Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * EFI stub implementation that is shared by arm and arm64 architectures.
  4 * This should be #included by the EFI stub implementation files.
  5 *
  6 * Copyright (C) 2013,2014 Linaro Limited
  7 *     Roy Franz <roy.franz@linaro.org
  8 * Copyright (C) 2013 Red Hat, Inc.
  9 *     Mark Salter <msalter@redhat.com>
 10 */
 11
 12#include <linux/efi.h>
 13#include <linux/libfdt.h>
 14#include <asm/efi.h>
 15
 16#include "efistub.h"
 17
 18/*
 19 * This is the base address at which to start allocating virtual memory ranges
 20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
 21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
 22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
 23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
 24 * be mapped efficiently.
 25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
 26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
 27 * entire footprint of the UEFI runtime services memory regions)
 28 */
 29#define EFI_RT_VIRTUAL_BASE	SZ_512M
 30#define EFI_RT_VIRTUAL_SIZE	SZ_512M
 31
 32#ifdef CONFIG_ARM64
 33# define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
 34#else
 35# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
 36#endif
 37
 38static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
 39static bool flat_va_mapping;
 40
 41const efi_system_table_t *efi_system_table;
 42
 43static struct screen_info *setup_graphics(void)
 44{
 45	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
 46	efi_status_t status;
 47	unsigned long size;
 48	void **gop_handle = NULL;
 49	struct screen_info *si = NULL;
 50
 51	size = 0;
 52	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
 53			     &gop_proto, NULL, &size, gop_handle);
 54	if (status == EFI_BUFFER_TOO_SMALL) {
 55		si = alloc_screen_info();
 56		if (!si)
 57			return NULL;
 58		status = efi_setup_gop(si, &gop_proto, size);
 59		if (status != EFI_SUCCESS) {
 60			free_screen_info(si);
 61			return NULL;
 62		}
 63	}
 64	return si;
 65}
 66
 67static void install_memreserve_table(void)
 68{
 69	struct linux_efi_memreserve *rsv;
 70	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
 71	efi_status_t status;
 72
 73	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
 74			     (void **)&rsv);
 75	if (status != EFI_SUCCESS) {
 76		efi_err("Failed to allocate memreserve entry!\n");
 77		return;
 78	}
 79
 80	rsv->next = 0;
 81	rsv->size = 0;
 82	atomic_set(&rsv->count, 0);
 83
 84	status = efi_bs_call(install_configuration_table,
 85			     &memreserve_table_guid, rsv);
 86	if (status != EFI_SUCCESS)
 87		efi_err("Failed to install memreserve config table!\n");
 88}
 89
 90static unsigned long get_dram_base(void)
 91{
 92	efi_status_t status;
 93	unsigned long map_size, buff_size;
 94	unsigned long membase  = EFI_ERROR;
 95	struct efi_memory_map map;
 96	efi_memory_desc_t *md;
 97	struct efi_boot_memmap boot_map;
 98
 99	boot_map.map		= (efi_memory_desc_t **)&map.map;
100	boot_map.map_size	= &map_size;
101	boot_map.desc_size	= &map.desc_size;
102	boot_map.desc_ver	= NULL;
103	boot_map.key_ptr	= NULL;
104	boot_map.buff_size	= &buff_size;
105
106	status = efi_get_memory_map(&boot_map);
107	if (status != EFI_SUCCESS)
108		return membase;
109
110	map.map_end = map.map + map_size;
111
112	for_each_efi_memory_desc_in_map(&map, md) {
113		if (md->attribute & EFI_MEMORY_WB) {
114			if (membase > md->phys_addr)
115				membase = md->phys_addr;
116		}
117	}
118
119	efi_bs_call(free_pool, map.map);
120
121	return membase;
122}
123
124/*
125 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
126 * that is described in the PE/COFF header.  Most of the code is the same
127 * for both archictectures, with the arch-specific code provided in the
128 * handle_kernel_image() function.
129 */
130efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
131				   efi_system_table_t *sys_table_arg)
132{
133	efi_loaded_image_t *image;
134	efi_status_t status;
135	unsigned long image_addr;
136	unsigned long image_size = 0;
137	unsigned long dram_base;
138	/* addr/point and size pairs for memory management*/
139	unsigned long initrd_addr = 0;
140	unsigned long initrd_size = 0;
141	unsigned long fdt_addr = 0;  /* Original DTB */
142	unsigned long fdt_size = 0;
143	char *cmdline_ptr = NULL;
144	int cmdline_size = 0;
145	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
146	unsigned long reserve_addr = 0;
147	unsigned long reserve_size = 0;
148	enum efi_secureboot_mode secure_boot;
149	struct screen_info *si;
150	efi_properties_table_t *prop_tbl;
151	unsigned long max_addr;
152
153	efi_system_table = sys_table_arg;
154
155	/* Check if we were booted by the EFI firmware */
156	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
157		status = EFI_INVALID_PARAMETER;
158		goto fail;
159	}
160
161	status = check_platform_features();
162	if (status != EFI_SUCCESS)
163		goto fail;
164
165	/*
166	 * Get a handle to the loaded image protocol.  This is used to get
167	 * information about the running image, such as size and the command
168	 * line.
169	 */
170	status = efi_system_table->boottime->handle_protocol(handle,
171					&loaded_image_proto, (void *)&image);
172	if (status != EFI_SUCCESS) {
173		efi_err("Failed to get loaded image protocol\n");
174		goto fail;
175	}
176
177	dram_base = get_dram_base();
178	if (dram_base == EFI_ERROR) {
179		efi_err("Failed to find DRAM base\n");
180		status = EFI_LOAD_ERROR;
181		goto fail;
182	}
183
184	/*
185	 * Get the command line from EFI, using the LOADED_IMAGE
186	 * protocol. We are going to copy the command line into the
187	 * device tree, so this can be allocated anywhere.
188	 */
189	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
190	if (!cmdline_ptr) {
191		efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
192		status = EFI_OUT_OF_RESOURCES;
193		goto fail;
194	}
195
196	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
197	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
198	    cmdline_size == 0) {
199		status = efi_parse_options(CONFIG_CMDLINE);
200		if (status != EFI_SUCCESS) {
201			efi_err("Failed to parse options\n");
202			goto fail_free_cmdline;
203		}
204	}
205
206	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
207		status = efi_parse_options(cmdline_ptr);
208		if (status != EFI_SUCCESS) {
209			efi_err("Failed to parse options\n");
210			goto fail_free_cmdline;
211		}
212	}
213
214	efi_info("Booting Linux Kernel...\n");
215
216	si = setup_graphics();
217
218	status = handle_kernel_image(&image_addr, &image_size,
219				     &reserve_addr,
220				     &reserve_size,
221				     dram_base, image);
222	if (status != EFI_SUCCESS) {
223		efi_err("Failed to relocate kernel\n");
224		goto fail_free_screeninfo;
225	}
226
227	efi_retrieve_tpm2_eventlog();
228
229	/* Ask the firmware to clear memory on unclean shutdown */
230	efi_enable_reset_attack_mitigation();
231
232	secure_boot = efi_get_secureboot();
233
234	/*
235	 * Unauthenticated device tree data is a security hazard, so ignore
236	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
237	 * boot is enabled if we can't determine its state.
238	 */
239	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
240	     secure_boot != efi_secureboot_mode_disabled) {
241		if (strstr(cmdline_ptr, "dtb="))
242			efi_err("Ignoring DTB from command line.\n");
243	} else {
244		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
245
246		if (status != EFI_SUCCESS) {
247			efi_err("Failed to load device tree!\n");
248			goto fail_free_image;
249		}
250	}
251
252	if (fdt_addr) {
253		efi_info("Using DTB from command line\n");
254	} else {
255		/* Look for a device tree configuration table entry. */
256		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
257		if (fdt_addr)
258			efi_info("Using DTB from configuration table\n");
259	}
260
261	if (!fdt_addr)
262		efi_info("Generating empty DTB\n");
263
264	if (!efi_noinitrd) {
265		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
266		status = efi_load_initrd(image, &initrd_addr, &initrd_size,
267					 ULONG_MAX, max_addr);
268		if (status != EFI_SUCCESS)
269			efi_err("Failed to load initrd!\n");
270	}
271
272	efi_random_get_seed();
273
274	/*
275	 * If the NX PE data feature is enabled in the properties table, we
276	 * should take care not to create a virtual mapping that changes the
277	 * relative placement of runtime services code and data regions, as
278	 * they may belong to the same PE/COFF executable image in memory.
279	 * The easiest way to achieve that is to simply use a 1:1 mapping.
280	 */
281	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
282	flat_va_mapping = prop_tbl &&
283			  (prop_tbl->memory_protection_attribute &
284			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
285
286	/* hibernation expects the runtime regions to stay in the same place */
287	if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
288		/*
289		 * Randomize the base of the UEFI runtime services region.
290		 * Preserve the 2 MB alignment of the region by taking a
291		 * shift of 21 bit positions into account when scaling
292		 * the headroom value using a 32-bit random value.
293		 */
294		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
295					    EFI_RT_VIRTUAL_BASE -
296					    EFI_RT_VIRTUAL_SIZE;
297		u32 rnd;
298
299		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
300		if (status == EFI_SUCCESS) {
301			virtmap_base = EFI_RT_VIRTUAL_BASE +
302				       (((headroom >> 21) * rnd) >> (32 - 21));
303		}
304	}
305
306	install_memreserve_table();
307
308	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
309						efi_get_max_fdt_addr(dram_base),
310						initrd_addr, initrd_size,
311						cmdline_ptr, fdt_addr, fdt_size);
312	if (status != EFI_SUCCESS)
313		goto fail_free_initrd;
314
315	if (IS_ENABLED(CONFIG_ARM))
316		efi_handle_post_ebs_state();
317
318	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
319	/* not reached */
320
321fail_free_initrd:
322	efi_err("Failed to update FDT and exit boot services\n");
323
324	efi_free(initrd_size, initrd_addr);
325	efi_free(fdt_size, fdt_addr);
326
327fail_free_image:
328	efi_free(image_size, image_addr);
329	efi_free(reserve_size, reserve_addr);
330fail_free_screeninfo:
331	free_screen_info(si);
332fail_free_cmdline:
333	efi_bs_call(free_pool, cmdline_ptr);
334fail:
335	return status;
336}
337
338/*
339 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
340 *
341 * This function populates the virt_addr fields of all memory region descriptors
342 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
343 * are also copied to @runtime_map, and their total count is returned in @count.
344 */
345void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
346		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
347		     int *count)
348{
349	u64 efi_virt_base = virtmap_base;
350	efi_memory_desc_t *in, *out = runtime_map;
351	int l;
352
353	for (l = 0; l < map_size; l += desc_size) {
354		u64 paddr, size;
355
356		in = (void *)memory_map + l;
357		if (!(in->attribute & EFI_MEMORY_RUNTIME))
358			continue;
359
360		paddr = in->phys_addr;
361		size = in->num_pages * EFI_PAGE_SIZE;
362
363		in->virt_addr = in->phys_addr;
364		if (efi_novamap) {
365			continue;
366		}
367
368		/*
369		 * Make the mapping compatible with 64k pages: this allows
370		 * a 4k page size kernel to kexec a 64k page size kernel and
371		 * vice versa.
372		 */
373		if (!flat_va_mapping) {
374
375			paddr = round_down(in->phys_addr, SZ_64K);
376			size += in->phys_addr - paddr;
377
378			/*
379			 * Avoid wasting memory on PTEs by choosing a virtual
380			 * base that is compatible with section mappings if this
381			 * region has the appropriate size and physical
382			 * alignment. (Sections are 2 MB on 4k granule kernels)
383			 */
384			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
385				efi_virt_base = round_up(efi_virt_base, SZ_2M);
386			else
387				efi_virt_base = round_up(efi_virt_base, SZ_64K);
388
389			in->virt_addr += efi_virt_base - paddr;
390			efi_virt_base += size;
391		}
392
393		memcpy(out, in, desc_size);
394		out = (void *)out + desc_size;
395		++*count;
396	}
397}