Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3** ccio-dma.c:
   4**	DMA management routines for first generation cache-coherent machines.
   5**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   6**
   7**	(c) Copyright 2000 Grant Grundler
   8**	(c) Copyright 2000 Ryan Bradetich
   9**	(c) Copyright 2000 Hewlett-Packard Company
  10**
  11**
  12**
  13**  "Real Mode" operation refers to U2/Uturn chip operation.
  14**  U2/Uturn were designed to perform coherency checks w/o using
  15**  the I/O MMU - basically what x86 does.
  16**
  17**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
  18**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
  19**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
  20**
  21**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
  22**
  23**  Drawbacks of using Real Mode are:
  24**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  25**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  26**	o Ability to do scatter/gather in HW is lost.
  27**	o Doesn't work under PCX-U/U+ machines since they didn't follow
  28**        the coherency design originally worked out. Only PCX-W does.
  29*/
  30
  31#include <linux/types.h>
  32#include <linux/kernel.h>
  33#include <linux/init.h>
  34#include <linux/mm.h>
  35#include <linux/spinlock.h>
  36#include <linux/slab.h>
  37#include <linux/string.h>
  38#include <linux/pci.h>
  39#include <linux/reboot.h>
  40#include <linux/proc_fs.h>
  41#include <linux/seq_file.h>
  42#include <linux/scatterlist.h>
  43#include <linux/iommu-helper.h>
  44#include <linux/export.h>
  45
  46#include <asm/byteorder.h>
  47#include <asm/cache.h>		/* for L1_CACHE_BYTES */
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50#include <asm/dma.h>
  51#include <asm/io.h>
  52#include <asm/hardware.h>       /* for register_module() */
  53#include <asm/parisc-device.h>
  54
  55#include "iommu.h"
  56
  57/* 
  58** Choose "ccio" since that's what HP-UX calls it.
  59** Make it easier for folks to migrate from one to the other :^)
  60*/
  61#define MODULE_NAME "ccio"
  62
  63#undef DEBUG_CCIO_RES
  64#undef DEBUG_CCIO_RUN
  65#undef DEBUG_CCIO_INIT
  66#undef DEBUG_CCIO_RUN_SG
  67
  68#ifdef CONFIG_PROC_FS
  69/* depends on proc fs support. But costs CPU performance. */
  70#undef CCIO_COLLECT_STATS
  71#endif
  72
  73#include <asm/runway.h>		/* for proc_runway_root */
  74
  75#ifdef DEBUG_CCIO_INIT
  76#define DBG_INIT(x...)  printk(x)
  77#else
  78#define DBG_INIT(x...)
  79#endif
  80
  81#ifdef DEBUG_CCIO_RUN
  82#define DBG_RUN(x...)   printk(x)
  83#else
  84#define DBG_RUN(x...)
  85#endif
  86
  87#ifdef DEBUG_CCIO_RES
  88#define DBG_RES(x...)   printk(x)
  89#else
  90#define DBG_RES(x...)
  91#endif
  92
  93#ifdef DEBUG_CCIO_RUN_SG
  94#define DBG_RUN_SG(x...) printk(x)
  95#else
  96#define DBG_RUN_SG(x...)
  97#endif
  98
  99#define CCIO_INLINE	inline
 100#define WRITE_U32(value, addr) __raw_writel(value, addr)
 101#define READ_U32(addr) __raw_readl(addr)
 102
 103#define U2_IOA_RUNWAY 0x580
 104#define U2_BC_GSC     0x501
 105#define UTURN_IOA_RUNWAY 0x581
 106#define UTURN_BC_GSC     0x502
 107
 108#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
 109#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 110#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 111
 112struct ioa_registers {
 113        /* Runway Supervisory Set */
 114        int32_t    unused1[12];
 115        uint32_t   io_command;             /* Offset 12 */
 116        uint32_t   io_status;              /* Offset 13 */
 117        uint32_t   io_control;             /* Offset 14 */
 118        int32_t    unused2[1];
 119
 120        /* Runway Auxiliary Register Set */
 121        uint32_t   io_err_resp;            /* Offset  0 */
 122        uint32_t   io_err_info;            /* Offset  1 */
 123        uint32_t   io_err_req;             /* Offset  2 */
 124        uint32_t   io_err_resp_hi;         /* Offset  3 */
 125        uint32_t   io_tlb_entry_m;         /* Offset  4 */
 126        uint32_t   io_tlb_entry_l;         /* Offset  5 */
 127        uint32_t   unused3[1];
 128        uint32_t   io_pdir_base;           /* Offset  7 */
 129        uint32_t   io_io_low_hv;           /* Offset  8 */
 130        uint32_t   io_io_high_hv;          /* Offset  9 */
 131        uint32_t   unused4[1];
 132        uint32_t   io_chain_id_mask;       /* Offset 11 */
 133        uint32_t   unused5[2];
 134        uint32_t   io_io_low;              /* Offset 14 */
 135        uint32_t   io_io_high;             /* Offset 15 */
 136};
 137
 138/*
 139** IOA Registers
 140** -------------
 141**
 142** Runway IO_CONTROL Register (+0x38)
 143** 
 144** The Runway IO_CONTROL register controls the forwarding of transactions.
 145**
 146** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 147** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 148**
 149** o mode field indicates the address translation of transactions
 150**   forwarded from Runway to GSC+:
 151**       Mode Name     Value        Definition
 152**       Off (default)   0          Opaque to matching addresses.
 153**       Include         1          Transparent for matching addresses.
 154**       Peek            3          Map matching addresses.
 155**
 156**       + "Off" mode: Runway transactions which match the I/O range
 157**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 158**       + "Include" mode: all addresses within the I/O range specified
 159**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 160**         forwarded. This is the I/O Adapter's normal operating mode.
 161**       + "Peek" mode: used during system configuration to initialize the
 162**         GSC+ bus. Runway Write_Shorts in the address range specified by
 163**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 164**         *AND* the GSC+ address is remapped to the Broadcast Physical
 165**         Address space by setting the 14 high order address bits of the
 166**         32 bit GSC+ address to ones.
 167**
 168** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 169**   "Real" mode is the poweron default.
 170** 
 171**   TLB Mode  Value  Description
 172**   Real        0    No TLB translation. Address is directly mapped and the
 173**                    virtual address is composed of selected physical bits.
 174**   Error       1    Software fills the TLB manually.
 175**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 176**
 177**
 178** IO_IO_LOW_HV	  +0x60 (HV dependent)
 179** IO_IO_HIGH_HV  +0x64 (HV dependent)
 180** IO_IO_LOW      +0x78	(Architected register)
 181** IO_IO_HIGH     +0x7c	(Architected register)
 182**
 183** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 184** I/O Adapter address space, respectively.
 185**
 186** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 187** 11111111 | 11111111 |      address   |
 188**
 189** Each LOW/HIGH pair describes a disjoint address space region.
 190** (2 per GSC+ port). Each incoming Runway transaction address is compared
 191** with both sets of LOW/HIGH registers. If the address is in the range
 192** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 193** for forwarded to the respective GSC+ bus.
 194** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 195** an address space region.
 196**
 197** In order for a Runway address to reside within GSC+ extended address space:
 198**	Runway Address [0:7]    must identically compare to 8'b11111111
 199**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 200** 	Runway Address [12:23]  must be greater than or equal to
 201**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 202**	Runway Address [24:39]  is not used in the comparison.
 203**
 204** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 205** as follows:
 206**	GSC+ Address[0:3]	4'b1111
 207**	GSC+ Address[4:29]	Runway Address[12:37]
 208**	GSC+ Address[30:31]	2'b00
 209**
 210** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 211** is interrogated and address space is defined. The operating system will
 212** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 213** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 214** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 215** 
 216** Writes to both sets of registers will take effect immediately, bypassing
 217** the queues, which ensures that subsequent Runway transactions are checked
 218** against the updated bounds values. However reads are queued, introducing
 219** the possibility of a read being bypassed by a subsequent write to the same
 220** register. This sequence can be avoided by having software wait for read
 221** returns before issuing subsequent writes.
 222*/
 223
 224struct ioc {
 225	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 226	u8  *res_map;	                /* resource map, bit == pdir entry */
 227	u64 *pdir_base;	                /* physical base address */
 228	u32 pdir_size; 			/* bytes, function of IOV Space size */
 229	u32 res_hint;	                /* next available IOVP - 
 230					   circular search */
 231	u32 res_size;		    	/* size of resource map in bytes */
 232	spinlock_t res_lock;
 233
 234#ifdef CCIO_COLLECT_STATS
 235#define CCIO_SEARCH_SAMPLE 0x100
 236	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 237	unsigned long avg_idx;		  /* current index into avg_search */
 238	unsigned long used_pages;
 239	unsigned long msingle_calls;
 240	unsigned long msingle_pages;
 241	unsigned long msg_calls;
 242	unsigned long msg_pages;
 243	unsigned long usingle_calls;
 244	unsigned long usingle_pages;
 245	unsigned long usg_calls;
 246	unsigned long usg_pages;
 247#endif
 248	unsigned short cujo20_bug;
 249
 250	/* STUFF We don't need in performance path */
 251	u32 chainid_shift; 		/* specify bit location of chain_id */
 252	struct ioc *next;		/* Linked list of discovered iocs */
 253	const char *name;		/* device name from firmware */
 254	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 255	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 256	struct resource mmio_region[2]; /* The "routed" MMIO regions */
 257};
 258
 259static struct ioc *ioc_list;
 260static int ioc_count;
 261
 262/**************************************************************
 263*
 264*   I/O Pdir Resource Management
 265*
 266*   Bits set in the resource map are in use.
 267*   Each bit can represent a number of pages.
 268*   LSbs represent lower addresses (IOVA's).
 269*
 270*   This was was copied from sba_iommu.c. Don't try to unify
 271*   the two resource managers unless a way to have different
 272*   allocation policies is also adjusted. We'd like to avoid
 273*   I/O TLB thrashing by having resource allocation policy
 274*   match the I/O TLB replacement policy.
 275*
 276***************************************************************/
 277#define IOVP_SIZE PAGE_SIZE
 278#define IOVP_SHIFT PAGE_SHIFT
 279#define IOVP_MASK PAGE_MASK
 280
 281/* Convert from IOVP to IOVA and vice versa. */
 282#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 283#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 284
 285#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 286#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 287#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 288
 289/*
 290** Don't worry about the 150% average search length on a miss.
 291** If the search wraps around, and passes the res_hint, it will
 292** cause the kernel to panic anyhow.
 293*/
 294#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 295       for(; res_ptr < res_end; ++res_ptr) { \
 296		int ret;\
 297		unsigned int idx;\
 298		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 299		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 300		if ((0 == (*res_ptr & mask)) && !ret) { \
 301			*res_ptr |= mask; \
 302			res_idx = idx;\
 303			ioc->res_hint = res_idx + (size >> 3); \
 304			goto resource_found; \
 305		} \
 306	}
 307
 308#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 309       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 310       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 311       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 312       res_ptr = (u##size *)&(ioc)->res_map[0]; \
 313       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 314
 315/*
 316** Find available bit in this ioa's resource map.
 317** Use a "circular" search:
 318**   o Most IOVA's are "temporary" - avg search time should be small.
 319** o keep a history of what happened for debugging
 320** o KISS.
 321**
 322** Perf optimizations:
 323** o search for log2(size) bits at a time.
 324** o search for available resource bits using byte/word/whatever.
 325** o use different search for "large" (eg > 4 pages) or "very large"
 326**   (eg > 16 pages) mappings.
 327*/
 328
 329/**
 330 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 331 * @ioc: The I/O Controller.
 332 * @pages_needed: The requested number of pages to be mapped into the
 333 * I/O Pdir...
 334 *
 335 * This function searches the resource map of the ioc to locate a range
 336 * of available pages for the requested size.
 337 */
 338static int
 339ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 340{
 341	unsigned int pages_needed = size >> IOVP_SHIFT;
 342	unsigned int res_idx;
 343	unsigned long boundary_size;
 344#ifdef CCIO_COLLECT_STATS
 345	unsigned long cr_start = mfctl(16);
 346#endif
 347	
 348	BUG_ON(pages_needed == 0);
 349	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 350     
 351	DBG_RES("%s() size: %d pages_needed %d\n", 
 352		__func__, size, pages_needed);
 353
 354	/*
 355	** "seek and ye shall find"...praying never hurts either...
 356	** ggg sacrifices another 710 to the computer gods.
 357	*/
 358
 359	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
 360			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
 361
 362	if (pages_needed <= 8) {
 363		/*
 364		 * LAN traffic will not thrash the TLB IFF the same NIC
 365		 * uses 8 adjacent pages to map separate payload data.
 366		 * ie the same byte in the resource bit map.
 367		 */
 368#if 0
 369		/* FIXME: bit search should shift it's way through
 370		 * an unsigned long - not byte at a time. As it is now,
 371		 * we effectively allocate this byte to this mapping.
 372		 */
 373		unsigned long mask = ~(~0UL >> pages_needed);
 374		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 375#else
 376		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 377#endif
 378	} else if (pages_needed <= 16) {
 379		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 380	} else if (pages_needed <= 32) {
 381		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 382#ifdef __LP64__
 383	} else if (pages_needed <= 64) {
 384		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 385#endif
 386	} else {
 387		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 388		       __FILE__,  __func__, pages_needed);
 389	}
 390
 391	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 392	      __func__);
 393	
 394resource_found:
 395	
 396	DBG_RES("%s() res_idx %d res_hint: %d\n",
 397		__func__, res_idx, ioc->res_hint);
 398
 399#ifdef CCIO_COLLECT_STATS
 400	{
 401		unsigned long cr_end = mfctl(16);
 402		unsigned long tmp = cr_end - cr_start;
 403		/* check for roll over */
 404		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 405	}
 406	ioc->avg_search[ioc->avg_idx++] = cr_start;
 407	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 408	ioc->used_pages += pages_needed;
 409#endif
 410	/* 
 411	** return the bit address.
 412	*/
 413	return res_idx << 3;
 414}
 415
 416#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 417        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 418        BUG_ON((*res_ptr & mask) != mask); \
 419        *res_ptr &= ~(mask);
 420
 421/**
 422 * ccio_free_range - Free pages from the ioc's resource map.
 423 * @ioc: The I/O Controller.
 424 * @iova: The I/O Virtual Address.
 425 * @pages_mapped: The requested number of pages to be freed from the
 426 * I/O Pdir.
 427 *
 428 * This function frees the resouces allocated for the iova.
 429 */
 430static void
 431ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 432{
 433	unsigned long iovp = CCIO_IOVP(iova);
 434	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 435
 436	BUG_ON(pages_mapped == 0);
 437	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 438	BUG_ON(pages_mapped > BITS_PER_LONG);
 439
 440	DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
 441		__func__, res_idx, pages_mapped);
 442
 443#ifdef CCIO_COLLECT_STATS
 444	ioc->used_pages -= pages_mapped;
 445#endif
 446
 447	if(pages_mapped <= 8) {
 448#if 0
 449		/* see matching comments in alloc_range */
 450		unsigned long mask = ~(~0UL >> pages_mapped);
 451		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 452#else
 453		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 454#endif
 455	} else if(pages_mapped <= 16) {
 456		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 457	} else if(pages_mapped <= 32) {
 458		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 459#ifdef __LP64__
 460	} else if(pages_mapped <= 64) {
 461		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 462#endif
 463	} else {
 464		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 465		      __func__);
 466	}
 467}
 468
 469/****************************************************************
 470**
 471**          CCIO dma_ops support routines
 472**
 473*****************************************************************/
 474
 475typedef unsigned long space_t;
 476#define KERNEL_SPACE 0
 477
 478/*
 479** DMA "Page Type" and Hints 
 480** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 481**   set for subcacheline DMA transfers since we don't want to damage the
 482**   other part of a cacheline.
 483** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 484**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 485**   data can avoid this if the mapping covers full cache lines.
 486** o STOP_MOST is needed for atomicity across cachelines.
 487**   Apparently only "some EISA devices" need this.
 488**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 489**   to use this hint iff the EISA devices needs this feature.
 490**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 491** o PREFETCH should *not* be set for cases like Multiple PCI devices
 492**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 493**   device can be fetched and multiply DMA streams will thrash the
 494**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 495**   and Invalidation of Prefetch Entries".
 496**
 497** FIXME: the default hints need to be per GSC device - not global.
 498** 
 499** HP-UX dorks: linux device driver programming model is totally different
 500**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 501**    do special things to work on non-coherent platforms...linux has to
 502**    be much more careful with this.
 503*/
 504#define IOPDIR_VALID    0x01UL
 505#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
 506#ifdef CONFIG_EISA
 507#define HINT_STOP_MOST  0x04UL	/* LSL support */
 508#else
 509#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
 510#endif
 511#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 512#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
 513
 514
 515/*
 516** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 517** ccio_alloc_consistent() depends on this to get SAFE_DMA
 518** when it passes in BIDIRECTIONAL flag.
 519*/
 520static u32 hint_lookup[] = {
 521	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 522	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 523	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
 524};
 525
 526/**
 527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 528 * @pdir_ptr: A pointer into I/O Pdir.
 529 * @sid: The Space Identifier.
 530 * @vba: The virtual address.
 531 * @hints: The DMA Hint.
 532 *
 533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 535 * entry consists of 8 bytes as shown below (MSB == bit 0):
 536 *
 537 *
 538 * WORD 0:
 539 * +------+----------------+-----------------------------------------------+
 540 * | Phys | Virtual Index  |               Phys                            |
 541 * | 0:3  |     0:11       |               4:19                            |
 542 * |4 bits|   12 bits      |              16 bits                          |
 543 * +------+----------------+-----------------------------------------------+
 544 * WORD 1:
 545 * +-----------------------+-----------------------------------------------+
 546 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 547 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 548 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 549 * +-----------------------+-----------------------------------------------+
 550 *
 551 * The virtual index field is filled with the results of the LCI
 552 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 553 * index are bits 12:19 of the value returned by LCI.
 554 */ 
 555static void CCIO_INLINE
 556ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
 557		   unsigned long hints)
 558{
 559	register unsigned long pa;
 560	register unsigned long ci; /* coherent index */
 561
 562	/* We currently only support kernel addresses */
 563	BUG_ON(sid != KERNEL_SPACE);
 564
 565	/*
 566	** WORD 1 - low order word
 567	** "hints" parm includes the VALID bit!
 568	** "dep" clobbers the physical address offset bits as well.
 569	*/
 570	pa = lpa(vba);
 571	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 572	((u32 *)pdir_ptr)[1] = (u32) pa;
 573
 574	/*
 575	** WORD 0 - high order word
 576	*/
 577
 578#ifdef __LP64__
 579	/*
 580	** get bits 12:15 of physical address
 581	** shift bits 16:31 of physical address
 582	** and deposit them
 583	*/
 584	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 585	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 586	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 587#else
 588	pa = 0;
 589#endif
 590	/*
 591	** get CPU coherency index bits
 592	** Grab virtual index [0:11]
 593	** Deposit virt_idx bits into I/O PDIR word
 594	*/
 595	asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
 596	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 597	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 598
 599	((u32 *)pdir_ptr)[0] = (u32) pa;
 600
 601
 602	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 603	**        PCX-U/U+ do. (eg C200/C240)
 604	**        PCX-T'? Don't know. (eg C110 or similar K-class)
 605	**
 606	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 607	**
 608	** "Since PCX-U employs an offset hash that is incompatible with
 609	** the real mode coherence index generation of U2, the PDIR entry
 610	** must be flushed to memory to retain coherence."
 611	*/
 612	asm_io_fdc(pdir_ptr);
 613	asm_io_sync();
 614}
 615
 616/**
 617 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 618 * @ioc: The I/O Controller.
 619 * @iovp: The I/O Virtual Page.
 620 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 621 *
 622 * Purge invalid I/O PDIR entries from the I/O TLB.
 623 *
 624 * FIXME: Can we change the byte_cnt to pages_mapped?
 625 */
 626static CCIO_INLINE void
 627ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 628{
 629	u32 chain_size = 1 << ioc->chainid_shift;
 630
 631	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
 632	byte_cnt += chain_size;
 633
 634	while(byte_cnt > chain_size) {
 635		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 636		iovp += chain_size;
 637		byte_cnt -= chain_size;
 638	}
 639}
 640
 641/**
 642 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 643 * @ioc: The I/O Controller.
 644 * @iova: The I/O Virtual Address.
 645 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 646 *
 647 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 648 * TLB entries.
 649 *
 650 * FIXME: at some threshold it might be "cheaper" to just blow
 651 *        away the entire I/O TLB instead of individual entries.
 652 *
 653 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 654 *        PDIR entry - just once for each possible TLB entry.
 655 *        (We do need to maker I/O PDIR entries invalid regardless).
 656 *
 657 * FIXME: Can we change byte_cnt to pages_mapped?
 658 */ 
 659static CCIO_INLINE void
 660ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 661{
 662	u32 iovp = (u32)CCIO_IOVP(iova);
 663	size_t saved_byte_cnt;
 664
 665	/* round up to nearest page size */
 666	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 667
 668	while(byte_cnt > 0) {
 669		/* invalidate one page at a time */
 670		unsigned int idx = PDIR_INDEX(iovp);
 671		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 672
 673		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 674		pdir_ptr[7] = 0;	/* clear only VALID bit */ 
 675		/*
 676		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 677		**   PCX-U/U+ do. (eg C200/C240)
 678		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 679		*/
 680		asm_io_fdc(pdir_ptr);
 681
 682		iovp     += IOVP_SIZE;
 683		byte_cnt -= IOVP_SIZE;
 684	}
 685
 686	asm_io_sync();
 687	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 688}
 689
 690/****************************************************************
 691**
 692**          CCIO dma_ops
 693**
 694*****************************************************************/
 695
 696/**
 697 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 698 * @dev: The PCI device.
 699 * @mask: A bit mask describing the DMA address range of the device.
 700 */
 701static int 
 702ccio_dma_supported(struct device *dev, u64 mask)
 703{
 704	if(dev == NULL) {
 705		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 706		BUG();
 707		return 0;
 708	}
 709
 710	/* only support 32-bit or better devices (ie PCI/GSC) */
 711	return (int)(mask >= 0xffffffffUL);
 712}
 713
 714/**
 715 * ccio_map_single - Map an address range into the IOMMU.
 716 * @dev: The PCI device.
 717 * @addr: The start address of the DMA region.
 718 * @size: The length of the DMA region.
 719 * @direction: The direction of the DMA transaction (to/from device).
 720 *
 721 * This function implements the pci_map_single function.
 722 */
 723static dma_addr_t 
 724ccio_map_single(struct device *dev, void *addr, size_t size,
 725		enum dma_data_direction direction)
 726{
 727	int idx;
 728	struct ioc *ioc;
 729	unsigned long flags;
 730	dma_addr_t iovp;
 731	dma_addr_t offset;
 732	u64 *pdir_start;
 733	unsigned long hint = hint_lookup[(int)direction];
 734
 735	BUG_ON(!dev);
 736	ioc = GET_IOC(dev);
 737	if (!ioc)
 738		return DMA_MAPPING_ERROR;
 739
 740	BUG_ON(size <= 0);
 741
 742	/* save offset bits */
 743	offset = ((unsigned long) addr) & ~IOVP_MASK;
 744
 745	/* round up to nearest IOVP_SIZE */
 746	size = ALIGN(size + offset, IOVP_SIZE);
 747	spin_lock_irqsave(&ioc->res_lock, flags);
 748
 749#ifdef CCIO_COLLECT_STATS
 750	ioc->msingle_calls++;
 751	ioc->msingle_pages += size >> IOVP_SHIFT;
 752#endif
 753
 754	idx = ccio_alloc_range(ioc, dev, size);
 755	iovp = (dma_addr_t)MKIOVP(idx);
 756
 757	pdir_start = &(ioc->pdir_base[idx]);
 758
 759	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
 760		__func__, addr, (long)iovp | offset, size);
 761
 762	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
 763	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 764		hint |= HINT_SAFE_DMA;
 765
 766	while(size > 0) {
 767		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 768
 769		DBG_RUN(" pdir %p %08x%08x\n",
 770			pdir_start,
 771			(u32) (((u32 *) pdir_start)[0]),
 772			(u32) (((u32 *) pdir_start)[1]));
 773		++pdir_start;
 774		addr += IOVP_SIZE;
 775		size -= IOVP_SIZE;
 776	}
 777
 778	spin_unlock_irqrestore(&ioc->res_lock, flags);
 779
 780	/* form complete address */
 781	return CCIO_IOVA(iovp, offset);
 782}
 783
 784
 785static dma_addr_t
 786ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
 787		size_t size, enum dma_data_direction direction,
 788		unsigned long attrs)
 789{
 790	return ccio_map_single(dev, page_address(page) + offset, size,
 791			direction);
 792}
 793
 794
 795/**
 796 * ccio_unmap_page - Unmap an address range from the IOMMU.
 797 * @dev: The PCI device.
 798 * @addr: The start address of the DMA region.
 799 * @size: The length of the DMA region.
 800 * @direction: The direction of the DMA transaction (to/from device).
 801 */
 802static void 
 803ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
 804		enum dma_data_direction direction, unsigned long attrs)
 805{
 806	struct ioc *ioc;
 807	unsigned long flags; 
 808	dma_addr_t offset = iova & ~IOVP_MASK;
 809	
 810	BUG_ON(!dev);
 811	ioc = GET_IOC(dev);
 812	if (!ioc) {
 813		WARN_ON(!ioc);
 814		return;
 815	}
 816
 817	DBG_RUN("%s() iovp 0x%lx/%x\n",
 818		__func__, (long)iova, size);
 819
 820	iova ^= offset;        /* clear offset bits */
 821	size += offset;
 822	size = ALIGN(size, IOVP_SIZE);
 823
 824	spin_lock_irqsave(&ioc->res_lock, flags);
 825
 826#ifdef CCIO_COLLECT_STATS
 827	ioc->usingle_calls++;
 828	ioc->usingle_pages += size >> IOVP_SHIFT;
 829#endif
 830
 831	ccio_mark_invalid(ioc, iova, size);
 832	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 833	spin_unlock_irqrestore(&ioc->res_lock, flags);
 834}
 835
 836/**
 837 * ccio_alloc - Allocate a consistent DMA mapping.
 838 * @dev: The PCI device.
 839 * @size: The length of the DMA region.
 840 * @dma_handle: The DMA address handed back to the device (not the cpu).
 841 *
 842 * This function implements the pci_alloc_consistent function.
 843 */
 844static void * 
 845ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
 846		unsigned long attrs)
 847{
 848      void *ret;
 849#if 0
 850/* GRANT Need to establish hierarchy for non-PCI devs as well
 851** and then provide matching gsc_map_xxx() functions for them as well.
 852*/
 853	if(!hwdev) {
 854		/* only support PCI */
 855		*dma_handle = 0;
 856		return 0;
 857	}
 858#endif
 859        ret = (void *) __get_free_pages(flag, get_order(size));
 860
 861	if (ret) {
 862		memset(ret, 0, size);
 863		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
 864	}
 865
 866	return ret;
 867}
 868
 869/**
 870 * ccio_free - Free a consistent DMA mapping.
 871 * @dev: The PCI device.
 872 * @size: The length of the DMA region.
 873 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 874 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 875 *
 876 * This function implements the pci_free_consistent function.
 877 */
 878static void 
 879ccio_free(struct device *dev, size_t size, void *cpu_addr,
 880		dma_addr_t dma_handle, unsigned long attrs)
 881{
 882	ccio_unmap_page(dev, dma_handle, size, 0, 0);
 883	free_pages((unsigned long)cpu_addr, get_order(size));
 884}
 885
 886/*
 887** Since 0 is a valid pdir_base index value, can't use that
 888** to determine if a value is valid or not. Use a flag to indicate
 889** the SG list entry contains a valid pdir index.
 890*/
 891#define PIDE_FLAG 0x80000000UL
 892
 893#ifdef CCIO_COLLECT_STATS
 894#define IOMMU_MAP_STATS
 895#endif
 896#include "iommu-helpers.h"
 897
 898/**
 899 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 900 * @dev: The PCI device.
 901 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 902 * @nents: The number of entries in the scatter/gather list.
 903 * @direction: The direction of the DMA transaction (to/from device).
 904 *
 905 * This function implements the pci_map_sg function.
 906 */
 907static int
 908ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 909	    enum dma_data_direction direction, unsigned long attrs)
 910{
 911	struct ioc *ioc;
 912	int coalesced, filled = 0;
 913	unsigned long flags;
 914	unsigned long hint = hint_lookup[(int)direction];
 915	unsigned long prev_len = 0, current_len = 0;
 916	int i;
 917	
 918	BUG_ON(!dev);
 919	ioc = GET_IOC(dev);
 920	if (!ioc)
 921		return 0;
 922	
 923	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 924
 925	/* Fast path single entry scatterlists. */
 926	if (nents == 1) {
 927		sg_dma_address(sglist) = ccio_map_single(dev,
 928				sg_virt(sglist), sglist->length,
 929				direction);
 930		sg_dma_len(sglist) = sglist->length;
 931		return 1;
 932	}
 933
 934	for(i = 0; i < nents; i++)
 935		prev_len += sglist[i].length;
 936	
 937	spin_lock_irqsave(&ioc->res_lock, flags);
 938
 939#ifdef CCIO_COLLECT_STATS
 940	ioc->msg_calls++;
 941#endif
 942
 943	/*
 944	** First coalesce the chunks and allocate I/O pdir space
 945	**
 946	** If this is one DMA stream, we can properly map using the
 947	** correct virtual address associated with each DMA page.
 948	** w/o this association, we wouldn't have coherent DMA!
 949	** Access to the virtual address is what forces a two pass algorithm.
 950	*/
 951	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 952
 953	/*
 954	** Program the I/O Pdir
 955	**
 956	** map the virtual addresses to the I/O Pdir
 957	** o dma_address will contain the pdir index
 958	** o dma_len will contain the number of bytes to map 
 959	** o page/offset contain the virtual address.
 960	*/
 961	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 962
 963	spin_unlock_irqrestore(&ioc->res_lock, flags);
 964
 965	BUG_ON(coalesced != filled);
 966
 967	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 968
 969	for (i = 0; i < filled; i++)
 970		current_len += sg_dma_len(sglist + i);
 971
 972	BUG_ON(current_len != prev_len);
 973
 974	return filled;
 975}
 976
 977/**
 978 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 979 * @dev: The PCI device.
 980 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 981 * @nents: The number of entries in the scatter/gather list.
 982 * @direction: The direction of the DMA transaction (to/from device).
 983 *
 984 * This function implements the pci_unmap_sg function.
 985 */
 986static void 
 987ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 988	      enum dma_data_direction direction, unsigned long attrs)
 989{
 990	struct ioc *ioc;
 991
 992	BUG_ON(!dev);
 993	ioc = GET_IOC(dev);
 994	if (!ioc) {
 995		WARN_ON(!ioc);
 996		return;
 997	}
 998
 999	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000		__func__, nents, sg_virt(sglist), sglist->length);
1001
1002#ifdef CCIO_COLLECT_STATS
1003	ioc->usg_calls++;
1004#endif
1005
1006	while(sg_dma_len(sglist) && nents--) {
1007
1008#ifdef CCIO_COLLECT_STATS
1009		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1010#endif
1011		ccio_unmap_page(dev, sg_dma_address(sglist),
1012				  sg_dma_len(sglist), direction, 0);
1013		++sglist;
1014	}
1015
1016	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1017}
1018
1019static const struct dma_map_ops ccio_ops = {
1020	.dma_supported =	ccio_dma_supported,
1021	.alloc =		ccio_alloc,
1022	.free =			ccio_free,
1023	.map_page =		ccio_map_page,
1024	.unmap_page =		ccio_unmap_page,
1025	.map_sg = 		ccio_map_sg,
1026	.unmap_sg = 		ccio_unmap_sg,
1027	.get_sgtable =		dma_common_get_sgtable,
1028};
1029
1030#ifdef CONFIG_PROC_FS
1031static int ccio_proc_info(struct seq_file *m, void *p)
1032{
1033	struct ioc *ioc = ioc_list;
1034
1035	while (ioc != NULL) {
1036		unsigned int total_pages = ioc->res_size << 3;
1037#ifdef CCIO_COLLECT_STATS
1038		unsigned long avg = 0, min, max;
1039		int j;
1040#endif
1041
1042		seq_printf(m, "%s\n", ioc->name);
1043		
1044		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1045			   (ioc->cujo20_bug ? "yes" : "no"));
1046		
1047		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1048			   total_pages * 8, total_pages);
1049
1050#ifdef CCIO_COLLECT_STATS
1051		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1052			   total_pages - ioc->used_pages, ioc->used_pages,
1053			   (int)(ioc->used_pages * 100 / total_pages));
1054#endif
1055
1056		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1057			   ioc->res_size, total_pages);
1058
1059#ifdef CCIO_COLLECT_STATS
1060		min = max = ioc->avg_search[0];
1061		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1062			avg += ioc->avg_search[j];
1063			if(ioc->avg_search[j] > max) 
1064				max = ioc->avg_search[j];
1065			if(ioc->avg_search[j] < min) 
1066				min = ioc->avg_search[j];
1067		}
1068		avg /= CCIO_SEARCH_SAMPLE;
1069		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1070			   min, avg, max);
1071
1072		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1073			   ioc->msingle_calls, ioc->msingle_pages,
1074			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1075
1076		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1077		min = ioc->usingle_calls - ioc->usg_calls;
1078		max = ioc->usingle_pages - ioc->usg_pages;
1079		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1080			   min, max, (int)((max * 1000)/min));
1081 
1082		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1083			   ioc->msg_calls, ioc->msg_pages,
1084			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1085
1086		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1087			   ioc->usg_calls, ioc->usg_pages,
1088			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1089#endif	/* CCIO_COLLECT_STATS */
1090
1091		ioc = ioc->next;
1092	}
1093
1094	return 0;
1095}
1096
1097static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1098{
1099	struct ioc *ioc = ioc_list;
1100
1101	while (ioc != NULL) {
1102		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1103			     ioc->res_size, false);
1104		seq_putc(m, '\n');
1105		ioc = ioc->next;
1106		break; /* XXX - remove me */
1107	}
1108
1109	return 0;
1110}
1111#endif /* CONFIG_PROC_FS */
1112
1113/**
1114 * ccio_find_ioc - Find the ioc in the ioc_list
1115 * @hw_path: The hardware path of the ioc.
1116 *
1117 * This function searches the ioc_list for an ioc that matches
1118 * the provide hardware path.
1119 */
1120static struct ioc * ccio_find_ioc(int hw_path)
1121{
1122	int i;
1123	struct ioc *ioc;
1124
1125	ioc = ioc_list;
1126	for (i = 0; i < ioc_count; i++) {
1127		if (ioc->hw_path == hw_path)
1128			return ioc;
1129
1130		ioc = ioc->next;
1131	}
1132
1133	return NULL;
1134}
1135
1136/**
1137 * ccio_get_iommu - Find the iommu which controls this device
1138 * @dev: The parisc device.
1139 *
1140 * This function searches through the registered IOMMU's and returns
1141 * the appropriate IOMMU for the device based on its hardware path.
1142 */
1143void * ccio_get_iommu(const struct parisc_device *dev)
1144{
1145	dev = find_pa_parent_type(dev, HPHW_IOA);
1146	if (!dev)
1147		return NULL;
1148
1149	return ccio_find_ioc(dev->hw_path);
1150}
1151
1152#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1153
1154/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1155 * to/from certain pages.  To avoid this happening, we mark these pages
1156 * as `used', and ensure that nothing will try to allocate from them.
1157 */
1158void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1159{
1160	unsigned int idx;
1161	struct parisc_device *dev = parisc_parent(cujo);
1162	struct ioc *ioc = ccio_get_iommu(dev);
1163	u8 *res_ptr;
1164
1165	ioc->cujo20_bug = 1;
1166	res_ptr = ioc->res_map;
1167	idx = PDIR_INDEX(iovp) >> 3;
1168
1169	while (idx < ioc->res_size) {
1170 		res_ptr[idx] |= 0xff;
1171		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1172	}
1173}
1174
1175#if 0
1176/* GRANT -  is this needed for U2 or not? */
1177
1178/*
1179** Get the size of the I/O TLB for this I/O MMU.
1180**
1181** If spa_shift is non-zero (ie probably U2),
1182** then calculate the I/O TLB size using spa_shift.
1183**
1184** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1185** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1186** I think only Java (K/D/R-class too?) systems don't do this.
1187*/
1188static int
1189ccio_get_iotlb_size(struct parisc_device *dev)
1190{
1191	if (dev->spa_shift == 0) {
1192		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1193	}
1194	return (1 << dev->spa_shift);
1195}
1196#else
1197
1198/* Uturn supports 256 TLB entries */
1199#define CCIO_CHAINID_SHIFT	8
1200#define CCIO_CHAINID_MASK	0xff
1201#endif /* 0 */
1202
1203/* We *can't* support JAVA (T600). Venture there at your own risk. */
1204static const struct parisc_device_id ccio_tbl[] __initconst = {
1205	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1206	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1207	{ 0, }
1208};
1209
1210static int ccio_probe(struct parisc_device *dev);
1211
1212static struct parisc_driver ccio_driver __refdata = {
1213	.name =		"ccio",
1214	.id_table =	ccio_tbl,
1215	.probe =	ccio_probe,
1216};
1217
1218/**
1219 * ccio_ioc_init - Initialize the I/O Controller
1220 * @ioc: The I/O Controller.
1221 *
1222 * Initialize the I/O Controller which includes setting up the
1223 * I/O Page Directory, the resource map, and initalizing the
1224 * U2/Uturn chip into virtual mode.
1225 */
1226static void __init
1227ccio_ioc_init(struct ioc *ioc)
1228{
1229	int i;
1230	unsigned int iov_order;
1231	u32 iova_space_size;
1232
1233	/*
1234	** Determine IOVA Space size from memory size.
1235	**
1236	** Ideally, PCI drivers would register the maximum number
1237	** of DMA they can have outstanding for each device they
1238	** own.  Next best thing would be to guess how much DMA
1239	** can be outstanding based on PCI Class/sub-class. Both
1240	** methods still require some "extra" to support PCI
1241	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1242	*/
1243
1244	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1245
1246	/* limit IOVA space size to 1MB-1GB */
1247
1248	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1249		iova_space_size =  1 << (20 - PAGE_SHIFT);
1250#ifdef __LP64__
1251	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1252		iova_space_size =  1 << (30 - PAGE_SHIFT);
1253#endif
1254	}
1255
1256	/*
1257	** iova space must be log2() in size.
1258	** thus, pdir/res_map will also be log2().
1259	*/
1260
1261	/* We could use larger page sizes in order to *decrease* the number
1262	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1263	**
1264	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1265	**   since the pages must also be physically contiguous - typically
1266	**   this is the case under linux."
1267	*/
1268
1269	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1270
1271	/* iova_space_size is now bytes, not pages */
1272	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1273
1274	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1275
1276	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1277
1278	/* Verify it's a power of two */
1279	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1280
1281	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1282			__func__, ioc->ioc_regs,
1283			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1284			iova_space_size>>20,
1285			iov_order + PAGE_SHIFT);
1286
1287	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1288						 get_order(ioc->pdir_size));
1289	if(NULL == ioc->pdir_base) {
1290		panic("%s() could not allocate I/O Page Table\n", __func__);
1291	}
1292	memset(ioc->pdir_base, 0, ioc->pdir_size);
1293
1294	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1295	DBG_INIT(" base %p\n", ioc->pdir_base);
1296
1297	/* resource map size dictated by pdir_size */
1298 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1299	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1300	
1301	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1302					      get_order(ioc->res_size));
1303	if(NULL == ioc->res_map) {
1304		panic("%s() could not allocate resource map\n", __func__);
1305	}
1306	memset(ioc->res_map, 0, ioc->res_size);
1307
1308	/* Initialize the res_hint to 16 */
1309	ioc->res_hint = 16;
1310
1311	/* Initialize the spinlock */
1312	spin_lock_init(&ioc->res_lock);
1313
1314	/*
1315	** Chainid is the upper most bits of an IOVP used to determine
1316	** which TLB entry an IOVP will use.
1317	*/
1318	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1319	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1320
1321	/*
1322	** Initialize IOA hardware
1323	*/
1324	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1325		  &ioc->ioc_regs->io_chain_id_mask);
1326
1327	WRITE_U32(virt_to_phys(ioc->pdir_base), 
1328		  &ioc->ioc_regs->io_pdir_base);
1329
1330	/*
1331	** Go to "Virtual Mode"
1332	*/
1333	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1334
1335	/*
1336	** Initialize all I/O TLB entries to 0 (Valid bit off).
1337	*/
1338	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1339	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1340
1341	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1342		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1343			  &ioc->ioc_regs->io_command);
1344	}
1345}
1346
1347static void __init
1348ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1349{
1350	int result;
1351
1352	res->parent = NULL;
1353	res->flags = IORESOURCE_MEM;
1354	/*
1355	 * bracing ((signed) ...) are required for 64bit kernel because
1356	 * we only want to sign extend the lower 16 bits of the register.
1357	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1358	 */
1359	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1360	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1361	res->name = name;
1362	/*
1363	 * Check if this MMIO range is disable
1364	 */
1365	if (res->end + 1 == res->start)
1366		return;
1367
1368	/* On some platforms (e.g. K-Class), we have already registered
1369	 * resources for devices reported by firmware. Some are children
1370	 * of ccio.
1371	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1372	 */
1373	result = insert_resource(&iomem_resource, res);
1374	if (result < 0) {
1375		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1376			__func__, (unsigned long)res->start, (unsigned long)res->end);
1377	}
1378}
1379
1380static void __init ccio_init_resources(struct ioc *ioc)
1381{
1382	struct resource *res = ioc->mmio_region;
1383	char *name = kmalloc(14, GFP_KERNEL);
1384
1385	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386
1387	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389}
1390
1391static int new_ioc_area(struct resource *res, unsigned long size,
1392		unsigned long min, unsigned long max, unsigned long align)
1393{
1394	if (max <= min)
1395		return -EBUSY;
1396
1397	res->start = (max - size + 1) &~ (align - 1);
1398	res->end = res->start + size;
1399	
1400	/* We might be trying to expand the MMIO range to include
1401	 * a child device that has already registered it's MMIO space.
1402	 * Use "insert" instead of request_resource().
1403	 */
1404	if (!insert_resource(&iomem_resource, res))
1405		return 0;
1406
1407	return new_ioc_area(res, size, min, max - size, align);
1408}
1409
1410static int expand_ioc_area(struct resource *res, unsigned long size,
1411		unsigned long min, unsigned long max, unsigned long align)
1412{
1413	unsigned long start, len;
1414
1415	if (!res->parent)
1416		return new_ioc_area(res, size, min, max, align);
1417
1418	start = (res->start - size) &~ (align - 1);
1419	len = res->end - start + 1;
1420	if (start >= min) {
1421		if (!adjust_resource(res, start, len))
1422			return 0;
1423	}
1424
1425	start = res->start;
1426	len = ((size + res->end + align) &~ (align - 1)) - start;
1427	if (start + len <= max) {
1428		if (!adjust_resource(res, start, len))
1429			return 0;
1430	}
1431
1432	return -EBUSY;
1433}
1434
1435/*
1436 * Dino calls this function.  Beware that we may get called on systems
1437 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1438 * So it's legal to find no parent IOC.
1439 *
1440 * Some other issues: one of the resources in the ioc may be unassigned.
1441 */
1442int ccio_allocate_resource(const struct parisc_device *dev,
1443		struct resource *res, unsigned long size,
1444		unsigned long min, unsigned long max, unsigned long align)
1445{
1446	struct resource *parent = &iomem_resource;
1447	struct ioc *ioc = ccio_get_iommu(dev);
1448	if (!ioc)
1449		goto out;
1450
1451	parent = ioc->mmio_region;
1452	if (parent->parent &&
1453	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1454		return 0;
1455
1456	if ((parent + 1)->parent &&
1457	    !allocate_resource(parent + 1, res, size, min, max, align,
1458				NULL, NULL))
1459		return 0;
1460
1461	if (!expand_ioc_area(parent, size, min, max, align)) {
1462		__raw_writel(((parent->start)>>16) | 0xffff0000,
1463			     &ioc->ioc_regs->io_io_low);
1464		__raw_writel(((parent->end)>>16) | 0xffff0000,
1465			     &ioc->ioc_regs->io_io_high);
1466	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1467		parent++;
1468		__raw_writel(((parent->start)>>16) | 0xffff0000,
1469			     &ioc->ioc_regs->io_io_low_hv);
1470		__raw_writel(((parent->end)>>16) | 0xffff0000,
1471			     &ioc->ioc_regs->io_io_high_hv);
1472	} else {
1473		return -EBUSY;
1474	}
1475
1476 out:
1477	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1478}
1479
1480int ccio_request_resource(const struct parisc_device *dev,
1481		struct resource *res)
1482{
1483	struct resource *parent;
1484	struct ioc *ioc = ccio_get_iommu(dev);
1485
1486	if (!ioc) {
1487		parent = &iomem_resource;
1488	} else if ((ioc->mmio_region->start <= res->start) &&
1489			(res->end <= ioc->mmio_region->end)) {
1490		parent = ioc->mmio_region;
1491	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1492			(res->end <= (ioc->mmio_region + 1)->end)) {
1493		parent = ioc->mmio_region + 1;
1494	} else {
1495		return -EBUSY;
1496	}
1497
1498	/* "transparent" bus bridges need to register MMIO resources
1499	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1500	 * registered their resources in the PDC "bus walk" (See
1501	 * arch/parisc/kernel/inventory.c).
1502	 */
1503	return insert_resource(parent, res);
1504}
1505
1506/**
1507 * ccio_probe - Determine if ccio should claim this device.
1508 * @dev: The device which has been found
1509 *
1510 * Determine if ccio should claim this chip (return 0) or not (return 1).
1511 * If so, initialize the chip and tell other partners in crime they
1512 * have work to do.
1513 */
1514static int __init ccio_probe(struct parisc_device *dev)
1515{
1516	int i;
1517	struct ioc *ioc, **ioc_p = &ioc_list;
1518	struct pci_hba_data *hba;
1519
1520	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1521	if (ioc == NULL) {
1522		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1523		return -ENOMEM;
1524	}
1525
1526	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1527
1528	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1529		(unsigned long)dev->hpa.start);
1530
1531	for (i = 0; i < ioc_count; i++) {
1532		ioc_p = &(*ioc_p)->next;
1533	}
1534	*ioc_p = ioc;
1535
1536	ioc->hw_path = dev->hw_path;
1537	ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1538	if (!ioc->ioc_regs) {
1539		kfree(ioc);
1540		return -ENOMEM;
1541	}
1542	ccio_ioc_init(ioc);
1543	ccio_init_resources(ioc);
1544	hppa_dma_ops = &ccio_ops;
1545
1546	hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1547	/* if this fails, no I/O cards will work, so may as well bug */
1548	BUG_ON(hba == NULL);
1549
1550	hba->iommu = ioc;
1551	dev->dev.platform_data = hba;
1552
1553#ifdef CONFIG_PROC_FS
1554	if (ioc_count == 0) {
1555		proc_create_single(MODULE_NAME, 0, proc_runway_root,
1556				ccio_proc_info);
1557		proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1558				ccio_proc_bitmap_info);
1559	}
1560#endif
1561	ioc_count++;
1562	return 0;
1563}
1564
1565/**
1566 * ccio_init - ccio initialization procedure.
1567 *
1568 * Register this driver.
1569 */
1570void __init ccio_init(void)
1571{
1572	register_parisc_driver(&ccio_driver);
1573}
1574
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3** ccio-dma.c:
   4**	DMA management routines for first generation cache-coherent machines.
   5**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   6**
   7**	(c) Copyright 2000 Grant Grundler
   8**	(c) Copyright 2000 Ryan Bradetich
   9**	(c) Copyright 2000 Hewlett-Packard Company
  10**
  11**
  12**
  13**  "Real Mode" operation refers to U2/Uturn chip operation.
  14**  U2/Uturn were designed to perform coherency checks w/o using
  15**  the I/O MMU - basically what x86 does.
  16**
  17**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
  18**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
  19**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
  20**
  21**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
  22**
  23**  Drawbacks of using Real Mode are:
  24**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  25**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  26**	o Ability to do scatter/gather in HW is lost.
  27**	o Doesn't work under PCX-U/U+ machines since they didn't follow
  28**        the coherency design originally worked out. Only PCX-W does.
  29*/
  30
  31#include <linux/types.h>
  32#include <linux/kernel.h>
  33#include <linux/init.h>
  34#include <linux/mm.h>
  35#include <linux/spinlock.h>
  36#include <linux/slab.h>
  37#include <linux/string.h>
  38#include <linux/pci.h>
  39#include <linux/reboot.h>
  40#include <linux/proc_fs.h>
  41#include <linux/seq_file.h>
  42#include <linux/scatterlist.h>
  43#include <linux/iommu-helper.h>
  44#include <linux/export.h>
  45
  46#include <asm/byteorder.h>
  47#include <asm/cache.h>		/* for L1_CACHE_BYTES */
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50#include <asm/dma.h>
  51#include <asm/io.h>
  52#include <asm/hardware.h>       /* for register_module() */
  53#include <asm/parisc-device.h>
  54
  55#include "iommu.h"
  56
  57/* 
  58** Choose "ccio" since that's what HP-UX calls it.
  59** Make it easier for folks to migrate from one to the other :^)
  60*/
  61#define MODULE_NAME "ccio"
  62
  63#undef DEBUG_CCIO_RES
  64#undef DEBUG_CCIO_RUN
  65#undef DEBUG_CCIO_INIT
  66#undef DEBUG_CCIO_RUN_SG
  67
  68#ifdef CONFIG_PROC_FS
  69/* depends on proc fs support. But costs CPU performance. */
  70#undef CCIO_COLLECT_STATS
  71#endif
  72
  73#include <asm/runway.h>		/* for proc_runway_root */
  74
  75#ifdef DEBUG_CCIO_INIT
  76#define DBG_INIT(x...)  printk(x)
  77#else
  78#define DBG_INIT(x...)
  79#endif
  80
  81#ifdef DEBUG_CCIO_RUN
  82#define DBG_RUN(x...)   printk(x)
  83#else
  84#define DBG_RUN(x...)
  85#endif
  86
  87#ifdef DEBUG_CCIO_RES
  88#define DBG_RES(x...)   printk(x)
  89#else
  90#define DBG_RES(x...)
  91#endif
  92
  93#ifdef DEBUG_CCIO_RUN_SG
  94#define DBG_RUN_SG(x...) printk(x)
  95#else
  96#define DBG_RUN_SG(x...)
  97#endif
  98
  99#define CCIO_INLINE	inline
 100#define WRITE_U32(value, addr) __raw_writel(value, addr)
 101#define READ_U32(addr) __raw_readl(addr)
 102
 103#define U2_IOA_RUNWAY 0x580
 104#define U2_BC_GSC     0x501
 105#define UTURN_IOA_RUNWAY 0x581
 106#define UTURN_BC_GSC     0x502
 107
 108#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
 109#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 110#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 111
 112struct ioa_registers {
 113        /* Runway Supervisory Set */
 114        int32_t    unused1[12];
 115        uint32_t   io_command;             /* Offset 12 */
 116        uint32_t   io_status;              /* Offset 13 */
 117        uint32_t   io_control;             /* Offset 14 */
 118        int32_t    unused2[1];
 119
 120        /* Runway Auxiliary Register Set */
 121        uint32_t   io_err_resp;            /* Offset  0 */
 122        uint32_t   io_err_info;            /* Offset  1 */
 123        uint32_t   io_err_req;             /* Offset  2 */
 124        uint32_t   io_err_resp_hi;         /* Offset  3 */
 125        uint32_t   io_tlb_entry_m;         /* Offset  4 */
 126        uint32_t   io_tlb_entry_l;         /* Offset  5 */
 127        uint32_t   unused3[1];
 128        uint32_t   io_pdir_base;           /* Offset  7 */
 129        uint32_t   io_io_low_hv;           /* Offset  8 */
 130        uint32_t   io_io_high_hv;          /* Offset  9 */
 131        uint32_t   unused4[1];
 132        uint32_t   io_chain_id_mask;       /* Offset 11 */
 133        uint32_t   unused5[2];
 134        uint32_t   io_io_low;              /* Offset 14 */
 135        uint32_t   io_io_high;             /* Offset 15 */
 136};
 137
 138/*
 139** IOA Registers
 140** -------------
 141**
 142** Runway IO_CONTROL Register (+0x38)
 143** 
 144** The Runway IO_CONTROL register controls the forwarding of transactions.
 145**
 146** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 147** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 148**
 149** o mode field indicates the address translation of transactions
 150**   forwarded from Runway to GSC+:
 151**       Mode Name     Value        Definition
 152**       Off (default)   0          Opaque to matching addresses.
 153**       Include         1          Transparent for matching addresses.
 154**       Peek            3          Map matching addresses.
 155**
 156**       + "Off" mode: Runway transactions which match the I/O range
 157**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 158**       + "Include" mode: all addresses within the I/O range specified
 159**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 160**         forwarded. This is the I/O Adapter's normal operating mode.
 161**       + "Peek" mode: used during system configuration to initialize the
 162**         GSC+ bus. Runway Write_Shorts in the address range specified by
 163**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 164**         *AND* the GSC+ address is remapped to the Broadcast Physical
 165**         Address space by setting the 14 high order address bits of the
 166**         32 bit GSC+ address to ones.
 167**
 168** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 169**   "Real" mode is the poweron default.
 170** 
 171**   TLB Mode  Value  Description
 172**   Real        0    No TLB translation. Address is directly mapped and the
 173**                    virtual address is composed of selected physical bits.
 174**   Error       1    Software fills the TLB manually.
 175**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 176**
 177**
 178** IO_IO_LOW_HV	  +0x60 (HV dependent)
 179** IO_IO_HIGH_HV  +0x64 (HV dependent)
 180** IO_IO_LOW      +0x78	(Architected register)
 181** IO_IO_HIGH     +0x7c	(Architected register)
 182**
 183** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 184** I/O Adapter address space, respectively.
 185**
 186** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 187** 11111111 | 11111111 |      address   |
 188**
 189** Each LOW/HIGH pair describes a disjoint address space region.
 190** (2 per GSC+ port). Each incoming Runway transaction address is compared
 191** with both sets of LOW/HIGH registers. If the address is in the range
 192** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 193** for forwarded to the respective GSC+ bus.
 194** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 195** an address space region.
 196**
 197** In order for a Runway address to reside within GSC+ extended address space:
 198**	Runway Address [0:7]    must identically compare to 8'b11111111
 199**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 200** 	Runway Address [12:23]  must be greater than or equal to
 201**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 202**	Runway Address [24:39]  is not used in the comparison.
 203**
 204** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 205** as follows:
 206**	GSC+ Address[0:3]	4'b1111
 207**	GSC+ Address[4:29]	Runway Address[12:37]
 208**	GSC+ Address[30:31]	2'b00
 209**
 210** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 211** is interrogated and address space is defined. The operating system will
 212** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 213** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 214** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 215** 
 216** Writes to both sets of registers will take effect immediately, bypassing
 217** the queues, which ensures that subsequent Runway transactions are checked
 218** against the updated bounds values. However reads are queued, introducing
 219** the possibility of a read being bypassed by a subsequent write to the same
 220** register. This sequence can be avoided by having software wait for read
 221** returns before issuing subsequent writes.
 222*/
 223
 224struct ioc {
 225	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 226	u8  *res_map;	                /* resource map, bit == pdir entry */
 227	u64 *pdir_base;	                /* physical base address */
 228	u32 pdir_size; 			/* bytes, function of IOV Space size */
 229	u32 res_hint;	                /* next available IOVP - 
 230					   circular search */
 231	u32 res_size;		    	/* size of resource map in bytes */
 232	spinlock_t res_lock;
 233
 234#ifdef CCIO_COLLECT_STATS
 235#define CCIO_SEARCH_SAMPLE 0x100
 236	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 237	unsigned long avg_idx;		  /* current index into avg_search */
 238	unsigned long used_pages;
 239	unsigned long msingle_calls;
 240	unsigned long msingle_pages;
 241	unsigned long msg_calls;
 242	unsigned long msg_pages;
 243	unsigned long usingle_calls;
 244	unsigned long usingle_pages;
 245	unsigned long usg_calls;
 246	unsigned long usg_pages;
 247#endif
 248	unsigned short cujo20_bug;
 249
 250	/* STUFF We don't need in performance path */
 251	u32 chainid_shift; 		/* specify bit location of chain_id */
 252	struct ioc *next;		/* Linked list of discovered iocs */
 253	const char *name;		/* device name from firmware */
 254	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 255	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 256	struct resource mmio_region[2]; /* The "routed" MMIO regions */
 257};
 258
 259static struct ioc *ioc_list;
 260static int ioc_count;
 261
 262/**************************************************************
 263*
 264*   I/O Pdir Resource Management
 265*
 266*   Bits set in the resource map are in use.
 267*   Each bit can represent a number of pages.
 268*   LSbs represent lower addresses (IOVA's).
 269*
 270*   This was was copied from sba_iommu.c. Don't try to unify
 271*   the two resource managers unless a way to have different
 272*   allocation policies is also adjusted. We'd like to avoid
 273*   I/O TLB thrashing by having resource allocation policy
 274*   match the I/O TLB replacement policy.
 275*
 276***************************************************************/
 277#define IOVP_SIZE PAGE_SIZE
 278#define IOVP_SHIFT PAGE_SHIFT
 279#define IOVP_MASK PAGE_MASK
 280
 281/* Convert from IOVP to IOVA and vice versa. */
 282#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 283#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 284
 285#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 286#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 287#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 288
 289/*
 290** Don't worry about the 150% average search length on a miss.
 291** If the search wraps around, and passes the res_hint, it will
 292** cause the kernel to panic anyhow.
 293*/
 294#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 295       for(; res_ptr < res_end; ++res_ptr) { \
 296		int ret;\
 297		unsigned int idx;\
 298		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 299		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 300		if ((0 == (*res_ptr & mask)) && !ret) { \
 301			*res_ptr |= mask; \
 302			res_idx = idx;\
 303			ioc->res_hint = res_idx + (size >> 3); \
 304			goto resource_found; \
 305		} \
 306	}
 307
 308#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 309       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 310       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 311       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 312       res_ptr = (u##size *)&(ioc)->res_map[0]; \
 313       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 314
 315/*
 316** Find available bit in this ioa's resource map.
 317** Use a "circular" search:
 318**   o Most IOVA's are "temporary" - avg search time should be small.
 319** o keep a history of what happened for debugging
 320** o KISS.
 321**
 322** Perf optimizations:
 323** o search for log2(size) bits at a time.
 324** o search for available resource bits using byte/word/whatever.
 325** o use different search for "large" (eg > 4 pages) or "very large"
 326**   (eg > 16 pages) mappings.
 327*/
 328
 329/**
 330 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 331 * @ioc: The I/O Controller.
 332 * @pages_needed: The requested number of pages to be mapped into the
 333 * I/O Pdir...
 334 *
 335 * This function searches the resource map of the ioc to locate a range
 336 * of available pages for the requested size.
 337 */
 338static int
 339ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 340{
 341	unsigned int pages_needed = size >> IOVP_SHIFT;
 342	unsigned int res_idx;
 343	unsigned long boundary_size;
 344#ifdef CCIO_COLLECT_STATS
 345	unsigned long cr_start = mfctl(16);
 346#endif
 347	
 348	BUG_ON(pages_needed == 0);
 349	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 350     
 351	DBG_RES("%s() size: %d pages_needed %d\n", 
 352		__func__, size, pages_needed);
 353
 354	/*
 355	** "seek and ye shall find"...praying never hurts either...
 356	** ggg sacrifices another 710 to the computer gods.
 357	*/
 358
 359	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
 360			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
 361
 362	if (pages_needed <= 8) {
 363		/*
 364		 * LAN traffic will not thrash the TLB IFF the same NIC
 365		 * uses 8 adjacent pages to map separate payload data.
 366		 * ie the same byte in the resource bit map.
 367		 */
 368#if 0
 369		/* FIXME: bit search should shift it's way through
 370		 * an unsigned long - not byte at a time. As it is now,
 371		 * we effectively allocate this byte to this mapping.
 372		 */
 373		unsigned long mask = ~(~0UL >> pages_needed);
 374		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 375#else
 376		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 377#endif
 378	} else if (pages_needed <= 16) {
 379		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 380	} else if (pages_needed <= 32) {
 381		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 382#ifdef __LP64__
 383	} else if (pages_needed <= 64) {
 384		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 385#endif
 386	} else {
 387		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 388		       __FILE__,  __func__, pages_needed);
 389	}
 390
 391	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 392	      __func__);
 393	
 394resource_found:
 395	
 396	DBG_RES("%s() res_idx %d res_hint: %d\n",
 397		__func__, res_idx, ioc->res_hint);
 398
 399#ifdef CCIO_COLLECT_STATS
 400	{
 401		unsigned long cr_end = mfctl(16);
 402		unsigned long tmp = cr_end - cr_start;
 403		/* check for roll over */
 404		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 405	}
 406	ioc->avg_search[ioc->avg_idx++] = cr_start;
 407	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 408	ioc->used_pages += pages_needed;
 409#endif
 410	/* 
 411	** return the bit address.
 412	*/
 413	return res_idx << 3;
 414}
 415
 416#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 417        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 418        BUG_ON((*res_ptr & mask) != mask); \
 419        *res_ptr &= ~(mask);
 420
 421/**
 422 * ccio_free_range - Free pages from the ioc's resource map.
 423 * @ioc: The I/O Controller.
 424 * @iova: The I/O Virtual Address.
 425 * @pages_mapped: The requested number of pages to be freed from the
 426 * I/O Pdir.
 427 *
 428 * This function frees the resouces allocated for the iova.
 429 */
 430static void
 431ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 432{
 433	unsigned long iovp = CCIO_IOVP(iova);
 434	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 435
 436	BUG_ON(pages_mapped == 0);
 437	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 438	BUG_ON(pages_mapped > BITS_PER_LONG);
 439
 440	DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
 441		__func__, res_idx, pages_mapped);
 442
 443#ifdef CCIO_COLLECT_STATS
 444	ioc->used_pages -= pages_mapped;
 445#endif
 446
 447	if(pages_mapped <= 8) {
 448#if 0
 449		/* see matching comments in alloc_range */
 450		unsigned long mask = ~(~0UL >> pages_mapped);
 451		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 452#else
 453		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 454#endif
 455	} else if(pages_mapped <= 16) {
 456		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 457	} else if(pages_mapped <= 32) {
 458		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 459#ifdef __LP64__
 460	} else if(pages_mapped <= 64) {
 461		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 462#endif
 463	} else {
 464		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 465		      __func__);
 466	}
 467}
 468
 469/****************************************************************
 470**
 471**          CCIO dma_ops support routines
 472**
 473*****************************************************************/
 474
 475typedef unsigned long space_t;
 476#define KERNEL_SPACE 0
 477
 478/*
 479** DMA "Page Type" and Hints 
 480** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 481**   set for subcacheline DMA transfers since we don't want to damage the
 482**   other part of a cacheline.
 483** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 484**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 485**   data can avoid this if the mapping covers full cache lines.
 486** o STOP_MOST is needed for atomicity across cachelines.
 487**   Apparently only "some EISA devices" need this.
 488**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 489**   to use this hint iff the EISA devices needs this feature.
 490**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 491** o PREFETCH should *not* be set for cases like Multiple PCI devices
 492**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 493**   device can be fetched and multiply DMA streams will thrash the
 494**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 495**   and Invalidation of Prefetch Entries".
 496**
 497** FIXME: the default hints need to be per GSC device - not global.
 498** 
 499** HP-UX dorks: linux device driver programming model is totally different
 500**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 501**    do special things to work on non-coherent platforms...linux has to
 502**    be much more careful with this.
 503*/
 504#define IOPDIR_VALID    0x01UL
 505#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
 506#ifdef CONFIG_EISA
 507#define HINT_STOP_MOST  0x04UL	/* LSL support */
 508#else
 509#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
 510#endif
 511#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 512#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
 513
 514
 515/*
 516** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 517** ccio_alloc_consistent() depends on this to get SAFE_DMA
 518** when it passes in BIDIRECTIONAL flag.
 519*/
 520static u32 hint_lookup[] = {
 521	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 522	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 523	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
 524};
 525
 526/**
 527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 528 * @pdir_ptr: A pointer into I/O Pdir.
 529 * @sid: The Space Identifier.
 530 * @vba: The virtual address.
 531 * @hints: The DMA Hint.
 532 *
 533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 535 * entry consists of 8 bytes as shown below (MSB == bit 0):
 536 *
 537 *
 538 * WORD 0:
 539 * +------+----------------+-----------------------------------------------+
 540 * | Phys | Virtual Index  |               Phys                            |
 541 * | 0:3  |     0:11       |               4:19                            |
 542 * |4 bits|   12 bits      |              16 bits                          |
 543 * +------+----------------+-----------------------------------------------+
 544 * WORD 1:
 545 * +-----------------------+-----------------------------------------------+
 546 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 547 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 548 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 549 * +-----------------------+-----------------------------------------------+
 550 *
 551 * The virtual index field is filled with the results of the LCI
 552 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 553 * index are bits 12:19 of the value returned by LCI.
 554 */ 
 555static void CCIO_INLINE
 556ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
 557		   unsigned long hints)
 558{
 559	register unsigned long pa;
 560	register unsigned long ci; /* coherent index */
 561
 562	/* We currently only support kernel addresses */
 563	BUG_ON(sid != KERNEL_SPACE);
 564
 565	/*
 566	** WORD 1 - low order word
 567	** "hints" parm includes the VALID bit!
 568	** "dep" clobbers the physical address offset bits as well.
 569	*/
 570	pa = lpa(vba);
 571	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 572	((u32 *)pdir_ptr)[1] = (u32) pa;
 573
 574	/*
 575	** WORD 0 - high order word
 576	*/
 577
 578#ifdef __LP64__
 579	/*
 580	** get bits 12:15 of physical address
 581	** shift bits 16:31 of physical address
 582	** and deposit them
 583	*/
 584	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 585	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 586	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 587#else
 588	pa = 0;
 589#endif
 590	/*
 591	** get CPU coherency index bits
 592	** Grab virtual index [0:11]
 593	** Deposit virt_idx bits into I/O PDIR word
 594	*/
 595	asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
 596	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 597	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 598
 599	((u32 *)pdir_ptr)[0] = (u32) pa;
 600
 601
 602	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 603	**        PCX-U/U+ do. (eg C200/C240)
 604	**        PCX-T'? Don't know. (eg C110 or similar K-class)
 605	**
 606	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 607	**
 608	** "Since PCX-U employs an offset hash that is incompatible with
 609	** the real mode coherence index generation of U2, the PDIR entry
 610	** must be flushed to memory to retain coherence."
 611	*/
 612	asm_io_fdc(pdir_ptr);
 613	asm_io_sync();
 614}
 615
 616/**
 617 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 618 * @ioc: The I/O Controller.
 619 * @iovp: The I/O Virtual Page.
 620 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 621 *
 622 * Purge invalid I/O PDIR entries from the I/O TLB.
 623 *
 624 * FIXME: Can we change the byte_cnt to pages_mapped?
 625 */
 626static CCIO_INLINE void
 627ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 628{
 629	u32 chain_size = 1 << ioc->chainid_shift;
 630
 631	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
 632	byte_cnt += chain_size;
 633
 634	while(byte_cnt > chain_size) {
 635		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 636		iovp += chain_size;
 637		byte_cnt -= chain_size;
 638	}
 639}
 640
 641/**
 642 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 643 * @ioc: The I/O Controller.
 644 * @iova: The I/O Virtual Address.
 645 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 646 *
 647 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 648 * TLB entries.
 649 *
 650 * FIXME: at some threshold it might be "cheaper" to just blow
 651 *        away the entire I/O TLB instead of individual entries.
 652 *
 653 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 654 *        PDIR entry - just once for each possible TLB entry.
 655 *        (We do need to maker I/O PDIR entries invalid regardless).
 656 *
 657 * FIXME: Can we change byte_cnt to pages_mapped?
 658 */ 
 659static CCIO_INLINE void
 660ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 661{
 662	u32 iovp = (u32)CCIO_IOVP(iova);
 663	size_t saved_byte_cnt;
 664
 665	/* round up to nearest page size */
 666	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 667
 668	while(byte_cnt > 0) {
 669		/* invalidate one page at a time */
 670		unsigned int idx = PDIR_INDEX(iovp);
 671		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 672
 673		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 674		pdir_ptr[7] = 0;	/* clear only VALID bit */ 
 675		/*
 676		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 677		**   PCX-U/U+ do. (eg C200/C240)
 678		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 679		*/
 680		asm_io_fdc(pdir_ptr);
 681
 682		iovp     += IOVP_SIZE;
 683		byte_cnt -= IOVP_SIZE;
 684	}
 685
 686	asm_io_sync();
 687	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 688}
 689
 690/****************************************************************
 691**
 692**          CCIO dma_ops
 693**
 694*****************************************************************/
 695
 696/**
 697 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 698 * @dev: The PCI device.
 699 * @mask: A bit mask describing the DMA address range of the device.
 700 */
 701static int 
 702ccio_dma_supported(struct device *dev, u64 mask)
 703{
 704	if(dev == NULL) {
 705		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 706		BUG();
 707		return 0;
 708	}
 709
 710	/* only support 32-bit or better devices (ie PCI/GSC) */
 711	return (int)(mask >= 0xffffffffUL);
 712}
 713
 714/**
 715 * ccio_map_single - Map an address range into the IOMMU.
 716 * @dev: The PCI device.
 717 * @addr: The start address of the DMA region.
 718 * @size: The length of the DMA region.
 719 * @direction: The direction of the DMA transaction (to/from device).
 720 *
 721 * This function implements the pci_map_single function.
 722 */
 723static dma_addr_t 
 724ccio_map_single(struct device *dev, void *addr, size_t size,
 725		enum dma_data_direction direction)
 726{
 727	int idx;
 728	struct ioc *ioc;
 729	unsigned long flags;
 730	dma_addr_t iovp;
 731	dma_addr_t offset;
 732	u64 *pdir_start;
 733	unsigned long hint = hint_lookup[(int)direction];
 734
 735	BUG_ON(!dev);
 736	ioc = GET_IOC(dev);
 737	if (!ioc)
 738		return DMA_MAPPING_ERROR;
 739
 740	BUG_ON(size <= 0);
 741
 742	/* save offset bits */
 743	offset = ((unsigned long) addr) & ~IOVP_MASK;
 744
 745	/* round up to nearest IOVP_SIZE */
 746	size = ALIGN(size + offset, IOVP_SIZE);
 747	spin_lock_irqsave(&ioc->res_lock, flags);
 748
 749#ifdef CCIO_COLLECT_STATS
 750	ioc->msingle_calls++;
 751	ioc->msingle_pages += size >> IOVP_SHIFT;
 752#endif
 753
 754	idx = ccio_alloc_range(ioc, dev, size);
 755	iovp = (dma_addr_t)MKIOVP(idx);
 756
 757	pdir_start = &(ioc->pdir_base[idx]);
 758
 759	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
 760		__func__, addr, (long)iovp | offset, size);
 761
 762	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
 763	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 764		hint |= HINT_SAFE_DMA;
 765
 766	while(size > 0) {
 767		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 768
 769		DBG_RUN(" pdir %p %08x%08x\n",
 770			pdir_start,
 771			(u32) (((u32 *) pdir_start)[0]),
 772			(u32) (((u32 *) pdir_start)[1]));
 773		++pdir_start;
 774		addr += IOVP_SIZE;
 775		size -= IOVP_SIZE;
 776	}
 777
 778	spin_unlock_irqrestore(&ioc->res_lock, flags);
 779
 780	/* form complete address */
 781	return CCIO_IOVA(iovp, offset);
 782}
 783
 784
 785static dma_addr_t
 786ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
 787		size_t size, enum dma_data_direction direction,
 788		unsigned long attrs)
 789{
 790	return ccio_map_single(dev, page_address(page) + offset, size,
 791			direction);
 792}
 793
 794
 795/**
 796 * ccio_unmap_page - Unmap an address range from the IOMMU.
 797 * @dev: The PCI device.
 798 * @addr: The start address of the DMA region.
 799 * @size: The length of the DMA region.
 800 * @direction: The direction of the DMA transaction (to/from device).
 801 */
 802static void 
 803ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
 804		enum dma_data_direction direction, unsigned long attrs)
 805{
 806	struct ioc *ioc;
 807	unsigned long flags; 
 808	dma_addr_t offset = iova & ~IOVP_MASK;
 809	
 810	BUG_ON(!dev);
 811	ioc = GET_IOC(dev);
 812	if (!ioc) {
 813		WARN_ON(!ioc);
 814		return;
 815	}
 816
 817	DBG_RUN("%s() iovp 0x%lx/%x\n",
 818		__func__, (long)iova, size);
 819
 820	iova ^= offset;        /* clear offset bits */
 821	size += offset;
 822	size = ALIGN(size, IOVP_SIZE);
 823
 824	spin_lock_irqsave(&ioc->res_lock, flags);
 825
 826#ifdef CCIO_COLLECT_STATS
 827	ioc->usingle_calls++;
 828	ioc->usingle_pages += size >> IOVP_SHIFT;
 829#endif
 830
 831	ccio_mark_invalid(ioc, iova, size);
 832	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 833	spin_unlock_irqrestore(&ioc->res_lock, flags);
 834}
 835
 836/**
 837 * ccio_alloc - Allocate a consistent DMA mapping.
 838 * @dev: The PCI device.
 839 * @size: The length of the DMA region.
 840 * @dma_handle: The DMA address handed back to the device (not the cpu).
 841 *
 842 * This function implements the pci_alloc_consistent function.
 843 */
 844static void * 
 845ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
 846		unsigned long attrs)
 847{
 848      void *ret;
 849#if 0
 850/* GRANT Need to establish hierarchy for non-PCI devs as well
 851** and then provide matching gsc_map_xxx() functions for them as well.
 852*/
 853	if(!hwdev) {
 854		/* only support PCI */
 855		*dma_handle = 0;
 856		return 0;
 857	}
 858#endif
 859        ret = (void *) __get_free_pages(flag, get_order(size));
 860
 861	if (ret) {
 862		memset(ret, 0, size);
 863		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
 864	}
 865
 866	return ret;
 867}
 868
 869/**
 870 * ccio_free - Free a consistent DMA mapping.
 871 * @dev: The PCI device.
 872 * @size: The length of the DMA region.
 873 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 874 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 875 *
 876 * This function implements the pci_free_consistent function.
 877 */
 878static void 
 879ccio_free(struct device *dev, size_t size, void *cpu_addr,
 880		dma_addr_t dma_handle, unsigned long attrs)
 881{
 882	ccio_unmap_page(dev, dma_handle, size, 0, 0);
 883	free_pages((unsigned long)cpu_addr, get_order(size));
 884}
 885
 886/*
 887** Since 0 is a valid pdir_base index value, can't use that
 888** to determine if a value is valid or not. Use a flag to indicate
 889** the SG list entry contains a valid pdir index.
 890*/
 891#define PIDE_FLAG 0x80000000UL
 892
 893#ifdef CCIO_COLLECT_STATS
 894#define IOMMU_MAP_STATS
 895#endif
 896#include "iommu-helpers.h"
 897
 898/**
 899 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 900 * @dev: The PCI device.
 901 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 902 * @nents: The number of entries in the scatter/gather list.
 903 * @direction: The direction of the DMA transaction (to/from device).
 904 *
 905 * This function implements the pci_map_sg function.
 906 */
 907static int
 908ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 909	    enum dma_data_direction direction, unsigned long attrs)
 910{
 911	struct ioc *ioc;
 912	int coalesced, filled = 0;
 913	unsigned long flags;
 914	unsigned long hint = hint_lookup[(int)direction];
 915	unsigned long prev_len = 0, current_len = 0;
 916	int i;
 917	
 918	BUG_ON(!dev);
 919	ioc = GET_IOC(dev);
 920	if (!ioc)
 921		return 0;
 922	
 923	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 924
 925	/* Fast path single entry scatterlists. */
 926	if (nents == 1) {
 927		sg_dma_address(sglist) = ccio_map_single(dev,
 928				sg_virt(sglist), sglist->length,
 929				direction);
 930		sg_dma_len(sglist) = sglist->length;
 931		return 1;
 932	}
 933
 934	for(i = 0; i < nents; i++)
 935		prev_len += sglist[i].length;
 936	
 937	spin_lock_irqsave(&ioc->res_lock, flags);
 938
 939#ifdef CCIO_COLLECT_STATS
 940	ioc->msg_calls++;
 941#endif
 942
 943	/*
 944	** First coalesce the chunks and allocate I/O pdir space
 945	**
 946	** If this is one DMA stream, we can properly map using the
 947	** correct virtual address associated with each DMA page.
 948	** w/o this association, we wouldn't have coherent DMA!
 949	** Access to the virtual address is what forces a two pass algorithm.
 950	*/
 951	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 952
 953	/*
 954	** Program the I/O Pdir
 955	**
 956	** map the virtual addresses to the I/O Pdir
 957	** o dma_address will contain the pdir index
 958	** o dma_len will contain the number of bytes to map 
 959	** o page/offset contain the virtual address.
 960	*/
 961	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 962
 963	spin_unlock_irqrestore(&ioc->res_lock, flags);
 964
 965	BUG_ON(coalesced != filled);
 966
 967	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 968
 969	for (i = 0; i < filled; i++)
 970		current_len += sg_dma_len(sglist + i);
 971
 972	BUG_ON(current_len != prev_len);
 973
 974	return filled;
 975}
 976
 977/**
 978 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 979 * @dev: The PCI device.
 980 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 981 * @nents: The number of entries in the scatter/gather list.
 982 * @direction: The direction of the DMA transaction (to/from device).
 983 *
 984 * This function implements the pci_unmap_sg function.
 985 */
 986static void 
 987ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 988	      enum dma_data_direction direction, unsigned long attrs)
 989{
 990	struct ioc *ioc;
 991
 992	BUG_ON(!dev);
 993	ioc = GET_IOC(dev);
 994	if (!ioc) {
 995		WARN_ON(!ioc);
 996		return;
 997	}
 998
 999	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1000		__func__, nents, sg_virt(sglist), sglist->length);
1001
1002#ifdef CCIO_COLLECT_STATS
1003	ioc->usg_calls++;
1004#endif
1005
1006	while(sg_dma_len(sglist) && nents--) {
1007
1008#ifdef CCIO_COLLECT_STATS
1009		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1010#endif
1011		ccio_unmap_page(dev, sg_dma_address(sglist),
1012				  sg_dma_len(sglist), direction, 0);
1013		++sglist;
1014	}
1015
1016	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1017}
1018
1019static const struct dma_map_ops ccio_ops = {
1020	.dma_supported =	ccio_dma_supported,
1021	.alloc =		ccio_alloc,
1022	.free =			ccio_free,
1023	.map_page =		ccio_map_page,
1024	.unmap_page =		ccio_unmap_page,
1025	.map_sg = 		ccio_map_sg,
1026	.unmap_sg = 		ccio_unmap_sg,
1027	.get_sgtable =		dma_common_get_sgtable,
1028};
1029
1030#ifdef CONFIG_PROC_FS
1031static int ccio_proc_info(struct seq_file *m, void *p)
1032{
1033	struct ioc *ioc = ioc_list;
1034
1035	while (ioc != NULL) {
1036		unsigned int total_pages = ioc->res_size << 3;
1037#ifdef CCIO_COLLECT_STATS
1038		unsigned long avg = 0, min, max;
1039		int j;
1040#endif
1041
1042		seq_printf(m, "%s\n", ioc->name);
1043		
1044		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1045			   (ioc->cujo20_bug ? "yes" : "no"));
1046		
1047		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1048			   total_pages * 8, total_pages);
1049
1050#ifdef CCIO_COLLECT_STATS
1051		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1052			   total_pages - ioc->used_pages, ioc->used_pages,
1053			   (int)(ioc->used_pages * 100 / total_pages));
1054#endif
1055
1056		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1057			   ioc->res_size, total_pages);
1058
1059#ifdef CCIO_COLLECT_STATS
1060		min = max = ioc->avg_search[0];
1061		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1062			avg += ioc->avg_search[j];
1063			if(ioc->avg_search[j] > max) 
1064				max = ioc->avg_search[j];
1065			if(ioc->avg_search[j] < min) 
1066				min = ioc->avg_search[j];
1067		}
1068		avg /= CCIO_SEARCH_SAMPLE;
1069		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1070			   min, avg, max);
1071
1072		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1073			   ioc->msingle_calls, ioc->msingle_pages,
1074			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1075
1076		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1077		min = ioc->usingle_calls - ioc->usg_calls;
1078		max = ioc->usingle_pages - ioc->usg_pages;
1079		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1080			   min, max, (int)((max * 1000)/min));
1081 
1082		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1083			   ioc->msg_calls, ioc->msg_pages,
1084			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1085
1086		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1087			   ioc->usg_calls, ioc->usg_pages,
1088			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1089#endif	/* CCIO_COLLECT_STATS */
1090
1091		ioc = ioc->next;
1092	}
1093
1094	return 0;
1095}
1096
1097static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1098{
1099	struct ioc *ioc = ioc_list;
1100
1101	while (ioc != NULL) {
1102		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1103			     ioc->res_size, false);
1104		seq_putc(m, '\n');
1105		ioc = ioc->next;
1106		break; /* XXX - remove me */
1107	}
1108
1109	return 0;
1110}
1111#endif /* CONFIG_PROC_FS */
1112
1113/**
1114 * ccio_find_ioc - Find the ioc in the ioc_list
1115 * @hw_path: The hardware path of the ioc.
1116 *
1117 * This function searches the ioc_list for an ioc that matches
1118 * the provide hardware path.
1119 */
1120static struct ioc * ccio_find_ioc(int hw_path)
1121{
1122	int i;
1123	struct ioc *ioc;
1124
1125	ioc = ioc_list;
1126	for (i = 0; i < ioc_count; i++) {
1127		if (ioc->hw_path == hw_path)
1128			return ioc;
1129
1130		ioc = ioc->next;
1131	}
1132
1133	return NULL;
1134}
1135
1136/**
1137 * ccio_get_iommu - Find the iommu which controls this device
1138 * @dev: The parisc device.
1139 *
1140 * This function searches through the registered IOMMU's and returns
1141 * the appropriate IOMMU for the device based on its hardware path.
1142 */
1143void * ccio_get_iommu(const struct parisc_device *dev)
1144{
1145	dev = find_pa_parent_type(dev, HPHW_IOA);
1146	if (!dev)
1147		return NULL;
1148
1149	return ccio_find_ioc(dev->hw_path);
1150}
1151
1152#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1153
1154/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1155 * to/from certain pages.  To avoid this happening, we mark these pages
1156 * as `used', and ensure that nothing will try to allocate from them.
1157 */
1158void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1159{
1160	unsigned int idx;
1161	struct parisc_device *dev = parisc_parent(cujo);
1162	struct ioc *ioc = ccio_get_iommu(dev);
1163	u8 *res_ptr;
1164
1165	ioc->cujo20_bug = 1;
1166	res_ptr = ioc->res_map;
1167	idx = PDIR_INDEX(iovp) >> 3;
1168
1169	while (idx < ioc->res_size) {
1170 		res_ptr[idx] |= 0xff;
1171		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1172	}
1173}
1174
1175#if 0
1176/* GRANT -  is this needed for U2 or not? */
1177
1178/*
1179** Get the size of the I/O TLB for this I/O MMU.
1180**
1181** If spa_shift is non-zero (ie probably U2),
1182** then calculate the I/O TLB size using spa_shift.
1183**
1184** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1185** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1186** I think only Java (K/D/R-class too?) systems don't do this.
1187*/
1188static int
1189ccio_get_iotlb_size(struct parisc_device *dev)
1190{
1191	if (dev->spa_shift == 0) {
1192		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1193	}
1194	return (1 << dev->spa_shift);
1195}
1196#else
1197
1198/* Uturn supports 256 TLB entries */
1199#define CCIO_CHAINID_SHIFT	8
1200#define CCIO_CHAINID_MASK	0xff
1201#endif /* 0 */
1202
1203/* We *can't* support JAVA (T600). Venture there at your own risk. */
1204static const struct parisc_device_id ccio_tbl[] __initconst = {
1205	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1206	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1207	{ 0, }
1208};
1209
1210static int ccio_probe(struct parisc_device *dev);
1211
1212static struct parisc_driver ccio_driver __refdata = {
1213	.name =		"ccio",
1214	.id_table =	ccio_tbl,
1215	.probe =	ccio_probe,
1216};
1217
1218/**
1219 * ccio_ioc_init - Initialize the I/O Controller
1220 * @ioc: The I/O Controller.
1221 *
1222 * Initialize the I/O Controller which includes setting up the
1223 * I/O Page Directory, the resource map, and initalizing the
1224 * U2/Uturn chip into virtual mode.
1225 */
1226static void __init
1227ccio_ioc_init(struct ioc *ioc)
1228{
1229	int i;
1230	unsigned int iov_order;
1231	u32 iova_space_size;
1232
1233	/*
1234	** Determine IOVA Space size from memory size.
1235	**
1236	** Ideally, PCI drivers would register the maximum number
1237	** of DMA they can have outstanding for each device they
1238	** own.  Next best thing would be to guess how much DMA
1239	** can be outstanding based on PCI Class/sub-class. Both
1240	** methods still require some "extra" to support PCI
1241	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1242	*/
1243
1244	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1245
1246	/* limit IOVA space size to 1MB-1GB */
1247
1248	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1249		iova_space_size =  1 << (20 - PAGE_SHIFT);
1250#ifdef __LP64__
1251	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1252		iova_space_size =  1 << (30 - PAGE_SHIFT);
1253#endif
1254	}
1255
1256	/*
1257	** iova space must be log2() in size.
1258	** thus, pdir/res_map will also be log2().
1259	*/
1260
1261	/* We could use larger page sizes in order to *decrease* the number
1262	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1263	**
1264	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1265	**   since the pages must also be physically contiguous - typically
1266	**   this is the case under linux."
1267	*/
1268
1269	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1270
1271	/* iova_space_size is now bytes, not pages */
1272	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1273
1274	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1275
1276	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1277
1278	/* Verify it's a power of two */
1279	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1280
1281	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1282			__func__, ioc->ioc_regs,
1283			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1284			iova_space_size>>20,
1285			iov_order + PAGE_SHIFT);
1286
1287	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1288						 get_order(ioc->pdir_size));
1289	if(NULL == ioc->pdir_base) {
1290		panic("%s() could not allocate I/O Page Table\n", __func__);
1291	}
1292	memset(ioc->pdir_base, 0, ioc->pdir_size);
1293
1294	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1295	DBG_INIT(" base %p\n", ioc->pdir_base);
1296
1297	/* resource map size dictated by pdir_size */
1298 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1299	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1300	
1301	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1302					      get_order(ioc->res_size));
1303	if(NULL == ioc->res_map) {
1304		panic("%s() could not allocate resource map\n", __func__);
1305	}
1306	memset(ioc->res_map, 0, ioc->res_size);
1307
1308	/* Initialize the res_hint to 16 */
1309	ioc->res_hint = 16;
1310
1311	/* Initialize the spinlock */
1312	spin_lock_init(&ioc->res_lock);
1313
1314	/*
1315	** Chainid is the upper most bits of an IOVP used to determine
1316	** which TLB entry an IOVP will use.
1317	*/
1318	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1319	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1320
1321	/*
1322	** Initialize IOA hardware
1323	*/
1324	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1325		  &ioc->ioc_regs->io_chain_id_mask);
1326
1327	WRITE_U32(virt_to_phys(ioc->pdir_base), 
1328		  &ioc->ioc_regs->io_pdir_base);
1329
1330	/*
1331	** Go to "Virtual Mode"
1332	*/
1333	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1334
1335	/*
1336	** Initialize all I/O TLB entries to 0 (Valid bit off).
1337	*/
1338	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1339	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1340
1341	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1342		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1343			  &ioc->ioc_regs->io_command);
1344	}
1345}
1346
1347static void __init
1348ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1349{
1350	int result;
1351
1352	res->parent = NULL;
1353	res->flags = IORESOURCE_MEM;
1354	/*
1355	 * bracing ((signed) ...) are required for 64bit kernel because
1356	 * we only want to sign extend the lower 16 bits of the register.
1357	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1358	 */
1359	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1360	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1361	res->name = name;
1362	/*
1363	 * Check if this MMIO range is disable
1364	 */
1365	if (res->end + 1 == res->start)
1366		return;
1367
1368	/* On some platforms (e.g. K-Class), we have already registered
1369	 * resources for devices reported by firmware. Some are children
1370	 * of ccio.
1371	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1372	 */
1373	result = insert_resource(&iomem_resource, res);
1374	if (result < 0) {
1375		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1376			__func__, (unsigned long)res->start, (unsigned long)res->end);
1377	}
1378}
1379
1380static void __init ccio_init_resources(struct ioc *ioc)
1381{
1382	struct resource *res = ioc->mmio_region;
1383	char *name = kmalloc(14, GFP_KERNEL);
1384
1385	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386
1387	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389}
1390
1391static int new_ioc_area(struct resource *res, unsigned long size,
1392		unsigned long min, unsigned long max, unsigned long align)
1393{
1394	if (max <= min)
1395		return -EBUSY;
1396
1397	res->start = (max - size + 1) &~ (align - 1);
1398	res->end = res->start + size;
1399	
1400	/* We might be trying to expand the MMIO range to include
1401	 * a child device that has already registered it's MMIO space.
1402	 * Use "insert" instead of request_resource().
1403	 */
1404	if (!insert_resource(&iomem_resource, res))
1405		return 0;
1406
1407	return new_ioc_area(res, size, min, max - size, align);
1408}
1409
1410static int expand_ioc_area(struct resource *res, unsigned long size,
1411		unsigned long min, unsigned long max, unsigned long align)
1412{
1413	unsigned long start, len;
1414
1415	if (!res->parent)
1416		return new_ioc_area(res, size, min, max, align);
1417
1418	start = (res->start - size) &~ (align - 1);
1419	len = res->end - start + 1;
1420	if (start >= min) {
1421		if (!adjust_resource(res, start, len))
1422			return 0;
1423	}
1424
1425	start = res->start;
1426	len = ((size + res->end + align) &~ (align - 1)) - start;
1427	if (start + len <= max) {
1428		if (!adjust_resource(res, start, len))
1429			return 0;
1430	}
1431
1432	return -EBUSY;
1433}
1434
1435/*
1436 * Dino calls this function.  Beware that we may get called on systems
1437 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1438 * So it's legal to find no parent IOC.
1439 *
1440 * Some other issues: one of the resources in the ioc may be unassigned.
1441 */
1442int ccio_allocate_resource(const struct parisc_device *dev,
1443		struct resource *res, unsigned long size,
1444		unsigned long min, unsigned long max, unsigned long align)
1445{
1446	struct resource *parent = &iomem_resource;
1447	struct ioc *ioc = ccio_get_iommu(dev);
1448	if (!ioc)
1449		goto out;
1450
1451	parent = ioc->mmio_region;
1452	if (parent->parent &&
1453	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1454		return 0;
1455
1456	if ((parent + 1)->parent &&
1457	    !allocate_resource(parent + 1, res, size, min, max, align,
1458				NULL, NULL))
1459		return 0;
1460
1461	if (!expand_ioc_area(parent, size, min, max, align)) {
1462		__raw_writel(((parent->start)>>16) | 0xffff0000,
1463			     &ioc->ioc_regs->io_io_low);
1464		__raw_writel(((parent->end)>>16) | 0xffff0000,
1465			     &ioc->ioc_regs->io_io_high);
1466	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1467		parent++;
1468		__raw_writel(((parent->start)>>16) | 0xffff0000,
1469			     &ioc->ioc_regs->io_io_low_hv);
1470		__raw_writel(((parent->end)>>16) | 0xffff0000,
1471			     &ioc->ioc_regs->io_io_high_hv);
1472	} else {
1473		return -EBUSY;
1474	}
1475
1476 out:
1477	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1478}
1479
1480int ccio_request_resource(const struct parisc_device *dev,
1481		struct resource *res)
1482{
1483	struct resource *parent;
1484	struct ioc *ioc = ccio_get_iommu(dev);
1485
1486	if (!ioc) {
1487		parent = &iomem_resource;
1488	} else if ((ioc->mmio_region->start <= res->start) &&
1489			(res->end <= ioc->mmio_region->end)) {
1490		parent = ioc->mmio_region;
1491	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1492			(res->end <= (ioc->mmio_region + 1)->end)) {
1493		parent = ioc->mmio_region + 1;
1494	} else {
1495		return -EBUSY;
1496	}
1497
1498	/* "transparent" bus bridges need to register MMIO resources
1499	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1500	 * registered their resources in the PDC "bus walk" (See
1501	 * arch/parisc/kernel/inventory.c).
1502	 */
1503	return insert_resource(parent, res);
1504}
1505
1506/**
1507 * ccio_probe - Determine if ccio should claim this device.
1508 * @dev: The device which has been found
1509 *
1510 * Determine if ccio should claim this chip (return 0) or not (return 1).
1511 * If so, initialize the chip and tell other partners in crime they
1512 * have work to do.
1513 */
1514static int __init ccio_probe(struct parisc_device *dev)
1515{
1516	int i;
1517	struct ioc *ioc, **ioc_p = &ioc_list;
1518	struct pci_hba_data *hba;
1519
1520	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1521	if (ioc == NULL) {
1522		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1523		return -ENOMEM;
1524	}
1525
1526	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1527
1528	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1529		(unsigned long)dev->hpa.start);
1530
1531	for (i = 0; i < ioc_count; i++) {
1532		ioc_p = &(*ioc_p)->next;
1533	}
1534	*ioc_p = ioc;
1535
1536	ioc->hw_path = dev->hw_path;
1537	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1538	if (!ioc->ioc_regs) {
1539		kfree(ioc);
1540		return -ENOMEM;
1541	}
1542	ccio_ioc_init(ioc);
1543	ccio_init_resources(ioc);
1544	hppa_dma_ops = &ccio_ops;
1545
1546	hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1547	/* if this fails, no I/O cards will work, so may as well bug */
1548	BUG_ON(hba == NULL);
1549
1550	hba->iommu = ioc;
1551	dev->dev.platform_data = hba;
1552
1553#ifdef CONFIG_PROC_FS
1554	if (ioc_count == 0) {
1555		proc_create_single(MODULE_NAME, 0, proc_runway_root,
1556				ccio_proc_info);
1557		proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1558				ccio_proc_bitmap_info);
1559	}
1560#endif
1561	ioc_count++;
1562	return 0;
1563}
1564
1565/**
1566 * ccio_init - ccio initialization procedure.
1567 *
1568 * Register this driver.
1569 */
1570void __init ccio_init(void)
1571{
1572	register_parisc_driver(&ccio_driver);
1573}
1574