Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for EIP97 cryptographic accelerator.
  4 *
  5 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  6 */
  7
  8#include <linux/clk.h>
  9#include <linux/init.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/platform_device.h>
 14#include <linux/pm_runtime.h>
 15#include "mtk-platform.h"
 16
 17#define MTK_BURST_SIZE_MSK		GENMASK(7, 4)
 18#define MTK_BURST_SIZE(x)		((x) << 4)
 19#define MTK_DESC_SIZE(x)		((x) << 0)
 20#define MTK_DESC_OFFSET(x)		((x) << 16)
 21#define MTK_DESC_FETCH_SIZE(x)		((x) << 0)
 22#define MTK_DESC_FETCH_THRESH(x)	((x) << 16)
 23#define MTK_DESC_OVL_IRQ_EN		BIT(25)
 24#define MTK_DESC_ATP_PRESENT		BIT(30)
 25
 26#define MTK_DFSE_IDLE			GENMASK(3, 0)
 27#define MTK_DFSE_THR_CTRL_EN		BIT(30)
 28#define MTK_DFSE_THR_CTRL_RESET		BIT(31)
 29#define MTK_DFSE_RING_ID(x)		(((x) >> 12) & GENMASK(3, 0))
 30#define MTK_DFSE_MIN_DATA(x)		((x) << 0)
 31#define MTK_DFSE_MAX_DATA(x)		((x) << 8)
 32#define MTK_DFE_MIN_CTRL(x)		((x) << 16)
 33#define MTK_DFE_MAX_CTRL(x)		((x) << 24)
 34
 35#define MTK_IN_BUF_MIN_THRESH(x)	((x) << 8)
 36#define MTK_IN_BUF_MAX_THRESH(x)	((x) << 12)
 37#define MTK_OUT_BUF_MIN_THRESH(x)	((x) << 0)
 38#define MTK_OUT_BUF_MAX_THRESH(x)	((x) << 4)
 39#define MTK_IN_TBUF_SIZE(x)		(((x) >> 4) & GENMASK(3, 0))
 40#define MTK_IN_DBUF_SIZE(x)		(((x) >> 8) & GENMASK(3, 0))
 41#define MTK_OUT_DBUF_SIZE(x)		(((x) >> 16) & GENMASK(3, 0))
 42#define MTK_CMD_FIFO_SIZE(x)		(((x) >> 8) & GENMASK(3, 0))
 43#define MTK_RES_FIFO_SIZE(x)		(((x) >> 12) & GENMASK(3, 0))
 44
 45#define MTK_PE_TK_LOC_AVL		BIT(2)
 46#define MTK_PE_PROC_HELD		BIT(14)
 47#define MTK_PE_TK_TIMEOUT_EN		BIT(22)
 48#define MTK_PE_INPUT_DMA_ERR		BIT(0)
 49#define MTK_PE_OUTPUT_DMA_ERR		BIT(1)
 50#define MTK_PE_PKT_PORC_ERR		BIT(2)
 51#define MTK_PE_PKT_TIMEOUT		BIT(3)
 52#define MTK_PE_FATAL_ERR		BIT(14)
 53#define MTK_PE_INPUT_DMA_ERR_EN		BIT(16)
 54#define MTK_PE_OUTPUT_DMA_ERR_EN	BIT(17)
 55#define MTK_PE_PKT_PORC_ERR_EN		BIT(18)
 56#define MTK_PE_PKT_TIMEOUT_EN		BIT(19)
 57#define MTK_PE_FATAL_ERR_EN		BIT(30)
 58#define MTK_PE_INT_OUT_EN		BIT(31)
 59
 60#define MTK_HIA_SIGNATURE		((u16)0x35ca)
 61#define MTK_HIA_DATA_WIDTH(x)		(((x) >> 25) & GENMASK(1, 0))
 62#define MTK_HIA_DMA_LENGTH(x)		(((x) >> 20) & GENMASK(4, 0))
 63#define MTK_CDR_STAT_CLR		GENMASK(4, 0)
 64#define MTK_RDR_STAT_CLR		GENMASK(7, 0)
 65
 66#define MTK_AIC_INT_MSK			GENMASK(5, 0)
 67#define MTK_AIC_VER_MSK			(GENMASK(15, 0) | GENMASK(27, 20))
 68#define MTK_AIC_VER11			0x011036c9
 69#define MTK_AIC_VER12			0x012036c9
 70#define MTK_AIC_G_CLR			GENMASK(30, 20)
 71
 72/**
 73 * EIP97 is an integrated security subsystem to accelerate cryptographic
 74 * functions and protocols to offload the host processor.
 75 * Some important hardware modules are briefly introduced below:
 76 *
 77 * Host Interface Adapter(HIA) - the main interface between the host
 78 * system and the hardware subsystem. It is responsible for attaching
 79 * processing engine to the specific host bus interface and provides a
 80 * standardized software view for off loading tasks to the engine.
 81 *
 82 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
 83 * CD the host has prepared in the CDR. It monitors the fill level of its
 84 * CD-FIFO and if there's sufficient space for the next block of descriptors,
 85 * then it fires off a DMA request to fetch a block of CDs.
 86 *
 87 * Data fetch engine(DFE) - It is responsible for parsing the CD and
 88 * setting up the required control and packet data DMA transfers from
 89 * system memory to the processing engine.
 90 *
 91 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
 92 * but target is result descriptors, Moreover, it also handles the RD
 93 * updates under control of the DSE. For each packet data segment
 94 * processed, the DSE triggers the RDR Manager to write the updated RD.
 95 * If triggered to update, the RDR Manager sets up a DMA operation to
 96 * copy the RD from the DSE to the correct location in the RDR.
 97 *
 98 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
 99 * and setting up the required control and packet data DMA transfers from
100 * the processing engine to system memory.
101 *
102 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
103 * from various sources and combine them into one interrupt output.
104 * The AICs are used by:
105 * - One for the HIA global and processing engine interrupts.
106 * - The others for the descriptor ring interrupts.
107 */
108
109/* Cryptographic engine capabilities */
110struct mtk_sys_cap {
111	/* host interface adapter */
112	u32 hia_ver;
113	u32 hia_opt;
114	/* packet engine */
115	u32 pkt_eng_opt;
116	/* global hardware */
117	u32 hw_opt;
118};
119
120static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
121{
122	/* Assign rings to DFE/DSE thread and enable it */
123	writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
124	writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
125}
126
127static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
128				  struct mtk_sys_cap *cap)
129{
130	u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
131	u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
132	u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
133	u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
134	u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
135
136	writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
137	       MTK_DFSE_MAX_DATA(ipbuf) |
138	       MTK_DFE_MIN_CTRL(itbuf - 1) |
139	       MTK_DFE_MAX_CTRL(itbuf),
140	       cryp->base + DFE_CFG);
141
142	writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
143	       MTK_DFSE_MAX_DATA(opbuf),
144	       cryp->base + DSE_CFG);
145
146	writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
147	       MTK_IN_BUF_MAX_THRESH(ipbuf),
148	       cryp->base + PE_IN_DBUF_THRESH);
149
150	writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
151	       MTK_IN_BUF_MAX_THRESH(itbuf),
152	       cryp->base + PE_IN_TBUF_THRESH);
153
154	writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
155	       MTK_OUT_BUF_MAX_THRESH(opbuf),
156	       cryp->base + PE_OUT_DBUF_THRESH);
157
158	writel(0, cryp->base + PE_OUT_TBUF_THRESH);
159	writel(0, cryp->base + PE_OUT_BUF_CTRL);
160}
161
162static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
163{
164	int ret = -EINVAL;
165	u32 val;
166
167	/* Check for completion of all DMA transfers */
168	val = readl(cryp->base + DFE_THR_STAT);
169	if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
170		val = readl(cryp->base + DSE_THR_STAT);
171		if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
172			ret = 0;
173	}
174
175	if (!ret) {
176		/* Take DFE/DSE thread out of reset */
177		writel(0, cryp->base + DFE_THR_CTRL);
178		writel(0, cryp->base + DSE_THR_CTRL);
179	} else {
180		return -EBUSY;
181	}
182
183	return 0;
184}
185
186static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
187{
188	int err;
189
190	/* Reset DSE/DFE and correct system priorities for all rings. */
191	writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
192	writel(0, cryp->base + DFE_PRIO_0);
193	writel(0, cryp->base + DFE_PRIO_1);
194	writel(0, cryp->base + DFE_PRIO_2);
195	writel(0, cryp->base + DFE_PRIO_3);
196
197	writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
198	writel(0, cryp->base + DSE_PRIO_0);
199	writel(0, cryp->base + DSE_PRIO_1);
200	writel(0, cryp->base + DSE_PRIO_2);
201	writel(0, cryp->base + DSE_PRIO_3);
202
203	err = mtk_dfe_dse_state_check(cryp);
204	if (err)
205		return err;
206
207	return 0;
208}
209
210static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
211				    int i, struct mtk_sys_cap *cap)
212{
213	/* Full descriptor that fits FIFO minus one */
214	u32 count =
215		((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
216
217	/* Temporarily disable external triggering */
218	writel(0, cryp->base + CDR_CFG(i));
219
220	/* Clear CDR count */
221	writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
222	writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
223
224	writel(0, cryp->base + CDR_PREP_PNTR(i));
225	writel(0, cryp->base + CDR_PROC_PNTR(i));
226	writel(0, cryp->base + CDR_DMA_CFG(i));
227
228	/* Configure CDR host address space */
229	writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
230	writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
231
232	writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
233
234	/* Clear and disable all CDR interrupts */
235	writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
236
237	/*
238	 * Set command descriptor offset and enable additional
239	 * token present in descriptor.
240	 */
241	writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
242		   MTK_DESC_OFFSET(MTK_DESC_OFF) |
243	       MTK_DESC_ATP_PRESENT,
244	       cryp->base + CDR_DESC_SIZE(i));
245
246	writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
247		   MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
248		   cryp->base + CDR_CFG(i));
249}
250
251static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
252				    int i, struct mtk_sys_cap *cap)
253{
254	u32 rndup = 2;
255	u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
256
257	/* Temporarily disable external triggering */
258	writel(0, cryp->base + RDR_CFG(i));
259
260	/* Clear RDR count */
261	writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
262	writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
263
264	writel(0, cryp->base + RDR_PREP_PNTR(i));
265	writel(0, cryp->base + RDR_PROC_PNTR(i));
266	writel(0, cryp->base + RDR_DMA_CFG(i));
267
268	/* Configure RDR host address space */
269	writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
270	writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
271
272	writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
273	writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
274
275	/*
276	 * RDR manager generates update interrupts on a per-completed-packet,
277	 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
278	 * for the RDR exceeds the number of packets.
279	 */
280	writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
281	       cryp->base + RDR_THRESH(i));
282
283	/*
284	 * Configure a threshold and time-out value for the processed
285	 * result descriptors (or complete packets) that are written to
286	 * the RDR.
287	 */
288	writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
289	       cryp->base + RDR_DESC_SIZE(i));
290
291	/*
292	 * Configure HIA fetch size and fetch threshold that are used to
293	 * fetch blocks of multiple descriptors.
294	 */
295	writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
296	       MTK_DESC_FETCH_THRESH(count * rndup) |
297	       MTK_DESC_OVL_IRQ_EN,
298		   cryp->base + RDR_CFG(i));
299}
300
301static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
302{
303	struct mtk_sys_cap cap;
304	int i, err;
305	u32 val;
306
307	cap.hia_ver = readl(cryp->base + HIA_VERSION);
308	cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
309	cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
310
311	if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
312		return -EINVAL;
313
314	/* Configure endianness conversion method for master (DMA) interface */
315	writel(0, cryp->base + EIP97_MST_CTRL);
316
317	/* Set HIA burst size */
318	val = readl(cryp->base + HIA_MST_CTRL);
319	val &= ~MTK_BURST_SIZE_MSK;
320	val |= MTK_BURST_SIZE(5);
321	writel(val, cryp->base + HIA_MST_CTRL);
322
323	err = mtk_dfe_dse_reset(cryp);
324	if (err) {
325		dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
326		return err;
327	}
328
329	mtk_dfe_dse_buf_setup(cryp, &cap);
330
331	/* Enable the 4 rings for the packet engines. */
332	mtk_desc_ring_link(cryp, 0xf);
333
334	for (i = 0; i < MTK_RING_MAX; i++) {
335		mtk_cmd_desc_ring_setup(cryp, i, &cap);
336		mtk_res_desc_ring_setup(cryp, i, &cap);
337	}
338
339	writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
340	       cryp->base + PE_TOKEN_CTRL_STAT);
341
342	/* Clear all pending interrupts */
343	writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
344	writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
345	       MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
346	       MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
347	       MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
348	       MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
349	       MTK_PE_INT_OUT_EN,
350	       cryp->base + PE_INTERRUPT_CTRL_STAT);
351
352	return 0;
353}
354
355static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
356{
357	u32 val;
358
359	if (hw == MTK_RING_MAX)
360		val = readl(cryp->base + AIC_G_VERSION);
361	else
362		val = readl(cryp->base + AIC_VERSION(hw));
363
364	val &= MTK_AIC_VER_MSK;
365	if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
366		return -ENXIO;
367
368	if (hw == MTK_RING_MAX)
369		val = readl(cryp->base + AIC_G_OPTIONS);
370	else
371		val = readl(cryp->base + AIC_OPTIONS(hw));
372
373	val &= MTK_AIC_INT_MSK;
374	if (!val || val > 32)
375		return -ENXIO;
376
377	return 0;
378}
379
380static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
381{
382	int err;
383
384	err = mtk_aic_cap_check(cryp, hw);
385	if (err)
386		return err;
387
388	/* Disable all interrupts and set initial configuration */
389	if (hw == MTK_RING_MAX) {
390		writel(0, cryp->base + AIC_G_ENABLE_CTRL);
391		writel(0, cryp->base + AIC_G_POL_CTRL);
392		writel(0, cryp->base + AIC_G_TYPE_CTRL);
393		writel(0, cryp->base + AIC_G_ENABLE_SET);
394	} else {
395		writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
396		writel(0, cryp->base + AIC_POL_CTRL(hw));
397		writel(0, cryp->base + AIC_TYPE_CTRL(hw));
398		writel(0, cryp->base + AIC_ENABLE_SET(hw));
399	}
400
401	return 0;
402}
403
404static int mtk_accelerator_init(struct mtk_cryp *cryp)
405{
406	int i, err;
407
408	/* Initialize advanced interrupt controller(AIC) */
409	for (i = 0; i < MTK_IRQ_NUM; i++) {
410		err = mtk_aic_init(cryp, i);
411		if (err) {
412			dev_err(cryp->dev, "Failed to initialize AIC.\n");
413			return err;
414		}
415	}
416
417	/* Initialize packet engine */
418	err = mtk_packet_engine_setup(cryp);
419	if (err) {
420		dev_err(cryp->dev, "Failed to configure packet engine.\n");
421		return err;
422	}
423
424	return 0;
425}
426
427static void mtk_desc_dma_free(struct mtk_cryp *cryp)
428{
429	int i;
430
431	for (i = 0; i < MTK_RING_MAX; i++) {
432		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
433				  cryp->ring[i]->res_base,
434				  cryp->ring[i]->res_dma);
435		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
436				  cryp->ring[i]->cmd_base,
437				  cryp->ring[i]->cmd_dma);
438		kfree(cryp->ring[i]);
439	}
440}
441
442static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
443{
444	struct mtk_ring **ring = cryp->ring;
445	int i, err = ENOMEM;
446
447	for (i = 0; i < MTK_RING_MAX; i++) {
448		ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
449		if (!ring[i])
450			goto err_cleanup;
451
452		ring[i]->cmd_base = dma_alloc_coherent(cryp->dev,
453						       MTK_DESC_RING_SZ,
454						       &ring[i]->cmd_dma,
455						       GFP_KERNEL);
456		if (!ring[i]->cmd_base)
457			goto err_cleanup;
458
459		ring[i]->res_base = dma_alloc_coherent(cryp->dev,
460						       MTK_DESC_RING_SZ,
461						       &ring[i]->res_dma,
462						       GFP_KERNEL);
463		if (!ring[i]->res_base)
464			goto err_cleanup;
465
466		ring[i]->cmd_next = ring[i]->cmd_base;
467		ring[i]->res_next = ring[i]->res_base;
468	}
469	return 0;
470
471err_cleanup:
472	for (; i--; ) {
473		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
474				  ring[i]->res_base, ring[i]->res_dma);
475		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
476				  ring[i]->cmd_base, ring[i]->cmd_dma);
477		kfree(ring[i]);
478	}
479	return err;
480}
481
482static int mtk_crypto_probe(struct platform_device *pdev)
483{
484	struct mtk_cryp *cryp;
485	int i, err;
486
487	cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
488	if (!cryp)
489		return -ENOMEM;
490
491	cryp->base = devm_platform_ioremap_resource(pdev, 0);
492	if (IS_ERR(cryp->base))
493		return PTR_ERR(cryp->base);
494
495	for (i = 0; i < MTK_IRQ_NUM; i++) {
496		cryp->irq[i] = platform_get_irq(pdev, i);
497		if (cryp->irq[i] < 0)
498			return cryp->irq[i];
499	}
500
501	cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
502	if (IS_ERR(cryp->clk_cryp))
503		return -EPROBE_DEFER;
504
505	cryp->dev = &pdev->dev;
506	pm_runtime_enable(cryp->dev);
507	pm_runtime_get_sync(cryp->dev);
508
509	err = clk_prepare_enable(cryp->clk_cryp);
510	if (err)
511		goto err_clk_cryp;
512
513	/* Allocate four command/result descriptor rings */
514	err = mtk_desc_ring_alloc(cryp);
515	if (err) {
516		dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
517		goto err_resource;
518	}
519
520	/* Initialize hardware modules */
521	err = mtk_accelerator_init(cryp);
522	if (err) {
523		dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
524		goto err_engine;
525	}
526
527	err = mtk_cipher_alg_register(cryp);
528	if (err) {
529		dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
530		goto err_cipher;
531	}
532
533	err = mtk_hash_alg_register(cryp);
534	if (err) {
535		dev_err(cryp->dev, "Unable to register hash algorithm.\n");
536		goto err_hash;
537	}
538
539	platform_set_drvdata(pdev, cryp);
540	return 0;
541
542err_hash:
543	mtk_cipher_alg_release(cryp);
544err_cipher:
545	mtk_dfe_dse_reset(cryp);
546err_engine:
547	mtk_desc_dma_free(cryp);
548err_resource:
549	clk_disable_unprepare(cryp->clk_cryp);
550err_clk_cryp:
551	pm_runtime_put_sync(cryp->dev);
552	pm_runtime_disable(cryp->dev);
553
554	return err;
555}
556
557static int mtk_crypto_remove(struct platform_device *pdev)
558{
559	struct mtk_cryp *cryp = platform_get_drvdata(pdev);
560
561	mtk_hash_alg_release(cryp);
562	mtk_cipher_alg_release(cryp);
563	mtk_desc_dma_free(cryp);
564
565	clk_disable_unprepare(cryp->clk_cryp);
566
567	pm_runtime_put_sync(cryp->dev);
568	pm_runtime_disable(cryp->dev);
569	platform_set_drvdata(pdev, NULL);
570
571	return 0;
572}
573
574static const struct of_device_id of_crypto_id[] = {
575	{ .compatible = "mediatek,eip97-crypto" },
576	{},
577};
578MODULE_DEVICE_TABLE(of, of_crypto_id);
579
580static struct platform_driver mtk_crypto_driver = {
581	.probe = mtk_crypto_probe,
582	.remove = mtk_crypto_remove,
583	.driver = {
584		   .name = "mtk-crypto",
585		   .of_match_table = of_crypto_id,
586	},
587};
588module_platform_driver(mtk_crypto_driver);
589
590MODULE_LICENSE("GPL");
591MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
592MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for EIP97 cryptographic accelerator.
  4 *
  5 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  6 */
  7
  8#include <linux/clk.h>
  9#include <linux/init.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/platform_device.h>
 14#include <linux/pm_runtime.h>
 15#include "mtk-platform.h"
 16
 17#define MTK_BURST_SIZE_MSK		GENMASK(7, 4)
 18#define MTK_BURST_SIZE(x)		((x) << 4)
 19#define MTK_DESC_SIZE(x)		((x) << 0)
 20#define MTK_DESC_OFFSET(x)		((x) << 16)
 21#define MTK_DESC_FETCH_SIZE(x)		((x) << 0)
 22#define MTK_DESC_FETCH_THRESH(x)	((x) << 16)
 23#define MTK_DESC_OVL_IRQ_EN		BIT(25)
 24#define MTK_DESC_ATP_PRESENT		BIT(30)
 25
 26#define MTK_DFSE_IDLE			GENMASK(3, 0)
 27#define MTK_DFSE_THR_CTRL_EN		BIT(30)
 28#define MTK_DFSE_THR_CTRL_RESET		BIT(31)
 29#define MTK_DFSE_RING_ID(x)		(((x) >> 12) & GENMASK(3, 0))
 30#define MTK_DFSE_MIN_DATA(x)		((x) << 0)
 31#define MTK_DFSE_MAX_DATA(x)		((x) << 8)
 32#define MTK_DFE_MIN_CTRL(x)		((x) << 16)
 33#define MTK_DFE_MAX_CTRL(x)		((x) << 24)
 34
 35#define MTK_IN_BUF_MIN_THRESH(x)	((x) << 8)
 36#define MTK_IN_BUF_MAX_THRESH(x)	((x) << 12)
 37#define MTK_OUT_BUF_MIN_THRESH(x)	((x) << 0)
 38#define MTK_OUT_BUF_MAX_THRESH(x)	((x) << 4)
 39#define MTK_IN_TBUF_SIZE(x)		(((x) >> 4) & GENMASK(3, 0))
 40#define MTK_IN_DBUF_SIZE(x)		(((x) >> 8) & GENMASK(3, 0))
 41#define MTK_OUT_DBUF_SIZE(x)		(((x) >> 16) & GENMASK(3, 0))
 42#define MTK_CMD_FIFO_SIZE(x)		(((x) >> 8) & GENMASK(3, 0))
 43#define MTK_RES_FIFO_SIZE(x)		(((x) >> 12) & GENMASK(3, 0))
 44
 45#define MTK_PE_TK_LOC_AVL		BIT(2)
 46#define MTK_PE_PROC_HELD		BIT(14)
 47#define MTK_PE_TK_TIMEOUT_EN		BIT(22)
 48#define MTK_PE_INPUT_DMA_ERR		BIT(0)
 49#define MTK_PE_OUTPUT_DMA_ERR		BIT(1)
 50#define MTK_PE_PKT_PORC_ERR		BIT(2)
 51#define MTK_PE_PKT_TIMEOUT		BIT(3)
 52#define MTK_PE_FATAL_ERR		BIT(14)
 53#define MTK_PE_INPUT_DMA_ERR_EN		BIT(16)
 54#define MTK_PE_OUTPUT_DMA_ERR_EN	BIT(17)
 55#define MTK_PE_PKT_PORC_ERR_EN		BIT(18)
 56#define MTK_PE_PKT_TIMEOUT_EN		BIT(19)
 57#define MTK_PE_FATAL_ERR_EN		BIT(30)
 58#define MTK_PE_INT_OUT_EN		BIT(31)
 59
 60#define MTK_HIA_SIGNATURE		((u16)0x35ca)
 61#define MTK_HIA_DATA_WIDTH(x)		(((x) >> 25) & GENMASK(1, 0))
 62#define MTK_HIA_DMA_LENGTH(x)		(((x) >> 20) & GENMASK(4, 0))
 63#define MTK_CDR_STAT_CLR		GENMASK(4, 0)
 64#define MTK_RDR_STAT_CLR		GENMASK(7, 0)
 65
 66#define MTK_AIC_INT_MSK			GENMASK(5, 0)
 67#define MTK_AIC_VER_MSK			(GENMASK(15, 0) | GENMASK(27, 20))
 68#define MTK_AIC_VER11			0x011036c9
 69#define MTK_AIC_VER12			0x012036c9
 70#define MTK_AIC_G_CLR			GENMASK(30, 20)
 71
 72/**
 73 * EIP97 is an integrated security subsystem to accelerate cryptographic
 74 * functions and protocols to offload the host processor.
 75 * Some important hardware modules are briefly introduced below:
 76 *
 77 * Host Interface Adapter(HIA) - the main interface between the host
 78 * system and the hardware subsystem. It is responsible for attaching
 79 * processing engine to the specific host bus interface and provides a
 80 * standardized software view for off loading tasks to the engine.
 81 *
 82 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
 83 * CD the host has prepared in the CDR. It monitors the fill level of its
 84 * CD-FIFO and if there's sufficient space for the next block of descriptors,
 85 * then it fires off a DMA request to fetch a block of CDs.
 86 *
 87 * Data fetch engine(DFE) - It is responsible for parsing the CD and
 88 * setting up the required control and packet data DMA transfers from
 89 * system memory to the processing engine.
 90 *
 91 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
 92 * but target is result descriptors, Moreover, it also handles the RD
 93 * updates under control of the DSE. For each packet data segment
 94 * processed, the DSE triggers the RDR Manager to write the updated RD.
 95 * If triggered to update, the RDR Manager sets up a DMA operation to
 96 * copy the RD from the DSE to the correct location in the RDR.
 97 *
 98 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
 99 * and setting up the required control and packet data DMA transfers from
100 * the processing engine to system memory.
101 *
102 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
103 * from various sources and combine them into one interrupt output.
104 * The AICs are used by:
105 * - One for the HIA global and processing engine interrupts.
106 * - The others for the descriptor ring interrupts.
107 */
108
109/* Cryptographic engine capabilities */
110struct mtk_sys_cap {
111	/* host interface adapter */
112	u32 hia_ver;
113	u32 hia_opt;
114	/* packet engine */
115	u32 pkt_eng_opt;
116	/* global hardware */
117	u32 hw_opt;
118};
119
120static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
121{
122	/* Assign rings to DFE/DSE thread and enable it */
123	writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
124	writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
125}
126
127static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
128				  struct mtk_sys_cap *cap)
129{
130	u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
131	u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
132	u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
133	u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
134	u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
135
136	writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
137	       MTK_DFSE_MAX_DATA(ipbuf) |
138	       MTK_DFE_MIN_CTRL(itbuf - 1) |
139	       MTK_DFE_MAX_CTRL(itbuf),
140	       cryp->base + DFE_CFG);
141
142	writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
143	       MTK_DFSE_MAX_DATA(opbuf),
144	       cryp->base + DSE_CFG);
145
146	writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
147	       MTK_IN_BUF_MAX_THRESH(ipbuf),
148	       cryp->base + PE_IN_DBUF_THRESH);
149
150	writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
151	       MTK_IN_BUF_MAX_THRESH(itbuf),
152	       cryp->base + PE_IN_TBUF_THRESH);
153
154	writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
155	       MTK_OUT_BUF_MAX_THRESH(opbuf),
156	       cryp->base + PE_OUT_DBUF_THRESH);
157
158	writel(0, cryp->base + PE_OUT_TBUF_THRESH);
159	writel(0, cryp->base + PE_OUT_BUF_CTRL);
160}
161
162static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
163{
164	int ret = -EINVAL;
165	u32 val;
166
167	/* Check for completion of all DMA transfers */
168	val = readl(cryp->base + DFE_THR_STAT);
169	if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
170		val = readl(cryp->base + DSE_THR_STAT);
171		if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
172			ret = 0;
173	}
174
175	if (!ret) {
176		/* Take DFE/DSE thread out of reset */
177		writel(0, cryp->base + DFE_THR_CTRL);
178		writel(0, cryp->base + DSE_THR_CTRL);
179	} else {
180		return -EBUSY;
181	}
182
183	return 0;
184}
185
186static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
187{
188	int err;
189
190	/* Reset DSE/DFE and correct system priorities for all rings. */
191	writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
192	writel(0, cryp->base + DFE_PRIO_0);
193	writel(0, cryp->base + DFE_PRIO_1);
194	writel(0, cryp->base + DFE_PRIO_2);
195	writel(0, cryp->base + DFE_PRIO_3);
196
197	writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
198	writel(0, cryp->base + DSE_PRIO_0);
199	writel(0, cryp->base + DSE_PRIO_1);
200	writel(0, cryp->base + DSE_PRIO_2);
201	writel(0, cryp->base + DSE_PRIO_3);
202
203	err = mtk_dfe_dse_state_check(cryp);
204	if (err)
205		return err;
206
207	return 0;
208}
209
210static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
211				    int i, struct mtk_sys_cap *cap)
212{
213	/* Full descriptor that fits FIFO minus one */
214	u32 count =
215		((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
216
217	/* Temporarily disable external triggering */
218	writel(0, cryp->base + CDR_CFG(i));
219
220	/* Clear CDR count */
221	writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
222	writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
223
224	writel(0, cryp->base + CDR_PREP_PNTR(i));
225	writel(0, cryp->base + CDR_PROC_PNTR(i));
226	writel(0, cryp->base + CDR_DMA_CFG(i));
227
228	/* Configure CDR host address space */
229	writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
230	writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
231
232	writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
233
234	/* Clear and disable all CDR interrupts */
235	writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
236
237	/*
238	 * Set command descriptor offset and enable additional
239	 * token present in descriptor.
240	 */
241	writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
242		   MTK_DESC_OFFSET(MTK_DESC_OFF) |
243	       MTK_DESC_ATP_PRESENT,
244	       cryp->base + CDR_DESC_SIZE(i));
245
246	writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
247		   MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
248		   cryp->base + CDR_CFG(i));
249}
250
251static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
252				    int i, struct mtk_sys_cap *cap)
253{
254	u32 rndup = 2;
255	u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
256
257	/* Temporarily disable external triggering */
258	writel(0, cryp->base + RDR_CFG(i));
259
260	/* Clear RDR count */
261	writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
262	writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
263
264	writel(0, cryp->base + RDR_PREP_PNTR(i));
265	writel(0, cryp->base + RDR_PROC_PNTR(i));
266	writel(0, cryp->base + RDR_DMA_CFG(i));
267
268	/* Configure RDR host address space */
269	writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
270	writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
271
272	writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
273	writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
274
275	/*
276	 * RDR manager generates update interrupts on a per-completed-packet,
277	 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
278	 * for the RDR exceeds the number of packets.
279	 */
280	writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
281	       cryp->base + RDR_THRESH(i));
282
283	/*
284	 * Configure a threshold and time-out value for the processed
285	 * result descriptors (or complete packets) that are written to
286	 * the RDR.
287	 */
288	writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
289	       cryp->base + RDR_DESC_SIZE(i));
290
291	/*
292	 * Configure HIA fetch size and fetch threshold that are used to
293	 * fetch blocks of multiple descriptors.
294	 */
295	writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
296	       MTK_DESC_FETCH_THRESH(count * rndup) |
297	       MTK_DESC_OVL_IRQ_EN,
298		   cryp->base + RDR_CFG(i));
299}
300
301static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
302{
303	struct mtk_sys_cap cap;
304	int i, err;
305	u32 val;
306
307	cap.hia_ver = readl(cryp->base + HIA_VERSION);
308	cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
309	cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
310
311	if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
312		return -EINVAL;
313
314	/* Configure endianness conversion method for master (DMA) interface */
315	writel(0, cryp->base + EIP97_MST_CTRL);
316
317	/* Set HIA burst size */
318	val = readl(cryp->base + HIA_MST_CTRL);
319	val &= ~MTK_BURST_SIZE_MSK;
320	val |= MTK_BURST_SIZE(5);
321	writel(val, cryp->base + HIA_MST_CTRL);
322
323	err = mtk_dfe_dse_reset(cryp);
324	if (err) {
325		dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
326		return err;
327	}
328
329	mtk_dfe_dse_buf_setup(cryp, &cap);
330
331	/* Enable the 4 rings for the packet engines. */
332	mtk_desc_ring_link(cryp, 0xf);
333
334	for (i = 0; i < MTK_RING_MAX; i++) {
335		mtk_cmd_desc_ring_setup(cryp, i, &cap);
336		mtk_res_desc_ring_setup(cryp, i, &cap);
337	}
338
339	writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
340	       cryp->base + PE_TOKEN_CTRL_STAT);
341
342	/* Clear all pending interrupts */
343	writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
344	writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
345	       MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
346	       MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
347	       MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
348	       MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
349	       MTK_PE_INT_OUT_EN,
350	       cryp->base + PE_INTERRUPT_CTRL_STAT);
351
352	return 0;
353}
354
355static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
356{
357	u32 val;
358
359	if (hw == MTK_RING_MAX)
360		val = readl(cryp->base + AIC_G_VERSION);
361	else
362		val = readl(cryp->base + AIC_VERSION(hw));
363
364	val &= MTK_AIC_VER_MSK;
365	if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
366		return -ENXIO;
367
368	if (hw == MTK_RING_MAX)
369		val = readl(cryp->base + AIC_G_OPTIONS);
370	else
371		val = readl(cryp->base + AIC_OPTIONS(hw));
372
373	val &= MTK_AIC_INT_MSK;
374	if (!val || val > 32)
375		return -ENXIO;
376
377	return 0;
378}
379
380static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
381{
382	int err;
383
384	err = mtk_aic_cap_check(cryp, hw);
385	if (err)
386		return err;
387
388	/* Disable all interrupts and set initial configuration */
389	if (hw == MTK_RING_MAX) {
390		writel(0, cryp->base + AIC_G_ENABLE_CTRL);
391		writel(0, cryp->base + AIC_G_POL_CTRL);
392		writel(0, cryp->base + AIC_G_TYPE_CTRL);
393		writel(0, cryp->base + AIC_G_ENABLE_SET);
394	} else {
395		writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
396		writel(0, cryp->base + AIC_POL_CTRL(hw));
397		writel(0, cryp->base + AIC_TYPE_CTRL(hw));
398		writel(0, cryp->base + AIC_ENABLE_SET(hw));
399	}
400
401	return 0;
402}
403
404static int mtk_accelerator_init(struct mtk_cryp *cryp)
405{
406	int i, err;
407
408	/* Initialize advanced interrupt controller(AIC) */
409	for (i = 0; i < MTK_IRQ_NUM; i++) {
410		err = mtk_aic_init(cryp, i);
411		if (err) {
412			dev_err(cryp->dev, "Failed to initialize AIC.\n");
413			return err;
414		}
415	}
416
417	/* Initialize packet engine */
418	err = mtk_packet_engine_setup(cryp);
419	if (err) {
420		dev_err(cryp->dev, "Failed to configure packet engine.\n");
421		return err;
422	}
423
424	return 0;
425}
426
427static void mtk_desc_dma_free(struct mtk_cryp *cryp)
428{
429	int i;
430
431	for (i = 0; i < MTK_RING_MAX; i++) {
432		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
433				  cryp->ring[i]->res_base,
434				  cryp->ring[i]->res_dma);
435		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
436				  cryp->ring[i]->cmd_base,
437				  cryp->ring[i]->cmd_dma);
438		kfree(cryp->ring[i]);
439	}
440}
441
442static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
443{
444	struct mtk_ring **ring = cryp->ring;
445	int i, err = ENOMEM;
446
447	for (i = 0; i < MTK_RING_MAX; i++) {
448		ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
449		if (!ring[i])
450			goto err_cleanup;
451
452		ring[i]->cmd_base = dma_alloc_coherent(cryp->dev,
453						       MTK_DESC_RING_SZ,
454						       &ring[i]->cmd_dma,
455						       GFP_KERNEL);
456		if (!ring[i]->cmd_base)
457			goto err_cleanup;
458
459		ring[i]->res_base = dma_alloc_coherent(cryp->dev,
460						       MTK_DESC_RING_SZ,
461						       &ring[i]->res_dma,
462						       GFP_KERNEL);
463		if (!ring[i]->res_base)
464			goto err_cleanup;
465
466		ring[i]->cmd_next = ring[i]->cmd_base;
467		ring[i]->res_next = ring[i]->res_base;
468	}
469	return 0;
470
471err_cleanup:
472	for (; i--; ) {
473		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
474				  ring[i]->res_base, ring[i]->res_dma);
475		dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
476				  ring[i]->cmd_base, ring[i]->cmd_dma);
477		kfree(ring[i]);
478	}
479	return err;
480}
481
482static int mtk_crypto_probe(struct platform_device *pdev)
483{
484	struct mtk_cryp *cryp;
485	int i, err;
486
487	cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
488	if (!cryp)
489		return -ENOMEM;
490
491	cryp->base = devm_platform_ioremap_resource(pdev, 0);
492	if (IS_ERR(cryp->base))
493		return PTR_ERR(cryp->base);
494
495	for (i = 0; i < MTK_IRQ_NUM; i++) {
496		cryp->irq[i] = platform_get_irq(pdev, i);
497		if (cryp->irq[i] < 0)
498			return cryp->irq[i];
499	}
500
501	cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
502	if (IS_ERR(cryp->clk_cryp))
503		return -EPROBE_DEFER;
504
505	cryp->dev = &pdev->dev;
506	pm_runtime_enable(cryp->dev);
507	pm_runtime_get_sync(cryp->dev);
508
509	err = clk_prepare_enable(cryp->clk_cryp);
510	if (err)
511		goto err_clk_cryp;
512
513	/* Allocate four command/result descriptor rings */
514	err = mtk_desc_ring_alloc(cryp);
515	if (err) {
516		dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
517		goto err_resource;
518	}
519
520	/* Initialize hardware modules */
521	err = mtk_accelerator_init(cryp);
522	if (err) {
523		dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
524		goto err_engine;
525	}
526
527	err = mtk_cipher_alg_register(cryp);
528	if (err) {
529		dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
530		goto err_cipher;
531	}
532
533	err = mtk_hash_alg_register(cryp);
534	if (err) {
535		dev_err(cryp->dev, "Unable to register hash algorithm.\n");
536		goto err_hash;
537	}
538
539	platform_set_drvdata(pdev, cryp);
540	return 0;
541
542err_hash:
543	mtk_cipher_alg_release(cryp);
544err_cipher:
545	mtk_dfe_dse_reset(cryp);
546err_engine:
547	mtk_desc_dma_free(cryp);
548err_resource:
549	clk_disable_unprepare(cryp->clk_cryp);
550err_clk_cryp:
551	pm_runtime_put_sync(cryp->dev);
552	pm_runtime_disable(cryp->dev);
553
554	return err;
555}
556
557static int mtk_crypto_remove(struct platform_device *pdev)
558{
559	struct mtk_cryp *cryp = platform_get_drvdata(pdev);
560
561	mtk_hash_alg_release(cryp);
562	mtk_cipher_alg_release(cryp);
563	mtk_desc_dma_free(cryp);
564
565	clk_disable_unprepare(cryp->clk_cryp);
566
567	pm_runtime_put_sync(cryp->dev);
568	pm_runtime_disable(cryp->dev);
569	platform_set_drvdata(pdev, NULL);
570
571	return 0;
572}
573
574static const struct of_device_id of_crypto_id[] = {
575	{ .compatible = "mediatek,eip97-crypto" },
576	{},
577};
578MODULE_DEVICE_TABLE(of, of_crypto_id);
579
580static struct platform_driver mtk_crypto_driver = {
581	.probe = mtk_crypto_probe,
582	.remove = mtk_crypto_remove,
583	.driver = {
584		   .name = "mtk-crypto",
585		   .of_match_table = of_crypto_id,
586	},
587};
588module_platform_driver(mtk_crypto_driver);
589
590MODULE_LICENSE("GPL");
591MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
592MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");