Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * FDT related Helper functions used by the EFI stub on multiple
  4 * architectures. This should be #included by the EFI stub
  5 * implementation files.
  6 *
  7 * Copyright 2013 Linaro Limited; author Roy Franz
  8 */
  9
 10#include <linux/efi.h>
 11#include <linux/libfdt.h>
 12#include <asm/efi.h>
 13
 14#include "efistub.h"
 15
 16#define EFI_DT_ADDR_CELLS_DEFAULT 2
 17#define EFI_DT_SIZE_CELLS_DEFAULT 2
 18
 19static void fdt_update_cell_size(void *fdt)
 20{
 21	int offset;
 22
 23	offset = fdt_path_offset(fdt, "/");
 24	/* Set the #address-cells and #size-cells values for an empty tree */
 25
 26	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
 27	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
 28}
 29
 30static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
 
 31			       void *fdt, int new_fdt_size, char *cmdline_ptr,
 32			       u64 initrd_addr, u64 initrd_size)
 33{
 34	int node, num_rsv;
 35	int status;
 36	u32 fdt_val32;
 37	u64 fdt_val64;
 38
 39	/* Do some checks on provided FDT, if it exists: */
 40	if (orig_fdt) {
 41		if (fdt_check_header(orig_fdt)) {
 42			efi_err("Device Tree header not valid!\n");
 43			return EFI_LOAD_ERROR;
 44		}
 45		/*
 46		 * We don't get the size of the FDT if we get if from a
 47		 * configuration table:
 48		 */
 49		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
 50			efi_err("Truncated device tree! foo!\n");
 51			return EFI_LOAD_ERROR;
 52		}
 53	}
 54
 55	if (orig_fdt) {
 56		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
 57	} else {
 58		status = fdt_create_empty_tree(fdt, new_fdt_size);
 59		if (status == 0) {
 60			/*
 61			 * Any failure from the following function is
 62			 * non-critical:
 63			 */
 64			fdt_update_cell_size(fdt);
 65		}
 66	}
 67
 68	if (status != 0)
 69		goto fdt_set_fail;
 70
 71	/*
 72	 * Delete all memory reserve map entries. When booting via UEFI,
 73	 * kernel will use the UEFI memory map to find reserved regions.
 74	 */
 75	num_rsv = fdt_num_mem_rsv(fdt);
 76	while (num_rsv-- > 0)
 77		fdt_del_mem_rsv(fdt, num_rsv);
 78
 79	node = fdt_subnode_offset(fdt, 0, "chosen");
 80	if (node < 0) {
 81		node = fdt_add_subnode(fdt, 0, "chosen");
 82		if (node < 0) {
 83			/* 'node' is an error code when negative: */
 84			status = node;
 85			goto fdt_set_fail;
 86		}
 87	}
 88
 89	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
 90		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
 91				     strlen(cmdline_ptr) + 1);
 92		if (status)
 93			goto fdt_set_fail;
 94	}
 95
 96	/* Set initrd address/end in device tree, if present */
 97	if (initrd_size != 0) {
 98		u64 initrd_image_end;
 99		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
100
101		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
102		if (status)
103			goto fdt_set_fail;
104
105		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
106		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
107		if (status)
108			goto fdt_set_fail;
109	}
110
111	/* Add FDT entries for EFI runtime services in chosen node. */
112	node = fdt_subnode_offset(fdt, 0, "chosen");
113	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
114
115	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
116	if (status)
117		goto fdt_set_fail;
118
119	fdt_val64 = U64_MAX; /* placeholder */
120
121	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
122	if (status)
123		goto fdt_set_fail;
124
125	fdt_val32 = U32_MAX; /* placeholder */
126
127	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
128	if (status)
129		goto fdt_set_fail;
130
131	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
132	if (status)
133		goto fdt_set_fail;
134
135	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
136	if (status)
137		goto fdt_set_fail;
138
139	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
140		efi_status_t efi_status;
141
142		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
143						  (u8 *)&fdt_val64);
144		if (efi_status == EFI_SUCCESS) {
145			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
146			if (status)
147				goto fdt_set_fail;
148		} else if (efi_status != EFI_NOT_FOUND) {
149			return efi_status;
150		}
151	}
152
153	/* Shrink the FDT back to its minimum size: */
154	fdt_pack(fdt);
155
156	return EFI_SUCCESS;
157
158fdt_set_fail:
159	if (status == -FDT_ERR_NOSPACE)
160		return EFI_BUFFER_TOO_SMALL;
161
162	return EFI_LOAD_ERROR;
163}
164
165static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
166{
167	int node = fdt_path_offset(fdt, "/chosen");
168	u64 fdt_val64;
169	u32 fdt_val32;
170	int err;
171
172	if (node < 0)
173		return EFI_LOAD_ERROR;
174
175	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
176
177	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
178	if (err)
179		return EFI_LOAD_ERROR;
180
181	fdt_val32 = cpu_to_fdt32(*map->map_size);
182
183	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
184	if (err)
185		return EFI_LOAD_ERROR;
186
187	fdt_val32 = cpu_to_fdt32(*map->desc_size);
188
189	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
190	if (err)
191		return EFI_LOAD_ERROR;
192
193	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
194
195	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
196	if (err)
197		return EFI_LOAD_ERROR;
198
199	return EFI_SUCCESS;
200}
201
 
 
 
 
202struct exit_boot_struct {
203	efi_memory_desc_t	*runtime_map;
204	int			*runtime_entry_count;
205	void			*new_fdt_addr;
206};
207
208static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
 
209				   void *priv)
210{
211	struct exit_boot_struct *p = priv;
212	/*
213	 * Update the memory map with virtual addresses. The function will also
214	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
215	 * entries so that we can pass it straight to SetVirtualAddressMap()
216	 */
217	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
218			p->runtime_map, p->runtime_entry_count);
219
220	return update_fdt_memmap(p->new_fdt_addr, map);
221}
222
223#ifndef MAX_FDT_SIZE
224# define MAX_FDT_SIZE SZ_2M
225#endif
226
227/*
228 * Allocate memory for a new FDT, then add EFI, commandline, and
229 * initrd related fields to the FDT.  This routine increases the
230 * FDT allocation size until the allocated memory is large
231 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
232 * which are fixed at 4K bytes, so in most cases the first
233 * allocation should succeed.
234 * EFI boot services are exited at the end of this function.
235 * There must be no allocations between the get_memory_map()
236 * call and the exit_boot_services() call, so the exiting of
237 * boot services is very tightly tied to the creation of the FDT
238 * with the final memory map in it.
239 */
240
241efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
 
242					    unsigned long *new_fdt_addr,
243					    unsigned long max_addr,
244					    u64 initrd_addr, u64 initrd_size,
245					    char *cmdline_ptr,
246					    unsigned long fdt_addr,
247					    unsigned long fdt_size)
248{
249	unsigned long map_size, desc_size, buff_size;
250	u32 desc_ver;
251	unsigned long mmap_key;
252	efi_memory_desc_t *memory_map, *runtime_map;
253	efi_status_t status;
254	int runtime_entry_count;
255	struct efi_boot_memmap map;
256	struct exit_boot_struct priv;
257
258	map.map		= &runtime_map;
259	map.map_size	= &map_size;
260	map.desc_size	= &desc_size;
261	map.desc_ver	= &desc_ver;
262	map.key_ptr	= &mmap_key;
263	map.buff_size	= &buff_size;
264
265	/*
266	 * Get a copy of the current memory map that we will use to prepare
267	 * the input for SetVirtualAddressMap(). We don't have to worry about
268	 * subsequent allocations adding entries, since they could not affect
269	 * the number of EFI_MEMORY_RUNTIME regions.
270	 */
271	status = efi_get_memory_map(&map);
272	if (status != EFI_SUCCESS) {
273		efi_err("Unable to retrieve UEFI memory map.\n");
274		return status;
275	}
276
277	efi_info("Exiting boot services and installing virtual address map...\n");
278
279	map.map = &memory_map;
280	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, max_addr);
 
281	if (status != EFI_SUCCESS) {
282		efi_err("Unable to allocate memory for new device tree.\n");
283		goto fail;
284	}
285
286	/*
287	 * Now that we have done our final memory allocation (and free)
288	 * we can get the memory map key needed for exit_boot_services().
289	 */
290	status = efi_get_memory_map(&map);
291	if (status != EFI_SUCCESS)
292		goto fail_free_new_fdt;
293
294	status = update_fdt((void *)fdt_addr, fdt_size,
295			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
296			    initrd_addr, initrd_size);
297
298	if (status != EFI_SUCCESS) {
299		efi_err("Unable to construct new device tree.\n");
300		goto fail_free_new_fdt;
301	}
302
303	runtime_entry_count		= 0;
304	priv.runtime_map		= runtime_map;
305	priv.runtime_entry_count	= &runtime_entry_count;
306	priv.new_fdt_addr		= (void *)*new_fdt_addr;
307
308	status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
309
310	if (status == EFI_SUCCESS) {
311		efi_set_virtual_address_map_t *svam;
312
313		if (efi_novamap)
314			return EFI_SUCCESS;
315
316		/* Install the new virtual address map */
317		svam = efi_system_table->runtime->set_virtual_address_map;
318		status = svam(runtime_entry_count * desc_size, desc_size,
319			      desc_ver, runtime_map);
320
321		/*
322		 * We are beyond the point of no return here, so if the call to
323		 * SetVirtualAddressMap() failed, we need to signal that to the
324		 * incoming kernel but proceed normally otherwise.
325		 */
326		if (status != EFI_SUCCESS) {
327			int l;
328
329			/*
330			 * Set the virtual address field of all
331			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
332			 * the incoming kernel that no virtual translation has
333			 * been installed.
334			 */
335			for (l = 0; l < map_size; l += desc_size) {
336				efi_memory_desc_t *p = (void *)memory_map + l;
337
338				if (p->attribute & EFI_MEMORY_RUNTIME)
339					p->virt_addr = 0;
340			}
341		}
342		return EFI_SUCCESS;
343	}
344
345	efi_err("Exit boot services failed.\n");
346
347fail_free_new_fdt:
348	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
349
350fail:
351	efi_system_table->boottime->free_pool(runtime_map);
352
353	return EFI_LOAD_ERROR;
354}
355
356void *get_fdt(unsigned long *fdt_size)
357{
358	void *fdt;
359
360	fdt = get_efi_config_table(DEVICE_TREE_GUID);
361
362	if (!fdt)
363		return NULL;
364
365	if (fdt_check_header(fdt) != 0) {
366		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
367		return NULL;
368	}
369	*fdt_size = fdt_totalsize(fdt);
370	return fdt;
371}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * FDT related Helper functions used by the EFI stub on multiple
  4 * architectures. This should be #included by the EFI stub
  5 * implementation files.
  6 *
  7 * Copyright 2013 Linaro Limited; author Roy Franz
  8 */
  9
 10#include <linux/efi.h>
 11#include <linux/libfdt.h>
 12#include <asm/efi.h>
 13
 14#include "efistub.h"
 15
 16#define EFI_DT_ADDR_CELLS_DEFAULT 2
 17#define EFI_DT_SIZE_CELLS_DEFAULT 2
 18
 19static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
 20{
 21	int offset;
 22
 23	offset = fdt_path_offset(fdt, "/");
 24	/* Set the #address-cells and #size-cells values for an empty tree */
 25
 26	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
 27	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
 28}
 29
 30static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
 31			       unsigned long orig_fdt_size,
 32			       void *fdt, int new_fdt_size, char *cmdline_ptr,
 33			       u64 initrd_addr, u64 initrd_size)
 34{
 35	int node, num_rsv;
 36	int status;
 37	u32 fdt_val32;
 38	u64 fdt_val64;
 39
 40	/* Do some checks on provided FDT, if it exists: */
 41	if (orig_fdt) {
 42		if (fdt_check_header(orig_fdt)) {
 43			pr_efi_err(sys_table, "Device Tree header not valid!\n");
 44			return EFI_LOAD_ERROR;
 45		}
 46		/*
 47		 * We don't get the size of the FDT if we get if from a
 48		 * configuration table:
 49		 */
 50		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
 51			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
 52			return EFI_LOAD_ERROR;
 53		}
 54	}
 55
 56	if (orig_fdt) {
 57		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
 58	} else {
 59		status = fdt_create_empty_tree(fdt, new_fdt_size);
 60		if (status == 0) {
 61			/*
 62			 * Any failure from the following function is
 63			 * non-critical:
 64			 */
 65			fdt_update_cell_size(sys_table, fdt);
 66		}
 67	}
 68
 69	if (status != 0)
 70		goto fdt_set_fail;
 71
 72	/*
 73	 * Delete all memory reserve map entries. When booting via UEFI,
 74	 * kernel will use the UEFI memory map to find reserved regions.
 75	 */
 76	num_rsv = fdt_num_mem_rsv(fdt);
 77	while (num_rsv-- > 0)
 78		fdt_del_mem_rsv(fdt, num_rsv);
 79
 80	node = fdt_subnode_offset(fdt, 0, "chosen");
 81	if (node < 0) {
 82		node = fdt_add_subnode(fdt, 0, "chosen");
 83		if (node < 0) {
 84			/* 'node' is an error code when negative: */
 85			status = node;
 86			goto fdt_set_fail;
 87		}
 88	}
 89
 90	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
 91		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
 92				     strlen(cmdline_ptr) + 1);
 93		if (status)
 94			goto fdt_set_fail;
 95	}
 96
 97	/* Set initrd address/end in device tree, if present */
 98	if (initrd_size != 0) {
 99		u64 initrd_image_end;
100		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
101
102		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
103		if (status)
104			goto fdt_set_fail;
105
106		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
107		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
108		if (status)
109			goto fdt_set_fail;
110	}
111
112	/* Add FDT entries for EFI runtime services in chosen node. */
113	node = fdt_subnode_offset(fdt, 0, "chosen");
114	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
115
116	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
117	if (status)
118		goto fdt_set_fail;
119
120	fdt_val64 = U64_MAX; /* placeholder */
121
122	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
123	if (status)
124		goto fdt_set_fail;
125
126	fdt_val32 = U32_MAX; /* placeholder */
127
128	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
129	if (status)
130		goto fdt_set_fail;
131
132	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
133	if (status)
134		goto fdt_set_fail;
135
136	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
137	if (status)
138		goto fdt_set_fail;
139
140	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
141		efi_status_t efi_status;
142
143		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
144						  (u8 *)&fdt_val64);
145		if (efi_status == EFI_SUCCESS) {
146			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
147			if (status)
148				goto fdt_set_fail;
149		} else if (efi_status != EFI_NOT_FOUND) {
150			return efi_status;
151		}
152	}
153
154	/* Shrink the FDT back to its minimum size: */
155	fdt_pack(fdt);
156
157	return EFI_SUCCESS;
158
159fdt_set_fail:
160	if (status == -FDT_ERR_NOSPACE)
161		return EFI_BUFFER_TOO_SMALL;
162
163	return EFI_LOAD_ERROR;
164}
165
166static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
167{
168	int node = fdt_path_offset(fdt, "/chosen");
169	u64 fdt_val64;
170	u32 fdt_val32;
171	int err;
172
173	if (node < 0)
174		return EFI_LOAD_ERROR;
175
176	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
177
178	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
179	if (err)
180		return EFI_LOAD_ERROR;
181
182	fdt_val32 = cpu_to_fdt32(*map->map_size);
183
184	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
185	if (err)
186		return EFI_LOAD_ERROR;
187
188	fdt_val32 = cpu_to_fdt32(*map->desc_size);
189
190	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
191	if (err)
192		return EFI_LOAD_ERROR;
193
194	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
195
196	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
197	if (err)
198		return EFI_LOAD_ERROR;
199
200	return EFI_SUCCESS;
201}
202
203#ifndef EFI_FDT_ALIGN
204# define EFI_FDT_ALIGN EFI_PAGE_SIZE
205#endif
206
207struct exit_boot_struct {
208	efi_memory_desc_t	*runtime_map;
209	int			*runtime_entry_count;
210	void			*new_fdt_addr;
211};
212
213static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
214				   struct efi_boot_memmap *map,
215				   void *priv)
216{
217	struct exit_boot_struct *p = priv;
218	/*
219	 * Update the memory map with virtual addresses. The function will also
220	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
221	 * entries so that we can pass it straight to SetVirtualAddressMap()
222	 */
223	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
224			p->runtime_map, p->runtime_entry_count);
225
226	return update_fdt_memmap(p->new_fdt_addr, map);
227}
228
229#ifndef MAX_FDT_SIZE
230# define MAX_FDT_SIZE SZ_2M
231#endif
232
233/*
234 * Allocate memory for a new FDT, then add EFI, commandline, and
235 * initrd related fields to the FDT.  This routine increases the
236 * FDT allocation size until the allocated memory is large
237 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
238 * which are fixed at 4K bytes, so in most cases the first
239 * allocation should succeed.
240 * EFI boot services are exited at the end of this function.
241 * There must be no allocations between the get_memory_map()
242 * call and the exit_boot_services() call, so the exiting of
243 * boot services is very tightly tied to the creation of the FDT
244 * with the final memory map in it.
245 */
246
247efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
248					    void *handle,
249					    unsigned long *new_fdt_addr,
250					    unsigned long max_addr,
251					    u64 initrd_addr, u64 initrd_size,
252					    char *cmdline_ptr,
253					    unsigned long fdt_addr,
254					    unsigned long fdt_size)
255{
256	unsigned long map_size, desc_size, buff_size;
257	u32 desc_ver;
258	unsigned long mmap_key;
259	efi_memory_desc_t *memory_map, *runtime_map;
260	efi_status_t status;
261	int runtime_entry_count;
262	struct efi_boot_memmap map;
263	struct exit_boot_struct priv;
264
265	map.map		= &runtime_map;
266	map.map_size	= &map_size;
267	map.desc_size	= &desc_size;
268	map.desc_ver	= &desc_ver;
269	map.key_ptr	= &mmap_key;
270	map.buff_size	= &buff_size;
271
272	/*
273	 * Get a copy of the current memory map that we will use to prepare
274	 * the input for SetVirtualAddressMap(). We don't have to worry about
275	 * subsequent allocations adding entries, since they could not affect
276	 * the number of EFI_MEMORY_RUNTIME regions.
277	 */
278	status = efi_get_memory_map(sys_table, &map);
279	if (status != EFI_SUCCESS) {
280		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
281		return status;
282	}
283
284	pr_efi(sys_table, "Exiting boot services and installing virtual address map...\n");
285
286	map.map = &memory_map;
287	status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
288				new_fdt_addr, max_addr);
289	if (status != EFI_SUCCESS) {
290		pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
291		goto fail;
292	}
293
294	/*
295	 * Now that we have done our final memory allocation (and free)
296	 * we can get the memory map key needed for exit_boot_services().
297	 */
298	status = efi_get_memory_map(sys_table, &map);
299	if (status != EFI_SUCCESS)
300		goto fail_free_new_fdt;
301
302	status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
303			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
304			    initrd_addr, initrd_size);
305
306	if (status != EFI_SUCCESS) {
307		pr_efi_err(sys_table, "Unable to construct new device tree.\n");
308		goto fail_free_new_fdt;
309	}
310
311	runtime_entry_count		= 0;
312	priv.runtime_map		= runtime_map;
313	priv.runtime_entry_count	= &runtime_entry_count;
314	priv.new_fdt_addr		= (void *)*new_fdt_addr;
315
316	status = efi_exit_boot_services(sys_table, handle, &map, &priv, exit_boot_func);
317
318	if (status == EFI_SUCCESS) {
319		efi_set_virtual_address_map_t *svam;
320
321		if (novamap())
322			return EFI_SUCCESS;
323
324		/* Install the new virtual address map */
325		svam = sys_table->runtime->set_virtual_address_map;
326		status = svam(runtime_entry_count * desc_size, desc_size,
327			      desc_ver, runtime_map);
328
329		/*
330		 * We are beyond the point of no return here, so if the call to
331		 * SetVirtualAddressMap() failed, we need to signal that to the
332		 * incoming kernel but proceed normally otherwise.
333		 */
334		if (status != EFI_SUCCESS) {
335			int l;
336
337			/*
338			 * Set the virtual address field of all
339			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
340			 * the incoming kernel that no virtual translation has
341			 * been installed.
342			 */
343			for (l = 0; l < map_size; l += desc_size) {
344				efi_memory_desc_t *p = (void *)memory_map + l;
345
346				if (p->attribute & EFI_MEMORY_RUNTIME)
347					p->virt_addr = 0;
348			}
349		}
350		return EFI_SUCCESS;
351	}
352
353	pr_efi_err(sys_table, "Exit boot services failed.\n");
354
355fail_free_new_fdt:
356	efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
357
358fail:
359	sys_table->boottime->free_pool(runtime_map);
360
361	return EFI_LOAD_ERROR;
362}
363
364void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
365{
366	void *fdt;
367
368	fdt = get_efi_config_table(sys_table, DEVICE_TREE_GUID);
369
370	if (!fdt)
371		return NULL;
372
373	if (fdt_check_header(fdt) != 0) {
374		pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
375		return NULL;
376	}
377	*fdt_size = fdt_totalsize(fdt);
378	return fdt;
379}