Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <net/dsa.h>
15#include <net/switchdev.h>
16
17#include "ksz9477_reg.h"
18#include "ksz_common.h"
19
20/* Used with variable features to indicate capabilities. */
21#define GBIT_SUPPORT BIT(0)
22#define NEW_XMII BIT(1)
23#define IS_9893 BIT(2)
24
25static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
65};
66
67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68{
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70}
71
72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
74{
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
77}
78
79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80{
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82}
83
84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
86{
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
89}
90
91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92{
93 unsigned int val;
94
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
97}
98
99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
101{
102 int ret;
103
104 mutex_lock(&dev->vlan_mutex);
105
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
114 }
115
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122exit:
123 mutex_unlock(&dev->vlan_mutex);
124
125 return ret;
126}
127
128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
130{
131 int ret;
132
133 mutex_lock(&dev->vlan_mutex);
134
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
147 }
148
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156exit:
157 mutex_unlock(&dev->vlan_mutex);
158
159 return ret;
160}
161
162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163{
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168}
169
170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171{
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176}
177
178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179{
180 unsigned int val;
181
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
184}
185
186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187{
188 unsigned int val;
189
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
194}
195
196static int ksz9477_reset_switch(struct ksz_device *dev)
197{
198 u8 data8;
199 u32 data32;
200
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
207
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
224
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229 return 0;
230}
231
232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
234{
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
239
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
253 }
254
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
258}
259
260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
262{
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
265}
266
267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268{
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
271
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
279}
280
281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282{
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
292
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295}
296
297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port,
299 enum dsa_tag_protocol mp)
300{
301 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 struct ksz_device *dev = ds->priv;
303
304 if (dev->features & IS_9893)
305 proto = DSA_TAG_PROTO_KSZ9893;
306 return proto;
307}
308
309static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310{
311 struct ksz_device *dev = ds->priv;
312 u16 val = 0xffff;
313
314 /* No real PHY after this. Simulate the PHY.
315 * A fixed PHY can be setup in the device tree, but this function is
316 * still called for that port during initialization.
317 * For RGMII PHY there is no way to access it so the fixed PHY should
318 * be used. For SGMII PHY the supporting code will be added later.
319 */
320 if (addr >= dev->phy_port_cnt) {
321 struct ksz_port *p = &dev->ports[addr];
322
323 switch (reg) {
324 case MII_BMCR:
325 val = 0x1140;
326 break;
327 case MII_BMSR:
328 val = 0x796d;
329 break;
330 case MII_PHYSID1:
331 val = 0x0022;
332 break;
333 case MII_PHYSID2:
334 val = 0x1631;
335 break;
336 case MII_ADVERTISE:
337 val = 0x05e1;
338 break;
339 case MII_LPA:
340 val = 0xc5e1;
341 break;
342 case MII_CTRL1000:
343 val = 0x0700;
344 break;
345 case MII_STAT1000:
346 if (p->phydev.speed == SPEED_1000)
347 val = 0x3800;
348 else
349 val = 0;
350 break;
351 }
352 } else {
353 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 }
355
356 return val;
357}
358
359static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 u16 val)
361{
362 struct ksz_device *dev = ds->priv;
363
364 /* No real PHY after this. */
365 if (addr >= dev->phy_port_cnt)
366 return 0;
367
368 /* No gigabit support. Do not write to this register. */
369 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 return 0;
371 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373 return 0;
374}
375
376static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 u32 stringset, uint8_t *buf)
378{
379 int i;
380
381 if (stringset != ETH_SS_STATS)
382 return;
383
384 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 ETH_GSTRING_LEN);
387 }
388}
389
390static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 u8 member)
392{
393 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 dev->ports[port].member = member;
395}
396
397static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 u8 state)
399{
400 struct ksz_device *dev = ds->priv;
401 struct ksz_port *p = &dev->ports[port];
402 u8 data;
403 int member = -1;
404 int forward = dev->member;
405
406 ksz_pread8(dev, port, P_STP_CTRL, &data);
407 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409 switch (state) {
410 case BR_STATE_DISABLED:
411 data |= PORT_LEARN_DISABLE;
412 if (port != dev->cpu_port)
413 member = 0;
414 break;
415 case BR_STATE_LISTENING:
416 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 if (port != dev->cpu_port &&
418 p->stp_state == BR_STATE_DISABLED)
419 member = dev->host_mask | p->vid_member;
420 break;
421 case BR_STATE_LEARNING:
422 data |= PORT_RX_ENABLE;
423 break;
424 case BR_STATE_FORWARDING:
425 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427 /* This function is also used internally. */
428 if (port == dev->cpu_port)
429 break;
430
431 member = dev->host_mask | p->vid_member;
432 mutex_lock(&dev->dev_mutex);
433
434 /* Port is a member of a bridge. */
435 if (dev->br_member & (1 << port)) {
436 dev->member |= (1 << port);
437 member = dev->member;
438 }
439 mutex_unlock(&dev->dev_mutex);
440 break;
441 case BR_STATE_BLOCKING:
442 data |= PORT_LEARN_DISABLE;
443 if (port != dev->cpu_port &&
444 p->stp_state == BR_STATE_DISABLED)
445 member = dev->host_mask | p->vid_member;
446 break;
447 default:
448 dev_err(ds->dev, "invalid STP state: %d\n", state);
449 return;
450 }
451
452 ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 p->stp_state = state;
454 mutex_lock(&dev->dev_mutex);
455 /* Port membership may share register with STP state. */
456 if (member >= 0 && member != p->member)
457 ksz9477_cfg_port_member(dev, port, (u8)member);
458
459 /* Check if forwarding needs to be updated. */
460 if (state != BR_STATE_FORWARDING) {
461 if (dev->br_member & (1 << port))
462 dev->member &= ~(1 << port);
463 }
464
465 /* When topology has changed the function ksz_update_port_member
466 * should be called to modify port forwarding behavior.
467 */
468 if (forward != dev->member)
469 ksz_update_port_member(dev, port);
470 mutex_unlock(&dev->dev_mutex);
471}
472
473static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474{
475 u8 data;
476
477 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481 if (port < dev->mib_port_cnt) {
482 /* flush individual port */
483 ksz_pread8(dev, port, P_STP_CTRL, &data);
484 if (!(data & PORT_LEARN_DISABLE))
485 ksz_pwrite8(dev, port, P_STP_CTRL,
486 data | PORT_LEARN_DISABLE);
487 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 } else {
490 /* flush all */
491 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 }
493}
494
495static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 bool flag)
497{
498 struct ksz_device *dev = ds->priv;
499
500 if (flag) {
501 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 PORT_VLAN_LOOKUP_VID_0, true);
503 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504 } else {
505 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507 PORT_VLAN_LOOKUP_VID_0, false);
508 }
509
510 return 0;
511}
512
513static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514 const struct switchdev_obj_port_vlan *vlan)
515{
516 struct ksz_device *dev = ds->priv;
517 u32 vlan_table[3];
518 u16 vid;
519 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520
521 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
522 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
523 dev_dbg(dev->dev, "Failed to get vlan table\n");
524 return;
525 }
526
527 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
528 if (untagged)
529 vlan_table[1] |= BIT(port);
530 else
531 vlan_table[1] &= ~BIT(port);
532 vlan_table[1] &= ~(BIT(dev->cpu_port));
533
534 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
535
536 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
537 dev_dbg(dev->dev, "Failed to set vlan table\n");
538 return;
539 }
540
541 /* change PVID */
542 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
543 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
544 }
545}
546
547static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
548 const struct switchdev_obj_port_vlan *vlan)
549{
550 struct ksz_device *dev = ds->priv;
551 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
552 u32 vlan_table[3];
553 u16 vid;
554 u16 pvid;
555
556 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
557 pvid = pvid & 0xFFF;
558
559 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
560 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
561 dev_dbg(dev->dev, "Failed to get vlan table\n");
562 return -ETIMEDOUT;
563 }
564
565 vlan_table[2] &= ~BIT(port);
566
567 if (pvid == vid)
568 pvid = 1;
569
570 if (untagged)
571 vlan_table[1] &= ~BIT(port);
572
573 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
574 dev_dbg(dev->dev, "Failed to set vlan table\n");
575 return -ETIMEDOUT;
576 }
577 }
578
579 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580
581 return 0;
582}
583
584static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585 const unsigned char *addr, u16 vid)
586{
587 struct ksz_device *dev = ds->priv;
588 u32 alu_table[4];
589 u32 data;
590 int ret = 0;
591
592 mutex_lock(&dev->alu_mutex);
593
594 /* find any entry with mac & vid */
595 data = vid << ALU_FID_INDEX_S;
596 data |= ((addr[0] << 8) | addr[1]);
597 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598
599 data = ((addr[2] << 24) | (addr[3] << 16));
600 data |= ((addr[4] << 8) | addr[5]);
601 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602
603 /* start read operation */
604 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605
606 /* wait to be finished */
607 ret = ksz9477_wait_alu_ready(dev);
608 if (ret) {
609 dev_dbg(dev->dev, "Failed to read ALU\n");
610 goto exit;
611 }
612
613 /* read ALU entry */
614 ksz9477_read_table(dev, alu_table);
615
616 /* update ALU entry */
617 alu_table[0] = ALU_V_STATIC_VALID;
618 alu_table[1] |= BIT(port);
619 if (vid)
620 alu_table[1] |= ALU_V_USE_FID;
621 alu_table[2] = (vid << ALU_V_FID_S);
622 alu_table[2] |= ((addr[0] << 8) | addr[1]);
623 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624 alu_table[3] |= ((addr[4] << 8) | addr[5]);
625
626 ksz9477_write_table(dev, alu_table);
627
628 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629
630 /* wait to be finished */
631 ret = ksz9477_wait_alu_ready(dev);
632 if (ret)
633 dev_dbg(dev->dev, "Failed to write ALU\n");
634
635exit:
636 mutex_unlock(&dev->alu_mutex);
637
638 return ret;
639}
640
641static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642 const unsigned char *addr, u16 vid)
643{
644 struct ksz_device *dev = ds->priv;
645 u32 alu_table[4];
646 u32 data;
647 int ret = 0;
648
649 mutex_lock(&dev->alu_mutex);
650
651 /* read any entry with mac & vid */
652 data = vid << ALU_FID_INDEX_S;
653 data |= ((addr[0] << 8) | addr[1]);
654 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655
656 data = ((addr[2] << 24) | (addr[3] << 16));
657 data |= ((addr[4] << 8) | addr[5]);
658 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659
660 /* start read operation */
661 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662
663 /* wait to be finished */
664 ret = ksz9477_wait_alu_ready(dev);
665 if (ret) {
666 dev_dbg(dev->dev, "Failed to read ALU\n");
667 goto exit;
668 }
669
670 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671 if (alu_table[0] & ALU_V_STATIC_VALID) {
672 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675
676 /* clear forwarding port */
677 alu_table[2] &= ~BIT(port);
678
679 /* if there is no port to forward, clear table */
680 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681 alu_table[0] = 0;
682 alu_table[1] = 0;
683 alu_table[2] = 0;
684 alu_table[3] = 0;
685 }
686 } else {
687 alu_table[0] = 0;
688 alu_table[1] = 0;
689 alu_table[2] = 0;
690 alu_table[3] = 0;
691 }
692
693 ksz9477_write_table(dev, alu_table);
694
695 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696
697 /* wait to be finished */
698 ret = ksz9477_wait_alu_ready(dev);
699 if (ret)
700 dev_dbg(dev->dev, "Failed to write ALU\n");
701
702exit:
703 mutex_unlock(&dev->alu_mutex);
704
705 return ret;
706}
707
708static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709{
710 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714 ALU_V_PRIO_AGE_CNT_M;
715 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716
717 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720
721 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722
723 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724 alu->mac[1] = alu_table[2] & 0xFF;
725 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728 alu->mac[5] = alu_table[3] & 0xFF;
729}
730
731static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732 dsa_fdb_dump_cb_t *cb, void *data)
733{
734 struct ksz_device *dev = ds->priv;
735 int ret = 0;
736 u32 ksz_data;
737 u32 alu_table[4];
738 struct alu_struct alu;
739 int timeout;
740
741 mutex_lock(&dev->alu_mutex);
742
743 /* start ALU search */
744 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745
746 do {
747 timeout = 1000;
748 do {
749 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751 break;
752 usleep_range(1, 10);
753 } while (timeout-- > 0);
754
755 if (!timeout) {
756 dev_dbg(dev->dev, "Failed to search ALU\n");
757 ret = -ETIMEDOUT;
758 goto exit;
759 }
760
761 /* read ALU table */
762 ksz9477_read_table(dev, alu_table);
763
764 ksz9477_convert_alu(&alu, alu_table);
765
766 if (alu.port_forward & BIT(port)) {
767 ret = cb(alu.mac, alu.fid, alu.is_static, data);
768 if (ret)
769 goto exit;
770 }
771 } while (ksz_data & ALU_START);
772
773exit:
774
775 /* stop ALU search */
776 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777
778 mutex_unlock(&dev->alu_mutex);
779
780 return ret;
781}
782
783static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784 const struct switchdev_obj_port_mdb *mdb)
785{
786 struct ksz_device *dev = ds->priv;
787 u32 static_table[4];
788 u32 data;
789 int index;
790 u32 mac_hi, mac_lo;
791
792 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
793 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
794 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
795
796 mutex_lock(&dev->alu_mutex);
797
798 for (index = 0; index < dev->num_statics; index++) {
799 /* find empty slot first */
800 data = (index << ALU_STAT_INDEX_S) |
801 ALU_STAT_READ | ALU_STAT_START;
802 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
803
804 /* wait to be finished */
805 if (ksz9477_wait_alu_sta_ready(dev)) {
806 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
807 goto exit;
808 }
809
810 /* read ALU static table */
811 ksz9477_read_table(dev, static_table);
812
813 if (static_table[0] & ALU_V_STATIC_VALID) {
814 /* check this has same vid & mac address */
815 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
816 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
817 static_table[3] == mac_lo) {
818 /* found matching one */
819 break;
820 }
821 } else {
822 /* found empty one */
823 break;
824 }
825 }
826
827 /* no available entry */
828 if (index == dev->num_statics)
829 goto exit;
830
831 /* add entry */
832 static_table[0] = ALU_V_STATIC_VALID;
833 static_table[1] |= BIT(port);
834 if (mdb->vid)
835 static_table[1] |= ALU_V_USE_FID;
836 static_table[2] = (mdb->vid << ALU_V_FID_S);
837 static_table[2] |= mac_hi;
838 static_table[3] = mac_lo;
839
840 ksz9477_write_table(dev, static_table);
841
842 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
843 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
844
845 /* wait to be finished */
846 if (ksz9477_wait_alu_sta_ready(dev))
847 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848
849exit:
850 mutex_unlock(&dev->alu_mutex);
851}
852
853static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
854 const struct switchdev_obj_port_mdb *mdb)
855{
856 struct ksz_device *dev = ds->priv;
857 u32 static_table[4];
858 u32 data;
859 int index;
860 int ret = 0;
861 u32 mac_hi, mac_lo;
862
863 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
864 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
865 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
866
867 mutex_lock(&dev->alu_mutex);
868
869 for (index = 0; index < dev->num_statics; index++) {
870 /* find empty slot first */
871 data = (index << ALU_STAT_INDEX_S) |
872 ALU_STAT_READ | ALU_STAT_START;
873 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
874
875 /* wait to be finished */
876 ret = ksz9477_wait_alu_sta_ready(dev);
877 if (ret) {
878 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
879 goto exit;
880 }
881
882 /* read ALU static table */
883 ksz9477_read_table(dev, static_table);
884
885 if (static_table[0] & ALU_V_STATIC_VALID) {
886 /* check this has same vid & mac address */
887
888 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
889 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
890 static_table[3] == mac_lo) {
891 /* found matching one */
892 break;
893 }
894 }
895 }
896
897 /* no available entry */
898 if (index == dev->num_statics)
899 goto exit;
900
901 /* clear port */
902 static_table[1] &= ~BIT(port);
903
904 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
905 /* delete entry */
906 static_table[0] = 0;
907 static_table[1] = 0;
908 static_table[2] = 0;
909 static_table[3] = 0;
910 }
911
912 ksz9477_write_table(dev, static_table);
913
914 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
915 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
916
917 /* wait to be finished */
918 ret = ksz9477_wait_alu_sta_ready(dev);
919 if (ret)
920 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921
922exit:
923 mutex_unlock(&dev->alu_mutex);
924
925 return ret;
926}
927
928static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
929 struct dsa_mall_mirror_tc_entry *mirror,
930 bool ingress)
931{
932 struct ksz_device *dev = ds->priv;
933
934 if (ingress)
935 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
936 else
937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
938
939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
940
941 /* configure mirror port */
942 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
943 PORT_MIRROR_SNIFFER, true);
944
945 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
946
947 return 0;
948}
949
950static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
951 struct dsa_mall_mirror_tc_entry *mirror)
952{
953 struct ksz_device *dev = ds->priv;
954 u8 data;
955
956 if (mirror->ingress)
957 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
958 else
959 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
960
961 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
962
963 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
964 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
965 PORT_MIRROR_SNIFFER, false);
966}
967
968static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
969{
970 bool gbit;
971
972 if (dev->features & NEW_XMII)
973 gbit = !(data & PORT_MII_NOT_1GBIT);
974 else
975 gbit = !!(data & PORT_MII_1000MBIT_S1);
976 return gbit;
977}
978
979static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
980{
981 if (dev->features & NEW_XMII) {
982 if (gbit)
983 *data &= ~PORT_MII_NOT_1GBIT;
984 else
985 *data |= PORT_MII_NOT_1GBIT;
986 } else {
987 if (gbit)
988 *data |= PORT_MII_1000MBIT_S1;
989 else
990 *data &= ~PORT_MII_1000MBIT_S1;
991 }
992}
993
994static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
995{
996 int mode;
997
998 if (dev->features & NEW_XMII) {
999 switch (data & PORT_MII_SEL_M) {
1000 case PORT_MII_SEL:
1001 mode = 0;
1002 break;
1003 case PORT_RMII_SEL:
1004 mode = 1;
1005 break;
1006 case PORT_GMII_SEL:
1007 mode = 2;
1008 break;
1009 default:
1010 mode = 3;
1011 }
1012 } else {
1013 switch (data & PORT_MII_SEL_M) {
1014 case PORT_MII_SEL_S1:
1015 mode = 0;
1016 break;
1017 case PORT_RMII_SEL_S1:
1018 mode = 1;
1019 break;
1020 case PORT_GMII_SEL_S1:
1021 mode = 2;
1022 break;
1023 default:
1024 mode = 3;
1025 }
1026 }
1027 return mode;
1028}
1029
1030static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1031{
1032 u8 xmii;
1033
1034 if (dev->features & NEW_XMII) {
1035 switch (mode) {
1036 case 0:
1037 xmii = PORT_MII_SEL;
1038 break;
1039 case 1:
1040 xmii = PORT_RMII_SEL;
1041 break;
1042 case 2:
1043 xmii = PORT_GMII_SEL;
1044 break;
1045 default:
1046 xmii = PORT_RGMII_SEL;
1047 break;
1048 }
1049 } else {
1050 switch (mode) {
1051 case 0:
1052 xmii = PORT_MII_SEL_S1;
1053 break;
1054 case 1:
1055 xmii = PORT_RMII_SEL_S1;
1056 break;
1057 case 2:
1058 xmii = PORT_GMII_SEL_S1;
1059 break;
1060 default:
1061 xmii = PORT_RGMII_SEL_S1;
1062 break;
1063 }
1064 }
1065 *data &= ~PORT_MII_SEL_M;
1066 *data |= xmii;
1067}
1068
1069static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1070{
1071 phy_interface_t interface;
1072 bool gbit;
1073 int mode;
1074 u8 data8;
1075
1076 if (port < dev->phy_port_cnt)
1077 return PHY_INTERFACE_MODE_NA;
1078 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1079 gbit = ksz9477_get_gbit(dev, data8);
1080 mode = ksz9477_get_xmii(dev, data8);
1081 switch (mode) {
1082 case 2:
1083 interface = PHY_INTERFACE_MODE_GMII;
1084 if (gbit)
1085 break;
1086 fallthrough;
1087 case 0:
1088 interface = PHY_INTERFACE_MODE_MII;
1089 break;
1090 case 1:
1091 interface = PHY_INTERFACE_MODE_RMII;
1092 break;
1093 default:
1094 interface = PHY_INTERFACE_MODE_RGMII;
1095 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1096 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1097 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1098 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1099 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1100 interface = PHY_INTERFACE_MODE_RGMII_ID;
1101 }
1102 break;
1103 }
1104 return interface;
1105}
1106
1107static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1108 u8 dev_addr, u16 reg_addr, u16 val)
1109{
1110 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1111 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1112 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1113 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1114 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1115 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1116}
1117
1118static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1119{
1120 /* Apply PHY settings to address errata listed in
1121 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1122 * Silicon Errata and Data Sheet Clarification documents:
1123 *
1124 * Register settings are needed to improve PHY receive performance
1125 */
1126 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1127 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1128 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1129 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1130 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1131 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1132 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1133
1134 /* Transmit waveform amplitude can be improved
1135 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1136 */
1137 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1138
1139 /* Energy Efficient Ethernet (EEE) feature select must
1140 * be manually disabled (except on KSZ8565 which is 100Mbit)
1141 */
1142 if (dev->features & GBIT_SUPPORT)
1143 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1144
1145 /* Register settings are required to meet data sheet
1146 * supply current specifications
1147 */
1148 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1149 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1150 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1151 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1152 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1153 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1154 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1155 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1156 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1158 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1159 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1160 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1161}
1162
1163static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1164{
1165 u8 data8;
1166 u8 member;
1167 u16 data16;
1168 struct ksz_port *p = &dev->ports[port];
1169
1170 /* enable tag tail for host port */
1171 if (cpu_port)
1172 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1173 true);
1174
1175 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1176
1177 /* set back pressure */
1178 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1179
1180 /* enable broadcast storm limit */
1181 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1182
1183 /* disable DiffServ priority */
1184 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1185
1186 /* replace priority */
1187 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1188 false);
1189 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1190 MTI_PVID_REPLACE, false);
1191
1192 /* enable 802.1p priority */
1193 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1194
1195 if (port < dev->phy_port_cnt) {
1196 /* do not force flow control */
1197 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1198 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1199 false);
1200
1201 if (dev->phy_errata_9477)
1202 ksz9477_phy_errata_setup(dev, port);
1203 } else {
1204 /* force flow control */
1205 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1206 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1207 true);
1208
1209 /* configure MAC to 1G & RGMII mode */
1210 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1211 switch (p->interface) {
1212 case PHY_INTERFACE_MODE_MII:
1213 ksz9477_set_xmii(dev, 0, &data8);
1214 ksz9477_set_gbit(dev, false, &data8);
1215 p->phydev.speed = SPEED_100;
1216 break;
1217 case PHY_INTERFACE_MODE_RMII:
1218 ksz9477_set_xmii(dev, 1, &data8);
1219 ksz9477_set_gbit(dev, false, &data8);
1220 p->phydev.speed = SPEED_100;
1221 break;
1222 case PHY_INTERFACE_MODE_GMII:
1223 ksz9477_set_xmii(dev, 2, &data8);
1224 ksz9477_set_gbit(dev, true, &data8);
1225 p->phydev.speed = SPEED_1000;
1226 break;
1227 default:
1228 ksz9477_set_xmii(dev, 3, &data8);
1229 ksz9477_set_gbit(dev, true, &data8);
1230 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1231 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1232 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1233 p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1234 data8 |= PORT_RGMII_ID_IG_ENABLE;
1235 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236 p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1237 data8 |= PORT_RGMII_ID_EG_ENABLE;
1238 p->phydev.speed = SPEED_1000;
1239 break;
1240 }
1241 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1242 p->phydev.duplex = 1;
1243 }
1244 mutex_lock(&dev->dev_mutex);
1245 if (cpu_port)
1246 member = dev->port_mask;
1247 else
1248 member = dev->host_mask | p->vid_member;
1249 mutex_unlock(&dev->dev_mutex);
1250 ksz9477_cfg_port_member(dev, port, member);
1251
1252 /* clear pending interrupts */
1253 if (port < dev->phy_port_cnt)
1254 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1255}
1256
1257static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1258{
1259 struct ksz_device *dev = ds->priv;
1260 struct ksz_port *p;
1261 int i;
1262
1263 ds->num_ports = dev->port_cnt;
1264
1265 for (i = 0; i < dev->port_cnt; i++) {
1266 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1267 phy_interface_t interface;
1268
1269 dev->cpu_port = i;
1270 dev->host_mask = (1 << dev->cpu_port);
1271 dev->port_mask |= dev->host_mask;
1272 p = &dev->ports[i];
1273
1274 /* Read from XMII register to determine host port
1275 * interface. If set specifically in device tree
1276 * note the difference to help debugging.
1277 */
1278 interface = ksz9477_get_interface(dev, i);
1279 if (!p->interface) {
1280 if (dev->compat_interface) {
1281 dev_warn(dev->dev,
1282 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1283 "Please update your device tree.\n",
1284 i);
1285 p->interface = dev->compat_interface;
1286 } else {
1287 p->interface = interface;
1288 }
1289 }
1290 if (interface && interface != p->interface)
1291 dev_info(dev->dev,
1292 "use %s instead of %s\n",
1293 phy_modes(p->interface),
1294 phy_modes(interface));
1295
1296 /* enable cpu port */
1297 ksz9477_port_setup(dev, i, true);
1298 p->vid_member = dev->port_mask;
1299 p->on = 1;
1300 }
1301 }
1302
1303 dev->member = dev->host_mask;
1304
1305 for (i = 0; i < dev->mib_port_cnt; i++) {
1306 if (i == dev->cpu_port)
1307 continue;
1308 p = &dev->ports[i];
1309
1310 /* Initialize to non-zero so that ksz_cfg_port_member() will
1311 * be called.
1312 */
1313 p->vid_member = (1 << i);
1314 p->member = dev->port_mask;
1315 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1316 p->on = 1;
1317 if (i < dev->phy_port_cnt)
1318 p->phy = 1;
1319 if (dev->chip_id == 0x00947700 && i == 6) {
1320 p->sgmii = 1;
1321
1322 /* SGMII PHY detection code is not implemented yet. */
1323 p->phy = 0;
1324 }
1325 }
1326}
1327
1328static int ksz9477_setup(struct dsa_switch *ds)
1329{
1330 struct ksz_device *dev = ds->priv;
1331 int ret = 0;
1332
1333 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1334 dev->num_vlans, GFP_KERNEL);
1335 if (!dev->vlan_cache)
1336 return -ENOMEM;
1337
1338 ret = ksz9477_reset_switch(dev);
1339 if (ret) {
1340 dev_err(ds->dev, "failed to reset switch\n");
1341 return ret;
1342 }
1343
1344 /* Required for port partitioning. */
1345 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1346 true);
1347
1348 /* Do not work correctly with tail tagging. */
1349 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1350
1351 /* accept packet up to 2000bytes */
1352 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1353
1354 ksz9477_config_cpu_port(ds);
1355
1356 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1357
1358 /* queue based egress rate limit */
1359 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1360
1361 /* enable global MIB counter freeze function */
1362 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1363
1364 /* start switch */
1365 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1366
1367 ksz_init_mib_timer(dev);
1368
1369 return 0;
1370}
1371
1372static const struct dsa_switch_ops ksz9477_switch_ops = {
1373 .get_tag_protocol = ksz9477_get_tag_protocol,
1374 .setup = ksz9477_setup,
1375 .phy_read = ksz9477_phy_read16,
1376 .phy_write = ksz9477_phy_write16,
1377 .phylink_mac_link_down = ksz_mac_link_down,
1378 .port_enable = ksz_enable_port,
1379 .get_strings = ksz9477_get_strings,
1380 .get_ethtool_stats = ksz_get_ethtool_stats,
1381 .get_sset_count = ksz_sset_count,
1382 .port_bridge_join = ksz_port_bridge_join,
1383 .port_bridge_leave = ksz_port_bridge_leave,
1384 .port_stp_state_set = ksz9477_port_stp_state_set,
1385 .port_fast_age = ksz_port_fast_age,
1386 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1387 .port_vlan_prepare = ksz_port_vlan_prepare,
1388 .port_vlan_add = ksz9477_port_vlan_add,
1389 .port_vlan_del = ksz9477_port_vlan_del,
1390 .port_fdb_dump = ksz9477_port_fdb_dump,
1391 .port_fdb_add = ksz9477_port_fdb_add,
1392 .port_fdb_del = ksz9477_port_fdb_del,
1393 .port_mdb_prepare = ksz_port_mdb_prepare,
1394 .port_mdb_add = ksz9477_port_mdb_add,
1395 .port_mdb_del = ksz9477_port_mdb_del,
1396 .port_mirror_add = ksz9477_port_mirror_add,
1397 .port_mirror_del = ksz9477_port_mirror_del,
1398};
1399
1400static u32 ksz9477_get_port_addr(int port, int offset)
1401{
1402 return PORT_CTRL_ADDR(port, offset);
1403}
1404
1405static int ksz9477_switch_detect(struct ksz_device *dev)
1406{
1407 u8 data8;
1408 u8 id_hi;
1409 u8 id_lo;
1410 u32 id32;
1411 int ret;
1412
1413 /* turn off SPI DO Edge select */
1414 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1415 if (ret)
1416 return ret;
1417
1418 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1419 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1420 if (ret)
1421 return ret;
1422
1423 /* read chip id */
1424 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1425 if (ret)
1426 return ret;
1427 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1428 if (ret)
1429 return ret;
1430
1431 /* Number of ports can be reduced depending on chip. */
1432 dev->mib_port_cnt = TOTAL_PORT_NUM;
1433 dev->phy_port_cnt = 5;
1434
1435 /* Default capability is gigabit capable. */
1436 dev->features = GBIT_SUPPORT;
1437
1438 id_hi = (u8)(id32 >> 16);
1439 id_lo = (u8)(id32 >> 8);
1440 if ((id_lo & 0xf) == 3) {
1441 /* Chip is from KSZ9893 design. */
1442 dev->features |= IS_9893;
1443
1444 /* Chip does not support gigabit. */
1445 if (data8 & SW_QW_ABLE)
1446 dev->features &= ~GBIT_SUPPORT;
1447 dev->mib_port_cnt = 3;
1448 dev->phy_port_cnt = 2;
1449 } else {
1450 /* Chip uses new XMII register definitions. */
1451 dev->features |= NEW_XMII;
1452
1453 /* Chip does not support gigabit. */
1454 if (!(data8 & SW_GIGABIT_ABLE))
1455 dev->features &= ~GBIT_SUPPORT;
1456 }
1457
1458 /* Change chip id to known ones so it can be matched against them. */
1459 id32 = (id_hi << 16) | (id_lo << 8);
1460
1461 dev->chip_id = id32;
1462
1463 return 0;
1464}
1465
1466struct ksz_chip_data {
1467 u32 chip_id;
1468 const char *dev_name;
1469 int num_vlans;
1470 int num_alus;
1471 int num_statics;
1472 int cpu_ports;
1473 int port_cnt;
1474 bool phy_errata_9477;
1475};
1476
1477static const struct ksz_chip_data ksz9477_switch_chips[] = {
1478 {
1479 .chip_id = 0x00947700,
1480 .dev_name = "KSZ9477",
1481 .num_vlans = 4096,
1482 .num_alus = 4096,
1483 .num_statics = 16,
1484 .cpu_ports = 0x7F, /* can be configured as cpu port */
1485 .port_cnt = 7, /* total physical port count */
1486 .phy_errata_9477 = true,
1487 },
1488 {
1489 .chip_id = 0x00989700,
1490 .dev_name = "KSZ9897",
1491 .num_vlans = 4096,
1492 .num_alus = 4096,
1493 .num_statics = 16,
1494 .cpu_ports = 0x7F, /* can be configured as cpu port */
1495 .port_cnt = 7, /* total physical port count */
1496 .phy_errata_9477 = true,
1497 },
1498 {
1499 .chip_id = 0x00989300,
1500 .dev_name = "KSZ9893",
1501 .num_vlans = 4096,
1502 .num_alus = 4096,
1503 .num_statics = 16,
1504 .cpu_ports = 0x07, /* can be configured as cpu port */
1505 .port_cnt = 3, /* total port count */
1506 },
1507 {
1508 .chip_id = 0x00956700,
1509 .dev_name = "KSZ9567",
1510 .num_vlans = 4096,
1511 .num_alus = 4096,
1512 .num_statics = 16,
1513 .cpu_ports = 0x7F, /* can be configured as cpu port */
1514 .port_cnt = 7, /* total physical port count */
1515 },
1516};
1517
1518static int ksz9477_switch_init(struct ksz_device *dev)
1519{
1520 int i;
1521
1522 dev->ds->ops = &ksz9477_switch_ops;
1523
1524 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1525 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1526
1527 if (dev->chip_id == chip->chip_id) {
1528 dev->name = chip->dev_name;
1529 dev->num_vlans = chip->num_vlans;
1530 dev->num_alus = chip->num_alus;
1531 dev->num_statics = chip->num_statics;
1532 dev->port_cnt = chip->port_cnt;
1533 dev->cpu_ports = chip->cpu_ports;
1534 dev->phy_errata_9477 = chip->phy_errata_9477;
1535
1536 break;
1537 }
1538 }
1539
1540 /* no switch found */
1541 if (!dev->port_cnt)
1542 return -ENODEV;
1543
1544 dev->port_mask = (1 << dev->port_cnt) - 1;
1545
1546 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1547 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1548
1549 i = dev->mib_port_cnt;
1550 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1551 GFP_KERNEL);
1552 if (!dev->ports)
1553 return -ENOMEM;
1554 for (i = 0; i < dev->mib_port_cnt; i++) {
1555 mutex_init(&dev->ports[i].mib.cnt_mutex);
1556 dev->ports[i].mib.counters =
1557 devm_kzalloc(dev->dev,
1558 sizeof(u64) *
1559 (TOTAL_SWITCH_COUNTER_NUM + 1),
1560 GFP_KERNEL);
1561 if (!dev->ports[i].mib.counters)
1562 return -ENOMEM;
1563 }
1564
1565 /* set the real number of ports */
1566 dev->ds->num_ports = dev->port_cnt;
1567
1568 return 0;
1569}
1570
1571static void ksz9477_switch_exit(struct ksz_device *dev)
1572{
1573 ksz9477_reset_switch(dev);
1574}
1575
1576static const struct ksz_dev_ops ksz9477_dev_ops = {
1577 .get_port_addr = ksz9477_get_port_addr,
1578 .cfg_port_member = ksz9477_cfg_port_member,
1579 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1580 .port_setup = ksz9477_port_setup,
1581 .r_mib_cnt = ksz9477_r_mib_cnt,
1582 .r_mib_pkt = ksz9477_r_mib_pkt,
1583 .freeze_mib = ksz9477_freeze_mib,
1584 .port_init_cnt = ksz9477_port_init_cnt,
1585 .shutdown = ksz9477_reset_switch,
1586 .detect = ksz9477_switch_detect,
1587 .init = ksz9477_switch_init,
1588 .exit = ksz9477_switch_exit,
1589};
1590
1591int ksz9477_switch_register(struct ksz_device *dev)
1592{
1593 int ret, i;
1594 struct phy_device *phydev;
1595
1596 ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1597 if (ret)
1598 return ret;
1599
1600 for (i = 0; i < dev->phy_port_cnt; ++i) {
1601 if (!dsa_is_user_port(dev->ds, i))
1602 continue;
1603
1604 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1605
1606 /* The MAC actually cannot run in 1000 half-duplex mode. */
1607 phy_remove_link_mode(phydev,
1608 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1609
1610 /* PHY does not support gigabit. */
1611 if (!(dev->features & GBIT_SUPPORT))
1612 phy_remove_link_mode(phydev,
1613 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1614 }
1615 return ret;
1616}
1617EXPORT_SYMBOL(ksz9477_switch_register);
1618
1619MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1620MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1621MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <net/dsa.h>
15#include <net/switchdev.h>
16
17#include "ksz9477_reg.h"
18#include "ksz_common.h"
19
20/* Used with variable features to indicate capabilities. */
21#define GBIT_SUPPORT BIT(0)
22#define NEW_XMII BIT(1)
23#define IS_9893 BIT(2)
24
25static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
65};
66
67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68{
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70}
71
72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
74{
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
77}
78
79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80{
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82}
83
84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
86{
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
89}
90
91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92{
93 unsigned int val;
94
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
97}
98
99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
101{
102 int ret;
103
104 mutex_lock(&dev->vlan_mutex);
105
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
114 }
115
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122exit:
123 mutex_unlock(&dev->vlan_mutex);
124
125 return ret;
126}
127
128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
130{
131 int ret;
132
133 mutex_lock(&dev->vlan_mutex);
134
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
147 }
148
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156exit:
157 mutex_unlock(&dev->vlan_mutex);
158
159 return ret;
160}
161
162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163{
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168}
169
170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171{
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176}
177
178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179{
180 unsigned int val;
181
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
184}
185
186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187{
188 unsigned int val;
189
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
194}
195
196static int ksz9477_reset_switch(struct ksz_device *dev)
197{
198 u8 data8;
199 u32 data32;
200
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
207
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
224
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229 return 0;
230}
231
232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
234{
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
239
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
253 }
254
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
258}
259
260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
262{
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
265}
266
267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268{
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
271
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
279}
280
281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282{
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
292
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295}
296
297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port)
299{
300 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
301 struct ksz_device *dev = ds->priv;
302
303 if (dev->features & IS_9893)
304 proto = DSA_TAG_PROTO_KSZ9893;
305 return proto;
306}
307
308static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
309{
310 struct ksz_device *dev = ds->priv;
311 u16 val = 0xffff;
312
313 /* No real PHY after this. Simulate the PHY.
314 * A fixed PHY can be setup in the device tree, but this function is
315 * still called for that port during initialization.
316 * For RGMII PHY there is no way to access it so the fixed PHY should
317 * be used. For SGMII PHY the supporting code will be added later.
318 */
319 if (addr >= dev->phy_port_cnt) {
320 struct ksz_port *p = &dev->ports[addr];
321
322 switch (reg) {
323 case MII_BMCR:
324 val = 0x1140;
325 break;
326 case MII_BMSR:
327 val = 0x796d;
328 break;
329 case MII_PHYSID1:
330 val = 0x0022;
331 break;
332 case MII_PHYSID2:
333 val = 0x1631;
334 break;
335 case MII_ADVERTISE:
336 val = 0x05e1;
337 break;
338 case MII_LPA:
339 val = 0xc5e1;
340 break;
341 case MII_CTRL1000:
342 val = 0x0700;
343 break;
344 case MII_STAT1000:
345 if (p->phydev.speed == SPEED_1000)
346 val = 0x3800;
347 else
348 val = 0;
349 break;
350 }
351 } else {
352 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
353 }
354
355 return val;
356}
357
358static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
359 u16 val)
360{
361 struct ksz_device *dev = ds->priv;
362
363 /* No real PHY after this. */
364 if (addr >= dev->phy_port_cnt)
365 return 0;
366
367 /* No gigabit support. Do not write to this register. */
368 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
369 return 0;
370 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
371
372 return 0;
373}
374
375static void ksz9477_get_strings(struct dsa_switch *ds, int port,
376 u32 stringset, uint8_t *buf)
377{
378 int i;
379
380 if (stringset != ETH_SS_STATS)
381 return;
382
383 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
384 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
385 ETH_GSTRING_LEN);
386 }
387}
388
389static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
390 u8 member)
391{
392 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
393 dev->ports[port].member = member;
394}
395
396static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
397 u8 state)
398{
399 struct ksz_device *dev = ds->priv;
400 struct ksz_port *p = &dev->ports[port];
401 u8 data;
402 int member = -1;
403 int forward = dev->member;
404
405 ksz_pread8(dev, port, P_STP_CTRL, &data);
406 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
407
408 switch (state) {
409 case BR_STATE_DISABLED:
410 data |= PORT_LEARN_DISABLE;
411 if (port != dev->cpu_port)
412 member = 0;
413 break;
414 case BR_STATE_LISTENING:
415 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
416 if (port != dev->cpu_port &&
417 p->stp_state == BR_STATE_DISABLED)
418 member = dev->host_mask | p->vid_member;
419 break;
420 case BR_STATE_LEARNING:
421 data |= PORT_RX_ENABLE;
422 break;
423 case BR_STATE_FORWARDING:
424 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
425
426 /* This function is also used internally. */
427 if (port == dev->cpu_port)
428 break;
429
430 member = dev->host_mask | p->vid_member;
431 mutex_lock(&dev->dev_mutex);
432
433 /* Port is a member of a bridge. */
434 if (dev->br_member & (1 << port)) {
435 dev->member |= (1 << port);
436 member = dev->member;
437 }
438 mutex_unlock(&dev->dev_mutex);
439 break;
440 case BR_STATE_BLOCKING:
441 data |= PORT_LEARN_DISABLE;
442 if (port != dev->cpu_port &&
443 p->stp_state == BR_STATE_DISABLED)
444 member = dev->host_mask | p->vid_member;
445 break;
446 default:
447 dev_err(ds->dev, "invalid STP state: %d\n", state);
448 return;
449 }
450
451 ksz_pwrite8(dev, port, P_STP_CTRL, data);
452 p->stp_state = state;
453 mutex_lock(&dev->dev_mutex);
454 if (data & PORT_RX_ENABLE)
455 dev->rx_ports |= (1 << port);
456 else
457 dev->rx_ports &= ~(1 << port);
458 if (data & PORT_TX_ENABLE)
459 dev->tx_ports |= (1 << port);
460 else
461 dev->tx_ports &= ~(1 << port);
462
463 /* Port membership may share register with STP state. */
464 if (member >= 0 && member != p->member)
465 ksz9477_cfg_port_member(dev, port, (u8)member);
466
467 /* Check if forwarding needs to be updated. */
468 if (state != BR_STATE_FORWARDING) {
469 if (dev->br_member & (1 << port))
470 dev->member &= ~(1 << port);
471 }
472
473 /* When topology has changed the function ksz_update_port_member
474 * should be called to modify port forwarding behavior.
475 */
476 if (forward != dev->member)
477 ksz_update_port_member(dev, port);
478 mutex_unlock(&dev->dev_mutex);
479}
480
481static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
482{
483 u8 data;
484
485 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
486 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
487 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
488
489 if (port < dev->mib_port_cnt) {
490 /* flush individual port */
491 ksz_pread8(dev, port, P_STP_CTRL, &data);
492 if (!(data & PORT_LEARN_DISABLE))
493 ksz_pwrite8(dev, port, P_STP_CTRL,
494 data | PORT_LEARN_DISABLE);
495 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
496 ksz_pwrite8(dev, port, P_STP_CTRL, data);
497 } else {
498 /* flush all */
499 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
500 }
501}
502
503static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
504 bool flag)
505{
506 struct ksz_device *dev = ds->priv;
507
508 if (flag) {
509 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
510 PORT_VLAN_LOOKUP_VID_0, true);
511 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
512 } else {
513 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
514 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
515 PORT_VLAN_LOOKUP_VID_0, false);
516 }
517
518 return 0;
519}
520
521static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
522 const struct switchdev_obj_port_vlan *vlan)
523{
524 struct ksz_device *dev = ds->priv;
525 u32 vlan_table[3];
526 u16 vid;
527 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
528
529 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
530 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
531 dev_dbg(dev->dev, "Failed to get vlan table\n");
532 return;
533 }
534
535 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
536 if (untagged)
537 vlan_table[1] |= BIT(port);
538 else
539 vlan_table[1] &= ~BIT(port);
540 vlan_table[1] &= ~(BIT(dev->cpu_port));
541
542 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
543
544 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
545 dev_dbg(dev->dev, "Failed to set vlan table\n");
546 return;
547 }
548
549 /* change PVID */
550 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
551 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
552 }
553}
554
555static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
556 const struct switchdev_obj_port_vlan *vlan)
557{
558 struct ksz_device *dev = ds->priv;
559 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
560 u32 vlan_table[3];
561 u16 vid;
562 u16 pvid;
563
564 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
565 pvid = pvid & 0xFFF;
566
567 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
568 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
569 dev_dbg(dev->dev, "Failed to get vlan table\n");
570 return -ETIMEDOUT;
571 }
572
573 vlan_table[2] &= ~BIT(port);
574
575 if (pvid == vid)
576 pvid = 1;
577
578 if (untagged)
579 vlan_table[1] &= ~BIT(port);
580
581 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
582 dev_dbg(dev->dev, "Failed to set vlan table\n");
583 return -ETIMEDOUT;
584 }
585 }
586
587 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
588
589 return 0;
590}
591
592static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
593 const unsigned char *addr, u16 vid)
594{
595 struct ksz_device *dev = ds->priv;
596 u32 alu_table[4];
597 u32 data;
598 int ret = 0;
599
600 mutex_lock(&dev->alu_mutex);
601
602 /* find any entry with mac & vid */
603 data = vid << ALU_FID_INDEX_S;
604 data |= ((addr[0] << 8) | addr[1]);
605 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
606
607 data = ((addr[2] << 24) | (addr[3] << 16));
608 data |= ((addr[4] << 8) | addr[5]);
609 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
610
611 /* start read operation */
612 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
613
614 /* wait to be finished */
615 ret = ksz9477_wait_alu_ready(dev);
616 if (ret) {
617 dev_dbg(dev->dev, "Failed to read ALU\n");
618 goto exit;
619 }
620
621 /* read ALU entry */
622 ksz9477_read_table(dev, alu_table);
623
624 /* update ALU entry */
625 alu_table[0] = ALU_V_STATIC_VALID;
626 alu_table[1] |= BIT(port);
627 if (vid)
628 alu_table[1] |= ALU_V_USE_FID;
629 alu_table[2] = (vid << ALU_V_FID_S);
630 alu_table[2] |= ((addr[0] << 8) | addr[1]);
631 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
632 alu_table[3] |= ((addr[4] << 8) | addr[5]);
633
634 ksz9477_write_table(dev, alu_table);
635
636 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
637
638 /* wait to be finished */
639 ret = ksz9477_wait_alu_ready(dev);
640 if (ret)
641 dev_dbg(dev->dev, "Failed to write ALU\n");
642
643exit:
644 mutex_unlock(&dev->alu_mutex);
645
646 return ret;
647}
648
649static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
650 const unsigned char *addr, u16 vid)
651{
652 struct ksz_device *dev = ds->priv;
653 u32 alu_table[4];
654 u32 data;
655 int ret = 0;
656
657 mutex_lock(&dev->alu_mutex);
658
659 /* read any entry with mac & vid */
660 data = vid << ALU_FID_INDEX_S;
661 data |= ((addr[0] << 8) | addr[1]);
662 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
663
664 data = ((addr[2] << 24) | (addr[3] << 16));
665 data |= ((addr[4] << 8) | addr[5]);
666 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
667
668 /* start read operation */
669 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
670
671 /* wait to be finished */
672 ret = ksz9477_wait_alu_ready(dev);
673 if (ret) {
674 dev_dbg(dev->dev, "Failed to read ALU\n");
675 goto exit;
676 }
677
678 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
679 if (alu_table[0] & ALU_V_STATIC_VALID) {
680 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
681 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
682 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
683
684 /* clear forwarding port */
685 alu_table[2] &= ~BIT(port);
686
687 /* if there is no port to forward, clear table */
688 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
689 alu_table[0] = 0;
690 alu_table[1] = 0;
691 alu_table[2] = 0;
692 alu_table[3] = 0;
693 }
694 } else {
695 alu_table[0] = 0;
696 alu_table[1] = 0;
697 alu_table[2] = 0;
698 alu_table[3] = 0;
699 }
700
701 ksz9477_write_table(dev, alu_table);
702
703 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704
705 /* wait to be finished */
706 ret = ksz9477_wait_alu_ready(dev);
707 if (ret)
708 dev_dbg(dev->dev, "Failed to write ALU\n");
709
710exit:
711 mutex_unlock(&dev->alu_mutex);
712
713 return ret;
714}
715
716static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
717{
718 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
719 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
720 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
721 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
722 ALU_V_PRIO_AGE_CNT_M;
723 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
724
725 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
726 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
727 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
728
729 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
730
731 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
732 alu->mac[1] = alu_table[2] & 0xFF;
733 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
734 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
735 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
736 alu->mac[5] = alu_table[3] & 0xFF;
737}
738
739static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
740 dsa_fdb_dump_cb_t *cb, void *data)
741{
742 struct ksz_device *dev = ds->priv;
743 int ret = 0;
744 u32 ksz_data;
745 u32 alu_table[4];
746 struct alu_struct alu;
747 int timeout;
748
749 mutex_lock(&dev->alu_mutex);
750
751 /* start ALU search */
752 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
753
754 do {
755 timeout = 1000;
756 do {
757 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
758 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
759 break;
760 usleep_range(1, 10);
761 } while (timeout-- > 0);
762
763 if (!timeout) {
764 dev_dbg(dev->dev, "Failed to search ALU\n");
765 ret = -ETIMEDOUT;
766 goto exit;
767 }
768
769 /* read ALU table */
770 ksz9477_read_table(dev, alu_table);
771
772 ksz9477_convert_alu(&alu, alu_table);
773
774 if (alu.port_forward & BIT(port)) {
775 ret = cb(alu.mac, alu.fid, alu.is_static, data);
776 if (ret)
777 goto exit;
778 }
779 } while (ksz_data & ALU_START);
780
781exit:
782
783 /* stop ALU search */
784 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
785
786 mutex_unlock(&dev->alu_mutex);
787
788 return ret;
789}
790
791static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
792 const struct switchdev_obj_port_mdb *mdb)
793{
794 struct ksz_device *dev = ds->priv;
795 u32 static_table[4];
796 u32 data;
797 int index;
798 u32 mac_hi, mac_lo;
799
800 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
801 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
802 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
803
804 mutex_lock(&dev->alu_mutex);
805
806 for (index = 0; index < dev->num_statics; index++) {
807 /* find empty slot first */
808 data = (index << ALU_STAT_INDEX_S) |
809 ALU_STAT_READ | ALU_STAT_START;
810 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
811
812 /* wait to be finished */
813 if (ksz9477_wait_alu_sta_ready(dev)) {
814 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
815 goto exit;
816 }
817
818 /* read ALU static table */
819 ksz9477_read_table(dev, static_table);
820
821 if (static_table[0] & ALU_V_STATIC_VALID) {
822 /* check this has same vid & mac address */
823 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
824 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
825 static_table[3] == mac_lo) {
826 /* found matching one */
827 break;
828 }
829 } else {
830 /* found empty one */
831 break;
832 }
833 }
834
835 /* no available entry */
836 if (index == dev->num_statics)
837 goto exit;
838
839 /* add entry */
840 static_table[0] = ALU_V_STATIC_VALID;
841 static_table[1] |= BIT(port);
842 if (mdb->vid)
843 static_table[1] |= ALU_V_USE_FID;
844 static_table[2] = (mdb->vid << ALU_V_FID_S);
845 static_table[2] |= mac_hi;
846 static_table[3] = mac_lo;
847
848 ksz9477_write_table(dev, static_table);
849
850 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
851 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
852
853 /* wait to be finished */
854 if (ksz9477_wait_alu_sta_ready(dev))
855 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
856
857exit:
858 mutex_unlock(&dev->alu_mutex);
859}
860
861static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
862 const struct switchdev_obj_port_mdb *mdb)
863{
864 struct ksz_device *dev = ds->priv;
865 u32 static_table[4];
866 u32 data;
867 int index;
868 int ret = 0;
869 u32 mac_hi, mac_lo;
870
871 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
872 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
873 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
874
875 mutex_lock(&dev->alu_mutex);
876
877 for (index = 0; index < dev->num_statics; index++) {
878 /* find empty slot first */
879 data = (index << ALU_STAT_INDEX_S) |
880 ALU_STAT_READ | ALU_STAT_START;
881 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
882
883 /* wait to be finished */
884 ret = ksz9477_wait_alu_sta_ready(dev);
885 if (ret) {
886 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
887 goto exit;
888 }
889
890 /* read ALU static table */
891 ksz9477_read_table(dev, static_table);
892
893 if (static_table[0] & ALU_V_STATIC_VALID) {
894 /* check this has same vid & mac address */
895
896 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
897 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
898 static_table[3] == mac_lo) {
899 /* found matching one */
900 break;
901 }
902 }
903 }
904
905 /* no available entry */
906 if (index == dev->num_statics)
907 goto exit;
908
909 /* clear port */
910 static_table[1] &= ~BIT(port);
911
912 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
913 /* delete entry */
914 static_table[0] = 0;
915 static_table[1] = 0;
916 static_table[2] = 0;
917 static_table[3] = 0;
918 }
919
920 ksz9477_write_table(dev, static_table);
921
922 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
923 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
924
925 /* wait to be finished */
926 ret = ksz9477_wait_alu_sta_ready(dev);
927 if (ret)
928 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
929
930exit:
931 mutex_unlock(&dev->alu_mutex);
932
933 return ret;
934}
935
936static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
937 struct dsa_mall_mirror_tc_entry *mirror,
938 bool ingress)
939{
940 struct ksz_device *dev = ds->priv;
941
942 if (ingress)
943 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
944 else
945 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
946
947 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
948
949 /* configure mirror port */
950 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
951 PORT_MIRROR_SNIFFER, true);
952
953 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
954
955 return 0;
956}
957
958static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
959 struct dsa_mall_mirror_tc_entry *mirror)
960{
961 struct ksz_device *dev = ds->priv;
962 u8 data;
963
964 if (mirror->ingress)
965 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
966 else
967 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
968
969 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
970
971 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
972 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
973 PORT_MIRROR_SNIFFER, false);
974}
975
976static void ksz9477_phy_setup(struct ksz_device *dev, int port,
977 struct phy_device *phy)
978{
979 /* Only apply to port with PHY. */
980 if (port >= dev->phy_port_cnt)
981 return;
982
983 /* The MAC actually cannot run in 1000 half-duplex mode. */
984 phy_remove_link_mode(phy,
985 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
986
987 /* PHY does not support gigabit. */
988 if (!(dev->features & GBIT_SUPPORT))
989 phy_remove_link_mode(phy,
990 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
991}
992
993static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
994{
995 bool gbit;
996
997 if (dev->features & NEW_XMII)
998 gbit = !(data & PORT_MII_NOT_1GBIT);
999 else
1000 gbit = !!(data & PORT_MII_1000MBIT_S1);
1001 return gbit;
1002}
1003
1004static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005{
1006 if (dev->features & NEW_XMII) {
1007 if (gbit)
1008 *data &= ~PORT_MII_NOT_1GBIT;
1009 else
1010 *data |= PORT_MII_NOT_1GBIT;
1011 } else {
1012 if (gbit)
1013 *data |= PORT_MII_1000MBIT_S1;
1014 else
1015 *data &= ~PORT_MII_1000MBIT_S1;
1016 }
1017}
1018
1019static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020{
1021 int mode;
1022
1023 if (dev->features & NEW_XMII) {
1024 switch (data & PORT_MII_SEL_M) {
1025 case PORT_MII_SEL:
1026 mode = 0;
1027 break;
1028 case PORT_RMII_SEL:
1029 mode = 1;
1030 break;
1031 case PORT_GMII_SEL:
1032 mode = 2;
1033 break;
1034 default:
1035 mode = 3;
1036 }
1037 } else {
1038 switch (data & PORT_MII_SEL_M) {
1039 case PORT_MII_SEL_S1:
1040 mode = 0;
1041 break;
1042 case PORT_RMII_SEL_S1:
1043 mode = 1;
1044 break;
1045 case PORT_GMII_SEL_S1:
1046 mode = 2;
1047 break;
1048 default:
1049 mode = 3;
1050 }
1051 }
1052 return mode;
1053}
1054
1055static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056{
1057 u8 xmii;
1058
1059 if (dev->features & NEW_XMII) {
1060 switch (mode) {
1061 case 0:
1062 xmii = PORT_MII_SEL;
1063 break;
1064 case 1:
1065 xmii = PORT_RMII_SEL;
1066 break;
1067 case 2:
1068 xmii = PORT_GMII_SEL;
1069 break;
1070 default:
1071 xmii = PORT_RGMII_SEL;
1072 break;
1073 }
1074 } else {
1075 switch (mode) {
1076 case 0:
1077 xmii = PORT_MII_SEL_S1;
1078 break;
1079 case 1:
1080 xmii = PORT_RMII_SEL_S1;
1081 break;
1082 case 2:
1083 xmii = PORT_GMII_SEL_S1;
1084 break;
1085 default:
1086 xmii = PORT_RGMII_SEL_S1;
1087 break;
1088 }
1089 }
1090 *data &= ~PORT_MII_SEL_M;
1091 *data |= xmii;
1092}
1093
1094static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095{
1096 phy_interface_t interface;
1097 bool gbit;
1098 int mode;
1099 u8 data8;
1100
1101 if (port < dev->phy_port_cnt)
1102 return PHY_INTERFACE_MODE_NA;
1103 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104 gbit = ksz9477_get_gbit(dev, data8);
1105 mode = ksz9477_get_xmii(dev, data8);
1106 switch (mode) {
1107 case 2:
1108 interface = PHY_INTERFACE_MODE_GMII;
1109 if (gbit)
1110 break;
1111 /* fall through */
1112 case 0:
1113 interface = PHY_INTERFACE_MODE_MII;
1114 break;
1115 case 1:
1116 interface = PHY_INTERFACE_MODE_RMII;
1117 break;
1118 default:
1119 interface = PHY_INTERFACE_MODE_RGMII;
1120 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125 interface = PHY_INTERFACE_MODE_RGMII_ID;
1126 }
1127 break;
1128 }
1129 return interface;
1130}
1131
1132static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133 u8 dev_addr, u16 reg_addr, u16 val)
1134{
1135 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141}
1142
1143static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144{
1145 /* Apply PHY settings to address errata listed in
1146 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147 * Silicon Errata and Data Sheet Clarification documents:
1148 *
1149 * Register settings are needed to improve PHY receive performance
1150 */
1151 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158
1159 /* Transmit waveform amplitude can be improved
1160 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161 */
1162 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163
1164 /* Energy Efficient Ethernet (EEE) feature select must
1165 * be manually disabled (except on KSZ8565 which is 100Mbit)
1166 */
1167 if (dev->features & GBIT_SUPPORT)
1168 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169
1170 /* Register settings are required to meet data sheet
1171 * supply current specifications
1172 */
1173 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186}
1187
1188static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189{
1190 u8 data8;
1191 u8 member;
1192 u16 data16;
1193 struct ksz_port *p = &dev->ports[port];
1194
1195 /* enable tag tail for host port */
1196 if (cpu_port)
1197 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198 true);
1199
1200 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201
1202 /* set back pressure */
1203 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204
1205 /* enable broadcast storm limit */
1206 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207
1208 /* disable DiffServ priority */
1209 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210
1211 /* replace priority */
1212 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213 false);
1214 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215 MTI_PVID_REPLACE, false);
1216
1217 /* enable 802.1p priority */
1218 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1219
1220 if (port < dev->phy_port_cnt) {
1221 /* do not force flow control */
1222 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224 false);
1225
1226 if (dev->phy_errata_9477)
1227 ksz9477_phy_errata_setup(dev, port);
1228 } else {
1229 /* force flow control */
1230 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232 true);
1233
1234 /* configure MAC to 1G & RGMII mode */
1235 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236 switch (dev->interface) {
1237 case PHY_INTERFACE_MODE_MII:
1238 ksz9477_set_xmii(dev, 0, &data8);
1239 ksz9477_set_gbit(dev, false, &data8);
1240 p->phydev.speed = SPEED_100;
1241 break;
1242 case PHY_INTERFACE_MODE_RMII:
1243 ksz9477_set_xmii(dev, 1, &data8);
1244 ksz9477_set_gbit(dev, false, &data8);
1245 p->phydev.speed = SPEED_100;
1246 break;
1247 case PHY_INTERFACE_MODE_GMII:
1248 ksz9477_set_xmii(dev, 2, &data8);
1249 ksz9477_set_gbit(dev, true, &data8);
1250 p->phydev.speed = SPEED_1000;
1251 break;
1252 default:
1253 ksz9477_set_xmii(dev, 3, &data8);
1254 ksz9477_set_gbit(dev, true, &data8);
1255 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258 dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259 data8 |= PORT_RGMII_ID_IG_ENABLE;
1260 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261 dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262 data8 |= PORT_RGMII_ID_EG_ENABLE;
1263 p->phydev.speed = SPEED_1000;
1264 break;
1265 }
1266 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267 p->phydev.duplex = 1;
1268 }
1269 mutex_lock(&dev->dev_mutex);
1270 if (cpu_port) {
1271 member = dev->port_mask;
1272 dev->on_ports = dev->host_mask;
1273 dev->live_ports = dev->host_mask;
1274 } else {
1275 member = dev->host_mask | p->vid_member;
1276 dev->on_ports |= (1 << port);
1277
1278 /* Link was detected before port is enabled. */
1279 if (p->phydev.link)
1280 dev->live_ports |= (1 << port);
1281 }
1282 mutex_unlock(&dev->dev_mutex);
1283 ksz9477_cfg_port_member(dev, port, member);
1284
1285 /* clear pending interrupts */
1286 if (port < dev->phy_port_cnt)
1287 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1288}
1289
1290static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291{
1292 struct ksz_device *dev = ds->priv;
1293 struct ksz_port *p;
1294 int i;
1295
1296 ds->num_ports = dev->port_cnt;
1297
1298 for (i = 0; i < dev->port_cnt; i++) {
1299 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300 phy_interface_t interface;
1301
1302 dev->cpu_port = i;
1303 dev->host_mask = (1 << dev->cpu_port);
1304 dev->port_mask |= dev->host_mask;
1305
1306 /* Read from XMII register to determine host port
1307 * interface. If set specifically in device tree
1308 * note the difference to help debugging.
1309 */
1310 interface = ksz9477_get_interface(dev, i);
1311 if (!dev->interface)
1312 dev->interface = interface;
1313 if (interface && interface != dev->interface)
1314 dev_info(dev->dev,
1315 "use %s instead of %s\n",
1316 phy_modes(dev->interface),
1317 phy_modes(interface));
1318
1319 /* enable cpu port */
1320 ksz9477_port_setup(dev, i, true);
1321 p = &dev->ports[dev->cpu_port];
1322 p->vid_member = dev->port_mask;
1323 p->on = 1;
1324 }
1325 }
1326
1327 dev->member = dev->host_mask;
1328
1329 for (i = 0; i < dev->mib_port_cnt; i++) {
1330 if (i == dev->cpu_port)
1331 continue;
1332 p = &dev->ports[i];
1333
1334 /* Initialize to non-zero so that ksz_cfg_port_member() will
1335 * be called.
1336 */
1337 p->vid_member = (1 << i);
1338 p->member = dev->port_mask;
1339 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340 p->on = 1;
1341 if (i < dev->phy_port_cnt)
1342 p->phy = 1;
1343 if (dev->chip_id == 0x00947700 && i == 6) {
1344 p->sgmii = 1;
1345
1346 /* SGMII PHY detection code is not implemented yet. */
1347 p->phy = 0;
1348 }
1349 }
1350}
1351
1352static int ksz9477_setup(struct dsa_switch *ds)
1353{
1354 struct ksz_device *dev = ds->priv;
1355 int ret = 0;
1356
1357 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358 dev->num_vlans, GFP_KERNEL);
1359 if (!dev->vlan_cache)
1360 return -ENOMEM;
1361
1362 ret = ksz9477_reset_switch(dev);
1363 if (ret) {
1364 dev_err(ds->dev, "failed to reset switch\n");
1365 return ret;
1366 }
1367
1368 /* Required for port partitioning. */
1369 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370 true);
1371
1372 /* Do not work correctly with tail tagging. */
1373 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374
1375 /* accept packet up to 2000bytes */
1376 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377
1378 ksz9477_config_cpu_port(ds);
1379
1380 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1381
1382 /* queue based egress rate limit */
1383 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384
1385 /* enable global MIB counter freeze function */
1386 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387
1388 /* start switch */
1389 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1390
1391 ksz_init_mib_timer(dev);
1392
1393 return 0;
1394}
1395
1396static const struct dsa_switch_ops ksz9477_switch_ops = {
1397 .get_tag_protocol = ksz9477_get_tag_protocol,
1398 .setup = ksz9477_setup,
1399 .phy_read = ksz9477_phy_read16,
1400 .phy_write = ksz9477_phy_write16,
1401 .adjust_link = ksz_adjust_link,
1402 .port_enable = ksz_enable_port,
1403 .port_disable = ksz_disable_port,
1404 .get_strings = ksz9477_get_strings,
1405 .get_ethtool_stats = ksz_get_ethtool_stats,
1406 .get_sset_count = ksz_sset_count,
1407 .port_bridge_join = ksz_port_bridge_join,
1408 .port_bridge_leave = ksz_port_bridge_leave,
1409 .port_stp_state_set = ksz9477_port_stp_state_set,
1410 .port_fast_age = ksz_port_fast_age,
1411 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1412 .port_vlan_prepare = ksz_port_vlan_prepare,
1413 .port_vlan_add = ksz9477_port_vlan_add,
1414 .port_vlan_del = ksz9477_port_vlan_del,
1415 .port_fdb_dump = ksz9477_port_fdb_dump,
1416 .port_fdb_add = ksz9477_port_fdb_add,
1417 .port_fdb_del = ksz9477_port_fdb_del,
1418 .port_mdb_prepare = ksz_port_mdb_prepare,
1419 .port_mdb_add = ksz9477_port_mdb_add,
1420 .port_mdb_del = ksz9477_port_mdb_del,
1421 .port_mirror_add = ksz9477_port_mirror_add,
1422 .port_mirror_del = ksz9477_port_mirror_del,
1423};
1424
1425static u32 ksz9477_get_port_addr(int port, int offset)
1426{
1427 return PORT_CTRL_ADDR(port, offset);
1428}
1429
1430static int ksz9477_switch_detect(struct ksz_device *dev)
1431{
1432 u8 data8;
1433 u8 id_hi;
1434 u8 id_lo;
1435 u32 id32;
1436 int ret;
1437
1438 /* turn off SPI DO Edge select */
1439 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440 if (ret)
1441 return ret;
1442
1443 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445 if (ret)
1446 return ret;
1447
1448 /* read chip id */
1449 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450 if (ret)
1451 return ret;
1452 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453 if (ret)
1454 return ret;
1455
1456 /* Number of ports can be reduced depending on chip. */
1457 dev->mib_port_cnt = TOTAL_PORT_NUM;
1458 dev->phy_port_cnt = 5;
1459
1460 /* Default capability is gigabit capable. */
1461 dev->features = GBIT_SUPPORT;
1462
1463 id_hi = (u8)(id32 >> 16);
1464 id_lo = (u8)(id32 >> 8);
1465 if ((id_lo & 0xf) == 3) {
1466 /* Chip is from KSZ9893 design. */
1467 dev->features |= IS_9893;
1468
1469 /* Chip does not support gigabit. */
1470 if (data8 & SW_QW_ABLE)
1471 dev->features &= ~GBIT_SUPPORT;
1472 dev->mib_port_cnt = 3;
1473 dev->phy_port_cnt = 2;
1474 } else {
1475 /* Chip uses new XMII register definitions. */
1476 dev->features |= NEW_XMII;
1477
1478 /* Chip does not support gigabit. */
1479 if (!(data8 & SW_GIGABIT_ABLE))
1480 dev->features &= ~GBIT_SUPPORT;
1481 }
1482
1483 /* Change chip id to known ones so it can be matched against them. */
1484 id32 = (id_hi << 16) | (id_lo << 8);
1485
1486 dev->chip_id = id32;
1487
1488 return 0;
1489}
1490
1491struct ksz_chip_data {
1492 u32 chip_id;
1493 const char *dev_name;
1494 int num_vlans;
1495 int num_alus;
1496 int num_statics;
1497 int cpu_ports;
1498 int port_cnt;
1499 bool phy_errata_9477;
1500};
1501
1502static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503 {
1504 .chip_id = 0x00947700,
1505 .dev_name = "KSZ9477",
1506 .num_vlans = 4096,
1507 .num_alus = 4096,
1508 .num_statics = 16,
1509 .cpu_ports = 0x7F, /* can be configured as cpu port */
1510 .port_cnt = 7, /* total physical port count */
1511 .phy_errata_9477 = true,
1512 },
1513 {
1514 .chip_id = 0x00989700,
1515 .dev_name = "KSZ9897",
1516 .num_vlans = 4096,
1517 .num_alus = 4096,
1518 .num_statics = 16,
1519 .cpu_ports = 0x7F, /* can be configured as cpu port */
1520 .port_cnt = 7, /* total physical port count */
1521 .phy_errata_9477 = true,
1522 },
1523 {
1524 .chip_id = 0x00989300,
1525 .dev_name = "KSZ9893",
1526 .num_vlans = 4096,
1527 .num_alus = 4096,
1528 .num_statics = 16,
1529 .cpu_ports = 0x07, /* can be configured as cpu port */
1530 .port_cnt = 3, /* total port count */
1531 },
1532 {
1533 .chip_id = 0x00956700,
1534 .dev_name = "KSZ9567",
1535 .num_vlans = 4096,
1536 .num_alus = 4096,
1537 .num_statics = 16,
1538 .cpu_ports = 0x7F, /* can be configured as cpu port */
1539 .port_cnt = 7, /* total physical port count */
1540 },
1541};
1542
1543static int ksz9477_switch_init(struct ksz_device *dev)
1544{
1545 int i;
1546
1547 dev->ds->ops = &ksz9477_switch_ops;
1548
1549 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551
1552 if (dev->chip_id == chip->chip_id) {
1553 dev->name = chip->dev_name;
1554 dev->num_vlans = chip->num_vlans;
1555 dev->num_alus = chip->num_alus;
1556 dev->num_statics = chip->num_statics;
1557 dev->port_cnt = chip->port_cnt;
1558 dev->cpu_ports = chip->cpu_ports;
1559 dev->phy_errata_9477 = chip->phy_errata_9477;
1560
1561 break;
1562 }
1563 }
1564
1565 /* no switch found */
1566 if (!dev->port_cnt)
1567 return -ENODEV;
1568
1569 dev->port_mask = (1 << dev->port_cnt) - 1;
1570
1571 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573
1574 i = dev->mib_port_cnt;
1575 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576 GFP_KERNEL);
1577 if (!dev->ports)
1578 return -ENOMEM;
1579 for (i = 0; i < dev->mib_port_cnt; i++) {
1580 mutex_init(&dev->ports[i].mib.cnt_mutex);
1581 dev->ports[i].mib.counters =
1582 devm_kzalloc(dev->dev,
1583 sizeof(u64) *
1584 (TOTAL_SWITCH_COUNTER_NUM + 1),
1585 GFP_KERNEL);
1586 if (!dev->ports[i].mib.counters)
1587 return -ENOMEM;
1588 }
1589
1590 return 0;
1591}
1592
1593static void ksz9477_switch_exit(struct ksz_device *dev)
1594{
1595 ksz9477_reset_switch(dev);
1596}
1597
1598static const struct ksz_dev_ops ksz9477_dev_ops = {
1599 .get_port_addr = ksz9477_get_port_addr,
1600 .cfg_port_member = ksz9477_cfg_port_member,
1601 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602 .phy_setup = ksz9477_phy_setup,
1603 .port_setup = ksz9477_port_setup,
1604 .r_mib_cnt = ksz9477_r_mib_cnt,
1605 .r_mib_pkt = ksz9477_r_mib_pkt,
1606 .freeze_mib = ksz9477_freeze_mib,
1607 .port_init_cnt = ksz9477_port_init_cnt,
1608 .shutdown = ksz9477_reset_switch,
1609 .detect = ksz9477_switch_detect,
1610 .init = ksz9477_switch_init,
1611 .exit = ksz9477_switch_exit,
1612};
1613
1614int ksz9477_switch_register(struct ksz_device *dev)
1615{
1616 return ksz_switch_register(dev, &ksz9477_dev_ops);
1617}
1618EXPORT_SYMBOL(ksz9477_switch_register);
1619
1620MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622MODULE_LICENSE("GPL");