Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 29
 30	ida_simple_remove(&rtc_ida, rtc->id);
 31	kfree(rtc);
 32}
 33
 34#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 35/* Result of the last RTC to system clock attempt. */
 36int rtc_hctosys_ret = -ENODEV;
 37
 38/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 39 * whether it stores the most close value or the value with partial
 40 * seconds truncated. However, it is important that we use it to store
 41 * the truncated value. This is because otherwise it is necessary,
 42 * in an rtc sync function, to read both xtime.tv_sec and
 43 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 44 * of >32bits is not possible. So storing the most close value would
 45 * slow down the sync API. So here we have the truncated value and
 46 * the best guess is to add 0.5s.
 47 */
 48
 49static void rtc_hctosys(struct rtc_device *rtc)
 50{
 51	int err;
 52	struct rtc_time tm;
 53	struct timespec64 tv64 = {
 54		.tv_nsec = NSEC_PER_SEC >> 1,
 55	};
 56
 57	err = rtc_read_time(rtc, &tm);
 58	if (err) {
 59		dev_err(rtc->dev.parent,
 60			"hctosys: unable to read the hardware clock\n");
 61		goto err_read;
 62	}
 63
 64	tv64.tv_sec = rtc_tm_to_time64(&tm);
 65
 66#if BITS_PER_LONG == 32
 67	if (tv64.tv_sec > INT_MAX) {
 68		err = -ERANGE;
 69		goto err_read;
 70	}
 71#endif
 72
 73	err = do_settimeofday64(&tv64);
 74
 75	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 76		 &tm, (long long)tv64.tv_sec);
 77
 78err_read:
 79	rtc_hctosys_ret = err;
 80}
 81#endif
 82
 83#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 84/*
 85 * On suspend(), measure the delta between one RTC and the
 86 * system's wall clock; restore it on resume().
 87 */
 88
 89static struct timespec64 old_rtc, old_system, old_delta;
 90
 91static int rtc_suspend(struct device *dev)
 92{
 93	struct rtc_device	*rtc = to_rtc_device(dev);
 94	struct rtc_time		tm;
 95	struct timespec64	delta, delta_delta;
 96	int err;
 97
 98	if (timekeeping_rtc_skipsuspend())
 99		return 0;
100
101	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
102		return 0;
103
104	/* snapshot the current RTC and system time at suspend*/
105	err = rtc_read_time(rtc, &tm);
106	if (err < 0) {
107		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
108		return 0;
109	}
110
111	ktime_get_real_ts64(&old_system);
112	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
113
114	/*
115	 * To avoid drift caused by repeated suspend/resumes,
116	 * which each can add ~1 second drift error,
117	 * try to compensate so the difference in system time
118	 * and rtc time stays close to constant.
119	 */
120	delta = timespec64_sub(old_system, old_rtc);
121	delta_delta = timespec64_sub(delta, old_delta);
122	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
123		/*
124		 * if delta_delta is too large, assume time correction
125		 * has occurred and set old_delta to the current delta.
126		 */
127		old_delta = delta;
128	} else {
129		/* Otherwise try to adjust old_system to compensate */
130		old_system = timespec64_sub(old_system, delta_delta);
131	}
132
133	return 0;
134}
135
136static int rtc_resume(struct device *dev)
137{
138	struct rtc_device	*rtc = to_rtc_device(dev);
139	struct rtc_time		tm;
140	struct timespec64	new_system, new_rtc;
141	struct timespec64	sleep_time;
142	int err;
143
144	if (timekeeping_rtc_skipresume())
145		return 0;
146
147	rtc_hctosys_ret = -ENODEV;
148	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
149		return 0;
150
151	/* snapshot the current rtc and system time at resume */
152	ktime_get_real_ts64(&new_system);
153	err = rtc_read_time(rtc, &tm);
154	if (err < 0) {
155		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
156		return 0;
157	}
158
159	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
160	new_rtc.tv_nsec = 0;
161
162	if (new_rtc.tv_sec < old_rtc.tv_sec) {
163		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
164		return 0;
165	}
166
167	/* calculate the RTC time delta (sleep time)*/
168	sleep_time = timespec64_sub(new_rtc, old_rtc);
169
170	/*
171	 * Since these RTC suspend/resume handlers are not called
172	 * at the very end of suspend or the start of resume,
173	 * some run-time may pass on either sides of the sleep time
174	 * so subtract kernel run-time between rtc_suspend to rtc_resume
175	 * to keep things accurate.
176	 */
177	sleep_time = timespec64_sub(sleep_time,
178				    timespec64_sub(new_system, old_system));
179
180	if (sleep_time.tv_sec >= 0)
181		timekeeping_inject_sleeptime64(&sleep_time);
182	rtc_hctosys_ret = 0;
183	return 0;
184}
185
186static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
187#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
188#else
189#define RTC_CLASS_DEV_PM_OPS	NULL
190#endif
191
192/* Ensure the caller will set the id before releasing the device */
193static struct rtc_device *rtc_allocate_device(void)
194{
195	struct rtc_device *rtc;
196
197	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
198	if (!rtc)
199		return NULL;
200
201	device_initialize(&rtc->dev);
202
203	/* Drivers can revise this default after allocating the device. */
204	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
205
206	rtc->irq_freq = 1;
207	rtc->max_user_freq = 64;
208	rtc->dev.class = rtc_class;
209	rtc->dev.groups = rtc_get_dev_attribute_groups();
210	rtc->dev.release = rtc_device_release;
211
212	mutex_init(&rtc->ops_lock);
213	spin_lock_init(&rtc->irq_lock);
214	init_waitqueue_head(&rtc->irq_queue);
215
216	/* Init timerqueue */
217	timerqueue_init_head(&rtc->timerqueue);
218	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
219	/* Init aie timer */
220	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
221	/* Init uie timer */
222	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
223	/* Init pie timer */
224	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
225	rtc->pie_timer.function = rtc_pie_update_irq;
226	rtc->pie_enabled = 0;
227
228	return rtc;
229}
230
231static int rtc_device_get_id(struct device *dev)
232{
233	int of_id = -1, id = -1;
234
235	if (dev->of_node)
236		of_id = of_alias_get_id(dev->of_node, "rtc");
237	else if (dev->parent && dev->parent->of_node)
238		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
239
240	if (of_id >= 0) {
241		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
242		if (id < 0)
243			dev_warn(dev, "/aliases ID %d not available\n", of_id);
244	}
245
246	if (id < 0)
247		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
248
249	return id;
250}
251
252static void rtc_device_get_offset(struct rtc_device *rtc)
253{
254	time64_t range_secs;
255	u32 start_year;
256	int ret;
257
258	/*
259	 * If RTC driver did not implement the range of RTC hardware device,
260	 * then we can not expand the RTC range by adding or subtracting one
261	 * offset.
262	 */
263	if (rtc->range_min == rtc->range_max)
264		return;
265
266	ret = device_property_read_u32(rtc->dev.parent, "start-year",
267				       &start_year);
268	if (!ret) {
269		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
270		rtc->set_start_time = true;
271	}
272
273	/*
274	 * If user did not implement the start time for RTC driver, then no
275	 * need to expand the RTC range.
276	 */
277	if (!rtc->set_start_time)
278		return;
279
280	range_secs = rtc->range_max - rtc->range_min + 1;
281
282	/*
283	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
284	 * supported by RTC hardware or the maximum seconds of new expanded
285	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
286	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
287	 * RTC hardware will be mapped to start_secs by adding one offset, so
288	 * the offset seconds calculation formula should be:
289	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
290	 *
291	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
292	 * supported by RTC hardware, then there is one region is overlapped
293	 * between the original RTC hardware range and the new expanded range,
294	 * and this overlapped region do not need to be mapped into the new
295	 * expanded range due to it is valid for RTC device. So the minimum
296	 * seconds of RTC hardware (rtc->range_min) should be mapped to
297	 * rtc->range_max + 1, then the offset seconds formula should be:
298	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
299	 *
300	 * If the start_secs is less than the minimum seconds (rtc->range_min),
301	 * which is similar to case 2. So the start_secs should be mapped to
302	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
303	 * offset seconds formula should be:
304	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
305	 *
306	 * Otherwise the offset seconds should be 0.
307	 */
308	if (rtc->start_secs > rtc->range_max ||
309	    rtc->start_secs + range_secs - 1 < rtc->range_min)
310		rtc->offset_secs = rtc->start_secs - rtc->range_min;
311	else if (rtc->start_secs > rtc->range_min)
312		rtc->offset_secs = range_secs;
313	else if (rtc->start_secs < rtc->range_min)
314		rtc->offset_secs = -range_secs;
315	else
316		rtc->offset_secs = 0;
317}
318
319/**
320 * rtc_device_unregister - removes the previously registered RTC class device
321 *
322 * @rtc: the RTC class device to destroy
323 */
324static void rtc_device_unregister(struct rtc_device *rtc)
325{
326	mutex_lock(&rtc->ops_lock);
327	/*
328	 * Remove innards of this RTC, then disable it, before
329	 * letting any rtc_class_open() users access it again
330	 */
331	rtc_proc_del_device(rtc);
332	cdev_device_del(&rtc->char_dev, &rtc->dev);
333	rtc->ops = NULL;
334	mutex_unlock(&rtc->ops_lock);
335	put_device(&rtc->dev);
336}
337
338static void devm_rtc_release_device(struct device *dev, void *res)
339{
340	struct rtc_device *rtc = *(struct rtc_device **)res;
341
342	rtc_nvmem_unregister(rtc);
343
344	if (rtc->registered)
345		rtc_device_unregister(rtc);
346	else
347		put_device(&rtc->dev);
348}
349
350struct rtc_device *devm_rtc_allocate_device(struct device *dev)
351{
352	struct rtc_device **ptr, *rtc;
353	int id, err;
354
355	id = rtc_device_get_id(dev);
356	if (id < 0)
357		return ERR_PTR(id);
358
359	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
360	if (!ptr) {
361		err = -ENOMEM;
362		goto exit_ida;
363	}
364
365	rtc = rtc_allocate_device();
366	if (!rtc) {
367		err = -ENOMEM;
368		goto exit_devres;
369	}
370
371	*ptr = rtc;
372	devres_add(dev, ptr);
373
374	rtc->id = id;
375	rtc->dev.parent = dev;
376	dev_set_name(&rtc->dev, "rtc%d", id);
377
378	return rtc;
379
380exit_devres:
381	devres_free(ptr);
382exit_ida:
383	ida_simple_remove(&rtc_ida, id);
384	return ERR_PTR(err);
385}
386EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
387
388int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
389{
390	struct rtc_wkalrm alrm;
391	int err;
392
393	if (!rtc->ops) {
394		dev_dbg(&rtc->dev, "no ops set\n");
395		return -EINVAL;
396	}
397
398	rtc->owner = owner;
399	rtc_device_get_offset(rtc);
400
401	/* Check to see if there is an ALARM already set in hw */
402	err = __rtc_read_alarm(rtc, &alrm);
403	if (!err && !rtc_valid_tm(&alrm.time))
404		rtc_initialize_alarm(rtc, &alrm);
405
406	rtc_dev_prepare(rtc);
407
408	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
409	if (err)
410		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
411			 MAJOR(rtc->dev.devt), rtc->id);
412	else
413		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
414			MAJOR(rtc->dev.devt), rtc->id);
415
416	rtc_proc_add_device(rtc);
417
418	rtc->registered = true;
419	dev_info(rtc->dev.parent, "registered as %s\n",
420		 dev_name(&rtc->dev));
421
422#ifdef CONFIG_RTC_HCTOSYS_DEVICE
423	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
424		rtc_hctosys(rtc);
425#endif
426
427	return 0;
428}
429EXPORT_SYMBOL_GPL(__rtc_register_device);
430
431/**
432 * devm_rtc_device_register - resource managed rtc_device_register()
433 * @dev: the device to register
434 * @name: the name of the device (unused)
435 * @ops: the rtc operations structure
436 * @owner: the module owner
437 *
438 * @return a struct rtc on success, or an ERR_PTR on error
439 *
440 * Managed rtc_device_register(). The rtc_device returned from this function
441 * are automatically freed on driver detach.
442 * This function is deprecated, use devm_rtc_allocate_device and
443 * rtc_register_device instead
444 */
445struct rtc_device *devm_rtc_device_register(struct device *dev,
446					    const char *name,
447					    const struct rtc_class_ops *ops,
448					    struct module *owner)
449{
450	struct rtc_device *rtc;
451	int err;
452
453	rtc = devm_rtc_allocate_device(dev);
454	if (IS_ERR(rtc))
455		return rtc;
456
457	rtc->ops = ops;
458
459	err = __rtc_register_device(owner, rtc);
460	if (err)
461		return ERR_PTR(err);
462
463	return rtc;
464}
465EXPORT_SYMBOL_GPL(devm_rtc_device_register);
466
467static int __init rtc_init(void)
468{
469	rtc_class = class_create(THIS_MODULE, "rtc");
470	if (IS_ERR(rtc_class)) {
471		pr_err("couldn't create class\n");
472		return PTR_ERR(rtc_class);
473	}
474	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
475	rtc_dev_init();
476	return 0;
477}
478subsys_initcall(rtc_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 29
 30	ida_simple_remove(&rtc_ida, rtc->id);
 31	kfree(rtc);
 32}
 33
 34#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 35/* Result of the last RTC to system clock attempt. */
 36int rtc_hctosys_ret = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37#endif
 38
 39#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 40/*
 41 * On suspend(), measure the delta between one RTC and the
 42 * system's wall clock; restore it on resume().
 43 */
 44
 45static struct timespec64 old_rtc, old_system, old_delta;
 46
 47static int rtc_suspend(struct device *dev)
 48{
 49	struct rtc_device	*rtc = to_rtc_device(dev);
 50	struct rtc_time		tm;
 51	struct timespec64	delta, delta_delta;
 52	int err;
 53
 54	if (timekeeping_rtc_skipsuspend())
 55		return 0;
 56
 57	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
 58		return 0;
 59
 60	/* snapshot the current RTC and system time at suspend*/
 61	err = rtc_read_time(rtc, &tm);
 62	if (err < 0) {
 63		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
 64		return 0;
 65	}
 66
 67	ktime_get_real_ts64(&old_system);
 68	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
 69
 70	/*
 71	 * To avoid drift caused by repeated suspend/resumes,
 72	 * which each can add ~1 second drift error,
 73	 * try to compensate so the difference in system time
 74	 * and rtc time stays close to constant.
 75	 */
 76	delta = timespec64_sub(old_system, old_rtc);
 77	delta_delta = timespec64_sub(delta, old_delta);
 78	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
 79		/*
 80		 * if delta_delta is too large, assume time correction
 81		 * has occurred and set old_delta to the current delta.
 82		 */
 83		old_delta = delta;
 84	} else {
 85		/* Otherwise try to adjust old_system to compensate */
 86		old_system = timespec64_sub(old_system, delta_delta);
 87	}
 88
 89	return 0;
 90}
 91
 92static int rtc_resume(struct device *dev)
 93{
 94	struct rtc_device	*rtc = to_rtc_device(dev);
 95	struct rtc_time		tm;
 96	struct timespec64	new_system, new_rtc;
 97	struct timespec64	sleep_time;
 98	int err;
 99
100	if (timekeeping_rtc_skipresume())
101		return 0;
102
103	rtc_hctosys_ret = -ENODEV;
104	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
105		return 0;
106
107	/* snapshot the current rtc and system time at resume */
108	ktime_get_real_ts64(&new_system);
109	err = rtc_read_time(rtc, &tm);
110	if (err < 0) {
111		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
112		return 0;
113	}
114
115	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
116	new_rtc.tv_nsec = 0;
117
118	if (new_rtc.tv_sec < old_rtc.tv_sec) {
119		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
120		return 0;
121	}
122
123	/* calculate the RTC time delta (sleep time)*/
124	sleep_time = timespec64_sub(new_rtc, old_rtc);
125
126	/*
127	 * Since these RTC suspend/resume handlers are not called
128	 * at the very end of suspend or the start of resume,
129	 * some run-time may pass on either sides of the sleep time
130	 * so subtract kernel run-time between rtc_suspend to rtc_resume
131	 * to keep things accurate.
132	 */
133	sleep_time = timespec64_sub(sleep_time,
134				    timespec64_sub(new_system, old_system));
135
136	if (sleep_time.tv_sec >= 0)
137		timekeeping_inject_sleeptime64(&sleep_time);
138	rtc_hctosys_ret = 0;
139	return 0;
140}
141
142static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
143#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
144#else
145#define RTC_CLASS_DEV_PM_OPS	NULL
146#endif
147
148/* Ensure the caller will set the id before releasing the device */
149static struct rtc_device *rtc_allocate_device(void)
150{
151	struct rtc_device *rtc;
152
153	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
154	if (!rtc)
155		return NULL;
156
157	device_initialize(&rtc->dev);
158
159	/* Drivers can revise this default after allocating the device. */
160	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
161
162	rtc->irq_freq = 1;
163	rtc->max_user_freq = 64;
164	rtc->dev.class = rtc_class;
165	rtc->dev.groups = rtc_get_dev_attribute_groups();
166	rtc->dev.release = rtc_device_release;
167
168	mutex_init(&rtc->ops_lock);
169	spin_lock_init(&rtc->irq_lock);
170	init_waitqueue_head(&rtc->irq_queue);
171
172	/* Init timerqueue */
173	timerqueue_init_head(&rtc->timerqueue);
174	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
175	/* Init aie timer */
176	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
177	/* Init uie timer */
178	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
179	/* Init pie timer */
180	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
181	rtc->pie_timer.function = rtc_pie_update_irq;
182	rtc->pie_enabled = 0;
183
184	return rtc;
185}
186
187static int rtc_device_get_id(struct device *dev)
188{
189	int of_id = -1, id = -1;
190
191	if (dev->of_node)
192		of_id = of_alias_get_id(dev->of_node, "rtc");
193	else if (dev->parent && dev->parent->of_node)
194		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
195
196	if (of_id >= 0) {
197		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
198		if (id < 0)
199			dev_warn(dev, "/aliases ID %d not available\n", of_id);
200	}
201
202	if (id < 0)
203		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
204
205	return id;
206}
207
208static void rtc_device_get_offset(struct rtc_device *rtc)
209{
210	time64_t range_secs;
211	u32 start_year;
212	int ret;
213
214	/*
215	 * If RTC driver did not implement the range of RTC hardware device,
216	 * then we can not expand the RTC range by adding or subtracting one
217	 * offset.
218	 */
219	if (rtc->range_min == rtc->range_max)
220		return;
221
222	ret = device_property_read_u32(rtc->dev.parent, "start-year",
223				       &start_year);
224	if (!ret) {
225		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
226		rtc->set_start_time = true;
227	}
228
229	/*
230	 * If user did not implement the start time for RTC driver, then no
231	 * need to expand the RTC range.
232	 */
233	if (!rtc->set_start_time)
234		return;
235
236	range_secs = rtc->range_max - rtc->range_min + 1;
237
238	/*
239	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
240	 * supported by RTC hardware or the maximum seconds of new expanded
241	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
242	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
243	 * RTC hardware will be mapped to start_secs by adding one offset, so
244	 * the offset seconds calculation formula should be:
245	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
246	 *
247	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
248	 * supported by RTC hardware, then there is one region is overlapped
249	 * between the original RTC hardware range and the new expanded range,
250	 * and this overlapped region do not need to be mapped into the new
251	 * expanded range due to it is valid for RTC device. So the minimum
252	 * seconds of RTC hardware (rtc->range_min) should be mapped to
253	 * rtc->range_max + 1, then the offset seconds formula should be:
254	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
255	 *
256	 * If the start_secs is less than the minimum seconds (rtc->range_min),
257	 * which is similar to case 2. So the start_secs should be mapped to
258	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
259	 * offset seconds formula should be:
260	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
261	 *
262	 * Otherwise the offset seconds should be 0.
263	 */
264	if (rtc->start_secs > rtc->range_max ||
265	    rtc->start_secs + range_secs - 1 < rtc->range_min)
266		rtc->offset_secs = rtc->start_secs - rtc->range_min;
267	else if (rtc->start_secs > rtc->range_min)
268		rtc->offset_secs = range_secs;
269	else if (rtc->start_secs < rtc->range_min)
270		rtc->offset_secs = -range_secs;
271	else
272		rtc->offset_secs = 0;
273}
274
275/**
276 * rtc_device_unregister - removes the previously registered RTC class device
277 *
278 * @rtc: the RTC class device to destroy
279 */
280static void rtc_device_unregister(struct rtc_device *rtc)
281{
282	mutex_lock(&rtc->ops_lock);
283	/*
284	 * Remove innards of this RTC, then disable it, before
285	 * letting any rtc_class_open() users access it again
286	 */
287	rtc_proc_del_device(rtc);
288	cdev_device_del(&rtc->char_dev, &rtc->dev);
289	rtc->ops = NULL;
290	mutex_unlock(&rtc->ops_lock);
291	put_device(&rtc->dev);
292}
293
294static void devm_rtc_release_device(struct device *dev, void *res)
295{
296	struct rtc_device *rtc = *(struct rtc_device **)res;
297
298	rtc_nvmem_unregister(rtc);
299
300	if (rtc->registered)
301		rtc_device_unregister(rtc);
302	else
303		put_device(&rtc->dev);
304}
305
306struct rtc_device *devm_rtc_allocate_device(struct device *dev)
307{
308	struct rtc_device **ptr, *rtc;
309	int id, err;
310
311	id = rtc_device_get_id(dev);
312	if (id < 0)
313		return ERR_PTR(id);
314
315	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
316	if (!ptr) {
317		err = -ENOMEM;
318		goto exit_ida;
319	}
320
321	rtc = rtc_allocate_device();
322	if (!rtc) {
323		err = -ENOMEM;
324		goto exit_devres;
325	}
326
327	*ptr = rtc;
328	devres_add(dev, ptr);
329
330	rtc->id = id;
331	rtc->dev.parent = dev;
332	dev_set_name(&rtc->dev, "rtc%d", id);
333
334	return rtc;
335
336exit_devres:
337	devres_free(ptr);
338exit_ida:
339	ida_simple_remove(&rtc_ida, id);
340	return ERR_PTR(err);
341}
342EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
343
344int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
345{
346	struct rtc_wkalrm alrm;
347	int err;
348
349	if (!rtc->ops) {
350		dev_dbg(&rtc->dev, "no ops set\n");
351		return -EINVAL;
352	}
353
354	rtc->owner = owner;
355	rtc_device_get_offset(rtc);
356
357	/* Check to see if there is an ALARM already set in hw */
358	err = __rtc_read_alarm(rtc, &alrm);
359	if (!err && !rtc_valid_tm(&alrm.time))
360		rtc_initialize_alarm(rtc, &alrm);
361
362	rtc_dev_prepare(rtc);
363
364	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
365	if (err)
366		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
367			 MAJOR(rtc->dev.devt), rtc->id);
368	else
369		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
370			MAJOR(rtc->dev.devt), rtc->id);
371
372	rtc_proc_add_device(rtc);
373
374	rtc->registered = true;
375	dev_info(rtc->dev.parent, "registered as %s\n",
376		 dev_name(&rtc->dev));
 
 
 
 
 
377
378	return 0;
379}
380EXPORT_SYMBOL_GPL(__rtc_register_device);
381
382/**
383 * devm_rtc_device_register - resource managed rtc_device_register()
384 * @dev: the device to register
385 * @name: the name of the device (unused)
386 * @ops: the rtc operations structure
387 * @owner: the module owner
388 *
389 * @return a struct rtc on success, or an ERR_PTR on error
390 *
391 * Managed rtc_device_register(). The rtc_device returned from this function
392 * are automatically freed on driver detach.
393 * This function is deprecated, use devm_rtc_allocate_device and
394 * rtc_register_device instead
395 */
396struct rtc_device *devm_rtc_device_register(struct device *dev,
397					    const char *name,
398					    const struct rtc_class_ops *ops,
399					    struct module *owner)
400{
401	struct rtc_device *rtc;
402	int err;
403
404	rtc = devm_rtc_allocate_device(dev);
405	if (IS_ERR(rtc))
406		return rtc;
407
408	rtc->ops = ops;
409
410	err = __rtc_register_device(owner, rtc);
411	if (err)
412		return ERR_PTR(err);
413
414	return rtc;
415}
416EXPORT_SYMBOL_GPL(devm_rtc_device_register);
417
418static int __init rtc_init(void)
419{
420	rtc_class = class_create(THIS_MODULE, "rtc");
421	if (IS_ERR(rtc_class)) {
422		pr_err("couldn't create class\n");
423		return PTR_ERR(rtc_class);
424	}
425	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
426	rtc_dev_init();
427	return 0;
428}
429subsys_initcall(rtc_init);