Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
  30#include "../gpio/gpiolib.h"
  31#include <asm-generic/gpio.h>
  32#endif
  33
  34#include "core.h"
  35#include "devicetree.h"
  36#include "pinmux.h"
  37#include "pinconf.h"
  38
  39
  40static bool pinctrl_dummy_state;
  41
  42/* Mutex taken to protect pinctrl_list */
  43static DEFINE_MUTEX(pinctrl_list_mutex);
  44
  45/* Mutex taken to protect pinctrl_maps */
  46DEFINE_MUTEX(pinctrl_maps_mutex);
  47
  48/* Mutex taken to protect pinctrldev_list */
  49static DEFINE_MUTEX(pinctrldev_list_mutex);
  50
  51/* Global list of pin control devices (struct pinctrl_dev) */
  52static LIST_HEAD(pinctrldev_list);
  53
  54/* List of pin controller handles (struct pinctrl) */
  55static LIST_HEAD(pinctrl_list);
  56
  57/* List of pinctrl maps (struct pinctrl_maps) */
  58LIST_HEAD(pinctrl_maps);
  59
  60
  61/**
  62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  63 *
  64 * Usually this function is called by platforms without pinctrl driver support
  65 * but run with some shared drivers using pinctrl APIs.
  66 * After calling this function, the pinctrl core will return successfully
  67 * with creating a dummy state for the driver to keep going smoothly.
  68 */
  69void pinctrl_provide_dummies(void)
  70{
  71	pinctrl_dummy_state = true;
  72}
  73
  74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  75{
  76	/* We're not allowed to register devices without name */
  77	return pctldev->desc->name;
  78}
  79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  80
  81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  82{
  83	return dev_name(pctldev->dev);
  84}
  85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  86
  87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  88{
  89	return pctldev->driver_data;
  90}
  91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  92
  93/**
  94 * get_pinctrl_dev_from_devname() - look up pin controller device
  95 * @devname: the name of a device instance, as returned by dev_name()
  96 *
  97 * Looks up a pin control device matching a certain device name or pure device
  98 * pointer, the pure device pointer will take precedence.
  99 */
 100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 101{
 102	struct pinctrl_dev *pctldev;
 103
 104	if (!devname)
 105		return NULL;
 106
 107	mutex_lock(&pinctrldev_list_mutex);
 108
 109	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 110		if (!strcmp(dev_name(pctldev->dev), devname)) {
 111			/* Matched on device name */
 112			mutex_unlock(&pinctrldev_list_mutex);
 113			return pctldev;
 114		}
 115	}
 116
 117	mutex_unlock(&pinctrldev_list_mutex);
 118
 119	return NULL;
 120}
 121
 122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 123{
 124	struct pinctrl_dev *pctldev;
 125
 126	mutex_lock(&pinctrldev_list_mutex);
 127
 128	list_for_each_entry(pctldev, &pinctrldev_list, node)
 129		if (pctldev->dev->of_node == np) {
 130			mutex_unlock(&pinctrldev_list_mutex);
 131			return pctldev;
 132		}
 133
 134	mutex_unlock(&pinctrldev_list_mutex);
 135
 136	return NULL;
 137}
 138
 139/**
 140 * pin_get_from_name() - look up a pin number from a name
 141 * @pctldev: the pin control device to lookup the pin on
 142 * @name: the name of the pin to look up
 143 */
 144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 145{
 146	unsigned i, pin;
 147
 148	/* The pin number can be retrived from the pin controller descriptor */
 149	for (i = 0; i < pctldev->desc->npins; i++) {
 150		struct pin_desc *desc;
 151
 152		pin = pctldev->desc->pins[i].number;
 153		desc = pin_desc_get(pctldev, pin);
 154		/* Pin space may be sparse */
 155		if (desc && !strcmp(name, desc->name))
 156			return pin;
 157	}
 158
 159	return -EINVAL;
 160}
 161
 162/**
 163 * pin_get_name_from_id() - look up a pin name from a pin id
 164 * @pctldev: the pin control device to lookup the pin on
 165 * @pin: pin number/id to look up
 166 */
 167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 168{
 169	const struct pin_desc *desc;
 170
 171	desc = pin_desc_get(pctldev, pin);
 172	if (!desc) {
 173		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 174			pin);
 175		return NULL;
 176	}
 177
 178	return desc->name;
 179}
 180EXPORT_SYMBOL_GPL(pin_get_name);
 181
 182/* Deletes a range of pin descriptors */
 183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 184				  const struct pinctrl_pin_desc *pins,
 185				  unsigned num_pins)
 186{
 187	int i;
 188
 189	for (i = 0; i < num_pins; i++) {
 190		struct pin_desc *pindesc;
 191
 192		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 193					    pins[i].number);
 194		if (pindesc) {
 195			radix_tree_delete(&pctldev->pin_desc_tree,
 196					  pins[i].number);
 197			if (pindesc->dynamic_name)
 198				kfree(pindesc->name);
 199		}
 200		kfree(pindesc);
 201	}
 202}
 203
 204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 205				    const struct pinctrl_pin_desc *pin)
 206{
 207	struct pin_desc *pindesc;
 208
 209	pindesc = pin_desc_get(pctldev, pin->number);
 210	if (pindesc) {
 211		dev_err(pctldev->dev, "pin %d already registered\n",
 212			pin->number);
 213		return -EINVAL;
 214	}
 215
 216	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 217	if (!pindesc)
 218		return -ENOMEM;
 219
 220	/* Set owner */
 221	pindesc->pctldev = pctldev;
 222
 223	/* Copy basic pin info */
 224	if (pin->name) {
 225		pindesc->name = pin->name;
 226	} else {
 227		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 228		if (!pindesc->name) {
 229			kfree(pindesc);
 230			return -ENOMEM;
 231		}
 232		pindesc->dynamic_name = true;
 233	}
 234
 235	pindesc->drv_data = pin->drv_data;
 236
 237	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 238	pr_debug("registered pin %d (%s) on %s\n",
 239		 pin->number, pindesc->name, pctldev->desc->name);
 240	return 0;
 241}
 242
 243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 244				 const struct pinctrl_pin_desc *pins,
 245				 unsigned num_descs)
 246{
 247	unsigned i;
 248	int ret = 0;
 249
 250	for (i = 0; i < num_descs; i++) {
 251		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 252		if (ret)
 253			return ret;
 254	}
 255
 256	return 0;
 257}
 258
 259/**
 260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 261 * @range: GPIO range used for the translation
 262 * @gpio: gpio pin to translate to a pin number
 263 *
 264 * Finds the pin number for a given GPIO using the specified GPIO range
 265 * as a base for translation. The distinction between linear GPIO ranges
 266 * and pin list based GPIO ranges is managed correctly by this function.
 267 *
 268 * This function assumes the gpio is part of the specified GPIO range, use
 269 * only after making sure this is the case (e.g. by calling it on the
 270 * result of successful pinctrl_get_device_gpio_range calls)!
 271 */
 272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 273				unsigned int gpio)
 274{
 275	unsigned int offset = gpio - range->base;
 276	if (range->pins)
 277		return range->pins[offset];
 278	else
 279		return range->pin_base + offset;
 280}
 281
 282/**
 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 284 * @pctldev: pin controller device to check
 285 * @gpio: gpio pin to check taken from the global GPIO pin space
 286 *
 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 288 * controller, return the range or NULL
 289 */
 290static struct pinctrl_gpio_range *
 291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 292{
 293	struct pinctrl_gpio_range *range;
 294
 295	mutex_lock(&pctldev->mutex);
 296	/* Loop over the ranges */
 297	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 298		/* Check if we're in the valid range */
 299		if (gpio >= range->base &&
 300		    gpio < range->base + range->npins) {
 301			mutex_unlock(&pctldev->mutex);
 302			return range;
 303		}
 304	}
 305	mutex_unlock(&pctldev->mutex);
 306	return NULL;
 307}
 308
 309/**
 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 311 * the same GPIO chip are in range
 312 * @gpio: gpio pin to check taken from the global GPIO pin space
 313 *
 314 * This function is complement of pinctrl_match_gpio_range(). If the return
 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 317 * of the same GPIO chip don't have back-end pinctrl interface.
 318 * If the return value is true, it means that pinctrl device is ready & the
 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 320 * is false, it means that pinctrl device may not be ready.
 321 */
 322#ifdef CONFIG_GPIOLIB
 323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 324{
 325	struct pinctrl_dev *pctldev;
 326	struct pinctrl_gpio_range *range = NULL;
 327	struct gpio_chip *chip = gpio_to_chip(gpio);
 328
 329	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 330		return false;
 331
 332	mutex_lock(&pinctrldev_list_mutex);
 333
 334	/* Loop over the pin controllers */
 335	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 336		/* Loop over the ranges */
 337		mutex_lock(&pctldev->mutex);
 338		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 339			/* Check if any gpio range overlapped with gpio chip */
 340			if (range->base + range->npins - 1 < chip->base ||
 341			    range->base > chip->base + chip->ngpio - 1)
 342				continue;
 343			mutex_unlock(&pctldev->mutex);
 344			mutex_unlock(&pinctrldev_list_mutex);
 345			return true;
 346		}
 347		mutex_unlock(&pctldev->mutex);
 348	}
 349
 350	mutex_unlock(&pinctrldev_list_mutex);
 351
 352	return false;
 353}
 354#else
 355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 356#endif
 357
 358/**
 359 * pinctrl_get_device_gpio_range() - find device for GPIO range
 360 * @gpio: the pin to locate the pin controller for
 361 * @outdev: the pin control device if found
 362 * @outrange: the GPIO range if found
 363 *
 364 * Find the pin controller handling a certain GPIO pin from the pinspace of
 365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 367 * may still have not been registered.
 368 */
 369static int pinctrl_get_device_gpio_range(unsigned gpio,
 370					 struct pinctrl_dev **outdev,
 371					 struct pinctrl_gpio_range **outrange)
 372{
 373	struct pinctrl_dev *pctldev;
 374
 375	mutex_lock(&pinctrldev_list_mutex);
 376
 377	/* Loop over the pin controllers */
 378	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 379		struct pinctrl_gpio_range *range;
 380
 381		range = pinctrl_match_gpio_range(pctldev, gpio);
 382		if (range) {
 383			*outdev = pctldev;
 384			*outrange = range;
 385			mutex_unlock(&pinctrldev_list_mutex);
 386			return 0;
 387		}
 388	}
 389
 390	mutex_unlock(&pinctrldev_list_mutex);
 391
 392	return -EPROBE_DEFER;
 393}
 394
 395/**
 396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 397 * @pctldev: pin controller device to add the range to
 398 * @range: the GPIO range to add
 399 *
 400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 401 * this to register handled ranges after registering your pin controller.
 402 */
 403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 404			    struct pinctrl_gpio_range *range)
 405{
 406	mutex_lock(&pctldev->mutex);
 407	list_add_tail(&range->node, &pctldev->gpio_ranges);
 408	mutex_unlock(&pctldev->mutex);
 409}
 410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 411
 412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 413			     struct pinctrl_gpio_range *ranges,
 414			     unsigned nranges)
 415{
 416	int i;
 417
 418	for (i = 0; i < nranges; i++)
 419		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 420}
 421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 422
 423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 424		struct pinctrl_gpio_range *range)
 425{
 426	struct pinctrl_dev *pctldev;
 427
 428	pctldev = get_pinctrl_dev_from_devname(devname);
 429
 430	/*
 431	 * If we can't find this device, let's assume that is because
 432	 * it has not probed yet, so the driver trying to register this
 433	 * range need to defer probing.
 434	 */
 435	if (!pctldev) {
 436		return ERR_PTR(-EPROBE_DEFER);
 437	}
 438	pinctrl_add_gpio_range(pctldev, range);
 439
 440	return pctldev;
 441}
 442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 443
 444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 445				const unsigned **pins, unsigned *num_pins)
 446{
 447	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 448	int gs;
 449
 450	if (!pctlops->get_group_pins)
 451		return -EINVAL;
 452
 453	gs = pinctrl_get_group_selector(pctldev, pin_group);
 454	if (gs < 0)
 455		return gs;
 456
 457	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 458}
 459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 460
 461struct pinctrl_gpio_range *
 462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 463					unsigned int pin)
 464{
 465	struct pinctrl_gpio_range *range;
 466
 467	/* Loop over the ranges */
 468	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 469		/* Check if we're in the valid range */
 470		if (range->pins) {
 471			int a;
 472			for (a = 0; a < range->npins; a++) {
 473				if (range->pins[a] == pin)
 474					return range;
 475			}
 476		} else if (pin >= range->pin_base &&
 477			   pin < range->pin_base + range->npins)
 478			return range;
 479	}
 480
 481	return NULL;
 482}
 483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 484
 485/**
 486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 487 * @pctldev: the pin controller device to look in
 488 * @pin: a controller-local number to find the range for
 489 */
 490struct pinctrl_gpio_range *
 491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 492				 unsigned int pin)
 493{
 494	struct pinctrl_gpio_range *range;
 495
 496	mutex_lock(&pctldev->mutex);
 497	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 498	mutex_unlock(&pctldev->mutex);
 499
 500	return range;
 501}
 502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 503
 504/**
 505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 506 * @pctldev: pin controller device to remove the range from
 507 * @range: the GPIO range to remove
 508 */
 509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 510			       struct pinctrl_gpio_range *range)
 511{
 512	mutex_lock(&pctldev->mutex);
 513	list_del(&range->node);
 514	mutex_unlock(&pctldev->mutex);
 515}
 516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 517
 518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 519
 520/**
 521 * pinctrl_generic_get_group_count() - returns the number of pin groups
 522 * @pctldev: pin controller device
 523 */
 524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 525{
 526	return pctldev->num_groups;
 527}
 528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 529
 530/**
 531 * pinctrl_generic_get_group_name() - returns the name of a pin group
 532 * @pctldev: pin controller device
 533 * @selector: group number
 534 */
 535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 536					   unsigned int selector)
 537{
 538	struct group_desc *group;
 539
 540	group = radix_tree_lookup(&pctldev->pin_group_tree,
 541				  selector);
 542	if (!group)
 543		return NULL;
 544
 545	return group->name;
 546}
 547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 548
 549/**
 550 * pinctrl_generic_get_group_pins() - gets the pin group pins
 551 * @pctldev: pin controller device
 552 * @selector: group number
 553 * @pins: pins in the group
 554 * @num_pins: number of pins in the group
 555 */
 556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 557				   unsigned int selector,
 558				   const unsigned int **pins,
 559				   unsigned int *num_pins)
 560{
 561	struct group_desc *group;
 562
 563	group = radix_tree_lookup(&pctldev->pin_group_tree,
 564				  selector);
 565	if (!group) {
 566		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 567			__func__, selector);
 568		return -EINVAL;
 569	}
 570
 571	*pins = group->pins;
 572	*num_pins = group->num_pins;
 573
 574	return 0;
 575}
 576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 577
 578/**
 579 * pinctrl_generic_get_group() - returns a pin group based on the number
 580 * @pctldev: pin controller device
 581 * @selector: group number
 582 */
 583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 584					     unsigned int selector)
 585{
 586	struct group_desc *group;
 587
 588	group = radix_tree_lookup(&pctldev->pin_group_tree,
 589				  selector);
 590	if (!group)
 591		return NULL;
 592
 593	return group;
 594}
 595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 596
 597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 598						  const char *function)
 599{
 600	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 601	int ngroups = ops->get_groups_count(pctldev);
 602	int selector = 0;
 603
 604	/* See if this pctldev has this group */
 605	while (selector < ngroups) {
 606		const char *gname = ops->get_group_name(pctldev, selector);
 607
 608		if (gname && !strcmp(function, gname))
 609			return selector;
 610
 611		selector++;
 612	}
 613
 614	return -EINVAL;
 615}
 616
 617/**
 618 * pinctrl_generic_add_group() - adds a new pin group
 619 * @pctldev: pin controller device
 620 * @name: name of the pin group
 621 * @pins: pins in the pin group
 622 * @num_pins: number of pins in the pin group
 623 * @data: pin controller driver specific data
 624 *
 625 * Note that the caller must take care of locking.
 626 */
 627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 628			      int *pins, int num_pins, void *data)
 629{
 630	struct group_desc *group;
 631	int selector;
 632
 633	if (!name)
 634		return -EINVAL;
 635
 636	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 637	if (selector >= 0)
 638		return selector;
 639
 640	selector = pctldev->num_groups;
 641
 642	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 643	if (!group)
 644		return -ENOMEM;
 645
 646	group->name = name;
 647	group->pins = pins;
 648	group->num_pins = num_pins;
 649	group->data = data;
 650
 651	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 652
 653	pctldev->num_groups++;
 654
 655	return selector;
 656}
 657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 658
 659/**
 660 * pinctrl_generic_remove_group() - removes a numbered pin group
 661 * @pctldev: pin controller device
 662 * @selector: group number
 663 *
 664 * Note that the caller must take care of locking.
 665 */
 666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 667				 unsigned int selector)
 668{
 669	struct group_desc *group;
 670
 671	group = radix_tree_lookup(&pctldev->pin_group_tree,
 672				  selector);
 673	if (!group)
 674		return -ENOENT;
 675
 676	radix_tree_delete(&pctldev->pin_group_tree, selector);
 677	devm_kfree(pctldev->dev, group);
 678
 679	pctldev->num_groups--;
 680
 681	return 0;
 682}
 683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 684
 685/**
 686 * pinctrl_generic_free_groups() - removes all pin groups
 687 * @pctldev: pin controller device
 688 *
 689 * Note that the caller must take care of locking. The pinctrl groups
 690 * are allocated with devm_kzalloc() so no need to free them here.
 691 */
 692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 693{
 694	struct radix_tree_iter iter;
 695	void __rcu **slot;
 696
 697	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 698		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 699
 700	pctldev->num_groups = 0;
 701}
 702
 703#else
 704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 705{
 706}
 707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 708
 709/**
 710 * pinctrl_get_group_selector() - returns the group selector for a group
 711 * @pctldev: the pin controller handling the group
 712 * @pin_group: the pin group to look up
 713 */
 714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 715			       const char *pin_group)
 716{
 717	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 718	unsigned ngroups = pctlops->get_groups_count(pctldev);
 719	unsigned group_selector = 0;
 720
 721	while (group_selector < ngroups) {
 722		const char *gname = pctlops->get_group_name(pctldev,
 723							    group_selector);
 724		if (gname && !strcmp(gname, pin_group)) {
 725			dev_dbg(pctldev->dev,
 726				"found group selector %u for %s\n",
 727				group_selector,
 728				pin_group);
 729			return group_selector;
 730		}
 731
 732		group_selector++;
 733	}
 734
 735	dev_err(pctldev->dev, "does not have pin group %s\n",
 736		pin_group);
 737
 738	return -EINVAL;
 739}
 740
 741bool pinctrl_gpio_can_use_line(unsigned gpio)
 742{
 743	struct pinctrl_dev *pctldev;
 744	struct pinctrl_gpio_range *range;
 745	bool result;
 746	int pin;
 747
 748	/*
 749	 * Try to obtain GPIO range, if it fails
 750	 * we're probably dealing with GPIO driver
 751	 * without a backing pin controller - bail out.
 752	 */
 753	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 754		return true;
 755
 756	mutex_lock(&pctldev->mutex);
 757
 758	/* Convert to the pin controllers number space */
 759	pin = gpio_to_pin(range, gpio);
 760
 761	result = pinmux_can_be_used_for_gpio(pctldev, pin);
 762
 763	mutex_unlock(&pctldev->mutex);
 764
 765	return result;
 766}
 767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 768
 769/**
 770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 771 * @gpio: the GPIO pin number from the GPIO subsystem number space
 772 *
 773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 774 * as part of their gpio_request() semantics, platforms and individual drivers
 775 * shall *NOT* request GPIO pins to be muxed in.
 776 */
 777int pinctrl_gpio_request(unsigned gpio)
 778{
 779	struct pinctrl_dev *pctldev;
 780	struct pinctrl_gpio_range *range;
 781	int ret;
 782	int pin;
 783
 784	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 785	if (ret) {
 786		if (pinctrl_ready_for_gpio_range(gpio))
 787			ret = 0;
 788		return ret;
 789	}
 790
 791	mutex_lock(&pctldev->mutex);
 792
 793	/* Convert to the pin controllers number space */
 794	pin = gpio_to_pin(range, gpio);
 795
 796	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 797
 798	mutex_unlock(&pctldev->mutex);
 799
 800	return ret;
 801}
 802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 803
 804/**
 805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 806 * @gpio: the GPIO pin number from the GPIO subsystem number space
 807 *
 808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 809 * as part of their gpio_free() semantics, platforms and individual drivers
 810 * shall *NOT* request GPIO pins to be muxed out.
 811 */
 812void pinctrl_gpio_free(unsigned gpio)
 813{
 814	struct pinctrl_dev *pctldev;
 815	struct pinctrl_gpio_range *range;
 816	int ret;
 817	int pin;
 818
 819	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 820	if (ret) {
 821		return;
 822	}
 823	mutex_lock(&pctldev->mutex);
 824
 825	/* Convert to the pin controllers number space */
 826	pin = gpio_to_pin(range, gpio);
 827
 828	pinmux_free_gpio(pctldev, pin, range);
 829
 830	mutex_unlock(&pctldev->mutex);
 831}
 832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 833
 834static int pinctrl_gpio_direction(unsigned gpio, bool input)
 835{
 836	struct pinctrl_dev *pctldev;
 837	struct pinctrl_gpio_range *range;
 838	int ret;
 839	int pin;
 840
 841	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 842	if (ret) {
 843		return ret;
 844	}
 845
 846	mutex_lock(&pctldev->mutex);
 847
 848	/* Convert to the pin controllers number space */
 849	pin = gpio_to_pin(range, gpio);
 850	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 851
 852	mutex_unlock(&pctldev->mutex);
 853
 854	return ret;
 855}
 856
 857/**
 858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 859 * @gpio: the GPIO pin number from the GPIO subsystem number space
 860 *
 861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 862 * as part of their gpio_direction_input() semantics, platforms and individual
 863 * drivers shall *NOT* touch pin control GPIO calls.
 864 */
 865int pinctrl_gpio_direction_input(unsigned gpio)
 866{
 867	return pinctrl_gpio_direction(gpio, true);
 868}
 869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 870
 871/**
 872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 873 * @gpio: the GPIO pin number from the GPIO subsystem number space
 874 *
 875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 876 * as part of their gpio_direction_output() semantics, platforms and individual
 877 * drivers shall *NOT* touch pin control GPIO calls.
 878 */
 879int pinctrl_gpio_direction_output(unsigned gpio)
 880{
 881	return pinctrl_gpio_direction(gpio, false);
 882}
 883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 884
 885/**
 886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 887 * @gpio: the GPIO pin number from the GPIO subsystem number space
 888 * @config: the configuration to apply to the GPIO
 889 *
 890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 891 * they need to call the underlying pin controller to change GPIO config
 892 * (for example set debounce time).
 893 */
 894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 895{
 896	unsigned long configs[] = { config };
 897	struct pinctrl_gpio_range *range;
 898	struct pinctrl_dev *pctldev;
 899	int ret, pin;
 900
 901	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 902	if (ret)
 903		return ret;
 904
 905	mutex_lock(&pctldev->mutex);
 906	pin = gpio_to_pin(range, gpio);
 907	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 908	mutex_unlock(&pctldev->mutex);
 909
 910	return ret;
 911}
 912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 913
 914static struct pinctrl_state *find_state(struct pinctrl *p,
 915					const char *name)
 916{
 917	struct pinctrl_state *state;
 918
 919	list_for_each_entry(state, &p->states, node)
 920		if (!strcmp(state->name, name))
 921			return state;
 922
 923	return NULL;
 924}
 925
 926static struct pinctrl_state *create_state(struct pinctrl *p,
 927					  const char *name)
 928{
 929	struct pinctrl_state *state;
 930
 931	state = kzalloc(sizeof(*state), GFP_KERNEL);
 932	if (!state)
 933		return ERR_PTR(-ENOMEM);
 934
 935	state->name = name;
 936	INIT_LIST_HEAD(&state->settings);
 937
 938	list_add_tail(&state->node, &p->states);
 939
 940	return state;
 941}
 942
 943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 944		       const struct pinctrl_map *map)
 945{
 946	struct pinctrl_state *state;
 947	struct pinctrl_setting *setting;
 948	int ret;
 949
 950	state = find_state(p, map->name);
 951	if (!state)
 952		state = create_state(p, map->name);
 953	if (IS_ERR(state))
 954		return PTR_ERR(state);
 955
 956	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 957		return 0;
 958
 959	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 960	if (!setting)
 961		return -ENOMEM;
 962
 963	setting->type = map->type;
 964
 965	if (pctldev)
 966		setting->pctldev = pctldev;
 967	else
 968		setting->pctldev =
 969			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 970	if (!setting->pctldev) {
 971		kfree(setting);
 972		/* Do not defer probing of hogs (circular loop) */
 973		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 974			return -ENODEV;
 975		/*
 976		 * OK let us guess that the driver is not there yet, and
 977		 * let's defer obtaining this pinctrl handle to later...
 978		 */
 979		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 980			map->ctrl_dev_name);
 981		return -EPROBE_DEFER;
 982	}
 983
 984	setting->dev_name = map->dev_name;
 985
 986	switch (map->type) {
 987	case PIN_MAP_TYPE_MUX_GROUP:
 988		ret = pinmux_map_to_setting(map, setting);
 989		break;
 990	case PIN_MAP_TYPE_CONFIGS_PIN:
 991	case PIN_MAP_TYPE_CONFIGS_GROUP:
 992		ret = pinconf_map_to_setting(map, setting);
 993		break;
 994	default:
 995		ret = -EINVAL;
 996		break;
 997	}
 998	if (ret < 0) {
 999		kfree(setting);
1000		return ret;
1001	}
1002
1003	list_add_tail(&setting->node, &state->settings);
1004
1005	return 0;
1006}
1007
1008static struct pinctrl *find_pinctrl(struct device *dev)
1009{
1010	struct pinctrl *p;
1011
1012	mutex_lock(&pinctrl_list_mutex);
1013	list_for_each_entry(p, &pinctrl_list, node)
1014		if (p->dev == dev) {
1015			mutex_unlock(&pinctrl_list_mutex);
1016			return p;
1017		}
1018
1019	mutex_unlock(&pinctrl_list_mutex);
1020	return NULL;
1021}
1022
1023static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
1025static struct pinctrl *create_pinctrl(struct device *dev,
1026				      struct pinctrl_dev *pctldev)
1027{
1028	struct pinctrl *p;
1029	const char *devname;
1030	struct pinctrl_maps *maps_node;
1031	int i;
1032	const struct pinctrl_map *map;
1033	int ret;
1034
1035	/*
1036	 * create the state cookie holder struct pinctrl for each
1037	 * mapping, this is what consumers will get when requesting
1038	 * a pin control handle with pinctrl_get()
1039	 */
1040	p = kzalloc(sizeof(*p), GFP_KERNEL);
1041	if (!p)
1042		return ERR_PTR(-ENOMEM);
1043	p->dev = dev;
1044	INIT_LIST_HEAD(&p->states);
1045	INIT_LIST_HEAD(&p->dt_maps);
1046
1047	ret = pinctrl_dt_to_map(p, pctldev);
1048	if (ret < 0) {
1049		kfree(p);
1050		return ERR_PTR(ret);
1051	}
1052
1053	devname = dev_name(dev);
1054
1055	mutex_lock(&pinctrl_maps_mutex);
1056	/* Iterate over the pin control maps to locate the right ones */
1057	for_each_maps(maps_node, i, map) {
1058		/* Map must be for this device */
1059		if (strcmp(map->dev_name, devname))
1060			continue;
1061		/*
1062		 * If pctldev is not null, we are claiming hog for it,
1063		 * that means, setting that is served by pctldev by itself.
1064		 *
1065		 * Thus we must skip map that is for this device but is served
1066		 * by other device.
1067		 */
1068		if (pctldev &&
1069		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070			continue;
1071
1072		ret = add_setting(p, pctldev, map);
1073		/*
1074		 * At this point the adding of a setting may:
1075		 *
1076		 * - Defer, if the pinctrl device is not yet available
1077		 * - Fail, if the pinctrl device is not yet available,
1078		 *   AND the setting is a hog. We cannot defer that, since
1079		 *   the hog will kick in immediately after the device
1080		 *   is registered.
1081		 *
1082		 * If the error returned was not -EPROBE_DEFER then we
1083		 * accumulate the errors to see if we end up with
1084		 * an -EPROBE_DEFER later, as that is the worst case.
1085		 */
1086		if (ret == -EPROBE_DEFER) {
1087			pinctrl_free(p, false);
1088			mutex_unlock(&pinctrl_maps_mutex);
1089			return ERR_PTR(ret);
1090		}
1091	}
1092	mutex_unlock(&pinctrl_maps_mutex);
1093
1094	if (ret < 0) {
1095		/* If some other error than deferral occurred, return here */
1096		pinctrl_free(p, false);
1097		return ERR_PTR(ret);
1098	}
1099
1100	kref_init(&p->users);
1101
1102	/* Add the pinctrl handle to the global list */
1103	mutex_lock(&pinctrl_list_mutex);
1104	list_add_tail(&p->node, &pinctrl_list);
1105	mutex_unlock(&pinctrl_list_mutex);
1106
1107	return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116	struct pinctrl *p;
1117
1118	if (WARN_ON(!dev))
1119		return ERR_PTR(-EINVAL);
1120
1121	/*
1122	 * See if somebody else (such as the device core) has already
1123	 * obtained a handle to the pinctrl for this device. In that case,
1124	 * return another pointer to it.
1125	 */
1126	p = find_pinctrl(dev);
1127	if (p) {
1128		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129		kref_get(&p->users);
1130		return p;
1131	}
1132
1133	return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138				 struct pinctrl_setting *setting)
1139{
1140	switch (setting->type) {
1141	case PIN_MAP_TYPE_MUX_GROUP:
1142		if (disable_setting)
1143			pinmux_disable_setting(setting);
1144		pinmux_free_setting(setting);
1145		break;
1146	case PIN_MAP_TYPE_CONFIGS_PIN:
1147	case PIN_MAP_TYPE_CONFIGS_GROUP:
1148		pinconf_free_setting(setting);
1149		break;
1150	default:
1151		break;
1152	}
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157	struct pinctrl_state *state, *n1;
1158	struct pinctrl_setting *setting, *n2;
1159
1160	mutex_lock(&pinctrl_list_mutex);
1161	list_for_each_entry_safe(state, n1, &p->states, node) {
1162		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163			pinctrl_free_setting(state == p->state, setting);
1164			list_del(&setting->node);
1165			kfree(setting);
1166		}
1167		list_del(&state->node);
1168		kfree(state);
1169	}
1170
1171	pinctrl_dt_free_maps(p);
1172
1173	if (inlist)
1174		list_del(&p->node);
1175	kfree(p);
1176	mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187	pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196	kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206						 const char *name)
1207{
1208	struct pinctrl_state *state;
1209
1210	state = find_state(p, name);
1211	if (!state) {
1212		if (pinctrl_dummy_state) {
1213			/* create dummy state */
1214			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215				name);
1216			state = create_state(p, name);
1217		} else
1218			state = ERR_PTR(-ENODEV);
1219	}
1220
1221	return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226			     struct device *consumer)
1227{
1228	if (pctldev->desc->link_consumers)
1229		device_link_add(consumer, pctldev->dev,
1230				DL_FLAG_PM_RUNTIME |
1231				DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241	struct pinctrl_setting *setting, *setting2;
1242	struct pinctrl_state *old_state = p->state;
1243	int ret;
1244
1245	if (p->state) {
1246		/*
1247		 * For each pinmux setting in the old state, forget SW's record
1248		 * of mux owner for that pingroup. Any pingroups which are
1249		 * still owned by the new state will be re-acquired by the call
1250		 * to pinmux_enable_setting() in the loop below.
1251		 */
1252		list_for_each_entry(setting, &p->state->settings, node) {
1253			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254				continue;
1255			pinmux_disable_setting(setting);
1256		}
1257	}
1258
1259	p->state = NULL;
1260
1261	/* Apply all the settings for the new state */
1262	list_for_each_entry(setting, &state->settings, node) {
1263		switch (setting->type) {
1264		case PIN_MAP_TYPE_MUX_GROUP:
1265			ret = pinmux_enable_setting(setting);
1266			break;
1267		case PIN_MAP_TYPE_CONFIGS_PIN:
1268		case PIN_MAP_TYPE_CONFIGS_GROUP:
1269			ret = pinconf_apply_setting(setting);
1270			break;
1271		default:
1272			ret = -EINVAL;
1273			break;
1274		}
1275
1276		if (ret < 0) {
1277			goto unapply_new_state;
1278		}
1279
1280		/* Do not link hogs (circular dependency) */
1281		if (p != setting->pctldev->p)
1282			pinctrl_link_add(setting->pctldev, p->dev);
1283	}
1284
1285	p->state = state;
1286
1287	return 0;
1288
1289unapply_new_state:
1290	dev_err(p->dev, "Error applying setting, reverse things back\n");
1291
1292	list_for_each_entry(setting2, &state->settings, node) {
1293		if (&setting2->node == &setting->node)
1294			break;
1295		/*
1296		 * All we can do here is pinmux_disable_setting.
1297		 * That means that some pins are muxed differently now
1298		 * than they were before applying the setting (We can't
1299		 * "unmux a pin"!), but it's not a big deal since the pins
1300		 * are free to be muxed by another apply_setting.
1301		 */
1302		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1303			pinmux_disable_setting(setting2);
1304	}
1305
1306	/* There's no infinite recursive loop here because p->state is NULL */
1307	if (old_state)
1308		pinctrl_select_state(p, old_state);
1309
1310	return ret;
1311}
1312
1313/**
1314 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1315 * @p: the pinctrl handle for the device that requests configuration
1316 * @state: the state handle to select/activate/program
1317 */
1318int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1319{
1320	if (p->state == state)
1321		return 0;
1322
1323	return pinctrl_commit_state(p, state);
1324}
1325EXPORT_SYMBOL_GPL(pinctrl_select_state);
1326
1327static void devm_pinctrl_release(struct device *dev, void *res)
1328{
1329	pinctrl_put(*(struct pinctrl **)res);
1330}
1331
1332/**
1333 * devm_pinctrl_get() - Resource managed pinctrl_get()
1334 * @dev: the device to obtain the handle for
1335 *
1336 * If there is a need to explicitly destroy the returned struct pinctrl,
1337 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1338 */
1339struct pinctrl *devm_pinctrl_get(struct device *dev)
1340{
1341	struct pinctrl **ptr, *p;
1342
1343	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1344	if (!ptr)
1345		return ERR_PTR(-ENOMEM);
1346
1347	p = pinctrl_get(dev);
1348	if (!IS_ERR(p)) {
1349		*ptr = p;
1350		devres_add(dev, ptr);
1351	} else {
1352		devres_free(ptr);
1353	}
1354
1355	return p;
1356}
1357EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1358
1359static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1360{
1361	struct pinctrl **p = res;
1362
1363	return *p == data;
1364}
1365
1366/**
1367 * devm_pinctrl_put() - Resource managed pinctrl_put()
1368 * @p: the pinctrl handle to release
1369 *
1370 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1371 * this function will not need to be called and the resource management
1372 * code will ensure that the resource is freed.
1373 */
1374void devm_pinctrl_put(struct pinctrl *p)
1375{
1376	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1377			       devm_pinctrl_match, p));
1378}
1379EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1380
1381/**
1382 * pinctrl_register_mappings() - register a set of pin controller mappings
1383 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1384 *	keeps a reference to the passed in maps, so they should _not_ be
1385 *	marked with __initdata.
1386 * @num_maps: the number of maps in the mapping table
1387 */
1388int pinctrl_register_mappings(const struct pinctrl_map *maps,
1389			      unsigned num_maps)
1390{
1391	int i, ret;
1392	struct pinctrl_maps *maps_node;
1393
1394	pr_debug("add %u pinctrl maps\n", num_maps);
1395
1396	/* First sanity check the new mapping */
1397	for (i = 0; i < num_maps; i++) {
1398		if (!maps[i].dev_name) {
1399			pr_err("failed to register map %s (%d): no device given\n",
1400			       maps[i].name, i);
1401			return -EINVAL;
1402		}
1403
1404		if (!maps[i].name) {
1405			pr_err("failed to register map %d: no map name given\n",
1406			       i);
1407			return -EINVAL;
1408		}
1409
1410		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1411				!maps[i].ctrl_dev_name) {
1412			pr_err("failed to register map %s (%d): no pin control device given\n",
1413			       maps[i].name, i);
1414			return -EINVAL;
1415		}
1416
1417		switch (maps[i].type) {
1418		case PIN_MAP_TYPE_DUMMY_STATE:
1419			break;
1420		case PIN_MAP_TYPE_MUX_GROUP:
1421			ret = pinmux_validate_map(&maps[i], i);
1422			if (ret < 0)
1423				return ret;
1424			break;
1425		case PIN_MAP_TYPE_CONFIGS_PIN:
1426		case PIN_MAP_TYPE_CONFIGS_GROUP:
1427			ret = pinconf_validate_map(&maps[i], i);
1428			if (ret < 0)
1429				return ret;
1430			break;
1431		default:
1432			pr_err("failed to register map %s (%d): invalid type given\n",
1433			       maps[i].name, i);
1434			return -EINVAL;
1435		}
1436	}
1437
1438	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1439	if (!maps_node)
1440		return -ENOMEM;
1441
1442	maps_node->maps = maps;
1443	maps_node->num_maps = num_maps;
 
 
 
 
 
 
 
 
 
 
1444
1445	mutex_lock(&pinctrl_maps_mutex);
1446	list_add_tail(&maps_node->node, &pinctrl_maps);
1447	mutex_unlock(&pinctrl_maps_mutex);
1448
1449	return 0;
1450}
1451EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1452
1453/**
1454 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1455 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1456 *	when registering the mappings.
 
 
1457 */
1458void pinctrl_unregister_mappings(const struct pinctrl_map *map)
 
 
 
 
 
 
 
1459{
1460	struct pinctrl_maps *maps_node;
1461
1462	mutex_lock(&pinctrl_maps_mutex);
1463	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1464		if (maps_node->maps == map) {
1465			list_del(&maps_node->node);
1466			kfree(maps_node);
1467			mutex_unlock(&pinctrl_maps_mutex);
1468			return;
1469		}
1470	}
1471	mutex_unlock(&pinctrl_maps_mutex);
1472}
1473EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1474
1475/**
1476 * pinctrl_force_sleep() - turn a given controller device into sleep state
1477 * @pctldev: pin controller device
1478 */
1479int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1480{
1481	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1482		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1483	return 0;
1484}
1485EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1486
1487/**
1488 * pinctrl_force_default() - turn a given controller device into default state
1489 * @pctldev: pin controller device
1490 */
1491int pinctrl_force_default(struct pinctrl_dev *pctldev)
1492{
1493	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1494		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1495	return 0;
1496}
1497EXPORT_SYMBOL_GPL(pinctrl_force_default);
1498
1499/**
1500 * pinctrl_init_done() - tell pinctrl probe is done
1501 *
1502 * We'll use this time to switch the pins from "init" to "default" unless the
1503 * driver selected some other state.
1504 *
1505 * @dev: device to that's done probing
1506 */
1507int pinctrl_init_done(struct device *dev)
1508{
1509	struct dev_pin_info *pins = dev->pins;
1510	int ret;
1511
1512	if (!pins)
1513		return 0;
1514
1515	if (IS_ERR(pins->init_state))
1516		return 0; /* No such state */
1517
1518	if (pins->p->state != pins->init_state)
1519		return 0; /* Not at init anyway */
1520
1521	if (IS_ERR(pins->default_state))
1522		return 0; /* No default state */
1523
1524	ret = pinctrl_select_state(pins->p, pins->default_state);
1525	if (ret)
1526		dev_err(dev, "failed to activate default pinctrl state\n");
1527
1528	return ret;
1529}
1530
1531static int pinctrl_select_bound_state(struct device *dev,
1532				      struct pinctrl_state *state)
 
 
 
 
 
 
 
1533{
1534	struct dev_pin_info *pins = dev->pins;
1535	int ret;
1536
1537	if (IS_ERR(state))
1538		return 0; /* No such state */
1539	ret = pinctrl_select_state(pins->p, state);
1540	if (ret)
1541		dev_err(dev, "failed to activate pinctrl state %s\n",
1542			state->name);
1543	return ret;
1544}
1545
1546/**
1547 * pinctrl_select_default_state() - select default pinctrl state
1548 * @dev: device to select default state for
1549 */
1550int pinctrl_select_default_state(struct device *dev)
1551{
1552	if (!dev->pins)
1553		return 0;
1554
1555	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1556}
1557EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1558
1559#ifdef CONFIG_PM
1560
1561/**
1562 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1563 * @dev: device to select default state for
1564 */
1565int pinctrl_pm_select_default_state(struct device *dev)
1566{
1567	return pinctrl_select_default_state(dev);
1568}
1569EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1570
1571/**
1572 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1573 * @dev: device to select sleep state for
1574 */
1575int pinctrl_pm_select_sleep_state(struct device *dev)
1576{
1577	if (!dev->pins)
1578		return 0;
1579
1580	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1581}
1582EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1583
1584/**
1585 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1586 * @dev: device to select idle state for
1587 */
1588int pinctrl_pm_select_idle_state(struct device *dev)
1589{
1590	if (!dev->pins)
1591		return 0;
1592
1593	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1594}
1595EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1596#endif
1597
1598#ifdef CONFIG_DEBUG_FS
1599
1600static int pinctrl_pins_show(struct seq_file *s, void *what)
1601{
1602	struct pinctrl_dev *pctldev = s->private;
1603	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1604	unsigned i, pin;
1605	struct pinctrl_gpio_range *range;
1606	unsigned int gpio_num;
1607	struct gpio_chip *chip;
1608
1609	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1610
1611	mutex_lock(&pctldev->mutex);
1612
1613	/* The pin number can be retrived from the pin controller descriptor */
1614	for (i = 0; i < pctldev->desc->npins; i++) {
1615		struct pin_desc *desc;
1616
1617		pin = pctldev->desc->pins[i].number;
1618		desc = pin_desc_get(pctldev, pin);
1619		/* Pin space may be sparse */
1620		if (!desc)
1621			continue;
1622
1623		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1624
1625#ifdef CONFIG_GPIOLIB
1626		gpio_num = 0;
1627		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1628			if ((pin >= range->pin_base) &&
1629			    (pin < (range->pin_base + range->npins))) {
1630				gpio_num = range->base + (pin - range->pin_base);
1631				break;
1632			}
1633		}
1634		chip = gpio_to_chip(gpio_num);
1635		if (chip && chip->gpiodev && chip->gpiodev->base)
1636			seq_printf(s, "%u:%s ", gpio_num -
1637				chip->gpiodev->base, chip->label);
1638		else
1639			seq_puts(s, "0:? ");
1640#endif
1641
1642		/* Driver-specific info per pin */
1643		if (ops->pin_dbg_show)
1644			ops->pin_dbg_show(pctldev, s, pin);
1645
1646		seq_puts(s, "\n");
1647	}
1648
1649	mutex_unlock(&pctldev->mutex);
1650
1651	return 0;
1652}
1653DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1654
1655static int pinctrl_groups_show(struct seq_file *s, void *what)
1656{
1657	struct pinctrl_dev *pctldev = s->private;
1658	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1659	unsigned ngroups, selector = 0;
1660
1661	mutex_lock(&pctldev->mutex);
1662
1663	ngroups = ops->get_groups_count(pctldev);
1664
1665	seq_puts(s, "registered pin groups:\n");
1666	while (selector < ngroups) {
1667		const unsigned *pins = NULL;
1668		unsigned num_pins = 0;
1669		const char *gname = ops->get_group_name(pctldev, selector);
1670		const char *pname;
1671		int ret = 0;
1672		int i;
1673
1674		if (ops->get_group_pins)
1675			ret = ops->get_group_pins(pctldev, selector,
1676						  &pins, &num_pins);
1677		if (ret)
1678			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1679				   gname);
1680		else {
1681			seq_printf(s, "group: %s\n", gname);
1682			for (i = 0; i < num_pins; i++) {
1683				pname = pin_get_name(pctldev, pins[i]);
1684				if (WARN_ON(!pname)) {
1685					mutex_unlock(&pctldev->mutex);
1686					return -EINVAL;
1687				}
1688				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1689			}
1690			seq_puts(s, "\n");
1691		}
1692		selector++;
1693	}
1694
1695	mutex_unlock(&pctldev->mutex);
1696
1697	return 0;
1698}
1699DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1700
1701static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1702{
1703	struct pinctrl_dev *pctldev = s->private;
1704	struct pinctrl_gpio_range *range;
1705
1706	seq_puts(s, "GPIO ranges handled:\n");
1707
1708	mutex_lock(&pctldev->mutex);
1709
1710	/* Loop over the ranges */
1711	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1712		if (range->pins) {
1713			int a;
1714			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1715				range->id, range->name,
1716				range->base, (range->base + range->npins - 1));
1717			for (a = 0; a < range->npins - 1; a++)
1718				seq_printf(s, "%u, ", range->pins[a]);
1719			seq_printf(s, "%u}\n", range->pins[a]);
1720		}
1721		else
1722			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1723				range->id, range->name,
1724				range->base, (range->base + range->npins - 1),
1725				range->pin_base,
1726				(range->pin_base + range->npins - 1));
1727	}
1728
1729	mutex_unlock(&pctldev->mutex);
1730
1731	return 0;
1732}
1733DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1734
1735static int pinctrl_devices_show(struct seq_file *s, void *what)
1736{
1737	struct pinctrl_dev *pctldev;
1738
1739	seq_puts(s, "name [pinmux] [pinconf]\n");
1740
1741	mutex_lock(&pinctrldev_list_mutex);
1742
1743	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1744		seq_printf(s, "%s ", pctldev->desc->name);
1745		if (pctldev->desc->pmxops)
1746			seq_puts(s, "yes ");
1747		else
1748			seq_puts(s, "no ");
1749		if (pctldev->desc->confops)
1750			seq_puts(s, "yes");
1751		else
1752			seq_puts(s, "no");
1753		seq_puts(s, "\n");
1754	}
1755
1756	mutex_unlock(&pinctrldev_list_mutex);
1757
1758	return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1761
1762static inline const char *map_type(enum pinctrl_map_type type)
1763{
1764	static const char * const names[] = {
1765		"INVALID",
1766		"DUMMY_STATE",
1767		"MUX_GROUP",
1768		"CONFIGS_PIN",
1769		"CONFIGS_GROUP",
1770	};
1771
1772	if (type >= ARRAY_SIZE(names))
1773		return "UNKNOWN";
1774
1775	return names[type];
1776}
1777
1778static int pinctrl_maps_show(struct seq_file *s, void *what)
1779{
1780	struct pinctrl_maps *maps_node;
1781	int i;
1782	const struct pinctrl_map *map;
1783
1784	seq_puts(s, "Pinctrl maps:\n");
1785
1786	mutex_lock(&pinctrl_maps_mutex);
1787	for_each_maps(maps_node, i, map) {
1788		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1789			   map->dev_name, map->name, map_type(map->type),
1790			   map->type);
1791
1792		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1793			seq_printf(s, "controlling device %s\n",
1794				   map->ctrl_dev_name);
1795
1796		switch (map->type) {
1797		case PIN_MAP_TYPE_MUX_GROUP:
1798			pinmux_show_map(s, map);
1799			break;
1800		case PIN_MAP_TYPE_CONFIGS_PIN:
1801		case PIN_MAP_TYPE_CONFIGS_GROUP:
1802			pinconf_show_map(s, map);
1803			break;
1804		default:
1805			break;
1806		}
1807
1808		seq_putc(s, '\n');
1809	}
1810	mutex_unlock(&pinctrl_maps_mutex);
1811
1812	return 0;
1813}
1814DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1815
1816static int pinctrl_show(struct seq_file *s, void *what)
1817{
1818	struct pinctrl *p;
1819	struct pinctrl_state *state;
1820	struct pinctrl_setting *setting;
1821
1822	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1823
1824	mutex_lock(&pinctrl_list_mutex);
1825
1826	list_for_each_entry(p, &pinctrl_list, node) {
1827		seq_printf(s, "device: %s current state: %s\n",
1828			   dev_name(p->dev),
1829			   p->state ? p->state->name : "none");
1830
1831		list_for_each_entry(state, &p->states, node) {
1832			seq_printf(s, "  state: %s\n", state->name);
1833
1834			list_for_each_entry(setting, &state->settings, node) {
1835				struct pinctrl_dev *pctldev = setting->pctldev;
1836
1837				seq_printf(s, "    type: %s controller %s ",
1838					   map_type(setting->type),
1839					   pinctrl_dev_get_name(pctldev));
1840
1841				switch (setting->type) {
1842				case PIN_MAP_TYPE_MUX_GROUP:
1843					pinmux_show_setting(s, setting);
1844					break;
1845				case PIN_MAP_TYPE_CONFIGS_PIN:
1846				case PIN_MAP_TYPE_CONFIGS_GROUP:
1847					pinconf_show_setting(s, setting);
1848					break;
1849				default:
1850					break;
1851				}
1852			}
1853		}
1854	}
1855
1856	mutex_unlock(&pinctrl_list_mutex);
1857
1858	return 0;
1859}
1860DEFINE_SHOW_ATTRIBUTE(pinctrl);
1861
1862static struct dentry *debugfs_root;
1863
1864static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1865{
1866	struct dentry *device_root;
1867	const char *debugfs_name;
1868
1869	if (pctldev->desc->name &&
1870			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1871		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1872				"%s-%s", dev_name(pctldev->dev),
1873				pctldev->desc->name);
1874		if (!debugfs_name) {
1875			pr_warn("failed to determine debugfs dir name for %s\n",
1876				dev_name(pctldev->dev));
1877			return;
1878		}
1879	} else {
1880		debugfs_name = dev_name(pctldev->dev);
1881	}
1882
1883	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1884	pctldev->device_root = device_root;
1885
1886	if (IS_ERR(device_root) || !device_root) {
1887		pr_warn("failed to create debugfs directory for %s\n",
1888			dev_name(pctldev->dev));
1889		return;
1890	}
1891	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1892			    device_root, pctldev, &pinctrl_pins_fops);
1893	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1894			    device_root, pctldev, &pinctrl_groups_fops);
1895	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1896			    device_root, pctldev, &pinctrl_gpioranges_fops);
1897	if (pctldev->desc->pmxops)
1898		pinmux_init_device_debugfs(device_root, pctldev);
1899	if (pctldev->desc->confops)
1900		pinconf_init_device_debugfs(device_root, pctldev);
1901}
1902
1903static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1904{
1905	debugfs_remove_recursive(pctldev->device_root);
1906}
1907
1908static void pinctrl_init_debugfs(void)
1909{
1910	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1911	if (IS_ERR(debugfs_root) || !debugfs_root) {
1912		pr_warn("failed to create debugfs directory\n");
1913		debugfs_root = NULL;
1914		return;
1915	}
1916
1917	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1918			    debugfs_root, NULL, &pinctrl_devices_fops);
1919	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1920			    debugfs_root, NULL, &pinctrl_maps_fops);
1921	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1922			    debugfs_root, NULL, &pinctrl_fops);
1923}
1924
1925#else /* CONFIG_DEBUG_FS */
1926
1927static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1928{
1929}
1930
1931static void pinctrl_init_debugfs(void)
1932{
1933}
1934
1935static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1936{
1937}
1938
1939#endif
1940
1941static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1942{
1943	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1944
1945	if (!ops ||
1946	    !ops->get_groups_count ||
1947	    !ops->get_group_name)
1948		return -EINVAL;
1949
1950	return 0;
1951}
1952
1953/**
1954 * pinctrl_init_controller() - init a pin controller device
1955 * @pctldesc: descriptor for this pin controller
1956 * @dev: parent device for this pin controller
1957 * @driver_data: private pin controller data for this pin controller
1958 */
1959static struct pinctrl_dev *
1960pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1961			void *driver_data)
1962{
1963	struct pinctrl_dev *pctldev;
1964	int ret;
1965
1966	if (!pctldesc)
1967		return ERR_PTR(-EINVAL);
1968	if (!pctldesc->name)
1969		return ERR_PTR(-EINVAL);
1970
1971	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1972	if (!pctldev)
1973		return ERR_PTR(-ENOMEM);
1974
1975	/* Initialize pin control device struct */
1976	pctldev->owner = pctldesc->owner;
1977	pctldev->desc = pctldesc;
1978	pctldev->driver_data = driver_data;
1979	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1980#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1981	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1982#endif
1983#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1984	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1985#endif
1986	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1987	INIT_LIST_HEAD(&pctldev->node);
1988	pctldev->dev = dev;
1989	mutex_init(&pctldev->mutex);
1990
1991	/* check core ops for sanity */
1992	ret = pinctrl_check_ops(pctldev);
1993	if (ret) {
1994		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1995		goto out_err;
1996	}
1997
1998	/* If we're implementing pinmuxing, check the ops for sanity */
1999	if (pctldesc->pmxops) {
2000		ret = pinmux_check_ops(pctldev);
2001		if (ret)
2002			goto out_err;
2003	}
2004
2005	/* If we're implementing pinconfig, check the ops for sanity */
2006	if (pctldesc->confops) {
2007		ret = pinconf_check_ops(pctldev);
2008		if (ret)
2009			goto out_err;
2010	}
2011
2012	/* Register all the pins */
2013	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2014	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2015	if (ret) {
2016		dev_err(dev, "error during pin registration\n");
2017		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2018				      pctldesc->npins);
2019		goto out_err;
2020	}
2021
2022	return pctldev;
2023
2024out_err:
2025	mutex_destroy(&pctldev->mutex);
2026	kfree(pctldev);
2027	return ERR_PTR(ret);
2028}
2029
2030static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2031{
2032	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2033	if (PTR_ERR(pctldev->p) == -ENODEV) {
2034		dev_dbg(pctldev->dev, "no hogs found\n");
2035
2036		return 0;
2037	}
2038
2039	if (IS_ERR(pctldev->p)) {
2040		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2041			PTR_ERR(pctldev->p));
2042
2043		return PTR_ERR(pctldev->p);
2044	}
2045
 
2046	pctldev->hog_default =
2047		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2048	if (IS_ERR(pctldev->hog_default)) {
2049		dev_dbg(pctldev->dev,
2050			"failed to lookup the default state\n");
2051	} else {
2052		if (pinctrl_select_state(pctldev->p,
2053					 pctldev->hog_default))
2054			dev_err(pctldev->dev,
2055				"failed to select default state\n");
2056	}
2057
2058	pctldev->hog_sleep =
2059		pinctrl_lookup_state(pctldev->p,
2060				     PINCTRL_STATE_SLEEP);
2061	if (IS_ERR(pctldev->hog_sleep))
2062		dev_dbg(pctldev->dev,
2063			"failed to lookup the sleep state\n");
2064
2065	return 0;
2066}
2067
2068int pinctrl_enable(struct pinctrl_dev *pctldev)
2069{
2070	int error;
2071
2072	error = pinctrl_claim_hogs(pctldev);
2073	if (error) {
2074		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2075			error);
2076		mutex_destroy(&pctldev->mutex);
2077		kfree(pctldev);
2078
2079		return error;
2080	}
2081
2082	mutex_lock(&pinctrldev_list_mutex);
2083	list_add_tail(&pctldev->node, &pinctrldev_list);
2084	mutex_unlock(&pinctrldev_list_mutex);
2085
2086	pinctrl_init_device_debugfs(pctldev);
2087
2088	return 0;
2089}
2090EXPORT_SYMBOL_GPL(pinctrl_enable);
2091
2092/**
2093 * pinctrl_register() - register a pin controller device
2094 * @pctldesc: descriptor for this pin controller
2095 * @dev: parent device for this pin controller
2096 * @driver_data: private pin controller data for this pin controller
2097 *
2098 * Note that pinctrl_register() is known to have problems as the pin
2099 * controller driver functions are called before the driver has a
2100 * struct pinctrl_dev handle. To avoid issues later on, please use the
2101 * new pinctrl_register_and_init() below instead.
2102 */
2103struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2104				    struct device *dev, void *driver_data)
2105{
2106	struct pinctrl_dev *pctldev;
2107	int error;
2108
2109	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2110	if (IS_ERR(pctldev))
2111		return pctldev;
2112
2113	error = pinctrl_enable(pctldev);
2114	if (error)
2115		return ERR_PTR(error);
2116
2117	return pctldev;
2118
2119}
2120EXPORT_SYMBOL_GPL(pinctrl_register);
2121
2122/**
2123 * pinctrl_register_and_init() - register and init pin controller device
2124 * @pctldesc: descriptor for this pin controller
2125 * @dev: parent device for this pin controller
2126 * @driver_data: private pin controller data for this pin controller
2127 * @pctldev: pin controller device
2128 *
2129 * Note that pinctrl_enable() still needs to be manually called after
2130 * this once the driver is ready.
2131 */
2132int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2133			      struct device *dev, void *driver_data,
2134			      struct pinctrl_dev **pctldev)
2135{
2136	struct pinctrl_dev *p;
2137
2138	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2139	if (IS_ERR(p))
2140		return PTR_ERR(p);
2141
2142	/*
2143	 * We have pinctrl_start() call functions in the pin controller
2144	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2145	 * let's make sure pctldev is properly initialized for the
2146	 * pin controller driver before we do anything.
2147	 */
2148	*pctldev = p;
2149
2150	return 0;
2151}
2152EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2153
2154/**
2155 * pinctrl_unregister() - unregister pinmux
2156 * @pctldev: pin controller to unregister
2157 *
2158 * Called by pinmux drivers to unregister a pinmux.
2159 */
2160void pinctrl_unregister(struct pinctrl_dev *pctldev)
2161{
2162	struct pinctrl_gpio_range *range, *n;
2163
2164	if (!pctldev)
2165		return;
2166
2167	mutex_lock(&pctldev->mutex);
2168	pinctrl_remove_device_debugfs(pctldev);
2169	mutex_unlock(&pctldev->mutex);
2170
2171	if (!IS_ERR_OR_NULL(pctldev->p))
2172		pinctrl_put(pctldev->p);
2173
2174	mutex_lock(&pinctrldev_list_mutex);
2175	mutex_lock(&pctldev->mutex);
2176	/* TODO: check that no pinmuxes are still active? */
2177	list_del(&pctldev->node);
2178	pinmux_generic_free_functions(pctldev);
2179	pinctrl_generic_free_groups(pctldev);
2180	/* Destroy descriptor tree */
2181	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2182			      pctldev->desc->npins);
2183	/* remove gpio ranges map */
2184	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2185		list_del(&range->node);
2186
2187	mutex_unlock(&pctldev->mutex);
2188	mutex_destroy(&pctldev->mutex);
2189	kfree(pctldev);
2190	mutex_unlock(&pinctrldev_list_mutex);
2191}
2192EXPORT_SYMBOL_GPL(pinctrl_unregister);
2193
2194static void devm_pinctrl_dev_release(struct device *dev, void *res)
2195{
2196	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2197
2198	pinctrl_unregister(pctldev);
2199}
2200
2201static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2202{
2203	struct pctldev **r = res;
2204
2205	if (WARN_ON(!r || !*r))
2206		return 0;
2207
2208	return *r == data;
2209}
2210
2211/**
2212 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2213 * @dev: parent device for this pin controller
2214 * @pctldesc: descriptor for this pin controller
2215 * @driver_data: private pin controller data for this pin controller
2216 *
2217 * Returns an error pointer if pincontrol register failed. Otherwise
2218 * it returns valid pinctrl handle.
2219 *
2220 * The pinctrl device will be automatically released when the device is unbound.
2221 */
2222struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2223					  struct pinctrl_desc *pctldesc,
2224					  void *driver_data)
2225{
2226	struct pinctrl_dev **ptr, *pctldev;
2227
2228	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2229	if (!ptr)
2230		return ERR_PTR(-ENOMEM);
2231
2232	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2233	if (IS_ERR(pctldev)) {
2234		devres_free(ptr);
2235		return pctldev;
2236	}
2237
2238	*ptr = pctldev;
2239	devres_add(dev, ptr);
2240
2241	return pctldev;
2242}
2243EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2244
2245/**
2246 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2247 * @dev: parent device for this pin controller
2248 * @pctldesc: descriptor for this pin controller
2249 * @driver_data: private pin controller data for this pin controller
2250 * @pctldev: pin controller device
2251 *
2252 * Returns zero on success or an error number on failure.
 
2253 *
2254 * The pinctrl device will be automatically released when the device is unbound.
2255 */
2256int devm_pinctrl_register_and_init(struct device *dev,
2257				   struct pinctrl_desc *pctldesc,
2258				   void *driver_data,
2259				   struct pinctrl_dev **pctldev)
2260{
2261	struct pinctrl_dev **ptr;
2262	int error;
2263
2264	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2265	if (!ptr)
2266		return -ENOMEM;
2267
2268	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2269	if (error) {
2270		devres_free(ptr);
2271		return error;
2272	}
2273
2274	*ptr = *pctldev;
2275	devres_add(dev, ptr);
2276
2277	return 0;
2278}
2279EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2280
2281/**
2282 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2283 * @dev: device for which which resource was allocated
2284 * @pctldev: the pinctrl device to unregister.
2285 */
2286void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2287{
2288	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2289			       devm_pinctrl_dev_match, pctldev));
2290}
2291EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2292
2293static int __init pinctrl_init(void)
2294{
2295	pr_info("initialized pinctrl subsystem\n");
2296	pinctrl_init_debugfs();
2297	return 0;
2298}
2299
2300/* init early since many drivers really need to initialized pinmux early */
2301core_initcall(pinctrl_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
 
  30#include <asm-generic/gpio.h>
  31#endif
  32
  33#include "core.h"
  34#include "devicetree.h"
  35#include "pinmux.h"
  36#include "pinconf.h"
  37
  38
  39static bool pinctrl_dummy_state;
  40
  41/* Mutex taken to protect pinctrl_list */
  42static DEFINE_MUTEX(pinctrl_list_mutex);
  43
  44/* Mutex taken to protect pinctrl_maps */
  45DEFINE_MUTEX(pinctrl_maps_mutex);
  46
  47/* Mutex taken to protect pinctrldev_list */
  48static DEFINE_MUTEX(pinctrldev_list_mutex);
  49
  50/* Global list of pin control devices (struct pinctrl_dev) */
  51static LIST_HEAD(pinctrldev_list);
  52
  53/* List of pin controller handles (struct pinctrl) */
  54static LIST_HEAD(pinctrl_list);
  55
  56/* List of pinctrl maps (struct pinctrl_maps) */
  57LIST_HEAD(pinctrl_maps);
  58
  59
  60/**
  61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  62 *
  63 * Usually this function is called by platforms without pinctrl driver support
  64 * but run with some shared drivers using pinctrl APIs.
  65 * After calling this function, the pinctrl core will return successfully
  66 * with creating a dummy state for the driver to keep going smoothly.
  67 */
  68void pinctrl_provide_dummies(void)
  69{
  70	pinctrl_dummy_state = true;
  71}
  72
  73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  74{
  75	/* We're not allowed to register devices without name */
  76	return pctldev->desc->name;
  77}
  78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  79
  80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  81{
  82	return dev_name(pctldev->dev);
  83}
  84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  85
  86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  87{
  88	return pctldev->driver_data;
  89}
  90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  91
  92/**
  93 * get_pinctrl_dev_from_devname() - look up pin controller device
  94 * @devname: the name of a device instance, as returned by dev_name()
  95 *
  96 * Looks up a pin control device matching a certain device name or pure device
  97 * pointer, the pure device pointer will take precedence.
  98 */
  99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 100{
 101	struct pinctrl_dev *pctldev;
 102
 103	if (!devname)
 104		return NULL;
 105
 106	mutex_lock(&pinctrldev_list_mutex);
 107
 108	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 109		if (!strcmp(dev_name(pctldev->dev), devname)) {
 110			/* Matched on device name */
 111			mutex_unlock(&pinctrldev_list_mutex);
 112			return pctldev;
 113		}
 114	}
 115
 116	mutex_unlock(&pinctrldev_list_mutex);
 117
 118	return NULL;
 119}
 120
 121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 122{
 123	struct pinctrl_dev *pctldev;
 124
 125	mutex_lock(&pinctrldev_list_mutex);
 126
 127	list_for_each_entry(pctldev, &pinctrldev_list, node)
 128		if (pctldev->dev->of_node == np) {
 129			mutex_unlock(&pinctrldev_list_mutex);
 130			return pctldev;
 131		}
 132
 133	mutex_unlock(&pinctrldev_list_mutex);
 134
 135	return NULL;
 136}
 137
 138/**
 139 * pin_get_from_name() - look up a pin number from a name
 140 * @pctldev: the pin control device to lookup the pin on
 141 * @name: the name of the pin to look up
 142 */
 143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 144{
 145	unsigned i, pin;
 146
 147	/* The pin number can be retrived from the pin controller descriptor */
 148	for (i = 0; i < pctldev->desc->npins; i++) {
 149		struct pin_desc *desc;
 150
 151		pin = pctldev->desc->pins[i].number;
 152		desc = pin_desc_get(pctldev, pin);
 153		/* Pin space may be sparse */
 154		if (desc && !strcmp(name, desc->name))
 155			return pin;
 156	}
 157
 158	return -EINVAL;
 159}
 160
 161/**
 162 * pin_get_name_from_id() - look up a pin name from a pin id
 163 * @pctldev: the pin control device to lookup the pin on
 164 * @name: the name of the pin to look up
 165 */
 166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 167{
 168	const struct pin_desc *desc;
 169
 170	desc = pin_desc_get(pctldev, pin);
 171	if (!desc) {
 172		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 173			pin);
 174		return NULL;
 175	}
 176
 177	return desc->name;
 178}
 
 179
 180/* Deletes a range of pin descriptors */
 181static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 182				  const struct pinctrl_pin_desc *pins,
 183				  unsigned num_pins)
 184{
 185	int i;
 186
 187	for (i = 0; i < num_pins; i++) {
 188		struct pin_desc *pindesc;
 189
 190		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 191					    pins[i].number);
 192		if (pindesc) {
 193			radix_tree_delete(&pctldev->pin_desc_tree,
 194					  pins[i].number);
 195			if (pindesc->dynamic_name)
 196				kfree(pindesc->name);
 197		}
 198		kfree(pindesc);
 199	}
 200}
 201
 202static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 203				    const struct pinctrl_pin_desc *pin)
 204{
 205	struct pin_desc *pindesc;
 206
 207	pindesc = pin_desc_get(pctldev, pin->number);
 208	if (pindesc) {
 209		dev_err(pctldev->dev, "pin %d already registered\n",
 210			pin->number);
 211		return -EINVAL;
 212	}
 213
 214	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 215	if (!pindesc)
 216		return -ENOMEM;
 217
 218	/* Set owner */
 219	pindesc->pctldev = pctldev;
 220
 221	/* Copy basic pin info */
 222	if (pin->name) {
 223		pindesc->name = pin->name;
 224	} else {
 225		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 226		if (!pindesc->name) {
 227			kfree(pindesc);
 228			return -ENOMEM;
 229		}
 230		pindesc->dynamic_name = true;
 231	}
 232
 233	pindesc->drv_data = pin->drv_data;
 234
 235	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 236	pr_debug("registered pin %d (%s) on %s\n",
 237		 pin->number, pindesc->name, pctldev->desc->name);
 238	return 0;
 239}
 240
 241static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 242				 const struct pinctrl_pin_desc *pins,
 243				 unsigned num_descs)
 244{
 245	unsigned i;
 246	int ret = 0;
 247
 248	for (i = 0; i < num_descs; i++) {
 249		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 250		if (ret)
 251			return ret;
 252	}
 253
 254	return 0;
 255}
 256
 257/**
 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 259 * @range: GPIO range used for the translation
 260 * @gpio: gpio pin to translate to a pin number
 261 *
 262 * Finds the pin number for a given GPIO using the specified GPIO range
 263 * as a base for translation. The distinction between linear GPIO ranges
 264 * and pin list based GPIO ranges is managed correctly by this function.
 265 *
 266 * This function assumes the gpio is part of the specified GPIO range, use
 267 * only after making sure this is the case (e.g. by calling it on the
 268 * result of successful pinctrl_get_device_gpio_range calls)!
 269 */
 270static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 271				unsigned int gpio)
 272{
 273	unsigned int offset = gpio - range->base;
 274	if (range->pins)
 275		return range->pins[offset];
 276	else
 277		return range->pin_base + offset;
 278}
 279
 280/**
 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 282 * @pctldev: pin controller device to check
 283 * @gpio: gpio pin to check taken from the global GPIO pin space
 284 *
 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 286 * controller, return the range or NULL
 287 */
 288static struct pinctrl_gpio_range *
 289pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 290{
 291	struct pinctrl_gpio_range *range;
 292
 293	mutex_lock(&pctldev->mutex);
 294	/* Loop over the ranges */
 295	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 296		/* Check if we're in the valid range */
 297		if (gpio >= range->base &&
 298		    gpio < range->base + range->npins) {
 299			mutex_unlock(&pctldev->mutex);
 300			return range;
 301		}
 302	}
 303	mutex_unlock(&pctldev->mutex);
 304	return NULL;
 305}
 306
 307/**
 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 309 * the same GPIO chip are in range
 310 * @gpio: gpio pin to check taken from the global GPIO pin space
 311 *
 312 * This function is complement of pinctrl_match_gpio_range(). If the return
 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 315 * of the same GPIO chip don't have back-end pinctrl interface.
 316 * If the return value is true, it means that pinctrl device is ready & the
 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 318 * is false, it means that pinctrl device may not be ready.
 319 */
 320#ifdef CONFIG_GPIOLIB
 321static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 322{
 323	struct pinctrl_dev *pctldev;
 324	struct pinctrl_gpio_range *range = NULL;
 325	struct gpio_chip *chip = gpio_to_chip(gpio);
 326
 327	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 328		return false;
 329
 330	mutex_lock(&pinctrldev_list_mutex);
 331
 332	/* Loop over the pin controllers */
 333	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 334		/* Loop over the ranges */
 335		mutex_lock(&pctldev->mutex);
 336		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 337			/* Check if any gpio range overlapped with gpio chip */
 338			if (range->base + range->npins - 1 < chip->base ||
 339			    range->base > chip->base + chip->ngpio - 1)
 340				continue;
 341			mutex_unlock(&pctldev->mutex);
 342			mutex_unlock(&pinctrldev_list_mutex);
 343			return true;
 344		}
 345		mutex_unlock(&pctldev->mutex);
 346	}
 347
 348	mutex_unlock(&pinctrldev_list_mutex);
 349
 350	return false;
 351}
 352#else
 353static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 354#endif
 355
 356/**
 357 * pinctrl_get_device_gpio_range() - find device for GPIO range
 358 * @gpio: the pin to locate the pin controller for
 359 * @outdev: the pin control device if found
 360 * @outrange: the GPIO range if found
 361 *
 362 * Find the pin controller handling a certain GPIO pin from the pinspace of
 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 365 * may still have not been registered.
 366 */
 367static int pinctrl_get_device_gpio_range(unsigned gpio,
 368					 struct pinctrl_dev **outdev,
 369					 struct pinctrl_gpio_range **outrange)
 370{
 371	struct pinctrl_dev *pctldev;
 372
 373	mutex_lock(&pinctrldev_list_mutex);
 374
 375	/* Loop over the pin controllers */
 376	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 377		struct pinctrl_gpio_range *range;
 378
 379		range = pinctrl_match_gpio_range(pctldev, gpio);
 380		if (range) {
 381			*outdev = pctldev;
 382			*outrange = range;
 383			mutex_unlock(&pinctrldev_list_mutex);
 384			return 0;
 385		}
 386	}
 387
 388	mutex_unlock(&pinctrldev_list_mutex);
 389
 390	return -EPROBE_DEFER;
 391}
 392
 393/**
 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 395 * @pctldev: pin controller device to add the range to
 396 * @range: the GPIO range to add
 397 *
 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 399 * this to register handled ranges after registering your pin controller.
 400 */
 401void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 402			    struct pinctrl_gpio_range *range)
 403{
 404	mutex_lock(&pctldev->mutex);
 405	list_add_tail(&range->node, &pctldev->gpio_ranges);
 406	mutex_unlock(&pctldev->mutex);
 407}
 408EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 409
 410void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 411			     struct pinctrl_gpio_range *ranges,
 412			     unsigned nranges)
 413{
 414	int i;
 415
 416	for (i = 0; i < nranges; i++)
 417		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 418}
 419EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 420
 421struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 422		struct pinctrl_gpio_range *range)
 423{
 424	struct pinctrl_dev *pctldev;
 425
 426	pctldev = get_pinctrl_dev_from_devname(devname);
 427
 428	/*
 429	 * If we can't find this device, let's assume that is because
 430	 * it has not probed yet, so the driver trying to register this
 431	 * range need to defer probing.
 432	 */
 433	if (!pctldev) {
 434		return ERR_PTR(-EPROBE_DEFER);
 435	}
 436	pinctrl_add_gpio_range(pctldev, range);
 437
 438	return pctldev;
 439}
 440EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 441
 442int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 443				const unsigned **pins, unsigned *num_pins)
 444{
 445	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 446	int gs;
 447
 448	if (!pctlops->get_group_pins)
 449		return -EINVAL;
 450
 451	gs = pinctrl_get_group_selector(pctldev, pin_group);
 452	if (gs < 0)
 453		return gs;
 454
 455	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 456}
 457EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 458
 459struct pinctrl_gpio_range *
 460pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 461					unsigned int pin)
 462{
 463	struct pinctrl_gpio_range *range;
 464
 465	/* Loop over the ranges */
 466	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 467		/* Check if we're in the valid range */
 468		if (range->pins) {
 469			int a;
 470			for (a = 0; a < range->npins; a++) {
 471				if (range->pins[a] == pin)
 472					return range;
 473			}
 474		} else if (pin >= range->pin_base &&
 475			   pin < range->pin_base + range->npins)
 476			return range;
 477	}
 478
 479	return NULL;
 480}
 481EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 482
 483/**
 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 485 * @pctldev: the pin controller device to look in
 486 * @pin: a controller-local number to find the range for
 487 */
 488struct pinctrl_gpio_range *
 489pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 490				 unsigned int pin)
 491{
 492	struct pinctrl_gpio_range *range;
 493
 494	mutex_lock(&pctldev->mutex);
 495	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 496	mutex_unlock(&pctldev->mutex);
 497
 498	return range;
 499}
 500EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 501
 502/**
 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 504 * @pctldev: pin controller device to remove the range from
 505 * @range: the GPIO range to remove
 506 */
 507void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 508			       struct pinctrl_gpio_range *range)
 509{
 510	mutex_lock(&pctldev->mutex);
 511	list_del(&range->node);
 512	mutex_unlock(&pctldev->mutex);
 513}
 514EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 515
 516#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 517
 518/**
 519 * pinctrl_generic_get_group_count() - returns the number of pin groups
 520 * @pctldev: pin controller device
 521 */
 522int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 523{
 524	return pctldev->num_groups;
 525}
 526EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 527
 528/**
 529 * pinctrl_generic_get_group_name() - returns the name of a pin group
 530 * @pctldev: pin controller device
 531 * @selector: group number
 532 */
 533const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 534					   unsigned int selector)
 535{
 536	struct group_desc *group;
 537
 538	group = radix_tree_lookup(&pctldev->pin_group_tree,
 539				  selector);
 540	if (!group)
 541		return NULL;
 542
 543	return group->name;
 544}
 545EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 546
 547/**
 548 * pinctrl_generic_get_group_pins() - gets the pin group pins
 549 * @pctldev: pin controller device
 550 * @selector: group number
 551 * @pins: pins in the group
 552 * @num_pins: number of pins in the group
 553 */
 554int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 555				   unsigned int selector,
 556				   const unsigned int **pins,
 557				   unsigned int *num_pins)
 558{
 559	struct group_desc *group;
 560
 561	group = radix_tree_lookup(&pctldev->pin_group_tree,
 562				  selector);
 563	if (!group) {
 564		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 565			__func__, selector);
 566		return -EINVAL;
 567	}
 568
 569	*pins = group->pins;
 570	*num_pins = group->num_pins;
 571
 572	return 0;
 573}
 574EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 575
 576/**
 577 * pinctrl_generic_get_group() - returns a pin group based on the number
 578 * @pctldev: pin controller device
 579 * @gselector: group number
 580 */
 581struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 582					     unsigned int selector)
 583{
 584	struct group_desc *group;
 585
 586	group = radix_tree_lookup(&pctldev->pin_group_tree,
 587				  selector);
 588	if (!group)
 589		return NULL;
 590
 591	return group;
 592}
 593EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 594
 595static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 596						  const char *function)
 597{
 598	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 599	int ngroups = ops->get_groups_count(pctldev);
 600	int selector = 0;
 601
 602	/* See if this pctldev has this group */
 603	while (selector < ngroups) {
 604		const char *gname = ops->get_group_name(pctldev, selector);
 605
 606		if (gname && !strcmp(function, gname))
 607			return selector;
 608
 609		selector++;
 610	}
 611
 612	return -EINVAL;
 613}
 614
 615/**
 616 * pinctrl_generic_add_group() - adds a new pin group
 617 * @pctldev: pin controller device
 618 * @name: name of the pin group
 619 * @pins: pins in the pin group
 620 * @num_pins: number of pins in the pin group
 621 * @data: pin controller driver specific data
 622 *
 623 * Note that the caller must take care of locking.
 624 */
 625int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 626			      int *pins, int num_pins, void *data)
 627{
 628	struct group_desc *group;
 629	int selector;
 630
 631	if (!name)
 632		return -EINVAL;
 633
 634	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 635	if (selector >= 0)
 636		return selector;
 637
 638	selector = pctldev->num_groups;
 639
 640	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 641	if (!group)
 642		return -ENOMEM;
 643
 644	group->name = name;
 645	group->pins = pins;
 646	group->num_pins = num_pins;
 647	group->data = data;
 648
 649	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 650
 651	pctldev->num_groups++;
 652
 653	return selector;
 654}
 655EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 656
 657/**
 658 * pinctrl_generic_remove_group() - removes a numbered pin group
 659 * @pctldev: pin controller device
 660 * @selector: group number
 661 *
 662 * Note that the caller must take care of locking.
 663 */
 664int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 665				 unsigned int selector)
 666{
 667	struct group_desc *group;
 668
 669	group = radix_tree_lookup(&pctldev->pin_group_tree,
 670				  selector);
 671	if (!group)
 672		return -ENOENT;
 673
 674	radix_tree_delete(&pctldev->pin_group_tree, selector);
 675	devm_kfree(pctldev->dev, group);
 676
 677	pctldev->num_groups--;
 678
 679	return 0;
 680}
 681EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 682
 683/**
 684 * pinctrl_generic_free_groups() - removes all pin groups
 685 * @pctldev: pin controller device
 686 *
 687 * Note that the caller must take care of locking. The pinctrl groups
 688 * are allocated with devm_kzalloc() so no need to free them here.
 689 */
 690static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 691{
 692	struct radix_tree_iter iter;
 693	void __rcu **slot;
 694
 695	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 696		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 697
 698	pctldev->num_groups = 0;
 699}
 700
 701#else
 702static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 703{
 704}
 705#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 706
 707/**
 708 * pinctrl_get_group_selector() - returns the group selector for a group
 709 * @pctldev: the pin controller handling the group
 710 * @pin_group: the pin group to look up
 711 */
 712int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 713			       const char *pin_group)
 714{
 715	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 716	unsigned ngroups = pctlops->get_groups_count(pctldev);
 717	unsigned group_selector = 0;
 718
 719	while (group_selector < ngroups) {
 720		const char *gname = pctlops->get_group_name(pctldev,
 721							    group_selector);
 722		if (gname && !strcmp(gname, pin_group)) {
 723			dev_dbg(pctldev->dev,
 724				"found group selector %u for %s\n",
 725				group_selector,
 726				pin_group);
 727			return group_selector;
 728		}
 729
 730		group_selector++;
 731	}
 732
 733	dev_err(pctldev->dev, "does not have pin group %s\n",
 734		pin_group);
 735
 736	return -EINVAL;
 737}
 738
 739bool pinctrl_gpio_can_use_line(unsigned gpio)
 740{
 741	struct pinctrl_dev *pctldev;
 742	struct pinctrl_gpio_range *range;
 743	bool result;
 744	int pin;
 745
 746	/*
 747	 * Try to obtain GPIO range, if it fails
 748	 * we're probably dealing with GPIO driver
 749	 * without a backing pin controller - bail out.
 750	 */
 751	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 752		return true;
 753
 754	mutex_lock(&pctldev->mutex);
 755
 756	/* Convert to the pin controllers number space */
 757	pin = gpio_to_pin(range, gpio);
 758
 759	result = pinmux_can_be_used_for_gpio(pctldev, pin);
 760
 761	mutex_unlock(&pctldev->mutex);
 762
 763	return result;
 764}
 765EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 766
 767/**
 768 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 769 * @gpio: the GPIO pin number from the GPIO subsystem number space
 770 *
 771 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 772 * as part of their gpio_request() semantics, platforms and individual drivers
 773 * shall *NOT* request GPIO pins to be muxed in.
 774 */
 775int pinctrl_gpio_request(unsigned gpio)
 776{
 777	struct pinctrl_dev *pctldev;
 778	struct pinctrl_gpio_range *range;
 779	int ret;
 780	int pin;
 781
 782	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 783	if (ret) {
 784		if (pinctrl_ready_for_gpio_range(gpio))
 785			ret = 0;
 786		return ret;
 787	}
 788
 789	mutex_lock(&pctldev->mutex);
 790
 791	/* Convert to the pin controllers number space */
 792	pin = gpio_to_pin(range, gpio);
 793
 794	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 795
 796	mutex_unlock(&pctldev->mutex);
 797
 798	return ret;
 799}
 800EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 801
 802/**
 803 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 804 * @gpio: the GPIO pin number from the GPIO subsystem number space
 805 *
 806 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 807 * as part of their gpio_free() semantics, platforms and individual drivers
 808 * shall *NOT* request GPIO pins to be muxed out.
 809 */
 810void pinctrl_gpio_free(unsigned gpio)
 811{
 812	struct pinctrl_dev *pctldev;
 813	struct pinctrl_gpio_range *range;
 814	int ret;
 815	int pin;
 816
 817	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 818	if (ret) {
 819		return;
 820	}
 821	mutex_lock(&pctldev->mutex);
 822
 823	/* Convert to the pin controllers number space */
 824	pin = gpio_to_pin(range, gpio);
 825
 826	pinmux_free_gpio(pctldev, pin, range);
 827
 828	mutex_unlock(&pctldev->mutex);
 829}
 830EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 831
 832static int pinctrl_gpio_direction(unsigned gpio, bool input)
 833{
 834	struct pinctrl_dev *pctldev;
 835	struct pinctrl_gpio_range *range;
 836	int ret;
 837	int pin;
 838
 839	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 840	if (ret) {
 841		return ret;
 842	}
 843
 844	mutex_lock(&pctldev->mutex);
 845
 846	/* Convert to the pin controllers number space */
 847	pin = gpio_to_pin(range, gpio);
 848	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 849
 850	mutex_unlock(&pctldev->mutex);
 851
 852	return ret;
 853}
 854
 855/**
 856 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 857 * @gpio: the GPIO pin number from the GPIO subsystem number space
 858 *
 859 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 860 * as part of their gpio_direction_input() semantics, platforms and individual
 861 * drivers shall *NOT* touch pin control GPIO calls.
 862 */
 863int pinctrl_gpio_direction_input(unsigned gpio)
 864{
 865	return pinctrl_gpio_direction(gpio, true);
 866}
 867EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 868
 869/**
 870 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 871 * @gpio: the GPIO pin number from the GPIO subsystem number space
 872 *
 873 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 874 * as part of their gpio_direction_output() semantics, platforms and individual
 875 * drivers shall *NOT* touch pin control GPIO calls.
 876 */
 877int pinctrl_gpio_direction_output(unsigned gpio)
 878{
 879	return pinctrl_gpio_direction(gpio, false);
 880}
 881EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 882
 883/**
 884 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 885 * @gpio: the GPIO pin number from the GPIO subsystem number space
 886 * @config: the configuration to apply to the GPIO
 887 *
 888 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 889 * they need to call the underlying pin controller to change GPIO config
 890 * (for example set debounce time).
 891 */
 892int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 893{
 894	unsigned long configs[] = { config };
 895	struct pinctrl_gpio_range *range;
 896	struct pinctrl_dev *pctldev;
 897	int ret, pin;
 898
 899	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 900	if (ret)
 901		return ret;
 902
 903	mutex_lock(&pctldev->mutex);
 904	pin = gpio_to_pin(range, gpio);
 905	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 906	mutex_unlock(&pctldev->mutex);
 907
 908	return ret;
 909}
 910EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 911
 912static struct pinctrl_state *find_state(struct pinctrl *p,
 913					const char *name)
 914{
 915	struct pinctrl_state *state;
 916
 917	list_for_each_entry(state, &p->states, node)
 918		if (!strcmp(state->name, name))
 919			return state;
 920
 921	return NULL;
 922}
 923
 924static struct pinctrl_state *create_state(struct pinctrl *p,
 925					  const char *name)
 926{
 927	struct pinctrl_state *state;
 928
 929	state = kzalloc(sizeof(*state), GFP_KERNEL);
 930	if (!state)
 931		return ERR_PTR(-ENOMEM);
 932
 933	state->name = name;
 934	INIT_LIST_HEAD(&state->settings);
 935
 936	list_add_tail(&state->node, &p->states);
 937
 938	return state;
 939}
 940
 941static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 942		       const struct pinctrl_map *map)
 943{
 944	struct pinctrl_state *state;
 945	struct pinctrl_setting *setting;
 946	int ret;
 947
 948	state = find_state(p, map->name);
 949	if (!state)
 950		state = create_state(p, map->name);
 951	if (IS_ERR(state))
 952		return PTR_ERR(state);
 953
 954	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 955		return 0;
 956
 957	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 958	if (!setting)
 959		return -ENOMEM;
 960
 961	setting->type = map->type;
 962
 963	if (pctldev)
 964		setting->pctldev = pctldev;
 965	else
 966		setting->pctldev =
 967			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 968	if (!setting->pctldev) {
 969		kfree(setting);
 970		/* Do not defer probing of hogs (circular loop) */
 971		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 972			return -ENODEV;
 973		/*
 974		 * OK let us guess that the driver is not there yet, and
 975		 * let's defer obtaining this pinctrl handle to later...
 976		 */
 977		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 978			map->ctrl_dev_name);
 979		return -EPROBE_DEFER;
 980	}
 981
 982	setting->dev_name = map->dev_name;
 983
 984	switch (map->type) {
 985	case PIN_MAP_TYPE_MUX_GROUP:
 986		ret = pinmux_map_to_setting(map, setting);
 987		break;
 988	case PIN_MAP_TYPE_CONFIGS_PIN:
 989	case PIN_MAP_TYPE_CONFIGS_GROUP:
 990		ret = pinconf_map_to_setting(map, setting);
 991		break;
 992	default:
 993		ret = -EINVAL;
 994		break;
 995	}
 996	if (ret < 0) {
 997		kfree(setting);
 998		return ret;
 999	}
1000
1001	list_add_tail(&setting->node, &state->settings);
1002
1003	return 0;
1004}
1005
1006static struct pinctrl *find_pinctrl(struct device *dev)
1007{
1008	struct pinctrl *p;
1009
1010	mutex_lock(&pinctrl_list_mutex);
1011	list_for_each_entry(p, &pinctrl_list, node)
1012		if (p->dev == dev) {
1013			mutex_unlock(&pinctrl_list_mutex);
1014			return p;
1015		}
1016
1017	mutex_unlock(&pinctrl_list_mutex);
1018	return NULL;
1019}
1020
1021static void pinctrl_free(struct pinctrl *p, bool inlist);
1022
1023static struct pinctrl *create_pinctrl(struct device *dev,
1024				      struct pinctrl_dev *pctldev)
1025{
1026	struct pinctrl *p;
1027	const char *devname;
1028	struct pinctrl_maps *maps_node;
1029	int i;
1030	const struct pinctrl_map *map;
1031	int ret;
1032
1033	/*
1034	 * create the state cookie holder struct pinctrl for each
1035	 * mapping, this is what consumers will get when requesting
1036	 * a pin control handle with pinctrl_get()
1037	 */
1038	p = kzalloc(sizeof(*p), GFP_KERNEL);
1039	if (!p)
1040		return ERR_PTR(-ENOMEM);
1041	p->dev = dev;
1042	INIT_LIST_HEAD(&p->states);
1043	INIT_LIST_HEAD(&p->dt_maps);
1044
1045	ret = pinctrl_dt_to_map(p, pctldev);
1046	if (ret < 0) {
1047		kfree(p);
1048		return ERR_PTR(ret);
1049	}
1050
1051	devname = dev_name(dev);
1052
1053	mutex_lock(&pinctrl_maps_mutex);
1054	/* Iterate over the pin control maps to locate the right ones */
1055	for_each_maps(maps_node, i, map) {
1056		/* Map must be for this device */
1057		if (strcmp(map->dev_name, devname))
1058			continue;
1059		/*
1060		 * If pctldev is not null, we are claiming hog for it,
1061		 * that means, setting that is served by pctldev by itself.
1062		 *
1063		 * Thus we must skip map that is for this device but is served
1064		 * by other device.
1065		 */
1066		if (pctldev &&
1067		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1068			continue;
1069
1070		ret = add_setting(p, pctldev, map);
1071		/*
1072		 * At this point the adding of a setting may:
1073		 *
1074		 * - Defer, if the pinctrl device is not yet available
1075		 * - Fail, if the pinctrl device is not yet available,
1076		 *   AND the setting is a hog. We cannot defer that, since
1077		 *   the hog will kick in immediately after the device
1078		 *   is registered.
1079		 *
1080		 * If the error returned was not -EPROBE_DEFER then we
1081		 * accumulate the errors to see if we end up with
1082		 * an -EPROBE_DEFER later, as that is the worst case.
1083		 */
1084		if (ret == -EPROBE_DEFER) {
1085			pinctrl_free(p, false);
1086			mutex_unlock(&pinctrl_maps_mutex);
1087			return ERR_PTR(ret);
1088		}
1089	}
1090	mutex_unlock(&pinctrl_maps_mutex);
1091
1092	if (ret < 0) {
1093		/* If some other error than deferral occurred, return here */
1094		pinctrl_free(p, false);
1095		return ERR_PTR(ret);
1096	}
1097
1098	kref_init(&p->users);
1099
1100	/* Add the pinctrl handle to the global list */
1101	mutex_lock(&pinctrl_list_mutex);
1102	list_add_tail(&p->node, &pinctrl_list);
1103	mutex_unlock(&pinctrl_list_mutex);
1104
1105	return p;
1106}
1107
1108/**
1109 * pinctrl_get() - retrieves the pinctrl handle for a device
1110 * @dev: the device to obtain the handle for
1111 */
1112struct pinctrl *pinctrl_get(struct device *dev)
1113{
1114	struct pinctrl *p;
1115
1116	if (WARN_ON(!dev))
1117		return ERR_PTR(-EINVAL);
1118
1119	/*
1120	 * See if somebody else (such as the device core) has already
1121	 * obtained a handle to the pinctrl for this device. In that case,
1122	 * return another pointer to it.
1123	 */
1124	p = find_pinctrl(dev);
1125	if (p) {
1126		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1127		kref_get(&p->users);
1128		return p;
1129	}
1130
1131	return create_pinctrl(dev, NULL);
1132}
1133EXPORT_SYMBOL_GPL(pinctrl_get);
1134
1135static void pinctrl_free_setting(bool disable_setting,
1136				 struct pinctrl_setting *setting)
1137{
1138	switch (setting->type) {
1139	case PIN_MAP_TYPE_MUX_GROUP:
1140		if (disable_setting)
1141			pinmux_disable_setting(setting);
1142		pinmux_free_setting(setting);
1143		break;
1144	case PIN_MAP_TYPE_CONFIGS_PIN:
1145	case PIN_MAP_TYPE_CONFIGS_GROUP:
1146		pinconf_free_setting(setting);
1147		break;
1148	default:
1149		break;
1150	}
1151}
1152
1153static void pinctrl_free(struct pinctrl *p, bool inlist)
1154{
1155	struct pinctrl_state *state, *n1;
1156	struct pinctrl_setting *setting, *n2;
1157
1158	mutex_lock(&pinctrl_list_mutex);
1159	list_for_each_entry_safe(state, n1, &p->states, node) {
1160		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1161			pinctrl_free_setting(state == p->state, setting);
1162			list_del(&setting->node);
1163			kfree(setting);
1164		}
1165		list_del(&state->node);
1166		kfree(state);
1167	}
1168
1169	pinctrl_dt_free_maps(p);
1170
1171	if (inlist)
1172		list_del(&p->node);
1173	kfree(p);
1174	mutex_unlock(&pinctrl_list_mutex);
1175}
1176
1177/**
1178 * pinctrl_release() - release the pinctrl handle
1179 * @kref: the kref in the pinctrl being released
1180 */
1181static void pinctrl_release(struct kref *kref)
1182{
1183	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1184
1185	pinctrl_free(p, true);
1186}
1187
1188/**
1189 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1190 * @p: the pinctrl handle to release
1191 */
1192void pinctrl_put(struct pinctrl *p)
1193{
1194	kref_put(&p->users, pinctrl_release);
1195}
1196EXPORT_SYMBOL_GPL(pinctrl_put);
1197
1198/**
1199 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1200 * @p: the pinctrl handle to retrieve the state from
1201 * @name: the state name to retrieve
1202 */
1203struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1204						 const char *name)
1205{
1206	struct pinctrl_state *state;
1207
1208	state = find_state(p, name);
1209	if (!state) {
1210		if (pinctrl_dummy_state) {
1211			/* create dummy state */
1212			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1213				name);
1214			state = create_state(p, name);
1215		} else
1216			state = ERR_PTR(-ENODEV);
1217	}
1218
1219	return state;
1220}
1221EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1222
1223static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1224			     struct device *consumer)
1225{
1226	if (pctldev->desc->link_consumers)
1227		device_link_add(consumer, pctldev->dev,
1228				DL_FLAG_PM_RUNTIME |
1229				DL_FLAG_AUTOREMOVE_CONSUMER);
1230}
1231
1232/**
1233 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1234 * @p: the pinctrl handle for the device that requests configuration
1235 * @state: the state handle to select/activate/program
1236 */
1237static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1238{
1239	struct pinctrl_setting *setting, *setting2;
1240	struct pinctrl_state *old_state = p->state;
1241	int ret;
1242
1243	if (p->state) {
1244		/*
1245		 * For each pinmux setting in the old state, forget SW's record
1246		 * of mux owner for that pingroup. Any pingroups which are
1247		 * still owned by the new state will be re-acquired by the call
1248		 * to pinmux_enable_setting() in the loop below.
1249		 */
1250		list_for_each_entry(setting, &p->state->settings, node) {
1251			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1252				continue;
1253			pinmux_disable_setting(setting);
1254		}
1255	}
1256
1257	p->state = NULL;
1258
1259	/* Apply all the settings for the new state */
1260	list_for_each_entry(setting, &state->settings, node) {
1261		switch (setting->type) {
1262		case PIN_MAP_TYPE_MUX_GROUP:
1263			ret = pinmux_enable_setting(setting);
1264			break;
1265		case PIN_MAP_TYPE_CONFIGS_PIN:
1266		case PIN_MAP_TYPE_CONFIGS_GROUP:
1267			ret = pinconf_apply_setting(setting);
1268			break;
1269		default:
1270			ret = -EINVAL;
1271			break;
1272		}
1273
1274		if (ret < 0) {
1275			goto unapply_new_state;
1276		}
1277
1278		/* Do not link hogs (circular dependency) */
1279		if (p != setting->pctldev->p)
1280			pinctrl_link_add(setting->pctldev, p->dev);
1281	}
1282
1283	p->state = state;
1284
1285	return 0;
1286
1287unapply_new_state:
1288	dev_err(p->dev, "Error applying setting, reverse things back\n");
1289
1290	list_for_each_entry(setting2, &state->settings, node) {
1291		if (&setting2->node == &setting->node)
1292			break;
1293		/*
1294		 * All we can do here is pinmux_disable_setting.
1295		 * That means that some pins are muxed differently now
1296		 * than they were before applying the setting (We can't
1297		 * "unmux a pin"!), but it's not a big deal since the pins
1298		 * are free to be muxed by another apply_setting.
1299		 */
1300		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1301			pinmux_disable_setting(setting2);
1302	}
1303
1304	/* There's no infinite recursive loop here because p->state is NULL */
1305	if (old_state)
1306		pinctrl_select_state(p, old_state);
1307
1308	return ret;
1309}
1310
1311/**
1312 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1313 * @p: the pinctrl handle for the device that requests configuration
1314 * @state: the state handle to select/activate/program
1315 */
1316int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1317{
1318	if (p->state == state)
1319		return 0;
1320
1321	return pinctrl_commit_state(p, state);
1322}
1323EXPORT_SYMBOL_GPL(pinctrl_select_state);
1324
1325static void devm_pinctrl_release(struct device *dev, void *res)
1326{
1327	pinctrl_put(*(struct pinctrl **)res);
1328}
1329
1330/**
1331 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1332 * @dev: the device to obtain the handle for
1333 *
1334 * If there is a need to explicitly destroy the returned struct pinctrl,
1335 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1336 */
1337struct pinctrl *devm_pinctrl_get(struct device *dev)
1338{
1339	struct pinctrl **ptr, *p;
1340
1341	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1342	if (!ptr)
1343		return ERR_PTR(-ENOMEM);
1344
1345	p = pinctrl_get(dev);
1346	if (!IS_ERR(p)) {
1347		*ptr = p;
1348		devres_add(dev, ptr);
1349	} else {
1350		devres_free(ptr);
1351	}
1352
1353	return p;
1354}
1355EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1356
1357static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1358{
1359	struct pinctrl **p = res;
1360
1361	return *p == data;
1362}
1363
1364/**
1365 * devm_pinctrl_put() - Resource managed pinctrl_put()
1366 * @p: the pinctrl handle to release
1367 *
1368 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1369 * this function will not need to be called and the resource management
1370 * code will ensure that the resource is freed.
1371 */
1372void devm_pinctrl_put(struct pinctrl *p)
1373{
1374	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1375			       devm_pinctrl_match, p));
1376}
1377EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1378
1379int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1380			 bool dup)
 
 
 
 
 
 
 
1381{
1382	int i, ret;
1383	struct pinctrl_maps *maps_node;
1384
1385	pr_debug("add %u pinctrl maps\n", num_maps);
1386
1387	/* First sanity check the new mapping */
1388	for (i = 0; i < num_maps; i++) {
1389		if (!maps[i].dev_name) {
1390			pr_err("failed to register map %s (%d): no device given\n",
1391			       maps[i].name, i);
1392			return -EINVAL;
1393		}
1394
1395		if (!maps[i].name) {
1396			pr_err("failed to register map %d: no map name given\n",
1397			       i);
1398			return -EINVAL;
1399		}
1400
1401		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1402				!maps[i].ctrl_dev_name) {
1403			pr_err("failed to register map %s (%d): no pin control device given\n",
1404			       maps[i].name, i);
1405			return -EINVAL;
1406		}
1407
1408		switch (maps[i].type) {
1409		case PIN_MAP_TYPE_DUMMY_STATE:
1410			break;
1411		case PIN_MAP_TYPE_MUX_GROUP:
1412			ret = pinmux_validate_map(&maps[i], i);
1413			if (ret < 0)
1414				return ret;
1415			break;
1416		case PIN_MAP_TYPE_CONFIGS_PIN:
1417		case PIN_MAP_TYPE_CONFIGS_GROUP:
1418			ret = pinconf_validate_map(&maps[i], i);
1419			if (ret < 0)
1420				return ret;
1421			break;
1422		default:
1423			pr_err("failed to register map %s (%d): invalid type given\n",
1424			       maps[i].name, i);
1425			return -EINVAL;
1426		}
1427	}
1428
1429	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1430	if (!maps_node)
1431		return -ENOMEM;
1432
 
1433	maps_node->num_maps = num_maps;
1434	if (dup) {
1435		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1436					  GFP_KERNEL);
1437		if (!maps_node->maps) {
1438			kfree(maps_node);
1439			return -ENOMEM;
1440		}
1441	} else {
1442		maps_node->maps = maps;
1443	}
1444
1445	mutex_lock(&pinctrl_maps_mutex);
1446	list_add_tail(&maps_node->node, &pinctrl_maps);
1447	mutex_unlock(&pinctrl_maps_mutex);
1448
1449	return 0;
1450}
 
1451
1452/**
1453 * pinctrl_register_mappings() - register a set of pin controller mappings
1454 * @maps: the pincontrol mappings table to register. This should probably be
1455 *	marked with __initdata so it can be discarded after boot. This
1456 *	function will perform a shallow copy for the mapping entries.
1457 * @num_maps: the number of maps in the mapping table
1458 */
1459int pinctrl_register_mappings(const struct pinctrl_map *maps,
1460			      unsigned num_maps)
1461{
1462	return pinctrl_register_map(maps, num_maps, true);
1463}
1464EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1465
1466void pinctrl_unregister_map(const struct pinctrl_map *map)
1467{
1468	struct pinctrl_maps *maps_node;
1469
1470	mutex_lock(&pinctrl_maps_mutex);
1471	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1472		if (maps_node->maps == map) {
1473			list_del(&maps_node->node);
1474			kfree(maps_node);
1475			mutex_unlock(&pinctrl_maps_mutex);
1476			return;
1477		}
1478	}
1479	mutex_unlock(&pinctrl_maps_mutex);
1480}
 
1481
1482/**
1483 * pinctrl_force_sleep() - turn a given controller device into sleep state
1484 * @pctldev: pin controller device
1485 */
1486int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1487{
1488	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1489		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1490	return 0;
1491}
1492EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1493
1494/**
1495 * pinctrl_force_default() - turn a given controller device into default state
1496 * @pctldev: pin controller device
1497 */
1498int pinctrl_force_default(struct pinctrl_dev *pctldev)
1499{
1500	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1501		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1502	return 0;
1503}
1504EXPORT_SYMBOL_GPL(pinctrl_force_default);
1505
1506/**
1507 * pinctrl_init_done() - tell pinctrl probe is done
1508 *
1509 * We'll use this time to switch the pins from "init" to "default" unless the
1510 * driver selected some other state.
1511 *
1512 * @dev: device to that's done probing
1513 */
1514int pinctrl_init_done(struct device *dev)
1515{
1516	struct dev_pin_info *pins = dev->pins;
1517	int ret;
1518
1519	if (!pins)
1520		return 0;
1521
1522	if (IS_ERR(pins->init_state))
1523		return 0; /* No such state */
1524
1525	if (pins->p->state != pins->init_state)
1526		return 0; /* Not at init anyway */
1527
1528	if (IS_ERR(pins->default_state))
1529		return 0; /* No default state */
1530
1531	ret = pinctrl_select_state(pins->p, pins->default_state);
1532	if (ret)
1533		dev_err(dev, "failed to activate default pinctrl state\n");
1534
1535	return ret;
1536}
1537
1538#ifdef CONFIG_PM
1539
1540/**
1541 * pinctrl_pm_select_state() - select pinctrl state for PM
1542 * @dev: device to select default state for
1543 * @state: state to set
1544 */
1545static int pinctrl_pm_select_state(struct device *dev,
1546				   struct pinctrl_state *state)
1547{
1548	struct dev_pin_info *pins = dev->pins;
1549	int ret;
1550
1551	if (IS_ERR(state))
1552		return 0; /* No such state */
1553	ret = pinctrl_select_state(pins->p, state);
1554	if (ret)
1555		dev_err(dev, "failed to activate pinctrl state %s\n",
1556			state->name);
1557	return ret;
1558}
1559
1560/**
1561 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1562 * @dev: device to select default state for
1563 */
1564int pinctrl_pm_select_default_state(struct device *dev)
1565{
1566	if (!dev->pins)
1567		return 0;
1568
1569	return pinctrl_pm_select_state(dev, dev->pins->default_state);
 
 
 
 
 
 
 
 
 
 
 
 
1570}
1571EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1572
1573/**
1574 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1575 * @dev: device to select sleep state for
1576 */
1577int pinctrl_pm_select_sleep_state(struct device *dev)
1578{
1579	if (!dev->pins)
1580		return 0;
1581
1582	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1583}
1584EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1585
1586/**
1587 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1588 * @dev: device to select idle state for
1589 */
1590int pinctrl_pm_select_idle_state(struct device *dev)
1591{
1592	if (!dev->pins)
1593		return 0;
1594
1595	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1596}
1597EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1598#endif
1599
1600#ifdef CONFIG_DEBUG_FS
1601
1602static int pinctrl_pins_show(struct seq_file *s, void *what)
1603{
1604	struct pinctrl_dev *pctldev = s->private;
1605	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1606	unsigned i, pin;
 
 
 
1607
1608	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1609
1610	mutex_lock(&pctldev->mutex);
1611
1612	/* The pin number can be retrived from the pin controller descriptor */
1613	for (i = 0; i < pctldev->desc->npins; i++) {
1614		struct pin_desc *desc;
1615
1616		pin = pctldev->desc->pins[i].number;
1617		desc = pin_desc_get(pctldev, pin);
1618		/* Pin space may be sparse */
1619		if (!desc)
1620			continue;
1621
1622		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624		/* Driver-specific info per pin */
1625		if (ops->pin_dbg_show)
1626			ops->pin_dbg_show(pctldev, s, pin);
1627
1628		seq_puts(s, "\n");
1629	}
1630
1631	mutex_unlock(&pctldev->mutex);
1632
1633	return 0;
1634}
1635DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1636
1637static int pinctrl_groups_show(struct seq_file *s, void *what)
1638{
1639	struct pinctrl_dev *pctldev = s->private;
1640	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1641	unsigned ngroups, selector = 0;
1642
1643	mutex_lock(&pctldev->mutex);
1644
1645	ngroups = ops->get_groups_count(pctldev);
1646
1647	seq_puts(s, "registered pin groups:\n");
1648	while (selector < ngroups) {
1649		const unsigned *pins = NULL;
1650		unsigned num_pins = 0;
1651		const char *gname = ops->get_group_name(pctldev, selector);
1652		const char *pname;
1653		int ret = 0;
1654		int i;
1655
1656		if (ops->get_group_pins)
1657			ret = ops->get_group_pins(pctldev, selector,
1658						  &pins, &num_pins);
1659		if (ret)
1660			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1661				   gname);
1662		else {
1663			seq_printf(s, "group: %s\n", gname);
1664			for (i = 0; i < num_pins; i++) {
1665				pname = pin_get_name(pctldev, pins[i]);
1666				if (WARN_ON(!pname)) {
1667					mutex_unlock(&pctldev->mutex);
1668					return -EINVAL;
1669				}
1670				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1671			}
1672			seq_puts(s, "\n");
1673		}
1674		selector++;
1675	}
1676
1677	mutex_unlock(&pctldev->mutex);
1678
1679	return 0;
1680}
1681DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1682
1683static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1684{
1685	struct pinctrl_dev *pctldev = s->private;
1686	struct pinctrl_gpio_range *range;
1687
1688	seq_puts(s, "GPIO ranges handled:\n");
1689
1690	mutex_lock(&pctldev->mutex);
1691
1692	/* Loop over the ranges */
1693	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1694		if (range->pins) {
1695			int a;
1696			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1697				range->id, range->name,
1698				range->base, (range->base + range->npins - 1));
1699			for (a = 0; a < range->npins - 1; a++)
1700				seq_printf(s, "%u, ", range->pins[a]);
1701			seq_printf(s, "%u}\n", range->pins[a]);
1702		}
1703		else
1704			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1705				range->id, range->name,
1706				range->base, (range->base + range->npins - 1),
1707				range->pin_base,
1708				(range->pin_base + range->npins - 1));
1709	}
1710
1711	mutex_unlock(&pctldev->mutex);
1712
1713	return 0;
1714}
1715DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1716
1717static int pinctrl_devices_show(struct seq_file *s, void *what)
1718{
1719	struct pinctrl_dev *pctldev;
1720
1721	seq_puts(s, "name [pinmux] [pinconf]\n");
1722
1723	mutex_lock(&pinctrldev_list_mutex);
1724
1725	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1726		seq_printf(s, "%s ", pctldev->desc->name);
1727		if (pctldev->desc->pmxops)
1728			seq_puts(s, "yes ");
1729		else
1730			seq_puts(s, "no ");
1731		if (pctldev->desc->confops)
1732			seq_puts(s, "yes");
1733		else
1734			seq_puts(s, "no");
1735		seq_puts(s, "\n");
1736	}
1737
1738	mutex_unlock(&pinctrldev_list_mutex);
1739
1740	return 0;
1741}
1742DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1743
1744static inline const char *map_type(enum pinctrl_map_type type)
1745{
1746	static const char * const names[] = {
1747		"INVALID",
1748		"DUMMY_STATE",
1749		"MUX_GROUP",
1750		"CONFIGS_PIN",
1751		"CONFIGS_GROUP",
1752	};
1753
1754	if (type >= ARRAY_SIZE(names))
1755		return "UNKNOWN";
1756
1757	return names[type];
1758}
1759
1760static int pinctrl_maps_show(struct seq_file *s, void *what)
1761{
1762	struct pinctrl_maps *maps_node;
1763	int i;
1764	const struct pinctrl_map *map;
1765
1766	seq_puts(s, "Pinctrl maps:\n");
1767
1768	mutex_lock(&pinctrl_maps_mutex);
1769	for_each_maps(maps_node, i, map) {
1770		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1771			   map->dev_name, map->name, map_type(map->type),
1772			   map->type);
1773
1774		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1775			seq_printf(s, "controlling device %s\n",
1776				   map->ctrl_dev_name);
1777
1778		switch (map->type) {
1779		case PIN_MAP_TYPE_MUX_GROUP:
1780			pinmux_show_map(s, map);
1781			break;
1782		case PIN_MAP_TYPE_CONFIGS_PIN:
1783		case PIN_MAP_TYPE_CONFIGS_GROUP:
1784			pinconf_show_map(s, map);
1785			break;
1786		default:
1787			break;
1788		}
1789
1790		seq_putc(s, '\n');
1791	}
1792	mutex_unlock(&pinctrl_maps_mutex);
1793
1794	return 0;
1795}
1796DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1797
1798static int pinctrl_show(struct seq_file *s, void *what)
1799{
1800	struct pinctrl *p;
1801	struct pinctrl_state *state;
1802	struct pinctrl_setting *setting;
1803
1804	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1805
1806	mutex_lock(&pinctrl_list_mutex);
1807
1808	list_for_each_entry(p, &pinctrl_list, node) {
1809		seq_printf(s, "device: %s current state: %s\n",
1810			   dev_name(p->dev),
1811			   p->state ? p->state->name : "none");
1812
1813		list_for_each_entry(state, &p->states, node) {
1814			seq_printf(s, "  state: %s\n", state->name);
1815
1816			list_for_each_entry(setting, &state->settings, node) {
1817				struct pinctrl_dev *pctldev = setting->pctldev;
1818
1819				seq_printf(s, "    type: %s controller %s ",
1820					   map_type(setting->type),
1821					   pinctrl_dev_get_name(pctldev));
1822
1823				switch (setting->type) {
1824				case PIN_MAP_TYPE_MUX_GROUP:
1825					pinmux_show_setting(s, setting);
1826					break;
1827				case PIN_MAP_TYPE_CONFIGS_PIN:
1828				case PIN_MAP_TYPE_CONFIGS_GROUP:
1829					pinconf_show_setting(s, setting);
1830					break;
1831				default:
1832					break;
1833				}
1834			}
1835		}
1836	}
1837
1838	mutex_unlock(&pinctrl_list_mutex);
1839
1840	return 0;
1841}
1842DEFINE_SHOW_ATTRIBUTE(pinctrl);
1843
1844static struct dentry *debugfs_root;
1845
1846static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1847{
1848	struct dentry *device_root;
1849	const char *debugfs_name;
1850
1851	if (pctldev->desc->name &&
1852			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1853		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1854				"%s-%s", dev_name(pctldev->dev),
1855				pctldev->desc->name);
1856		if (!debugfs_name) {
1857			pr_warn("failed to determine debugfs dir name for %s\n",
1858				dev_name(pctldev->dev));
1859			return;
1860		}
1861	} else {
1862		debugfs_name = dev_name(pctldev->dev);
1863	}
1864
1865	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1866	pctldev->device_root = device_root;
1867
1868	if (IS_ERR(device_root) || !device_root) {
1869		pr_warn("failed to create debugfs directory for %s\n",
1870			dev_name(pctldev->dev));
1871		return;
1872	}
1873	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1874			    device_root, pctldev, &pinctrl_pins_fops);
1875	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1876			    device_root, pctldev, &pinctrl_groups_fops);
1877	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1878			    device_root, pctldev, &pinctrl_gpioranges_fops);
1879	if (pctldev->desc->pmxops)
1880		pinmux_init_device_debugfs(device_root, pctldev);
1881	if (pctldev->desc->confops)
1882		pinconf_init_device_debugfs(device_root, pctldev);
1883}
1884
1885static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1886{
1887	debugfs_remove_recursive(pctldev->device_root);
1888}
1889
1890static void pinctrl_init_debugfs(void)
1891{
1892	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1893	if (IS_ERR(debugfs_root) || !debugfs_root) {
1894		pr_warn("failed to create debugfs directory\n");
1895		debugfs_root = NULL;
1896		return;
1897	}
1898
1899	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1900			    debugfs_root, NULL, &pinctrl_devices_fops);
1901	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1902			    debugfs_root, NULL, &pinctrl_maps_fops);
1903	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1904			    debugfs_root, NULL, &pinctrl_fops);
1905}
1906
1907#else /* CONFIG_DEBUG_FS */
1908
1909static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1910{
1911}
1912
1913static void pinctrl_init_debugfs(void)
1914{
1915}
1916
1917static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1918{
1919}
1920
1921#endif
1922
1923static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1924{
1925	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1926
1927	if (!ops ||
1928	    !ops->get_groups_count ||
1929	    !ops->get_group_name)
1930		return -EINVAL;
1931
1932	return 0;
1933}
1934
1935/**
1936 * pinctrl_init_controller() - init a pin controller device
1937 * @pctldesc: descriptor for this pin controller
1938 * @dev: parent device for this pin controller
1939 * @driver_data: private pin controller data for this pin controller
1940 */
1941static struct pinctrl_dev *
1942pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1943			void *driver_data)
1944{
1945	struct pinctrl_dev *pctldev;
1946	int ret;
1947
1948	if (!pctldesc)
1949		return ERR_PTR(-EINVAL);
1950	if (!pctldesc->name)
1951		return ERR_PTR(-EINVAL);
1952
1953	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1954	if (!pctldev)
1955		return ERR_PTR(-ENOMEM);
1956
1957	/* Initialize pin control device struct */
1958	pctldev->owner = pctldesc->owner;
1959	pctldev->desc = pctldesc;
1960	pctldev->driver_data = driver_data;
1961	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1962#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1963	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1964#endif
1965#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1966	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1967#endif
1968	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1969	INIT_LIST_HEAD(&pctldev->node);
1970	pctldev->dev = dev;
1971	mutex_init(&pctldev->mutex);
1972
1973	/* check core ops for sanity */
1974	ret = pinctrl_check_ops(pctldev);
1975	if (ret) {
1976		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1977		goto out_err;
1978	}
1979
1980	/* If we're implementing pinmuxing, check the ops for sanity */
1981	if (pctldesc->pmxops) {
1982		ret = pinmux_check_ops(pctldev);
1983		if (ret)
1984			goto out_err;
1985	}
1986
1987	/* If we're implementing pinconfig, check the ops for sanity */
1988	if (pctldesc->confops) {
1989		ret = pinconf_check_ops(pctldev);
1990		if (ret)
1991			goto out_err;
1992	}
1993
1994	/* Register all the pins */
1995	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1996	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1997	if (ret) {
1998		dev_err(dev, "error during pin registration\n");
1999		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2000				      pctldesc->npins);
2001		goto out_err;
2002	}
2003
2004	return pctldev;
2005
2006out_err:
2007	mutex_destroy(&pctldev->mutex);
2008	kfree(pctldev);
2009	return ERR_PTR(ret);
2010}
2011
2012static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2013{
2014	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2015	if (PTR_ERR(pctldev->p) == -ENODEV) {
2016		dev_dbg(pctldev->dev, "no hogs found\n");
2017
2018		return 0;
2019	}
2020
2021	if (IS_ERR(pctldev->p)) {
2022		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2023			PTR_ERR(pctldev->p));
2024
2025		return PTR_ERR(pctldev->p);
2026	}
2027
2028	kref_get(&pctldev->p->users);
2029	pctldev->hog_default =
2030		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2031	if (IS_ERR(pctldev->hog_default)) {
2032		dev_dbg(pctldev->dev,
2033			"failed to lookup the default state\n");
2034	} else {
2035		if (pinctrl_select_state(pctldev->p,
2036					 pctldev->hog_default))
2037			dev_err(pctldev->dev,
2038				"failed to select default state\n");
2039	}
2040
2041	pctldev->hog_sleep =
2042		pinctrl_lookup_state(pctldev->p,
2043				     PINCTRL_STATE_SLEEP);
2044	if (IS_ERR(pctldev->hog_sleep))
2045		dev_dbg(pctldev->dev,
2046			"failed to lookup the sleep state\n");
2047
2048	return 0;
2049}
2050
2051int pinctrl_enable(struct pinctrl_dev *pctldev)
2052{
2053	int error;
2054
2055	error = pinctrl_claim_hogs(pctldev);
2056	if (error) {
2057		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2058			error);
2059		mutex_destroy(&pctldev->mutex);
2060		kfree(pctldev);
2061
2062		return error;
2063	}
2064
2065	mutex_lock(&pinctrldev_list_mutex);
2066	list_add_tail(&pctldev->node, &pinctrldev_list);
2067	mutex_unlock(&pinctrldev_list_mutex);
2068
2069	pinctrl_init_device_debugfs(pctldev);
2070
2071	return 0;
2072}
2073EXPORT_SYMBOL_GPL(pinctrl_enable);
2074
2075/**
2076 * pinctrl_register() - register a pin controller device
2077 * @pctldesc: descriptor for this pin controller
2078 * @dev: parent device for this pin controller
2079 * @driver_data: private pin controller data for this pin controller
2080 *
2081 * Note that pinctrl_register() is known to have problems as the pin
2082 * controller driver functions are called before the driver has a
2083 * struct pinctrl_dev handle. To avoid issues later on, please use the
2084 * new pinctrl_register_and_init() below instead.
2085 */
2086struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2087				    struct device *dev, void *driver_data)
2088{
2089	struct pinctrl_dev *pctldev;
2090	int error;
2091
2092	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2093	if (IS_ERR(pctldev))
2094		return pctldev;
2095
2096	error = pinctrl_enable(pctldev);
2097	if (error)
2098		return ERR_PTR(error);
2099
2100	return pctldev;
2101
2102}
2103EXPORT_SYMBOL_GPL(pinctrl_register);
2104
2105/**
2106 * pinctrl_register_and_init() - register and init pin controller device
2107 * @pctldesc: descriptor for this pin controller
2108 * @dev: parent device for this pin controller
2109 * @driver_data: private pin controller data for this pin controller
2110 * @pctldev: pin controller device
2111 *
2112 * Note that pinctrl_enable() still needs to be manually called after
2113 * this once the driver is ready.
2114 */
2115int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2116			      struct device *dev, void *driver_data,
2117			      struct pinctrl_dev **pctldev)
2118{
2119	struct pinctrl_dev *p;
2120
2121	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2122	if (IS_ERR(p))
2123		return PTR_ERR(p);
2124
2125	/*
2126	 * We have pinctrl_start() call functions in the pin controller
2127	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2128	 * let's make sure pctldev is properly initialized for the
2129	 * pin controller driver before we do anything.
2130	 */
2131	*pctldev = p;
2132
2133	return 0;
2134}
2135EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2136
2137/**
2138 * pinctrl_unregister() - unregister pinmux
2139 * @pctldev: pin controller to unregister
2140 *
2141 * Called by pinmux drivers to unregister a pinmux.
2142 */
2143void pinctrl_unregister(struct pinctrl_dev *pctldev)
2144{
2145	struct pinctrl_gpio_range *range, *n;
2146
2147	if (!pctldev)
2148		return;
2149
2150	mutex_lock(&pctldev->mutex);
2151	pinctrl_remove_device_debugfs(pctldev);
2152	mutex_unlock(&pctldev->mutex);
2153
2154	if (!IS_ERR_OR_NULL(pctldev->p))
2155		pinctrl_put(pctldev->p);
2156
2157	mutex_lock(&pinctrldev_list_mutex);
2158	mutex_lock(&pctldev->mutex);
2159	/* TODO: check that no pinmuxes are still active? */
2160	list_del(&pctldev->node);
2161	pinmux_generic_free_functions(pctldev);
2162	pinctrl_generic_free_groups(pctldev);
2163	/* Destroy descriptor tree */
2164	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2165			      pctldev->desc->npins);
2166	/* remove gpio ranges map */
2167	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2168		list_del(&range->node);
2169
2170	mutex_unlock(&pctldev->mutex);
2171	mutex_destroy(&pctldev->mutex);
2172	kfree(pctldev);
2173	mutex_unlock(&pinctrldev_list_mutex);
2174}
2175EXPORT_SYMBOL_GPL(pinctrl_unregister);
2176
2177static void devm_pinctrl_dev_release(struct device *dev, void *res)
2178{
2179	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2180
2181	pinctrl_unregister(pctldev);
2182}
2183
2184static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2185{
2186	struct pctldev **r = res;
2187
2188	if (WARN_ON(!r || !*r))
2189		return 0;
2190
2191	return *r == data;
2192}
2193
2194/**
2195 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2196 * @dev: parent device for this pin controller
2197 * @pctldesc: descriptor for this pin controller
2198 * @driver_data: private pin controller data for this pin controller
2199 *
2200 * Returns an error pointer if pincontrol register failed. Otherwise
2201 * it returns valid pinctrl handle.
2202 *
2203 * The pinctrl device will be automatically released when the device is unbound.
2204 */
2205struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2206					  struct pinctrl_desc *pctldesc,
2207					  void *driver_data)
2208{
2209	struct pinctrl_dev **ptr, *pctldev;
2210
2211	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2212	if (!ptr)
2213		return ERR_PTR(-ENOMEM);
2214
2215	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2216	if (IS_ERR(pctldev)) {
2217		devres_free(ptr);
2218		return pctldev;
2219	}
2220
2221	*ptr = pctldev;
2222	devres_add(dev, ptr);
2223
2224	return pctldev;
2225}
2226EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2227
2228/**
2229 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2230 * @dev: parent device for this pin controller
2231 * @pctldesc: descriptor for this pin controller
2232 * @driver_data: private pin controller data for this pin controller
 
2233 *
2234 * Returns an error pointer if pincontrol register failed. Otherwise
2235 * it returns valid pinctrl handle.
2236 *
2237 * The pinctrl device will be automatically released when the device is unbound.
2238 */
2239int devm_pinctrl_register_and_init(struct device *dev,
2240				   struct pinctrl_desc *pctldesc,
2241				   void *driver_data,
2242				   struct pinctrl_dev **pctldev)
2243{
2244	struct pinctrl_dev **ptr;
2245	int error;
2246
2247	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2248	if (!ptr)
2249		return -ENOMEM;
2250
2251	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2252	if (error) {
2253		devres_free(ptr);
2254		return error;
2255	}
2256
2257	*ptr = *pctldev;
2258	devres_add(dev, ptr);
2259
2260	return 0;
2261}
2262EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2263
2264/**
2265 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2266 * @dev: device for which which resource was allocated
2267 * @pctldev: the pinctrl device to unregister.
2268 */
2269void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2270{
2271	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2272			       devm_pinctrl_dev_match, pctldev));
2273}
2274EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2275
2276static int __init pinctrl_init(void)
2277{
2278	pr_info("initialized pinctrl subsystem\n");
2279	pinctrl_init_debugfs();
2280	return 0;
2281}
2282
2283/* init early since many drivers really need to initialized pinmux early */
2284core_initcall(pinctrl_init);