Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
5 *
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <asm/prom.h>
16#include <asm/smu.h>
17
18#include "windfarm.h"
19#include "windfarm_pid.h"
20
21#define VERSION "0.2"
22
23#define DEBUG
24#undef LOTSA_DEBUG
25
26#ifdef DEBUG
27#define DBG(args...) printk(args)
28#else
29#define DBG(args...) do { } while(0)
30#endif
31
32#ifdef LOTSA_DEBUG
33#define DBG_LOTS(args...) printk(args)
34#else
35#define DBG_LOTS(args...) do { } while(0)
36#endif
37
38/* define this to force CPU overtemp to 60 degree, useful for testing
39 * the overtemp code
40 */
41#undef HACKED_OVERTEMP
42
43/* We currently only handle 2 chips, 4 cores... */
44#define NR_CHIPS 2
45#define NR_CORES 4
46#define NR_CPU_FANS 3 * NR_CHIPS
47
48/* Controls and sensors */
49static struct wf_sensor *sens_cpu_temp[NR_CORES];
50static struct wf_sensor *sens_cpu_power[NR_CORES];
51static struct wf_sensor *hd_temp;
52static struct wf_sensor *slots_power;
53static struct wf_sensor *u4_temp;
54
55static struct wf_control *cpu_fans[NR_CPU_FANS];
56static char *cpu_fan_names[NR_CPU_FANS] = {
57 "cpu-rear-fan-0",
58 "cpu-rear-fan-1",
59 "cpu-front-fan-0",
60 "cpu-front-fan-1",
61 "cpu-pump-0",
62 "cpu-pump-1",
63};
64static struct wf_control *cpufreq_clamp;
65
66/* Second pump isn't required (and isn't actually present) */
67#define CPU_FANS_REQD (NR_CPU_FANS - 2)
68#define FIRST_PUMP 4
69#define LAST_PUMP 5
70
71/* We keep a temperature history for average calculation of 180s */
72#define CPU_TEMP_HIST_SIZE 180
73
74/* Scale factor for fan speed, *100 */
75static int cpu_fan_scale[NR_CPU_FANS] = {
76 100,
77 100,
78 97, /* inlet fans run at 97% of exhaust fan */
79 97,
80 100, /* updated later */
81 100, /* updated later */
82};
83
84static struct wf_control *backside_fan;
85static struct wf_control *slots_fan;
86static struct wf_control *drive_bay_fan;
87
88/* PID loop state */
89static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91static int cpu_thist_pt;
92static s64 cpu_thist_total;
93static s32 cpu_all_tmax = 100 << 16;
94static int cpu_last_target;
95static struct wf_pid_state backside_pid;
96static int backside_tick;
97static struct wf_pid_state slots_pid;
98static bool slots_started;
99static struct wf_pid_state drive_bay_pid;
100static int drive_bay_tick;
101
102static int nr_cores;
103static int have_all_controls;
104static int have_all_sensors;
105static bool started;
106
107static int failure_state;
108#define FAILURE_SENSOR 1
109#define FAILURE_FAN 2
110#define FAILURE_PERM 4
111#define FAILURE_LOW_OVERTEMP 8
112#define FAILURE_HIGH_OVERTEMP 16
113
114/* Overtemp values */
115#define LOW_OVER_AVERAGE 0
116#define LOW_OVER_IMMEDIATE (10 << 16)
117#define LOW_OVER_CLEAR ((-10) << 16)
118#define HIGH_OVER_IMMEDIATE (14 << 16)
119#define HIGH_OVER_AVERAGE (10 << 16)
120#define HIGH_OVER_IMMEDIATE (14 << 16)
121
122
123/* Implementation... */
124static int create_cpu_loop(int cpu)
125{
126 int chip = cpu / 2;
127 int core = cpu & 1;
128 struct smu_sdbp_header *hdr;
129 struct smu_sdbp_cpupiddata *piddata;
130 struct wf_cpu_pid_param pid;
131 struct wf_control *main_fan = cpu_fans[0];
132 s32 tmax;
133 int fmin;
134
135 /* Get FVT params to get Tmax; if not found, assume default */
136 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
137 if (hdr) {
138 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
139 tmax = fvt->maxtemp << 16;
140 } else
141 tmax = 95 << 16; /* default to 95 degrees C */
142
143 /* We keep a global tmax for overtemp calculations */
144 if (tmax < cpu_all_tmax)
145 cpu_all_tmax = tmax;
146
147 kfree(hdr);
148
149 /* Get PID params from the appropriate SAT */
150 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
151 if (hdr == NULL) {
152 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
153 return -EINVAL;
154 }
155 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
156
157 /*
158 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
159 * 515 for the 2-way. That appears to be overkill, so for now,
160 * impose a minimum of 750 or 515.
161 */
162 fmin = (nr_cores > 2) ? 750 : 515;
163
164 /* Initialize PID loop */
165 pid.interval = 1; /* seconds */
166 pid.history_len = piddata->history_len;
167 pid.gd = piddata->gd;
168 pid.gp = piddata->gp;
169 pid.gr = piddata->gr / piddata->history_len;
170 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
171 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
172 pid.tmax = tmax;
173 pid.min = main_fan->ops->get_min(main_fan);
174 pid.max = main_fan->ops->get_max(main_fan);
175 if (pid.min < fmin)
176 pid.min = fmin;
177
178 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
179
180 kfree(hdr);
181
182 return 0;
183}
184
185static void cpu_max_all_fans(void)
186{
187 int i;
188
189 /* We max all CPU fans in case of a sensor error. We also do the
190 * cpufreq clamping now, even if it's supposedly done later by the
191 * generic code anyway, we do it earlier here to react faster
192 */
193 if (cpufreq_clamp)
194 wf_control_set_max(cpufreq_clamp);
195 for (i = 0; i < NR_CPU_FANS; ++i)
196 if (cpu_fans[i])
197 wf_control_set_max(cpu_fans[i]);
198}
199
200static int cpu_check_overtemp(s32 temp)
201{
202 int new_state = 0;
203 s32 t_avg, t_old;
204
205 /* First check for immediate overtemps */
206 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
207 new_state |= FAILURE_LOW_OVERTEMP;
208 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
209 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
210 " temperature !\n");
211 }
212 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
213 new_state |= FAILURE_HIGH_OVERTEMP;
214 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
215 printk(KERN_ERR "windfarm: Critical overtemp due to"
216 " immediate CPU temperature !\n");
217 }
218
219 /* We calculate a history of max temperatures and use that for the
220 * overtemp management
221 */
222 t_old = cpu_thist[cpu_thist_pt];
223 cpu_thist[cpu_thist_pt] = temp;
224 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
225 cpu_thist_total -= t_old;
226 cpu_thist_total += temp;
227 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
228
229 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
230 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
231
232 /* Now check for average overtemps */
233 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
234 new_state |= FAILURE_LOW_OVERTEMP;
235 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
236 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
237 " temperature !\n");
238 }
239 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
240 new_state |= FAILURE_HIGH_OVERTEMP;
241 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
242 printk(KERN_ERR "windfarm: Critical overtemp due to"
243 " average CPU temperature !\n");
244 }
245
246 /* Now handle overtemp conditions. We don't currently use the windfarm
247 * overtemp handling core as it's not fully suited to the needs of those
248 * new machine. This will be fixed later.
249 */
250 if (new_state) {
251 /* High overtemp -> immediate shutdown */
252 if (new_state & FAILURE_HIGH_OVERTEMP)
253 machine_power_off();
254 if ((failure_state & new_state) != new_state)
255 cpu_max_all_fans();
256 failure_state |= new_state;
257 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
258 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
259 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
260 failure_state &= ~FAILURE_LOW_OVERTEMP;
261 }
262
263 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
264}
265
266static void cpu_fans_tick(void)
267{
268 int err, cpu;
269 s32 greatest_delta = 0;
270 s32 temp, power, t_max = 0;
271 int i, t, target = 0;
272 struct wf_sensor *sr;
273 struct wf_control *ct;
274 struct wf_cpu_pid_state *sp;
275
276 DBG_LOTS(KERN_DEBUG);
277 for (cpu = 0; cpu < nr_cores; ++cpu) {
278 /* Get CPU core temperature */
279 sr = sens_cpu_temp[cpu];
280 err = sr->ops->get_value(sr, &temp);
281 if (err) {
282 DBG("\n");
283 printk(KERN_WARNING "windfarm: CPU %d temperature "
284 "sensor error %d\n", cpu, err);
285 failure_state |= FAILURE_SENSOR;
286 cpu_max_all_fans();
287 return;
288 }
289
290 /* Keep track of highest temp */
291 t_max = max(t_max, temp);
292
293 /* Get CPU power */
294 sr = sens_cpu_power[cpu];
295 err = sr->ops->get_value(sr, &power);
296 if (err) {
297 DBG("\n");
298 printk(KERN_WARNING "windfarm: CPU %d power "
299 "sensor error %d\n", cpu, err);
300 failure_state |= FAILURE_SENSOR;
301 cpu_max_all_fans();
302 return;
303 }
304
305 /* Run PID */
306 sp = &cpu_pid[cpu];
307 t = wf_cpu_pid_run(sp, power, temp);
308
309 if (cpu == 0 || sp->last_delta > greatest_delta) {
310 greatest_delta = sp->last_delta;
311 target = t;
312 }
313 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
314 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
315 }
316 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
317
318 /* Darwin limits decrease to 20 per iteration */
319 if (target < (cpu_last_target - 20))
320 target = cpu_last_target - 20;
321 cpu_last_target = target;
322 for (cpu = 0; cpu < nr_cores; ++cpu)
323 cpu_pid[cpu].target = target;
324
325 /* Handle possible overtemps */
326 if (cpu_check_overtemp(t_max))
327 return;
328
329 /* Set fans */
330 for (i = 0; i < NR_CPU_FANS; ++i) {
331 ct = cpu_fans[i];
332 if (ct == NULL)
333 continue;
334 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
335 if (err) {
336 printk(KERN_WARNING "windfarm: fan %s reports "
337 "error %d\n", ct->name, err);
338 failure_state |= FAILURE_FAN;
339 break;
340 }
341 }
342}
343
344/* Backside/U4 fan */
345static struct wf_pid_param backside_param = {
346 .interval = 5,
347 .history_len = 2,
348 .gd = 48 << 20,
349 .gp = 5 << 20,
350 .gr = 0,
351 .itarget = 64 << 16,
352 .additive = 1,
353};
354
355static void backside_fan_tick(void)
356{
357 s32 temp;
358 int speed;
359 int err;
360
361 if (!backside_fan || !u4_temp)
362 return;
363 if (!backside_tick) {
364 /* first time; initialize things */
365 printk(KERN_INFO "windfarm: Backside control loop started.\n");
366 backside_param.min = backside_fan->ops->get_min(backside_fan);
367 backside_param.max = backside_fan->ops->get_max(backside_fan);
368 wf_pid_init(&backside_pid, &backside_param);
369 backside_tick = 1;
370 }
371 if (--backside_tick > 0)
372 return;
373 backside_tick = backside_pid.param.interval;
374
375 err = u4_temp->ops->get_value(u4_temp, &temp);
376 if (err) {
377 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
378 err);
379 failure_state |= FAILURE_SENSOR;
380 wf_control_set_max(backside_fan);
381 return;
382 }
383 speed = wf_pid_run(&backside_pid, temp);
384 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
385 FIX32TOPRINT(temp), speed);
386
387 err = backside_fan->ops->set_value(backside_fan, speed);
388 if (err) {
389 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
390 failure_state |= FAILURE_FAN;
391 }
392}
393
394/* Drive bay fan */
395static struct wf_pid_param drive_bay_prm = {
396 .interval = 5,
397 .history_len = 2,
398 .gd = 30 << 20,
399 .gp = 5 << 20,
400 .gr = 0,
401 .itarget = 40 << 16,
402 .additive = 1,
403};
404
405static void drive_bay_fan_tick(void)
406{
407 s32 temp;
408 int speed;
409 int err;
410
411 if (!drive_bay_fan || !hd_temp)
412 return;
413 if (!drive_bay_tick) {
414 /* first time; initialize things */
415 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
416 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
417 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
418 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
419 drive_bay_tick = 1;
420 }
421 if (--drive_bay_tick > 0)
422 return;
423 drive_bay_tick = drive_bay_pid.param.interval;
424
425 err = hd_temp->ops->get_value(hd_temp, &temp);
426 if (err) {
427 printk(KERN_WARNING "windfarm: drive bay temp sensor "
428 "error %d\n", err);
429 failure_state |= FAILURE_SENSOR;
430 wf_control_set_max(drive_bay_fan);
431 return;
432 }
433 speed = wf_pid_run(&drive_bay_pid, temp);
434 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
435 FIX32TOPRINT(temp), speed);
436
437 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
438 if (err) {
439 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
440 failure_state |= FAILURE_FAN;
441 }
442}
443
444/* PCI slots area fan */
445/* This makes the fan speed proportional to the power consumed */
446static struct wf_pid_param slots_param = {
447 .interval = 1,
448 .history_len = 2,
449 .gd = 0,
450 .gp = 0,
451 .gr = 0x1277952,
452 .itarget = 0,
453 .min = 1560,
454 .max = 3510,
455};
456
457static void slots_fan_tick(void)
458{
459 s32 power;
460 int speed;
461 int err;
462
463 if (!slots_fan || !slots_power)
464 return;
465 if (!slots_started) {
466 /* first time; initialize things */
467 printk(KERN_INFO "windfarm: Slots control loop started.\n");
468 wf_pid_init(&slots_pid, &slots_param);
469 slots_started = true;
470 }
471
472 err = slots_power->ops->get_value(slots_power, &power);
473 if (err) {
474 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
475 err);
476 failure_state |= FAILURE_SENSOR;
477 wf_control_set_max(slots_fan);
478 return;
479 }
480 speed = wf_pid_run(&slots_pid, power);
481 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
482 FIX32TOPRINT(power), speed);
483
484 err = slots_fan->ops->set_value(slots_fan, speed);
485 if (err) {
486 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
487 failure_state |= FAILURE_FAN;
488 }
489}
490
491static void set_fail_state(void)
492{
493 int i;
494
495 if (cpufreq_clamp)
496 wf_control_set_max(cpufreq_clamp);
497 for (i = 0; i < NR_CPU_FANS; ++i)
498 if (cpu_fans[i])
499 wf_control_set_max(cpu_fans[i]);
500 if (backside_fan)
501 wf_control_set_max(backside_fan);
502 if (slots_fan)
503 wf_control_set_max(slots_fan);
504 if (drive_bay_fan)
505 wf_control_set_max(drive_bay_fan);
506}
507
508static void pm112_tick(void)
509{
510 int i, last_failure;
511
512 if (!started) {
513 started = true;
514 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
515 for (i = 0; i < nr_cores; ++i) {
516 if (create_cpu_loop(i) < 0) {
517 failure_state = FAILURE_PERM;
518 set_fail_state();
519 break;
520 }
521 }
522 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
523
524#ifdef HACKED_OVERTEMP
525 cpu_all_tmax = 60 << 16;
526#endif
527 }
528
529 /* Permanent failure, bail out */
530 if (failure_state & FAILURE_PERM)
531 return;
532 /* Clear all failure bits except low overtemp which will be eventually
533 * cleared by the control loop itself
534 */
535 last_failure = failure_state;
536 failure_state &= FAILURE_LOW_OVERTEMP;
537 cpu_fans_tick();
538 backside_fan_tick();
539 slots_fan_tick();
540 drive_bay_fan_tick();
541
542 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
543 last_failure, failure_state);
544
545 /* Check for failures. Any failure causes cpufreq clamping */
546 if (failure_state && last_failure == 0 && cpufreq_clamp)
547 wf_control_set_max(cpufreq_clamp);
548 if (failure_state == 0 && last_failure && cpufreq_clamp)
549 wf_control_set_min(cpufreq_clamp);
550
551 /* That's it for now, we might want to deal with other failures
552 * differently in the future though
553 */
554}
555
556static void pm112_new_control(struct wf_control *ct)
557{
558 int i, max_exhaust;
559
560 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
561 if (wf_get_control(ct) == 0)
562 cpufreq_clamp = ct;
563 }
564
565 for (i = 0; i < NR_CPU_FANS; ++i) {
566 if (!strcmp(ct->name, cpu_fan_names[i])) {
567 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
568 cpu_fans[i] = ct;
569 break;
570 }
571 }
572 if (i >= NR_CPU_FANS) {
573 /* not a CPU fan, try the others */
574 if (!strcmp(ct->name, "backside-fan")) {
575 if (backside_fan == NULL && wf_get_control(ct) == 0)
576 backside_fan = ct;
577 } else if (!strcmp(ct->name, "slots-fan")) {
578 if (slots_fan == NULL && wf_get_control(ct) == 0)
579 slots_fan = ct;
580 } else if (!strcmp(ct->name, "drive-bay-fan")) {
581 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
582 drive_bay_fan = ct;
583 }
584 return;
585 }
586
587 for (i = 0; i < CPU_FANS_REQD; ++i)
588 if (cpu_fans[i] == NULL)
589 return;
590
591 /* work out pump scaling factors */
592 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
593 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
594 if ((ct = cpu_fans[i]) != NULL)
595 cpu_fan_scale[i] =
596 ct->ops->get_max(ct) * 100 / max_exhaust;
597
598 have_all_controls = 1;
599}
600
601static void pm112_new_sensor(struct wf_sensor *sr)
602{
603 unsigned int i;
604
605 if (!strncmp(sr->name, "cpu-temp-", 9)) {
606 i = sr->name[9] - '0';
607 if (sr->name[10] == 0 && i < NR_CORES &&
608 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
609 sens_cpu_temp[i] = sr;
610
611 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
612 i = sr->name[10] - '0';
613 if (sr->name[11] == 0 && i < NR_CORES &&
614 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
615 sens_cpu_power[i] = sr;
616 } else if (!strcmp(sr->name, "hd-temp")) {
617 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
618 hd_temp = sr;
619 } else if (!strcmp(sr->name, "slots-power")) {
620 if (slots_power == NULL && wf_get_sensor(sr) == 0)
621 slots_power = sr;
622 } else if (!strcmp(sr->name, "backside-temp")) {
623 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
624 u4_temp = sr;
625 } else
626 return;
627
628 /* check if we have all the sensors we need */
629 for (i = 0; i < nr_cores; ++i)
630 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
631 return;
632
633 have_all_sensors = 1;
634}
635
636static int pm112_wf_notify(struct notifier_block *self,
637 unsigned long event, void *data)
638{
639 switch (event) {
640 case WF_EVENT_NEW_SENSOR:
641 pm112_new_sensor(data);
642 break;
643 case WF_EVENT_NEW_CONTROL:
644 pm112_new_control(data);
645 break;
646 case WF_EVENT_TICK:
647 if (have_all_controls && have_all_sensors)
648 pm112_tick();
649 }
650 return 0;
651}
652
653static struct notifier_block pm112_events = {
654 .notifier_call = pm112_wf_notify,
655};
656
657static int wf_pm112_probe(struct platform_device *dev)
658{
659 wf_register_client(&pm112_events);
660 return 0;
661}
662
663static int wf_pm112_remove(struct platform_device *dev)
664{
665 wf_unregister_client(&pm112_events);
666 /* should release all sensors and controls */
667 return 0;
668}
669
670static struct platform_driver wf_pm112_driver = {
671 .probe = wf_pm112_probe,
672 .remove = wf_pm112_remove,
673 .driver = {
674 .name = "windfarm",
675 },
676};
677
678static int __init wf_pm112_init(void)
679{
680 struct device_node *cpu;
681
682 if (!of_machine_is_compatible("PowerMac11,2"))
683 return -ENODEV;
684
685 /* Count the number of CPU cores */
686 nr_cores = 0;
687 for_each_node_by_type(cpu, "cpu")
688 ++nr_cores;
689
690 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
691
692#ifdef MODULE
693 request_module("windfarm_smu_controls");
694 request_module("windfarm_smu_sensors");
695 request_module("windfarm_smu_sat");
696 request_module("windfarm_lm75_sensor");
697 request_module("windfarm_max6690_sensor");
698 request_module("windfarm_cpufreq_clamp");
699
700#endif /* MODULE */
701
702 platform_driver_register(&wf_pm112_driver);
703 return 0;
704}
705
706static void __exit wf_pm112_exit(void)
707{
708 platform_driver_unregister(&wf_pm112_driver);
709}
710
711module_init(wf_pm112_init);
712module_exit(wf_pm112_exit);
713
714MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716MODULE_LICENSE("GPL");
717MODULE_ALIAS("platform:windfarm");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
5 *
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <asm/prom.h>
16#include <asm/smu.h>
17
18#include "windfarm.h"
19#include "windfarm_pid.h"
20
21#define VERSION "0.2"
22
23#define DEBUG
24#undef LOTSA_DEBUG
25
26#ifdef DEBUG
27#define DBG(args...) printk(args)
28#else
29#define DBG(args...) do { } while(0)
30#endif
31
32#ifdef LOTSA_DEBUG
33#define DBG_LOTS(args...) printk(args)
34#else
35#define DBG_LOTS(args...) do { } while(0)
36#endif
37
38/* define this to force CPU overtemp to 60 degree, useful for testing
39 * the overtemp code
40 */
41#undef HACKED_OVERTEMP
42
43/* We currently only handle 2 chips, 4 cores... */
44#define NR_CHIPS 2
45#define NR_CORES 4
46#define NR_CPU_FANS 3 * NR_CHIPS
47
48/* Controls and sensors */
49static struct wf_sensor *sens_cpu_temp[NR_CORES];
50static struct wf_sensor *sens_cpu_power[NR_CORES];
51static struct wf_sensor *hd_temp;
52static struct wf_sensor *slots_power;
53static struct wf_sensor *u4_temp;
54
55static struct wf_control *cpu_fans[NR_CPU_FANS];
56static char *cpu_fan_names[NR_CPU_FANS] = {
57 "cpu-rear-fan-0",
58 "cpu-rear-fan-1",
59 "cpu-front-fan-0",
60 "cpu-front-fan-1",
61 "cpu-pump-0",
62 "cpu-pump-1",
63};
64static struct wf_control *cpufreq_clamp;
65
66/* Second pump isn't required (and isn't actually present) */
67#define CPU_FANS_REQD (NR_CPU_FANS - 2)
68#define FIRST_PUMP 4
69#define LAST_PUMP 5
70
71/* We keep a temperature history for average calculation of 180s */
72#define CPU_TEMP_HIST_SIZE 180
73
74/* Scale factor for fan speed, *100 */
75static int cpu_fan_scale[NR_CPU_FANS] = {
76 100,
77 100,
78 97, /* inlet fans run at 97% of exhaust fan */
79 97,
80 100, /* updated later */
81 100, /* updated later */
82};
83
84static struct wf_control *backside_fan;
85static struct wf_control *slots_fan;
86static struct wf_control *drive_bay_fan;
87
88/* PID loop state */
89static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91static int cpu_thist_pt;
92static s64 cpu_thist_total;
93static s32 cpu_all_tmax = 100 << 16;
94static int cpu_last_target;
95static struct wf_pid_state backside_pid;
96static int backside_tick;
97static struct wf_pid_state slots_pid;
98static bool slots_started;
99static struct wf_pid_state drive_bay_pid;
100static int drive_bay_tick;
101
102static int nr_cores;
103static int have_all_controls;
104static int have_all_sensors;
105static bool started;
106
107static int failure_state;
108#define FAILURE_SENSOR 1
109#define FAILURE_FAN 2
110#define FAILURE_PERM 4
111#define FAILURE_LOW_OVERTEMP 8
112#define FAILURE_HIGH_OVERTEMP 16
113
114/* Overtemp values */
115#define LOW_OVER_AVERAGE 0
116#define LOW_OVER_IMMEDIATE (10 << 16)
117#define LOW_OVER_CLEAR ((-10) << 16)
118#define HIGH_OVER_IMMEDIATE (14 << 16)
119#define HIGH_OVER_AVERAGE (10 << 16)
120#define HIGH_OVER_IMMEDIATE (14 << 16)
121
122
123/* Implementation... */
124static int create_cpu_loop(int cpu)
125{
126 int chip = cpu / 2;
127 int core = cpu & 1;
128 struct smu_sdbp_header *hdr;
129 struct smu_sdbp_cpupiddata *piddata;
130 struct wf_cpu_pid_param pid;
131 struct wf_control *main_fan = cpu_fans[0];
132 s32 tmax;
133 int fmin;
134
135 /* Get PID params from the appropriate SAT */
136 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
137 if (hdr == NULL) {
138 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
139 return -EINVAL;
140 }
141 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
142
143 /* Get FVT params to get Tmax; if not found, assume default */
144 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
145 if (hdr) {
146 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
147 tmax = fvt->maxtemp << 16;
148 } else
149 tmax = 95 << 16; /* default to 95 degrees C */
150
151 /* We keep a global tmax for overtemp calculations */
152 if (tmax < cpu_all_tmax)
153 cpu_all_tmax = tmax;
154
155 /*
156 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
157 * 515 for the 2-way. That appears to be overkill, so for now,
158 * impose a minimum of 750 or 515.
159 */
160 fmin = (nr_cores > 2) ? 750 : 515;
161
162 /* Initialize PID loop */
163 pid.interval = 1; /* seconds */
164 pid.history_len = piddata->history_len;
165 pid.gd = piddata->gd;
166 pid.gp = piddata->gp;
167 pid.gr = piddata->gr / piddata->history_len;
168 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
169 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
170 pid.tmax = tmax;
171 pid.min = main_fan->ops->get_min(main_fan);
172 pid.max = main_fan->ops->get_max(main_fan);
173 if (pid.min < fmin)
174 pid.min = fmin;
175
176 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
177 return 0;
178}
179
180static void cpu_max_all_fans(void)
181{
182 int i;
183
184 /* We max all CPU fans in case of a sensor error. We also do the
185 * cpufreq clamping now, even if it's supposedly done later by the
186 * generic code anyway, we do it earlier here to react faster
187 */
188 if (cpufreq_clamp)
189 wf_control_set_max(cpufreq_clamp);
190 for (i = 0; i < NR_CPU_FANS; ++i)
191 if (cpu_fans[i])
192 wf_control_set_max(cpu_fans[i]);
193}
194
195static int cpu_check_overtemp(s32 temp)
196{
197 int new_state = 0;
198 s32 t_avg, t_old;
199
200 /* First check for immediate overtemps */
201 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
202 new_state |= FAILURE_LOW_OVERTEMP;
203 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
204 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
205 " temperature !\n");
206 }
207 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
208 new_state |= FAILURE_HIGH_OVERTEMP;
209 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
210 printk(KERN_ERR "windfarm: Critical overtemp due to"
211 " immediate CPU temperature !\n");
212 }
213
214 /* We calculate a history of max temperatures and use that for the
215 * overtemp management
216 */
217 t_old = cpu_thist[cpu_thist_pt];
218 cpu_thist[cpu_thist_pt] = temp;
219 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
220 cpu_thist_total -= t_old;
221 cpu_thist_total += temp;
222 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
223
224 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
225 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
226
227 /* Now check for average overtemps */
228 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
229 new_state |= FAILURE_LOW_OVERTEMP;
230 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
231 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
232 " temperature !\n");
233 }
234 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
235 new_state |= FAILURE_HIGH_OVERTEMP;
236 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
237 printk(KERN_ERR "windfarm: Critical overtemp due to"
238 " average CPU temperature !\n");
239 }
240
241 /* Now handle overtemp conditions. We don't currently use the windfarm
242 * overtemp handling core as it's not fully suited to the needs of those
243 * new machine. This will be fixed later.
244 */
245 if (new_state) {
246 /* High overtemp -> immediate shutdown */
247 if (new_state & FAILURE_HIGH_OVERTEMP)
248 machine_power_off();
249 if ((failure_state & new_state) != new_state)
250 cpu_max_all_fans();
251 failure_state |= new_state;
252 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
253 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
254 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
255 failure_state &= ~FAILURE_LOW_OVERTEMP;
256 }
257
258 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
259}
260
261static void cpu_fans_tick(void)
262{
263 int err, cpu;
264 s32 greatest_delta = 0;
265 s32 temp, power, t_max = 0;
266 int i, t, target = 0;
267 struct wf_sensor *sr;
268 struct wf_control *ct;
269 struct wf_cpu_pid_state *sp;
270
271 DBG_LOTS(KERN_DEBUG);
272 for (cpu = 0; cpu < nr_cores; ++cpu) {
273 /* Get CPU core temperature */
274 sr = sens_cpu_temp[cpu];
275 err = sr->ops->get_value(sr, &temp);
276 if (err) {
277 DBG("\n");
278 printk(KERN_WARNING "windfarm: CPU %d temperature "
279 "sensor error %d\n", cpu, err);
280 failure_state |= FAILURE_SENSOR;
281 cpu_max_all_fans();
282 return;
283 }
284
285 /* Keep track of highest temp */
286 t_max = max(t_max, temp);
287
288 /* Get CPU power */
289 sr = sens_cpu_power[cpu];
290 err = sr->ops->get_value(sr, &power);
291 if (err) {
292 DBG("\n");
293 printk(KERN_WARNING "windfarm: CPU %d power "
294 "sensor error %d\n", cpu, err);
295 failure_state |= FAILURE_SENSOR;
296 cpu_max_all_fans();
297 return;
298 }
299
300 /* Run PID */
301 sp = &cpu_pid[cpu];
302 t = wf_cpu_pid_run(sp, power, temp);
303
304 if (cpu == 0 || sp->last_delta > greatest_delta) {
305 greatest_delta = sp->last_delta;
306 target = t;
307 }
308 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
309 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
310 }
311 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
312
313 /* Darwin limits decrease to 20 per iteration */
314 if (target < (cpu_last_target - 20))
315 target = cpu_last_target - 20;
316 cpu_last_target = target;
317 for (cpu = 0; cpu < nr_cores; ++cpu)
318 cpu_pid[cpu].target = target;
319
320 /* Handle possible overtemps */
321 if (cpu_check_overtemp(t_max))
322 return;
323
324 /* Set fans */
325 for (i = 0; i < NR_CPU_FANS; ++i) {
326 ct = cpu_fans[i];
327 if (ct == NULL)
328 continue;
329 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
330 if (err) {
331 printk(KERN_WARNING "windfarm: fan %s reports "
332 "error %d\n", ct->name, err);
333 failure_state |= FAILURE_FAN;
334 break;
335 }
336 }
337}
338
339/* Backside/U4 fan */
340static struct wf_pid_param backside_param = {
341 .interval = 5,
342 .history_len = 2,
343 .gd = 48 << 20,
344 .gp = 5 << 20,
345 .gr = 0,
346 .itarget = 64 << 16,
347 .additive = 1,
348};
349
350static void backside_fan_tick(void)
351{
352 s32 temp;
353 int speed;
354 int err;
355
356 if (!backside_fan || !u4_temp)
357 return;
358 if (!backside_tick) {
359 /* first time; initialize things */
360 printk(KERN_INFO "windfarm: Backside control loop started.\n");
361 backside_param.min = backside_fan->ops->get_min(backside_fan);
362 backside_param.max = backside_fan->ops->get_max(backside_fan);
363 wf_pid_init(&backside_pid, &backside_param);
364 backside_tick = 1;
365 }
366 if (--backside_tick > 0)
367 return;
368 backside_tick = backside_pid.param.interval;
369
370 err = u4_temp->ops->get_value(u4_temp, &temp);
371 if (err) {
372 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
373 err);
374 failure_state |= FAILURE_SENSOR;
375 wf_control_set_max(backside_fan);
376 return;
377 }
378 speed = wf_pid_run(&backside_pid, temp);
379 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
380 FIX32TOPRINT(temp), speed);
381
382 err = backside_fan->ops->set_value(backside_fan, speed);
383 if (err) {
384 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
385 failure_state |= FAILURE_FAN;
386 }
387}
388
389/* Drive bay fan */
390static struct wf_pid_param drive_bay_prm = {
391 .interval = 5,
392 .history_len = 2,
393 .gd = 30 << 20,
394 .gp = 5 << 20,
395 .gr = 0,
396 .itarget = 40 << 16,
397 .additive = 1,
398};
399
400static void drive_bay_fan_tick(void)
401{
402 s32 temp;
403 int speed;
404 int err;
405
406 if (!drive_bay_fan || !hd_temp)
407 return;
408 if (!drive_bay_tick) {
409 /* first time; initialize things */
410 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
411 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
412 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
413 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
414 drive_bay_tick = 1;
415 }
416 if (--drive_bay_tick > 0)
417 return;
418 drive_bay_tick = drive_bay_pid.param.interval;
419
420 err = hd_temp->ops->get_value(hd_temp, &temp);
421 if (err) {
422 printk(KERN_WARNING "windfarm: drive bay temp sensor "
423 "error %d\n", err);
424 failure_state |= FAILURE_SENSOR;
425 wf_control_set_max(drive_bay_fan);
426 return;
427 }
428 speed = wf_pid_run(&drive_bay_pid, temp);
429 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
430 FIX32TOPRINT(temp), speed);
431
432 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
433 if (err) {
434 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
435 failure_state |= FAILURE_FAN;
436 }
437}
438
439/* PCI slots area fan */
440/* This makes the fan speed proportional to the power consumed */
441static struct wf_pid_param slots_param = {
442 .interval = 1,
443 .history_len = 2,
444 .gd = 0,
445 .gp = 0,
446 .gr = 0x1277952,
447 .itarget = 0,
448 .min = 1560,
449 .max = 3510,
450};
451
452static void slots_fan_tick(void)
453{
454 s32 power;
455 int speed;
456 int err;
457
458 if (!slots_fan || !slots_power)
459 return;
460 if (!slots_started) {
461 /* first time; initialize things */
462 printk(KERN_INFO "windfarm: Slots control loop started.\n");
463 wf_pid_init(&slots_pid, &slots_param);
464 slots_started = true;
465 }
466
467 err = slots_power->ops->get_value(slots_power, &power);
468 if (err) {
469 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
470 err);
471 failure_state |= FAILURE_SENSOR;
472 wf_control_set_max(slots_fan);
473 return;
474 }
475 speed = wf_pid_run(&slots_pid, power);
476 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
477 FIX32TOPRINT(power), speed);
478
479 err = slots_fan->ops->set_value(slots_fan, speed);
480 if (err) {
481 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
482 failure_state |= FAILURE_FAN;
483 }
484}
485
486static void set_fail_state(void)
487{
488 int i;
489
490 if (cpufreq_clamp)
491 wf_control_set_max(cpufreq_clamp);
492 for (i = 0; i < NR_CPU_FANS; ++i)
493 if (cpu_fans[i])
494 wf_control_set_max(cpu_fans[i]);
495 if (backside_fan)
496 wf_control_set_max(backside_fan);
497 if (slots_fan)
498 wf_control_set_max(slots_fan);
499 if (drive_bay_fan)
500 wf_control_set_max(drive_bay_fan);
501}
502
503static void pm112_tick(void)
504{
505 int i, last_failure;
506
507 if (!started) {
508 started = true;
509 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
510 for (i = 0; i < nr_cores; ++i) {
511 if (create_cpu_loop(i) < 0) {
512 failure_state = FAILURE_PERM;
513 set_fail_state();
514 break;
515 }
516 }
517 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
518
519#ifdef HACKED_OVERTEMP
520 cpu_all_tmax = 60 << 16;
521#endif
522 }
523
524 /* Permanent failure, bail out */
525 if (failure_state & FAILURE_PERM)
526 return;
527 /* Clear all failure bits except low overtemp which will be eventually
528 * cleared by the control loop itself
529 */
530 last_failure = failure_state;
531 failure_state &= FAILURE_LOW_OVERTEMP;
532 cpu_fans_tick();
533 backside_fan_tick();
534 slots_fan_tick();
535 drive_bay_fan_tick();
536
537 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
538 last_failure, failure_state);
539
540 /* Check for failures. Any failure causes cpufreq clamping */
541 if (failure_state && last_failure == 0 && cpufreq_clamp)
542 wf_control_set_max(cpufreq_clamp);
543 if (failure_state == 0 && last_failure && cpufreq_clamp)
544 wf_control_set_min(cpufreq_clamp);
545
546 /* That's it for now, we might want to deal with other failures
547 * differently in the future though
548 */
549}
550
551static void pm112_new_control(struct wf_control *ct)
552{
553 int i, max_exhaust;
554
555 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
556 if (wf_get_control(ct) == 0)
557 cpufreq_clamp = ct;
558 }
559
560 for (i = 0; i < NR_CPU_FANS; ++i) {
561 if (!strcmp(ct->name, cpu_fan_names[i])) {
562 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
563 cpu_fans[i] = ct;
564 break;
565 }
566 }
567 if (i >= NR_CPU_FANS) {
568 /* not a CPU fan, try the others */
569 if (!strcmp(ct->name, "backside-fan")) {
570 if (backside_fan == NULL && wf_get_control(ct) == 0)
571 backside_fan = ct;
572 } else if (!strcmp(ct->name, "slots-fan")) {
573 if (slots_fan == NULL && wf_get_control(ct) == 0)
574 slots_fan = ct;
575 } else if (!strcmp(ct->name, "drive-bay-fan")) {
576 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
577 drive_bay_fan = ct;
578 }
579 return;
580 }
581
582 for (i = 0; i < CPU_FANS_REQD; ++i)
583 if (cpu_fans[i] == NULL)
584 return;
585
586 /* work out pump scaling factors */
587 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
588 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
589 if ((ct = cpu_fans[i]) != NULL)
590 cpu_fan_scale[i] =
591 ct->ops->get_max(ct) * 100 / max_exhaust;
592
593 have_all_controls = 1;
594}
595
596static void pm112_new_sensor(struct wf_sensor *sr)
597{
598 unsigned int i;
599
600 if (!strncmp(sr->name, "cpu-temp-", 9)) {
601 i = sr->name[9] - '0';
602 if (sr->name[10] == 0 && i < NR_CORES &&
603 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
604 sens_cpu_temp[i] = sr;
605
606 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
607 i = sr->name[10] - '0';
608 if (sr->name[11] == 0 && i < NR_CORES &&
609 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
610 sens_cpu_power[i] = sr;
611 } else if (!strcmp(sr->name, "hd-temp")) {
612 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
613 hd_temp = sr;
614 } else if (!strcmp(sr->name, "slots-power")) {
615 if (slots_power == NULL && wf_get_sensor(sr) == 0)
616 slots_power = sr;
617 } else if (!strcmp(sr->name, "backside-temp")) {
618 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
619 u4_temp = sr;
620 } else
621 return;
622
623 /* check if we have all the sensors we need */
624 for (i = 0; i < nr_cores; ++i)
625 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
626 return;
627
628 have_all_sensors = 1;
629}
630
631static int pm112_wf_notify(struct notifier_block *self,
632 unsigned long event, void *data)
633{
634 switch (event) {
635 case WF_EVENT_NEW_SENSOR:
636 pm112_new_sensor(data);
637 break;
638 case WF_EVENT_NEW_CONTROL:
639 pm112_new_control(data);
640 break;
641 case WF_EVENT_TICK:
642 if (have_all_controls && have_all_sensors)
643 pm112_tick();
644 }
645 return 0;
646}
647
648static struct notifier_block pm112_events = {
649 .notifier_call = pm112_wf_notify,
650};
651
652static int wf_pm112_probe(struct platform_device *dev)
653{
654 wf_register_client(&pm112_events);
655 return 0;
656}
657
658static int wf_pm112_remove(struct platform_device *dev)
659{
660 wf_unregister_client(&pm112_events);
661 /* should release all sensors and controls */
662 return 0;
663}
664
665static struct platform_driver wf_pm112_driver = {
666 .probe = wf_pm112_probe,
667 .remove = wf_pm112_remove,
668 .driver = {
669 .name = "windfarm",
670 },
671};
672
673static int __init wf_pm112_init(void)
674{
675 struct device_node *cpu;
676
677 if (!of_machine_is_compatible("PowerMac11,2"))
678 return -ENODEV;
679
680 /* Count the number of CPU cores */
681 nr_cores = 0;
682 for_each_node_by_type(cpu, "cpu")
683 ++nr_cores;
684
685 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
686
687#ifdef MODULE
688 request_module("windfarm_smu_controls");
689 request_module("windfarm_smu_sensors");
690 request_module("windfarm_smu_sat");
691 request_module("windfarm_lm75_sensor");
692 request_module("windfarm_max6690_sensor");
693 request_module("windfarm_cpufreq_clamp");
694
695#endif /* MODULE */
696
697 platform_driver_register(&wf_pm112_driver);
698 return 0;
699}
700
701static void __exit wf_pm112_exit(void)
702{
703 platform_driver_unregister(&wf_pm112_driver);
704}
705
706module_init(wf_pm112_init);
707module_exit(wf_pm112_exit);
708
709MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
710MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
711MODULE_LICENSE("GPL");
712MODULE_ALIAS("platform:windfarm");