Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/device-mapper.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/vmalloc.h>
12#include <linux/kthread.h>
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
15#include <linux/dax.h>
16#include <linux/pfn_t.h>
17#include <linux/libnvdimm.h>
18
19#define DM_MSG_PREFIX "writecache"
20
21#define HIGH_WATERMARK 50
22#define LOW_WATERMARK 45
23#define MAX_WRITEBACK_JOBS 0
24#define ENDIO_LATENCY 16
25#define WRITEBACK_LATENCY 64
26#define AUTOCOMMIT_BLOCKS_SSD 65536
27#define AUTOCOMMIT_BLOCKS_PMEM 64
28#define AUTOCOMMIT_MSEC 1000
29#define MAX_AGE_DIV 16
30#define MAX_AGE_UNSPECIFIED -1UL
31
32#define BITMAP_GRANULARITY 65536
33#if BITMAP_GRANULARITY < PAGE_SIZE
34#undef BITMAP_GRANULARITY
35#define BITMAP_GRANULARITY PAGE_SIZE
36#endif
37
38#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39#define DM_WRITECACHE_HAS_PMEM
40#endif
41
42#ifdef DM_WRITECACHE_HAS_PMEM
43#define pmem_assign(dest, src) \
44do { \
45 typeof(dest) uniq = (src); \
46 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
47} while (0)
48#else
49#define pmem_assign(dest, src) ((dest) = (src))
50#endif
51
52#if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
53#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54#endif
55
56#define MEMORY_SUPERBLOCK_MAGIC 0x23489321
57#define MEMORY_SUPERBLOCK_VERSION 1
58
59struct wc_memory_entry {
60 __le64 original_sector;
61 __le64 seq_count;
62};
63
64struct wc_memory_superblock {
65 union {
66 struct {
67 __le32 magic;
68 __le32 version;
69 __le32 block_size;
70 __le32 pad;
71 __le64 n_blocks;
72 __le64 seq_count;
73 };
74 __le64 padding[8];
75 };
76 struct wc_memory_entry entries[0];
77};
78
79struct wc_entry {
80 struct rb_node rb_node;
81 struct list_head lru;
82 unsigned short wc_list_contiguous;
83 bool write_in_progress
84#if BITS_PER_LONG == 64
85 :1
86#endif
87 ;
88 unsigned long index
89#if BITS_PER_LONG == 64
90 :47
91#endif
92 ;
93 unsigned long age;
94#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 uint64_t original_sector;
96 uint64_t seq_count;
97#endif
98};
99
100#ifdef DM_WRITECACHE_HAS_PMEM
101#define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
102#define WC_MODE_FUA(wc) ((wc)->writeback_fua)
103#else
104#define WC_MODE_PMEM(wc) false
105#define WC_MODE_FUA(wc) false
106#endif
107#define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
108
109struct dm_writecache {
110 struct mutex lock;
111 struct list_head lru;
112 union {
113 struct list_head freelist;
114 struct {
115 struct rb_root freetree;
116 struct wc_entry *current_free;
117 };
118 };
119 struct rb_root tree;
120
121 size_t freelist_size;
122 size_t writeback_size;
123 size_t freelist_high_watermark;
124 size_t freelist_low_watermark;
125 unsigned long max_age;
126
127 unsigned uncommitted_blocks;
128 unsigned autocommit_blocks;
129 unsigned max_writeback_jobs;
130
131 int error;
132
133 unsigned long autocommit_jiffies;
134 struct timer_list autocommit_timer;
135 struct wait_queue_head freelist_wait;
136
137 struct timer_list max_age_timer;
138
139 atomic_t bio_in_progress[2];
140 struct wait_queue_head bio_in_progress_wait[2];
141
142 struct dm_target *ti;
143 struct dm_dev *dev;
144 struct dm_dev *ssd_dev;
145 sector_t start_sector;
146 void *memory_map;
147 uint64_t memory_map_size;
148 size_t metadata_sectors;
149 size_t n_blocks;
150 uint64_t seq_count;
151 void *block_start;
152 struct wc_entry *entries;
153 unsigned block_size;
154 unsigned char block_size_bits;
155
156 bool pmem_mode:1;
157 bool writeback_fua:1;
158
159 bool overwrote_committed:1;
160 bool memory_vmapped:1;
161
162 bool high_wm_percent_set:1;
163 bool low_wm_percent_set:1;
164 bool max_writeback_jobs_set:1;
165 bool autocommit_blocks_set:1;
166 bool autocommit_time_set:1;
167 bool writeback_fua_set:1;
168 bool flush_on_suspend:1;
169 bool cleaner:1;
170
171 unsigned writeback_all;
172 struct workqueue_struct *writeback_wq;
173 struct work_struct writeback_work;
174 struct work_struct flush_work;
175
176 struct dm_io_client *dm_io;
177
178 raw_spinlock_t endio_list_lock;
179 struct list_head endio_list;
180 struct task_struct *endio_thread;
181
182 struct task_struct *flush_thread;
183 struct bio_list flush_list;
184
185 struct dm_kcopyd_client *dm_kcopyd;
186 unsigned long *dirty_bitmap;
187 unsigned dirty_bitmap_size;
188
189 struct bio_set bio_set;
190 mempool_t copy_pool;
191};
192
193#define WB_LIST_INLINE 16
194
195struct writeback_struct {
196 struct list_head endio_entry;
197 struct dm_writecache *wc;
198 struct wc_entry **wc_list;
199 unsigned wc_list_n;
200 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
201 struct bio bio;
202};
203
204struct copy_struct {
205 struct list_head endio_entry;
206 struct dm_writecache *wc;
207 struct wc_entry *e;
208 unsigned n_entries;
209 int error;
210};
211
212DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
213 "A percentage of time allocated for data copying");
214
215static void wc_lock(struct dm_writecache *wc)
216{
217 mutex_lock(&wc->lock);
218}
219
220static void wc_unlock(struct dm_writecache *wc)
221{
222 mutex_unlock(&wc->lock);
223}
224
225#ifdef DM_WRITECACHE_HAS_PMEM
226static int persistent_memory_claim(struct dm_writecache *wc)
227{
228 int r;
229 loff_t s;
230 long p, da;
231 pfn_t pfn;
232 int id;
233 struct page **pages;
234 sector_t offset;
235
236 wc->memory_vmapped = false;
237
238 s = wc->memory_map_size;
239 p = s >> PAGE_SHIFT;
240 if (!p) {
241 r = -EINVAL;
242 goto err1;
243 }
244 if (p != s >> PAGE_SHIFT) {
245 r = -EOVERFLOW;
246 goto err1;
247 }
248
249 offset = get_start_sect(wc->ssd_dev->bdev);
250 if (offset & (PAGE_SIZE / 512 - 1)) {
251 r = -EINVAL;
252 goto err1;
253 }
254 offset >>= PAGE_SHIFT - 9;
255
256 id = dax_read_lock();
257
258 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
259 if (da < 0) {
260 wc->memory_map = NULL;
261 r = da;
262 goto err2;
263 }
264 if (!pfn_t_has_page(pfn)) {
265 wc->memory_map = NULL;
266 r = -EOPNOTSUPP;
267 goto err2;
268 }
269 if (da != p) {
270 long i;
271 wc->memory_map = NULL;
272 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
273 if (!pages) {
274 r = -ENOMEM;
275 goto err2;
276 }
277 i = 0;
278 do {
279 long daa;
280 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
281 NULL, &pfn);
282 if (daa <= 0) {
283 r = daa ? daa : -EINVAL;
284 goto err3;
285 }
286 if (!pfn_t_has_page(pfn)) {
287 r = -EOPNOTSUPP;
288 goto err3;
289 }
290 while (daa-- && i < p) {
291 pages[i++] = pfn_t_to_page(pfn);
292 pfn.val++;
293 if (!(i & 15))
294 cond_resched();
295 }
296 } while (i < p);
297 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
298 if (!wc->memory_map) {
299 r = -ENOMEM;
300 goto err3;
301 }
302 kvfree(pages);
303 wc->memory_vmapped = true;
304 }
305
306 dax_read_unlock(id);
307
308 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
309 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
310
311 return 0;
312err3:
313 kvfree(pages);
314err2:
315 dax_read_unlock(id);
316err1:
317 return r;
318}
319#else
320static int persistent_memory_claim(struct dm_writecache *wc)
321{
322 BUG();
323}
324#endif
325
326static void persistent_memory_release(struct dm_writecache *wc)
327{
328 if (wc->memory_vmapped)
329 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
330}
331
332static struct page *persistent_memory_page(void *addr)
333{
334 if (is_vmalloc_addr(addr))
335 return vmalloc_to_page(addr);
336 else
337 return virt_to_page(addr);
338}
339
340static unsigned persistent_memory_page_offset(void *addr)
341{
342 return (unsigned long)addr & (PAGE_SIZE - 1);
343}
344
345static void persistent_memory_flush_cache(void *ptr, size_t size)
346{
347 if (is_vmalloc_addr(ptr))
348 flush_kernel_vmap_range(ptr, size);
349}
350
351static void persistent_memory_invalidate_cache(void *ptr, size_t size)
352{
353 if (is_vmalloc_addr(ptr))
354 invalidate_kernel_vmap_range(ptr, size);
355}
356
357static struct wc_memory_superblock *sb(struct dm_writecache *wc)
358{
359 return wc->memory_map;
360}
361
362static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
363{
364 return &sb(wc)->entries[e->index];
365}
366
367static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
368{
369 return (char *)wc->block_start + (e->index << wc->block_size_bits);
370}
371
372static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
373{
374 return wc->start_sector + wc->metadata_sectors +
375 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
376}
377
378static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
379{
380#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
381 return e->original_sector;
382#else
383 return le64_to_cpu(memory_entry(wc, e)->original_sector);
384#endif
385}
386
387static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
388{
389#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
390 return e->seq_count;
391#else
392 return le64_to_cpu(memory_entry(wc, e)->seq_count);
393#endif
394}
395
396static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
397{
398#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
399 e->seq_count = -1;
400#endif
401 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
402}
403
404static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
405 uint64_t original_sector, uint64_t seq_count)
406{
407 struct wc_memory_entry me;
408#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
409 e->original_sector = original_sector;
410 e->seq_count = seq_count;
411#endif
412 me.original_sector = cpu_to_le64(original_sector);
413 me.seq_count = cpu_to_le64(seq_count);
414 pmem_assign(*memory_entry(wc, e), me);
415}
416
417#define writecache_error(wc, err, msg, arg...) \
418do { \
419 if (!cmpxchg(&(wc)->error, 0, err)) \
420 DMERR(msg, ##arg); \
421 wake_up(&(wc)->freelist_wait); \
422} while (0)
423
424#define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
425
426static void writecache_flush_all_metadata(struct dm_writecache *wc)
427{
428 if (!WC_MODE_PMEM(wc))
429 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
430}
431
432static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
433{
434 if (!WC_MODE_PMEM(wc))
435 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
436 wc->dirty_bitmap);
437}
438
439static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
440
441struct io_notify {
442 struct dm_writecache *wc;
443 struct completion c;
444 atomic_t count;
445};
446
447static void writecache_notify_io(unsigned long error, void *context)
448{
449 struct io_notify *endio = context;
450
451 if (unlikely(error != 0))
452 writecache_error(endio->wc, -EIO, "error writing metadata");
453 BUG_ON(atomic_read(&endio->count) <= 0);
454 if (atomic_dec_and_test(&endio->count))
455 complete(&endio->c);
456}
457
458static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
459{
460 wait_event(wc->bio_in_progress_wait[direction],
461 !atomic_read(&wc->bio_in_progress[direction]));
462}
463
464static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
465{
466 struct dm_io_region region;
467 struct dm_io_request req;
468 struct io_notify endio = {
469 wc,
470 COMPLETION_INITIALIZER_ONSTACK(endio.c),
471 ATOMIC_INIT(1),
472 };
473 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
474 unsigned i = 0;
475
476 while (1) {
477 unsigned j;
478 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
479 if (unlikely(i == bitmap_bits))
480 break;
481 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
482
483 region.bdev = wc->ssd_dev->bdev;
484 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
485 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
486
487 if (unlikely(region.sector >= wc->metadata_sectors))
488 break;
489 if (unlikely(region.sector + region.count > wc->metadata_sectors))
490 region.count = wc->metadata_sectors - region.sector;
491
492 region.sector += wc->start_sector;
493 atomic_inc(&endio.count);
494 req.bi_op = REQ_OP_WRITE;
495 req.bi_op_flags = REQ_SYNC;
496 req.mem.type = DM_IO_VMA;
497 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
498 req.client = wc->dm_io;
499 req.notify.fn = writecache_notify_io;
500 req.notify.context = &endio;
501
502 /* writing via async dm-io (implied by notify.fn above) won't return an error */
503 (void) dm_io(&req, 1, ®ion, NULL);
504 i = j;
505 }
506
507 writecache_notify_io(0, &endio);
508 wait_for_completion_io(&endio.c);
509
510 if (wait_for_ios)
511 writecache_wait_for_ios(wc, WRITE);
512
513 writecache_disk_flush(wc, wc->ssd_dev);
514
515 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
516}
517
518static void ssd_commit_superblock(struct dm_writecache *wc)
519{
520 int r;
521 struct dm_io_region region;
522 struct dm_io_request req;
523
524 region.bdev = wc->ssd_dev->bdev;
525 region.sector = 0;
526 region.count = PAGE_SIZE;
527
528 if (unlikely(region.sector + region.count > wc->metadata_sectors))
529 region.count = wc->metadata_sectors - region.sector;
530
531 region.sector += wc->start_sector;
532
533 req.bi_op = REQ_OP_WRITE;
534 req.bi_op_flags = REQ_SYNC | REQ_FUA;
535 req.mem.type = DM_IO_VMA;
536 req.mem.ptr.vma = (char *)wc->memory_map;
537 req.client = wc->dm_io;
538 req.notify.fn = NULL;
539 req.notify.context = NULL;
540
541 r = dm_io(&req, 1, ®ion, NULL);
542 if (unlikely(r))
543 writecache_error(wc, r, "error writing superblock");
544}
545
546static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
547{
548 if (WC_MODE_PMEM(wc))
549 pmem_wmb();
550 else
551 ssd_commit_flushed(wc, wait_for_ios);
552}
553
554static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
555{
556 int r;
557 struct dm_io_region region;
558 struct dm_io_request req;
559
560 region.bdev = dev->bdev;
561 region.sector = 0;
562 region.count = 0;
563 req.bi_op = REQ_OP_WRITE;
564 req.bi_op_flags = REQ_PREFLUSH;
565 req.mem.type = DM_IO_KMEM;
566 req.mem.ptr.addr = NULL;
567 req.client = wc->dm_io;
568 req.notify.fn = NULL;
569
570 r = dm_io(&req, 1, ®ion, NULL);
571 if (unlikely(r))
572 writecache_error(wc, r, "error flushing metadata: %d", r);
573}
574
575#define WFE_RETURN_FOLLOWING 1
576#define WFE_LOWEST_SEQ 2
577
578static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
579 uint64_t block, int flags)
580{
581 struct wc_entry *e;
582 struct rb_node *node = wc->tree.rb_node;
583
584 if (unlikely(!node))
585 return NULL;
586
587 while (1) {
588 e = container_of(node, struct wc_entry, rb_node);
589 if (read_original_sector(wc, e) == block)
590 break;
591
592 node = (read_original_sector(wc, e) >= block ?
593 e->rb_node.rb_left : e->rb_node.rb_right);
594 if (unlikely(!node)) {
595 if (!(flags & WFE_RETURN_FOLLOWING))
596 return NULL;
597 if (read_original_sector(wc, e) >= block) {
598 return e;
599 } else {
600 node = rb_next(&e->rb_node);
601 if (unlikely(!node))
602 return NULL;
603 e = container_of(node, struct wc_entry, rb_node);
604 return e;
605 }
606 }
607 }
608
609 while (1) {
610 struct wc_entry *e2;
611 if (flags & WFE_LOWEST_SEQ)
612 node = rb_prev(&e->rb_node);
613 else
614 node = rb_next(&e->rb_node);
615 if (unlikely(!node))
616 return e;
617 e2 = container_of(node, struct wc_entry, rb_node);
618 if (read_original_sector(wc, e2) != block)
619 return e;
620 e = e2;
621 }
622}
623
624static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
625{
626 struct wc_entry *e;
627 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
628
629 while (*node) {
630 e = container_of(*node, struct wc_entry, rb_node);
631 parent = &e->rb_node;
632 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
633 node = &parent->rb_left;
634 else
635 node = &parent->rb_right;
636 }
637 rb_link_node(&ins->rb_node, parent, node);
638 rb_insert_color(&ins->rb_node, &wc->tree);
639 list_add(&ins->lru, &wc->lru);
640 ins->age = jiffies;
641}
642
643static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
644{
645 list_del(&e->lru);
646 rb_erase(&e->rb_node, &wc->tree);
647}
648
649static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
650{
651 if (WC_MODE_SORT_FREELIST(wc)) {
652 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
653 if (unlikely(!*node))
654 wc->current_free = e;
655 while (*node) {
656 parent = *node;
657 if (&e->rb_node < *node)
658 node = &parent->rb_left;
659 else
660 node = &parent->rb_right;
661 }
662 rb_link_node(&e->rb_node, parent, node);
663 rb_insert_color(&e->rb_node, &wc->freetree);
664 } else {
665 list_add_tail(&e->lru, &wc->freelist);
666 }
667 wc->freelist_size++;
668}
669
670static inline void writecache_verify_watermark(struct dm_writecache *wc)
671{
672 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
673 queue_work(wc->writeback_wq, &wc->writeback_work);
674}
675
676static void writecache_max_age_timer(struct timer_list *t)
677{
678 struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
679
680 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
681 queue_work(wc->writeback_wq, &wc->writeback_work);
682 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
683 }
684}
685
686static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
687{
688 struct wc_entry *e;
689
690 if (WC_MODE_SORT_FREELIST(wc)) {
691 struct rb_node *next;
692 if (unlikely(!wc->current_free))
693 return NULL;
694 e = wc->current_free;
695 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
696 return NULL;
697 next = rb_next(&e->rb_node);
698 rb_erase(&e->rb_node, &wc->freetree);
699 if (unlikely(!next))
700 next = rb_first(&wc->freetree);
701 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
702 } else {
703 if (unlikely(list_empty(&wc->freelist)))
704 return NULL;
705 e = container_of(wc->freelist.next, struct wc_entry, lru);
706 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
707 return NULL;
708 list_del(&e->lru);
709 }
710 wc->freelist_size--;
711
712 writecache_verify_watermark(wc);
713
714 return e;
715}
716
717static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
718{
719 writecache_unlink(wc, e);
720 writecache_add_to_freelist(wc, e);
721 clear_seq_count(wc, e);
722 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
723 if (unlikely(waitqueue_active(&wc->freelist_wait)))
724 wake_up(&wc->freelist_wait);
725}
726
727static void writecache_wait_on_freelist(struct dm_writecache *wc)
728{
729 DEFINE_WAIT(wait);
730
731 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
732 wc_unlock(wc);
733 io_schedule();
734 finish_wait(&wc->freelist_wait, &wait);
735 wc_lock(wc);
736}
737
738static void writecache_poison_lists(struct dm_writecache *wc)
739{
740 /*
741 * Catch incorrect access to these values while the device is suspended.
742 */
743 memset(&wc->tree, -1, sizeof wc->tree);
744 wc->lru.next = LIST_POISON1;
745 wc->lru.prev = LIST_POISON2;
746 wc->freelist.next = LIST_POISON1;
747 wc->freelist.prev = LIST_POISON2;
748}
749
750static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
751{
752 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
753 if (WC_MODE_PMEM(wc))
754 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
755}
756
757static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
758{
759 return read_seq_count(wc, e) < wc->seq_count;
760}
761
762static void writecache_flush(struct dm_writecache *wc)
763{
764 struct wc_entry *e, *e2;
765 bool need_flush_after_free;
766
767 wc->uncommitted_blocks = 0;
768 del_timer(&wc->autocommit_timer);
769
770 if (list_empty(&wc->lru))
771 return;
772
773 e = container_of(wc->lru.next, struct wc_entry, lru);
774 if (writecache_entry_is_committed(wc, e)) {
775 if (wc->overwrote_committed) {
776 writecache_wait_for_ios(wc, WRITE);
777 writecache_disk_flush(wc, wc->ssd_dev);
778 wc->overwrote_committed = false;
779 }
780 return;
781 }
782 while (1) {
783 writecache_flush_entry(wc, e);
784 if (unlikely(e->lru.next == &wc->lru))
785 break;
786 e2 = container_of(e->lru.next, struct wc_entry, lru);
787 if (writecache_entry_is_committed(wc, e2))
788 break;
789 e = e2;
790 cond_resched();
791 }
792 writecache_commit_flushed(wc, true);
793
794 wc->seq_count++;
795 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
796 if (WC_MODE_PMEM(wc))
797 writecache_commit_flushed(wc, false);
798 else
799 ssd_commit_superblock(wc);
800
801 wc->overwrote_committed = false;
802
803 need_flush_after_free = false;
804 while (1) {
805 /* Free another committed entry with lower seq-count */
806 struct rb_node *rb_node = rb_prev(&e->rb_node);
807
808 if (rb_node) {
809 e2 = container_of(rb_node, struct wc_entry, rb_node);
810 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
811 likely(!e2->write_in_progress)) {
812 writecache_free_entry(wc, e2);
813 need_flush_after_free = true;
814 }
815 }
816 if (unlikely(e->lru.prev == &wc->lru))
817 break;
818 e = container_of(e->lru.prev, struct wc_entry, lru);
819 cond_resched();
820 }
821
822 if (need_flush_after_free)
823 writecache_commit_flushed(wc, false);
824}
825
826static void writecache_flush_work(struct work_struct *work)
827{
828 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
829
830 wc_lock(wc);
831 writecache_flush(wc);
832 wc_unlock(wc);
833}
834
835static void writecache_autocommit_timer(struct timer_list *t)
836{
837 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
838 if (!writecache_has_error(wc))
839 queue_work(wc->writeback_wq, &wc->flush_work);
840}
841
842static void writecache_schedule_autocommit(struct dm_writecache *wc)
843{
844 if (!timer_pending(&wc->autocommit_timer))
845 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
846}
847
848static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
849{
850 struct wc_entry *e;
851 bool discarded_something = false;
852
853 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
854 if (unlikely(!e))
855 return;
856
857 while (read_original_sector(wc, e) < end) {
858 struct rb_node *node = rb_next(&e->rb_node);
859
860 if (likely(!e->write_in_progress)) {
861 if (!discarded_something) {
862 if (!WC_MODE_PMEM(wc)) {
863 writecache_wait_for_ios(wc, READ);
864 writecache_wait_for_ios(wc, WRITE);
865 }
866 discarded_something = true;
867 }
868 if (!writecache_entry_is_committed(wc, e))
869 wc->uncommitted_blocks--;
870 writecache_free_entry(wc, e);
871 }
872
873 if (unlikely(!node))
874 break;
875
876 e = container_of(node, struct wc_entry, rb_node);
877 }
878
879 if (discarded_something)
880 writecache_commit_flushed(wc, false);
881}
882
883static bool writecache_wait_for_writeback(struct dm_writecache *wc)
884{
885 if (wc->writeback_size) {
886 writecache_wait_on_freelist(wc);
887 return true;
888 }
889 return false;
890}
891
892static void writecache_suspend(struct dm_target *ti)
893{
894 struct dm_writecache *wc = ti->private;
895 bool flush_on_suspend;
896
897 del_timer_sync(&wc->autocommit_timer);
898 del_timer_sync(&wc->max_age_timer);
899
900 wc_lock(wc);
901 writecache_flush(wc);
902 flush_on_suspend = wc->flush_on_suspend;
903 if (flush_on_suspend) {
904 wc->flush_on_suspend = false;
905 wc->writeback_all++;
906 queue_work(wc->writeback_wq, &wc->writeback_work);
907 }
908 wc_unlock(wc);
909
910 drain_workqueue(wc->writeback_wq);
911
912 wc_lock(wc);
913 if (flush_on_suspend)
914 wc->writeback_all--;
915 while (writecache_wait_for_writeback(wc));
916
917 if (WC_MODE_PMEM(wc))
918 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
919
920 writecache_poison_lists(wc);
921
922 wc_unlock(wc);
923}
924
925static int writecache_alloc_entries(struct dm_writecache *wc)
926{
927 size_t b;
928
929 if (wc->entries)
930 return 0;
931 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
932 if (!wc->entries)
933 return -ENOMEM;
934 for (b = 0; b < wc->n_blocks; b++) {
935 struct wc_entry *e = &wc->entries[b];
936 e->index = b;
937 e->write_in_progress = false;
938 cond_resched();
939 }
940
941 return 0;
942}
943
944static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
945{
946 struct dm_io_region region;
947 struct dm_io_request req;
948
949 region.bdev = wc->ssd_dev->bdev;
950 region.sector = wc->start_sector;
951 region.count = n_sectors;
952 req.bi_op = REQ_OP_READ;
953 req.bi_op_flags = REQ_SYNC;
954 req.mem.type = DM_IO_VMA;
955 req.mem.ptr.vma = (char *)wc->memory_map;
956 req.client = wc->dm_io;
957 req.notify.fn = NULL;
958
959 return dm_io(&req, 1, ®ion, NULL);
960}
961
962static void writecache_resume(struct dm_target *ti)
963{
964 struct dm_writecache *wc = ti->private;
965 size_t b;
966 bool need_flush = false;
967 __le64 sb_seq_count;
968 int r;
969
970 wc_lock(wc);
971
972 if (WC_MODE_PMEM(wc)) {
973 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
974 } else {
975 r = writecache_read_metadata(wc, wc->metadata_sectors);
976 if (r) {
977 size_t sb_entries_offset;
978 writecache_error(wc, r, "unable to read metadata: %d", r);
979 sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
980 memset((char *)wc->memory_map + sb_entries_offset, -1,
981 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
982 }
983 }
984
985 wc->tree = RB_ROOT;
986 INIT_LIST_HEAD(&wc->lru);
987 if (WC_MODE_SORT_FREELIST(wc)) {
988 wc->freetree = RB_ROOT;
989 wc->current_free = NULL;
990 } else {
991 INIT_LIST_HEAD(&wc->freelist);
992 }
993 wc->freelist_size = 0;
994
995 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
996 if (r) {
997 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
998 sb_seq_count = cpu_to_le64(0);
999 }
1000 wc->seq_count = le64_to_cpu(sb_seq_count);
1001
1002#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1003 for (b = 0; b < wc->n_blocks; b++) {
1004 struct wc_entry *e = &wc->entries[b];
1005 struct wc_memory_entry wme;
1006 if (writecache_has_error(wc)) {
1007 e->original_sector = -1;
1008 e->seq_count = -1;
1009 continue;
1010 }
1011 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
1012 if (r) {
1013 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1014 (unsigned long)b, r);
1015 e->original_sector = -1;
1016 e->seq_count = -1;
1017 } else {
1018 e->original_sector = le64_to_cpu(wme.original_sector);
1019 e->seq_count = le64_to_cpu(wme.seq_count);
1020 }
1021 cond_resched();
1022 }
1023#endif
1024 for (b = 0; b < wc->n_blocks; b++) {
1025 struct wc_entry *e = &wc->entries[b];
1026 if (!writecache_entry_is_committed(wc, e)) {
1027 if (read_seq_count(wc, e) != -1) {
1028erase_this:
1029 clear_seq_count(wc, e);
1030 need_flush = true;
1031 }
1032 writecache_add_to_freelist(wc, e);
1033 } else {
1034 struct wc_entry *old;
1035
1036 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1037 if (!old) {
1038 writecache_insert_entry(wc, e);
1039 } else {
1040 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1041 writecache_error(wc, -EINVAL,
1042 "two identical entries, position %llu, sector %llu, sequence %llu",
1043 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1044 (unsigned long long)read_seq_count(wc, e));
1045 }
1046 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1047 goto erase_this;
1048 } else {
1049 writecache_free_entry(wc, old);
1050 writecache_insert_entry(wc, e);
1051 need_flush = true;
1052 }
1053 }
1054 }
1055 cond_resched();
1056 }
1057
1058 if (need_flush) {
1059 writecache_flush_all_metadata(wc);
1060 writecache_commit_flushed(wc, false);
1061 }
1062
1063 writecache_verify_watermark(wc);
1064
1065 if (wc->max_age != MAX_AGE_UNSPECIFIED)
1066 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1067
1068 wc_unlock(wc);
1069}
1070
1071static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1072{
1073 if (argc != 1)
1074 return -EINVAL;
1075
1076 wc_lock(wc);
1077 if (dm_suspended(wc->ti)) {
1078 wc_unlock(wc);
1079 return -EBUSY;
1080 }
1081 if (writecache_has_error(wc)) {
1082 wc_unlock(wc);
1083 return -EIO;
1084 }
1085
1086 writecache_flush(wc);
1087 wc->writeback_all++;
1088 queue_work(wc->writeback_wq, &wc->writeback_work);
1089 wc_unlock(wc);
1090
1091 flush_workqueue(wc->writeback_wq);
1092
1093 wc_lock(wc);
1094 wc->writeback_all--;
1095 if (writecache_has_error(wc)) {
1096 wc_unlock(wc);
1097 return -EIO;
1098 }
1099 wc_unlock(wc);
1100
1101 return 0;
1102}
1103
1104static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1105{
1106 if (argc != 1)
1107 return -EINVAL;
1108
1109 wc_lock(wc);
1110 wc->flush_on_suspend = true;
1111 wc_unlock(wc);
1112
1113 return 0;
1114}
1115
1116static void activate_cleaner(struct dm_writecache *wc)
1117{
1118 wc->flush_on_suspend = true;
1119 wc->cleaner = true;
1120 wc->freelist_high_watermark = wc->n_blocks;
1121 wc->freelist_low_watermark = wc->n_blocks;
1122}
1123
1124static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1125{
1126 if (argc != 1)
1127 return -EINVAL;
1128
1129 wc_lock(wc);
1130 activate_cleaner(wc);
1131 if (!dm_suspended(wc->ti))
1132 writecache_verify_watermark(wc);
1133 wc_unlock(wc);
1134
1135 return 0;
1136}
1137
1138static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1139 char *result, unsigned maxlen)
1140{
1141 int r = -EINVAL;
1142 struct dm_writecache *wc = ti->private;
1143
1144 if (!strcasecmp(argv[0], "flush"))
1145 r = process_flush_mesg(argc, argv, wc);
1146 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1147 r = process_flush_on_suspend_mesg(argc, argv, wc);
1148 else if (!strcasecmp(argv[0], "cleaner"))
1149 r = process_cleaner_mesg(argc, argv, wc);
1150 else
1151 DMERR("unrecognised message received: %s", argv[0]);
1152
1153 return r;
1154}
1155
1156static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1157{
1158 /*
1159 * clflushopt performs better with block size 1024, 2048, 4096
1160 * non-temporal stores perform better with block size 512
1161 *
1162 * block size 512 1024 2048 4096
1163 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
1164 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
1165 *
1166 * We see that movnti performs better for 512-byte blocks, and
1167 * clflushopt performs better for 1024-byte and larger blocks. So, we
1168 * prefer clflushopt for sizes >= 768.
1169 *
1170 * NOTE: this happens to be the case now (with dm-writecache's single
1171 * threaded model) but re-evaluate this once memcpy_flushcache() is
1172 * enabled to use movdir64b which might invalidate this performance
1173 * advantage seen with cache-allocating-writes plus flushing.
1174 */
1175#ifdef CONFIG_X86
1176 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1177 likely(boot_cpu_data.x86_clflush_size == 64) &&
1178 likely(size >= 768)) {
1179 do {
1180 memcpy((void *)dest, (void *)source, 64);
1181 clflushopt((void *)dest);
1182 dest += 64;
1183 source += 64;
1184 size -= 64;
1185 } while (size >= 64);
1186 return;
1187 }
1188#endif
1189 memcpy_flushcache(dest, source, size);
1190}
1191
1192static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1193{
1194 void *buf;
1195 unsigned long flags;
1196 unsigned size;
1197 int rw = bio_data_dir(bio);
1198 unsigned remaining_size = wc->block_size;
1199
1200 do {
1201 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1202 buf = bvec_kmap_irq(&bv, &flags);
1203 size = bv.bv_len;
1204 if (unlikely(size > remaining_size))
1205 size = remaining_size;
1206
1207 if (rw == READ) {
1208 int r;
1209 r = memcpy_mcsafe(buf, data, size);
1210 flush_dcache_page(bio_page(bio));
1211 if (unlikely(r)) {
1212 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1213 bio->bi_status = BLK_STS_IOERR;
1214 }
1215 } else {
1216 flush_dcache_page(bio_page(bio));
1217 memcpy_flushcache_optimized(data, buf, size);
1218 }
1219
1220 bvec_kunmap_irq(buf, &flags);
1221
1222 data = (char *)data + size;
1223 remaining_size -= size;
1224 bio_advance(bio, size);
1225 } while (unlikely(remaining_size));
1226}
1227
1228static int writecache_flush_thread(void *data)
1229{
1230 struct dm_writecache *wc = data;
1231
1232 while (1) {
1233 struct bio *bio;
1234
1235 wc_lock(wc);
1236 bio = bio_list_pop(&wc->flush_list);
1237 if (!bio) {
1238 set_current_state(TASK_INTERRUPTIBLE);
1239 wc_unlock(wc);
1240
1241 if (unlikely(kthread_should_stop())) {
1242 set_current_state(TASK_RUNNING);
1243 break;
1244 }
1245
1246 schedule();
1247 continue;
1248 }
1249
1250 if (bio_op(bio) == REQ_OP_DISCARD) {
1251 writecache_discard(wc, bio->bi_iter.bi_sector,
1252 bio_end_sector(bio));
1253 wc_unlock(wc);
1254 bio_set_dev(bio, wc->dev->bdev);
1255 submit_bio_noacct(bio);
1256 } else {
1257 writecache_flush(wc);
1258 wc_unlock(wc);
1259 if (writecache_has_error(wc))
1260 bio->bi_status = BLK_STS_IOERR;
1261 bio_endio(bio);
1262 }
1263 }
1264
1265 return 0;
1266}
1267
1268static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1269{
1270 if (bio_list_empty(&wc->flush_list))
1271 wake_up_process(wc->flush_thread);
1272 bio_list_add(&wc->flush_list, bio);
1273}
1274
1275static int writecache_map(struct dm_target *ti, struct bio *bio)
1276{
1277 struct wc_entry *e;
1278 struct dm_writecache *wc = ti->private;
1279
1280 bio->bi_private = NULL;
1281
1282 wc_lock(wc);
1283
1284 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1285 if (writecache_has_error(wc))
1286 goto unlock_error;
1287 if (WC_MODE_PMEM(wc)) {
1288 writecache_flush(wc);
1289 if (writecache_has_error(wc))
1290 goto unlock_error;
1291 goto unlock_submit;
1292 } else {
1293 writecache_offload_bio(wc, bio);
1294 goto unlock_return;
1295 }
1296 }
1297
1298 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1299
1300 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1301 (wc->block_size / 512 - 1)) != 0)) {
1302 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1303 (unsigned long long)bio->bi_iter.bi_sector,
1304 bio->bi_iter.bi_size, wc->block_size);
1305 goto unlock_error;
1306 }
1307
1308 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1309 if (writecache_has_error(wc))
1310 goto unlock_error;
1311 if (WC_MODE_PMEM(wc)) {
1312 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1313 goto unlock_remap_origin;
1314 } else {
1315 writecache_offload_bio(wc, bio);
1316 goto unlock_return;
1317 }
1318 }
1319
1320 if (bio_data_dir(bio) == READ) {
1321read_next_block:
1322 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1323 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1324 if (WC_MODE_PMEM(wc)) {
1325 bio_copy_block(wc, bio, memory_data(wc, e));
1326 if (bio->bi_iter.bi_size)
1327 goto read_next_block;
1328 goto unlock_submit;
1329 } else {
1330 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1331 bio_set_dev(bio, wc->ssd_dev->bdev);
1332 bio->bi_iter.bi_sector = cache_sector(wc, e);
1333 if (!writecache_entry_is_committed(wc, e))
1334 writecache_wait_for_ios(wc, WRITE);
1335 goto unlock_remap;
1336 }
1337 } else {
1338 if (e) {
1339 sector_t next_boundary =
1340 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1341 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1342 dm_accept_partial_bio(bio, next_boundary);
1343 }
1344 }
1345 goto unlock_remap_origin;
1346 }
1347 } else {
1348 do {
1349 bool found_entry = false;
1350 if (writecache_has_error(wc))
1351 goto unlock_error;
1352 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1353 if (e) {
1354 if (!writecache_entry_is_committed(wc, e))
1355 goto bio_copy;
1356 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1357 wc->overwrote_committed = true;
1358 goto bio_copy;
1359 }
1360 found_entry = true;
1361 } else {
1362 if (unlikely(wc->cleaner))
1363 goto direct_write;
1364 }
1365 e = writecache_pop_from_freelist(wc, (sector_t)-1);
1366 if (unlikely(!e)) {
1367 if (!found_entry) {
1368direct_write:
1369 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1370 if (e) {
1371 sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1372 BUG_ON(!next_boundary);
1373 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1374 dm_accept_partial_bio(bio, next_boundary);
1375 }
1376 }
1377 goto unlock_remap_origin;
1378 }
1379 writecache_wait_on_freelist(wc);
1380 continue;
1381 }
1382 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1383 writecache_insert_entry(wc, e);
1384 wc->uncommitted_blocks++;
1385bio_copy:
1386 if (WC_MODE_PMEM(wc)) {
1387 bio_copy_block(wc, bio, memory_data(wc, e));
1388 } else {
1389 unsigned bio_size = wc->block_size;
1390 sector_t start_cache_sec = cache_sector(wc, e);
1391 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1392
1393 while (bio_size < bio->bi_iter.bi_size) {
1394 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1395 if (!f)
1396 break;
1397 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1398 (bio_size >> SECTOR_SHIFT), wc->seq_count);
1399 writecache_insert_entry(wc, f);
1400 wc->uncommitted_blocks++;
1401 bio_size += wc->block_size;
1402 current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1403 }
1404
1405 bio_set_dev(bio, wc->ssd_dev->bdev);
1406 bio->bi_iter.bi_sector = start_cache_sec;
1407 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1408
1409 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1410 wc->uncommitted_blocks = 0;
1411 queue_work(wc->writeback_wq, &wc->flush_work);
1412 } else {
1413 writecache_schedule_autocommit(wc);
1414 }
1415 goto unlock_remap;
1416 }
1417 } while (bio->bi_iter.bi_size);
1418
1419 if (unlikely(bio->bi_opf & REQ_FUA ||
1420 wc->uncommitted_blocks >= wc->autocommit_blocks))
1421 writecache_flush(wc);
1422 else
1423 writecache_schedule_autocommit(wc);
1424 goto unlock_submit;
1425 }
1426
1427unlock_remap_origin:
1428 bio_set_dev(bio, wc->dev->bdev);
1429 wc_unlock(wc);
1430 return DM_MAPIO_REMAPPED;
1431
1432unlock_remap:
1433 /* make sure that writecache_end_io decrements bio_in_progress: */
1434 bio->bi_private = (void *)1;
1435 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1436 wc_unlock(wc);
1437 return DM_MAPIO_REMAPPED;
1438
1439unlock_submit:
1440 wc_unlock(wc);
1441 bio_endio(bio);
1442 return DM_MAPIO_SUBMITTED;
1443
1444unlock_return:
1445 wc_unlock(wc);
1446 return DM_MAPIO_SUBMITTED;
1447
1448unlock_error:
1449 wc_unlock(wc);
1450 bio_io_error(bio);
1451 return DM_MAPIO_SUBMITTED;
1452}
1453
1454static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1455{
1456 struct dm_writecache *wc = ti->private;
1457
1458 if (bio->bi_private != NULL) {
1459 int dir = bio_data_dir(bio);
1460 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1461 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1462 wake_up(&wc->bio_in_progress_wait[dir]);
1463 }
1464 return 0;
1465}
1466
1467static int writecache_iterate_devices(struct dm_target *ti,
1468 iterate_devices_callout_fn fn, void *data)
1469{
1470 struct dm_writecache *wc = ti->private;
1471
1472 return fn(ti, wc->dev, 0, ti->len, data);
1473}
1474
1475static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1476{
1477 struct dm_writecache *wc = ti->private;
1478
1479 if (limits->logical_block_size < wc->block_size)
1480 limits->logical_block_size = wc->block_size;
1481
1482 if (limits->physical_block_size < wc->block_size)
1483 limits->physical_block_size = wc->block_size;
1484
1485 if (limits->io_min < wc->block_size)
1486 limits->io_min = wc->block_size;
1487}
1488
1489
1490static void writecache_writeback_endio(struct bio *bio)
1491{
1492 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1493 struct dm_writecache *wc = wb->wc;
1494 unsigned long flags;
1495
1496 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1497 if (unlikely(list_empty(&wc->endio_list)))
1498 wake_up_process(wc->endio_thread);
1499 list_add_tail(&wb->endio_entry, &wc->endio_list);
1500 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1501}
1502
1503static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1504{
1505 struct copy_struct *c = ptr;
1506 struct dm_writecache *wc = c->wc;
1507
1508 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1509
1510 raw_spin_lock_irq(&wc->endio_list_lock);
1511 if (unlikely(list_empty(&wc->endio_list)))
1512 wake_up_process(wc->endio_thread);
1513 list_add_tail(&c->endio_entry, &wc->endio_list);
1514 raw_spin_unlock_irq(&wc->endio_list_lock);
1515}
1516
1517static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1518{
1519 unsigned i;
1520 struct writeback_struct *wb;
1521 struct wc_entry *e;
1522 unsigned long n_walked = 0;
1523
1524 do {
1525 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1526 list_del(&wb->endio_entry);
1527
1528 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1529 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1530 "write error %d", wb->bio.bi_status);
1531 i = 0;
1532 do {
1533 e = wb->wc_list[i];
1534 BUG_ON(!e->write_in_progress);
1535 e->write_in_progress = false;
1536 INIT_LIST_HEAD(&e->lru);
1537 if (!writecache_has_error(wc))
1538 writecache_free_entry(wc, e);
1539 BUG_ON(!wc->writeback_size);
1540 wc->writeback_size--;
1541 n_walked++;
1542 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1543 writecache_commit_flushed(wc, false);
1544 wc_unlock(wc);
1545 wc_lock(wc);
1546 n_walked = 0;
1547 }
1548 } while (++i < wb->wc_list_n);
1549
1550 if (wb->wc_list != wb->wc_list_inline)
1551 kfree(wb->wc_list);
1552 bio_put(&wb->bio);
1553 } while (!list_empty(list));
1554}
1555
1556static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1557{
1558 struct copy_struct *c;
1559 struct wc_entry *e;
1560
1561 do {
1562 c = list_entry(list->next, struct copy_struct, endio_entry);
1563 list_del(&c->endio_entry);
1564
1565 if (unlikely(c->error))
1566 writecache_error(wc, c->error, "copy error");
1567
1568 e = c->e;
1569 do {
1570 BUG_ON(!e->write_in_progress);
1571 e->write_in_progress = false;
1572 INIT_LIST_HEAD(&e->lru);
1573 if (!writecache_has_error(wc))
1574 writecache_free_entry(wc, e);
1575
1576 BUG_ON(!wc->writeback_size);
1577 wc->writeback_size--;
1578 e++;
1579 } while (--c->n_entries);
1580 mempool_free(c, &wc->copy_pool);
1581 } while (!list_empty(list));
1582}
1583
1584static int writecache_endio_thread(void *data)
1585{
1586 struct dm_writecache *wc = data;
1587
1588 while (1) {
1589 struct list_head list;
1590
1591 raw_spin_lock_irq(&wc->endio_list_lock);
1592 if (!list_empty(&wc->endio_list))
1593 goto pop_from_list;
1594 set_current_state(TASK_INTERRUPTIBLE);
1595 raw_spin_unlock_irq(&wc->endio_list_lock);
1596
1597 if (unlikely(kthread_should_stop())) {
1598 set_current_state(TASK_RUNNING);
1599 break;
1600 }
1601
1602 schedule();
1603
1604 continue;
1605
1606pop_from_list:
1607 list = wc->endio_list;
1608 list.next->prev = list.prev->next = &list;
1609 INIT_LIST_HEAD(&wc->endio_list);
1610 raw_spin_unlock_irq(&wc->endio_list_lock);
1611
1612 if (!WC_MODE_FUA(wc))
1613 writecache_disk_flush(wc, wc->dev);
1614
1615 wc_lock(wc);
1616
1617 if (WC_MODE_PMEM(wc)) {
1618 __writecache_endio_pmem(wc, &list);
1619 } else {
1620 __writecache_endio_ssd(wc, &list);
1621 writecache_wait_for_ios(wc, READ);
1622 }
1623
1624 writecache_commit_flushed(wc, false);
1625
1626 wc_unlock(wc);
1627 }
1628
1629 return 0;
1630}
1631
1632static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1633{
1634 struct dm_writecache *wc = wb->wc;
1635 unsigned block_size = wc->block_size;
1636 void *address = memory_data(wc, e);
1637
1638 persistent_memory_flush_cache(address, block_size);
1639 return bio_add_page(&wb->bio, persistent_memory_page(address),
1640 block_size, persistent_memory_page_offset(address)) != 0;
1641}
1642
1643struct writeback_list {
1644 struct list_head list;
1645 size_t size;
1646};
1647
1648static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1649{
1650 if (unlikely(wc->max_writeback_jobs)) {
1651 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1652 wc_lock(wc);
1653 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1654 writecache_wait_on_freelist(wc);
1655 wc_unlock(wc);
1656 }
1657 }
1658 cond_resched();
1659}
1660
1661static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1662{
1663 struct wc_entry *e, *f;
1664 struct bio *bio;
1665 struct writeback_struct *wb;
1666 unsigned max_pages;
1667
1668 while (wbl->size) {
1669 wbl->size--;
1670 e = container_of(wbl->list.prev, struct wc_entry, lru);
1671 list_del(&e->lru);
1672
1673 max_pages = e->wc_list_contiguous;
1674
1675 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1676 wb = container_of(bio, struct writeback_struct, bio);
1677 wb->wc = wc;
1678 bio->bi_end_io = writecache_writeback_endio;
1679 bio_set_dev(bio, wc->dev->bdev);
1680 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1681 if (max_pages <= WB_LIST_INLINE ||
1682 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1683 GFP_NOIO | __GFP_NORETRY |
1684 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1685 wb->wc_list = wb->wc_list_inline;
1686 max_pages = WB_LIST_INLINE;
1687 }
1688
1689 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1690
1691 wb->wc_list[0] = e;
1692 wb->wc_list_n = 1;
1693
1694 while (wbl->size && wb->wc_list_n < max_pages) {
1695 f = container_of(wbl->list.prev, struct wc_entry, lru);
1696 if (read_original_sector(wc, f) !=
1697 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1698 break;
1699 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1700 break;
1701 wbl->size--;
1702 list_del(&f->lru);
1703 wb->wc_list[wb->wc_list_n++] = f;
1704 e = f;
1705 }
1706 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1707 if (writecache_has_error(wc)) {
1708 bio->bi_status = BLK_STS_IOERR;
1709 bio_endio(bio);
1710 } else {
1711 submit_bio(bio);
1712 }
1713
1714 __writeback_throttle(wc, wbl);
1715 }
1716}
1717
1718static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1719{
1720 struct wc_entry *e, *f;
1721 struct dm_io_region from, to;
1722 struct copy_struct *c;
1723
1724 while (wbl->size) {
1725 unsigned n_sectors;
1726
1727 wbl->size--;
1728 e = container_of(wbl->list.prev, struct wc_entry, lru);
1729 list_del(&e->lru);
1730
1731 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1732
1733 from.bdev = wc->ssd_dev->bdev;
1734 from.sector = cache_sector(wc, e);
1735 from.count = n_sectors;
1736 to.bdev = wc->dev->bdev;
1737 to.sector = read_original_sector(wc, e);
1738 to.count = n_sectors;
1739
1740 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1741 c->wc = wc;
1742 c->e = e;
1743 c->n_entries = e->wc_list_contiguous;
1744
1745 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1746 wbl->size--;
1747 f = container_of(wbl->list.prev, struct wc_entry, lru);
1748 BUG_ON(f != e + 1);
1749 list_del(&f->lru);
1750 e = f;
1751 }
1752
1753 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1754
1755 __writeback_throttle(wc, wbl);
1756 }
1757}
1758
1759static void writecache_writeback(struct work_struct *work)
1760{
1761 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1762 struct blk_plug plug;
1763 struct wc_entry *f, *g, *e = NULL;
1764 struct rb_node *node, *next_node;
1765 struct list_head skipped;
1766 struct writeback_list wbl;
1767 unsigned long n_walked;
1768
1769 wc_lock(wc);
1770restart:
1771 if (writecache_has_error(wc)) {
1772 wc_unlock(wc);
1773 return;
1774 }
1775
1776 if (unlikely(wc->writeback_all)) {
1777 if (writecache_wait_for_writeback(wc))
1778 goto restart;
1779 }
1780
1781 if (wc->overwrote_committed) {
1782 writecache_wait_for_ios(wc, WRITE);
1783 }
1784
1785 n_walked = 0;
1786 INIT_LIST_HEAD(&skipped);
1787 INIT_LIST_HEAD(&wbl.list);
1788 wbl.size = 0;
1789 while (!list_empty(&wc->lru) &&
1790 (wc->writeback_all ||
1791 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1792 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1793 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1794
1795 n_walked++;
1796 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1797 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1798 queue_work(wc->writeback_wq, &wc->writeback_work);
1799 break;
1800 }
1801
1802 if (unlikely(wc->writeback_all)) {
1803 if (unlikely(!e)) {
1804 writecache_flush(wc);
1805 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1806 } else
1807 e = g;
1808 } else
1809 e = container_of(wc->lru.prev, struct wc_entry, lru);
1810 BUG_ON(e->write_in_progress);
1811 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1812 writecache_flush(wc);
1813 }
1814 node = rb_prev(&e->rb_node);
1815 if (node) {
1816 f = container_of(node, struct wc_entry, rb_node);
1817 if (unlikely(read_original_sector(wc, f) ==
1818 read_original_sector(wc, e))) {
1819 BUG_ON(!f->write_in_progress);
1820 list_del(&e->lru);
1821 list_add(&e->lru, &skipped);
1822 cond_resched();
1823 continue;
1824 }
1825 }
1826 wc->writeback_size++;
1827 list_del(&e->lru);
1828 list_add(&e->lru, &wbl.list);
1829 wbl.size++;
1830 e->write_in_progress = true;
1831 e->wc_list_contiguous = 1;
1832
1833 f = e;
1834
1835 while (1) {
1836 next_node = rb_next(&f->rb_node);
1837 if (unlikely(!next_node))
1838 break;
1839 g = container_of(next_node, struct wc_entry, rb_node);
1840 if (unlikely(read_original_sector(wc, g) ==
1841 read_original_sector(wc, f))) {
1842 f = g;
1843 continue;
1844 }
1845 if (read_original_sector(wc, g) !=
1846 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1847 break;
1848 if (unlikely(g->write_in_progress))
1849 break;
1850 if (unlikely(!writecache_entry_is_committed(wc, g)))
1851 break;
1852
1853 if (!WC_MODE_PMEM(wc)) {
1854 if (g != f + 1)
1855 break;
1856 }
1857
1858 n_walked++;
1859 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1860 // break;
1861
1862 wc->writeback_size++;
1863 list_del(&g->lru);
1864 list_add(&g->lru, &wbl.list);
1865 wbl.size++;
1866 g->write_in_progress = true;
1867 g->wc_list_contiguous = BIO_MAX_PAGES;
1868 f = g;
1869 e->wc_list_contiguous++;
1870 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1871 if (unlikely(wc->writeback_all)) {
1872 next_node = rb_next(&f->rb_node);
1873 if (likely(next_node))
1874 g = container_of(next_node, struct wc_entry, rb_node);
1875 }
1876 break;
1877 }
1878 }
1879 cond_resched();
1880 }
1881
1882 if (!list_empty(&skipped)) {
1883 list_splice_tail(&skipped, &wc->lru);
1884 /*
1885 * If we didn't do any progress, we must wait until some
1886 * writeback finishes to avoid burning CPU in a loop
1887 */
1888 if (unlikely(!wbl.size))
1889 writecache_wait_for_writeback(wc);
1890 }
1891
1892 wc_unlock(wc);
1893
1894 blk_start_plug(&plug);
1895
1896 if (WC_MODE_PMEM(wc))
1897 __writecache_writeback_pmem(wc, &wbl);
1898 else
1899 __writecache_writeback_ssd(wc, &wbl);
1900
1901 blk_finish_plug(&plug);
1902
1903 if (unlikely(wc->writeback_all)) {
1904 wc_lock(wc);
1905 while (writecache_wait_for_writeback(wc));
1906 wc_unlock(wc);
1907 }
1908}
1909
1910static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1911 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1912{
1913 uint64_t n_blocks, offset;
1914 struct wc_entry e;
1915
1916 n_blocks = device_size;
1917 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1918
1919 while (1) {
1920 if (!n_blocks)
1921 return -ENOSPC;
1922 /* Verify the following entries[n_blocks] won't overflow */
1923 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1924 sizeof(struct wc_memory_entry)))
1925 return -EFBIG;
1926 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1927 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1928 if (offset + n_blocks * block_size <= device_size)
1929 break;
1930 n_blocks--;
1931 }
1932
1933 /* check if the bit field overflows */
1934 e.index = n_blocks;
1935 if (e.index != n_blocks)
1936 return -EFBIG;
1937
1938 if (n_blocks_p)
1939 *n_blocks_p = n_blocks;
1940 if (n_metadata_blocks_p)
1941 *n_metadata_blocks_p = offset >> __ffs(block_size);
1942 return 0;
1943}
1944
1945static int init_memory(struct dm_writecache *wc)
1946{
1947 size_t b;
1948 int r;
1949
1950 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1951 if (r)
1952 return r;
1953
1954 r = writecache_alloc_entries(wc);
1955 if (r)
1956 return r;
1957
1958 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1959 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1960 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1961 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1962 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1963 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1964
1965 for (b = 0; b < wc->n_blocks; b++) {
1966 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1967 cond_resched();
1968 }
1969
1970 writecache_flush_all_metadata(wc);
1971 writecache_commit_flushed(wc, false);
1972 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1973 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1974 writecache_commit_flushed(wc, false);
1975
1976 return 0;
1977}
1978
1979static void writecache_dtr(struct dm_target *ti)
1980{
1981 struct dm_writecache *wc = ti->private;
1982
1983 if (!wc)
1984 return;
1985
1986 if (wc->endio_thread)
1987 kthread_stop(wc->endio_thread);
1988
1989 if (wc->flush_thread)
1990 kthread_stop(wc->flush_thread);
1991
1992 bioset_exit(&wc->bio_set);
1993
1994 mempool_exit(&wc->copy_pool);
1995
1996 if (wc->writeback_wq)
1997 destroy_workqueue(wc->writeback_wq);
1998
1999 if (wc->dev)
2000 dm_put_device(ti, wc->dev);
2001
2002 if (wc->ssd_dev)
2003 dm_put_device(ti, wc->ssd_dev);
2004
2005 if (wc->entries)
2006 vfree(wc->entries);
2007
2008 if (wc->memory_map) {
2009 if (WC_MODE_PMEM(wc))
2010 persistent_memory_release(wc);
2011 else
2012 vfree(wc->memory_map);
2013 }
2014
2015 if (wc->dm_kcopyd)
2016 dm_kcopyd_client_destroy(wc->dm_kcopyd);
2017
2018 if (wc->dm_io)
2019 dm_io_client_destroy(wc->dm_io);
2020
2021 if (wc->dirty_bitmap)
2022 vfree(wc->dirty_bitmap);
2023
2024 kfree(wc);
2025}
2026
2027static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2028{
2029 struct dm_writecache *wc;
2030 struct dm_arg_set as;
2031 const char *string;
2032 unsigned opt_params;
2033 size_t offset, data_size;
2034 int i, r;
2035 char dummy;
2036 int high_wm_percent = HIGH_WATERMARK;
2037 int low_wm_percent = LOW_WATERMARK;
2038 uint64_t x;
2039 struct wc_memory_superblock s;
2040
2041 static struct dm_arg _args[] = {
2042 {0, 10, "Invalid number of feature args"},
2043 };
2044
2045 as.argc = argc;
2046 as.argv = argv;
2047
2048 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2049 if (!wc) {
2050 ti->error = "Cannot allocate writecache structure";
2051 r = -ENOMEM;
2052 goto bad;
2053 }
2054 ti->private = wc;
2055 wc->ti = ti;
2056
2057 mutex_init(&wc->lock);
2058 wc->max_age = MAX_AGE_UNSPECIFIED;
2059 writecache_poison_lists(wc);
2060 init_waitqueue_head(&wc->freelist_wait);
2061 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2062 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2063
2064 for (i = 0; i < 2; i++) {
2065 atomic_set(&wc->bio_in_progress[i], 0);
2066 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2067 }
2068
2069 wc->dm_io = dm_io_client_create();
2070 if (IS_ERR(wc->dm_io)) {
2071 r = PTR_ERR(wc->dm_io);
2072 ti->error = "Unable to allocate dm-io client";
2073 wc->dm_io = NULL;
2074 goto bad;
2075 }
2076
2077 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2078 if (!wc->writeback_wq) {
2079 r = -ENOMEM;
2080 ti->error = "Could not allocate writeback workqueue";
2081 goto bad;
2082 }
2083 INIT_WORK(&wc->writeback_work, writecache_writeback);
2084 INIT_WORK(&wc->flush_work, writecache_flush_work);
2085
2086 raw_spin_lock_init(&wc->endio_list_lock);
2087 INIT_LIST_HEAD(&wc->endio_list);
2088 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2089 if (IS_ERR(wc->endio_thread)) {
2090 r = PTR_ERR(wc->endio_thread);
2091 wc->endio_thread = NULL;
2092 ti->error = "Couldn't spawn endio thread";
2093 goto bad;
2094 }
2095 wake_up_process(wc->endio_thread);
2096
2097 /*
2098 * Parse the mode (pmem or ssd)
2099 */
2100 string = dm_shift_arg(&as);
2101 if (!string)
2102 goto bad_arguments;
2103
2104 if (!strcasecmp(string, "s")) {
2105 wc->pmem_mode = false;
2106 } else if (!strcasecmp(string, "p")) {
2107#ifdef DM_WRITECACHE_HAS_PMEM
2108 wc->pmem_mode = true;
2109 wc->writeback_fua = true;
2110#else
2111 /*
2112 * If the architecture doesn't support persistent memory or
2113 * the kernel doesn't support any DAX drivers, this driver can
2114 * only be used in SSD-only mode.
2115 */
2116 r = -EOPNOTSUPP;
2117 ti->error = "Persistent memory or DAX not supported on this system";
2118 goto bad;
2119#endif
2120 } else {
2121 goto bad_arguments;
2122 }
2123
2124 if (WC_MODE_PMEM(wc)) {
2125 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2126 offsetof(struct writeback_struct, bio),
2127 BIOSET_NEED_BVECS);
2128 if (r) {
2129 ti->error = "Could not allocate bio set";
2130 goto bad;
2131 }
2132 } else {
2133 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2134 if (r) {
2135 ti->error = "Could not allocate mempool";
2136 goto bad;
2137 }
2138 }
2139
2140 /*
2141 * Parse the origin data device
2142 */
2143 string = dm_shift_arg(&as);
2144 if (!string)
2145 goto bad_arguments;
2146 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2147 if (r) {
2148 ti->error = "Origin data device lookup failed";
2149 goto bad;
2150 }
2151
2152 /*
2153 * Parse cache data device (be it pmem or ssd)
2154 */
2155 string = dm_shift_arg(&as);
2156 if (!string)
2157 goto bad_arguments;
2158
2159 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2160 if (r) {
2161 ti->error = "Cache data device lookup failed";
2162 goto bad;
2163 }
2164 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2165
2166 /*
2167 * Parse the cache block size
2168 */
2169 string = dm_shift_arg(&as);
2170 if (!string)
2171 goto bad_arguments;
2172 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2173 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2174 (wc->block_size & (wc->block_size - 1))) {
2175 r = -EINVAL;
2176 ti->error = "Invalid block size";
2177 goto bad;
2178 }
2179 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2180 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2181 r = -EINVAL;
2182 ti->error = "Block size is smaller than device logical block size";
2183 goto bad;
2184 }
2185 wc->block_size_bits = __ffs(wc->block_size);
2186
2187 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2188 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2189 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2190
2191 /*
2192 * Parse optional arguments
2193 */
2194 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2195 if (r)
2196 goto bad;
2197
2198 while (opt_params) {
2199 string = dm_shift_arg(&as), opt_params--;
2200 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2201 unsigned long long start_sector;
2202 string = dm_shift_arg(&as), opt_params--;
2203 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2204 goto invalid_optional;
2205 wc->start_sector = start_sector;
2206 if (wc->start_sector != start_sector ||
2207 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2208 goto invalid_optional;
2209 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2210 string = dm_shift_arg(&as), opt_params--;
2211 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2212 goto invalid_optional;
2213 if (high_wm_percent < 0 || high_wm_percent > 100)
2214 goto invalid_optional;
2215 wc->high_wm_percent_set = true;
2216 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2217 string = dm_shift_arg(&as), opt_params--;
2218 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2219 goto invalid_optional;
2220 if (low_wm_percent < 0 || low_wm_percent > 100)
2221 goto invalid_optional;
2222 wc->low_wm_percent_set = true;
2223 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2224 string = dm_shift_arg(&as), opt_params--;
2225 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2226 goto invalid_optional;
2227 wc->max_writeback_jobs_set = true;
2228 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2229 string = dm_shift_arg(&as), opt_params--;
2230 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2231 goto invalid_optional;
2232 wc->autocommit_blocks_set = true;
2233 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2234 unsigned autocommit_msecs;
2235 string = dm_shift_arg(&as), opt_params--;
2236 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2237 goto invalid_optional;
2238 if (autocommit_msecs > 3600000)
2239 goto invalid_optional;
2240 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2241 wc->autocommit_time_set = true;
2242 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2243 unsigned max_age_msecs;
2244 string = dm_shift_arg(&as), opt_params--;
2245 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2246 goto invalid_optional;
2247 if (max_age_msecs > 86400000)
2248 goto invalid_optional;
2249 wc->max_age = msecs_to_jiffies(max_age_msecs);
2250 } else if (!strcasecmp(string, "cleaner")) {
2251 wc->cleaner = true;
2252 } else if (!strcasecmp(string, "fua")) {
2253 if (WC_MODE_PMEM(wc)) {
2254 wc->writeback_fua = true;
2255 wc->writeback_fua_set = true;
2256 } else goto invalid_optional;
2257 } else if (!strcasecmp(string, "nofua")) {
2258 if (WC_MODE_PMEM(wc)) {
2259 wc->writeback_fua = false;
2260 wc->writeback_fua_set = true;
2261 } else goto invalid_optional;
2262 } else {
2263invalid_optional:
2264 r = -EINVAL;
2265 ti->error = "Invalid optional argument";
2266 goto bad;
2267 }
2268 }
2269
2270 if (high_wm_percent < low_wm_percent) {
2271 r = -EINVAL;
2272 ti->error = "High watermark must be greater than or equal to low watermark";
2273 goto bad;
2274 }
2275
2276 if (WC_MODE_PMEM(wc)) {
2277 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2278 r = -EOPNOTSUPP;
2279 ti->error = "Asynchronous persistent memory not supported as pmem cache";
2280 goto bad;
2281 }
2282
2283 r = persistent_memory_claim(wc);
2284 if (r) {
2285 ti->error = "Unable to map persistent memory for cache";
2286 goto bad;
2287 }
2288 } else {
2289 size_t n_blocks, n_metadata_blocks;
2290 uint64_t n_bitmap_bits;
2291
2292 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2293
2294 bio_list_init(&wc->flush_list);
2295 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2296 if (IS_ERR(wc->flush_thread)) {
2297 r = PTR_ERR(wc->flush_thread);
2298 wc->flush_thread = NULL;
2299 ti->error = "Couldn't spawn flush thread";
2300 goto bad;
2301 }
2302 wake_up_process(wc->flush_thread);
2303
2304 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2305 &n_blocks, &n_metadata_blocks);
2306 if (r) {
2307 ti->error = "Invalid device size";
2308 goto bad;
2309 }
2310
2311 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2312 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2313 /* this is limitation of test_bit functions */
2314 if (n_bitmap_bits > 1U << 31) {
2315 r = -EFBIG;
2316 ti->error = "Invalid device size";
2317 goto bad;
2318 }
2319
2320 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2321 if (!wc->memory_map) {
2322 r = -ENOMEM;
2323 ti->error = "Unable to allocate memory for metadata";
2324 goto bad;
2325 }
2326
2327 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2328 if (IS_ERR(wc->dm_kcopyd)) {
2329 r = PTR_ERR(wc->dm_kcopyd);
2330 ti->error = "Unable to allocate dm-kcopyd client";
2331 wc->dm_kcopyd = NULL;
2332 goto bad;
2333 }
2334
2335 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2336 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2337 BITS_PER_LONG * sizeof(unsigned long);
2338 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2339 if (!wc->dirty_bitmap) {
2340 r = -ENOMEM;
2341 ti->error = "Unable to allocate dirty bitmap";
2342 goto bad;
2343 }
2344
2345 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2346 if (r) {
2347 ti->error = "Unable to read first block of metadata";
2348 goto bad;
2349 }
2350 }
2351
2352 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2353 if (r) {
2354 ti->error = "Hardware memory error when reading superblock";
2355 goto bad;
2356 }
2357 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2358 r = init_memory(wc);
2359 if (r) {
2360 ti->error = "Unable to initialize device";
2361 goto bad;
2362 }
2363 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2364 if (r) {
2365 ti->error = "Hardware memory error when reading superblock";
2366 goto bad;
2367 }
2368 }
2369
2370 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2371 ti->error = "Invalid magic in the superblock";
2372 r = -EINVAL;
2373 goto bad;
2374 }
2375
2376 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2377 ti->error = "Invalid version in the superblock";
2378 r = -EINVAL;
2379 goto bad;
2380 }
2381
2382 if (le32_to_cpu(s.block_size) != wc->block_size) {
2383 ti->error = "Block size does not match superblock";
2384 r = -EINVAL;
2385 goto bad;
2386 }
2387
2388 wc->n_blocks = le64_to_cpu(s.n_blocks);
2389
2390 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2391 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2392overflow:
2393 ti->error = "Overflow in size calculation";
2394 r = -EINVAL;
2395 goto bad;
2396 }
2397 offset += sizeof(struct wc_memory_superblock);
2398 if (offset < sizeof(struct wc_memory_superblock))
2399 goto overflow;
2400 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2401 data_size = wc->n_blocks * (size_t)wc->block_size;
2402 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2403 (offset + data_size < offset))
2404 goto overflow;
2405 if (offset + data_size > wc->memory_map_size) {
2406 ti->error = "Memory area is too small";
2407 r = -EINVAL;
2408 goto bad;
2409 }
2410
2411 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2412 wc->block_start = (char *)sb(wc) + offset;
2413
2414 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2415 x += 50;
2416 do_div(x, 100);
2417 wc->freelist_high_watermark = x;
2418 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2419 x += 50;
2420 do_div(x, 100);
2421 wc->freelist_low_watermark = x;
2422
2423 if (wc->cleaner)
2424 activate_cleaner(wc);
2425
2426 r = writecache_alloc_entries(wc);
2427 if (r) {
2428 ti->error = "Cannot allocate memory";
2429 goto bad;
2430 }
2431
2432 ti->num_flush_bios = 1;
2433 ti->flush_supported = true;
2434 ti->num_discard_bios = 1;
2435
2436 if (WC_MODE_PMEM(wc))
2437 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2438
2439 return 0;
2440
2441bad_arguments:
2442 r = -EINVAL;
2443 ti->error = "Bad arguments";
2444bad:
2445 writecache_dtr(ti);
2446 return r;
2447}
2448
2449static void writecache_status(struct dm_target *ti, status_type_t type,
2450 unsigned status_flags, char *result, unsigned maxlen)
2451{
2452 struct dm_writecache *wc = ti->private;
2453 unsigned extra_args;
2454 unsigned sz = 0;
2455 uint64_t x;
2456
2457 switch (type) {
2458 case STATUSTYPE_INFO:
2459 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2460 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2461 (unsigned long long)wc->writeback_size);
2462 break;
2463 case STATUSTYPE_TABLE:
2464 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2465 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2466 extra_args = 0;
2467 if (wc->start_sector)
2468 extra_args += 2;
2469 if (wc->high_wm_percent_set && !wc->cleaner)
2470 extra_args += 2;
2471 if (wc->low_wm_percent_set && !wc->cleaner)
2472 extra_args += 2;
2473 if (wc->max_writeback_jobs_set)
2474 extra_args += 2;
2475 if (wc->autocommit_blocks_set)
2476 extra_args += 2;
2477 if (wc->autocommit_time_set)
2478 extra_args += 2;
2479 if (wc->cleaner)
2480 extra_args++;
2481 if (wc->writeback_fua_set)
2482 extra_args++;
2483
2484 DMEMIT("%u", extra_args);
2485 if (wc->start_sector)
2486 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2487 if (wc->high_wm_percent_set && !wc->cleaner) {
2488 x = (uint64_t)wc->freelist_high_watermark * 100;
2489 x += wc->n_blocks / 2;
2490 do_div(x, (size_t)wc->n_blocks);
2491 DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2492 }
2493 if (wc->low_wm_percent_set && !wc->cleaner) {
2494 x = (uint64_t)wc->freelist_low_watermark * 100;
2495 x += wc->n_blocks / 2;
2496 do_div(x, (size_t)wc->n_blocks);
2497 DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2498 }
2499 if (wc->max_writeback_jobs_set)
2500 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2501 if (wc->autocommit_blocks_set)
2502 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2503 if (wc->autocommit_time_set)
2504 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2505 if (wc->max_age != MAX_AGE_UNSPECIFIED)
2506 DMEMIT(" max_age %u", jiffies_to_msecs(wc->max_age));
2507 if (wc->cleaner)
2508 DMEMIT(" cleaner");
2509 if (wc->writeback_fua_set)
2510 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2511 break;
2512 }
2513}
2514
2515static struct target_type writecache_target = {
2516 .name = "writecache",
2517 .version = {1, 3, 0},
2518 .module = THIS_MODULE,
2519 .ctr = writecache_ctr,
2520 .dtr = writecache_dtr,
2521 .status = writecache_status,
2522 .postsuspend = writecache_suspend,
2523 .resume = writecache_resume,
2524 .message = writecache_message,
2525 .map = writecache_map,
2526 .end_io = writecache_end_io,
2527 .iterate_devices = writecache_iterate_devices,
2528 .io_hints = writecache_io_hints,
2529};
2530
2531static int __init dm_writecache_init(void)
2532{
2533 int r;
2534
2535 r = dm_register_target(&writecache_target);
2536 if (r < 0) {
2537 DMERR("register failed %d", r);
2538 return r;
2539 }
2540
2541 return 0;
2542}
2543
2544static void __exit dm_writecache_exit(void)
2545{
2546 dm_unregister_target(&writecache_target);
2547}
2548
2549module_init(dm_writecache_init);
2550module_exit(dm_writecache_exit);
2551
2552MODULE_DESCRIPTION(DM_NAME " writecache target");
2553MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2554MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/device-mapper.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/vmalloc.h>
12#include <linux/kthread.h>
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
15#include <linux/dax.h>
16#include <linux/pfn_t.h>
17#include <linux/libnvdimm.h>
18
19#define DM_MSG_PREFIX "writecache"
20
21#define HIGH_WATERMARK 50
22#define LOW_WATERMARK 45
23#define MAX_WRITEBACK_JOBS 0
24#define ENDIO_LATENCY 16
25#define WRITEBACK_LATENCY 64
26#define AUTOCOMMIT_BLOCKS_SSD 65536
27#define AUTOCOMMIT_BLOCKS_PMEM 64
28#define AUTOCOMMIT_MSEC 1000
29
30#define BITMAP_GRANULARITY 65536
31#if BITMAP_GRANULARITY < PAGE_SIZE
32#undef BITMAP_GRANULARITY
33#define BITMAP_GRANULARITY PAGE_SIZE
34#endif
35
36#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37#define DM_WRITECACHE_HAS_PMEM
38#endif
39
40#ifdef DM_WRITECACHE_HAS_PMEM
41#define pmem_assign(dest, src) \
42do { \
43 typeof(dest) uniq = (src); \
44 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
45} while (0)
46#else
47#define pmem_assign(dest, src) ((dest) = (src))
48#endif
49
50#if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52#endif
53
54#define MEMORY_SUPERBLOCK_MAGIC 0x23489321
55#define MEMORY_SUPERBLOCK_VERSION 1
56
57struct wc_memory_entry {
58 __le64 original_sector;
59 __le64 seq_count;
60};
61
62struct wc_memory_superblock {
63 union {
64 struct {
65 __le32 magic;
66 __le32 version;
67 __le32 block_size;
68 __le32 pad;
69 __le64 n_blocks;
70 __le64 seq_count;
71 };
72 __le64 padding[8];
73 };
74 struct wc_memory_entry entries[0];
75};
76
77struct wc_entry {
78 struct rb_node rb_node;
79 struct list_head lru;
80 unsigned short wc_list_contiguous;
81 bool write_in_progress
82#if BITS_PER_LONG == 64
83 :1
84#endif
85 ;
86 unsigned long index
87#if BITS_PER_LONG == 64
88 :47
89#endif
90 ;
91#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92 uint64_t original_sector;
93 uint64_t seq_count;
94#endif
95};
96
97#ifdef DM_WRITECACHE_HAS_PMEM
98#define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
99#define WC_MODE_FUA(wc) ((wc)->writeback_fua)
100#else
101#define WC_MODE_PMEM(wc) false
102#define WC_MODE_FUA(wc) false
103#endif
104#define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
105
106struct dm_writecache {
107 struct mutex lock;
108 struct list_head lru;
109 union {
110 struct list_head freelist;
111 struct {
112 struct rb_root freetree;
113 struct wc_entry *current_free;
114 };
115 };
116 struct rb_root tree;
117
118 size_t freelist_size;
119 size_t writeback_size;
120 size_t freelist_high_watermark;
121 size_t freelist_low_watermark;
122
123 unsigned uncommitted_blocks;
124 unsigned autocommit_blocks;
125 unsigned max_writeback_jobs;
126
127 int error;
128
129 unsigned long autocommit_jiffies;
130 struct timer_list autocommit_timer;
131 struct wait_queue_head freelist_wait;
132
133 atomic_t bio_in_progress[2];
134 struct wait_queue_head bio_in_progress_wait[2];
135
136 struct dm_target *ti;
137 struct dm_dev *dev;
138 struct dm_dev *ssd_dev;
139 sector_t start_sector;
140 void *memory_map;
141 uint64_t memory_map_size;
142 size_t metadata_sectors;
143 size_t n_blocks;
144 uint64_t seq_count;
145 void *block_start;
146 struct wc_entry *entries;
147 unsigned block_size;
148 unsigned char block_size_bits;
149
150 bool pmem_mode:1;
151 bool writeback_fua:1;
152
153 bool overwrote_committed:1;
154 bool memory_vmapped:1;
155
156 bool high_wm_percent_set:1;
157 bool low_wm_percent_set:1;
158 bool max_writeback_jobs_set:1;
159 bool autocommit_blocks_set:1;
160 bool autocommit_time_set:1;
161 bool writeback_fua_set:1;
162 bool flush_on_suspend:1;
163
164 unsigned writeback_all;
165 struct workqueue_struct *writeback_wq;
166 struct work_struct writeback_work;
167 struct work_struct flush_work;
168
169 struct dm_io_client *dm_io;
170
171 raw_spinlock_t endio_list_lock;
172 struct list_head endio_list;
173 struct task_struct *endio_thread;
174
175 struct task_struct *flush_thread;
176 struct bio_list flush_list;
177
178 struct dm_kcopyd_client *dm_kcopyd;
179 unsigned long *dirty_bitmap;
180 unsigned dirty_bitmap_size;
181
182 struct bio_set bio_set;
183 mempool_t copy_pool;
184};
185
186#define WB_LIST_INLINE 16
187
188struct writeback_struct {
189 struct list_head endio_entry;
190 struct dm_writecache *wc;
191 struct wc_entry **wc_list;
192 unsigned wc_list_n;
193 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
194 struct bio bio;
195};
196
197struct copy_struct {
198 struct list_head endio_entry;
199 struct dm_writecache *wc;
200 struct wc_entry *e;
201 unsigned n_entries;
202 int error;
203};
204
205DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
206 "A percentage of time allocated for data copying");
207
208static void wc_lock(struct dm_writecache *wc)
209{
210 mutex_lock(&wc->lock);
211}
212
213static void wc_unlock(struct dm_writecache *wc)
214{
215 mutex_unlock(&wc->lock);
216}
217
218#ifdef DM_WRITECACHE_HAS_PMEM
219static int persistent_memory_claim(struct dm_writecache *wc)
220{
221 int r;
222 loff_t s;
223 long p, da;
224 pfn_t pfn;
225 int id;
226 struct page **pages;
227
228 wc->memory_vmapped = false;
229
230 if (!wc->ssd_dev->dax_dev) {
231 r = -EOPNOTSUPP;
232 goto err1;
233 }
234 s = wc->memory_map_size;
235 p = s >> PAGE_SHIFT;
236 if (!p) {
237 r = -EINVAL;
238 goto err1;
239 }
240 if (p != s >> PAGE_SHIFT) {
241 r = -EOVERFLOW;
242 goto err1;
243 }
244
245 id = dax_read_lock();
246
247 da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
248 if (da < 0) {
249 wc->memory_map = NULL;
250 r = da;
251 goto err2;
252 }
253 if (!pfn_t_has_page(pfn)) {
254 wc->memory_map = NULL;
255 r = -EOPNOTSUPP;
256 goto err2;
257 }
258 if (da != p) {
259 long i;
260 wc->memory_map = NULL;
261 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
262 if (!pages) {
263 r = -ENOMEM;
264 goto err2;
265 }
266 i = 0;
267 do {
268 long daa;
269 daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
270 NULL, &pfn);
271 if (daa <= 0) {
272 r = daa ? daa : -EINVAL;
273 goto err3;
274 }
275 if (!pfn_t_has_page(pfn)) {
276 r = -EOPNOTSUPP;
277 goto err3;
278 }
279 while (daa-- && i < p) {
280 pages[i++] = pfn_t_to_page(pfn);
281 pfn.val++;
282 }
283 } while (i < p);
284 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
285 if (!wc->memory_map) {
286 r = -ENOMEM;
287 goto err3;
288 }
289 kvfree(pages);
290 wc->memory_vmapped = true;
291 }
292
293 dax_read_unlock(id);
294
295 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
296 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
297
298 return 0;
299err3:
300 kvfree(pages);
301err2:
302 dax_read_unlock(id);
303err1:
304 return r;
305}
306#else
307static int persistent_memory_claim(struct dm_writecache *wc)
308{
309 BUG();
310}
311#endif
312
313static void persistent_memory_release(struct dm_writecache *wc)
314{
315 if (wc->memory_vmapped)
316 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
317}
318
319static struct page *persistent_memory_page(void *addr)
320{
321 if (is_vmalloc_addr(addr))
322 return vmalloc_to_page(addr);
323 else
324 return virt_to_page(addr);
325}
326
327static unsigned persistent_memory_page_offset(void *addr)
328{
329 return (unsigned long)addr & (PAGE_SIZE - 1);
330}
331
332static void persistent_memory_flush_cache(void *ptr, size_t size)
333{
334 if (is_vmalloc_addr(ptr))
335 flush_kernel_vmap_range(ptr, size);
336}
337
338static void persistent_memory_invalidate_cache(void *ptr, size_t size)
339{
340 if (is_vmalloc_addr(ptr))
341 invalidate_kernel_vmap_range(ptr, size);
342}
343
344static struct wc_memory_superblock *sb(struct dm_writecache *wc)
345{
346 return wc->memory_map;
347}
348
349static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
350{
351 return &sb(wc)->entries[e->index];
352}
353
354static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
355{
356 return (char *)wc->block_start + (e->index << wc->block_size_bits);
357}
358
359static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
360{
361 return wc->start_sector + wc->metadata_sectors +
362 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
363}
364
365static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
366{
367#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
368 return e->original_sector;
369#else
370 return le64_to_cpu(memory_entry(wc, e)->original_sector);
371#endif
372}
373
374static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
375{
376#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
377 return e->seq_count;
378#else
379 return le64_to_cpu(memory_entry(wc, e)->seq_count);
380#endif
381}
382
383static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
384{
385#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
386 e->seq_count = -1;
387#endif
388 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
389}
390
391static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
392 uint64_t original_sector, uint64_t seq_count)
393{
394 struct wc_memory_entry me;
395#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
396 e->original_sector = original_sector;
397 e->seq_count = seq_count;
398#endif
399 me.original_sector = cpu_to_le64(original_sector);
400 me.seq_count = cpu_to_le64(seq_count);
401 pmem_assign(*memory_entry(wc, e), me);
402}
403
404#define writecache_error(wc, err, msg, arg...) \
405do { \
406 if (!cmpxchg(&(wc)->error, 0, err)) \
407 DMERR(msg, ##arg); \
408 wake_up(&(wc)->freelist_wait); \
409} while (0)
410
411#define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
412
413static void writecache_flush_all_metadata(struct dm_writecache *wc)
414{
415 if (!WC_MODE_PMEM(wc))
416 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
417}
418
419static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
420{
421 if (!WC_MODE_PMEM(wc))
422 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
423 wc->dirty_bitmap);
424}
425
426static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
427
428struct io_notify {
429 struct dm_writecache *wc;
430 struct completion c;
431 atomic_t count;
432};
433
434static void writecache_notify_io(unsigned long error, void *context)
435{
436 struct io_notify *endio = context;
437
438 if (unlikely(error != 0))
439 writecache_error(endio->wc, -EIO, "error writing metadata");
440 BUG_ON(atomic_read(&endio->count) <= 0);
441 if (atomic_dec_and_test(&endio->count))
442 complete(&endio->c);
443}
444
445static void ssd_commit_flushed(struct dm_writecache *wc)
446{
447 struct dm_io_region region;
448 struct dm_io_request req;
449 struct io_notify endio = {
450 wc,
451 COMPLETION_INITIALIZER_ONSTACK(endio.c),
452 ATOMIC_INIT(1),
453 };
454 unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
455 unsigned i = 0;
456
457 while (1) {
458 unsigned j;
459 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
460 if (unlikely(i == bitmap_bits))
461 break;
462 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
463
464 region.bdev = wc->ssd_dev->bdev;
465 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
466 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
467
468 if (unlikely(region.sector >= wc->metadata_sectors))
469 break;
470 if (unlikely(region.sector + region.count > wc->metadata_sectors))
471 region.count = wc->metadata_sectors - region.sector;
472
473 region.sector += wc->start_sector;
474 atomic_inc(&endio.count);
475 req.bi_op = REQ_OP_WRITE;
476 req.bi_op_flags = REQ_SYNC;
477 req.mem.type = DM_IO_VMA;
478 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
479 req.client = wc->dm_io;
480 req.notify.fn = writecache_notify_io;
481 req.notify.context = &endio;
482
483 /* writing via async dm-io (implied by notify.fn above) won't return an error */
484 (void) dm_io(&req, 1, ®ion, NULL);
485 i = j;
486 }
487
488 writecache_notify_io(0, &endio);
489 wait_for_completion_io(&endio.c);
490
491 writecache_disk_flush(wc, wc->ssd_dev);
492
493 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
494}
495
496static void writecache_commit_flushed(struct dm_writecache *wc)
497{
498 if (WC_MODE_PMEM(wc))
499 wmb();
500 else
501 ssd_commit_flushed(wc);
502}
503
504static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
505{
506 int r;
507 struct dm_io_region region;
508 struct dm_io_request req;
509
510 region.bdev = dev->bdev;
511 region.sector = 0;
512 region.count = 0;
513 req.bi_op = REQ_OP_WRITE;
514 req.bi_op_flags = REQ_PREFLUSH;
515 req.mem.type = DM_IO_KMEM;
516 req.mem.ptr.addr = NULL;
517 req.client = wc->dm_io;
518 req.notify.fn = NULL;
519
520 r = dm_io(&req, 1, ®ion, NULL);
521 if (unlikely(r))
522 writecache_error(wc, r, "error flushing metadata: %d", r);
523}
524
525static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
526{
527 wait_event(wc->bio_in_progress_wait[direction],
528 !atomic_read(&wc->bio_in_progress[direction]));
529}
530
531#define WFE_RETURN_FOLLOWING 1
532#define WFE_LOWEST_SEQ 2
533
534static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
535 uint64_t block, int flags)
536{
537 struct wc_entry *e;
538 struct rb_node *node = wc->tree.rb_node;
539
540 if (unlikely(!node))
541 return NULL;
542
543 while (1) {
544 e = container_of(node, struct wc_entry, rb_node);
545 if (read_original_sector(wc, e) == block)
546 break;
547
548 node = (read_original_sector(wc, e) >= block ?
549 e->rb_node.rb_left : e->rb_node.rb_right);
550 if (unlikely(!node)) {
551 if (!(flags & WFE_RETURN_FOLLOWING))
552 return NULL;
553 if (read_original_sector(wc, e) >= block) {
554 return e;
555 } else {
556 node = rb_next(&e->rb_node);
557 if (unlikely(!node))
558 return NULL;
559 e = container_of(node, struct wc_entry, rb_node);
560 return e;
561 }
562 }
563 }
564
565 while (1) {
566 struct wc_entry *e2;
567 if (flags & WFE_LOWEST_SEQ)
568 node = rb_prev(&e->rb_node);
569 else
570 node = rb_next(&e->rb_node);
571 if (unlikely(!node))
572 return e;
573 e2 = container_of(node, struct wc_entry, rb_node);
574 if (read_original_sector(wc, e2) != block)
575 return e;
576 e = e2;
577 }
578}
579
580static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
581{
582 struct wc_entry *e;
583 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
584
585 while (*node) {
586 e = container_of(*node, struct wc_entry, rb_node);
587 parent = &e->rb_node;
588 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
589 node = &parent->rb_left;
590 else
591 node = &parent->rb_right;
592 }
593 rb_link_node(&ins->rb_node, parent, node);
594 rb_insert_color(&ins->rb_node, &wc->tree);
595 list_add(&ins->lru, &wc->lru);
596}
597
598static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
599{
600 list_del(&e->lru);
601 rb_erase(&e->rb_node, &wc->tree);
602}
603
604static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
605{
606 if (WC_MODE_SORT_FREELIST(wc)) {
607 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
608 if (unlikely(!*node))
609 wc->current_free = e;
610 while (*node) {
611 parent = *node;
612 if (&e->rb_node < *node)
613 node = &parent->rb_left;
614 else
615 node = &parent->rb_right;
616 }
617 rb_link_node(&e->rb_node, parent, node);
618 rb_insert_color(&e->rb_node, &wc->freetree);
619 } else {
620 list_add_tail(&e->lru, &wc->freelist);
621 }
622 wc->freelist_size++;
623}
624
625static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
626{
627 struct wc_entry *e;
628
629 if (WC_MODE_SORT_FREELIST(wc)) {
630 struct rb_node *next;
631 if (unlikely(!wc->current_free))
632 return NULL;
633 e = wc->current_free;
634 next = rb_next(&e->rb_node);
635 rb_erase(&e->rb_node, &wc->freetree);
636 if (unlikely(!next))
637 next = rb_first(&wc->freetree);
638 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
639 } else {
640 if (unlikely(list_empty(&wc->freelist)))
641 return NULL;
642 e = container_of(wc->freelist.next, struct wc_entry, lru);
643 list_del(&e->lru);
644 }
645 wc->freelist_size--;
646 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
647 queue_work(wc->writeback_wq, &wc->writeback_work);
648
649 return e;
650}
651
652static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
653{
654 writecache_unlink(wc, e);
655 writecache_add_to_freelist(wc, e);
656 clear_seq_count(wc, e);
657 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
658 if (unlikely(waitqueue_active(&wc->freelist_wait)))
659 wake_up(&wc->freelist_wait);
660}
661
662static void writecache_wait_on_freelist(struct dm_writecache *wc)
663{
664 DEFINE_WAIT(wait);
665
666 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
667 wc_unlock(wc);
668 io_schedule();
669 finish_wait(&wc->freelist_wait, &wait);
670 wc_lock(wc);
671}
672
673static void writecache_poison_lists(struct dm_writecache *wc)
674{
675 /*
676 * Catch incorrect access to these values while the device is suspended.
677 */
678 memset(&wc->tree, -1, sizeof wc->tree);
679 wc->lru.next = LIST_POISON1;
680 wc->lru.prev = LIST_POISON2;
681 wc->freelist.next = LIST_POISON1;
682 wc->freelist.prev = LIST_POISON2;
683}
684
685static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
686{
687 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
688 if (WC_MODE_PMEM(wc))
689 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
690}
691
692static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
693{
694 return read_seq_count(wc, e) < wc->seq_count;
695}
696
697static void writecache_flush(struct dm_writecache *wc)
698{
699 struct wc_entry *e, *e2;
700 bool need_flush_after_free;
701
702 wc->uncommitted_blocks = 0;
703 del_timer(&wc->autocommit_timer);
704
705 if (list_empty(&wc->lru))
706 return;
707
708 e = container_of(wc->lru.next, struct wc_entry, lru);
709 if (writecache_entry_is_committed(wc, e)) {
710 if (wc->overwrote_committed) {
711 writecache_wait_for_ios(wc, WRITE);
712 writecache_disk_flush(wc, wc->ssd_dev);
713 wc->overwrote_committed = false;
714 }
715 return;
716 }
717 while (1) {
718 writecache_flush_entry(wc, e);
719 if (unlikely(e->lru.next == &wc->lru))
720 break;
721 e2 = container_of(e->lru.next, struct wc_entry, lru);
722 if (writecache_entry_is_committed(wc, e2))
723 break;
724 e = e2;
725 cond_resched();
726 }
727 writecache_commit_flushed(wc);
728
729 if (!WC_MODE_PMEM(wc))
730 writecache_wait_for_ios(wc, WRITE);
731
732 wc->seq_count++;
733 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
734 writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
735 writecache_commit_flushed(wc);
736
737 wc->overwrote_committed = false;
738
739 need_flush_after_free = false;
740 while (1) {
741 /* Free another committed entry with lower seq-count */
742 struct rb_node *rb_node = rb_prev(&e->rb_node);
743
744 if (rb_node) {
745 e2 = container_of(rb_node, struct wc_entry, rb_node);
746 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
747 likely(!e2->write_in_progress)) {
748 writecache_free_entry(wc, e2);
749 need_flush_after_free = true;
750 }
751 }
752 if (unlikely(e->lru.prev == &wc->lru))
753 break;
754 e = container_of(e->lru.prev, struct wc_entry, lru);
755 cond_resched();
756 }
757
758 if (need_flush_after_free)
759 writecache_commit_flushed(wc);
760}
761
762static void writecache_flush_work(struct work_struct *work)
763{
764 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
765
766 wc_lock(wc);
767 writecache_flush(wc);
768 wc_unlock(wc);
769}
770
771static void writecache_autocommit_timer(struct timer_list *t)
772{
773 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
774 if (!writecache_has_error(wc))
775 queue_work(wc->writeback_wq, &wc->flush_work);
776}
777
778static void writecache_schedule_autocommit(struct dm_writecache *wc)
779{
780 if (!timer_pending(&wc->autocommit_timer))
781 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
782}
783
784static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
785{
786 struct wc_entry *e;
787 bool discarded_something = false;
788
789 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
790 if (unlikely(!e))
791 return;
792
793 while (read_original_sector(wc, e) < end) {
794 struct rb_node *node = rb_next(&e->rb_node);
795
796 if (likely(!e->write_in_progress)) {
797 if (!discarded_something) {
798 writecache_wait_for_ios(wc, READ);
799 writecache_wait_for_ios(wc, WRITE);
800 discarded_something = true;
801 }
802 writecache_free_entry(wc, e);
803 }
804
805 if (unlikely(!node))
806 break;
807
808 e = container_of(node, struct wc_entry, rb_node);
809 }
810
811 if (discarded_something)
812 writecache_commit_flushed(wc);
813}
814
815static bool writecache_wait_for_writeback(struct dm_writecache *wc)
816{
817 if (wc->writeback_size) {
818 writecache_wait_on_freelist(wc);
819 return true;
820 }
821 return false;
822}
823
824static void writecache_suspend(struct dm_target *ti)
825{
826 struct dm_writecache *wc = ti->private;
827 bool flush_on_suspend;
828
829 del_timer_sync(&wc->autocommit_timer);
830
831 wc_lock(wc);
832 writecache_flush(wc);
833 flush_on_suspend = wc->flush_on_suspend;
834 if (flush_on_suspend) {
835 wc->flush_on_suspend = false;
836 wc->writeback_all++;
837 queue_work(wc->writeback_wq, &wc->writeback_work);
838 }
839 wc_unlock(wc);
840
841 flush_workqueue(wc->writeback_wq);
842
843 wc_lock(wc);
844 if (flush_on_suspend)
845 wc->writeback_all--;
846 while (writecache_wait_for_writeback(wc));
847
848 if (WC_MODE_PMEM(wc))
849 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
850
851 writecache_poison_lists(wc);
852
853 wc_unlock(wc);
854}
855
856static int writecache_alloc_entries(struct dm_writecache *wc)
857{
858 size_t b;
859
860 if (wc->entries)
861 return 0;
862 wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
863 if (!wc->entries)
864 return -ENOMEM;
865 for (b = 0; b < wc->n_blocks; b++) {
866 struct wc_entry *e = &wc->entries[b];
867 e->index = b;
868 e->write_in_progress = false;
869 }
870
871 return 0;
872}
873
874static void writecache_resume(struct dm_target *ti)
875{
876 struct dm_writecache *wc = ti->private;
877 size_t b;
878 bool need_flush = false;
879 __le64 sb_seq_count;
880 int r;
881
882 wc_lock(wc);
883
884 if (WC_MODE_PMEM(wc))
885 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
886
887 wc->tree = RB_ROOT;
888 INIT_LIST_HEAD(&wc->lru);
889 if (WC_MODE_SORT_FREELIST(wc)) {
890 wc->freetree = RB_ROOT;
891 wc->current_free = NULL;
892 } else {
893 INIT_LIST_HEAD(&wc->freelist);
894 }
895 wc->freelist_size = 0;
896
897 r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
898 if (r) {
899 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
900 sb_seq_count = cpu_to_le64(0);
901 }
902 wc->seq_count = le64_to_cpu(sb_seq_count);
903
904#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
905 for (b = 0; b < wc->n_blocks; b++) {
906 struct wc_entry *e = &wc->entries[b];
907 struct wc_memory_entry wme;
908 if (writecache_has_error(wc)) {
909 e->original_sector = -1;
910 e->seq_count = -1;
911 continue;
912 }
913 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
914 if (r) {
915 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
916 (unsigned long)b, r);
917 e->original_sector = -1;
918 e->seq_count = -1;
919 } else {
920 e->original_sector = le64_to_cpu(wme.original_sector);
921 e->seq_count = le64_to_cpu(wme.seq_count);
922 }
923 }
924#endif
925 for (b = 0; b < wc->n_blocks; b++) {
926 struct wc_entry *e = &wc->entries[b];
927 if (!writecache_entry_is_committed(wc, e)) {
928 if (read_seq_count(wc, e) != -1) {
929erase_this:
930 clear_seq_count(wc, e);
931 need_flush = true;
932 }
933 writecache_add_to_freelist(wc, e);
934 } else {
935 struct wc_entry *old;
936
937 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
938 if (!old) {
939 writecache_insert_entry(wc, e);
940 } else {
941 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
942 writecache_error(wc, -EINVAL,
943 "two identical entries, position %llu, sector %llu, sequence %llu",
944 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
945 (unsigned long long)read_seq_count(wc, e));
946 }
947 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
948 goto erase_this;
949 } else {
950 writecache_free_entry(wc, old);
951 writecache_insert_entry(wc, e);
952 need_flush = true;
953 }
954 }
955 }
956 cond_resched();
957 }
958
959 if (need_flush) {
960 writecache_flush_all_metadata(wc);
961 writecache_commit_flushed(wc);
962 }
963
964 wc_unlock(wc);
965}
966
967static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
968{
969 if (argc != 1)
970 return -EINVAL;
971
972 wc_lock(wc);
973 if (dm_suspended(wc->ti)) {
974 wc_unlock(wc);
975 return -EBUSY;
976 }
977 if (writecache_has_error(wc)) {
978 wc_unlock(wc);
979 return -EIO;
980 }
981
982 writecache_flush(wc);
983 wc->writeback_all++;
984 queue_work(wc->writeback_wq, &wc->writeback_work);
985 wc_unlock(wc);
986
987 flush_workqueue(wc->writeback_wq);
988
989 wc_lock(wc);
990 wc->writeback_all--;
991 if (writecache_has_error(wc)) {
992 wc_unlock(wc);
993 return -EIO;
994 }
995 wc_unlock(wc);
996
997 return 0;
998}
999
1000static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001{
1002 if (argc != 1)
1003 return -EINVAL;
1004
1005 wc_lock(wc);
1006 wc->flush_on_suspend = true;
1007 wc_unlock(wc);
1008
1009 return 0;
1010}
1011
1012static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013 char *result, unsigned maxlen)
1014{
1015 int r = -EINVAL;
1016 struct dm_writecache *wc = ti->private;
1017
1018 if (!strcasecmp(argv[0], "flush"))
1019 r = process_flush_mesg(argc, argv, wc);
1020 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021 r = process_flush_on_suspend_mesg(argc, argv, wc);
1022 else
1023 DMERR("unrecognised message received: %s", argv[0]);
1024
1025 return r;
1026}
1027
1028static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029{
1030 void *buf;
1031 unsigned long flags;
1032 unsigned size;
1033 int rw = bio_data_dir(bio);
1034 unsigned remaining_size = wc->block_size;
1035
1036 do {
1037 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038 buf = bvec_kmap_irq(&bv, &flags);
1039 size = bv.bv_len;
1040 if (unlikely(size > remaining_size))
1041 size = remaining_size;
1042
1043 if (rw == READ) {
1044 int r;
1045 r = memcpy_mcsafe(buf, data, size);
1046 flush_dcache_page(bio_page(bio));
1047 if (unlikely(r)) {
1048 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049 bio->bi_status = BLK_STS_IOERR;
1050 }
1051 } else {
1052 flush_dcache_page(bio_page(bio));
1053 memcpy_flushcache(data, buf, size);
1054 }
1055
1056 bvec_kunmap_irq(buf, &flags);
1057
1058 data = (char *)data + size;
1059 remaining_size -= size;
1060 bio_advance(bio, size);
1061 } while (unlikely(remaining_size));
1062}
1063
1064static int writecache_flush_thread(void *data)
1065{
1066 struct dm_writecache *wc = data;
1067
1068 while (1) {
1069 struct bio *bio;
1070
1071 wc_lock(wc);
1072 bio = bio_list_pop(&wc->flush_list);
1073 if (!bio) {
1074 set_current_state(TASK_INTERRUPTIBLE);
1075 wc_unlock(wc);
1076
1077 if (unlikely(kthread_should_stop())) {
1078 set_current_state(TASK_RUNNING);
1079 break;
1080 }
1081
1082 schedule();
1083 continue;
1084 }
1085
1086 if (bio_op(bio) == REQ_OP_DISCARD) {
1087 writecache_discard(wc, bio->bi_iter.bi_sector,
1088 bio_end_sector(bio));
1089 wc_unlock(wc);
1090 bio_set_dev(bio, wc->dev->bdev);
1091 generic_make_request(bio);
1092 } else {
1093 writecache_flush(wc);
1094 wc_unlock(wc);
1095 if (writecache_has_error(wc))
1096 bio->bi_status = BLK_STS_IOERR;
1097 bio_endio(bio);
1098 }
1099 }
1100
1101 return 0;
1102}
1103
1104static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105{
1106 if (bio_list_empty(&wc->flush_list))
1107 wake_up_process(wc->flush_thread);
1108 bio_list_add(&wc->flush_list, bio);
1109}
1110
1111static int writecache_map(struct dm_target *ti, struct bio *bio)
1112{
1113 struct wc_entry *e;
1114 struct dm_writecache *wc = ti->private;
1115
1116 bio->bi_private = NULL;
1117
1118 wc_lock(wc);
1119
1120 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121 if (writecache_has_error(wc))
1122 goto unlock_error;
1123 if (WC_MODE_PMEM(wc)) {
1124 writecache_flush(wc);
1125 if (writecache_has_error(wc))
1126 goto unlock_error;
1127 goto unlock_submit;
1128 } else {
1129 writecache_offload_bio(wc, bio);
1130 goto unlock_return;
1131 }
1132 }
1133
1134 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135
1136 if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137 (wc->block_size / 512 - 1)) != 0)) {
1138 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139 (unsigned long long)bio->bi_iter.bi_sector,
1140 bio->bi_iter.bi_size, wc->block_size);
1141 goto unlock_error;
1142 }
1143
1144 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145 if (writecache_has_error(wc))
1146 goto unlock_error;
1147 if (WC_MODE_PMEM(wc)) {
1148 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149 goto unlock_remap_origin;
1150 } else {
1151 writecache_offload_bio(wc, bio);
1152 goto unlock_return;
1153 }
1154 }
1155
1156 if (bio_data_dir(bio) == READ) {
1157read_next_block:
1158 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160 if (WC_MODE_PMEM(wc)) {
1161 bio_copy_block(wc, bio, memory_data(wc, e));
1162 if (bio->bi_iter.bi_size)
1163 goto read_next_block;
1164 goto unlock_submit;
1165 } else {
1166 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167 bio_set_dev(bio, wc->ssd_dev->bdev);
1168 bio->bi_iter.bi_sector = cache_sector(wc, e);
1169 if (!writecache_entry_is_committed(wc, e))
1170 writecache_wait_for_ios(wc, WRITE);
1171 goto unlock_remap;
1172 }
1173 } else {
1174 if (e) {
1175 sector_t next_boundary =
1176 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178 dm_accept_partial_bio(bio, next_boundary);
1179 }
1180 }
1181 goto unlock_remap_origin;
1182 }
1183 } else {
1184 do {
1185 if (writecache_has_error(wc))
1186 goto unlock_error;
1187 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188 if (e) {
1189 if (!writecache_entry_is_committed(wc, e))
1190 goto bio_copy;
1191 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192 wc->overwrote_committed = true;
1193 goto bio_copy;
1194 }
1195 }
1196 e = writecache_pop_from_freelist(wc);
1197 if (unlikely(!e)) {
1198 writecache_wait_on_freelist(wc);
1199 continue;
1200 }
1201 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202 writecache_insert_entry(wc, e);
1203 wc->uncommitted_blocks++;
1204bio_copy:
1205 if (WC_MODE_PMEM(wc)) {
1206 bio_copy_block(wc, bio, memory_data(wc, e));
1207 } else {
1208 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209 bio_set_dev(bio, wc->ssd_dev->bdev);
1210 bio->bi_iter.bi_sector = cache_sector(wc, e);
1211 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212 wc->uncommitted_blocks = 0;
1213 queue_work(wc->writeback_wq, &wc->flush_work);
1214 } else {
1215 writecache_schedule_autocommit(wc);
1216 }
1217 goto unlock_remap;
1218 }
1219 } while (bio->bi_iter.bi_size);
1220
1221 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
1222 writecache_flush(wc);
1223 else
1224 writecache_schedule_autocommit(wc);
1225 goto unlock_submit;
1226 }
1227
1228unlock_remap_origin:
1229 bio_set_dev(bio, wc->dev->bdev);
1230 wc_unlock(wc);
1231 return DM_MAPIO_REMAPPED;
1232
1233unlock_remap:
1234 /* make sure that writecache_end_io decrements bio_in_progress: */
1235 bio->bi_private = (void *)1;
1236 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1237 wc_unlock(wc);
1238 return DM_MAPIO_REMAPPED;
1239
1240unlock_submit:
1241 wc_unlock(wc);
1242 bio_endio(bio);
1243 return DM_MAPIO_SUBMITTED;
1244
1245unlock_return:
1246 wc_unlock(wc);
1247 return DM_MAPIO_SUBMITTED;
1248
1249unlock_error:
1250 wc_unlock(wc);
1251 bio_io_error(bio);
1252 return DM_MAPIO_SUBMITTED;
1253}
1254
1255static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1256{
1257 struct dm_writecache *wc = ti->private;
1258
1259 if (bio->bi_private != NULL) {
1260 int dir = bio_data_dir(bio);
1261 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1262 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1263 wake_up(&wc->bio_in_progress_wait[dir]);
1264 }
1265 return 0;
1266}
1267
1268static int writecache_iterate_devices(struct dm_target *ti,
1269 iterate_devices_callout_fn fn, void *data)
1270{
1271 struct dm_writecache *wc = ti->private;
1272
1273 return fn(ti, wc->dev, 0, ti->len, data);
1274}
1275
1276static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1277{
1278 struct dm_writecache *wc = ti->private;
1279
1280 if (limits->logical_block_size < wc->block_size)
1281 limits->logical_block_size = wc->block_size;
1282
1283 if (limits->physical_block_size < wc->block_size)
1284 limits->physical_block_size = wc->block_size;
1285
1286 if (limits->io_min < wc->block_size)
1287 limits->io_min = wc->block_size;
1288}
1289
1290
1291static void writecache_writeback_endio(struct bio *bio)
1292{
1293 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1294 struct dm_writecache *wc = wb->wc;
1295 unsigned long flags;
1296
1297 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1298 if (unlikely(list_empty(&wc->endio_list)))
1299 wake_up_process(wc->endio_thread);
1300 list_add_tail(&wb->endio_entry, &wc->endio_list);
1301 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1302}
1303
1304static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1305{
1306 struct copy_struct *c = ptr;
1307 struct dm_writecache *wc = c->wc;
1308
1309 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1310
1311 raw_spin_lock_irq(&wc->endio_list_lock);
1312 if (unlikely(list_empty(&wc->endio_list)))
1313 wake_up_process(wc->endio_thread);
1314 list_add_tail(&c->endio_entry, &wc->endio_list);
1315 raw_spin_unlock_irq(&wc->endio_list_lock);
1316}
1317
1318static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1319{
1320 unsigned i;
1321 struct writeback_struct *wb;
1322 struct wc_entry *e;
1323 unsigned long n_walked = 0;
1324
1325 do {
1326 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1327 list_del(&wb->endio_entry);
1328
1329 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1330 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1331 "write error %d", wb->bio.bi_status);
1332 i = 0;
1333 do {
1334 e = wb->wc_list[i];
1335 BUG_ON(!e->write_in_progress);
1336 e->write_in_progress = false;
1337 INIT_LIST_HEAD(&e->lru);
1338 if (!writecache_has_error(wc))
1339 writecache_free_entry(wc, e);
1340 BUG_ON(!wc->writeback_size);
1341 wc->writeback_size--;
1342 n_walked++;
1343 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1344 writecache_commit_flushed(wc);
1345 wc_unlock(wc);
1346 wc_lock(wc);
1347 n_walked = 0;
1348 }
1349 } while (++i < wb->wc_list_n);
1350
1351 if (wb->wc_list != wb->wc_list_inline)
1352 kfree(wb->wc_list);
1353 bio_put(&wb->bio);
1354 } while (!list_empty(list));
1355}
1356
1357static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1358{
1359 struct copy_struct *c;
1360 struct wc_entry *e;
1361
1362 do {
1363 c = list_entry(list->next, struct copy_struct, endio_entry);
1364 list_del(&c->endio_entry);
1365
1366 if (unlikely(c->error))
1367 writecache_error(wc, c->error, "copy error");
1368
1369 e = c->e;
1370 do {
1371 BUG_ON(!e->write_in_progress);
1372 e->write_in_progress = false;
1373 INIT_LIST_HEAD(&e->lru);
1374 if (!writecache_has_error(wc))
1375 writecache_free_entry(wc, e);
1376
1377 BUG_ON(!wc->writeback_size);
1378 wc->writeback_size--;
1379 e++;
1380 } while (--c->n_entries);
1381 mempool_free(c, &wc->copy_pool);
1382 } while (!list_empty(list));
1383}
1384
1385static int writecache_endio_thread(void *data)
1386{
1387 struct dm_writecache *wc = data;
1388
1389 while (1) {
1390 struct list_head list;
1391
1392 raw_spin_lock_irq(&wc->endio_list_lock);
1393 if (!list_empty(&wc->endio_list))
1394 goto pop_from_list;
1395 set_current_state(TASK_INTERRUPTIBLE);
1396 raw_spin_unlock_irq(&wc->endio_list_lock);
1397
1398 if (unlikely(kthread_should_stop())) {
1399 set_current_state(TASK_RUNNING);
1400 break;
1401 }
1402
1403 schedule();
1404
1405 continue;
1406
1407pop_from_list:
1408 list = wc->endio_list;
1409 list.next->prev = list.prev->next = &list;
1410 INIT_LIST_HEAD(&wc->endio_list);
1411 raw_spin_unlock_irq(&wc->endio_list_lock);
1412
1413 if (!WC_MODE_FUA(wc))
1414 writecache_disk_flush(wc, wc->dev);
1415
1416 wc_lock(wc);
1417
1418 if (WC_MODE_PMEM(wc)) {
1419 __writecache_endio_pmem(wc, &list);
1420 } else {
1421 __writecache_endio_ssd(wc, &list);
1422 writecache_wait_for_ios(wc, READ);
1423 }
1424
1425 writecache_commit_flushed(wc);
1426
1427 wc_unlock(wc);
1428 }
1429
1430 return 0;
1431}
1432
1433static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1434{
1435 struct dm_writecache *wc = wb->wc;
1436 unsigned block_size = wc->block_size;
1437 void *address = memory_data(wc, e);
1438
1439 persistent_memory_flush_cache(address, block_size);
1440 return bio_add_page(&wb->bio, persistent_memory_page(address),
1441 block_size, persistent_memory_page_offset(address)) != 0;
1442}
1443
1444struct writeback_list {
1445 struct list_head list;
1446 size_t size;
1447};
1448
1449static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1450{
1451 if (unlikely(wc->max_writeback_jobs)) {
1452 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1453 wc_lock(wc);
1454 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1455 writecache_wait_on_freelist(wc);
1456 wc_unlock(wc);
1457 }
1458 }
1459 cond_resched();
1460}
1461
1462static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1463{
1464 struct wc_entry *e, *f;
1465 struct bio *bio;
1466 struct writeback_struct *wb;
1467 unsigned max_pages;
1468
1469 while (wbl->size) {
1470 wbl->size--;
1471 e = container_of(wbl->list.prev, struct wc_entry, lru);
1472 list_del(&e->lru);
1473
1474 max_pages = e->wc_list_contiguous;
1475
1476 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1477 wb = container_of(bio, struct writeback_struct, bio);
1478 wb->wc = wc;
1479 bio->bi_end_io = writecache_writeback_endio;
1480 bio_set_dev(bio, wc->dev->bdev);
1481 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1482 if (max_pages <= WB_LIST_INLINE ||
1483 unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1484 GFP_NOIO | __GFP_NORETRY |
1485 __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1486 wb->wc_list = wb->wc_list_inline;
1487 max_pages = WB_LIST_INLINE;
1488 }
1489
1490 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1491
1492 wb->wc_list[0] = e;
1493 wb->wc_list_n = 1;
1494
1495 while (wbl->size && wb->wc_list_n < max_pages) {
1496 f = container_of(wbl->list.prev, struct wc_entry, lru);
1497 if (read_original_sector(wc, f) !=
1498 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1499 break;
1500 if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1501 break;
1502 wbl->size--;
1503 list_del(&f->lru);
1504 wb->wc_list[wb->wc_list_n++] = f;
1505 e = f;
1506 }
1507 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1508 if (writecache_has_error(wc)) {
1509 bio->bi_status = BLK_STS_IOERR;
1510 bio_endio(bio);
1511 } else {
1512 submit_bio(bio);
1513 }
1514
1515 __writeback_throttle(wc, wbl);
1516 }
1517}
1518
1519static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1520{
1521 struct wc_entry *e, *f;
1522 struct dm_io_region from, to;
1523 struct copy_struct *c;
1524
1525 while (wbl->size) {
1526 unsigned n_sectors;
1527
1528 wbl->size--;
1529 e = container_of(wbl->list.prev, struct wc_entry, lru);
1530 list_del(&e->lru);
1531
1532 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1533
1534 from.bdev = wc->ssd_dev->bdev;
1535 from.sector = cache_sector(wc, e);
1536 from.count = n_sectors;
1537 to.bdev = wc->dev->bdev;
1538 to.sector = read_original_sector(wc, e);
1539 to.count = n_sectors;
1540
1541 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1542 c->wc = wc;
1543 c->e = e;
1544 c->n_entries = e->wc_list_contiguous;
1545
1546 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1547 wbl->size--;
1548 f = container_of(wbl->list.prev, struct wc_entry, lru);
1549 BUG_ON(f != e + 1);
1550 list_del(&f->lru);
1551 e = f;
1552 }
1553
1554 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1555
1556 __writeback_throttle(wc, wbl);
1557 }
1558}
1559
1560static void writecache_writeback(struct work_struct *work)
1561{
1562 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1563 struct blk_plug plug;
1564 struct wc_entry *f, *g, *e = NULL;
1565 struct rb_node *node, *next_node;
1566 struct list_head skipped;
1567 struct writeback_list wbl;
1568 unsigned long n_walked;
1569
1570 wc_lock(wc);
1571restart:
1572 if (writecache_has_error(wc)) {
1573 wc_unlock(wc);
1574 return;
1575 }
1576
1577 if (unlikely(wc->writeback_all)) {
1578 if (writecache_wait_for_writeback(wc))
1579 goto restart;
1580 }
1581
1582 if (wc->overwrote_committed) {
1583 writecache_wait_for_ios(wc, WRITE);
1584 }
1585
1586 n_walked = 0;
1587 INIT_LIST_HEAD(&skipped);
1588 INIT_LIST_HEAD(&wbl.list);
1589 wbl.size = 0;
1590 while (!list_empty(&wc->lru) &&
1591 (wc->writeback_all ||
1592 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1593
1594 n_walked++;
1595 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1596 likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1597 queue_work(wc->writeback_wq, &wc->writeback_work);
1598 break;
1599 }
1600
1601 if (unlikely(wc->writeback_all)) {
1602 if (unlikely(!e)) {
1603 writecache_flush(wc);
1604 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1605 } else
1606 e = g;
1607 } else
1608 e = container_of(wc->lru.prev, struct wc_entry, lru);
1609 BUG_ON(e->write_in_progress);
1610 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1611 writecache_flush(wc);
1612 }
1613 node = rb_prev(&e->rb_node);
1614 if (node) {
1615 f = container_of(node, struct wc_entry, rb_node);
1616 if (unlikely(read_original_sector(wc, f) ==
1617 read_original_sector(wc, e))) {
1618 BUG_ON(!f->write_in_progress);
1619 list_del(&e->lru);
1620 list_add(&e->lru, &skipped);
1621 cond_resched();
1622 continue;
1623 }
1624 }
1625 wc->writeback_size++;
1626 list_del(&e->lru);
1627 list_add(&e->lru, &wbl.list);
1628 wbl.size++;
1629 e->write_in_progress = true;
1630 e->wc_list_contiguous = 1;
1631
1632 f = e;
1633
1634 while (1) {
1635 next_node = rb_next(&f->rb_node);
1636 if (unlikely(!next_node))
1637 break;
1638 g = container_of(next_node, struct wc_entry, rb_node);
1639 if (unlikely(read_original_sector(wc, g) ==
1640 read_original_sector(wc, f))) {
1641 f = g;
1642 continue;
1643 }
1644 if (read_original_sector(wc, g) !=
1645 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1646 break;
1647 if (unlikely(g->write_in_progress))
1648 break;
1649 if (unlikely(!writecache_entry_is_committed(wc, g)))
1650 break;
1651
1652 if (!WC_MODE_PMEM(wc)) {
1653 if (g != f + 1)
1654 break;
1655 }
1656
1657 n_walked++;
1658 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1659 // break;
1660
1661 wc->writeback_size++;
1662 list_del(&g->lru);
1663 list_add(&g->lru, &wbl.list);
1664 wbl.size++;
1665 g->write_in_progress = true;
1666 g->wc_list_contiguous = BIO_MAX_PAGES;
1667 f = g;
1668 e->wc_list_contiguous++;
1669 if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1670 if (unlikely(wc->writeback_all)) {
1671 next_node = rb_next(&f->rb_node);
1672 if (likely(next_node))
1673 g = container_of(next_node, struct wc_entry, rb_node);
1674 }
1675 break;
1676 }
1677 }
1678 cond_resched();
1679 }
1680
1681 if (!list_empty(&skipped)) {
1682 list_splice_tail(&skipped, &wc->lru);
1683 /*
1684 * If we didn't do any progress, we must wait until some
1685 * writeback finishes to avoid burning CPU in a loop
1686 */
1687 if (unlikely(!wbl.size))
1688 writecache_wait_for_writeback(wc);
1689 }
1690
1691 wc_unlock(wc);
1692
1693 blk_start_plug(&plug);
1694
1695 if (WC_MODE_PMEM(wc))
1696 __writecache_writeback_pmem(wc, &wbl);
1697 else
1698 __writecache_writeback_ssd(wc, &wbl);
1699
1700 blk_finish_plug(&plug);
1701
1702 if (unlikely(wc->writeback_all)) {
1703 wc_lock(wc);
1704 while (writecache_wait_for_writeback(wc));
1705 wc_unlock(wc);
1706 }
1707}
1708
1709static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1710 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1711{
1712 uint64_t n_blocks, offset;
1713 struct wc_entry e;
1714
1715 n_blocks = device_size;
1716 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1717
1718 while (1) {
1719 if (!n_blocks)
1720 return -ENOSPC;
1721 /* Verify the following entries[n_blocks] won't overflow */
1722 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1723 sizeof(struct wc_memory_entry)))
1724 return -EFBIG;
1725 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1726 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1727 if (offset + n_blocks * block_size <= device_size)
1728 break;
1729 n_blocks--;
1730 }
1731
1732 /* check if the bit field overflows */
1733 e.index = n_blocks;
1734 if (e.index != n_blocks)
1735 return -EFBIG;
1736
1737 if (n_blocks_p)
1738 *n_blocks_p = n_blocks;
1739 if (n_metadata_blocks_p)
1740 *n_metadata_blocks_p = offset >> __ffs(block_size);
1741 return 0;
1742}
1743
1744static int init_memory(struct dm_writecache *wc)
1745{
1746 size_t b;
1747 int r;
1748
1749 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1750 if (r)
1751 return r;
1752
1753 r = writecache_alloc_entries(wc);
1754 if (r)
1755 return r;
1756
1757 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1758 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1759 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1760 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1761 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1762 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1763
1764 for (b = 0; b < wc->n_blocks; b++)
1765 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1766
1767 writecache_flush_all_metadata(wc);
1768 writecache_commit_flushed(wc);
1769 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1770 writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1771 writecache_commit_flushed(wc);
1772
1773 return 0;
1774}
1775
1776static void writecache_dtr(struct dm_target *ti)
1777{
1778 struct dm_writecache *wc = ti->private;
1779
1780 if (!wc)
1781 return;
1782
1783 if (wc->endio_thread)
1784 kthread_stop(wc->endio_thread);
1785
1786 if (wc->flush_thread)
1787 kthread_stop(wc->flush_thread);
1788
1789 bioset_exit(&wc->bio_set);
1790
1791 mempool_exit(&wc->copy_pool);
1792
1793 if (wc->writeback_wq)
1794 destroy_workqueue(wc->writeback_wq);
1795
1796 if (wc->dev)
1797 dm_put_device(ti, wc->dev);
1798
1799 if (wc->ssd_dev)
1800 dm_put_device(ti, wc->ssd_dev);
1801
1802 if (wc->entries)
1803 vfree(wc->entries);
1804
1805 if (wc->memory_map) {
1806 if (WC_MODE_PMEM(wc))
1807 persistent_memory_release(wc);
1808 else
1809 vfree(wc->memory_map);
1810 }
1811
1812 if (wc->dm_kcopyd)
1813 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1814
1815 if (wc->dm_io)
1816 dm_io_client_destroy(wc->dm_io);
1817
1818 if (wc->dirty_bitmap)
1819 vfree(wc->dirty_bitmap);
1820
1821 kfree(wc);
1822}
1823
1824static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1825{
1826 struct dm_writecache *wc;
1827 struct dm_arg_set as;
1828 const char *string;
1829 unsigned opt_params;
1830 size_t offset, data_size;
1831 int i, r;
1832 char dummy;
1833 int high_wm_percent = HIGH_WATERMARK;
1834 int low_wm_percent = LOW_WATERMARK;
1835 uint64_t x;
1836 struct wc_memory_superblock s;
1837
1838 static struct dm_arg _args[] = {
1839 {0, 10, "Invalid number of feature args"},
1840 };
1841
1842 as.argc = argc;
1843 as.argv = argv;
1844
1845 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1846 if (!wc) {
1847 ti->error = "Cannot allocate writecache structure";
1848 r = -ENOMEM;
1849 goto bad;
1850 }
1851 ti->private = wc;
1852 wc->ti = ti;
1853
1854 mutex_init(&wc->lock);
1855 writecache_poison_lists(wc);
1856 init_waitqueue_head(&wc->freelist_wait);
1857 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1858
1859 for (i = 0; i < 2; i++) {
1860 atomic_set(&wc->bio_in_progress[i], 0);
1861 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1862 }
1863
1864 wc->dm_io = dm_io_client_create();
1865 if (IS_ERR(wc->dm_io)) {
1866 r = PTR_ERR(wc->dm_io);
1867 ti->error = "Unable to allocate dm-io client";
1868 wc->dm_io = NULL;
1869 goto bad;
1870 }
1871
1872 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1873 if (!wc->writeback_wq) {
1874 r = -ENOMEM;
1875 ti->error = "Could not allocate writeback workqueue";
1876 goto bad;
1877 }
1878 INIT_WORK(&wc->writeback_work, writecache_writeback);
1879 INIT_WORK(&wc->flush_work, writecache_flush_work);
1880
1881 raw_spin_lock_init(&wc->endio_list_lock);
1882 INIT_LIST_HEAD(&wc->endio_list);
1883 wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1884 if (IS_ERR(wc->endio_thread)) {
1885 r = PTR_ERR(wc->endio_thread);
1886 wc->endio_thread = NULL;
1887 ti->error = "Couldn't spawn endio thread";
1888 goto bad;
1889 }
1890 wake_up_process(wc->endio_thread);
1891
1892 /*
1893 * Parse the mode (pmem or ssd)
1894 */
1895 string = dm_shift_arg(&as);
1896 if (!string)
1897 goto bad_arguments;
1898
1899 if (!strcasecmp(string, "s")) {
1900 wc->pmem_mode = false;
1901 } else if (!strcasecmp(string, "p")) {
1902#ifdef DM_WRITECACHE_HAS_PMEM
1903 wc->pmem_mode = true;
1904 wc->writeback_fua = true;
1905#else
1906 /*
1907 * If the architecture doesn't support persistent memory or
1908 * the kernel doesn't support any DAX drivers, this driver can
1909 * only be used in SSD-only mode.
1910 */
1911 r = -EOPNOTSUPP;
1912 ti->error = "Persistent memory or DAX not supported on this system";
1913 goto bad;
1914#endif
1915 } else {
1916 goto bad_arguments;
1917 }
1918
1919 if (WC_MODE_PMEM(wc)) {
1920 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1921 offsetof(struct writeback_struct, bio),
1922 BIOSET_NEED_BVECS);
1923 if (r) {
1924 ti->error = "Could not allocate bio set";
1925 goto bad;
1926 }
1927 } else {
1928 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1929 if (r) {
1930 ti->error = "Could not allocate mempool";
1931 goto bad;
1932 }
1933 }
1934
1935 /*
1936 * Parse the origin data device
1937 */
1938 string = dm_shift_arg(&as);
1939 if (!string)
1940 goto bad_arguments;
1941 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1942 if (r) {
1943 ti->error = "Origin data device lookup failed";
1944 goto bad;
1945 }
1946
1947 /*
1948 * Parse cache data device (be it pmem or ssd)
1949 */
1950 string = dm_shift_arg(&as);
1951 if (!string)
1952 goto bad_arguments;
1953
1954 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1955 if (r) {
1956 ti->error = "Cache data device lookup failed";
1957 goto bad;
1958 }
1959 wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1960
1961 /*
1962 * Parse the cache block size
1963 */
1964 string = dm_shift_arg(&as);
1965 if (!string)
1966 goto bad_arguments;
1967 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1968 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1969 (wc->block_size & (wc->block_size - 1))) {
1970 r = -EINVAL;
1971 ti->error = "Invalid block size";
1972 goto bad;
1973 }
1974 wc->block_size_bits = __ffs(wc->block_size);
1975
1976 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1977 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1978 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1979
1980 /*
1981 * Parse optional arguments
1982 */
1983 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1984 if (r)
1985 goto bad;
1986
1987 while (opt_params) {
1988 string = dm_shift_arg(&as), opt_params--;
1989 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1990 unsigned long long start_sector;
1991 string = dm_shift_arg(&as), opt_params--;
1992 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1993 goto invalid_optional;
1994 wc->start_sector = start_sector;
1995 if (wc->start_sector != start_sector ||
1996 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1997 goto invalid_optional;
1998 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
1999 string = dm_shift_arg(&as), opt_params--;
2000 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2001 goto invalid_optional;
2002 if (high_wm_percent < 0 || high_wm_percent > 100)
2003 goto invalid_optional;
2004 wc->high_wm_percent_set = true;
2005 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2006 string = dm_shift_arg(&as), opt_params--;
2007 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2008 goto invalid_optional;
2009 if (low_wm_percent < 0 || low_wm_percent > 100)
2010 goto invalid_optional;
2011 wc->low_wm_percent_set = true;
2012 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2013 string = dm_shift_arg(&as), opt_params--;
2014 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2015 goto invalid_optional;
2016 wc->max_writeback_jobs_set = true;
2017 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2018 string = dm_shift_arg(&as), opt_params--;
2019 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2020 goto invalid_optional;
2021 wc->autocommit_blocks_set = true;
2022 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2023 unsigned autocommit_msecs;
2024 string = dm_shift_arg(&as), opt_params--;
2025 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2026 goto invalid_optional;
2027 if (autocommit_msecs > 3600000)
2028 goto invalid_optional;
2029 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2030 wc->autocommit_time_set = true;
2031 } else if (!strcasecmp(string, "fua")) {
2032 if (WC_MODE_PMEM(wc)) {
2033 wc->writeback_fua = true;
2034 wc->writeback_fua_set = true;
2035 } else goto invalid_optional;
2036 } else if (!strcasecmp(string, "nofua")) {
2037 if (WC_MODE_PMEM(wc)) {
2038 wc->writeback_fua = false;
2039 wc->writeback_fua_set = true;
2040 } else goto invalid_optional;
2041 } else {
2042invalid_optional:
2043 r = -EINVAL;
2044 ti->error = "Invalid optional argument";
2045 goto bad;
2046 }
2047 }
2048
2049 if (high_wm_percent < low_wm_percent) {
2050 r = -EINVAL;
2051 ti->error = "High watermark must be greater than or equal to low watermark";
2052 goto bad;
2053 }
2054
2055 if (WC_MODE_PMEM(wc)) {
2056 r = persistent_memory_claim(wc);
2057 if (r) {
2058 ti->error = "Unable to map persistent memory for cache";
2059 goto bad;
2060 }
2061 } else {
2062 struct dm_io_region region;
2063 struct dm_io_request req;
2064 size_t n_blocks, n_metadata_blocks;
2065 uint64_t n_bitmap_bits;
2066
2067 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2068
2069 bio_list_init(&wc->flush_list);
2070 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2071 if (IS_ERR(wc->flush_thread)) {
2072 r = PTR_ERR(wc->flush_thread);
2073 wc->flush_thread = NULL;
2074 ti->error = "Couldn't spawn flush thread";
2075 goto bad;
2076 }
2077 wake_up_process(wc->flush_thread);
2078
2079 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2080 &n_blocks, &n_metadata_blocks);
2081 if (r) {
2082 ti->error = "Invalid device size";
2083 goto bad;
2084 }
2085
2086 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2087 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2088 /* this is limitation of test_bit functions */
2089 if (n_bitmap_bits > 1U << 31) {
2090 r = -EFBIG;
2091 ti->error = "Invalid device size";
2092 goto bad;
2093 }
2094
2095 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2096 if (!wc->memory_map) {
2097 r = -ENOMEM;
2098 ti->error = "Unable to allocate memory for metadata";
2099 goto bad;
2100 }
2101
2102 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2103 if (IS_ERR(wc->dm_kcopyd)) {
2104 r = PTR_ERR(wc->dm_kcopyd);
2105 ti->error = "Unable to allocate dm-kcopyd client";
2106 wc->dm_kcopyd = NULL;
2107 goto bad;
2108 }
2109
2110 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2111 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2112 BITS_PER_LONG * sizeof(unsigned long);
2113 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2114 if (!wc->dirty_bitmap) {
2115 r = -ENOMEM;
2116 ti->error = "Unable to allocate dirty bitmap";
2117 goto bad;
2118 }
2119
2120 region.bdev = wc->ssd_dev->bdev;
2121 region.sector = wc->start_sector;
2122 region.count = wc->metadata_sectors;
2123 req.bi_op = REQ_OP_READ;
2124 req.bi_op_flags = REQ_SYNC;
2125 req.mem.type = DM_IO_VMA;
2126 req.mem.ptr.vma = (char *)wc->memory_map;
2127 req.client = wc->dm_io;
2128 req.notify.fn = NULL;
2129
2130 r = dm_io(&req, 1, ®ion, NULL);
2131 if (r) {
2132 ti->error = "Unable to read metadata";
2133 goto bad;
2134 }
2135 }
2136
2137 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2138 if (r) {
2139 ti->error = "Hardware memory error when reading superblock";
2140 goto bad;
2141 }
2142 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2143 r = init_memory(wc);
2144 if (r) {
2145 ti->error = "Unable to initialize device";
2146 goto bad;
2147 }
2148 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2149 if (r) {
2150 ti->error = "Hardware memory error when reading superblock";
2151 goto bad;
2152 }
2153 }
2154
2155 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2156 ti->error = "Invalid magic in the superblock";
2157 r = -EINVAL;
2158 goto bad;
2159 }
2160
2161 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2162 ti->error = "Invalid version in the superblock";
2163 r = -EINVAL;
2164 goto bad;
2165 }
2166
2167 if (le32_to_cpu(s.block_size) != wc->block_size) {
2168 ti->error = "Block size does not match superblock";
2169 r = -EINVAL;
2170 goto bad;
2171 }
2172
2173 wc->n_blocks = le64_to_cpu(s.n_blocks);
2174
2175 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2176 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2177overflow:
2178 ti->error = "Overflow in size calculation";
2179 r = -EINVAL;
2180 goto bad;
2181 }
2182 offset += sizeof(struct wc_memory_superblock);
2183 if (offset < sizeof(struct wc_memory_superblock))
2184 goto overflow;
2185 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2186 data_size = wc->n_blocks * (size_t)wc->block_size;
2187 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2188 (offset + data_size < offset))
2189 goto overflow;
2190 if (offset + data_size > wc->memory_map_size) {
2191 ti->error = "Memory area is too small";
2192 r = -EINVAL;
2193 goto bad;
2194 }
2195
2196 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2197 wc->block_start = (char *)sb(wc) + offset;
2198
2199 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2200 x += 50;
2201 do_div(x, 100);
2202 wc->freelist_high_watermark = x;
2203 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2204 x += 50;
2205 do_div(x, 100);
2206 wc->freelist_low_watermark = x;
2207
2208 r = writecache_alloc_entries(wc);
2209 if (r) {
2210 ti->error = "Cannot allocate memory";
2211 goto bad;
2212 }
2213
2214 ti->num_flush_bios = 1;
2215 ti->flush_supported = true;
2216 ti->num_discard_bios = 1;
2217
2218 if (WC_MODE_PMEM(wc))
2219 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2220
2221 return 0;
2222
2223bad_arguments:
2224 r = -EINVAL;
2225 ti->error = "Bad arguments";
2226bad:
2227 writecache_dtr(ti);
2228 return r;
2229}
2230
2231static void writecache_status(struct dm_target *ti, status_type_t type,
2232 unsigned status_flags, char *result, unsigned maxlen)
2233{
2234 struct dm_writecache *wc = ti->private;
2235 unsigned extra_args;
2236 unsigned sz = 0;
2237 uint64_t x;
2238
2239 switch (type) {
2240 case STATUSTYPE_INFO:
2241 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2242 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2243 (unsigned long long)wc->writeback_size);
2244 break;
2245 case STATUSTYPE_TABLE:
2246 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2247 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2248 extra_args = 0;
2249 if (wc->start_sector)
2250 extra_args += 2;
2251 if (wc->high_wm_percent_set)
2252 extra_args += 2;
2253 if (wc->low_wm_percent_set)
2254 extra_args += 2;
2255 if (wc->max_writeback_jobs_set)
2256 extra_args += 2;
2257 if (wc->autocommit_blocks_set)
2258 extra_args += 2;
2259 if (wc->autocommit_time_set)
2260 extra_args += 2;
2261 if (wc->writeback_fua_set)
2262 extra_args++;
2263
2264 DMEMIT("%u", extra_args);
2265 if (wc->start_sector)
2266 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2267 if (wc->high_wm_percent_set) {
2268 x = (uint64_t)wc->freelist_high_watermark * 100;
2269 x += wc->n_blocks / 2;
2270 do_div(x, (size_t)wc->n_blocks);
2271 DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2272 }
2273 if (wc->low_wm_percent_set) {
2274 x = (uint64_t)wc->freelist_low_watermark * 100;
2275 x += wc->n_blocks / 2;
2276 do_div(x, (size_t)wc->n_blocks);
2277 DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2278 }
2279 if (wc->max_writeback_jobs_set)
2280 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2281 if (wc->autocommit_blocks_set)
2282 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2283 if (wc->autocommit_time_set)
2284 DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2285 if (wc->writeback_fua_set)
2286 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2287 break;
2288 }
2289}
2290
2291static struct target_type writecache_target = {
2292 .name = "writecache",
2293 .version = {1, 1, 1},
2294 .module = THIS_MODULE,
2295 .ctr = writecache_ctr,
2296 .dtr = writecache_dtr,
2297 .status = writecache_status,
2298 .postsuspend = writecache_suspend,
2299 .resume = writecache_resume,
2300 .message = writecache_message,
2301 .map = writecache_map,
2302 .end_io = writecache_end_io,
2303 .iterate_devices = writecache_iterate_devices,
2304 .io_hints = writecache_io_hints,
2305};
2306
2307static int __init dm_writecache_init(void)
2308{
2309 int r;
2310
2311 r = dm_register_target(&writecache_target);
2312 if (r < 0) {
2313 DMERR("register failed %d", r);
2314 return r;
2315 }
2316
2317 return 0;
2318}
2319
2320static void __exit dm_writecache_exit(void)
2321{
2322 dm_unregister_target(&writecache_target);
2323}
2324
2325module_init(dm_writecache_init);
2326module_exit(dm_writecache_exit);
2327
2328MODULE_DESCRIPTION(DM_NAME " writecache target");
2329MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2330MODULE_LICENSE("GPL");