static void cmos_wake_setup(struct device *dev)
1282{
1283}
1284
1285static void cmos_check_acpi_rtc_status(struct device *dev,
1286 unsigned char *rtc_control)
1287{
1288}
1289
1290#endif
1291
1292#ifdef CONFIG_PNP
1293
1294#include <linux/pnp.h>
1295
1296static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1297{
1298 cmos_wake_setup(&pnp->dev);
1299
1300 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301 unsigned int irq = 0;
1302#ifdef CONFIG_X86
1303 /* Some machines contain a PNP entry for the RTC, but
1304 * don't define the IRQ. It should always be safe to
1305 * hardcode it on systems with a legacy PIC.
1306 */
1307 if (nr_legacy_irqs())
1308 irq = 8;
1309#endif
1310 return cmos_do_probe(&pnp->dev,
1311 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312 } else {
1313 return cmos_do_probe(&pnp->dev,
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315 pnp_irq(pnp, 0));
1316 }
1317}
1318
1319static void cmos_pnp_remove(struct pnp_dev *pnp)
1320{
1321 cmos_do_remove(&pnp->dev);
1322}
1323
1324static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1325{
1326 struct device *dev = &pnp->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1331
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1334 }
1335
1336 cmos_do_shutdown(cmos->irq);
1337}
1338
1339static const struct pnp_device_id rtc_ids[] = {
1340 { .id = "PNP0b00", },
1341 { .id = "PNP0b01", },
1342 { .id = "PNP0b02", },
1343 { },
1344};
1345MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346
1347static struct pnp_driver cmos_pnp_driver = {
1348 .name = (char *) driver_name,
1349 .id_table = rtc_ids,
1350 .probe = cmos_pnp_probe,
1351 .remove = cmos_pnp_remove,
1352 .shutdown = cmos_pnp_shutdown,
1353
1354 /* flag ensures resume() gets called, and stops syslog spam */
1355 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1356 .driver = {
1357 .pm = &cmos_pm_ops,
1358 },
1359};
1360
1361#endif /* CONFIG_PNP */
1362
1363#ifdef CONFIG_OF
1364static const struct of_device_id of_cmos_match[] = {
1365 {
1366 .compatible = "motorola,mc146818",
1367 },
1368 { },
1369};
1370MODULE_DEVICE_TABLE(of, of_cmos_match);
1371
1372static __init void cmos_of_init(struct platform_device *pdev)
1373{
1374 struct device_node *node = pdev->dev.of_node;
1375 const __be32 *val;
1376
1377 if (!node)
1378 return;
1379
1380 val = of_get_property(node, "ctrl-reg", NULL);
1381 if (val)
1382 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383
1384 val = of_get_property(node, "freq-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1387}
1388#else
1389static inline void cmos_of_init(struct platform_device *pdev) {}
1390#endif
1391/*----------------------------------------------------------------*/
1392
1393/* Platform setup should have set up an RTC device, when PNP is
1394 * unavailable ... this could happen even on (older) PCs.
1395 */
1396
1397static int __init cmos_platform_probe(struct platform_device *pdev)
1398{
1399 struct resource *resource;
1400 int irq;
1401
1402 cmos_of_init(pdev);
1403 cmos_wake_setup(&pdev->dev);
1404
1405 if (RTC_IOMAPPED)
1406 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407 else
1408 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409 irq = platform_get_irq(pdev, 0);
1410 if (irq < 0)
1411 irq = -1;
1412
1413 return cmos_do_probe(&pdev->dev, resource, irq);
1414}
1415
1416static int cmos_platform_remove(struct platform_device *pdev)
1417{
1418 cmos_do_remove(&pdev->dev);
1419 return 0;
1420}
1421
1422static void cmos_platform_shutdown(struct platform_device *pdev)
1423{
1424 struct device *dev = &pdev->dev;
1425 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426
1427 if (system_state == SYSTEM_POWER_OFF) {
1428 int retval = cmos_poweroff(dev);
1429
1430 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431 return;
1432 }
1433
1434 cmos_do_shutdown(cmos->irq);
1435}
1436
1437/* work with hotplug and coldplug */
1438MODULE_ALIAS("platform:rtc_cmos");
1439
1440static struct platform_driver cmos_platform_driver = {
1441 .remove = cmos_platform_remove,
1442 .shutdown = cmos_platform_shutdown,
1443 .driver = {
1444 .name = driver_name,
1445 .pm = &cmos_pm_ops,
1446 .of_match_table = of_match_ptr(of_cmos_match),
1447 }
1448};
1449
1450#ifdef CONFIG_PNP
1451static bool pnp_driver_registered;
1452#endif
1453static bool platform_driver_registered;
1454
1455static int __init cmos_init(void)
1456{
1457 int retval = 0;
1458
1459#ifdef CONFIG_PNP
1460 retval = pnp_register_driver(&cmos_pnp_driver);
1461 if (retval == 0)
1462 pnp_driver_registered = true;
1463#endif
1464
1465 if (!cmos_rtc.dev) {
1466 retval = platform_driver_probe(&cmos_platform_driver,
1467 cmos_platform_probe);
1468 if (retval == 0)
1469 platform_driver_registered = true;
1470 }
1471
1472 if (retval == 0)
1473 return 0;
1474
1475#ifdef CONFIG_PNP
1476 if (pnp_driver_registered)
1477 pnp_unregister_driver(&cmos_pnp_driver);
1478#endif
1479 return retval;
1480}
1481module_init(cmos_init);
1482
1483static void __exit cmos_exit(void)
1484{
1485#ifdef CONFIG_PNP
1486 if (pnp_driver_registered)
1487 pnp_unregister_driver(&cmos_pnp_driver);
1488#endif
1489 if (platform_driver_registered)
1490 platform_driver_unregister(&cmos_platform_driver);
1491}
1492module_exit(cmos_exit);
1493
1494
1495MODULE_AUTHOR("David Brownell");
1496MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497MODULE_LICENSE("GPL");