Linux Audio

Check our new training course

Loading...
v5.9
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
 
  32#include <linux/slab.h>
  33#include <linux/sysrq.h>
  34
  35#include <drm/drm_drv.h>
  36#include <drm/drm_irq.h>
 
  37
  38#include "display/intel_display_types.h"
  39#include "display/intel_fifo_underrun.h"
  40#include "display/intel_hotplug.h"
  41#include "display/intel_lpe_audio.h"
  42#include "display/intel_psr.h"
  43
  44#include "gt/intel_gt.h"
  45#include "gt/intel_gt_irq.h"
  46#include "gt/intel_gt_pm_irq.h"
  47#include "gt/intel_rps.h"
  48
  49#include "i915_drv.h"
  50#include "i915_irq.h"
  51#include "i915_trace.h"
  52#include "intel_pm.h"
  53
  54/**
  55 * DOC: interrupt handling
  56 *
  57 * These functions provide the basic support for enabling and disabling the
  58 * interrupt handling support. There's a lot more functionality in i915_irq.c
  59 * and related files, but that will be described in separate chapters.
  60 */
  61
  62typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  63
  64static const u32 hpd_ilk[HPD_NUM_PINS] = {
  65	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  66};
  67
  68static const u32 hpd_ivb[HPD_NUM_PINS] = {
  69	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  70};
  71
  72static const u32 hpd_bdw[HPD_NUM_PINS] = {
  73	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  74};
  75
  76static const u32 hpd_ibx[HPD_NUM_PINS] = {
  77	[HPD_CRT] = SDE_CRT_HOTPLUG,
  78	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  79	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  80	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  81	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
  82};
  83
  84static const u32 hpd_cpt[HPD_NUM_PINS] = {
  85	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  86	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  87	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  88	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  89	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  90};
  91
  92static const u32 hpd_spt[HPD_NUM_PINS] = {
  93	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  94	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  95	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  96	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  97	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
  98};
  99
 100static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 101	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 102	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 103	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 104	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 105	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 106	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
 107};
 108
 109static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 110	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 111	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 112	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 114	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 116};
 117
 118static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 119	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 120	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 121	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 122	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 123	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 125};
 126
 
 127static const u32 hpd_bxt[HPD_NUM_PINS] = {
 128	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 129	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 130	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
 131};
 132
 133static const u32 hpd_gen11[HPD_NUM_PINS] = {
 134	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 135	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 136	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 137	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 138};
 139
 140static const u32 hpd_gen12[HPD_NUM_PINS] = {
 141	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 142	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 143	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 144	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 145	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 146	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
 147};
 148
 149static const u32 hpd_icp[HPD_NUM_PINS] = {
 150	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
 151	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
 152	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
 153	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
 154	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
 155	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
 156};
 157
 158static const u32 hpd_tgp[HPD_NUM_PINS] = {
 159	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
 160	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
 161	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
 162	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
 163	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
 164	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
 165	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
 166	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
 167	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
 168};
 169
 170static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
 171{
 172	struct i915_hotplug *hpd = &dev_priv->hotplug;
 173
 174	if (HAS_GMCH(dev_priv)) {
 175		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 176		    IS_CHERRYVIEW(dev_priv))
 177			hpd->hpd = hpd_status_g4x;
 178		else
 179			hpd->hpd = hpd_status_i915;
 180		return;
 181	}
 182
 183	if (INTEL_GEN(dev_priv) >= 12)
 184		hpd->hpd = hpd_gen12;
 185	else if (INTEL_GEN(dev_priv) >= 11)
 186		hpd->hpd = hpd_gen11;
 187	else if (IS_GEN9_LP(dev_priv))
 188		hpd->hpd = hpd_bxt;
 189	else if (INTEL_GEN(dev_priv) >= 8)
 190		hpd->hpd = hpd_bdw;
 191	else if (INTEL_GEN(dev_priv) >= 7)
 192		hpd->hpd = hpd_ivb;
 193	else
 194		hpd->hpd = hpd_ilk;
 195
 196	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
 197		return;
 198
 199	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
 200		hpd->pch_hpd = hpd_tgp;
 201	else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
 202		hpd->pch_hpd = hpd_icp;
 203	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
 204		hpd->pch_hpd = hpd_spt;
 205	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
 206		hpd->pch_hpd = hpd_cpt;
 207	else if (HAS_PCH_IBX(dev_priv))
 208		hpd->pch_hpd = hpd_ibx;
 209	else
 210		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
 211}
 212
 213static void
 214intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
 215{
 216	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 217
 218	drm_crtc_handle_vblank(&crtc->base);
 219}
 220
 221void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 222		    i915_reg_t iir, i915_reg_t ier)
 223{
 224	intel_uncore_write(uncore, imr, 0xffffffff);
 225	intel_uncore_posting_read(uncore, imr);
 226
 227	intel_uncore_write(uncore, ier, 0);
 228
 229	/* IIR can theoretically queue up two events. Be paranoid. */
 230	intel_uncore_write(uncore, iir, 0xffffffff);
 231	intel_uncore_posting_read(uncore, iir);
 232	intel_uncore_write(uncore, iir, 0xffffffff);
 233	intel_uncore_posting_read(uncore, iir);
 234}
 235
 236void gen2_irq_reset(struct intel_uncore *uncore)
 237{
 238	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 239	intel_uncore_posting_read16(uncore, GEN2_IMR);
 240
 241	intel_uncore_write16(uncore, GEN2_IER, 0);
 242
 243	/* IIR can theoretically queue up two events. Be paranoid. */
 244	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 245	intel_uncore_posting_read16(uncore, GEN2_IIR);
 246	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 247	intel_uncore_posting_read16(uncore, GEN2_IIR);
 248}
 249
 250/*
 251 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 252 */
 253static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 254{
 255	u32 val = intel_uncore_read(uncore, reg);
 256
 257	if (val == 0)
 258		return;
 259
 260	drm_WARN(&uncore->i915->drm, 1,
 261		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 262		 i915_mmio_reg_offset(reg), val);
 263	intel_uncore_write(uncore, reg, 0xffffffff);
 264	intel_uncore_posting_read(uncore, reg);
 265	intel_uncore_write(uncore, reg, 0xffffffff);
 266	intel_uncore_posting_read(uncore, reg);
 267}
 268
 269static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 270{
 271	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 272
 273	if (val == 0)
 274		return;
 275
 276	drm_WARN(&uncore->i915->drm, 1,
 277		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 278		 i915_mmio_reg_offset(GEN2_IIR), val);
 279	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 280	intel_uncore_posting_read16(uncore, GEN2_IIR);
 281	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 282	intel_uncore_posting_read16(uncore, GEN2_IIR);
 283}
 284
 285void gen3_irq_init(struct intel_uncore *uncore,
 286		   i915_reg_t imr, u32 imr_val,
 287		   i915_reg_t ier, u32 ier_val,
 288		   i915_reg_t iir)
 289{
 290	gen3_assert_iir_is_zero(uncore, iir);
 291
 292	intel_uncore_write(uncore, ier, ier_val);
 293	intel_uncore_write(uncore, imr, imr_val);
 294	intel_uncore_posting_read(uncore, imr);
 295}
 296
 297void gen2_irq_init(struct intel_uncore *uncore,
 298		   u32 imr_val, u32 ier_val)
 299{
 300	gen2_assert_iir_is_zero(uncore);
 301
 302	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 303	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 304	intel_uncore_posting_read16(uncore, GEN2_IMR);
 305}
 306
 307/* For display hotplug interrupt */
 308static inline void
 309i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 310				     u32 mask,
 311				     u32 bits)
 312{
 313	u32 val;
 314
 315	lockdep_assert_held(&dev_priv->irq_lock);
 316	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
 317
 318	val = I915_READ(PORT_HOTPLUG_EN);
 319	val &= ~mask;
 320	val |= bits;
 321	I915_WRITE(PORT_HOTPLUG_EN, val);
 322}
 323
 324/**
 325 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 326 * @dev_priv: driver private
 327 * @mask: bits to update
 328 * @bits: bits to enable
 329 * NOTE: the HPD enable bits are modified both inside and outside
 330 * of an interrupt context. To avoid that read-modify-write cycles
 331 * interfer, these bits are protected by a spinlock. Since this
 332 * function is usually not called from a context where the lock is
 333 * held already, this function acquires the lock itself. A non-locking
 334 * version is also available.
 335 */
 336void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 337				   u32 mask,
 338				   u32 bits)
 339{
 340	spin_lock_irq(&dev_priv->irq_lock);
 341	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 342	spin_unlock_irq(&dev_priv->irq_lock);
 343}
 344
 345/**
 346 * ilk_update_display_irq - update DEIMR
 347 * @dev_priv: driver private
 348 * @interrupt_mask: mask of interrupt bits to update
 349 * @enabled_irq_mask: mask of interrupt bits to enable
 350 */
 351void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 352			    u32 interrupt_mask,
 353			    u32 enabled_irq_mask)
 354{
 355	u32 new_val;
 356
 357	lockdep_assert_held(&dev_priv->irq_lock);
 358
 359	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 360
 361	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 362		return;
 363
 364	new_val = dev_priv->irq_mask;
 365	new_val &= ~interrupt_mask;
 366	new_val |= (~enabled_irq_mask & interrupt_mask);
 367
 368	if (new_val != dev_priv->irq_mask) {
 369		dev_priv->irq_mask = new_val;
 370		I915_WRITE(DEIMR, dev_priv->irq_mask);
 371		POSTING_READ(DEIMR);
 372	}
 373}
 374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375/**
 376 * bdw_update_port_irq - update DE port interrupt
 377 * @dev_priv: driver private
 378 * @interrupt_mask: mask of interrupt bits to update
 379 * @enabled_irq_mask: mask of interrupt bits to enable
 380 */
 381static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 382				u32 interrupt_mask,
 383				u32 enabled_irq_mask)
 384{
 385	u32 new_val;
 386	u32 old_val;
 387
 388	lockdep_assert_held(&dev_priv->irq_lock);
 389
 390	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 391
 392	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 393		return;
 394
 395	old_val = I915_READ(GEN8_DE_PORT_IMR);
 396
 397	new_val = old_val;
 398	new_val &= ~interrupt_mask;
 399	new_val |= (~enabled_irq_mask & interrupt_mask);
 400
 401	if (new_val != old_val) {
 402		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 403		POSTING_READ(GEN8_DE_PORT_IMR);
 404	}
 405}
 406
 407/**
 408 * bdw_update_pipe_irq - update DE pipe interrupt
 409 * @dev_priv: driver private
 410 * @pipe: pipe whose interrupt to update
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 415			 enum pipe pipe,
 416			 u32 interrupt_mask,
 417			 u32 enabled_irq_mask)
 418{
 419	u32 new_val;
 420
 421	lockdep_assert_held(&dev_priv->irq_lock);
 422
 423	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 424
 425	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	new_val = dev_priv->de_irq_mask[pipe];
 429	new_val &= ~interrupt_mask;
 430	new_val |= (~enabled_irq_mask & interrupt_mask);
 431
 432	if (new_val != dev_priv->de_irq_mask[pipe]) {
 433		dev_priv->de_irq_mask[pipe] = new_val;
 434		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 435		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 436	}
 437}
 438
 439/**
 440 * ibx_display_interrupt_update - update SDEIMR
 441 * @dev_priv: driver private
 442 * @interrupt_mask: mask of interrupt bits to update
 443 * @enabled_irq_mask: mask of interrupt bits to enable
 444 */
 445void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 446				  u32 interrupt_mask,
 447				  u32 enabled_irq_mask)
 448{
 449	u32 sdeimr = I915_READ(SDEIMR);
 450	sdeimr &= ~interrupt_mask;
 451	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 452
 453	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 454
 455	lockdep_assert_held(&dev_priv->irq_lock);
 456
 457	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 458		return;
 459
 460	I915_WRITE(SDEIMR, sdeimr);
 461	POSTING_READ(SDEIMR);
 462}
 463
 464u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 465			      enum pipe pipe)
 466{
 467	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 468	u32 enable_mask = status_mask << 16;
 469
 470	lockdep_assert_held(&dev_priv->irq_lock);
 471
 472	if (INTEL_GEN(dev_priv) < 5)
 473		goto out;
 474
 475	/*
 476	 * On pipe A we don't support the PSR interrupt yet,
 477	 * on pipe B and C the same bit MBZ.
 478	 */
 479	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 480			     status_mask & PIPE_A_PSR_STATUS_VLV))
 481		return 0;
 482	/*
 483	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 484	 * A the same bit is for perf counters which we don't use either.
 485	 */
 486	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 487			     status_mask & PIPE_B_PSR_STATUS_VLV))
 488		return 0;
 489
 490	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 491			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 492			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 493	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 494		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 495	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 496		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 497
 498out:
 499	drm_WARN_ONCE(&dev_priv->drm,
 500		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 501		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 502		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 503		      pipe_name(pipe), enable_mask, status_mask);
 504
 505	return enable_mask;
 506}
 507
 508void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 509			  enum pipe pipe, u32 status_mask)
 510{
 511	i915_reg_t reg = PIPESTAT(pipe);
 512	u32 enable_mask;
 513
 514	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 515		      "pipe %c: status_mask=0x%x\n",
 516		      pipe_name(pipe), status_mask);
 517
 518	lockdep_assert_held(&dev_priv->irq_lock);
 519	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 520
 521	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 522		return;
 523
 524	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 525	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 526
 527	I915_WRITE(reg, enable_mask | status_mask);
 528	POSTING_READ(reg);
 529}
 530
 531void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 532			   enum pipe pipe, u32 status_mask)
 533{
 534	i915_reg_t reg = PIPESTAT(pipe);
 535	u32 enable_mask;
 536
 537	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 538		      "pipe %c: status_mask=0x%x\n",
 539		      pipe_name(pipe), status_mask);
 540
 541	lockdep_assert_held(&dev_priv->irq_lock);
 542	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 543
 544	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 545		return;
 546
 547	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 548	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 549
 550	I915_WRITE(reg, enable_mask | status_mask);
 551	POSTING_READ(reg);
 552}
 553
 554static bool i915_has_asle(struct drm_i915_private *dev_priv)
 555{
 556	if (!dev_priv->opregion.asle)
 557		return false;
 558
 559	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 560}
 561
 562/**
 563 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 564 * @dev_priv: i915 device private
 565 */
 566static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 567{
 568	if (!i915_has_asle(dev_priv))
 569		return;
 570
 571	spin_lock_irq(&dev_priv->irq_lock);
 572
 573	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 574	if (INTEL_GEN(dev_priv) >= 4)
 575		i915_enable_pipestat(dev_priv, PIPE_A,
 576				     PIPE_LEGACY_BLC_EVENT_STATUS);
 577
 578	spin_unlock_irq(&dev_priv->irq_lock);
 579}
 580
 581/*
 582 * This timing diagram depicts the video signal in and
 583 * around the vertical blanking period.
 584 *
 585 * Assumptions about the fictitious mode used in this example:
 586 *  vblank_start >= 3
 587 *  vsync_start = vblank_start + 1
 588 *  vsync_end = vblank_start + 2
 589 *  vtotal = vblank_start + 3
 590 *
 591 *           start of vblank:
 592 *           latch double buffered registers
 593 *           increment frame counter (ctg+)
 594 *           generate start of vblank interrupt (gen4+)
 595 *           |
 596 *           |          frame start:
 597 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 598 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 599 *           |          |
 600 *           |          |  start of vsync:
 601 *           |          |  generate vsync interrupt
 602 *           |          |  |
 603 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 604 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 605 * ----va---> <-----------------vb--------------------> <--------va-------------
 606 *       |          |       <----vs----->                     |
 607 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 608 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 609 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 610 *       |          |                                         |
 611 *       last visible pixel                                   first visible pixel
 612 *                  |                                         increment frame counter (gen3/4)
 613 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 614 *
 615 * x  = horizontal active
 616 * _  = horizontal blanking
 617 * hs = horizontal sync
 618 * va = vertical active
 619 * vb = vertical blanking
 620 * vs = vertical sync
 621 * vbs = vblank_start (number)
 622 *
 623 * Summary:
 624 * - most events happen at the start of horizontal sync
 625 * - frame start happens at the start of horizontal blank, 1-4 lines
 626 *   (depending on PIPECONF settings) after the start of vblank
 627 * - gen3/4 pixel and frame counter are synchronized with the start
 628 *   of horizontal active on the first line of vertical active
 629 */
 630
 631/* Called from drm generic code, passed a 'crtc', which
 632 * we use as a pipe index
 633 */
 634u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 635{
 636	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 637	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 638	const struct drm_display_mode *mode = &vblank->hwmode;
 639	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 640	i915_reg_t high_frame, low_frame;
 641	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 642	unsigned long irqflags;
 643
 644	/*
 645	 * On i965gm TV output the frame counter only works up to
 646	 * the point when we enable the TV encoder. After that the
 647	 * frame counter ceases to work and reads zero. We need a
 648	 * vblank wait before enabling the TV encoder and so we
 649	 * have to enable vblank interrupts while the frame counter
 650	 * is still in a working state. However the core vblank code
 651	 * does not like us returning non-zero frame counter values
 652	 * when we've told it that we don't have a working frame
 653	 * counter. Thus we must stop non-zero values leaking out.
 654	 */
 655	if (!vblank->max_vblank_count)
 656		return 0;
 657
 658	htotal = mode->crtc_htotal;
 659	hsync_start = mode->crtc_hsync_start;
 660	vbl_start = mode->crtc_vblank_start;
 661	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 662		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 663
 664	/* Convert to pixel count */
 665	vbl_start *= htotal;
 666
 667	/* Start of vblank event occurs at start of hsync */
 668	vbl_start -= htotal - hsync_start;
 669
 670	high_frame = PIPEFRAME(pipe);
 671	low_frame = PIPEFRAMEPIXEL(pipe);
 672
 673	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 674
 675	/*
 676	 * High & low register fields aren't synchronized, so make sure
 677	 * we get a low value that's stable across two reads of the high
 678	 * register.
 679	 */
 680	do {
 681		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 682		low   = intel_de_read_fw(dev_priv, low_frame);
 683		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 684	} while (high1 != high2);
 685
 686	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 687
 688	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 689	pixel = low & PIPE_PIXEL_MASK;
 690	low >>= PIPE_FRAME_LOW_SHIFT;
 691
 692	/*
 693	 * The frame counter increments at beginning of active.
 694	 * Cook up a vblank counter by also checking the pixel
 695	 * counter against vblank start.
 696	 */
 697	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 698}
 699
 700u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 701{
 702	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 703	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 704
 705	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 706}
 707
 708/*
 709 * On certain encoders on certain platforms, pipe
 710 * scanline register will not work to get the scanline,
 711 * since the timings are driven from the PORT or issues
 712 * with scanline register updates.
 713 * This function will use Framestamp and current
 714 * timestamp registers to calculate the scanline.
 715 */
 716static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 717{
 718	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 719	struct drm_vblank_crtc *vblank =
 720		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 721	const struct drm_display_mode *mode = &vblank->hwmode;
 722	u32 vblank_start = mode->crtc_vblank_start;
 723	u32 vtotal = mode->crtc_vtotal;
 724	u32 htotal = mode->crtc_htotal;
 725	u32 clock = mode->crtc_clock;
 726	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 727
 728	/*
 729	 * To avoid the race condition where we might cross into the
 730	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 731	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 732	 * during the same frame.
 733	 */
 734	do {
 735		/*
 736		 * This field provides read back of the display
 737		 * pipe frame time stamp. The time stamp value
 738		 * is sampled at every start of vertical blank.
 739		 */
 740		scan_prev_time = intel_de_read_fw(dev_priv,
 741						  PIPE_FRMTMSTMP(crtc->pipe));
 742
 743		/*
 744		 * The TIMESTAMP_CTR register has the current
 745		 * time stamp value.
 746		 */
 747		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
 748
 749		scan_post_time = intel_de_read_fw(dev_priv,
 750						  PIPE_FRMTMSTMP(crtc->pipe));
 751	} while (scan_post_time != scan_prev_time);
 752
 753	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 754					clock), 1000 * htotal);
 755	scanline = min(scanline, vtotal - 1);
 756	scanline = (scanline + vblank_start) % vtotal;
 757
 758	return scanline;
 759}
 760
 761/*
 762 * intel_de_read_fw(), only for fast reads of display block, no need for
 763 * forcewake etc.
 764 */
 765static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 766{
 767	struct drm_device *dev = crtc->base.dev;
 768	struct drm_i915_private *dev_priv = to_i915(dev);
 769	const struct drm_display_mode *mode;
 770	struct drm_vblank_crtc *vblank;
 771	enum pipe pipe = crtc->pipe;
 772	int position, vtotal;
 773
 774	if (!crtc->active)
 775		return -1;
 776
 777	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 778	mode = &vblank->hwmode;
 779
 780	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 781		return __intel_get_crtc_scanline_from_timestamp(crtc);
 782
 783	vtotal = mode->crtc_vtotal;
 784	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 785		vtotal /= 2;
 786
 787	if (IS_GEN(dev_priv, 2))
 788		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 789	else
 790		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 791
 792	/*
 793	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 794	 * read it just before the start of vblank.  So try it again
 795	 * so we don't accidentally end up spanning a vblank frame
 796	 * increment, causing the pipe_update_end() code to squak at us.
 797	 *
 798	 * The nature of this problem means we can't simply check the ISR
 799	 * bit and return the vblank start value; nor can we use the scanline
 800	 * debug register in the transcoder as it appears to have the same
 801	 * problem.  We may need to extend this to include other platforms,
 802	 * but so far testing only shows the problem on HSW.
 803	 */
 804	if (HAS_DDI(dev_priv) && !position) {
 805		int i, temp;
 806
 807		for (i = 0; i < 100; i++) {
 808			udelay(1);
 809			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 810			if (temp != position) {
 811				position = temp;
 812				break;
 813			}
 814		}
 815	}
 816
 817	/*
 818	 * See update_scanline_offset() for the details on the
 819	 * scanline_offset adjustment.
 820	 */
 821	return (position + crtc->scanline_offset) % vtotal;
 822}
 823
 824static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
 825				     bool in_vblank_irq,
 826				     int *vpos, int *hpos,
 827				     ktime_t *stime, ktime_t *etime,
 828				     const struct drm_display_mode *mode)
 829{
 830	struct drm_device *dev = _crtc->dev;
 831	struct drm_i915_private *dev_priv = to_i915(dev);
 832	struct intel_crtc *crtc = to_intel_crtc(_crtc);
 833	enum pipe pipe = crtc->pipe;
 834	int position;
 835	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 836	unsigned long irqflags;
 837	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 838		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 839		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 840
 841	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
 842		drm_dbg(&dev_priv->drm,
 843			"trying to get scanoutpos for disabled "
 844			"pipe %c\n", pipe_name(pipe));
 845		return false;
 846	}
 847
 848	htotal = mode->crtc_htotal;
 849	hsync_start = mode->crtc_hsync_start;
 850	vtotal = mode->crtc_vtotal;
 851	vbl_start = mode->crtc_vblank_start;
 852	vbl_end = mode->crtc_vblank_end;
 853
 854	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 855		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 856		vbl_end /= 2;
 857		vtotal /= 2;
 858	}
 859
 860	/*
 861	 * Lock uncore.lock, as we will do multiple timing critical raw
 862	 * register reads, potentially with preemption disabled, so the
 863	 * following code must not block on uncore.lock.
 864	 */
 865	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 866
 867	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 868
 869	/* Get optional system timestamp before query. */
 870	if (stime)
 871		*stime = ktime_get();
 872
 873	if (use_scanline_counter) {
 874		/* No obvious pixelcount register. Only query vertical
 875		 * scanout position from Display scan line register.
 876		 */
 877		position = __intel_get_crtc_scanline(crtc);
 878	} else {
 879		/* Have access to pixelcount since start of frame.
 880		 * We can split this into vertical and horizontal
 881		 * scanout position.
 882		 */
 883		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 884
 885		/* convert to pixel counts */
 886		vbl_start *= htotal;
 887		vbl_end *= htotal;
 888		vtotal *= htotal;
 889
 890		/*
 891		 * In interlaced modes, the pixel counter counts all pixels,
 892		 * so one field will have htotal more pixels. In order to avoid
 893		 * the reported position from jumping backwards when the pixel
 894		 * counter is beyond the length of the shorter field, just
 895		 * clamp the position the length of the shorter field. This
 896		 * matches how the scanline counter based position works since
 897		 * the scanline counter doesn't count the two half lines.
 898		 */
 899		if (position >= vtotal)
 900			position = vtotal - 1;
 901
 902		/*
 903		 * Start of vblank interrupt is triggered at start of hsync,
 904		 * just prior to the first active line of vblank. However we
 905		 * consider lines to start at the leading edge of horizontal
 906		 * active. So, should we get here before we've crossed into
 907		 * the horizontal active of the first line in vblank, we would
 908		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 909		 * always add htotal-hsync_start to the current pixel position.
 910		 */
 911		position = (position + htotal - hsync_start) % vtotal;
 912	}
 913
 914	/* Get optional system timestamp after query. */
 915	if (etime)
 916		*etime = ktime_get();
 917
 918	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 919
 920	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 921
 922	/*
 923	 * While in vblank, position will be negative
 924	 * counting up towards 0 at vbl_end. And outside
 925	 * vblank, position will be positive counting
 926	 * up since vbl_end.
 927	 */
 928	if (position >= vbl_start)
 929		position -= vbl_end;
 930	else
 931		position += vtotal - vbl_end;
 932
 933	if (use_scanline_counter) {
 934		*vpos = position;
 935		*hpos = 0;
 936	} else {
 937		*vpos = position / htotal;
 938		*hpos = position - (*vpos * htotal);
 939	}
 940
 941	return true;
 942}
 943
 944bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
 945				     ktime_t *vblank_time, bool in_vblank_irq)
 946{
 947	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 948		crtc, max_error, vblank_time, in_vblank_irq,
 949		i915_get_crtc_scanoutpos);
 950}
 951
 952int intel_get_crtc_scanline(struct intel_crtc *crtc)
 953{
 954	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 955	unsigned long irqflags;
 956	int position;
 957
 958	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 959	position = __intel_get_crtc_scanline(crtc);
 960	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 961
 962	return position;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/**
 966 * ivb_parity_work - Workqueue called when a parity error interrupt
 967 * occurred.
 968 * @work: workqueue struct
 969 *
 970 * Doesn't actually do anything except notify userspace. As a consequence of
 971 * this event, userspace should try to remap the bad rows since statistically
 972 * it is likely the same row is more likely to go bad again.
 973 */
 974static void ivb_parity_work(struct work_struct *work)
 975{
 976	struct drm_i915_private *dev_priv =
 977		container_of(work, typeof(*dev_priv), l3_parity.error_work);
 978	struct intel_gt *gt = &dev_priv->gt;
 979	u32 error_status, row, bank, subbank;
 980	char *parity_event[6];
 981	u32 misccpctl;
 982	u8 slice = 0;
 983
 984	/* We must turn off DOP level clock gating to access the L3 registers.
 985	 * In order to prevent a get/put style interface, acquire struct mutex
 986	 * any time we access those registers.
 987	 */
 988	mutex_lock(&dev_priv->drm.struct_mutex);
 989
 990	/* If we've screwed up tracking, just let the interrupt fire again */
 991	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
 992		goto out;
 993
 994	misccpctl = I915_READ(GEN7_MISCCPCTL);
 995	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 996	POSTING_READ(GEN7_MISCCPCTL);
 997
 998	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
 999		i915_reg_t reg;
1000
1001		slice--;
1002		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003				     slice >= NUM_L3_SLICES(dev_priv)))
1004			break;
1005
1006		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007
1008		reg = GEN7_L3CDERRST1(slice);
1009
1010		error_status = I915_READ(reg);
1011		row = GEN7_PARITY_ERROR_ROW(error_status);
1012		bank = GEN7_PARITY_ERROR_BANK(error_status);
1013		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014
1015		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016		POSTING_READ(reg);
1017
1018		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023		parity_event[5] = NULL;
1024
1025		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026				   KOBJ_CHANGE, parity_event);
1027
1028		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029			  slice, row, bank, subbank);
1030
1031		kfree(parity_event[4]);
1032		kfree(parity_event[3]);
1033		kfree(parity_event[2]);
1034		kfree(parity_event[1]);
1035	}
1036
1037	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038
1039out:
1040	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041	spin_lock_irq(&gt->irq_lock);
1042	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043	spin_unlock_irq(&gt->irq_lock);
1044
1045	mutex_unlock(&dev_priv->drm.struct_mutex);
1046}
1047
1048static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049{
1050	switch (pin) {
1051	case HPD_PORT_C:
1052		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053	case HPD_PORT_D:
1054		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055	case HPD_PORT_E:
1056		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057	case HPD_PORT_F:
1058		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059	default:
1060		return false;
1061	}
1062}
1063
1064static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065{
1066	switch (pin) {
1067	case HPD_PORT_D:
1068		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069	case HPD_PORT_E:
1070		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071	case HPD_PORT_F:
1072		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073	case HPD_PORT_G:
1074		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075	case HPD_PORT_H:
1076		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077	case HPD_PORT_I:
1078		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079	default:
1080		return false;
1081	}
1082}
1083
1084static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085{
1086	switch (pin) {
1087	case HPD_PORT_A:
1088		return val & PORTA_HOTPLUG_LONG_DETECT;
1089	case HPD_PORT_B:
1090		return val & PORTB_HOTPLUG_LONG_DETECT;
1091	case HPD_PORT_C:
1092		return val & PORTC_HOTPLUG_LONG_DETECT;
1093	default:
1094		return false;
1095	}
1096}
1097
1098static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099{
1100	switch (pin) {
1101	case HPD_PORT_A:
1102		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103	case HPD_PORT_B:
1104		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105	case HPD_PORT_C:
1106		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107	default:
1108		return false;
1109	}
1110}
1111
1112static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113{
1114	switch (pin) {
1115	case HPD_PORT_C:
1116		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117	case HPD_PORT_D:
1118		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119	case HPD_PORT_E:
1120		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121	case HPD_PORT_F:
1122		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123	default:
1124		return false;
1125	}
1126}
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129{
1130	switch (pin) {
1131	case HPD_PORT_D:
1132		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133	case HPD_PORT_E:
1134		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135	case HPD_PORT_F:
1136		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137	case HPD_PORT_G:
1138		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139	case HPD_PORT_H:
1140		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141	case HPD_PORT_I:
1142		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143	default:
1144		return false;
1145	}
1146}
1147
1148static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149{
1150	switch (pin) {
1151	case HPD_PORT_E:
1152		return val & PORTE_HOTPLUG_LONG_DETECT;
1153	default:
1154		return false;
1155	}
1156}
1157
1158static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159{
1160	switch (pin) {
1161	case HPD_PORT_A:
1162		return val & PORTA_HOTPLUG_LONG_DETECT;
1163	case HPD_PORT_B:
1164		return val & PORTB_HOTPLUG_LONG_DETECT;
1165	case HPD_PORT_C:
1166		return val & PORTC_HOTPLUG_LONG_DETECT;
1167	case HPD_PORT_D:
1168		return val & PORTD_HOTPLUG_LONG_DETECT;
1169	default:
1170		return false;
1171	}
1172}
1173
1174static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175{
1176	switch (pin) {
1177	case HPD_PORT_A:
1178		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179	default:
1180		return false;
1181	}
1182}
1183
1184static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185{
1186	switch (pin) {
1187	case HPD_PORT_B:
1188		return val & PORTB_HOTPLUG_LONG_DETECT;
1189	case HPD_PORT_C:
1190		return val & PORTC_HOTPLUG_LONG_DETECT;
1191	case HPD_PORT_D:
1192		return val & PORTD_HOTPLUG_LONG_DETECT;
1193	default:
1194		return false;
1195	}
1196}
1197
1198static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199{
1200	switch (pin) {
1201	case HPD_PORT_B:
1202		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203	case HPD_PORT_C:
1204		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205	case HPD_PORT_D:
1206		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207	default:
1208		return false;
1209	}
1210}
1211
1212/*
1213 * Get a bit mask of pins that have triggered, and which ones may be long.
1214 * This can be called multiple times with the same masks to accumulate
1215 * hotplug detection results from several registers.
1216 *
1217 * Note that the caller is expected to zero out the masks initially.
1218 */
1219static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220			       u32 *pin_mask, u32 *long_mask,
1221			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1222			       const u32 hpd[HPD_NUM_PINS],
1223			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224{
1225	enum hpd_pin pin;
1226
1227	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228
1229	for_each_hpd_pin(pin) {
1230		if ((hpd[pin] & hotplug_trigger) == 0)
1231			continue;
1232
1233		*pin_mask |= BIT(pin);
1234
1235		if (long_pulse_detect(pin, dig_hotplug_reg))
1236			*long_mask |= BIT(pin);
1237	}
1238
1239	drm_dbg(&dev_priv->drm,
1240		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242
1243}
1244
1245static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246{
1247	wake_up_all(&dev_priv->gmbus_wait_queue);
1248}
1249
1250static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251{
1252	wake_up_all(&dev_priv->gmbus_wait_queue);
1253}
1254
1255#if defined(CONFIG_DEBUG_FS)
1256static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257					 enum pipe pipe,
1258					 u32 crc0, u32 crc1,
1259					 u32 crc2, u32 crc3,
1260					 u32 crc4)
1261{
 
1262	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265
1266	trace_intel_pipe_crc(crtc, crcs);
1267
1268	spin_lock(&pipe_crc->lock);
1269	/*
1270	 * For some not yet identified reason, the first CRC is
1271	 * bonkers. So let's just wait for the next vblank and read
1272	 * out the buggy result.
1273	 *
1274	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1275	 * don't trust that one either.
1276	 */
1277	if (pipe_crc->skipped <= 0 ||
1278	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279		pipe_crc->skipped++;
1280		spin_unlock(&pipe_crc->lock);
1281		return;
1282	}
1283	spin_unlock(&pipe_crc->lock);
1284
1285	drm_crtc_add_crc_entry(&crtc->base, true,
1286				drm_crtc_accurate_vblank_count(&crtc->base),
1287				crcs);
1288}
1289#else
1290static inline void
1291display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292			     enum pipe pipe,
1293			     u32 crc0, u32 crc1,
1294			     u32 crc2, u32 crc3,
1295			     u32 crc4) {}
1296#endif
1297
1298
1299static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300				     enum pipe pipe)
1301{
1302	display_pipe_crc_irq_handler(dev_priv, pipe,
1303				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304				     0, 0, 0, 0);
1305}
1306
1307static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308				     enum pipe pipe)
1309{
1310	display_pipe_crc_irq_handler(dev_priv, pipe,
1311				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316}
1317
1318static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319				      enum pipe pipe)
1320{
1321	u32 res1, res2;
1322
1323	if (INTEL_GEN(dev_priv) >= 3)
1324		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325	else
1326		res1 = 0;
1327
1328	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330	else
1331		res2 = 0;
1332
1333	display_pipe_crc_irq_handler(dev_priv, pipe,
1334				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1335				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337				     res1, res2);
1338}
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341{
1342	enum pipe pipe;
1343
1344	for_each_pipe(dev_priv, pipe) {
1345		I915_WRITE(PIPESTAT(pipe),
1346			   PIPESTAT_INT_STATUS_MASK |
1347			   PIPE_FIFO_UNDERRUN_STATUS);
1348
1349		dev_priv->pipestat_irq_mask[pipe] = 0;
1350	}
1351}
1352
1353static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355{
1356	enum pipe pipe;
1357
1358	spin_lock(&dev_priv->irq_lock);
1359
1360	if (!dev_priv->display_irqs_enabled) {
1361		spin_unlock(&dev_priv->irq_lock);
1362		return;
1363	}
1364
1365	for_each_pipe(dev_priv, pipe) {
1366		i915_reg_t reg;
1367		u32 status_mask, enable_mask, iir_bit = 0;
1368
1369		/*
1370		 * PIPESTAT bits get signalled even when the interrupt is
1371		 * disabled with the mask bits, and some of the status bits do
1372		 * not generate interrupts at all (like the underrun bit). Hence
1373		 * we need to be careful that we only handle what we want to
1374		 * handle.
1375		 */
1376
1377		/* fifo underruns are filterered in the underrun handler. */
1378		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379
1380		switch (pipe) {
1381		default:
1382		case PIPE_A:
1383			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384			break;
1385		case PIPE_B:
1386			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387			break;
1388		case PIPE_C:
1389			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390			break;
1391		}
1392		if (iir & iir_bit)
1393			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394
1395		if (!status_mask)
1396			continue;
1397
1398		reg = PIPESTAT(pipe);
1399		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401
1402		/*
1403		 * Clear the PIPE*STAT regs before the IIR
1404		 *
1405		 * Toggle the enable bits to make sure we get an
1406		 * edge in the ISR pipe event bit if we don't clear
1407		 * all the enabled status bits. Otherwise the edge
1408		 * triggered IIR on i965/g4x wouldn't notice that
1409		 * an interrupt is still pending.
1410		 */
1411		if (pipe_stats[pipe]) {
1412			I915_WRITE(reg, pipe_stats[pipe]);
1413			I915_WRITE(reg, enable_mask);
1414		}
1415	}
1416	spin_unlock(&dev_priv->irq_lock);
1417}
1418
1419static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421{
1422	enum pipe pipe;
1423
1424	for_each_pipe(dev_priv, pipe) {
1425		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426			intel_handle_vblank(dev_priv, pipe);
1427
1428		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430
1431		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433	}
1434}
1435
1436static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438{
1439	bool blc_event = false;
1440	enum pipe pipe;
1441
1442	for_each_pipe(dev_priv, pipe) {
1443		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444			intel_handle_vblank(dev_priv, pipe);
1445
1446		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447			blc_event = true;
1448
1449		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451
1452		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454	}
1455
1456	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457		intel_opregion_asle_intr(dev_priv);
1458}
1459
1460static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462{
1463	bool blc_event = false;
1464	enum pipe pipe;
1465
1466	for_each_pipe(dev_priv, pipe) {
1467		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468			intel_handle_vblank(dev_priv, pipe);
1469
1470		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471			blc_event = true;
1472
1473		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475
1476		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478	}
1479
1480	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481		intel_opregion_asle_intr(dev_priv);
1482
1483	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484		gmbus_irq_handler(dev_priv);
1485}
1486
1487static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488					    u32 pipe_stats[I915_MAX_PIPES])
1489{
1490	enum pipe pipe;
1491
1492	for_each_pipe(dev_priv, pipe) {
1493		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494			intel_handle_vblank(dev_priv, pipe);
1495
1496		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498
1499		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501	}
1502
1503	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504		gmbus_irq_handler(dev_priv);
1505}
1506
1507static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508{
1509	u32 hotplug_status = 0, hotplug_status_mask;
1510	int i;
1511
1512	if (IS_G4X(dev_priv) ||
1513	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516	else
1517		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518
1519	/*
1520	 * We absolutely have to clear all the pending interrupt
1521	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522	 * interrupt bit won't have an edge, and the i965/g4x
1523	 * edge triggered IIR will not notice that an interrupt
1524	 * is still pending. We can't use PORT_HOTPLUG_EN to
1525	 * guarantee the edge as the act of toggling the enable
1526	 * bits can itself generate a new hotplug interrupt :(
1527	 */
1528	for (i = 0; i < 10; i++) {
1529		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530
1531		if (tmp == 0)
1532			return hotplug_status;
1533
1534		hotplug_status |= tmp;
1535		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536	}
1537
1538	drm_WARN_ONCE(&dev_priv->drm, 1,
1539		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540		      I915_READ(PORT_HOTPLUG_STAT));
1541
1542	return hotplug_status;
1543}
1544
1545static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546				 u32 hotplug_status)
1547{
1548	u32 pin_mask = 0, long_mask = 0;
1549	u32 hotplug_trigger;
1550
1551	if (IS_G4X(dev_priv) ||
1552	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554	else
1555		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
 
 
 
 
1556
1557	if (hotplug_trigger) {
1558		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559				   hotplug_trigger, hotplug_trigger,
1560				   dev_priv->hotplug.hpd,
1561				   i9xx_port_hotplug_long_detect);
1562
1563		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564	}
 
 
1565
1566	if ((IS_G4X(dev_priv) ||
1567	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569		dp_aux_irq_handler(dev_priv);
 
 
 
 
1570}
1571
1572static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573{
1574	struct drm_i915_private *dev_priv = arg;
1575	irqreturn_t ret = IRQ_NONE;
1576
1577	if (!intel_irqs_enabled(dev_priv))
1578		return IRQ_NONE;
1579
1580	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582
1583	do {
1584		u32 iir, gt_iir, pm_iir;
1585		u32 pipe_stats[I915_MAX_PIPES] = {};
1586		u32 hotplug_status = 0;
1587		u32 ier = 0;
1588
1589		gt_iir = I915_READ(GTIIR);
1590		pm_iir = I915_READ(GEN6_PMIIR);
1591		iir = I915_READ(VLV_IIR);
1592
1593		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594			break;
1595
1596		ret = IRQ_HANDLED;
1597
1598		/*
1599		 * Theory on interrupt generation, based on empirical evidence:
1600		 *
1601		 * x = ((VLV_IIR & VLV_IER) ||
1602		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604		 *
1605		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607		 * guarantee the CPU interrupt will be raised again even if we
1608		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609		 * bits this time around.
1610		 */
1611		I915_WRITE(VLV_MASTER_IER, 0);
1612		ier = I915_READ(VLV_IER);
1613		I915_WRITE(VLV_IER, 0);
1614
1615		if (gt_iir)
1616			I915_WRITE(GTIIR, gt_iir);
1617		if (pm_iir)
1618			I915_WRITE(GEN6_PMIIR, pm_iir);
1619
1620		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622
1623		/* Call regardless, as some status bits might not be
1624		 * signalled in iir */
1625		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626
1627		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628			   I915_LPE_PIPE_B_INTERRUPT))
1629			intel_lpe_audio_irq_handler(dev_priv);
1630
1631		/*
1632		 * VLV_IIR is single buffered, and reflects the level
1633		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634		 */
1635		if (iir)
1636			I915_WRITE(VLV_IIR, iir);
1637
1638		I915_WRITE(VLV_IER, ier);
1639		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1640
1641		if (gt_iir)
1642			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643		if (pm_iir)
1644			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645
1646		if (hotplug_status)
1647			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648
1649		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650	} while (0);
1651
1652	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1653
1654	return ret;
1655}
1656
1657static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658{
1659	struct drm_i915_private *dev_priv = arg;
1660	irqreturn_t ret = IRQ_NONE;
1661
1662	if (!intel_irqs_enabled(dev_priv))
1663		return IRQ_NONE;
1664
1665	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667
1668	do {
1669		u32 master_ctl, iir;
1670		u32 pipe_stats[I915_MAX_PIPES] = {};
1671		u32 hotplug_status = 0;
 
1672		u32 ier = 0;
1673
1674		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675		iir = I915_READ(VLV_IIR);
1676
1677		if (master_ctl == 0 && iir == 0)
1678			break;
1679
1680		ret = IRQ_HANDLED;
1681
1682		/*
1683		 * Theory on interrupt generation, based on empirical evidence:
1684		 *
1685		 * x = ((VLV_IIR & VLV_IER) ||
1686		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688		 *
1689		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691		 * guarantee the CPU interrupt will be raised again even if we
1692		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693		 * bits this time around.
1694		 */
1695		I915_WRITE(GEN8_MASTER_IRQ, 0);
1696		ier = I915_READ(VLV_IER);
1697		I915_WRITE(VLV_IER, 0);
1698
1699		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700
1701		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703
1704		/* Call regardless, as some status bits might not be
1705		 * signalled in iir */
1706		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707
1708		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709			   I915_LPE_PIPE_B_INTERRUPT |
1710			   I915_LPE_PIPE_C_INTERRUPT))
1711			intel_lpe_audio_irq_handler(dev_priv);
1712
1713		/*
1714		 * VLV_IIR is single buffered, and reflects the level
1715		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716		 */
1717		if (iir)
1718			I915_WRITE(VLV_IIR, iir);
1719
1720		I915_WRITE(VLV_IER, ier);
1721		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722
 
 
1723		if (hotplug_status)
1724			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725
1726		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727	} while (0);
1728
1729	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1730
1731	return ret;
1732}
1733
1734static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735				u32 hotplug_trigger)
 
1736{
1737	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738
1739	/*
1740	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741	 * unless we touch the hotplug register, even if hotplug_trigger is
1742	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743	 * errors.
1744	 */
1745	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746	if (!hotplug_trigger) {
1747		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748			PORTD_HOTPLUG_STATUS_MASK |
1749			PORTC_HOTPLUG_STATUS_MASK |
1750			PORTB_HOTPLUG_STATUS_MASK;
1751		dig_hotplug_reg &= ~mask;
1752	}
1753
1754	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755	if (!hotplug_trigger)
1756		return;
1757
1758	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759			   hotplug_trigger, dig_hotplug_reg,
1760			   dev_priv->hotplug.pch_hpd,
1761			   pch_port_hotplug_long_detect);
1762
1763	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764}
1765
1766static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1767{
1768	enum pipe pipe;
1769	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1770
1771	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1772
1773	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775			       SDE_AUDIO_POWER_SHIFT);
1776		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777			port_name(port));
1778	}
1779
1780	if (pch_iir & SDE_AUX_MASK)
1781		dp_aux_irq_handler(dev_priv);
1782
1783	if (pch_iir & SDE_GMBUS)
1784		gmbus_irq_handler(dev_priv);
1785
1786	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1788
1789	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1791
1792	if (pch_iir & SDE_POISON)
1793		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794
1795	if (pch_iir & SDE_FDI_MASK) {
1796		for_each_pipe(dev_priv, pipe)
1797			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798				pipe_name(pipe),
1799				I915_READ(FDI_RX_IIR(pipe)));
1800	}
1801
1802	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804
1805	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806		drm_dbg(&dev_priv->drm,
1807			"PCH transcoder CRC error interrupt\n");
1808
1809	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811
1812	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1814}
1815
1816static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1817{
1818	u32 err_int = I915_READ(GEN7_ERR_INT);
1819	enum pipe pipe;
1820
1821	if (err_int & ERR_INT_POISON)
1822		drm_err(&dev_priv->drm, "Poison interrupt\n");
1823
1824	for_each_pipe(dev_priv, pipe) {
1825		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827
1828		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829			if (IS_IVYBRIDGE(dev_priv))
1830				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831			else
1832				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833		}
1834	}
1835
1836	I915_WRITE(GEN7_ERR_INT, err_int);
1837}
1838
1839static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1840{
1841	u32 serr_int = I915_READ(SERR_INT);
1842	enum pipe pipe;
1843
1844	if (serr_int & SERR_INT_POISON)
1845		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846
1847	for_each_pipe(dev_priv, pipe)
1848		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850
1851	I915_WRITE(SERR_INT, serr_int);
1852}
1853
1854static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855{
1856	enum pipe pipe;
1857	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1858
1859	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860
1861	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863			       SDE_AUDIO_POWER_SHIFT_CPT);
1864		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865			port_name(port));
1866	}
1867
1868	if (pch_iir & SDE_AUX_MASK_CPT)
1869		dp_aux_irq_handler(dev_priv);
1870
1871	if (pch_iir & SDE_GMBUS_CPT)
1872		gmbus_irq_handler(dev_priv);
1873
1874	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876
1877	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879
1880	if (pch_iir & SDE_FDI_MASK_CPT) {
1881		for_each_pipe(dev_priv, pipe)
1882			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883				pipe_name(pipe),
1884				I915_READ(FDI_RX_IIR(pipe)));
1885	}
1886
1887	if (pch_iir & SDE_ERROR_CPT)
1888		cpt_serr_int_handler(dev_priv);
1889}
1890
1891static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
1892{
1893	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
 
1894	u32 pin_mask = 0, long_mask = 0;
1895	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896
1897	if (HAS_PCH_TGP(dev_priv)) {
1898		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901	} else if (HAS_PCH_JSP(dev_priv)) {
1902		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903		tc_hotplug_trigger = 0;
1904	} else if (HAS_PCH_MCC(dev_priv)) {
1905		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908	} else {
1909		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910			 "Unrecognized PCH type 0x%x\n",
1911			 INTEL_PCH_TYPE(dev_priv));
1912
1913		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916	}
1917
1918	if (ddi_hotplug_trigger) {
1919		u32 dig_hotplug_reg;
1920
1921		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923
1924		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925				   ddi_hotplug_trigger, dig_hotplug_reg,
1926				   dev_priv->hotplug.pch_hpd,
1927				   icp_ddi_port_hotplug_long_detect);
1928	}
1929
1930	if (tc_hotplug_trigger) {
1931		u32 dig_hotplug_reg;
1932
1933		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935
1936		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937				   tc_hotplug_trigger, dig_hotplug_reg,
1938				   dev_priv->hotplug.pch_hpd,
1939				   tc_port_hotplug_long_detect);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940	}
1941
1942	if (pin_mask)
1943		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944
1945	if (pch_iir & SDE_GMBUS_ICP)
1946		gmbus_irq_handler(dev_priv);
1947}
1948
1949static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950{
1951	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952		~SDE_PORTE_HOTPLUG_SPT;
1953	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954	u32 pin_mask = 0, long_mask = 0;
1955
1956	if (hotplug_trigger) {
1957		u32 dig_hotplug_reg;
1958
1959		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961
1962		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963				   hotplug_trigger, dig_hotplug_reg,
1964				   dev_priv->hotplug.pch_hpd,
1965				   spt_port_hotplug_long_detect);
1966	}
1967
1968	if (hotplug2_trigger) {
1969		u32 dig_hotplug_reg;
1970
1971		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973
1974		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975				   hotplug2_trigger, dig_hotplug_reg,
1976				   dev_priv->hotplug.pch_hpd,
1977				   spt_port_hotplug2_long_detect);
1978	}
1979
1980	if (pin_mask)
1981		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982
1983	if (pch_iir & SDE_GMBUS_CPT)
1984		gmbus_irq_handler(dev_priv);
1985}
1986
1987static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988				u32 hotplug_trigger)
 
1989{
1990	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991
1992	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994
1995	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996			   hotplug_trigger, dig_hotplug_reg,
1997			   dev_priv->hotplug.hpd,
1998			   ilk_port_hotplug_long_detect);
1999
2000	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001}
2002
2003static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004				    u32 de_iir)
2005{
2006	enum pipe pipe;
2007	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008
2009	if (hotplug_trigger)
2010		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011
2012	if (de_iir & DE_AUX_CHANNEL_A)
2013		dp_aux_irq_handler(dev_priv);
2014
2015	if (de_iir & DE_GSE)
2016		intel_opregion_asle_intr(dev_priv);
2017
2018	if (de_iir & DE_POISON)
2019		drm_err(&dev_priv->drm, "Poison interrupt\n");
2020
2021	for_each_pipe(dev_priv, pipe) {
2022		if (de_iir & DE_PIPE_VBLANK(pipe))
2023			intel_handle_vblank(dev_priv, pipe);
2024
2025		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027
2028		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030	}
2031
2032	/* check event from PCH */
2033	if (de_iir & DE_PCH_EVENT) {
2034		u32 pch_iir = I915_READ(SDEIIR);
2035
2036		if (HAS_PCH_CPT(dev_priv))
2037			cpt_irq_handler(dev_priv, pch_iir);
2038		else
2039			ibx_irq_handler(dev_priv, pch_iir);
2040
2041		/* should clear PCH hotplug event before clear CPU irq */
2042		I915_WRITE(SDEIIR, pch_iir);
2043	}
2044
2045	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046		gen5_rps_irq_handler(&dev_priv->gt.rps);
2047}
2048
2049static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050				    u32 de_iir)
2051{
2052	enum pipe pipe;
2053	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054
2055	if (hotplug_trigger)
2056		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057
2058	if (de_iir & DE_ERR_INT_IVB)
2059		ivb_err_int_handler(dev_priv);
2060
2061	if (de_iir & DE_EDP_PSR_INT_HSW) {
2062		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063
2064		intel_psr_irq_handler(dev_priv, psr_iir);
2065		I915_WRITE(EDP_PSR_IIR, psr_iir);
2066	}
2067
2068	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069		dp_aux_irq_handler(dev_priv);
2070
2071	if (de_iir & DE_GSE_IVB)
2072		intel_opregion_asle_intr(dev_priv);
2073
2074	for_each_pipe(dev_priv, pipe) {
2075		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076			intel_handle_vblank(dev_priv, pipe);
2077	}
2078
2079	/* check event from PCH */
2080	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081		u32 pch_iir = I915_READ(SDEIIR);
2082
2083		cpt_irq_handler(dev_priv, pch_iir);
2084
2085		/* clear PCH hotplug event before clear CPU irq */
2086		I915_WRITE(SDEIIR, pch_iir);
2087	}
2088}
2089
2090/*
2091 * To handle irqs with the minimum potential races with fresh interrupts, we:
2092 * 1 - Disable Master Interrupt Control.
2093 * 2 - Find the source(s) of the interrupt.
2094 * 3 - Clear the Interrupt Identity bits (IIR).
2095 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096 * 5 - Re-enable Master Interrupt Control.
2097 */
2098static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099{
2100	struct drm_i915_private *i915 = arg;
2101	void __iomem * const regs = i915->uncore.regs;
2102	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2103	irqreturn_t ret = IRQ_NONE;
2104
2105	if (unlikely(!intel_irqs_enabled(i915)))
2106		return IRQ_NONE;
2107
2108	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2109	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2110
2111	/* disable master interrupt before clearing iir  */
2112	de_ier = raw_reg_read(regs, DEIER);
2113	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2114
2115	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2116	 * interrupts will will be stored on its back queue, and then we'll be
2117	 * able to process them after we restore SDEIER (as soon as we restore
2118	 * it, we'll get an interrupt if SDEIIR still has something to process
2119	 * due to its back queue). */
2120	if (!HAS_PCH_NOP(i915)) {
2121		sde_ier = raw_reg_read(regs, SDEIER);
2122		raw_reg_write(regs, SDEIER, 0);
2123	}
2124
2125	/* Find, clear, then process each source of interrupt */
2126
2127	gt_iir = raw_reg_read(regs, GTIIR);
2128	if (gt_iir) {
2129		raw_reg_write(regs, GTIIR, gt_iir);
2130		if (INTEL_GEN(i915) >= 6)
2131			gen6_gt_irq_handler(&i915->gt, gt_iir);
2132		else
2133			gen5_gt_irq_handler(&i915->gt, gt_iir);
2134		ret = IRQ_HANDLED;
 
 
 
 
2135	}
2136
2137	de_iir = raw_reg_read(regs, DEIIR);
2138	if (de_iir) {
2139		raw_reg_write(regs, DEIIR, de_iir);
2140		if (INTEL_GEN(i915) >= 7)
2141			ivb_display_irq_handler(i915, de_iir);
2142		else
2143			ilk_display_irq_handler(i915, de_iir);
2144		ret = IRQ_HANDLED;
 
 
 
 
2145	}
2146
2147	if (INTEL_GEN(i915) >= 6) {
2148		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2149		if (pm_iir) {
2150			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2151			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2152			ret = IRQ_HANDLED;
 
2153		}
2154	}
2155
2156	raw_reg_write(regs, DEIER, de_ier);
2157	if (sde_ier)
2158		raw_reg_write(regs, SDEIER, sde_ier);
2159
2160	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2161	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2162
2163	return ret;
2164}
2165
2166static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2167				u32 hotplug_trigger)
 
2168{
2169	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2170
2171	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2173
2174	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2175			   hotplug_trigger, dig_hotplug_reg,
2176			   dev_priv->hotplug.hpd,
2177			   bxt_port_hotplug_long_detect);
2178
2179	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2180}
2181
2182static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2183{
2184	u32 pin_mask = 0, long_mask = 0;
2185	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2186	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2187	long_pulse_detect_func long_pulse_detect;
 
2188
2189	if (INTEL_GEN(dev_priv) >= 12)
2190		long_pulse_detect = gen12_port_hotplug_long_detect;
2191	else
 
2192		long_pulse_detect = gen11_port_hotplug_long_detect;
 
 
2193
2194	if (trigger_tc) {
2195		u32 dig_hotplug_reg;
2196
2197		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2198		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2199
2200		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2201				   trigger_tc, dig_hotplug_reg,
2202				   dev_priv->hotplug.hpd,
2203				   long_pulse_detect);
2204	}
2205
2206	if (trigger_tbt) {
2207		u32 dig_hotplug_reg;
2208
2209		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2210		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2211
2212		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2213				   trigger_tbt, dig_hotplug_reg,
2214				   dev_priv->hotplug.hpd,
2215				   long_pulse_detect);
2216	}
2217
2218	if (pin_mask)
2219		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2220	else
2221		drm_err(&dev_priv->drm,
2222			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2223}
2224
2225static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2226{
2227	u32 mask;
2228
2229	if (INTEL_GEN(dev_priv) >= 12)
 
2230		return TGL_DE_PORT_AUX_DDIA |
2231			TGL_DE_PORT_AUX_DDIB |
2232			TGL_DE_PORT_AUX_DDIC |
2233			TGL_DE_PORT_AUX_USBC1 |
2234			TGL_DE_PORT_AUX_USBC2 |
2235			TGL_DE_PORT_AUX_USBC3 |
2236			TGL_DE_PORT_AUX_USBC4 |
2237			TGL_DE_PORT_AUX_USBC5 |
2238			TGL_DE_PORT_AUX_USBC6;
2239
2240
2241	mask = GEN8_AUX_CHANNEL_A;
2242	if (INTEL_GEN(dev_priv) >= 9)
2243		mask |= GEN9_AUX_CHANNEL_B |
2244			GEN9_AUX_CHANNEL_C |
2245			GEN9_AUX_CHANNEL_D;
2246
2247	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2248		mask |= CNL_AUX_CHANNEL_F;
2249
2250	if (IS_GEN(dev_priv, 11))
2251		mask |= ICL_AUX_CHANNEL_E;
2252
2253	return mask;
2254}
2255
2256static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2257{
2258	if (IS_ROCKETLAKE(dev_priv))
2259		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2260	else if (INTEL_GEN(dev_priv) >= 11)
2261		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2262	else if (INTEL_GEN(dev_priv) >= 9)
2263		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2264	else
2265		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2266}
2267
2268static void
2269gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2270{
2271	bool found = false;
2272
2273	if (iir & GEN8_DE_MISC_GSE) {
2274		intel_opregion_asle_intr(dev_priv);
2275		found = true;
2276	}
2277
2278	if (iir & GEN8_DE_EDP_PSR) {
2279		u32 psr_iir;
2280		i915_reg_t iir_reg;
2281
2282		if (INTEL_GEN(dev_priv) >= 12)
2283			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2284		else
2285			iir_reg = EDP_PSR_IIR;
2286
2287		psr_iir = I915_READ(iir_reg);
2288		I915_WRITE(iir_reg, psr_iir);
2289
2290		if (psr_iir)
2291			found = true;
2292
2293		intel_psr_irq_handler(dev_priv, psr_iir);
 
 
2294	}
2295
2296	if (!found)
2297		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2298}
2299
2300static irqreturn_t
2301gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2302{
2303	irqreturn_t ret = IRQ_NONE;
2304	u32 iir;
2305	enum pipe pipe;
2306
2307	if (master_ctl & GEN8_DE_MISC_IRQ) {
2308		iir = I915_READ(GEN8_DE_MISC_IIR);
2309		if (iir) {
2310			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2311			ret = IRQ_HANDLED;
2312			gen8_de_misc_irq_handler(dev_priv, iir);
2313		} else {
2314			drm_err(&dev_priv->drm,
2315				"The master control interrupt lied (DE MISC)!\n");
2316		}
2317	}
2318
2319	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2320		iir = I915_READ(GEN11_DE_HPD_IIR);
2321		if (iir) {
2322			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2323			ret = IRQ_HANDLED;
2324			gen11_hpd_irq_handler(dev_priv, iir);
2325		} else {
2326			drm_err(&dev_priv->drm,
2327				"The master control interrupt lied, (DE HPD)!\n");
2328		}
2329	}
2330
2331	if (master_ctl & GEN8_DE_PORT_IRQ) {
2332		iir = I915_READ(GEN8_DE_PORT_IIR);
2333		if (iir) {
2334			u32 tmp_mask;
2335			bool found = false;
2336
2337			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2338			ret = IRQ_HANDLED;
2339
2340			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2341				dp_aux_irq_handler(dev_priv);
2342				found = true;
2343			}
2344
2345			if (IS_GEN9_LP(dev_priv)) {
2346				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2347				if (tmp_mask) {
2348					bxt_hpd_irq_handler(dev_priv, tmp_mask);
 
2349					found = true;
2350				}
2351			} else if (IS_BROADWELL(dev_priv)) {
2352				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2353				if (tmp_mask) {
2354					ilk_hpd_irq_handler(dev_priv, tmp_mask);
 
2355					found = true;
2356				}
2357			}
2358
2359			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2360				gmbus_irq_handler(dev_priv);
2361				found = true;
2362			}
2363
2364			if (!found)
2365				drm_err(&dev_priv->drm,
2366					"Unexpected DE Port interrupt\n");
2367		}
2368		else
2369			drm_err(&dev_priv->drm,
2370				"The master control interrupt lied (DE PORT)!\n");
2371	}
2372
2373	for_each_pipe(dev_priv, pipe) {
2374		u32 fault_errors;
2375
2376		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2377			continue;
2378
2379		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2380		if (!iir) {
2381			drm_err(&dev_priv->drm,
2382				"The master control interrupt lied (DE PIPE)!\n");
2383			continue;
2384		}
2385
2386		ret = IRQ_HANDLED;
2387		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2388
2389		if (iir & GEN8_PIPE_VBLANK)
2390			intel_handle_vblank(dev_priv, pipe);
2391
2392		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2393			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2394
2395		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2396			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2397
2398		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2399		if (fault_errors)
2400			drm_err(&dev_priv->drm,
2401				"Fault errors on pipe %c: 0x%08x\n",
2402				pipe_name(pipe),
2403				fault_errors);
2404	}
2405
2406	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2407	    master_ctl & GEN8_DE_PCH_IRQ) {
2408		/*
2409		 * FIXME(BDW): Assume for now that the new interrupt handling
2410		 * scheme also closed the SDE interrupt handling race we've seen
2411		 * on older pch-split platforms. But this needs testing.
2412		 */
2413		iir = I915_READ(SDEIIR);
2414		if (iir) {
2415			I915_WRITE(SDEIIR, iir);
2416			ret = IRQ_HANDLED;
2417
2418			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2419				icp_irq_handler(dev_priv, iir);
 
 
 
 
2420			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2421				spt_irq_handler(dev_priv, iir);
2422			else
2423				cpt_irq_handler(dev_priv, iir);
2424		} else {
2425			/*
2426			 * Like on previous PCH there seems to be something
2427			 * fishy going on with forwarding PCH interrupts.
2428			 */
2429			drm_dbg(&dev_priv->drm,
2430				"The master control interrupt lied (SDE)!\n");
2431		}
2432	}
2433
2434	return ret;
2435}
2436
2437static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2438{
2439	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2440
2441	/*
2442	 * Now with master disabled, get a sample of level indications
2443	 * for this interrupt. Indications will be cleared on related acks.
2444	 * New indications can and will light up during processing,
2445	 * and will generate new interrupt after enabling master.
2446	 */
2447	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2448}
2449
2450static inline void gen8_master_intr_enable(void __iomem * const regs)
2451{
2452	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2453}
2454
2455static irqreturn_t gen8_irq_handler(int irq, void *arg)
2456{
2457	struct drm_i915_private *dev_priv = arg;
2458	void __iomem * const regs = dev_priv->uncore.regs;
2459	u32 master_ctl;
 
2460
2461	if (!intel_irqs_enabled(dev_priv))
2462		return IRQ_NONE;
2463
2464	master_ctl = gen8_master_intr_disable(regs);
2465	if (!master_ctl) {
2466		gen8_master_intr_enable(regs);
2467		return IRQ_NONE;
2468	}
2469
2470	/* Find, queue (onto bottom-halves), then clear each source */
2471	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2472
2473	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2474	if (master_ctl & ~GEN8_GT_IRQS) {
2475		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2476		gen8_de_irq_handler(dev_priv, master_ctl);
2477		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2478	}
2479
2480	gen8_master_intr_enable(regs);
2481
 
 
2482	return IRQ_HANDLED;
2483}
2484
2485static u32
2486gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2487{
2488	void __iomem * const regs = gt->uncore->regs;
2489	u32 iir;
2490
2491	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2492		return 0;
2493
2494	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2495	if (likely(iir))
2496		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2497
2498	return iir;
2499}
2500
2501static void
2502gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2503{
2504	if (iir & GEN11_GU_MISC_GSE)
2505		intel_opregion_asle_intr(gt->i915);
2506}
2507
2508static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2509{
2510	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2511
2512	/*
2513	 * Now with master disabled, get a sample of level indications
2514	 * for this interrupt. Indications will be cleared on related acks.
2515	 * New indications can and will light up during processing,
2516	 * and will generate new interrupt after enabling master.
2517	 */
2518	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2519}
2520
2521static inline void gen11_master_intr_enable(void __iomem * const regs)
2522{
2523	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2524}
2525
2526static void
2527gen11_display_irq_handler(struct drm_i915_private *i915)
2528{
2529	void __iomem * const regs = i915->uncore.regs;
2530	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2531
2532	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2533	/*
2534	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2535	 * for the display related bits.
2536	 */
2537	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2538	gen8_de_irq_handler(i915, disp_ctl);
2539	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2540		      GEN11_DISPLAY_IRQ_ENABLE);
2541
2542	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2543}
2544
2545static __always_inline irqreturn_t
2546__gen11_irq_handler(struct drm_i915_private * const i915,
2547		    u32 (*intr_disable)(void __iomem * const regs),
2548		    void (*intr_enable)(void __iomem * const regs))
2549{
 
2550	void __iomem * const regs = i915->uncore.regs;
2551	struct intel_gt *gt = &i915->gt;
2552	u32 master_ctl;
2553	u32 gu_misc_iir;
2554
2555	if (!intel_irqs_enabled(i915))
2556		return IRQ_NONE;
2557
2558	master_ctl = intr_disable(regs);
2559	if (!master_ctl) {
2560		intr_enable(regs);
2561		return IRQ_NONE;
2562	}
2563
2564	/* Find, queue (onto bottom-halves), then clear each source */
2565	gen11_gt_irq_handler(gt, master_ctl);
2566
2567	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2568	if (master_ctl & GEN11_DISPLAY_IRQ)
2569		gen11_display_irq_handler(i915);
 
 
 
 
 
 
 
 
 
2570
2571	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2572
2573	intr_enable(regs);
2574
2575	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2576
2577	return IRQ_HANDLED;
2578}
2579
2580static irqreturn_t gen11_irq_handler(int irq, void *arg)
2581{
2582	return __gen11_irq_handler(arg,
2583				   gen11_master_intr_disable,
2584				   gen11_master_intr_enable);
2585}
2586
2587static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2588{
2589	u32 val;
2590
2591	/* First disable interrupts */
2592	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2593
2594	/* Get the indication levels and ack the master unit */
2595	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2596	if (unlikely(!val))
2597		return 0;
2598
2599	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2600
2601	/*
2602	 * Now with master disabled, get a sample of level indications
2603	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2604	 * out as this bit doesn't exist anymore for DG1
2605	 */
2606	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2607	if (unlikely(!val))
2608		return 0;
2609
2610	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2611
2612	return val;
2613}
2614
2615static inline void dg1_master_intr_enable(void __iomem * const regs)
2616{
2617	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2618}
2619
2620static irqreturn_t dg1_irq_handler(int irq, void *arg)
2621{
2622	return __gen11_irq_handler(arg,
2623				   dg1_master_intr_disable_and_ack,
2624				   dg1_master_intr_enable);
2625}
2626
2627/* Called from drm generic code, passed 'crtc' which
2628 * we use as a pipe index
2629 */
2630int i8xx_enable_vblank(struct drm_crtc *crtc)
2631{
2632	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2633	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2634	unsigned long irqflags;
2635
2636	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2637	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2638	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639
2640	return 0;
2641}
2642
2643int i915gm_enable_vblank(struct drm_crtc *crtc)
2644{
2645	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2646
2647	/*
2648	 * Vblank interrupts fail to wake the device up from C2+.
2649	 * Disabling render clock gating during C-states avoids
2650	 * the problem. There is a small power cost so we do this
2651	 * only when vblank interrupts are actually enabled.
2652	 */
2653	if (dev_priv->vblank_enabled++ == 0)
2654		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2655
2656	return i8xx_enable_vblank(crtc);
2657}
2658
2659int i965_enable_vblank(struct drm_crtc *crtc)
2660{
2661	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2662	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2663	unsigned long irqflags;
2664
2665	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2666	i915_enable_pipestat(dev_priv, pipe,
2667			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2668	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2669
2670	return 0;
2671}
2672
2673int ilk_enable_vblank(struct drm_crtc *crtc)
2674{
2675	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2676	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2677	unsigned long irqflags;
2678	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2679		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2680
2681	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682	ilk_enable_display_irq(dev_priv, bit);
2683	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684
2685	/* Even though there is no DMC, frame counter can get stuck when
2686	 * PSR is active as no frames are generated.
2687	 */
2688	if (HAS_PSR(dev_priv))
2689		drm_crtc_vblank_restore(crtc);
2690
2691	return 0;
2692}
2693
2694int bdw_enable_vblank(struct drm_crtc *crtc)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2697	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2698	unsigned long irqflags;
2699
2700	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2702	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2703
2704	/* Even if there is no DMC, frame counter can get stuck when
2705	 * PSR is active as no frames are generated, so check only for PSR.
2706	 */
2707	if (HAS_PSR(dev_priv))
2708		drm_crtc_vblank_restore(crtc);
2709
2710	return 0;
2711}
2712
2713/* Called from drm generic code, passed 'crtc' which
2714 * we use as a pipe index
2715 */
2716void i8xx_disable_vblank(struct drm_crtc *crtc)
2717{
2718	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2719	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2720	unsigned long irqflags;
2721
2722	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2723	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2724	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2725}
2726
2727void i915gm_disable_vblank(struct drm_crtc *crtc)
2728{
2729	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2730
2731	i8xx_disable_vblank(crtc);
2732
2733	if (--dev_priv->vblank_enabled == 0)
2734		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2735}
2736
2737void i965_disable_vblank(struct drm_crtc *crtc)
2738{
2739	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2740	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2741	unsigned long irqflags;
2742
2743	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744	i915_disable_pipestat(dev_priv, pipe,
2745			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2746	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2747}
2748
2749void ilk_disable_vblank(struct drm_crtc *crtc)
2750{
2751	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2752	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2753	unsigned long irqflags;
2754	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2755		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2756
2757	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758	ilk_disable_display_irq(dev_priv, bit);
2759	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2760}
2761
2762void bdw_disable_vblank(struct drm_crtc *crtc)
2763{
2764	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2766	unsigned long irqflags;
2767
2768	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2769	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2770	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771}
2772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2773static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2774{
2775	struct intel_uncore *uncore = &dev_priv->uncore;
2776
2777	if (HAS_PCH_NOP(dev_priv))
2778		return;
2779
2780	GEN3_IRQ_RESET(uncore, SDE);
2781
2782	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2783		I915_WRITE(SERR_INT, 0xffffffff);
2784}
2785
2786/*
2787 * SDEIER is also touched by the interrupt handler to work around missed PCH
2788 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2789 * instead we unconditionally enable all PCH interrupt sources here, but then
2790 * only unmask them as needed with SDEIMR.
2791 *
2792 * This function needs to be called before interrupts are enabled.
2793 */
2794static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2795{
2796	if (HAS_PCH_NOP(dev_priv))
2797		return;
2798
2799	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2800	I915_WRITE(SDEIER, 0xffffffff);
2801	POSTING_READ(SDEIER);
2802}
2803
2804static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2805{
2806	struct intel_uncore *uncore = &dev_priv->uncore;
2807
2808	if (IS_CHERRYVIEW(dev_priv))
2809		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2810	else
2811		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2812
2813	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2814	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2815
2816	i9xx_pipestat_irq_reset(dev_priv);
2817
2818	GEN3_IRQ_RESET(uncore, VLV_);
2819	dev_priv->irq_mask = ~0u;
2820}
2821
2822static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2823{
2824	struct intel_uncore *uncore = &dev_priv->uncore;
2825
2826	u32 pipestat_mask;
2827	u32 enable_mask;
2828	enum pipe pipe;
2829
2830	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2831
2832	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2833	for_each_pipe(dev_priv, pipe)
2834		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2835
2836	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2837		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2838		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2839		I915_LPE_PIPE_A_INTERRUPT |
2840		I915_LPE_PIPE_B_INTERRUPT;
2841
2842	if (IS_CHERRYVIEW(dev_priv))
2843		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2844			I915_LPE_PIPE_C_INTERRUPT;
2845
2846	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2847
2848	dev_priv->irq_mask = ~enable_mask;
2849
2850	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2851}
2852
2853/* drm_dma.h hooks
2854*/
2855static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2856{
2857	struct intel_uncore *uncore = &dev_priv->uncore;
2858
2859	GEN3_IRQ_RESET(uncore, DE);
2860	if (IS_GEN(dev_priv, 7))
2861		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2862
2863	if (IS_HASWELL(dev_priv)) {
2864		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2865		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2866	}
2867
2868	gen5_gt_irq_reset(&dev_priv->gt);
2869
2870	ibx_irq_reset(dev_priv);
2871}
2872
2873static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2874{
2875	I915_WRITE(VLV_MASTER_IER, 0);
2876	POSTING_READ(VLV_MASTER_IER);
2877
2878	gen5_gt_irq_reset(&dev_priv->gt);
2879
2880	spin_lock_irq(&dev_priv->irq_lock);
2881	if (dev_priv->display_irqs_enabled)
2882		vlv_display_irq_reset(dev_priv);
2883	spin_unlock_irq(&dev_priv->irq_lock);
2884}
2885
2886static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2887{
2888	struct intel_uncore *uncore = &dev_priv->uncore;
2889	enum pipe pipe;
2890
2891	gen8_master_intr_disable(dev_priv->uncore.regs);
2892
2893	gen8_gt_irq_reset(&dev_priv->gt);
2894
2895	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2896	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2897
2898	for_each_pipe(dev_priv, pipe)
2899		if (intel_display_power_is_enabled(dev_priv,
2900						   POWER_DOMAIN_PIPE(pipe)))
2901			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2902
2903	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2904	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2905	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2906
2907	if (HAS_PCH_SPLIT(dev_priv))
2908		ibx_irq_reset(dev_priv);
2909}
2910
2911static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2912{
2913	struct intel_uncore *uncore = &dev_priv->uncore;
2914	enum pipe pipe;
2915	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2916		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2917
2918	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2919
2920	if (INTEL_GEN(dev_priv) >= 12) {
2921		enum transcoder trans;
2922
2923		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2924			enum intel_display_power_domain domain;
2925
2926			domain = POWER_DOMAIN_TRANSCODER(trans);
2927			if (!intel_display_power_is_enabled(dev_priv, domain))
2928				continue;
2929
2930			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2931			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2932		}
2933	} else {
2934		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2935		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2936	}
2937
2938	for_each_pipe(dev_priv, pipe)
2939		if (intel_display_power_is_enabled(dev_priv,
2940						   POWER_DOMAIN_PIPE(pipe)))
2941			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2942
2943	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2944	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2945	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
 
 
2946
2947	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2948		GEN3_IRQ_RESET(uncore, SDE);
2949
2950	/* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
2951	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
2952		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2953				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2954		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2955				 SBCLK_RUN_REFCLK_DIS, 0);
2956	}
2957}
2958
2959static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2960{
2961	struct intel_uncore *uncore = &dev_priv->uncore;
2962
2963	if (HAS_MASTER_UNIT_IRQ(dev_priv))
2964		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
2965	else
2966		gen11_master_intr_disable(dev_priv->uncore.regs);
2967
2968	gen11_gt_irq_reset(&dev_priv->gt);
2969	gen11_display_irq_reset(dev_priv);
2970
2971	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2972	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2973}
2974
2975void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2976				     u8 pipe_mask)
2977{
2978	struct intel_uncore *uncore = &dev_priv->uncore;
2979
2980	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2981	enum pipe pipe;
2982
2983	spin_lock_irq(&dev_priv->irq_lock);
2984
2985	if (!intel_irqs_enabled(dev_priv)) {
2986		spin_unlock_irq(&dev_priv->irq_lock);
2987		return;
2988	}
2989
2990	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2991		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2992				  dev_priv->de_irq_mask[pipe],
2993				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2994
2995	spin_unlock_irq(&dev_priv->irq_lock);
2996}
2997
2998void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2999				     u8 pipe_mask)
3000{
3001	struct intel_uncore *uncore = &dev_priv->uncore;
3002	enum pipe pipe;
3003
3004	spin_lock_irq(&dev_priv->irq_lock);
3005
3006	if (!intel_irqs_enabled(dev_priv)) {
3007		spin_unlock_irq(&dev_priv->irq_lock);
3008		return;
3009	}
3010
3011	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3012		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013
3014	spin_unlock_irq(&dev_priv->irq_lock);
3015
3016	/* make sure we're done processing display irqs */
3017	intel_synchronize_irq(dev_priv);
3018}
3019
3020static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3021{
3022	struct intel_uncore *uncore = &dev_priv->uncore;
3023
3024	I915_WRITE(GEN8_MASTER_IRQ, 0);
3025	POSTING_READ(GEN8_MASTER_IRQ);
3026
3027	gen8_gt_irq_reset(&dev_priv->gt);
3028
3029	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3030
3031	spin_lock_irq(&dev_priv->irq_lock);
3032	if (dev_priv->display_irqs_enabled)
3033		vlv_display_irq_reset(dev_priv);
3034	spin_unlock_irq(&dev_priv->irq_lock);
3035}
3036
3037static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3038				  const u32 hpd[HPD_NUM_PINS])
3039{
3040	struct intel_encoder *encoder;
3041	u32 enabled_irqs = 0;
3042
3043	for_each_intel_encoder(&dev_priv->drm, encoder)
3044		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3045			enabled_irqs |= hpd[encoder->hpd_pin];
3046
3047	return enabled_irqs;
3048}
3049
3050static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3051{
3052	u32 hotplug;
3053
3054	/*
3055	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3056	 * duration to 2ms (which is the minimum in the Display Port spec).
3057	 * The pulse duration bits are reserved on LPT+.
3058	 */
3059	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3060	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3061		     PORTC_PULSE_DURATION_MASK |
3062		     PORTD_PULSE_DURATION_MASK);
3063	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3064	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3066	/*
3067	 * When CPU and PCH are on the same package, port A
3068	 * HPD must be enabled in both north and south.
3069	 */
3070	if (HAS_PCH_LPT_LP(dev_priv))
3071		hotplug |= PORTA_HOTPLUG_ENABLE;
3072	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3073}
3074
3075static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3076{
3077	u32 hotplug_irqs, enabled_irqs;
3078
3079	if (HAS_PCH_IBX(dev_priv))
3080		hotplug_irqs = SDE_HOTPLUG_MASK;
3081	else
 
3082		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3083
3084	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3085
3086	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3087
3088	ibx_hpd_detection_setup(dev_priv);
3089}
3090
3091static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3092				    u32 ddi_hotplug_enable_mask,
3093				    u32 tc_hotplug_enable_mask)
3094{
3095	u32 hotplug;
3096
3097	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3098	hotplug |= ddi_hotplug_enable_mask;
3099	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3100
3101	if (tc_hotplug_enable_mask) {
3102		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3103		hotplug |= tc_hotplug_enable_mask;
3104		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3105	}
3106}
3107
3108static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3109			      u32 sde_ddi_mask, u32 sde_tc_mask,
3110			      u32 ddi_enable_mask, u32 tc_enable_mask)
3111{
3112	u32 hotplug_irqs, enabled_irqs;
3113
3114	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3115	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3116
3117	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3118		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3119
3120	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3121
3122	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
 
3123}
3124
3125/*
3126 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3127 * equivalent of SDE.
3128 */
3129static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3130{
3131	icp_hpd_irq_setup(dev_priv,
3132			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3133			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
 
 
 
 
 
3134}
3135
3136/*
3137 * JSP behaves exactly the same as MCC above except that port C is mapped to
3138 * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3139 * masks & tables rather than ICP's masks & tables.
3140 */
3141static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3142{
3143	icp_hpd_irq_setup(dev_priv,
3144			  SDE_DDI_MASK_TGP, 0,
3145			  TGP_DDI_HPD_ENABLE_MASK, 0);
 
 
 
 
 
 
3146}
3147
3148static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3149{
3150	u32 hotplug;
3151
3152	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3153	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3154		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3155		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3156		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3157	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3158
3159	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3160	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3161		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3162		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3163		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3164	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3165}
3166
3167static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168{
3169	u32 hotplug_irqs, enabled_irqs;
 
3170	u32 val;
3171
3172	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
 
3173	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3174
3175	val = I915_READ(GEN11_DE_HPD_IMR);
3176	val &= ~hotplug_irqs;
3177	val |= ~enabled_irqs & hotplug_irqs;
3178	I915_WRITE(GEN11_DE_HPD_IMR, val);
3179	POSTING_READ(GEN11_DE_HPD_IMR);
3180
3181	gen11_hpd_detection_setup(dev_priv);
3182
3183	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3184		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3185				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3186	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3187		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3188				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3189}
3190
3191static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3192{
3193	u32 val, hotplug;
3194
3195	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3196	if (HAS_PCH_CNP(dev_priv)) {
3197		val = I915_READ(SOUTH_CHICKEN1);
3198		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3199		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3200		I915_WRITE(SOUTH_CHICKEN1, val);
3201	}
3202
3203	/* Enable digital hotplug on the PCH */
3204	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3205	hotplug |= PORTA_HOTPLUG_ENABLE |
3206		   PORTB_HOTPLUG_ENABLE |
3207		   PORTC_HOTPLUG_ENABLE |
3208		   PORTD_HOTPLUG_ENABLE;
3209	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3210
3211	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3212	hotplug |= PORTE_HOTPLUG_ENABLE;
3213	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3214}
3215
3216static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3217{
3218	u32 hotplug_irqs, enabled_irqs;
3219
3220	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3221		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3222
3223	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3224	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3225
3226	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3227
3228	spt_hpd_detection_setup(dev_priv);
3229}
3230
3231static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3232{
3233	u32 hotplug;
3234
3235	/*
3236	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3237	 * duration to 2ms (which is the minimum in the Display Port spec)
3238	 * The pulse duration bits are reserved on HSW+.
3239	 */
3240	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3241	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3242	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3243		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3244	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3245}
3246
3247static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3248{
3249	u32 hotplug_irqs, enabled_irqs;
3250
3251	if (INTEL_GEN(dev_priv) >= 8) {
3252		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3253		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3254
3255		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3256	} else if (INTEL_GEN(dev_priv) >= 7) {
3257		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3258		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3259
3260		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3261	} else {
3262		hotplug_irqs = DE_DP_A_HOTPLUG;
3263		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3264
3265		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3266	}
3267
3268	ilk_hpd_detection_setup(dev_priv);
3269
3270	ibx_hpd_irq_setup(dev_priv);
3271}
3272
3273static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3274				      u32 enabled_irqs)
3275{
3276	u32 hotplug;
3277
3278	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3279	hotplug |= PORTA_HOTPLUG_ENABLE |
3280		   PORTB_HOTPLUG_ENABLE |
3281		   PORTC_HOTPLUG_ENABLE;
3282
3283	drm_dbg_kms(&dev_priv->drm,
3284		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3285		    hotplug, enabled_irqs);
3286	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3287
3288	/*
3289	 * For BXT invert bit has to be set based on AOB design
3290	 * for HPD detection logic, update it based on VBT fields.
3291	 */
3292	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3293	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3294		hotplug |= BXT_DDIA_HPD_INVERT;
3295	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3296	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3297		hotplug |= BXT_DDIB_HPD_INVERT;
3298	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3299	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3300		hotplug |= BXT_DDIC_HPD_INVERT;
3301
3302	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3303}
3304
3305static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3306{
3307	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3308}
3309
3310static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3311{
3312	u32 hotplug_irqs, enabled_irqs;
3313
3314	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3315	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3316
3317	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3318
3319	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3320}
3321
3322static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3323{
3324	u32 mask;
3325
3326	if (HAS_PCH_NOP(dev_priv))
3327		return;
3328
3329	if (HAS_PCH_IBX(dev_priv))
3330		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3331	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3332		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3333	else
3334		mask = SDE_GMBUS_CPT;
3335
3336	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3337	I915_WRITE(SDEIMR, ~mask);
3338
3339	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3340	    HAS_PCH_LPT(dev_priv))
3341		ibx_hpd_detection_setup(dev_priv);
3342	else
3343		spt_hpd_detection_setup(dev_priv);
3344}
3345
3346static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3347{
3348	struct intel_uncore *uncore = &dev_priv->uncore;
3349	u32 display_mask, extra_mask;
3350
3351	if (INTEL_GEN(dev_priv) >= 7) {
3352		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3353				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3354		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3355			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3356			      DE_DP_A_HOTPLUG_IVB);
3357	} else {
3358		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3359				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3360				DE_PIPEA_CRC_DONE | DE_POISON);
3361		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3362			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3363			      DE_DP_A_HOTPLUG);
3364	}
3365
3366	if (IS_HASWELL(dev_priv)) {
3367		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
 
3368		display_mask |= DE_EDP_PSR_INT_HSW;
3369	}
3370
3371	dev_priv->irq_mask = ~display_mask;
3372
3373	ibx_irq_pre_postinstall(dev_priv);
3374
3375	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3376		      display_mask | extra_mask);
3377
3378	gen5_gt_irq_postinstall(&dev_priv->gt);
3379
3380	ilk_hpd_detection_setup(dev_priv);
3381
3382	ibx_irq_postinstall(dev_priv);
3383
3384	if (IS_IRONLAKE_M(dev_priv)) {
3385		/* Enable PCU event interrupts
3386		 *
3387		 * spinlocking not required here for correctness since interrupt
3388		 * setup is guaranteed to run in single-threaded context. But we
3389		 * need it to make the assert_spin_locked happy. */
3390		spin_lock_irq(&dev_priv->irq_lock);
3391		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3392		spin_unlock_irq(&dev_priv->irq_lock);
3393	}
3394}
3395
3396void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3397{
3398	lockdep_assert_held(&dev_priv->irq_lock);
3399
3400	if (dev_priv->display_irqs_enabled)
3401		return;
3402
3403	dev_priv->display_irqs_enabled = true;
3404
3405	if (intel_irqs_enabled(dev_priv)) {
3406		vlv_display_irq_reset(dev_priv);
3407		vlv_display_irq_postinstall(dev_priv);
3408	}
3409}
3410
3411void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3412{
3413	lockdep_assert_held(&dev_priv->irq_lock);
3414
3415	if (!dev_priv->display_irqs_enabled)
3416		return;
3417
3418	dev_priv->display_irqs_enabled = false;
3419
3420	if (intel_irqs_enabled(dev_priv))
3421		vlv_display_irq_reset(dev_priv);
3422}
3423
3424
3425static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3426{
3427	gen5_gt_irq_postinstall(&dev_priv->gt);
3428
3429	spin_lock_irq(&dev_priv->irq_lock);
3430	if (dev_priv->display_irqs_enabled)
3431		vlv_display_irq_postinstall(dev_priv);
3432	spin_unlock_irq(&dev_priv->irq_lock);
3433
3434	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3435	POSTING_READ(VLV_MASTER_IER);
3436}
3437
3438static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3439{
3440	struct intel_uncore *uncore = &dev_priv->uncore;
3441
3442	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3443		GEN8_PIPE_CDCLK_CRC_DONE;
3444	u32 de_pipe_enables;
3445	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3446	u32 de_port_enables;
3447	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3448	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3449		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3450	enum pipe pipe;
3451
3452	if (INTEL_GEN(dev_priv) <= 10)
3453		de_misc_masked |= GEN8_DE_MISC_GSE;
3454
3455	if (IS_GEN9_LP(dev_priv))
3456		de_port_masked |= BXT_DE_PORT_GMBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
3457
3458	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3459					   GEN8_PIPE_FIFO_UNDERRUN;
3460
3461	de_port_enables = de_port_masked;
3462	if (IS_GEN9_LP(dev_priv))
3463		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3464	else if (IS_BROADWELL(dev_priv))
3465		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3466
3467	if (INTEL_GEN(dev_priv) >= 12) {
3468		enum transcoder trans;
3469
3470		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3471			enum intel_display_power_domain domain;
3472
3473			domain = POWER_DOMAIN_TRANSCODER(trans);
3474			if (!intel_display_power_is_enabled(dev_priv, domain))
3475				continue;
3476
3477			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3478		}
3479	} else {
3480		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3481	}
3482
3483	for_each_pipe(dev_priv, pipe) {
3484		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3485
3486		if (intel_display_power_is_enabled(dev_priv,
3487				POWER_DOMAIN_PIPE(pipe)))
3488			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3489					  dev_priv->de_irq_mask[pipe],
3490					  de_pipe_enables);
3491	}
3492
3493	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3494	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3495
3496	if (INTEL_GEN(dev_priv) >= 11) {
3497		u32 de_hpd_masked = 0;
3498		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3499				     GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3502			      de_hpd_enables);
3503		gen11_hpd_detection_setup(dev_priv);
3504	} else if (IS_GEN9_LP(dev_priv)) {
3505		bxt_hpd_detection_setup(dev_priv);
3506	} else if (IS_BROADWELL(dev_priv)) {
3507		ilk_hpd_detection_setup(dev_priv);
3508	}
3509}
3510
3511static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3512{
3513	if (HAS_PCH_SPLIT(dev_priv))
3514		ibx_irq_pre_postinstall(dev_priv);
3515
3516	gen8_gt_irq_postinstall(&dev_priv->gt);
3517	gen8_de_irq_postinstall(dev_priv);
3518
3519	if (HAS_PCH_SPLIT(dev_priv))
3520		ibx_irq_postinstall(dev_priv);
3521
3522	gen8_master_intr_enable(dev_priv->uncore.regs);
3523}
3524
3525static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3526{
3527	u32 mask = SDE_GMBUS_ICP;
3528
3529	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3530	I915_WRITE(SDEIER, 0xffffffff);
3531	POSTING_READ(SDEIER);
3532
3533	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3534	I915_WRITE(SDEIMR, ~mask);
3535
3536	if (HAS_PCH_TGP(dev_priv))
3537		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3538					TGP_TC_HPD_ENABLE_MASK);
3539	else if (HAS_PCH_JSP(dev_priv))
3540		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3541	else if (HAS_PCH_MCC(dev_priv))
3542		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3543					ICP_TC_HPD_ENABLE(PORT_TC1));
3544	else
3545		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3546					ICP_TC_HPD_ENABLE_MASK);
3547}
3548
3549static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3550{
3551	struct intel_uncore *uncore = &dev_priv->uncore;
3552	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3553
3554	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3555		icp_irq_postinstall(dev_priv);
3556
3557	gen11_gt_irq_postinstall(&dev_priv->gt);
3558	gen8_de_irq_postinstall(dev_priv);
3559
3560	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3561
3562	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3563
3564	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3565		dg1_master_intr_enable(uncore->regs);
3566		POSTING_READ(DG1_MSTR_UNIT_INTR);
3567	} else {
3568		gen11_master_intr_enable(uncore->regs);
3569		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3570	}
3571}
3572
3573static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3574{
3575	gen8_gt_irq_postinstall(&dev_priv->gt);
3576
3577	spin_lock_irq(&dev_priv->irq_lock);
3578	if (dev_priv->display_irqs_enabled)
3579		vlv_display_irq_postinstall(dev_priv);
3580	spin_unlock_irq(&dev_priv->irq_lock);
3581
3582	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3583	POSTING_READ(GEN8_MASTER_IRQ);
3584}
3585
3586static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3587{
3588	struct intel_uncore *uncore = &dev_priv->uncore;
3589
3590	i9xx_pipestat_irq_reset(dev_priv);
3591
3592	GEN2_IRQ_RESET(uncore);
3593}
3594
3595static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3596{
3597	struct intel_uncore *uncore = &dev_priv->uncore;
3598	u16 enable_mask;
3599
3600	intel_uncore_write16(uncore,
3601			     EMR,
3602			     ~(I915_ERROR_PAGE_TABLE |
3603			       I915_ERROR_MEMORY_REFRESH));
3604
3605	/* Unmask the interrupts that we always want on. */
3606	dev_priv->irq_mask =
3607		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3608		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3609		  I915_MASTER_ERROR_INTERRUPT);
3610
3611	enable_mask =
3612		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3613		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3614		I915_MASTER_ERROR_INTERRUPT |
3615		I915_USER_INTERRUPT;
3616
3617	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3618
3619	/* Interrupt setup is already guaranteed to be single-threaded, this is
3620	 * just to make the assert_spin_locked check happy. */
3621	spin_lock_irq(&dev_priv->irq_lock);
3622	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3623	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3624	spin_unlock_irq(&dev_priv->irq_lock);
3625}
3626
3627static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3628			       u16 *eir, u16 *eir_stuck)
3629{
3630	struct intel_uncore *uncore = &i915->uncore;
3631	u16 emr;
3632
3633	*eir = intel_uncore_read16(uncore, EIR);
3634
3635	if (*eir)
3636		intel_uncore_write16(uncore, EIR, *eir);
3637
3638	*eir_stuck = intel_uncore_read16(uncore, EIR);
3639	if (*eir_stuck == 0)
3640		return;
3641
3642	/*
3643	 * Toggle all EMR bits to make sure we get an edge
3644	 * in the ISR master error bit if we don't clear
3645	 * all the EIR bits. Otherwise the edge triggered
3646	 * IIR on i965/g4x wouldn't notice that an interrupt
3647	 * is still pending. Also some EIR bits can't be
3648	 * cleared except by handling the underlying error
3649	 * (or by a GPU reset) so we mask any bit that
3650	 * remains set.
3651	 */
3652	emr = intel_uncore_read16(uncore, EMR);
3653	intel_uncore_write16(uncore, EMR, 0xffff);
3654	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3655}
3656
3657static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3658				   u16 eir, u16 eir_stuck)
3659{
3660	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3661
3662	if (eir_stuck)
3663		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3664			eir_stuck);
3665}
3666
3667static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3668			       u32 *eir, u32 *eir_stuck)
3669{
3670	u32 emr;
3671
3672	*eir = I915_READ(EIR);
3673
3674	I915_WRITE(EIR, *eir);
3675
3676	*eir_stuck = I915_READ(EIR);
3677	if (*eir_stuck == 0)
3678		return;
3679
3680	/*
3681	 * Toggle all EMR bits to make sure we get an edge
3682	 * in the ISR master error bit if we don't clear
3683	 * all the EIR bits. Otherwise the edge triggered
3684	 * IIR on i965/g4x wouldn't notice that an interrupt
3685	 * is still pending. Also some EIR bits can't be
3686	 * cleared except by handling the underlying error
3687	 * (or by a GPU reset) so we mask any bit that
3688	 * remains set.
3689	 */
3690	emr = I915_READ(EMR);
3691	I915_WRITE(EMR, 0xffffffff);
3692	I915_WRITE(EMR, emr | *eir_stuck);
3693}
3694
3695static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3696				   u32 eir, u32 eir_stuck)
3697{
3698	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3699
3700	if (eir_stuck)
3701		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3702			eir_stuck);
3703}
3704
3705static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3706{
3707	struct drm_i915_private *dev_priv = arg;
3708	irqreturn_t ret = IRQ_NONE;
3709
3710	if (!intel_irqs_enabled(dev_priv))
3711		return IRQ_NONE;
3712
3713	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3714	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3715
3716	do {
3717		u32 pipe_stats[I915_MAX_PIPES] = {};
3718		u16 eir = 0, eir_stuck = 0;
3719		u16 iir;
3720
3721		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3722		if (iir == 0)
3723			break;
3724
3725		ret = IRQ_HANDLED;
3726
3727		/* Call regardless, as some status bits might not be
3728		 * signalled in iir */
3729		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3730
3731		if (iir & I915_MASTER_ERROR_INTERRUPT)
3732			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3733
3734		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3735
3736		if (iir & I915_USER_INTERRUPT)
3737			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3738
3739		if (iir & I915_MASTER_ERROR_INTERRUPT)
3740			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3741
3742		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3743	} while (0);
3744
3745	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3746
3747	return ret;
3748}
3749
3750static void i915_irq_reset(struct drm_i915_private *dev_priv)
3751{
3752	struct intel_uncore *uncore = &dev_priv->uncore;
3753
3754	if (I915_HAS_HOTPLUG(dev_priv)) {
3755		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3756		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3757	}
3758
3759	i9xx_pipestat_irq_reset(dev_priv);
3760
3761	GEN3_IRQ_RESET(uncore, GEN2_);
3762}
3763
3764static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3765{
3766	struct intel_uncore *uncore = &dev_priv->uncore;
3767	u32 enable_mask;
3768
3769	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3770			  I915_ERROR_MEMORY_REFRESH));
3771
3772	/* Unmask the interrupts that we always want on. */
3773	dev_priv->irq_mask =
3774		~(I915_ASLE_INTERRUPT |
3775		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3776		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3777		  I915_MASTER_ERROR_INTERRUPT);
3778
3779	enable_mask =
3780		I915_ASLE_INTERRUPT |
3781		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3782		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3783		I915_MASTER_ERROR_INTERRUPT |
3784		I915_USER_INTERRUPT;
3785
3786	if (I915_HAS_HOTPLUG(dev_priv)) {
3787		/* Enable in IER... */
3788		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3789		/* and unmask in IMR */
3790		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3791	}
3792
3793	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3794
3795	/* Interrupt setup is already guaranteed to be single-threaded, this is
3796	 * just to make the assert_spin_locked check happy. */
3797	spin_lock_irq(&dev_priv->irq_lock);
3798	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3799	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3800	spin_unlock_irq(&dev_priv->irq_lock);
3801
3802	i915_enable_asle_pipestat(dev_priv);
3803}
3804
3805static irqreturn_t i915_irq_handler(int irq, void *arg)
3806{
3807	struct drm_i915_private *dev_priv = arg;
3808	irqreturn_t ret = IRQ_NONE;
3809
3810	if (!intel_irqs_enabled(dev_priv))
3811		return IRQ_NONE;
3812
3813	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3814	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3815
3816	do {
3817		u32 pipe_stats[I915_MAX_PIPES] = {};
3818		u32 eir = 0, eir_stuck = 0;
3819		u32 hotplug_status = 0;
3820		u32 iir;
3821
3822		iir = I915_READ(GEN2_IIR);
3823		if (iir == 0)
3824			break;
3825
3826		ret = IRQ_HANDLED;
3827
3828		if (I915_HAS_HOTPLUG(dev_priv) &&
3829		    iir & I915_DISPLAY_PORT_INTERRUPT)
3830			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3831
3832		/* Call regardless, as some status bits might not be
3833		 * signalled in iir */
3834		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3835
3836		if (iir & I915_MASTER_ERROR_INTERRUPT)
3837			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3838
3839		I915_WRITE(GEN2_IIR, iir);
3840
3841		if (iir & I915_USER_INTERRUPT)
3842			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3843
3844		if (iir & I915_MASTER_ERROR_INTERRUPT)
3845			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3846
3847		if (hotplug_status)
3848			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3849
3850		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3851	} while (0);
3852
3853	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3854
3855	return ret;
3856}
3857
3858static void i965_irq_reset(struct drm_i915_private *dev_priv)
3859{
3860	struct intel_uncore *uncore = &dev_priv->uncore;
3861
3862	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3863	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3864
3865	i9xx_pipestat_irq_reset(dev_priv);
3866
3867	GEN3_IRQ_RESET(uncore, GEN2_);
3868}
3869
3870static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3871{
3872	struct intel_uncore *uncore = &dev_priv->uncore;
3873	u32 enable_mask;
3874	u32 error_mask;
3875
3876	/*
3877	 * Enable some error detection, note the instruction error mask
3878	 * bit is reserved, so we leave it masked.
3879	 */
3880	if (IS_G4X(dev_priv)) {
3881		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3882			       GM45_ERROR_MEM_PRIV |
3883			       GM45_ERROR_CP_PRIV |
3884			       I915_ERROR_MEMORY_REFRESH);
3885	} else {
3886		error_mask = ~(I915_ERROR_PAGE_TABLE |
3887			       I915_ERROR_MEMORY_REFRESH);
3888	}
3889	I915_WRITE(EMR, error_mask);
3890
3891	/* Unmask the interrupts that we always want on. */
3892	dev_priv->irq_mask =
3893		~(I915_ASLE_INTERRUPT |
3894		  I915_DISPLAY_PORT_INTERRUPT |
3895		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3896		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3897		  I915_MASTER_ERROR_INTERRUPT);
3898
3899	enable_mask =
3900		I915_ASLE_INTERRUPT |
3901		I915_DISPLAY_PORT_INTERRUPT |
3902		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904		I915_MASTER_ERROR_INTERRUPT |
3905		I915_USER_INTERRUPT;
3906
3907	if (IS_G4X(dev_priv))
3908		enable_mask |= I915_BSD_USER_INTERRUPT;
3909
3910	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3911
3912	/* Interrupt setup is already guaranteed to be single-threaded, this is
3913	 * just to make the assert_spin_locked check happy. */
3914	spin_lock_irq(&dev_priv->irq_lock);
3915	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3916	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3917	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3918	spin_unlock_irq(&dev_priv->irq_lock);
3919
3920	i915_enable_asle_pipestat(dev_priv);
3921}
3922
3923static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3924{
3925	u32 hotplug_en;
3926
3927	lockdep_assert_held(&dev_priv->irq_lock);
3928
3929	/* Note HDMI and DP share hotplug bits */
3930	/* enable bits are the same for all generations */
3931	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3932	/* Programming the CRT detection parameters tends
3933	   to generate a spurious hotplug event about three
3934	   seconds later.  So just do it once.
3935	*/
3936	if (IS_G4X(dev_priv))
3937		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3938	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3939
3940	/* Ignore TV since it's buggy */
3941	i915_hotplug_interrupt_update_locked(dev_priv,
3942					     HOTPLUG_INT_EN_MASK |
3943					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3944					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3945					     hotplug_en);
3946}
3947
3948static irqreturn_t i965_irq_handler(int irq, void *arg)
3949{
3950	struct drm_i915_private *dev_priv = arg;
3951	irqreturn_t ret = IRQ_NONE;
3952
3953	if (!intel_irqs_enabled(dev_priv))
3954		return IRQ_NONE;
3955
3956	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3957	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3958
3959	do {
3960		u32 pipe_stats[I915_MAX_PIPES] = {};
3961		u32 eir = 0, eir_stuck = 0;
3962		u32 hotplug_status = 0;
3963		u32 iir;
3964
3965		iir = I915_READ(GEN2_IIR);
3966		if (iir == 0)
3967			break;
3968
3969		ret = IRQ_HANDLED;
3970
3971		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3972			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3973
3974		/* Call regardless, as some status bits might not be
3975		 * signalled in iir */
3976		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3977
3978		if (iir & I915_MASTER_ERROR_INTERRUPT)
3979			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3980
3981		I915_WRITE(GEN2_IIR, iir);
3982
3983		if (iir & I915_USER_INTERRUPT)
3984			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3985
3986		if (iir & I915_BSD_USER_INTERRUPT)
3987			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3988
3989		if (iir & I915_MASTER_ERROR_INTERRUPT)
3990			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3991
3992		if (hotplug_status)
3993			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3994
3995		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3996	} while (0);
3997
3998	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3999
4000	return ret;
4001}
4002
4003/**
4004 * intel_irq_init - initializes irq support
4005 * @dev_priv: i915 device instance
4006 *
4007 * This function initializes all the irq support including work items, timers
4008 * and all the vtables. It does not setup the interrupt itself though.
4009 */
4010void intel_irq_init(struct drm_i915_private *dev_priv)
4011{
4012	struct drm_device *dev = &dev_priv->drm;
 
4013	int i;
4014
4015	intel_hpd_init_pins(dev_priv);
 
4016
4017	intel_hpd_init_work(dev_priv);
4018
4019	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
 
 
4020	for (i = 0; i < MAX_L3_SLICES; ++i)
4021		dev_priv->l3_parity.remap_info[i] = NULL;
4022
4023	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4024	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4025		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4027	dev->vblank_disable_immediate = true;
4028
4029	/* Most platforms treat the display irq block as an always-on
4030	 * power domain. vlv/chv can disable it at runtime and need
4031	 * special care to avoid writing any of the display block registers
4032	 * outside of the power domain. We defer setting up the display irqs
4033	 * in this case to the runtime pm.
4034	 */
4035	dev_priv->display_irqs_enabled = true;
4036	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4037		dev_priv->display_irqs_enabled = false;
4038
4039	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4040	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4041	 * detection, as short HPD storms will occur as a natural part of
4042	 * sideband messaging with MST.
4043	 * On older platforms however, IRQ storms can occur with both long and
4044	 * short pulses, as seen on some G4x systems.
4045	 */
4046	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4047
4048	if (HAS_GMCH(dev_priv)) {
4049		if (I915_HAS_HOTPLUG(dev_priv))
4050			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4051	} else {
4052		if (HAS_PCH_JSP(dev_priv))
4053			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4054		else if (HAS_PCH_MCC(dev_priv))
4055			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4056		else if (INTEL_GEN(dev_priv) >= 11)
4057			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4058		else if (IS_GEN9_LP(dev_priv))
4059			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4060		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4061			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4062		else
4063			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4064	}
4065}
4066
4067/**
4068 * intel_irq_fini - deinitializes IRQ support
4069 * @i915: i915 device instance
4070 *
4071 * This function deinitializes all the IRQ support.
4072 */
4073void intel_irq_fini(struct drm_i915_private *i915)
4074{
4075	int i;
4076
 
 
 
4077	for (i = 0; i < MAX_L3_SLICES; ++i)
4078		kfree(i915->l3_parity.remap_info[i]);
4079}
4080
4081static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4082{
4083	if (HAS_GMCH(dev_priv)) {
4084		if (IS_CHERRYVIEW(dev_priv))
4085			return cherryview_irq_handler;
4086		else if (IS_VALLEYVIEW(dev_priv))
4087			return valleyview_irq_handler;
4088		else if (IS_GEN(dev_priv, 4))
4089			return i965_irq_handler;
4090		else if (IS_GEN(dev_priv, 3))
4091			return i915_irq_handler;
4092		else
4093			return i8xx_irq_handler;
4094	} else {
4095		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4096			return dg1_irq_handler;
4097		if (INTEL_GEN(dev_priv) >= 11)
4098			return gen11_irq_handler;
4099		else if (INTEL_GEN(dev_priv) >= 8)
4100			return gen8_irq_handler;
4101		else
4102			return ilk_irq_handler;
4103	}
4104}
4105
4106static void intel_irq_reset(struct drm_i915_private *dev_priv)
4107{
4108	if (HAS_GMCH(dev_priv)) {
4109		if (IS_CHERRYVIEW(dev_priv))
4110			cherryview_irq_reset(dev_priv);
4111		else if (IS_VALLEYVIEW(dev_priv))
4112			valleyview_irq_reset(dev_priv);
4113		else if (IS_GEN(dev_priv, 4))
4114			i965_irq_reset(dev_priv);
4115		else if (IS_GEN(dev_priv, 3))
4116			i915_irq_reset(dev_priv);
4117		else
4118			i8xx_irq_reset(dev_priv);
4119	} else {
4120		if (INTEL_GEN(dev_priv) >= 11)
4121			gen11_irq_reset(dev_priv);
4122		else if (INTEL_GEN(dev_priv) >= 8)
4123			gen8_irq_reset(dev_priv);
4124		else
4125			ilk_irq_reset(dev_priv);
4126	}
4127}
4128
4129static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4130{
4131	if (HAS_GMCH(dev_priv)) {
4132		if (IS_CHERRYVIEW(dev_priv))
4133			cherryview_irq_postinstall(dev_priv);
4134		else if (IS_VALLEYVIEW(dev_priv))
4135			valleyview_irq_postinstall(dev_priv);
4136		else if (IS_GEN(dev_priv, 4))
4137			i965_irq_postinstall(dev_priv);
4138		else if (IS_GEN(dev_priv, 3))
4139			i915_irq_postinstall(dev_priv);
4140		else
4141			i8xx_irq_postinstall(dev_priv);
4142	} else {
4143		if (INTEL_GEN(dev_priv) >= 11)
4144			gen11_irq_postinstall(dev_priv);
4145		else if (INTEL_GEN(dev_priv) >= 8)
4146			gen8_irq_postinstall(dev_priv);
4147		else
4148			ilk_irq_postinstall(dev_priv);
4149	}
4150}
4151
4152/**
4153 * intel_irq_install - enables the hardware interrupt
4154 * @dev_priv: i915 device instance
4155 *
4156 * This function enables the hardware interrupt handling, but leaves the hotplug
4157 * handling still disabled. It is called after intel_irq_init().
4158 *
4159 * In the driver load and resume code we need working interrupts in a few places
4160 * but don't want to deal with the hassle of concurrent probe and hotplug
4161 * workers. Hence the split into this two-stage approach.
4162 */
4163int intel_irq_install(struct drm_i915_private *dev_priv)
4164{
4165	int irq = dev_priv->drm.pdev->irq;
4166	int ret;
4167
4168	/*
4169	 * We enable some interrupt sources in our postinstall hooks, so mark
4170	 * interrupts as enabled _before_ actually enabling them to avoid
4171	 * special cases in our ordering checks.
4172	 */
4173	dev_priv->runtime_pm.irqs_enabled = true;
4174
4175	dev_priv->drm.irq_enabled = true;
4176
4177	intel_irq_reset(dev_priv);
4178
4179	ret = request_irq(irq, intel_irq_handler(dev_priv),
4180			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4181	if (ret < 0) {
4182		dev_priv->drm.irq_enabled = false;
4183		return ret;
4184	}
4185
4186	intel_irq_postinstall(dev_priv);
4187
4188	return ret;
4189}
4190
4191/**
4192 * intel_irq_uninstall - finilizes all irq handling
4193 * @dev_priv: i915 device instance
4194 *
4195 * This stops interrupt and hotplug handling and unregisters and frees all
4196 * resources acquired in the init functions.
4197 */
4198void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4199{
4200	int irq = dev_priv->drm.pdev->irq;
4201
4202	/*
4203	 * FIXME we can get called twice during driver probe
4204	 * error handling as well as during driver remove due to
4205	 * intel_modeset_driver_remove() calling us out of sequence.
4206	 * Would be nice if it didn't do that...
4207	 */
4208	if (!dev_priv->drm.irq_enabled)
4209		return;
4210
4211	dev_priv->drm.irq_enabled = false;
4212
4213	intel_irq_reset(dev_priv);
4214
4215	free_irq(irq, dev_priv);
4216
4217	intel_hpd_cancel_work(dev_priv);
4218	dev_priv->runtime_pm.irqs_enabled = false;
4219}
4220
4221/**
4222 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4223 * @dev_priv: i915 device instance
4224 *
4225 * This function is used to disable interrupts at runtime, both in the runtime
4226 * pm and the system suspend/resume code.
4227 */
4228void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4229{
4230	intel_irq_reset(dev_priv);
4231	dev_priv->runtime_pm.irqs_enabled = false;
4232	intel_synchronize_irq(dev_priv);
4233}
4234
4235/**
4236 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4237 * @dev_priv: i915 device instance
4238 *
4239 * This function is used to enable interrupts at runtime, both in the runtime
4240 * pm and the system suspend/resume code.
4241 */
4242void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4243{
4244	dev_priv->runtime_pm.irqs_enabled = true;
4245	intel_irq_reset(dev_priv);
4246	intel_irq_postinstall(dev_priv);
4247}
4248
4249bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4250{
4251	/*
4252	 * We only use drm_irq_uninstall() at unload and VT switch, so
4253	 * this is the only thing we need to check.
4254	 */
4255	return dev_priv->runtime_pm.irqs_enabled;
4256}
4257
4258void intel_synchronize_irq(struct drm_i915_private *i915)
4259{
4260	synchronize_irq(i915->drm.pdev->irq);
4261}
v5.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
 
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78	[HPD_CRT] = SDE_CRT_HOTPLUG,
  79	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 
 
 
 
 
 
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169	[HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170	[HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171	[HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172	[HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173	[HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174	[HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175	[HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179		    i915_reg_t iir, i915_reg_t ier)
 180{
 181	intel_uncore_write(uncore, imr, 0xffffffff);
 182	intel_uncore_posting_read(uncore, imr);
 183
 184	intel_uncore_write(uncore, ier, 0);
 185
 186	/* IIR can theoretically queue up two events. Be paranoid. */
 187	intel_uncore_write(uncore, iir, 0xffffffff);
 188	intel_uncore_posting_read(uncore, iir);
 189	intel_uncore_write(uncore, iir, 0xffffffff);
 190	intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196	intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198	intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200	/* IIR can theoretically queue up two events. Be paranoid. */
 201	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202	intel_uncore_posting_read16(uncore, GEN2_IIR);
 203	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204	intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 211{
 212	u32 val = intel_uncore_read(uncore, reg);
 213
 214	if (val == 0)
 215		return;
 216
 217	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218	     i915_mmio_reg_offset(reg), val);
 
 219	intel_uncore_write(uncore, reg, 0xffffffff);
 220	intel_uncore_posting_read(uncore, reg);
 221	intel_uncore_write(uncore, reg, 0xffffffff);
 222	intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 226{
 227	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229	if (val == 0)
 230		return;
 231
 232	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233	     i915_mmio_reg_offset(GEN2_IIR), val);
 
 234	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235	intel_uncore_posting_read16(uncore, GEN2_IIR);
 236	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237	intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241		   i915_reg_t imr, u32 imr_val,
 242		   i915_reg_t ier, u32 ier_val,
 243		   i915_reg_t iir)
 244{
 245	gen3_assert_iir_is_zero(uncore, iir);
 246
 247	intel_uncore_write(uncore, ier, ier_val);
 248	intel_uncore_write(uncore, imr, imr_val);
 249	intel_uncore_posting_read(uncore, imr);
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253		   u32 imr_val, u32 ier_val)
 254{
 255	gen2_assert_iir_is_zero(uncore);
 256
 257	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259	intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265				     u32 mask,
 266				     u32 bits)
 267{
 268	u32 val;
 269
 270	lockdep_assert_held(&dev_priv->irq_lock);
 271	WARN_ON(bits & ~mask);
 272
 273	val = I915_READ(PORT_HOTPLUG_EN);
 274	val &= ~mask;
 275	val |= bits;
 276	I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292				   u32 mask,
 293				   u32 bits)
 294{
 295	spin_lock_irq(&dev_priv->irq_lock);
 296	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297	spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307			    u32 interrupt_mask,
 308			    u32 enabled_irq_mask)
 309{
 310	u32 new_val;
 311
 312	lockdep_assert_held(&dev_priv->irq_lock);
 313
 314	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 317		return;
 318
 319	new_val = dev_priv->irq_mask;
 320	new_val &= ~interrupt_mask;
 321	new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323	if (new_val != dev_priv->irq_mask) {
 324		dev_priv->irq_mask = new_val;
 325		I915_WRITE(DEIMR, dev_priv->irq_mask);
 326		POSTING_READ(DEIMR);
 327	}
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 331{
 332	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 333
 334	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339	struct intel_gt *gt = &dev_priv->gt;
 340
 341	spin_lock_irq(&gt->irq_lock);
 342
 343	while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344		;
 345
 346	dev_priv->gt_pm.rps.pm_iir = 0;
 347
 348	spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353	struct intel_gt *gt = &dev_priv->gt;
 354
 355	spin_lock_irq(&gt->irq_lock);
 356	gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357	dev_priv->gt_pm.rps.pm_iir = 0;
 358	spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363	struct intel_gt *gt = &dev_priv->gt;
 364	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366	if (READ_ONCE(rps->interrupts_enabled))
 367		return;
 368
 369	spin_lock_irq(&gt->irq_lock);
 370	WARN_ON_ONCE(rps->pm_iir);
 371
 372	if (INTEL_GEN(dev_priv) >= 11)
 373		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374	else
 375		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 376
 377	rps->interrupts_enabled = true;
 378	gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380	spin_unlock_irq(&gt->irq_lock);
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 384{
 385	return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 389{
 390	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391	struct intel_gt *gt = &dev_priv->gt;
 392
 393	if (!READ_ONCE(rps->interrupts_enabled))
 394		return;
 395
 396	spin_lock_irq(&gt->irq_lock);
 397	rps->interrupts_enabled = false;
 398
 399	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 400
 401	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 402
 403	spin_unlock_irq(&gt->irq_lock);
 404	intel_synchronize_irq(dev_priv);
 405
 406	/* Now that we will not be generating any more work, flush any
 407	 * outstanding tasks. As we are called on the RPS idle path,
 408	 * we will reset the GPU to minimum frequencies, so the current
 409	 * state of the worker can be discarded.
 410	 */
 411	cancel_work_sync(&rps->work);
 412	if (INTEL_GEN(dev_priv) >= 11)
 413		gen11_reset_rps_interrupts(dev_priv);
 414	else
 415		gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 419{
 420	struct intel_gt *gt = guc_to_gt(guc);
 421
 422	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 423
 424	spin_lock_irq(&gt->irq_lock);
 425	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426	spin_unlock_irq(&gt->irq_lock);
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 430{
 431	struct intel_gt *gt = guc_to_gt(guc);
 432
 433	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435	spin_lock_irq(&gt->irq_lock);
 436	if (!guc->interrupts.enabled) {
 437		WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438					       gen6_pm_iir(gt->i915)) &
 439			     gt->pm_guc_events);
 440		guc->interrupts.enabled = true;
 441		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442	}
 443	spin_unlock_irq(&gt->irq_lock);
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 447{
 448	struct intel_gt *gt = guc_to_gt(guc);
 449
 450	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 451
 452	spin_lock_irq(&gt->irq_lock);
 453	guc->interrupts.enabled = false;
 454
 455	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 456
 457	spin_unlock_irq(&gt->irq_lock);
 458	intel_synchronize_irq(gt->i915);
 459
 460	gen9_reset_guc_interrupts(guc);
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 464{
 465	struct intel_gt *gt = guc_to_gt(guc);
 466
 467	spin_lock_irq(&gt->irq_lock);
 468	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469	spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474	struct intel_gt *gt = guc_to_gt(guc);
 475
 476	spin_lock_irq(&gt->irq_lock);
 477	if (!guc->interrupts.enabled) {
 478		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483		guc->interrupts.enabled = true;
 484	}
 485	spin_unlock_irq(&gt->irq_lock);
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 489{
 490	struct intel_gt *gt = guc_to_gt(guc);
 491
 492	spin_lock_irq(&gt->irq_lock);
 493	guc->interrupts.enabled = false;
 494
 495	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 497
 498	spin_unlock_irq(&gt->irq_lock);
 499	intel_synchronize_irq(gt->i915);
 500
 501	gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511				u32 interrupt_mask,
 512				u32 enabled_irq_mask)
 513{
 514	u32 new_val;
 515	u32 old_val;
 516
 517	lockdep_assert_held(&dev_priv->irq_lock);
 518
 519	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522		return;
 523
 524	old_val = I915_READ(GEN8_DE_PORT_IMR);
 525
 526	new_val = old_val;
 527	new_val &= ~interrupt_mask;
 528	new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530	if (new_val != old_val) {
 531		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532		POSTING_READ(GEN8_DE_PORT_IMR);
 533	}
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544			 enum pipe pipe,
 545			 u32 interrupt_mask,
 546			 u32 enabled_irq_mask)
 547{
 548	u32 new_val;
 549
 550	lockdep_assert_held(&dev_priv->irq_lock);
 551
 552	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 553
 554	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555		return;
 556
 557	new_val = dev_priv->de_irq_mask[pipe];
 558	new_val &= ~interrupt_mask;
 559	new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561	if (new_val != dev_priv->de_irq_mask[pipe]) {
 562		dev_priv->de_irq_mask[pipe] = new_val;
 563		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565	}
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575				  u32 interrupt_mask,
 576				  u32 enabled_irq_mask)
 577{
 578	u32 sdeimr = I915_READ(SDEIMR);
 579	sdeimr &= ~interrupt_mask;
 580	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584	lockdep_assert_held(&dev_priv->irq_lock);
 585
 586	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587		return;
 588
 589	I915_WRITE(SDEIMR, sdeimr);
 590	POSTING_READ(SDEIMR);
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594			      enum pipe pipe)
 595{
 596	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597	u32 enable_mask = status_mask << 16;
 598
 599	lockdep_assert_held(&dev_priv->irq_lock);
 600
 601	if (INTEL_GEN(dev_priv) < 5)
 602		goto out;
 603
 604	/*
 605	 * On pipe A we don't support the PSR interrupt yet,
 606	 * on pipe B and C the same bit MBZ.
 607	 */
 608	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 
 609		return 0;
 610	/*
 611	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612	 * A the same bit is for perf counters which we don't use either.
 613	 */
 614	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 
 615		return 0;
 616
 617	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 619			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 620	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629		  pipe_name(pipe), enable_mask, status_mask);
 
 630
 631	return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635			  enum pipe pipe, u32 status_mask)
 636{
 637	i915_reg_t reg = PIPESTAT(pipe);
 638	u32 enable_mask;
 639
 640	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641		  "pipe %c: status_mask=0x%x\n",
 642		  pipe_name(pipe), status_mask);
 643
 644	lockdep_assert_held(&dev_priv->irq_lock);
 645	WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648		return;
 649
 650	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653	I915_WRITE(reg, enable_mask | status_mask);
 654	POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658			   enum pipe pipe, u32 status_mask)
 659{
 660	i915_reg_t reg = PIPESTAT(pipe);
 661	u32 enable_mask;
 662
 663	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664		  "pipe %c: status_mask=0x%x\n",
 665		  pipe_name(pipe), status_mask);
 666
 667	lockdep_assert_held(&dev_priv->irq_lock);
 668	WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671		return;
 672
 673	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676	I915_WRITE(reg, enable_mask | status_mask);
 677	POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682	if (!dev_priv->opregion.asle)
 683		return false;
 684
 685	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 693{
 694	if (!i915_has_asle(dev_priv))
 695		return;
 696
 697	spin_lock_irq(&dev_priv->irq_lock);
 698
 699	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700	if (INTEL_GEN(dev_priv) >= 4)
 701		i915_enable_pipestat(dev_priv, PIPE_A,
 702				     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704	spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 756
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764	const struct drm_display_mode *mode = &vblank->hwmode;
 765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766	i915_reg_t high_frame, low_frame;
 767	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768	unsigned long irqflags;
 769
 770	/*
 771	 * On i965gm TV output the frame counter only works up to
 772	 * the point when we enable the TV encoder. After that the
 773	 * frame counter ceases to work and reads zero. We need a
 774	 * vblank wait before enabling the TV encoder and so we
 775	 * have to enable vblank interrupts while the frame counter
 776	 * is still in a working state. However the core vblank code
 777	 * does not like us returning non-zero frame counter values
 778	 * when we've told it that we don't have a working frame
 779	 * counter. Thus we must stop non-zero values leaking out.
 780	 */
 781	if (!vblank->max_vblank_count)
 782		return 0;
 783
 784	htotal = mode->crtc_htotal;
 785	hsync_start = mode->crtc_hsync_start;
 786	vbl_start = mode->crtc_vblank_start;
 787	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 789
 790	/* Convert to pixel count */
 791	vbl_start *= htotal;
 792
 793	/* Start of vblank event occurs at start of hsync */
 794	vbl_start -= htotal - hsync_start;
 795
 796	high_frame = PIPEFRAME(pipe);
 797	low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801	/*
 802	 * High & low register fields aren't synchronized, so make sure
 803	 * we get a low value that's stable across two reads of the high
 804	 * register.
 805	 */
 806	do {
 807		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808		low   = I915_READ_FW(low_frame);
 809		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810	} while (high1 != high2);
 811
 812	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815	pixel = low & PIPE_PIXEL_MASK;
 816	low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818	/*
 819	 * The frame counter increments at beginning of active.
 820	 * Cook up a vblank counter by also checking the pixel
 821	 * counter against vblank start.
 822	 */
 823	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845	struct drm_vblank_crtc *vblank =
 846		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847	const struct drm_display_mode *mode = &vblank->hwmode;
 848	u32 vblank_start = mode->crtc_vblank_start;
 849	u32 vtotal = mode->crtc_vtotal;
 850	u32 htotal = mode->crtc_htotal;
 851	u32 clock = mode->crtc_clock;
 852	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854	/*
 855	 * To avoid the race condition where we might cross into the
 856	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858	 * during the same frame.
 859	 */
 860	do {
 861		/*
 862		 * This field provides read back of the display
 863		 * pipe frame time stamp. The time stamp value
 864		 * is sampled at every start of vertical blank.
 865		 */
 866		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 
 867
 868		/*
 869		 * The TIMESTAMP_CTR register has the current
 870		 * time stamp value.
 871		 */
 872		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 
 875	} while (scan_post_time != scan_prev_time);
 876
 877	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878					clock), 1000 * htotal);
 879	scanline = min(scanline, vtotal - 1);
 880	scanline = (scanline + vblank_start) % vtotal;
 881
 882	return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 
 
 
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888	struct drm_device *dev = crtc->base.dev;
 889	struct drm_i915_private *dev_priv = to_i915(dev);
 890	const struct drm_display_mode *mode;
 891	struct drm_vblank_crtc *vblank;
 892	enum pipe pipe = crtc->pipe;
 893	int position, vtotal;
 894
 895	if (!crtc->active)
 896		return -1;
 897
 898	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899	mode = &vblank->hwmode;
 900
 901	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902		return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904	vtotal = mode->crtc_vtotal;
 905	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906		vtotal /= 2;
 907
 908	if (IS_GEN(dev_priv, 2))
 909		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910	else
 911		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913	/*
 914	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915	 * read it just before the start of vblank.  So try it again
 916	 * so we don't accidentally end up spanning a vblank frame
 917	 * increment, causing the pipe_update_end() code to squak at us.
 918	 *
 919	 * The nature of this problem means we can't simply check the ISR
 920	 * bit and return the vblank start value; nor can we use the scanline
 921	 * debug register in the transcoder as it appears to have the same
 922	 * problem.  We may need to extend this to include other platforms,
 923	 * but so far testing only shows the problem on HSW.
 924	 */
 925	if (HAS_DDI(dev_priv) && !position) {
 926		int i, temp;
 927
 928		for (i = 0; i < 100; i++) {
 929			udelay(1);
 930			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 931			if (temp != position) {
 932				position = temp;
 933				break;
 934			}
 935		}
 936	}
 937
 938	/*
 939	 * See update_scanline_offset() for the details on the
 940	 * scanline_offset adjustment.
 941	 */
 942	return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946			      bool in_vblank_irq, int *vpos, int *hpos,
 947			      ktime_t *stime, ktime_t *etime,
 948			      const struct drm_display_mode *mode)
 
 949{
 
 950	struct drm_i915_private *dev_priv = to_i915(dev);
 951	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952								pipe);
 953	int position;
 954	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 955	unsigned long irqflags;
 956	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960	if (WARN_ON(!mode->crtc_clock)) {
 961		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962				 "pipe %c\n", pipe_name(pipe));
 
 963		return false;
 964	}
 965
 966	htotal = mode->crtc_htotal;
 967	hsync_start = mode->crtc_hsync_start;
 968	vtotal = mode->crtc_vtotal;
 969	vbl_start = mode->crtc_vblank_start;
 970	vbl_end = mode->crtc_vblank_end;
 971
 972	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974		vbl_end /= 2;
 975		vtotal /= 2;
 976	}
 977
 978	/*
 979	 * Lock uncore.lock, as we will do multiple timing critical raw
 980	 * register reads, potentially with preemption disabled, so the
 981	 * following code must not block on uncore.lock.
 982	 */
 983	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987	/* Get optional system timestamp before query. */
 988	if (stime)
 989		*stime = ktime_get();
 990
 991	if (use_scanline_counter) {
 992		/* No obvious pixelcount register. Only query vertical
 993		 * scanout position from Display scan line register.
 994		 */
 995		position = __intel_get_crtc_scanline(intel_crtc);
 996	} else {
 997		/* Have access to pixelcount since start of frame.
 998		 * We can split this into vertical and horizontal
 999		 * scanout position.
1000		 */
1001		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003		/* convert to pixel counts */
1004		vbl_start *= htotal;
1005		vbl_end *= htotal;
1006		vtotal *= htotal;
1007
1008		/*
1009		 * In interlaced modes, the pixel counter counts all pixels,
1010		 * so one field will have htotal more pixels. In order to avoid
1011		 * the reported position from jumping backwards when the pixel
1012		 * counter is beyond the length of the shorter field, just
1013		 * clamp the position the length of the shorter field. This
1014		 * matches how the scanline counter based position works since
1015		 * the scanline counter doesn't count the two half lines.
1016		 */
1017		if (position >= vtotal)
1018			position = vtotal - 1;
1019
1020		/*
1021		 * Start of vblank interrupt is triggered at start of hsync,
1022		 * just prior to the first active line of vblank. However we
1023		 * consider lines to start at the leading edge of horizontal
1024		 * active. So, should we get here before we've crossed into
1025		 * the horizontal active of the first line in vblank, we would
1026		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027		 * always add htotal-hsync_start to the current pixel position.
1028		 */
1029		position = (position + htotal - hsync_start) % vtotal;
1030	}
1031
1032	/* Get optional system timestamp after query. */
1033	if (etime)
1034		*etime = ktime_get();
1035
1036	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040	/*
1041	 * While in vblank, position will be negative
1042	 * counting up towards 0 at vbl_end. And outside
1043	 * vblank, position will be positive counting
1044	 * up since vbl_end.
1045	 */
1046	if (position >= vbl_start)
1047		position -= vbl_end;
1048	else
1049		position += vtotal - vbl_end;
1050
1051	if (use_scanline_counter) {
1052		*vpos = position;
1053		*hpos = 0;
1054	} else {
1055		*vpos = position / htotal;
1056		*hpos = position - (*vpos * htotal);
1057	}
1058
1059	return true;
1060}
1061
 
 
 
 
 
 
 
 
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065	unsigned long irqflags;
1066	int position;
1067
1068	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069	position = __intel_get_crtc_scanline(crtc);
1070	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072	return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077	struct intel_uncore *uncore = &dev_priv->uncore;
1078	u32 busy_up, busy_down, max_avg, min_avg;
1079	u8 new_delay;
1080
1081	spin_lock(&mchdev_lock);
1082
1083	intel_uncore_write16(uncore,
1084			     MEMINTRSTS,
1085			     intel_uncore_read(uncore, MEMINTRSTS));
1086
1087	new_delay = dev_priv->ips.cur_delay;
1088
1089	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095	/* Handle RCS change request from hw */
1096	if (busy_up > max_avg) {
1097		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098			new_delay = dev_priv->ips.cur_delay - 1;
1099		if (new_delay < dev_priv->ips.max_delay)
1100			new_delay = dev_priv->ips.max_delay;
1101	} else if (busy_down < min_avg) {
1102		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103			new_delay = dev_priv->ips.cur_delay + 1;
1104		if (new_delay > dev_priv->ips.min_delay)
1105			new_delay = dev_priv->ips.min_delay;
1106	}
1107
1108	if (ironlake_set_drps(dev_priv, new_delay))
1109		dev_priv->ips.cur_delay = new_delay;
1110
1111	spin_unlock(&mchdev_lock);
1112
1113	return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117			struct intel_rps_ei *ei)
1118{
1119	ei->ktime = ktime_get_raw();
1120	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132	const struct intel_rps_ei *prev = &rps->ei;
1133	struct intel_rps_ei now;
1134	u32 events = 0;
1135
1136	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137		return 0;
1138
1139	vlv_c0_read(dev_priv, &now);
1140
1141	if (prev->ktime) {
1142		u64 time, c0;
1143		u32 render, media;
1144
1145		time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147		time *= dev_priv->czclk_freq;
1148
1149		/* Workload can be split between render + media,
1150		 * e.g. SwapBuffers being blitted in X after being rendered in
1151		 * mesa. To account for this we need to combine both engines
1152		 * into our activity counter.
1153		 */
1154		render = now.render_c0 - prev->render_c0;
1155		media = now.media_c0 - prev->media_c0;
1156		c0 = max(render, media);
1157		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159		if (c0 > time * rps->power.up_threshold)
1160			events = GEN6_PM_RP_UP_THRESHOLD;
1161		else if (c0 < time * rps->power.down_threshold)
1162			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163	}
1164
1165	rps->ei = now;
1166	return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171	struct drm_i915_private *dev_priv =
1172		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173	struct intel_gt *gt = &dev_priv->gt;
1174	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175	bool client_boost = false;
1176	int new_delay, adj, min, max;
1177	u32 pm_iir = 0;
1178
1179	spin_lock_irq(&gt->irq_lock);
1180	if (rps->interrupts_enabled) {
1181		pm_iir = fetch_and_zero(&rps->pm_iir);
1182		client_boost = atomic_read(&rps->num_waiters);
1183	}
1184	spin_unlock_irq(&gt->irq_lock);
1185
1186	/* Make sure we didn't queue anything we're not going to process. */
1187	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189		goto out;
1190
1191	mutex_lock(&rps->lock);
1192
1193	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195	adj = rps->last_adj;
1196	new_delay = rps->cur_freq;
1197	min = rps->min_freq_softlimit;
1198	max = rps->max_freq_softlimit;
1199	if (client_boost)
1200		max = rps->max_freq;
1201	if (client_boost && new_delay < rps->boost_freq) {
1202		new_delay = rps->boost_freq;
1203		adj = 0;
1204	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205		if (adj > 0)
1206			adj *= 2;
1207		else /* CHV needs even encode values */
1208			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210		if (new_delay >= rps->max_freq_softlimit)
1211			adj = 0;
1212	} else if (client_boost) {
1213		adj = 0;
1214	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215		if (rps->cur_freq > rps->efficient_freq)
1216			new_delay = rps->efficient_freq;
1217		else if (rps->cur_freq > rps->min_freq_softlimit)
1218			new_delay = rps->min_freq_softlimit;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221		if (adj < 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226		if (new_delay <= rps->min_freq_softlimit)
1227			adj = 0;
1228	} else { /* unknown event */
1229		adj = 0;
1230	}
1231
1232	rps->last_adj = adj;
1233
1234	/*
1235	 * Limit deboosting and boosting to keep ourselves at the extremes
1236	 * when in the respective power modes (i.e. slowly decrease frequencies
1237	 * while in the HIGH_POWER zone and slowly increase frequencies while
1238	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239	 * to the next level quickly, and conversely if busy we expect to
1240	 * hit a waitboost and rapidly switch into max power.
1241	 */
1242	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243	    (adj > 0 && rps->power.mode == LOW_POWER))
1244		rps->last_adj = 0;
1245
1246	/* sysfs frequency interfaces may have snuck in while servicing the
1247	 * interrupt
1248	 */
1249	new_delay += adj;
1250	new_delay = clamp_t(int, new_delay, min, max);
1251
1252	if (intel_set_rps(dev_priv, new_delay)) {
1253		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254		rps->last_adj = 0;
1255	}
1256
1257	mutex_unlock(&rps->lock);
1258
1259out:
1260	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261	spin_lock_irq(&gt->irq_lock);
1262	if (rps->interrupts_enabled)
1263		gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264	spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279	struct drm_i915_private *dev_priv =
1280		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281	struct intel_gt *gt = &dev_priv->gt;
1282	u32 error_status, row, bank, subbank;
1283	char *parity_event[6];
1284	u32 misccpctl;
1285	u8 slice = 0;
1286
1287	/* We must turn off DOP level clock gating to access the L3 registers.
1288	 * In order to prevent a get/put style interface, acquire struct mutex
1289	 * any time we access those registers.
1290	 */
1291	mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293	/* If we've screwed up tracking, just let the interrupt fire again */
1294	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295		goto out;
1296
1297	misccpctl = I915_READ(GEN7_MISCCPCTL);
1298	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299	POSTING_READ(GEN7_MISCCPCTL);
1300
1301	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302		i915_reg_t reg;
1303
1304		slice--;
1305		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
 
1306			break;
1307
1308		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310		reg = GEN7_L3CDERRST1(slice);
1311
1312		error_status = I915_READ(reg);
1313		row = GEN7_PARITY_ERROR_ROW(error_status);
1314		bank = GEN7_PARITY_ERROR_BANK(error_status);
1315		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318		POSTING_READ(reg);
1319
1320		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325		parity_event[5] = NULL;
1326
1327		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328				   KOBJ_CHANGE, parity_event);
1329
1330		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331			  slice, row, bank, subbank);
1332
1333		kfree(parity_event[4]);
1334		kfree(parity_event[3]);
1335		kfree(parity_event[2]);
1336		kfree(parity_event[1]);
1337	}
1338
1339	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342	WARN_ON(dev_priv->l3_parity.which_slice);
1343	spin_lock_irq(&gt->irq_lock);
1344	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345	spin_unlock_irq(&gt->irq_lock);
1346
1347	mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352	switch (pin) {
1353	case HPD_PORT_C:
1354		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355	case HPD_PORT_D:
1356		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357	case HPD_PORT_E:
1358		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359	case HPD_PORT_F:
1360		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361	default:
1362		return false;
1363	}
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368	switch (pin) {
1369	case HPD_PORT_D:
1370		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371	case HPD_PORT_E:
1372		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373	case HPD_PORT_F:
1374		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375	case HPD_PORT_G:
1376		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377	case HPD_PORT_H:
1378		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379	case HPD_PORT_I:
1380		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381	default:
1382		return false;
1383	}
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388	switch (pin) {
1389	case HPD_PORT_A:
1390		return val & PORTA_HOTPLUG_LONG_DETECT;
1391	case HPD_PORT_B:
1392		return val & PORTB_HOTPLUG_LONG_DETECT;
1393	case HPD_PORT_C:
1394		return val & PORTC_HOTPLUG_LONG_DETECT;
1395	default:
1396		return false;
1397	}
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402	switch (pin) {
1403	case HPD_PORT_A:
1404		return val & ICP_DDIA_HPD_LONG_DETECT;
1405	case HPD_PORT_B:
1406		return val & ICP_DDIB_HPD_LONG_DETECT;
1407	case HPD_PORT_C:
1408		return val & TGP_DDIC_HPD_LONG_DETECT;
1409	default:
1410		return false;
1411	}
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416	switch (pin) {
1417	case HPD_PORT_C:
1418		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419	case HPD_PORT_D:
1420		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421	case HPD_PORT_E:
1422		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423	case HPD_PORT_F:
1424		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425	default:
1426		return false;
1427	}
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431{
1432	switch (pin) {
1433	case HPD_PORT_A:
1434		return val & ICP_DDIA_HPD_LONG_DETECT;
1435	case HPD_PORT_B:
1436		return val & ICP_DDIB_HPD_LONG_DETECT;
1437	case HPD_PORT_C:
1438		return val & TGP_DDIC_HPD_LONG_DETECT;
1439	default:
1440		return false;
1441	}
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446	switch (pin) {
1447	case HPD_PORT_D:
1448		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449	case HPD_PORT_E:
1450		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451	case HPD_PORT_F:
1452		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453	case HPD_PORT_G:
1454		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455	case HPD_PORT_H:
1456		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457	case HPD_PORT_I:
1458		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466	switch (pin) {
1467	case HPD_PORT_E:
1468		return val & PORTE_HOTPLUG_LONG_DETECT;
1469	default:
1470		return false;
1471	}
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476	switch (pin) {
1477	case HPD_PORT_A:
1478		return val & PORTA_HOTPLUG_LONG_DETECT;
1479	case HPD_PORT_B:
1480		return val & PORTB_HOTPLUG_LONG_DETECT;
1481	case HPD_PORT_C:
1482		return val & PORTC_HOTPLUG_LONG_DETECT;
1483	case HPD_PORT_D:
1484		return val & PORTD_HOTPLUG_LONG_DETECT;
1485	default:
1486		return false;
1487	}
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492	switch (pin) {
1493	case HPD_PORT_A:
1494		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495	default:
1496		return false;
1497	}
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502	switch (pin) {
1503	case HPD_PORT_B:
1504		return val & PORTB_HOTPLUG_LONG_DETECT;
1505	case HPD_PORT_C:
1506		return val & PORTC_HOTPLUG_LONG_DETECT;
1507	case HPD_PORT_D:
1508		return val & PORTD_HOTPLUG_LONG_DETECT;
1509	default:
1510		return false;
1511	}
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516	switch (pin) {
1517	case HPD_PORT_B:
1518		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519	case HPD_PORT_C:
1520		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521	case HPD_PORT_D:
1522		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523	default:
1524		return false;
1525	}
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536			       u32 *pin_mask, u32 *long_mask,
1537			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1538			       const u32 hpd[HPD_NUM_PINS],
1539			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541	enum hpd_pin pin;
1542
1543	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545	for_each_hpd_pin(pin) {
1546		if ((hpd[pin] & hotplug_trigger) == 0)
1547			continue;
1548
1549		*pin_mask |= BIT(pin);
1550
1551		if (long_pulse_detect(pin, dig_hotplug_reg))
1552			*long_mask |= BIT(pin);
1553	}
1554
1555	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
 
1557
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
1562	wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
1567	wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572					 enum pipe pipe,
1573					 u32 crc0, u32 crc1,
1574					 u32 crc2, u32 crc3,
1575					 u32 crc4)
1576{
1577	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 
1579	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581	trace_intel_pipe_crc(crtc, crcs);
1582
1583	spin_lock(&pipe_crc->lock);
1584	/*
1585	 * For some not yet identified reason, the first CRC is
1586	 * bonkers. So let's just wait for the next vblank and read
1587	 * out the buggy result.
1588	 *
1589	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590	 * don't trust that one either.
1591	 */
1592	if (pipe_crc->skipped <= 0 ||
1593	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594		pipe_crc->skipped++;
1595		spin_unlock(&pipe_crc->lock);
1596		return;
1597	}
1598	spin_unlock(&pipe_crc->lock);
1599
1600	drm_crtc_add_crc_entry(&crtc->base, true,
1601				drm_crtc_accurate_vblank_count(&crtc->base),
1602				crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607			     enum pipe pipe,
1608			     u32 crc0, u32 crc1,
1609			     u32 crc2, u32 crc3,
1610			     u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615				     enum pipe pipe)
1616{
1617	display_pipe_crc_irq_handler(dev_priv, pipe,
1618				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619				     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623				     enum pipe pipe)
1624{
1625	display_pipe_crc_irq_handler(dev_priv, pipe,
1626				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634				      enum pipe pipe)
1635{
1636	u32 res1, res2;
1637
1638	if (INTEL_GEN(dev_priv) >= 3)
1639		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640	else
1641		res1 = 0;
1642
1643	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645	else
1646		res2 = 0;
1647
1648	display_pipe_crc_irq_handler(dev_priv, pipe,
1649				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652				     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660	struct drm_i915_private *i915 = gt->i915;
1661	struct intel_rps *rps = &i915->gt_pm.rps;
1662	const u32 events = i915->pm_rps_events & pm_iir;
1663
1664	lockdep_assert_held(&gt->irq_lock);
1665
1666	if (unlikely(!events))
1667		return;
1668
1669	gen6_gt_pm_mask_irq(gt, events);
1670
1671	if (!rps->interrupts_enabled)
1672		return;
1673
1674	rps->pm_iir |= events;
1675	schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681	struct intel_gt *gt = &dev_priv->gt;
1682
1683	if (pm_iir & dev_priv->pm_rps_events) {
1684		spin_lock(&gt->irq_lock);
1685		gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686		if (rps->interrupts_enabled) {
1687			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688			schedule_work(&rps->work);
1689		}
1690		spin_unlock(&gt->irq_lock);
1691	}
1692
1693	if (INTEL_GEN(dev_priv) >= 8)
1694		return;
1695
1696	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697		intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705	enum pipe pipe;
1706
1707	for_each_pipe(dev_priv, pipe) {
1708		I915_WRITE(PIPESTAT(pipe),
1709			   PIPESTAT_INT_STATUS_MASK |
1710			   PIPE_FIFO_UNDERRUN_STATUS);
1711
1712		dev_priv->pipestat_irq_mask[pipe] = 0;
1713	}
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
1719	int pipe;
1720
1721	spin_lock(&dev_priv->irq_lock);
1722
1723	if (!dev_priv->display_irqs_enabled) {
1724		spin_unlock(&dev_priv->irq_lock);
1725		return;
1726	}
1727
1728	for_each_pipe(dev_priv, pipe) {
1729		i915_reg_t reg;
1730		u32 status_mask, enable_mask, iir_bit = 0;
1731
1732		/*
1733		 * PIPESTAT bits get signalled even when the interrupt is
1734		 * disabled with the mask bits, and some of the status bits do
1735		 * not generate interrupts at all (like the underrun bit). Hence
1736		 * we need to be careful that we only handle what we want to
1737		 * handle.
1738		 */
1739
1740		/* fifo underruns are filterered in the underrun handler. */
1741		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743		switch (pipe) {
 
1744		case PIPE_A:
1745			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746			break;
1747		case PIPE_B:
1748			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749			break;
1750		case PIPE_C:
1751			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752			break;
1753		}
1754		if (iir & iir_bit)
1755			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757		if (!status_mask)
1758			continue;
1759
1760		reg = PIPESTAT(pipe);
1761		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764		/*
1765		 * Clear the PIPE*STAT regs before the IIR
1766		 *
1767		 * Toggle the enable bits to make sure we get an
1768		 * edge in the ISR pipe event bit if we don't clear
1769		 * all the enabled status bits. Otherwise the edge
1770		 * triggered IIR on i965/g4x wouldn't notice that
1771		 * an interrupt is still pending.
1772		 */
1773		if (pipe_stats[pipe]) {
1774			I915_WRITE(reg, pipe_stats[pipe]);
1775			I915_WRITE(reg, enable_mask);
1776		}
1777	}
1778	spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784	enum pipe pipe;
1785
1786	for_each_pipe(dev_priv, pipe) {
1787		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788			drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795	}
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801	bool blc_event = false;
1802	enum pipe pipe;
1803
1804	for_each_pipe(dev_priv, pipe) {
1805		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806			drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809			blc_event = true;
1810
1811		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816	}
1817
1818	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819		intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825	bool blc_event = false;
1826	enum pipe pipe;
1827
1828	for_each_pipe(dev_priv, pipe) {
1829		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830			drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833			blc_event = true;
1834
1835		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840	}
1841
1842	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843		intel_opregion_asle_intr(dev_priv);
1844
1845	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846		gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850					    u32 pipe_stats[I915_MAX_PIPES])
1851{
1852	enum pipe pipe;
1853
1854	for_each_pipe(dev_priv, pipe) {
1855		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856			drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863	}
1864
1865	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866		gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871	u32 hotplug_status = 0, hotplug_status_mask;
1872	int i;
1873
1874	if (IS_G4X(dev_priv) ||
1875	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878	else
1879		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881	/*
1882	 * We absolutely have to clear all the pending interrupt
1883	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884	 * interrupt bit won't have an edge, and the i965/g4x
1885	 * edge triggered IIR will not notice that an interrupt
1886	 * is still pending. We can't use PORT_HOTPLUG_EN to
1887	 * guarantee the edge as the act of toggling the enable
1888	 * bits can itself generate a new hotplug interrupt :(
1889	 */
1890	for (i = 0; i < 10; i++) {
1891		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893		if (tmp == 0)
1894			return hotplug_status;
1895
1896		hotplug_status |= tmp;
1897		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898	}
1899
1900	WARN_ONCE(1,
1901		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902		  I915_READ(PORT_HOTPLUG_STAT));
1903
1904	return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908				 u32 hotplug_status)
1909{
1910	u32 pin_mask = 0, long_mask = 0;
 
1911
1912	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913	    IS_CHERRYVIEW(dev_priv)) {
1914		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916		if (hotplug_trigger) {
1917			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918					   hotplug_trigger, hotplug_trigger,
1919					   hpd_status_g4x,
1920					   i9xx_port_hotplug_long_detect);
1921
1922			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923		}
 
 
 
1924
1925		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926			dp_aux_irq_handler(dev_priv);
1927	} else {
1928		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930		if (hotplug_trigger) {
1931			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932					   hotplug_trigger, hotplug_trigger,
1933					   hpd_status_i915,
1934					   i9xx_port_hotplug_long_detect);
1935			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936		}
1937	}
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942	struct drm_i915_private *dev_priv = arg;
1943	irqreturn_t ret = IRQ_NONE;
1944
1945	if (!intel_irqs_enabled(dev_priv))
1946		return IRQ_NONE;
1947
1948	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951	do {
1952		u32 iir, gt_iir, pm_iir;
1953		u32 pipe_stats[I915_MAX_PIPES] = {};
1954		u32 hotplug_status = 0;
1955		u32 ier = 0;
1956
1957		gt_iir = I915_READ(GTIIR);
1958		pm_iir = I915_READ(GEN6_PMIIR);
1959		iir = I915_READ(VLV_IIR);
1960
1961		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962			break;
1963
1964		ret = IRQ_HANDLED;
1965
1966		/*
1967		 * Theory on interrupt generation, based on empirical evidence:
1968		 *
1969		 * x = ((VLV_IIR & VLV_IER) ||
1970		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972		 *
1973		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975		 * guarantee the CPU interrupt will be raised again even if we
1976		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977		 * bits this time around.
1978		 */
1979		I915_WRITE(VLV_MASTER_IER, 0);
1980		ier = I915_READ(VLV_IER);
1981		I915_WRITE(VLV_IER, 0);
1982
1983		if (gt_iir)
1984			I915_WRITE(GTIIR, gt_iir);
1985		if (pm_iir)
1986			I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991		/* Call regardless, as some status bits might not be
1992		 * signalled in iir */
1993		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996			   I915_LPE_PIPE_B_INTERRUPT))
1997			intel_lpe_audio_irq_handler(dev_priv);
1998
1999		/*
2000		 * VLV_IIR is single buffered, and reflects the level
2001		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002		 */
2003		if (iir)
2004			I915_WRITE(VLV_IIR, iir);
2005
2006		I915_WRITE(VLV_IER, ier);
2007		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009		if (gt_iir)
2010			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011		if (pm_iir)
2012			gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014		if (hotplug_status)
2015			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018	} while (0);
2019
2020	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022	return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027	struct drm_i915_private *dev_priv = arg;
2028	irqreturn_t ret = IRQ_NONE;
2029
2030	if (!intel_irqs_enabled(dev_priv))
2031		return IRQ_NONE;
2032
2033	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036	do {
2037		u32 master_ctl, iir;
2038		u32 pipe_stats[I915_MAX_PIPES] = {};
2039		u32 hotplug_status = 0;
2040		u32 gt_iir[4];
2041		u32 ier = 0;
2042
2043		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044		iir = I915_READ(VLV_IIR);
2045
2046		if (master_ctl == 0 && iir == 0)
2047			break;
2048
2049		ret = IRQ_HANDLED;
2050
2051		/*
2052		 * Theory on interrupt generation, based on empirical evidence:
2053		 *
2054		 * x = ((VLV_IIR & VLV_IER) ||
2055		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057		 *
2058		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060		 * guarantee the CPU interrupt will be raised again even if we
2061		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062		 * bits this time around.
2063		 */
2064		I915_WRITE(GEN8_MASTER_IRQ, 0);
2065		ier = I915_READ(VLV_IER);
2066		I915_WRITE(VLV_IER, 0);
2067
2068		gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073		/* Call regardless, as some status bits might not be
2074		 * signalled in iir */
2075		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078			   I915_LPE_PIPE_B_INTERRUPT |
2079			   I915_LPE_PIPE_C_INTERRUPT))
2080			intel_lpe_audio_irq_handler(dev_priv);
2081
2082		/*
2083		 * VLV_IIR is single buffered, and reflects the level
2084		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085		 */
2086		if (iir)
2087			I915_WRITE(VLV_IIR, iir);
2088
2089		I915_WRITE(VLV_IER, ier);
2090		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092		gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094		if (hotplug_status)
2095			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098	} while (0);
2099
2100	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102	return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106				u32 hotplug_trigger,
2107				const u32 hpd[HPD_NUM_PINS])
2108{
2109	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111	/*
2112	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113	 * unless we touch the hotplug register, even if hotplug_trigger is
2114	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115	 * errors.
2116	 */
2117	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118	if (!hotplug_trigger) {
2119		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120			PORTD_HOTPLUG_STATUS_MASK |
2121			PORTC_HOTPLUG_STATUS_MASK |
2122			PORTB_HOTPLUG_STATUS_MASK;
2123		dig_hotplug_reg &= ~mask;
2124	}
2125
2126	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127	if (!hotplug_trigger)
2128		return;
2129
2130	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131			   dig_hotplug_reg, hpd,
 
2132			   pch_port_hotplug_long_detect);
2133
2134	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
2139	int pipe;
2140	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146			       SDE_AUDIO_POWER_SHIFT);
2147		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148				 port_name(port));
2149	}
2150
2151	if (pch_iir & SDE_AUX_MASK)
2152		dp_aux_irq_handler(dev_priv);
2153
2154	if (pch_iir & SDE_GMBUS)
2155		gmbus_irq_handler(dev_priv);
2156
2157	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163	if (pch_iir & SDE_POISON)
2164		DRM_ERROR("PCH poison interrupt\n");
2165
2166	if (pch_iir & SDE_FDI_MASK)
2167		for_each_pipe(dev_priv, pipe)
2168			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169					 pipe_name(pipe),
2170					 I915_READ(FDI_RX_IIR(pipe)));
 
2171
2172	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 
2177
2178	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
2187	u32 err_int = I915_READ(GEN7_ERR_INT);
2188	enum pipe pipe;
2189
2190	if (err_int & ERR_INT_POISON)
2191		DRM_ERROR("Poison interrupt\n");
2192
2193	for_each_pipe(dev_priv, pipe) {
2194		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198			if (IS_IVYBRIDGE(dev_priv))
2199				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200			else
2201				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202		}
2203	}
2204
2205	I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
2210	u32 serr_int = I915_READ(SERR_INT);
2211	enum pipe pipe;
2212
2213	if (serr_int & SERR_INT_POISON)
2214		DRM_ERROR("PCH poison interrupt\n");
2215
2216	for_each_pipe(dev_priv, pipe)
2217		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220	I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
2225	int pipe;
2226	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232			       SDE_AUDIO_POWER_SHIFT_CPT);
2233		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234				 port_name(port));
2235	}
2236
2237	if (pch_iir & SDE_AUX_MASK_CPT)
2238		dp_aux_irq_handler(dev_priv);
2239
2240	if (pch_iir & SDE_GMBUS_CPT)
2241		gmbus_irq_handler(dev_priv);
2242
2243	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249	if (pch_iir & SDE_FDI_MASK_CPT)
2250		for_each_pipe(dev_priv, pipe)
2251			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252					 pipe_name(pipe),
2253					 I915_READ(FDI_RX_IIR(pipe)));
 
2254
2255	if (pch_iir & SDE_ERROR_CPT)
2256		cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260			    const u32 *pins)
2261{
2262	u32 ddi_hotplug_trigger;
2263	u32 tc_hotplug_trigger;
2264	u32 pin_mask = 0, long_mask = 0;
 
2265
2266	if (HAS_PCH_MCC(dev_priv)) {
 
 
 
 
2267		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268		tc_hotplug_trigger = 0;
 
 
 
 
2269	} else {
 
 
 
 
2270		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
 
2272	}
2273
2274	if (ddi_hotplug_trigger) {
2275		u32 dig_hotplug_reg;
2276
2277		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281				   ddi_hotplug_trigger,
2282				   dig_hotplug_reg, pins,
2283				   icp_ddi_port_hotplug_long_detect);
2284	}
2285
2286	if (tc_hotplug_trigger) {
2287		u32 dig_hotplug_reg;
2288
2289		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293				   tc_hotplug_trigger,
2294				   dig_hotplug_reg, pins,
2295				   icp_tc_port_hotplug_long_detect);
2296	}
2297
2298	if (pin_mask)
2299		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301	if (pch_iir & SDE_GMBUS_ICP)
2302		gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309	u32 pin_mask = 0, long_mask = 0;
2310
2311	if (ddi_hotplug_trigger) {
2312		u32 dig_hotplug_reg;
2313
2314		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318				   ddi_hotplug_trigger,
2319				   dig_hotplug_reg, hpd_tgp,
2320				   tgp_ddi_port_hotplug_long_detect);
2321	}
2322
2323	if (tc_hotplug_trigger) {
2324		u32 dig_hotplug_reg;
2325
2326		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330				   tc_hotplug_trigger,
2331				   dig_hotplug_reg, hpd_tgp,
2332				   tgp_tc_port_hotplug_long_detect);
2333	}
2334
2335	if (pin_mask)
2336		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338	if (pch_iir & SDE_GMBUS_ICP)
2339		gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343{
2344	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345		~SDE_PORTE_HOTPLUG_SPT;
2346	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347	u32 pin_mask = 0, long_mask = 0;
2348
2349	if (hotplug_trigger) {
2350		u32 dig_hotplug_reg;
2351
2352		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
 
2357				   spt_port_hotplug_long_detect);
2358	}
2359
2360	if (hotplug2_trigger) {
2361		u32 dig_hotplug_reg;
2362
2363		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
 
2368				   spt_port_hotplug2_long_detect);
2369	}
2370
2371	if (pin_mask)
2372		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374	if (pch_iir & SDE_GMBUS_CPT)
2375		gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379				u32 hotplug_trigger,
2380				const u32 hpd[HPD_NUM_PINS])
2381{
2382	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388			   dig_hotplug_reg, hpd,
 
2389			   ilk_port_hotplug_long_detect);
2390
2391	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395				    u32 de_iir)
2396{
2397	enum pipe pipe;
2398	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400	if (hotplug_trigger)
2401		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403	if (de_iir & DE_AUX_CHANNEL_A)
2404		dp_aux_irq_handler(dev_priv);
2405
2406	if (de_iir & DE_GSE)
2407		intel_opregion_asle_intr(dev_priv);
2408
2409	if (de_iir & DE_POISON)
2410		DRM_ERROR("Poison interrupt\n");
2411
2412	for_each_pipe(dev_priv, pipe) {
2413		if (de_iir & DE_PIPE_VBLANK(pipe))
2414			drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421	}
2422
2423	/* check event from PCH */
2424	if (de_iir & DE_PCH_EVENT) {
2425		u32 pch_iir = I915_READ(SDEIIR);
2426
2427		if (HAS_PCH_CPT(dev_priv))
2428			cpt_irq_handler(dev_priv, pch_iir);
2429		else
2430			ibx_irq_handler(dev_priv, pch_iir);
2431
2432		/* should clear PCH hotplug event before clear CPU irq */
2433		I915_WRITE(SDEIIR, pch_iir);
2434	}
2435
2436	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437		ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441				    u32 de_iir)
2442{
2443	enum pipe pipe;
2444	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446	if (hotplug_trigger)
2447		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449	if (de_iir & DE_ERR_INT_IVB)
2450		ivb_err_int_handler(dev_priv);
2451
2452	if (de_iir & DE_EDP_PSR_INT_HSW) {
2453		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455		intel_psr_irq_handler(dev_priv, psr_iir);
2456		I915_WRITE(EDP_PSR_IIR, psr_iir);
2457	}
2458
2459	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460		dp_aux_irq_handler(dev_priv);
2461
2462	if (de_iir & DE_GSE_IVB)
2463		intel_opregion_asle_intr(dev_priv);
2464
2465	for_each_pipe(dev_priv, pipe) {
2466		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467			drm_handle_vblank(&dev_priv->drm, pipe);
2468	}
2469
2470	/* check event from PCH */
2471	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472		u32 pch_iir = I915_READ(SDEIIR);
2473
2474		cpt_irq_handler(dev_priv, pch_iir);
2475
2476		/* clear PCH hotplug event before clear CPU irq */
2477		I915_WRITE(SDEIIR, pch_iir);
2478	}
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491	struct drm_i915_private *dev_priv = arg;
 
2492	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493	irqreturn_t ret = IRQ_NONE;
2494
2495	if (!intel_irqs_enabled(dev_priv))
2496		return IRQ_NONE;
2497
2498	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501	/* disable master interrupt before clearing iir  */
2502	de_ier = I915_READ(DEIER);
2503	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2506	 * interrupts will will be stored on its back queue, and then we'll be
2507	 * able to process them after we restore SDEIER (as soon as we restore
2508	 * it, we'll get an interrupt if SDEIIR still has something to process
2509	 * due to its back queue). */
2510	if (!HAS_PCH_NOP(dev_priv)) {
2511		sde_ier = I915_READ(SDEIER);
2512		I915_WRITE(SDEIER, 0);
2513	}
2514
2515	/* Find, clear, then process each source of interrupt */
2516
2517	gt_iir = I915_READ(GTIIR);
2518	if (gt_iir) {
2519		I915_WRITE(GTIIR, gt_iir);
 
 
 
 
2520		ret = IRQ_HANDLED;
2521		if (INTEL_GEN(dev_priv) >= 6)
2522			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523		else
2524			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525	}
2526
2527	de_iir = I915_READ(DEIIR);
2528	if (de_iir) {
2529		I915_WRITE(DEIIR, de_iir);
 
 
 
 
2530		ret = IRQ_HANDLED;
2531		if (INTEL_GEN(dev_priv) >= 7)
2532			ivb_display_irq_handler(dev_priv, de_iir);
2533		else
2534			ilk_display_irq_handler(dev_priv, de_iir);
2535	}
2536
2537	if (INTEL_GEN(dev_priv) >= 6) {
2538		u32 pm_iir = I915_READ(GEN6_PMIIR);
2539		if (pm_iir) {
2540			I915_WRITE(GEN6_PMIIR, pm_iir);
 
2541			ret = IRQ_HANDLED;
2542			gen6_rps_irq_handler(dev_priv, pm_iir);
2543		}
2544	}
2545
2546	I915_WRITE(DEIER, de_ier);
2547	if (!HAS_PCH_NOP(dev_priv))
2548		I915_WRITE(SDEIER, sde_ier);
2549
2550	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553	return ret;
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557				u32 hotplug_trigger,
2558				const u32 hpd[HPD_NUM_PINS])
2559{
2560	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566			   dig_hotplug_reg, hpd,
 
2567			   bxt_port_hotplug_long_detect);
2568
2569	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574	u32 pin_mask = 0, long_mask = 0;
2575	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577	long_pulse_detect_func long_pulse_detect;
2578	const u32 *hpd;
2579
2580	if (INTEL_GEN(dev_priv) >= 12) {
2581		long_pulse_detect = gen12_port_hotplug_long_detect;
2582		hpd = hpd_gen12;
2583	} else {
2584		long_pulse_detect = gen11_port_hotplug_long_detect;
2585		hpd = hpd_gen11;
2586	}
2587
2588	if (trigger_tc) {
2589		u32 dig_hotplug_reg;
2590
2591		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595				   dig_hotplug_reg, hpd, long_pulse_detect);
 
 
2596	}
2597
2598	if (trigger_tbt) {
2599		u32 dig_hotplug_reg;
2600
2601		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605				   dig_hotplug_reg, hpd, long_pulse_detect);
 
 
2606	}
2607
2608	if (pin_mask)
2609		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610	else
2611		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
 
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616	u32 mask;
2617
2618	if (INTEL_GEN(dev_priv) >= 12)
2619		/* TODO: Add AUX entries for USBC */
2620		return TGL_DE_PORT_AUX_DDIA |
2621			TGL_DE_PORT_AUX_DDIB |
2622			TGL_DE_PORT_AUX_DDIC;
 
 
 
 
 
 
 
2623
2624	mask = GEN8_AUX_CHANNEL_A;
2625	if (INTEL_GEN(dev_priv) >= 9)
2626		mask |= GEN9_AUX_CHANNEL_B |
2627			GEN9_AUX_CHANNEL_C |
2628			GEN9_AUX_CHANNEL_D;
2629
2630	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631		mask |= CNL_AUX_CHANNEL_F;
2632
2633	if (IS_GEN(dev_priv, 11))
2634		mask |= ICL_AUX_CHANNEL_E;
2635
2636	return mask;
2637}
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641	if (INTEL_GEN(dev_priv) >= 9)
 
 
 
 
2642		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643	else
2644		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650	bool found = false;
2651
2652	if (iir & GEN8_DE_MISC_GSE) {
2653		intel_opregion_asle_intr(dev_priv);
2654		found = true;
2655	}
2656
2657	if (iir & GEN8_DE_EDP_PSR) {
2658		u32 psr_iir = I915_READ(EDP_PSR_IIR);
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660		intel_psr_irq_handler(dev_priv, psr_iir);
2661		I915_WRITE(EDP_PSR_IIR, psr_iir);
2662		found = true;
2663	}
2664
2665	if (!found)
2666		DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
2672	irqreturn_t ret = IRQ_NONE;
2673	u32 iir;
2674	enum pipe pipe;
2675
2676	if (master_ctl & GEN8_DE_MISC_IRQ) {
2677		iir = I915_READ(GEN8_DE_MISC_IIR);
2678		if (iir) {
2679			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680			ret = IRQ_HANDLED;
2681			gen8_de_misc_irq_handler(dev_priv, iir);
2682		} else {
2683			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
 
2684		}
2685	}
2686
2687	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688		iir = I915_READ(GEN11_DE_HPD_IIR);
2689		if (iir) {
2690			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691			ret = IRQ_HANDLED;
2692			gen11_hpd_irq_handler(dev_priv, iir);
2693		} else {
2694			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
 
2695		}
2696	}
2697
2698	if (master_ctl & GEN8_DE_PORT_IRQ) {
2699		iir = I915_READ(GEN8_DE_PORT_IIR);
2700		if (iir) {
2701			u32 tmp_mask;
2702			bool found = false;
2703
2704			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705			ret = IRQ_HANDLED;
2706
2707			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708				dp_aux_irq_handler(dev_priv);
2709				found = true;
2710			}
2711
2712			if (IS_GEN9_LP(dev_priv)) {
2713				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714				if (tmp_mask) {
2715					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716							    hpd_bxt);
2717					found = true;
2718				}
2719			} else if (IS_BROADWELL(dev_priv)) {
2720				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721				if (tmp_mask) {
2722					ilk_hpd_irq_handler(dev_priv,
2723							    tmp_mask, hpd_bdw);
2724					found = true;
2725				}
2726			}
2727
2728			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729				gmbus_irq_handler(dev_priv);
2730				found = true;
2731			}
2732
2733			if (!found)
2734				DRM_ERROR("Unexpected DE Port interrupt\n");
 
2735		}
2736		else
2737			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
 
2738	}
2739
2740	for_each_pipe(dev_priv, pipe) {
2741		u32 fault_errors;
2742
2743		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744			continue;
2745
2746		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747		if (!iir) {
2748			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
 
2749			continue;
2750		}
2751
2752		ret = IRQ_HANDLED;
2753		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755		if (iir & GEN8_PIPE_VBLANK)
2756			drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765		if (fault_errors)
2766			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767				  pipe_name(pipe),
2768				  fault_errors);
 
2769	}
2770
2771	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772	    master_ctl & GEN8_DE_PCH_IRQ) {
2773		/*
2774		 * FIXME(BDW): Assume for now that the new interrupt handling
2775		 * scheme also closed the SDE interrupt handling race we've seen
2776		 * on older pch-split platforms. But this needs testing.
2777		 */
2778		iir = I915_READ(SDEIIR);
2779		if (iir) {
2780			I915_WRITE(SDEIIR, iir);
2781			ret = IRQ_HANDLED;
2782
2783			if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784				tgp_irq_handler(dev_priv, iir);
2785			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786				icp_irq_handler(dev_priv, iir, hpd_mcc);
2787			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788				icp_irq_handler(dev_priv, iir, hpd_icp);
2789			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790				spt_irq_handler(dev_priv, iir);
2791			else
2792				cpt_irq_handler(dev_priv, iir);
2793		} else {
2794			/*
2795			 * Like on previous PCH there seems to be something
2796			 * fishy going on with forwarding PCH interrupts.
2797			 */
2798			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
 
2799		}
2800	}
2801
2802	return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809	/*
2810	 * Now with master disabled, get a sample of level indications
2811	 * for this interrupt. Indications will be cleared on related acks.
2812	 * New indications can and will light up during processing,
2813	 * and will generate new interrupt after enabling master.
2814	 */
2815	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825	struct drm_i915_private *dev_priv = arg;
2826	void __iomem * const regs = dev_priv->uncore.regs;
2827	u32 master_ctl;
2828	u32 gt_iir[4];
2829
2830	if (!intel_irqs_enabled(dev_priv))
2831		return IRQ_NONE;
2832
2833	master_ctl = gen8_master_intr_disable(regs);
2834	if (!master_ctl) {
2835		gen8_master_intr_enable(regs);
2836		return IRQ_NONE;
2837	}
2838
2839	/* Find, clear, then process each source of interrupt */
2840	gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843	if (master_ctl & ~GEN8_GT_IRQS) {
2844		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845		gen8_de_irq_handler(dev_priv, master_ctl);
2846		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847	}
2848
2849	gen8_master_intr_enable(regs);
2850
2851	gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853	return IRQ_HANDLED;
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859	void __iomem * const regs = gt->uncore->regs;
2860	u32 iir;
2861
2862	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863		return 0;
2864
2865	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866	if (likely(iir))
2867		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869	return iir;
2870}
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875	if (iir & GEN11_GU_MISC_GSE)
2876		intel_opregion_asle_intr(gt->i915);
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880{
2881	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883	/*
2884	 * Now with master disabled, get a sample of level indications
2885	 * for this interrupt. Indications will be cleared on related acks.
2886	 * New indications can and will light up during processing,
2887	 * and will generate new interrupt after enabling master.
2888	 */
2889	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898{
2899	struct drm_i915_private * const i915 = arg;
2900	void __iomem * const regs = i915->uncore.regs;
2901	struct intel_gt *gt = &i915->gt;
2902	u32 master_ctl;
2903	u32 gu_misc_iir;
2904
2905	if (!intel_irqs_enabled(i915))
2906		return IRQ_NONE;
2907
2908	master_ctl = gen11_master_intr_disable(regs);
2909	if (!master_ctl) {
2910		gen11_master_intr_enable(regs);
2911		return IRQ_NONE;
2912	}
2913
2914	/* Find, clear, then process each source of interrupt. */
2915	gen11_gt_irq_handler(gt, master_ctl);
2916
2917	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918	if (master_ctl & GEN11_DISPLAY_IRQ) {
2919		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921		disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922		/*
2923		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924		 * for the display related bits.
2925		 */
2926		gen8_de_irq_handler(i915, disp_ctl);
2927		enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928	}
2929
2930	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932	gen11_master_intr_enable(regs);
2933
2934	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936	return IRQ_HANDLED;
2937}
2938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947
2948	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2950	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952	return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959	if (dev_priv->i945gm_vblank.enabled++ == 0)
2960		schedule_work(&dev_priv->i945gm_vblank.work);
 
 
 
 
 
 
2961
2962	return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969	unsigned long irqflags;
2970
2971	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972	i915_enable_pipestat(dev_priv, pipe,
2973			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2974	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976	return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983	unsigned long irqflags;
2984	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988	ilk_enable_display_irq(dev_priv, bit);
2989	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991	/* Even though there is no DMC, frame counter can get stuck when
2992	 * PSR is active as no frames are generated.
2993	 */
2994	if (HAS_PSR(dev_priv))
2995		drm_crtc_vblank_restore(crtc);
2996
2997	return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004	unsigned long irqflags;
3005
3006	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010	/* Even if there is no DMC, frame counter can get stuck when
3011	 * PSR is active as no frames are generated, so check only for PSR.
3012	 */
3013	if (HAS_PSR(dev_priv))
3014		drm_crtc_vblank_restore(crtc);
3015
3016	return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026	unsigned long irqflags;
3027
3028	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037	i8xx_disable_vblank(crtc);
3038
3039	if (--dev_priv->i945gm_vblank.enabled == 0)
3040		schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047	unsigned long irqflags;
3048
3049	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050	i915_disable_pipestat(dev_priv, pipe,
3051			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3052	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059	unsigned long irqflags;
3060	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064	ilk_disable_display_irq(dev_priv, bit);
3065	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
3069{
3070	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072	unsigned long irqflags;
3073
3074	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
3080{
3081	struct drm_i915_private *dev_priv =
3082		container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084	/*
3085	 * Vblank interrupts fail to wake up the device from C3,
3086	 * hence we want to prevent C3 usage while vblank interrupts
3087	 * are enabled.
3088	 */
3089	pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090			      READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091			      dev_priv->i945gm_vblank.c3_disable_latency :
3092			      PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097	const struct cpuidle_driver *drv;
3098	int i;
3099
3100	drv = cpuidle_get_driver();
3101	if (!drv)
3102		return 0;
3103
3104	for (i = 0; i < drv->state_count; i++) {
3105		const struct cpuidle_state *state = &drv->states[i];
3106
3107		if (!strcmp(state->name, name))
3108			return state->exit_latency ?
3109				state->exit_latency - 1 : 0;
3110	}
3111
3112	return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117	INIT_WORK(&dev_priv->i945gm_vblank.work,
3118		  i945gm_vblank_work_func);
3119
3120	dev_priv->i945gm_vblank.c3_disable_latency =
3121		cstate_disable_latency("C3");
3122	pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123			   PM_QOS_CPU_DMA_LATENCY,
3124			   PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129	cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130	pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135	struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137	if (HAS_PCH_NOP(dev_priv))
3138		return;
3139
3140	GEN3_IRQ_RESET(uncore, SDE);
3141
3142	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143		I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156	if (HAS_PCH_NOP(dev_priv))
3157		return;
3158
3159	WARN_ON(I915_READ(SDEIER) != 0);
3160	I915_WRITE(SDEIER, 0xffffffff);
3161	POSTING_READ(SDEIER);
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165{
3166	struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168	if (IS_CHERRYVIEW(dev_priv))
3169		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170	else
3171		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176	i9xx_pipestat_irq_reset(dev_priv);
3177
3178	GEN3_IRQ_RESET(uncore, VLV_);
3179	dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184	struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186	u32 pipestat_mask;
3187	u32 enable_mask;
3188	enum pipe pipe;
3189
3190	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193	for_each_pipe(dev_priv, pipe)
3194		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199		I915_LPE_PIPE_A_INTERRUPT |
3200		I915_LPE_PIPE_B_INTERRUPT;
3201
3202	if (IS_CHERRYVIEW(dev_priv))
3203		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204			I915_LPE_PIPE_C_INTERRUPT;
3205
3206	WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208	dev_priv->irq_mask = ~enable_mask;
3209
3210	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217	struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219	GEN3_IRQ_RESET(uncore, DE);
3220	if (IS_GEN(dev_priv, 7))
3221		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223	if (IS_HASWELL(dev_priv)) {
3224		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226	}
3227
3228	gen5_gt_irq_reset(&dev_priv->gt);
3229
3230	ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235	I915_WRITE(VLV_MASTER_IER, 0);
3236	POSTING_READ(VLV_MASTER_IER);
3237
3238	gen5_gt_irq_reset(&dev_priv->gt);
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248	struct intel_uncore *uncore = &dev_priv->uncore;
3249	int pipe;
3250
3251	gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253	gen8_gt_irq_reset(&dev_priv->gt);
3254
3255	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258	for_each_pipe(dev_priv, pipe)
3259		if (intel_display_power_is_enabled(dev_priv,
3260						   POWER_DOMAIN_PIPE(pipe)))
3261			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267	if (HAS_PCH_SPLIT(dev_priv))
3268		ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273	struct intel_uncore *uncore = &dev_priv->uncore;
3274	int pipe;
 
 
 
 
3275
3276	gen11_master_intr_disable(dev_priv->uncore.regs);
 
3277
3278	gen11_gt_irq_reset(&dev_priv->gt);
 
3279
3280	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
 
 
3281
3282	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
 
 
 
 
 
3284
3285	for_each_pipe(dev_priv, pipe)
3286		if (intel_display_power_is_enabled(dev_priv,
3287						   POWER_DOMAIN_PIPE(pipe)))
3288			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297		GEN3_IRQ_RESET(uncore, SDE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301				     u8 pipe_mask)
3302{
3303	struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306	enum pipe pipe;
3307
3308	spin_lock_irq(&dev_priv->irq_lock);
3309
3310	if (!intel_irqs_enabled(dev_priv)) {
3311		spin_unlock_irq(&dev_priv->irq_lock);
3312		return;
3313	}
3314
3315	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317				  dev_priv->de_irq_mask[pipe],
3318				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320	spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324				     u8 pipe_mask)
3325{
3326	struct intel_uncore *uncore = &dev_priv->uncore;
3327	enum pipe pipe;
3328
3329	spin_lock_irq(&dev_priv->irq_lock);
3330
3331	if (!intel_irqs_enabled(dev_priv)) {
3332		spin_unlock_irq(&dev_priv->irq_lock);
3333		return;
3334	}
3335
3336	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339	spin_unlock_irq(&dev_priv->irq_lock);
3340
3341	/* make sure we're done processing display irqs */
3342	intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347	struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349	I915_WRITE(GEN8_MASTER_IRQ, 0);
3350	POSTING_READ(GEN8_MASTER_IRQ);
3351
3352	gen8_gt_irq_reset(&dev_priv->gt);
3353
3354	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356	spin_lock_irq(&dev_priv->irq_lock);
3357	if (dev_priv->display_irqs_enabled)
3358		vlv_display_irq_reset(dev_priv);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363				  const u32 hpd[HPD_NUM_PINS])
3364{
3365	struct intel_encoder *encoder;
3366	u32 enabled_irqs = 0;
3367
3368	for_each_intel_encoder(&dev_priv->drm, encoder)
3369		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370			enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372	return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377	u32 hotplug;
3378
3379	/*
3380	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381	 * duration to 2ms (which is the minimum in the Display Port spec).
3382	 * The pulse duration bits are reserved on LPT+.
3383	 */
3384	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386		     PORTC_PULSE_DURATION_MASK |
3387		     PORTD_PULSE_DURATION_MASK);
3388	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391	/*
3392	 * When CPU and PCH are on the same package, port A
3393	 * HPD must be enabled in both north and south.
3394	 */
3395	if (HAS_PCH_LPT_LP(dev_priv))
3396		hotplug |= PORTA_HOTPLUG_ENABLE;
3397	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402	u32 hotplug_irqs, enabled_irqs;
3403
3404	if (HAS_PCH_IBX(dev_priv)) {
3405		hotplug_irqs = SDE_HOTPLUG_MASK;
3406		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407	} else {
3408		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410	}
3411
3412	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414	ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418				    u32 ddi_hotplug_enable_mask,
3419				    u32 tc_hotplug_enable_mask)
3420{
3421	u32 hotplug;
3422
3423	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424	hotplug |= ddi_hotplug_enable_mask;
3425	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427	if (tc_hotplug_enable_mask) {
3428		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429		hotplug |= tc_hotplug_enable_mask;
3430		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431	}
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
 
3435{
3436	u32 hotplug_irqs, enabled_irqs;
3437
3438	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
 
 
 
3440
3441	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443	icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444				ICP_TC_HPD_ENABLE_MASK);
3445}
3446
 
 
 
 
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448{
3449	u32 hotplug_irqs, enabled_irqs;
3450
3451	hotplug_irqs = SDE_DDI_MASK_TGP;
3452	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
 
 
 
 
3460{
3461	u32 hotplug_irqs, enabled_irqs;
3462
3463	hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469				TGP_TC_HPD_ENABLE_MASK);
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474	u32 hotplug;
3475
3476	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493	u32 hotplug_irqs, enabled_irqs;
3494	const u32 *hpd;
3495	u32 val;
3496
3497	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501	val = I915_READ(GEN11_DE_HPD_IMR);
3502	val &= ~hotplug_irqs;
 
3503	I915_WRITE(GEN11_DE_HPD_IMR, val);
3504	POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506	gen11_hpd_detection_setup(dev_priv);
3507
3508	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509		tgp_hpd_irq_setup(dev_priv);
 
3510	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511		icp_hpd_irq_setup(dev_priv);
 
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516	u32 val, hotplug;
3517
3518	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3519	if (HAS_PCH_CNP(dev_priv)) {
3520		val = I915_READ(SOUTH_CHICKEN1);
3521		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523		I915_WRITE(SOUTH_CHICKEN1, val);
3524	}
3525
3526	/* Enable digital hotplug on the PCH */
3527	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528	hotplug |= PORTA_HOTPLUG_ENABLE |
3529		   PORTB_HOTPLUG_ENABLE |
3530		   PORTC_HOTPLUG_ENABLE |
3531		   PORTD_HOTPLUG_ENABLE;
3532	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535	hotplug |= PORTE_HOTPLUG_ENABLE;
3536	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541	u32 hotplug_irqs, enabled_irqs;
3542
 
 
 
3543	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548	spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553	u32 hotplug;
3554
3555	/*
3556	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557	 * duration to 2ms (which is the minimum in the Display Port spec)
3558	 * The pulse duration bits are reserved on HSW+.
3559	 */
3560	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569	u32 hotplug_irqs, enabled_irqs;
3570
3571	if (INTEL_GEN(dev_priv) >= 8) {
3572		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576	} else if (INTEL_GEN(dev_priv) >= 7) {
3577		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581	} else {
3582		hotplug_irqs = DE_DP_A_HOTPLUG;
3583		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586	}
3587
3588	ilk_hpd_detection_setup(dev_priv);
3589
3590	ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594				      u32 enabled_irqs)
3595{
3596	u32 hotplug;
3597
3598	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599	hotplug |= PORTA_HOTPLUG_ENABLE |
3600		   PORTB_HOTPLUG_ENABLE |
3601		   PORTC_HOTPLUG_ENABLE;
3602
3603	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604		      hotplug, enabled_irqs);
 
3605	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607	/*
3608	 * For BXT invert bit has to be set based on AOB design
3609	 * for HPD detection logic, update it based on VBT fields.
3610	 */
3611	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613		hotplug |= BXT_DDIA_HPD_INVERT;
3614	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616		hotplug |= BXT_DDIB_HPD_INVERT;
3617	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619		hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631	u32 hotplug_irqs, enabled_irqs;
3632
3633	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643	u32 mask;
3644
3645	if (HAS_PCH_NOP(dev_priv))
3646		return;
3647
3648	if (HAS_PCH_IBX(dev_priv))
3649		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652	else
3653		mask = SDE_GMBUS_CPT;
3654
3655	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656	I915_WRITE(SDEIMR, ~mask);
3657
3658	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659	    HAS_PCH_LPT(dev_priv))
3660		ibx_hpd_detection_setup(dev_priv);
3661	else
3662		spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667	struct intel_uncore *uncore = &dev_priv->uncore;
3668	u32 display_mask, extra_mask;
3669
3670	if (INTEL_GEN(dev_priv) >= 7) {
3671		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675			      DE_DP_A_HOTPLUG_IVB);
3676	} else {
3677		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679				DE_PIPEA_CRC_DONE | DE_POISON);
3680		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682			      DE_DP_A_HOTPLUG);
3683	}
3684
3685	if (IS_HASWELL(dev_priv)) {
3686		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688		display_mask |= DE_EDP_PSR_INT_HSW;
3689	}
3690
3691	dev_priv->irq_mask = ~display_mask;
3692
3693	ibx_irq_pre_postinstall(dev_priv);
3694
3695	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696		      display_mask | extra_mask);
3697
3698	gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700	ilk_hpd_detection_setup(dev_priv);
3701
3702	ibx_irq_postinstall(dev_priv);
3703
3704	if (IS_IRONLAKE_M(dev_priv)) {
3705		/* Enable PCU event interrupts
3706		 *
3707		 * spinlocking not required here for correctness since interrupt
3708		 * setup is guaranteed to run in single-threaded context. But we
3709		 * need it to make the assert_spin_locked happy. */
3710		spin_lock_irq(&dev_priv->irq_lock);
3711		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712		spin_unlock_irq(&dev_priv->irq_lock);
3713	}
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718	lockdep_assert_held(&dev_priv->irq_lock);
3719
3720	if (dev_priv->display_irqs_enabled)
3721		return;
3722
3723	dev_priv->display_irqs_enabled = true;
3724
3725	if (intel_irqs_enabled(dev_priv)) {
3726		vlv_display_irq_reset(dev_priv);
3727		vlv_display_irq_postinstall(dev_priv);
3728	}
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733	lockdep_assert_held(&dev_priv->irq_lock);
3734
3735	if (!dev_priv->display_irqs_enabled)
3736		return;
3737
3738	dev_priv->display_irqs_enabled = false;
3739
3740	if (intel_irqs_enabled(dev_priv))
3741		vlv_display_irq_reset(dev_priv);
3742}
3743
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747	gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749	spin_lock_irq(&dev_priv->irq_lock);
3750	if (dev_priv->display_irqs_enabled)
3751		vlv_display_irq_postinstall(dev_priv);
3752	spin_unlock_irq(&dev_priv->irq_lock);
3753
3754	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755	POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760	struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
 
3763	u32 de_pipe_enables;
3764	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765	u32 de_port_enables;
3766	u32 de_misc_masked = GEN8_DE_EDP_PSR;
 
 
3767	enum pipe pipe;
3768
3769	if (INTEL_GEN(dev_priv) <= 10)
3770		de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772	if (INTEL_GEN(dev_priv) >= 9) {
3773		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775				  GEN9_AUX_CHANNEL_D;
3776		if (IS_GEN9_LP(dev_priv))
3777			de_port_masked |= BXT_DE_PORT_GMBUS;
3778	} else {
3779		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780	}
3781
3782	if (INTEL_GEN(dev_priv) >= 11)
3783		de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786		de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789					   GEN8_PIPE_FIFO_UNDERRUN;
3790
3791	de_port_enables = de_port_masked;
3792	if (IS_GEN9_LP(dev_priv))
3793		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794	else if (IS_BROADWELL(dev_priv))
3795		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797	gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
3799
3800	for_each_pipe(dev_priv, pipe) {
3801		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803		if (intel_display_power_is_enabled(dev_priv,
3804				POWER_DOMAIN_PIPE(pipe)))
3805			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806					  dev_priv->de_irq_mask[pipe],
3807					  de_pipe_enables);
3808	}
3809
3810	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813	if (INTEL_GEN(dev_priv) >= 11) {
3814		u32 de_hpd_masked = 0;
3815		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816				     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819			      de_hpd_enables);
3820		gen11_hpd_detection_setup(dev_priv);
3821	} else if (IS_GEN9_LP(dev_priv)) {
3822		bxt_hpd_detection_setup(dev_priv);
3823	} else if (IS_BROADWELL(dev_priv)) {
3824		ilk_hpd_detection_setup(dev_priv);
3825	}
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830	if (HAS_PCH_SPLIT(dev_priv))
3831		ibx_irq_pre_postinstall(dev_priv);
3832
3833	gen8_gt_irq_postinstall(&dev_priv->gt);
3834	gen8_de_irq_postinstall(dev_priv);
3835
3836	if (HAS_PCH_SPLIT(dev_priv))
3837		ibx_irq_postinstall(dev_priv);
3838
3839	gen8_master_intr_enable(dev_priv->uncore.regs);
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844	u32 mask = SDE_GMBUS_ICP;
3845
3846	WARN_ON(I915_READ(SDEIER) != 0);
3847	I915_WRITE(SDEIER, 0xffffffff);
3848	POSTING_READ(SDEIER);
3849
3850	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851	I915_WRITE(SDEIMR, ~mask);
3852
3853	if (HAS_PCH_TGP(dev_priv))
3854		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855					TGP_TC_HPD_ENABLE_MASK);
 
 
3856	else if (HAS_PCH_MCC(dev_priv))
3857		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
 
3858	else
3859		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860					ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865	struct intel_uncore *uncore = &dev_priv->uncore;
3866	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869		icp_irq_postinstall(dev_priv);
3870
3871	gen11_gt_irq_postinstall(&dev_priv->gt);
3872	gen8_de_irq_postinstall(dev_priv);
3873
3874	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878	gen11_master_intr_enable(uncore->regs);
3879	POSTING_READ(GEN11_GFX_MSTR_IRQ);
 
 
 
 
 
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886	spin_lock_irq(&dev_priv->irq_lock);
3887	if (dev_priv->display_irqs_enabled)
3888		vlv_display_irq_postinstall(dev_priv);
3889	spin_unlock_irq(&dev_priv->irq_lock);
3890
3891	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892	POSTING_READ(GEN8_MASTER_IRQ);
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897	struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899	i9xx_pipestat_irq_reset(dev_priv);
3900
3901	GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906	struct intel_uncore *uncore = &dev_priv->uncore;
3907	u16 enable_mask;
3908
3909	intel_uncore_write16(uncore,
3910			     EMR,
3911			     ~(I915_ERROR_PAGE_TABLE |
3912			       I915_ERROR_MEMORY_REFRESH));
3913
3914	/* Unmask the interrupts that we always want on. */
3915	dev_priv->irq_mask =
3916		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918		  I915_MASTER_ERROR_INTERRUPT);
3919
3920	enable_mask =
3921		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923		I915_MASTER_ERROR_INTERRUPT |
3924		I915_USER_INTERRUPT;
3925
3926	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928	/* Interrupt setup is already guaranteed to be single-threaded, this is
3929	 * just to make the assert_spin_locked check happy. */
3930	spin_lock_irq(&dev_priv->irq_lock);
3931	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933	spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937			       u16 *eir, u16 *eir_stuck)
3938{
3939	struct intel_uncore *uncore = &i915->uncore;
3940	u16 emr;
3941
3942	*eir = intel_uncore_read16(uncore, EIR);
3943
3944	if (*eir)
3945		intel_uncore_write16(uncore, EIR, *eir);
3946
3947	*eir_stuck = intel_uncore_read16(uncore, EIR);
3948	if (*eir_stuck == 0)
3949		return;
3950
3951	/*
3952	 * Toggle all EMR bits to make sure we get an edge
3953	 * in the ISR master error bit if we don't clear
3954	 * all the EIR bits. Otherwise the edge triggered
3955	 * IIR on i965/g4x wouldn't notice that an interrupt
3956	 * is still pending. Also some EIR bits can't be
3957	 * cleared except by handling the underlying error
3958	 * (or by a GPU reset) so we mask any bit that
3959	 * remains set.
3960	 */
3961	emr = intel_uncore_read16(uncore, EMR);
3962	intel_uncore_write16(uncore, EMR, 0xffff);
3963	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967				   u16 eir, u16 eir_stuck)
3968{
3969	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971	if (eir_stuck)
3972		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
 
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976			       u32 *eir, u32 *eir_stuck)
3977{
3978	u32 emr;
3979
3980	*eir = I915_READ(EIR);
3981
3982	I915_WRITE(EIR, *eir);
3983
3984	*eir_stuck = I915_READ(EIR);
3985	if (*eir_stuck == 0)
3986		return;
3987
3988	/*
3989	 * Toggle all EMR bits to make sure we get an edge
3990	 * in the ISR master error bit if we don't clear
3991	 * all the EIR bits. Otherwise the edge triggered
3992	 * IIR on i965/g4x wouldn't notice that an interrupt
3993	 * is still pending. Also some EIR bits can't be
3994	 * cleared except by handling the underlying error
3995	 * (or by a GPU reset) so we mask any bit that
3996	 * remains set.
3997	 */
3998	emr = I915_READ(EMR);
3999	I915_WRITE(EMR, 0xffffffff);
4000	I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004				   u32 eir, u32 eir_stuck)
4005{
4006	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008	if (eir_stuck)
4009		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
 
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014	struct drm_i915_private *dev_priv = arg;
4015	irqreturn_t ret = IRQ_NONE;
4016
4017	if (!intel_irqs_enabled(dev_priv))
4018		return IRQ_NONE;
4019
4020	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023	do {
4024		u32 pipe_stats[I915_MAX_PIPES] = {};
4025		u16 eir = 0, eir_stuck = 0;
4026		u16 iir;
4027
4028		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029		if (iir == 0)
4030			break;
4031
4032		ret = IRQ_HANDLED;
4033
4034		/* Call regardless, as some status bits might not be
4035		 * signalled in iir */
4036		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038		if (iir & I915_MASTER_ERROR_INTERRUPT)
4039			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043		if (iir & I915_USER_INTERRUPT)
4044			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046		if (iir & I915_MASTER_ERROR_INTERRUPT)
4047			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050	} while (0);
4051
4052	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054	return ret;
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059	struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061	if (I915_HAS_HOTPLUG(dev_priv)) {
4062		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064	}
4065
4066	i9xx_pipestat_irq_reset(dev_priv);
4067
4068	GEN3_IRQ_RESET(uncore, GEN2_);
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073	struct intel_uncore *uncore = &dev_priv->uncore;
4074	u32 enable_mask;
4075
4076	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077			  I915_ERROR_MEMORY_REFRESH));
4078
4079	/* Unmask the interrupts that we always want on. */
4080	dev_priv->irq_mask =
4081		~(I915_ASLE_INTERRUPT |
4082		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084		  I915_MASTER_ERROR_INTERRUPT);
4085
4086	enable_mask =
4087		I915_ASLE_INTERRUPT |
4088		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090		I915_MASTER_ERROR_INTERRUPT |
4091		I915_USER_INTERRUPT;
4092
4093	if (I915_HAS_HOTPLUG(dev_priv)) {
4094		/* Enable in IER... */
4095		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096		/* and unmask in IMR */
4097		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098	}
4099
4100	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102	/* Interrupt setup is already guaranteed to be single-threaded, this is
4103	 * just to make the assert_spin_locked check happy. */
4104	spin_lock_irq(&dev_priv->irq_lock);
4105	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107	spin_unlock_irq(&dev_priv->irq_lock);
4108
4109	i915_enable_asle_pipestat(dev_priv);
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114	struct drm_i915_private *dev_priv = arg;
4115	irqreturn_t ret = IRQ_NONE;
4116
4117	if (!intel_irqs_enabled(dev_priv))
4118		return IRQ_NONE;
4119
4120	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123	do {
4124		u32 pipe_stats[I915_MAX_PIPES] = {};
4125		u32 eir = 0, eir_stuck = 0;
4126		u32 hotplug_status = 0;
4127		u32 iir;
4128
4129		iir = I915_READ(GEN2_IIR);
4130		if (iir == 0)
4131			break;
4132
4133		ret = IRQ_HANDLED;
4134
4135		if (I915_HAS_HOTPLUG(dev_priv) &&
4136		    iir & I915_DISPLAY_PORT_INTERRUPT)
4137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139		/* Call regardless, as some status bits might not be
4140		 * signalled in iir */
4141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143		if (iir & I915_MASTER_ERROR_INTERRUPT)
4144			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146		I915_WRITE(GEN2_IIR, iir);
4147
4148		if (iir & I915_USER_INTERRUPT)
4149			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151		if (iir & I915_MASTER_ERROR_INTERRUPT)
4152			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154		if (hotplug_status)
4155			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158	} while (0);
4159
4160	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162	return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167	struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172	i9xx_pipestat_irq_reset(dev_priv);
4173
4174	GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179	struct intel_uncore *uncore = &dev_priv->uncore;
4180	u32 enable_mask;
4181	u32 error_mask;
4182
4183	/*
4184	 * Enable some error detection, note the instruction error mask
4185	 * bit is reserved, so we leave it masked.
4186	 */
4187	if (IS_G4X(dev_priv)) {
4188		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189			       GM45_ERROR_MEM_PRIV |
4190			       GM45_ERROR_CP_PRIV |
4191			       I915_ERROR_MEMORY_REFRESH);
4192	} else {
4193		error_mask = ~(I915_ERROR_PAGE_TABLE |
4194			       I915_ERROR_MEMORY_REFRESH);
4195	}
4196	I915_WRITE(EMR, error_mask);
4197
4198	/* Unmask the interrupts that we always want on. */
4199	dev_priv->irq_mask =
4200		~(I915_ASLE_INTERRUPT |
4201		  I915_DISPLAY_PORT_INTERRUPT |
4202		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204		  I915_MASTER_ERROR_INTERRUPT);
4205
4206	enable_mask =
4207		I915_ASLE_INTERRUPT |
4208		I915_DISPLAY_PORT_INTERRUPT |
4209		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211		I915_MASTER_ERROR_INTERRUPT |
4212		I915_USER_INTERRUPT;
4213
4214	if (IS_G4X(dev_priv))
4215		enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219	/* Interrupt setup is already guaranteed to be single-threaded, this is
4220	 * just to make the assert_spin_locked check happy. */
4221	spin_lock_irq(&dev_priv->irq_lock);
4222	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225	spin_unlock_irq(&dev_priv->irq_lock);
4226
4227	i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
4232	u32 hotplug_en;
4233
4234	lockdep_assert_held(&dev_priv->irq_lock);
4235
4236	/* Note HDMI and DP share hotplug bits */
4237	/* enable bits are the same for all generations */
4238	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239	/* Programming the CRT detection parameters tends
4240	   to generate a spurious hotplug event about three
4241	   seconds later.  So just do it once.
4242	*/
4243	if (IS_G4X(dev_priv))
4244		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247	/* Ignore TV since it's buggy */
4248	i915_hotplug_interrupt_update_locked(dev_priv,
4249					     HOTPLUG_INT_EN_MASK |
4250					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252					     hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257	struct drm_i915_private *dev_priv = arg;
4258	irqreturn_t ret = IRQ_NONE;
4259
4260	if (!intel_irqs_enabled(dev_priv))
4261		return IRQ_NONE;
4262
4263	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266	do {
4267		u32 pipe_stats[I915_MAX_PIPES] = {};
4268		u32 eir = 0, eir_stuck = 0;
4269		u32 hotplug_status = 0;
4270		u32 iir;
4271
4272		iir = I915_READ(GEN2_IIR);
4273		if (iir == 0)
4274			break;
4275
4276		ret = IRQ_HANDLED;
4277
4278		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281		/* Call regardless, as some status bits might not be
4282		 * signalled in iir */
4283		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285		if (iir & I915_MASTER_ERROR_INTERRUPT)
4286			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288		I915_WRITE(GEN2_IIR, iir);
4289
4290		if (iir & I915_USER_INTERRUPT)
4291			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293		if (iir & I915_BSD_USER_INTERRUPT)
4294			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296		if (iir & I915_MASTER_ERROR_INTERRUPT)
4297			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299		if (hotplug_status)
4300			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303	} while (0);
4304
4305	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307	return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319	struct drm_device *dev = &dev_priv->drm;
4320	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321	int i;
4322
4323	if (IS_I945GM(dev_priv))
4324		i945gm_vblank_work_init(dev_priv);
4325
4326	intel_hpd_init_work(dev_priv);
4327
4328	INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331	for (i = 0; i < MAX_L3_SLICES; ++i)
4332		dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338	/* Let's track the enabled rps events */
4339	if (IS_VALLEYVIEW(dev_priv))
4340		/* WaGsvRC0ResidencyMethod:vlv */
4341		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342	else
4343		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344					   GEN6_PM_RP_DOWN_THRESHOLD |
4345					   GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347	/* We share the register with other engine */
4348	if (INTEL_GEN(dev_priv) > 9)
4349		GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351	rps->pm_intrmsk_mbz = 0;
4352
4353	/*
4354	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356	 *
4357	 * TODO: verify if this can be reproduced on VLV,CHV.
4358	 */
4359	if (INTEL_GEN(dev_priv) <= 7)
4360		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362	if (INTEL_GEN(dev_priv) >= 8)
4363		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365	dev->vblank_disable_immediate = true;
4366
4367	/* Most platforms treat the display irq block as an always-on
4368	 * power domain. vlv/chv can disable it at runtime and need
4369	 * special care to avoid writing any of the display block registers
4370	 * outside of the power domain. We defer setting up the display irqs
4371	 * in this case to the runtime pm.
4372	 */
4373	dev_priv->display_irqs_enabled = true;
4374	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375		dev_priv->display_irqs_enabled = false;
4376
4377	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4379	 * detection, as short HPD storms will occur as a natural part of
4380	 * sideband messaging with MST.
4381	 * On older platforms however, IRQ storms can occur with both long and
4382	 * short pulses, as seen on some G4x systems.
4383	 */
4384	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386	if (HAS_GMCH(dev_priv)) {
4387		if (I915_HAS_HOTPLUG(dev_priv))
4388			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389	} else {
4390		if (HAS_PCH_MCC(dev_priv))
4391			/* EHL doesn't need most of gen11_hpd_irq_setup */
 
4392			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393		else if (INTEL_GEN(dev_priv) >= 11)
4394			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395		else if (IS_GEN9_LP(dev_priv))
4396			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399		else
4400			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401	}
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412	int i;
4413
4414	if (IS_I945GM(i915))
4415		i945gm_vblank_work_fini(i915);
4416
4417	for (i = 0; i < MAX_L3_SLICES; ++i)
4418		kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423	if (HAS_GMCH(dev_priv)) {
4424		if (IS_CHERRYVIEW(dev_priv))
4425			return cherryview_irq_handler;
4426		else if (IS_VALLEYVIEW(dev_priv))
4427			return valleyview_irq_handler;
4428		else if (IS_GEN(dev_priv, 4))
4429			return i965_irq_handler;
4430		else if (IS_GEN(dev_priv, 3))
4431			return i915_irq_handler;
4432		else
4433			return i8xx_irq_handler;
4434	} else {
 
 
4435		if (INTEL_GEN(dev_priv) >= 11)
4436			return gen11_irq_handler;
4437		else if (INTEL_GEN(dev_priv) >= 8)
4438			return gen8_irq_handler;
4439		else
4440			return ironlake_irq_handler;
4441	}
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_reset(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_reset(dev_priv);
4451		else if (IS_GEN(dev_priv, 4))
4452			i965_irq_reset(dev_priv);
4453		else if (IS_GEN(dev_priv, 3))
4454			i915_irq_reset(dev_priv);
4455		else
4456			i8xx_irq_reset(dev_priv);
4457	} else {
4458		if (INTEL_GEN(dev_priv) >= 11)
4459			gen11_irq_reset(dev_priv);
4460		else if (INTEL_GEN(dev_priv) >= 8)
4461			gen8_irq_reset(dev_priv);
4462		else
4463			ironlake_irq_reset(dev_priv);
4464	}
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469	if (HAS_GMCH(dev_priv)) {
4470		if (IS_CHERRYVIEW(dev_priv))
4471			cherryview_irq_postinstall(dev_priv);
4472		else if (IS_VALLEYVIEW(dev_priv))
4473			valleyview_irq_postinstall(dev_priv);
4474		else if (IS_GEN(dev_priv, 4))
4475			i965_irq_postinstall(dev_priv);
4476		else if (IS_GEN(dev_priv, 3))
4477			i915_irq_postinstall(dev_priv);
4478		else
4479			i8xx_irq_postinstall(dev_priv);
4480	} else {
4481		if (INTEL_GEN(dev_priv) >= 11)
4482			gen11_irq_postinstall(dev_priv);
4483		else if (INTEL_GEN(dev_priv) >= 8)
4484			gen8_irq_postinstall(dev_priv);
4485		else
4486			ironlake_irq_postinstall(dev_priv);
4487	}
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503	int irq = dev_priv->drm.pdev->irq;
4504	int ret;
4505
4506	/*
4507	 * We enable some interrupt sources in our postinstall hooks, so mark
4508	 * interrupts as enabled _before_ actually enabling them to avoid
4509	 * special cases in our ordering checks.
4510	 */
4511	dev_priv->runtime_pm.irqs_enabled = true;
4512
4513	dev_priv->drm.irq_enabled = true;
4514
4515	intel_irq_reset(dev_priv);
4516
4517	ret = request_irq(irq, intel_irq_handler(dev_priv),
4518			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4519	if (ret < 0) {
4520		dev_priv->drm.irq_enabled = false;
4521		return ret;
4522	}
4523
4524	intel_irq_postinstall(dev_priv);
4525
4526	return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538	int irq = dev_priv->drm.pdev->irq;
4539
4540	/*
4541	 * FIXME we can get called twice during driver load
4542	 * error handling due to intel_modeset_cleanup()
4543	 * calling us out of sequence. Would be nice if
4544	 * it didn't do that...
4545	 */
4546	if (!dev_priv->drm.irq_enabled)
4547		return;
4548
4549	dev_priv->drm.irq_enabled = false;
4550
4551	intel_irq_reset(dev_priv);
4552
4553	free_irq(irq, dev_priv);
4554
4555	intel_hpd_cancel_work(dev_priv);
4556	dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568	intel_irq_reset(dev_priv);
4569	dev_priv->runtime_pm.irqs_enabled = false;
4570	intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582	dev_priv->runtime_pm.irqs_enabled = true;
4583	intel_irq_reset(dev_priv);
4584	intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589	/*
4590	 * We only use drm_irq_uninstall() at unload and VT switch, so
4591	 * this is the only thing we need to check.
4592	 */
4593	return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598	synchronize_irq(i915->drm.pdev->irq);
4599}