Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/mod_devicetable.h>
11#include <linux/interrupt.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
17#include <linux/scatterlist.h>
18#include <linux/highmem.h>
19#include <linux/crypto.h>
20#include <linux/hw_random.h>
21#include <linux/ktime.h>
22
23#include <crypto/algapi.h>
24#include <crypto/internal/des.h>
25#include <crypto/internal/skcipher.h>
26
27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32static atomic_t hifn_dev_number;
33
34#define ACRYPTO_OP_DECRYPT 0
35#define ACRYPTO_OP_ENCRYPT 1
36#define ACRYPTO_OP_HMAC 2
37#define ACRYPTO_OP_RNG 3
38
39#define ACRYPTO_MODE_ECB 0
40#define ACRYPTO_MODE_CBC 1
41#define ACRYPTO_MODE_CFB 2
42#define ACRYPTO_MODE_OFB 3
43
44#define ACRYPTO_TYPE_AES_128 0
45#define ACRYPTO_TYPE_AES_192 1
46#define ACRYPTO_TYPE_AES_256 2
47#define ACRYPTO_TYPE_3DES 3
48#define ACRYPTO_TYPE_DES 4
49
50#define PCI_VENDOR_ID_HIFN 0x13A3
51#define PCI_DEVICE_ID_HIFN_7955 0x0020
52#define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54/* I/O region sizes */
55
56#define HIFN_BAR0_SIZE 0x1000
57#define HIFN_BAR1_SIZE 0x2000
58#define HIFN_BAR2_SIZE 0x8000
59
60/* DMA registres */
61
62#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70#define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72/*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83#define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
86#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
161#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167/*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177#define HIFN_1_PLL 0x4c /* 795x: PLL config */
178#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183#define HIFN_1_REVID 0x98 /* Revision ID */
184#define HIFN_1_UNLOCK_SECRET1 0xf4
185#define HIFN_1_UNLOCK_SECRET2 0xfc
186#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189#define HIFN_1_PUB_OP 0x308 /* Public Operand */
190#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193#define HIFN_1_RNG_DATA 0x318 /* RNG data */
194#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264#define HIFN_DMACNFG_UNLOCK 0x00000800
265#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271/* PLL configuration register */
272#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292/* Public key reset register (HIFN_1_PUB_RESET) */
293#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295/* Public base address register (HIFN_1_PUB_BASE) */
296#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298/* Public operand length register (HIFN_1_PUB_OPLEN) */
299#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306/* Public operation register (HIFN_1_PUB_OP) */
307#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328/* Public status register (HIFN_1_PUB_STATUS) */
329#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
333#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
336#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338#define HIFN_NAMESIZE 32
339#define HIFN_MAX_RESULT_ORDER 5
340
341#define HIFN_D_CMD_RSIZE (24 * 1)
342#define HIFN_D_SRC_RSIZE (80 * 1)
343#define HIFN_D_DST_RSIZE (80 * 1)
344#define HIFN_D_RES_RSIZE (24 * 1)
345
346#define HIFN_D_DST_DALIGN 4
347
348#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350#define AES_MIN_KEY_SIZE 16
351#define AES_MAX_KEY_SIZE 32
352
353#define HIFN_DES_KEY_LENGTH 8
354#define HIFN_3DES_KEY_LENGTH 24
355#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356#define HIFN_IV_LENGTH 8
357#define HIFN_AES_IV_LENGTH 16
358#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360#define HIFN_MAC_KEY_LENGTH 64
361#define HIFN_MD5_LENGTH 16
362#define HIFN_SHA1_LENGTH 20
363#define HIFN_MAC_TRUNC_LENGTH 12
364
365#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367#define HIFN_USED_RESULT 12
368
369struct hifn_desc {
370 volatile __le32 l;
371 volatile __le32 p;
372};
373
374struct hifn_dma {
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383 /*
384 * Our current positions for insertion and removal from the descriptor
385 * rings.
386 */
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
390};
391
392#define HIFN_FLAG_CMD_BUSY (1 << 0)
393#define HIFN_FLAG_SRC_BUSY (1 << 1)
394#define HIFN_FLAG_DST_BUSY (1 << 2)
395#define HIFN_FLAG_RES_BUSY (1 << 3)
396#define HIFN_FLAG_OLD_KEY (1 << 4)
397
398#define HIFN_DEFAULT_ACTIVE_NUM 5
399
400struct hifn_device {
401 char name[HIFN_NAMESIZE];
402
403 int irq;
404
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
407
408 void *desc_virt;
409 dma_addr_t desc_dma;
410
411 u32 dmareg;
412
413 void *sa[HIFN_D_RES_RSIZE];
414
415 spinlock_t lock;
416
417 u32 flags;
418 int active, started;
419 struct delayed_work work;
420 unsigned long reset;
421 unsigned long success;
422 unsigned long prev_success;
423
424 u8 snum;
425
426 struct tasklet_struct tasklet;
427
428 struct crypto_queue queue;
429 struct list_head alg_list;
430
431 unsigned int pk_clk_freq;
432
433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
435 ktime_t rngtime;
436 struct hwrng rng;
437#endif
438};
439
440#define HIFN_D_LENGTH 0x0000ffff
441#define HIFN_D_NOINVALID 0x01000000
442#define HIFN_D_MASKDONEIRQ 0x02000000
443#define HIFN_D_DESTOVER 0x04000000
444#define HIFN_D_OVER 0x08000000
445#define HIFN_D_LAST 0x20000000
446#define HIFN_D_JUMP 0x40000000
447#define HIFN_D_VALID 0x80000000
448
449struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
454};
455
456#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460#define HIFN_BASE_CMD_DECODE 0x2000
461#define HIFN_BASE_CMD_SRCLEN_M 0xc000
462#define HIFN_BASE_CMD_SRCLEN_S 14
463#define HIFN_BASE_CMD_DSTLEN_M 0x3000
464#define HIFN_BASE_CMD_DSTLEN_S 12
465#define HIFN_BASE_CMD_LENMASK_HI 0x30000
466#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468/*
469 * Structure to help build up the command data structure.
470 */
471struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
476};
477
478#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496#define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498/*
499 * Structure to help build up the command data structure.
500 */
501struct hifn_mac_command {
502 volatile __le16 masks;
503 volatile __le16 header_skip;
504 volatile __le16 source_count;
505 volatile __le16 reserved;
506};
507
508#define HIFN_MAC_CMD_ALG_MASK 0x0001
509#define HIFN_MAC_CMD_ALG_SHA1 0x0000
510#define HIFN_MAC_CMD_ALG_MD5 0x0001
511#define HIFN_MAC_CMD_MODE_MASK 0x000c
512#define HIFN_MAC_CMD_MODE_HMAC 0x0000
513#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
514#define HIFN_MAC_CMD_MODE_HASH 0x0008
515#define HIFN_MAC_CMD_MODE_FULL 0x0004
516#define HIFN_MAC_CMD_TRUNC 0x0010
517#define HIFN_MAC_CMD_RESULT 0x0020
518#define HIFN_MAC_CMD_APPEND 0x0040
519#define HIFN_MAC_CMD_SRCLEN_M 0xc000
520#define HIFN_MAC_CMD_SRCLEN_S 14
521
522/*
523 * MAC POS IPsec initiates authentication after encryption on encodes
524 * and before decryption on decodes.
525 */
526#define HIFN_MAC_CMD_POS_IPSEC 0x0200
527#define HIFN_MAC_CMD_NEW_KEY 0x0800
528
529struct hifn_comp_command {
530 volatile __le16 masks;
531 volatile __le16 header_skip;
532 volatile __le16 source_count;
533 volatile __le16 reserved;
534};
535
536#define HIFN_COMP_CMD_SRCLEN_M 0xc000
537#define HIFN_COMP_CMD_SRCLEN_S 14
538#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
539#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
540#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
541#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
542#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
543#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
544#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
545#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
546
547struct hifn_base_result {
548 volatile __le16 flags;
549 volatile __le16 session;
550 volatile __le16 src_cnt; /* 15:0 of source count */
551 volatile __le16 dst_cnt; /* 15:0 of dest count */
552};
553
554#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
555#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
556#define HIFN_BASE_RES_SRCLEN_S 14
557#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
558#define HIFN_BASE_RES_DSTLEN_S 12
559
560struct hifn_comp_result {
561 volatile __le16 flags;
562 volatile __le16 crc;
563};
564
565#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
566#define HIFN_COMP_RES_LCB_S 8
567#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
568#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
569#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
570
571struct hifn_mac_result {
572 volatile __le16 flags;
573 volatile __le16 reserved;
574 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
575};
576
577#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
578#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
579
580struct hifn_crypt_result {
581 volatile __le16 flags;
582 volatile __le16 reserved;
583};
584
585#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
586
587#ifndef HIFN_POLL_FREQUENCY
588#define HIFN_POLL_FREQUENCY 0x1
589#endif
590
591#ifndef HIFN_POLL_SCALAR
592#define HIFN_POLL_SCALAR 0x0
593#endif
594
595#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
596#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
597
598struct hifn_crypto_alg {
599 struct list_head entry;
600 struct skcipher_alg alg;
601 struct hifn_device *dev;
602};
603
604#define ASYNC_SCATTERLIST_CACHE 16
605
606#define ASYNC_FLAGS_MISALIGNED (1 << 0)
607
608struct hifn_cipher_walk {
609 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
610 u32 flags;
611 int num;
612};
613
614struct hifn_context {
615 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
616 struct hifn_device *dev;
617 unsigned int keysize;
618};
619
620struct hifn_request_context {
621 u8 *iv;
622 unsigned int ivsize;
623 u8 op, type, mode, unused;
624 struct hifn_cipher_walk walk;
625};
626
627#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
628
629static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
630{
631 return readl(dev->bar[0] + reg);
632}
633
634static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
635{
636 return readl(dev->bar[1] + reg);
637}
638
639static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
640{
641 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
642}
643
644static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
645{
646 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
647}
648
649static void hifn_wait_puc(struct hifn_device *dev)
650{
651 int i;
652 u32 ret;
653
654 for (i = 10000; i > 0; --i) {
655 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656 if (!(ret & HIFN_PUCTRL_RESET))
657 break;
658
659 udelay(1);
660 }
661
662 if (!i)
663 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
664}
665
666static void hifn_reset_puc(struct hifn_device *dev)
667{
668 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
669 hifn_wait_puc(dev);
670}
671
672static void hifn_stop_device(struct hifn_device *dev)
673{
674 hifn_write_1(dev, HIFN_1_DMA_CSR,
675 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677 hifn_write_0(dev, HIFN_0_PUIER, 0);
678 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
679}
680
681static void hifn_reset_dma(struct hifn_device *dev, int full)
682{
683 hifn_stop_device(dev);
684
685 /*
686 * Setting poll frequency and others to 0.
687 */
688 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
690 mdelay(1);
691
692 /*
693 * Reset DMA.
694 */
695 if (full) {
696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
697 mdelay(1);
698 } else {
699 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700 HIFN_DMACNFG_MSTRESET);
701 hifn_reset_puc(dev);
702 }
703
704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
706
707 hifn_reset_puc(dev);
708}
709
710static u32 hifn_next_signature(u32 a, u_int cnt)
711{
712 int i;
713 u32 v;
714
715 for (i = 0; i < cnt; i++) {
716 /* get the parity */
717 v = a & 0x80080125;
718 v ^= v >> 16;
719 v ^= v >> 8;
720 v ^= v >> 4;
721 v ^= v >> 2;
722 v ^= v >> 1;
723
724 a = (v & 1) ^ (a << 1);
725 }
726
727 return a;
728}
729
730static struct pci2id {
731 u_short pci_vendor;
732 u_short pci_prod;
733 char card_id[13];
734} pci2id[] = {
735 {
736 PCI_VENDOR_ID_HIFN,
737 PCI_DEVICE_ID_HIFN_7955,
738 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739 0x00, 0x00, 0x00, 0x00, 0x00 }
740 },
741 {
742 PCI_VENDOR_ID_HIFN,
743 PCI_DEVICE_ID_HIFN_7956,
744 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745 0x00, 0x00, 0x00, 0x00, 0x00 }
746 }
747};
748
749#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750static int hifn_rng_data_present(struct hwrng *rng, int wait)
751{
752 struct hifn_device *dev = (struct hifn_device *)rng->priv;
753 s64 nsec;
754
755 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756 nsec -= dev->rng_wait_time;
757 if (nsec <= 0)
758 return 1;
759 if (!wait)
760 return 0;
761 ndelay(nsec);
762 return 1;
763}
764
765static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
766{
767 struct hifn_device *dev = (struct hifn_device *)rng->priv;
768
769 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770 dev->rngtime = ktime_get();
771 return 4;
772}
773
774static int hifn_register_rng(struct hifn_device *dev)
775{
776 /*
777 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
778 */
779 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780 dev->pk_clk_freq) * 256;
781
782 dev->rng.name = dev->name;
783 dev->rng.data_present = hifn_rng_data_present,
784 dev->rng.data_read = hifn_rng_data_read,
785 dev->rng.priv = (unsigned long)dev;
786
787 return hwrng_register(&dev->rng);
788}
789
790static void hifn_unregister_rng(struct hifn_device *dev)
791{
792 hwrng_unregister(&dev->rng);
793}
794#else
795#define hifn_register_rng(dev) 0
796#define hifn_unregister_rng(dev)
797#endif
798
799static int hifn_init_pubrng(struct hifn_device *dev)
800{
801 int i;
802
803 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
804 HIFN_PUBRST_RESET);
805
806 for (i = 100; i > 0; --i) {
807 mdelay(1);
808
809 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
810 break;
811 }
812
813 if (!i) {
814 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
815 } else {
816 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817 dev->dmareg |= HIFN_DMAIER_PUBDONE;
818 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
819
820 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
821 }
822
823 /* Enable RNG engine. */
824
825 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
828
829#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830 /* First value must be discarded */
831 hifn_read_1(dev, HIFN_1_RNG_DATA);
832 dev->rngtime = ktime_get();
833#endif
834 return 0;
835}
836
837static int hifn_enable_crypto(struct hifn_device *dev)
838{
839 u32 dmacfg, addr;
840 char *offtbl = NULL;
841 int i;
842
843 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845 pci2id[i].pci_prod == dev->pdev->device) {
846 offtbl = pci2id[i].card_id;
847 break;
848 }
849 }
850
851 if (!offtbl) {
852 dev_err(&dev->pdev->dev, "Unknown card!\n");
853 return -ENODEV;
854 }
855
856 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
857
858 hifn_write_1(dev, HIFN_1_DMA_CNFG,
859 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
861 mdelay(1);
862 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
863 mdelay(1);
864 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
865 mdelay(1);
866
867 for (i = 0; i < 12; ++i) {
868 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
870
871 mdelay(1);
872 }
873 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
874
875 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
876
877 return 0;
878}
879
880static void hifn_init_dma(struct hifn_device *dev)
881{
882 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
883 u32 dptr = dev->desc_dma;
884 int i;
885
886 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887 dma->cmdr[i].p = __cpu_to_le32(dptr +
888 offsetof(struct hifn_dma, command_bufs[i][0]));
889 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890 dma->resr[i].p = __cpu_to_le32(dptr +
891 offsetof(struct hifn_dma, result_bufs[i][0]));
892
893 /* Setup LAST descriptors. */
894 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895 offsetof(struct hifn_dma, cmdr[0]));
896 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897 offsetof(struct hifn_dma, srcr[0]));
898 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899 offsetof(struct hifn_dma, dstr[0]));
900 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901 offsetof(struct hifn_dma, resr[0]));
902
903 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
906}
907
908/*
909 * Initialize the PLL. We need to know the frequency of the reference clock
910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911 * allows us to operate without the risk of overclocking the chip. If it
912 * actually uses 33MHz, the chip will operate at half the speed, this can be
913 * overridden by specifying the frequency as module parameter (pci33).
914 *
915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916 * stable clock and the PCI clock frequency may vary, so the default is the
917 * external clock. There is no way to find out its frequency, we default to
918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919 * has an external crystal populated at 66MHz.
920 */
921static void hifn_init_pll(struct hifn_device *dev)
922{
923 unsigned int freq, m;
924 u32 pllcfg;
925
926 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
927
928 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929 pllcfg |= HIFN_PLL_REF_CLK_PLL;
930 else
931 pllcfg |= HIFN_PLL_REF_CLK_HBI;
932
933 if (hifn_pll_ref[3] != '\0')
934 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
935 else {
936 freq = 66;
937 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
938 freq, hifn_pll_ref);
939 }
940
941 m = HIFN_PLL_FCK_MAX / freq;
942
943 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
944 if (m <= 8)
945 pllcfg |= HIFN_PLL_IS_1_8;
946 else
947 pllcfg |= HIFN_PLL_IS_9_12;
948
949 /* Select clock source and enable clock bypass */
950 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
952
953 /* Let the chip lock to the input clock */
954 mdelay(10);
955
956 /* Disable clock bypass */
957 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
959
960 /* Switch the engines to the PLL */
961 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
963
964 /*
965 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966 * calculate the minimum time between two reads of the rng. Since 33MHz
967 * is actually 33.333... we overestimate the frequency here, resulting
968 * in slightly larger intervals.
969 */
970 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
971}
972
973static void hifn_init_registers(struct hifn_device *dev)
974{
975 u32 dptr = dev->desc_dma;
976
977 /* Initialization magic... */
978 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
981
982 /* write all 4 ring address registers */
983 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984 offsetof(struct hifn_dma, cmdr[0]));
985 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986 offsetof(struct hifn_dma, srcr[0]));
987 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988 offsetof(struct hifn_dma, dstr[0]));
989 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990 offsetof(struct hifn_dma, resr[0]));
991
992 mdelay(2);
993#if 0
994 hifn_write_1(dev, HIFN_1_DMA_CSR,
995 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002 HIFN_DMACSR_S_WAIT |
1003 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004 HIFN_DMACSR_C_WAIT |
1005 HIFN_DMACSR_ENGINE |
1006 HIFN_DMACSR_PUBDONE);
1007#else
1008 hifn_write_1(dev, HIFN_1_DMA_CSR,
1009 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016 HIFN_DMACSR_S_WAIT |
1017 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018 HIFN_DMACSR_C_WAIT |
1019 HIFN_DMACSR_ENGINE |
1020 HIFN_DMACSR_PUBDONE);
1021#endif
1022 hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027 HIFN_DMAIER_ENGINE;
1028 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031 hifn_read_1(dev, HIFN_1_DMA_IER);
1032#if 0
1033 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036 HIFN_PUCNFG_DRAM);
1037#else
1038 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039#endif
1040 hifn_init_pll(dev);
1041
1042 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047}
1048
1049static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051{
1052 struct hifn_base_command *base_cmd;
1053 u8 *buf_pos = buf;
1054
1055 base_cmd = (struct hifn_base_command *)buf_pos;
1056 base_cmd->masks = __cpu_to_le16(mask);
1057 base_cmd->total_source_count =
1058 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059 base_cmd->total_dest_count =
1060 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062 dlen >>= 16;
1063 slen >>= 16;
1064 base_cmd->session_num = __cpu_to_le16(snum |
1065 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068 return sizeof(struct hifn_base_command);
1069}
1070
1071static int hifn_setup_crypto_command(struct hifn_device *dev,
1072 u8 *buf, unsigned dlen, unsigned slen,
1073 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074{
1075 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1076 struct hifn_crypt_command *cry_cmd;
1077 u8 *buf_pos = buf;
1078 u16 cmd_len;
1079
1080 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083 dlen >>= 16;
1084 cry_cmd->masks = __cpu_to_le16(mode |
1085 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086 HIFN_CRYPT_CMD_SRCLEN_M));
1087 cry_cmd->header_skip = 0;
1088 cry_cmd->reserved = 0;
1089
1090 buf_pos += sizeof(struct hifn_crypt_command);
1091
1092 dma->cmdu++;
1093 if (dma->cmdu > 1) {
1094 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096 }
1097
1098 if (keylen) {
1099 memcpy(buf_pos, key, keylen);
1100 buf_pos += keylen;
1101 }
1102 if (ivsize) {
1103 memcpy(buf_pos, iv, ivsize);
1104 buf_pos += ivsize;
1105 }
1106
1107 cmd_len = buf_pos - buf;
1108
1109 return cmd_len;
1110}
1111
1112static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113 struct hifn_context *ctx, struct hifn_request_context *rctx,
1114 void *priv, unsigned int nbytes)
1115{
1116 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1117 int cmd_len, sa_idx;
1118 u8 *buf, *buf_pos;
1119 u16 mask;
1120
1121 sa_idx = dma->cmdi;
1122 buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124 mask = 0;
1125 switch (rctx->op) {
1126 case ACRYPTO_OP_DECRYPT:
1127 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128 break;
1129 case ACRYPTO_OP_ENCRYPT:
1130 mask = HIFN_BASE_CMD_CRYPT;
1131 break;
1132 case ACRYPTO_OP_HMAC:
1133 mask = HIFN_BASE_CMD_MAC;
1134 break;
1135 default:
1136 goto err_out;
1137 }
1138
1139 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140 nbytes, mask, dev->snum);
1141
1142 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143 u16 md = 0;
1144
1145 if (ctx->keysize)
1146 md |= HIFN_CRYPT_CMD_NEW_KEY;
1147 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148 md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150 switch (rctx->mode) {
1151 case ACRYPTO_MODE_ECB:
1152 md |= HIFN_CRYPT_CMD_MODE_ECB;
1153 break;
1154 case ACRYPTO_MODE_CBC:
1155 md |= HIFN_CRYPT_CMD_MODE_CBC;
1156 break;
1157 case ACRYPTO_MODE_CFB:
1158 md |= HIFN_CRYPT_CMD_MODE_CFB;
1159 break;
1160 case ACRYPTO_MODE_OFB:
1161 md |= HIFN_CRYPT_CMD_MODE_OFB;
1162 break;
1163 default:
1164 goto err_out;
1165 }
1166
1167 switch (rctx->type) {
1168 case ACRYPTO_TYPE_AES_128:
1169 if (ctx->keysize != 16)
1170 goto err_out;
1171 md |= HIFN_CRYPT_CMD_KSZ_128 |
1172 HIFN_CRYPT_CMD_ALG_AES;
1173 break;
1174 case ACRYPTO_TYPE_AES_192:
1175 if (ctx->keysize != 24)
1176 goto err_out;
1177 md |= HIFN_CRYPT_CMD_KSZ_192 |
1178 HIFN_CRYPT_CMD_ALG_AES;
1179 break;
1180 case ACRYPTO_TYPE_AES_256:
1181 if (ctx->keysize != 32)
1182 goto err_out;
1183 md |= HIFN_CRYPT_CMD_KSZ_256 |
1184 HIFN_CRYPT_CMD_ALG_AES;
1185 break;
1186 case ACRYPTO_TYPE_3DES:
1187 if (ctx->keysize != 24)
1188 goto err_out;
1189 md |= HIFN_CRYPT_CMD_ALG_3DES;
1190 break;
1191 case ACRYPTO_TYPE_DES:
1192 if (ctx->keysize != 8)
1193 goto err_out;
1194 md |= HIFN_CRYPT_CMD_ALG_DES;
1195 break;
1196 default:
1197 goto err_out;
1198 }
1199
1200 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201 nbytes, nbytes, ctx->key, ctx->keysize,
1202 rctx->iv, rctx->ivsize, md);
1203 }
1204
1205 dev->sa[sa_idx] = priv;
1206 dev->started++;
1207
1208 cmd_len = buf_pos - buf;
1209 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214 HIFN_D_VALID | HIFN_D_LAST |
1215 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216 dma->cmdi = 0;
1217 } else {
1218 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219 }
1220
1221 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223 dev->flags |= HIFN_FLAG_CMD_BUSY;
1224 }
1225 return 0;
1226
1227err_out:
1228 return -EINVAL;
1229}
1230
1231static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232 unsigned int offset, unsigned int size, int last)
1233{
1234 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1235 int idx;
1236 dma_addr_t addr;
1237
1238 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1239
1240 idx = dma->srci;
1241
1242 dma->srcr[idx].p = __cpu_to_le32(addr);
1243 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1244 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1245
1246 if (++idx == HIFN_D_SRC_RSIZE) {
1247 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1248 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1249 (last ? HIFN_D_LAST : 0));
1250 idx = 0;
1251 }
1252
1253 dma->srci = idx;
1254 dma->srcu++;
1255
1256 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1257 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1258 dev->flags |= HIFN_FLAG_SRC_BUSY;
1259 }
1260
1261 return size;
1262}
1263
1264static void hifn_setup_res_desc(struct hifn_device *dev)
1265{
1266 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1267
1268 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1269 HIFN_D_VALID | HIFN_D_LAST);
1270 /*
1271 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1272 * HIFN_D_LAST);
1273 */
1274
1275 if (++dma->resi == HIFN_D_RES_RSIZE) {
1276 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1277 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1278 dma->resi = 0;
1279 }
1280
1281 dma->resu++;
1282
1283 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1284 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1285 dev->flags |= HIFN_FLAG_RES_BUSY;
1286 }
1287}
1288
1289static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1290 unsigned offset, unsigned size, int last)
1291{
1292 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1293 int idx;
1294 dma_addr_t addr;
1295
1296 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1297
1298 idx = dma->dsti;
1299 dma->dstr[idx].p = __cpu_to_le32(addr);
1300 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1301 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1302
1303 if (++idx == HIFN_D_DST_RSIZE) {
1304 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1306 (last ? HIFN_D_LAST : 0));
1307 idx = 0;
1308 }
1309 dma->dsti = idx;
1310 dma->dstu++;
1311
1312 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1313 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1314 dev->flags |= HIFN_FLAG_DST_BUSY;
1315 }
1316}
1317
1318static int hifn_setup_dma(struct hifn_device *dev,
1319 struct hifn_context *ctx, struct hifn_request_context *rctx,
1320 struct scatterlist *src, struct scatterlist *dst,
1321 unsigned int nbytes, void *priv)
1322{
1323 struct scatterlist *t;
1324 struct page *spage, *dpage;
1325 unsigned int soff, doff;
1326 unsigned int n, len;
1327
1328 n = nbytes;
1329 while (n) {
1330 spage = sg_page(src);
1331 soff = src->offset;
1332 len = min(src->length, n);
1333
1334 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1335
1336 src++;
1337 n -= len;
1338 }
1339
1340 t = &rctx->walk.cache[0];
1341 n = nbytes;
1342 while (n) {
1343 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1344 BUG_ON(!sg_page(t));
1345 dpage = sg_page(t);
1346 doff = 0;
1347 len = t->length;
1348 } else {
1349 BUG_ON(!sg_page(dst));
1350 dpage = sg_page(dst);
1351 doff = dst->offset;
1352 len = dst->length;
1353 }
1354 len = min(len, n);
1355
1356 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1357
1358 dst++;
1359 t++;
1360 n -= len;
1361 }
1362
1363 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1364 hifn_setup_res_desc(dev);
1365 return 0;
1366}
1367
1368static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1369 int num, gfp_t gfp_flags)
1370{
1371 int i;
1372
1373 num = min(ASYNC_SCATTERLIST_CACHE, num);
1374 sg_init_table(w->cache, num);
1375
1376 w->num = 0;
1377 for (i = 0; i < num; ++i) {
1378 struct page *page = alloc_page(gfp_flags);
1379 struct scatterlist *s;
1380
1381 if (!page)
1382 break;
1383
1384 s = &w->cache[i];
1385
1386 sg_set_page(s, page, PAGE_SIZE, 0);
1387 w->num++;
1388 }
1389
1390 return i;
1391}
1392
1393static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1394{
1395 int i;
1396
1397 for (i = 0; i < w->num; ++i) {
1398 struct scatterlist *s = &w->cache[i];
1399
1400 __free_page(sg_page(s));
1401
1402 s->length = 0;
1403 }
1404
1405 w->num = 0;
1406}
1407
1408static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1409 unsigned int size, unsigned int *nbytesp)
1410{
1411 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1412 int idx = 0;
1413
1414 if (drest < size || size > nbytes)
1415 return -EINVAL;
1416
1417 while (size) {
1418 copy = min3(drest, size, dst->length);
1419
1420 size -= copy;
1421 drest -= copy;
1422 nbytes -= copy;
1423
1424 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1425 __func__, copy, size, drest, nbytes);
1426
1427 dst++;
1428 idx++;
1429 }
1430
1431 *nbytesp = nbytes;
1432 *drestp = drest;
1433
1434 return idx;
1435}
1436
1437static int hifn_cipher_walk(struct skcipher_request *req,
1438 struct hifn_cipher_walk *w)
1439{
1440 struct scatterlist *dst, *t;
1441 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1442 int idx, tidx, err;
1443
1444 tidx = idx = 0;
1445 offset = 0;
1446 while (nbytes) {
1447 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1448 return -EINVAL;
1449
1450 dst = &req->dst[idx];
1451
1452 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1453 __func__, dst->length, dst->offset, offset, nbytes);
1454
1455 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1456 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1457 offset) {
1458 unsigned slen = min(dst->length - offset, nbytes);
1459 unsigned dlen = PAGE_SIZE;
1460
1461 t = &w->cache[idx];
1462
1463 err = skcipher_add(&dlen, dst, slen, &nbytes);
1464 if (err < 0)
1465 return err;
1466
1467 idx += err;
1468
1469 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1470 diff = slen & (HIFN_D_DST_DALIGN - 1);
1471
1472 if (dlen < nbytes) {
1473 /*
1474 * Destination page does not have enough space
1475 * to put there additional blocksized chunk,
1476 * so we mark that page as containing only
1477 * blocksize aligned chunks:
1478 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1479 * and increase number of bytes to be processed
1480 * in next chunk:
1481 * nbytes += diff;
1482 */
1483 nbytes += diff;
1484
1485 /*
1486 * Temporary of course...
1487 * Kick author if you will catch this one.
1488 */
1489 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1490 __func__, dlen, nbytes, slen, offset);
1491 pr_err("%s: please contact author to fix this "
1492 "issue, generally you should not catch "
1493 "this path under any condition but who "
1494 "knows how did you use crypto code.\n"
1495 "Thank you.\n", __func__);
1496 BUG();
1497 } else {
1498 copy += diff + nbytes;
1499
1500 dst = &req->dst[idx];
1501
1502 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1503 if (err < 0)
1504 return err;
1505
1506 idx += err;
1507 }
1508
1509 t->length = copy;
1510 t->offset = offset;
1511 } else {
1512 nbytes -= min(dst->length, nbytes);
1513 idx++;
1514 }
1515
1516 tidx++;
1517 }
1518
1519 return tidx;
1520}
1521
1522static int hifn_setup_session(struct skcipher_request *req)
1523{
1524 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1525 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1526 struct hifn_device *dev = ctx->dev;
1527 unsigned long dlen, flags;
1528 unsigned int nbytes = req->cryptlen, idx = 0;
1529 int err = -EINVAL, sg_num;
1530 struct scatterlist *dst;
1531
1532 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1533 goto err_out_exit;
1534
1535 rctx->walk.flags = 0;
1536
1537 while (nbytes) {
1538 dst = &req->dst[idx];
1539 dlen = min(dst->length, nbytes);
1540
1541 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1542 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1543 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1544
1545 nbytes -= dlen;
1546 idx++;
1547 }
1548
1549 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1550 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1551 if (err < 0)
1552 return err;
1553 }
1554
1555 sg_num = hifn_cipher_walk(req, &rctx->walk);
1556 if (sg_num < 0) {
1557 err = sg_num;
1558 goto err_out_exit;
1559 }
1560
1561 spin_lock_irqsave(&dev->lock, flags);
1562 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1563 err = -EAGAIN;
1564 goto err_out;
1565 }
1566
1567 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1568 if (err)
1569 goto err_out;
1570
1571 dev->snum++;
1572
1573 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574 spin_unlock_irqrestore(&dev->lock, flags);
1575
1576 return 0;
1577
1578err_out:
1579 spin_unlock_irqrestore(&dev->lock, flags);
1580err_out_exit:
1581 if (err) {
1582 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583 "type: %u, err: %d.\n",
1584 rctx->iv, rctx->ivsize,
1585 ctx->key, ctx->keysize,
1586 rctx->mode, rctx->op, rctx->type, err);
1587 }
1588
1589 return err;
1590}
1591
1592static int hifn_start_device(struct hifn_device *dev)
1593{
1594 int err;
1595
1596 dev->started = dev->active = 0;
1597 hifn_reset_dma(dev, 1);
1598
1599 err = hifn_enable_crypto(dev);
1600 if (err)
1601 return err;
1602
1603 hifn_reset_puc(dev);
1604
1605 hifn_init_dma(dev);
1606
1607 hifn_init_registers(dev);
1608
1609 hifn_init_pubrng(dev);
1610
1611 return 0;
1612}
1613
1614static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1615 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1616{
1617 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1618 void *daddr;
1619 int idx = 0;
1620
1621 if (srest < size || size > nbytes)
1622 return -EINVAL;
1623
1624 while (size) {
1625 copy = min3(srest, dst->length, size);
1626
1627 daddr = kmap_atomic(sg_page(dst));
1628 memcpy(daddr + dst->offset + offset, saddr, copy);
1629 kunmap_atomic(daddr);
1630
1631 nbytes -= copy;
1632 size -= copy;
1633 srest -= copy;
1634 saddr += copy;
1635 offset = 0;
1636
1637 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1638 __func__, copy, size, srest, nbytes);
1639
1640 dst++;
1641 idx++;
1642 }
1643
1644 *nbytesp = nbytes;
1645 *srestp = srest;
1646
1647 return idx;
1648}
1649
1650static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1651{
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&dev->lock, flags);
1655 dev->sa[i] = NULL;
1656 dev->started--;
1657 if (dev->started < 0)
1658 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1659 dev->started);
1660 spin_unlock_irqrestore(&dev->lock, flags);
1661 BUG_ON(dev->started < 0);
1662}
1663
1664static void hifn_process_ready(struct skcipher_request *req, int error)
1665{
1666 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1667
1668 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1669 unsigned int nbytes = req->cryptlen;
1670 int idx = 0, err;
1671 struct scatterlist *dst, *t;
1672 void *saddr;
1673
1674 while (nbytes) {
1675 t = &rctx->walk.cache[idx];
1676 dst = &req->dst[idx];
1677
1678 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1679 "sg_page(dst): %p, dst->length: %u, "
1680 "nbytes: %u.\n",
1681 __func__, sg_page(t), t->length,
1682 sg_page(dst), dst->length, nbytes);
1683
1684 if (!t->length) {
1685 nbytes -= min(dst->length, nbytes);
1686 idx++;
1687 continue;
1688 }
1689
1690 saddr = kmap_atomic(sg_page(t));
1691
1692 err = skcipher_get(saddr, &t->length, t->offset,
1693 dst, nbytes, &nbytes);
1694 if (err < 0) {
1695 kunmap_atomic(saddr);
1696 break;
1697 }
1698
1699 idx += err;
1700 kunmap_atomic(saddr);
1701 }
1702
1703 hifn_cipher_walk_exit(&rctx->walk);
1704 }
1705
1706 req->base.complete(&req->base, error);
1707}
1708
1709static void hifn_clear_rings(struct hifn_device *dev, int error)
1710{
1711 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1712 int i, u;
1713
1714 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1715 "k: %d.%d.%d.%d.\n",
1716 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1717 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1718 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1719
1720 i = dma->resk; u = dma->resu;
1721 while (u != 0) {
1722 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1723 break;
1724
1725 if (dev->sa[i]) {
1726 dev->success++;
1727 dev->reset = 0;
1728 hifn_process_ready(dev->sa[i], error);
1729 hifn_complete_sa(dev, i);
1730 }
1731
1732 if (++i == HIFN_D_RES_RSIZE)
1733 i = 0;
1734 u--;
1735 }
1736 dma->resk = i; dma->resu = u;
1737
1738 i = dma->srck; u = dma->srcu;
1739 while (u != 0) {
1740 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1741 break;
1742 if (++i == HIFN_D_SRC_RSIZE)
1743 i = 0;
1744 u--;
1745 }
1746 dma->srck = i; dma->srcu = u;
1747
1748 i = dma->cmdk; u = dma->cmdu;
1749 while (u != 0) {
1750 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1751 break;
1752 if (++i == HIFN_D_CMD_RSIZE)
1753 i = 0;
1754 u--;
1755 }
1756 dma->cmdk = i; dma->cmdu = u;
1757
1758 i = dma->dstk; u = dma->dstu;
1759 while (u != 0) {
1760 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1761 break;
1762 if (++i == HIFN_D_DST_RSIZE)
1763 i = 0;
1764 u--;
1765 }
1766 dma->dstk = i; dma->dstu = u;
1767
1768 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1769 "k: %d.%d.%d.%d.\n",
1770 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1771 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1772 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1773}
1774
1775static void hifn_work(struct work_struct *work)
1776{
1777 struct delayed_work *dw = to_delayed_work(work);
1778 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1779 unsigned long flags;
1780 int reset = 0;
1781 u32 r = 0;
1782
1783 spin_lock_irqsave(&dev->lock, flags);
1784 if (dev->active == 0) {
1785 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1786
1787 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1788 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1789 r |= HIFN_DMACSR_C_CTRL_DIS;
1790 }
1791 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1792 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1793 r |= HIFN_DMACSR_S_CTRL_DIS;
1794 }
1795 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1796 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1797 r |= HIFN_DMACSR_D_CTRL_DIS;
1798 }
1799 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1800 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1801 r |= HIFN_DMACSR_R_CTRL_DIS;
1802 }
1803 if (r)
1804 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1805 } else
1806 dev->active--;
1807
1808 if ((dev->prev_success == dev->success) && dev->started)
1809 reset = 1;
1810 dev->prev_success = dev->success;
1811 spin_unlock_irqrestore(&dev->lock, flags);
1812
1813 if (reset) {
1814 if (++dev->reset >= 5) {
1815 int i;
1816 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1817
1818 dev_info(&dev->pdev->dev,
1819 "r: %08x, active: %d, started: %d, "
1820 "success: %lu: qlen: %u/%u, reset: %d.\n",
1821 r, dev->active, dev->started,
1822 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1823 reset);
1824
1825 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1826 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1827 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1828 if (dev->sa[i]) {
1829 hifn_process_ready(dev->sa[i], -ENODEV);
1830 hifn_complete_sa(dev, i);
1831 }
1832 }
1833 pr_info("\n");
1834
1835 hifn_reset_dma(dev, 1);
1836 hifn_stop_device(dev);
1837 hifn_start_device(dev);
1838 dev->reset = 0;
1839 }
1840
1841 tasklet_schedule(&dev->tasklet);
1842 }
1843
1844 schedule_delayed_work(&dev->work, HZ);
1845}
1846
1847static irqreturn_t hifn_interrupt(int irq, void *data)
1848{
1849 struct hifn_device *dev = (struct hifn_device *)data;
1850 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1851 u32 dmacsr, restart;
1852
1853 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1854
1855 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1856 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1857 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1858 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1860
1861 if ((dmacsr & dev->dmareg) == 0)
1862 return IRQ_NONE;
1863
1864 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1865
1866 if (dmacsr & HIFN_DMACSR_ENGINE)
1867 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1868 if (dmacsr & HIFN_DMACSR_PUBDONE)
1869 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1870 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1871
1872 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1873 if (restart) {
1874 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1875
1876 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1877 !!(dmacsr & HIFN_DMACSR_R_OVER),
1878 !!(dmacsr & HIFN_DMACSR_D_OVER),
1879 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1880 if (!!(puisr & HIFN_PUISR_DSTOVER))
1881 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1882 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1883 HIFN_DMACSR_D_OVER));
1884 }
1885
1886 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1887 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1888 if (restart) {
1889 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1890 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1891 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1892 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1893 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1894 hifn_reset_dma(dev, 1);
1895 hifn_init_dma(dev);
1896 hifn_init_registers(dev);
1897 }
1898
1899 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1900 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1901 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1902 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1903 }
1904
1905 tasklet_schedule(&dev->tasklet);
1906
1907 return IRQ_HANDLED;
1908}
1909
1910static void hifn_flush(struct hifn_device *dev)
1911{
1912 unsigned long flags;
1913 struct crypto_async_request *async_req;
1914 struct skcipher_request *req;
1915 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1916 int i;
1917
1918 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1919 struct hifn_desc *d = &dma->resr[i];
1920
1921 if (dev->sa[i]) {
1922 hifn_process_ready(dev->sa[i],
1923 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1924 hifn_complete_sa(dev, i);
1925 }
1926 }
1927
1928 spin_lock_irqsave(&dev->lock, flags);
1929 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1930 req = skcipher_request_cast(async_req);
1931 spin_unlock_irqrestore(&dev->lock, flags);
1932
1933 hifn_process_ready(req, -ENODEV);
1934
1935 spin_lock_irqsave(&dev->lock, flags);
1936 }
1937 spin_unlock_irqrestore(&dev->lock, flags);
1938}
1939
1940static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1941 unsigned int len)
1942{
1943 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1944 struct hifn_device *dev = ctx->dev;
1945 int err;
1946
1947 err = verify_skcipher_des_key(cipher, key);
1948 if (err)
1949 return err;
1950
1951 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1952
1953 memcpy(ctx->key, key, len);
1954 ctx->keysize = len;
1955
1956 return 0;
1957}
1958
1959static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1960 unsigned int len)
1961{
1962 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1963 struct hifn_device *dev = ctx->dev;
1964 int err;
1965
1966 err = verify_skcipher_des3_key(cipher, key);
1967 if (err)
1968 return err;
1969
1970 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971
1972 memcpy(ctx->key, key, len);
1973 ctx->keysize = len;
1974
1975 return 0;
1976}
1977
1978static int hifn_handle_req(struct skcipher_request *req)
1979{
1980 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981 struct hifn_device *dev = ctx->dev;
1982 int err = -EAGAIN;
1983
1984 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985 err = hifn_setup_session(req);
1986
1987 if (err == -EAGAIN) {
1988 unsigned long flags;
1989
1990 spin_lock_irqsave(&dev->lock, flags);
1991 err = crypto_enqueue_request(&dev->queue, &req->base);
1992 spin_unlock_irqrestore(&dev->lock, flags);
1993 }
1994
1995 return err;
1996}
1997
1998static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1999 u8 type, u8 mode)
2000{
2001 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002 struct hifn_request_context *rctx = skcipher_request_ctx(req);
2003 unsigned ivsize;
2004
2005 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2006
2007 if (req->iv && mode != ACRYPTO_MODE_ECB) {
2008 if (type == ACRYPTO_TYPE_AES_128)
2009 ivsize = HIFN_AES_IV_LENGTH;
2010 else if (type == ACRYPTO_TYPE_DES)
2011 ivsize = HIFN_DES_KEY_LENGTH;
2012 else if (type == ACRYPTO_TYPE_3DES)
2013 ivsize = HIFN_3DES_KEY_LENGTH;
2014 }
2015
2016 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017 if (ctx->keysize == 24)
2018 type = ACRYPTO_TYPE_AES_192;
2019 else if (ctx->keysize == 32)
2020 type = ACRYPTO_TYPE_AES_256;
2021 }
2022
2023 rctx->op = op;
2024 rctx->mode = mode;
2025 rctx->type = type;
2026 rctx->iv = req->iv;
2027 rctx->ivsize = ivsize;
2028
2029 /*
2030 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 */
2034
2035 return hifn_handle_req(req);
2036}
2037
2038static int hifn_process_queue(struct hifn_device *dev)
2039{
2040 struct crypto_async_request *async_req, *backlog;
2041 struct skcipher_request *req;
2042 unsigned long flags;
2043 int err = 0;
2044
2045 while (dev->started < HIFN_QUEUE_LENGTH) {
2046 spin_lock_irqsave(&dev->lock, flags);
2047 backlog = crypto_get_backlog(&dev->queue);
2048 async_req = crypto_dequeue_request(&dev->queue);
2049 spin_unlock_irqrestore(&dev->lock, flags);
2050
2051 if (!async_req)
2052 break;
2053
2054 if (backlog)
2055 backlog->complete(backlog, -EINPROGRESS);
2056
2057 req = skcipher_request_cast(async_req);
2058
2059 err = hifn_handle_req(req);
2060 if (err)
2061 break;
2062 }
2063
2064 return err;
2065}
2066
2067static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2068 u8 type, u8 mode)
2069{
2070 int err;
2071 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072 struct hifn_device *dev = ctx->dev;
2073
2074 err = hifn_setup_crypto_req(req, op, type, mode);
2075 if (err)
2076 return err;
2077
2078 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2079 hifn_process_queue(dev);
2080
2081 return -EINPROGRESS;
2082}
2083
2084/*
2085 * AES ecryption functions.
2086 */
2087static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2088{
2089 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091}
2092static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2093{
2094 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096}
2097static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2098{
2099 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101}
2102static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2103{
2104 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106}
2107
2108/*
2109 * AES decryption functions.
2110 */
2111static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2112{
2113 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115}
2116static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2117{
2118 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120}
2121static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2122{
2123 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125}
2126static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2127{
2128 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130}
2131
2132/*
2133 * DES ecryption functions.
2134 */
2135static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2136{
2137 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139}
2140static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2141{
2142 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144}
2145static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2146{
2147 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149}
2150static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2151{
2152 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154}
2155
2156/*
2157 * DES decryption functions.
2158 */
2159static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2160{
2161 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163}
2164static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2165{
2166 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168}
2169static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2170{
2171 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173}
2174static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2175{
2176 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178}
2179
2180/*
2181 * 3DES ecryption functions.
2182 */
2183static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2184{
2185 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187}
2188static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2189{
2190 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192}
2193static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2194{
2195 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197}
2198static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2199{
2200 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202}
2203
2204/* 3DES decryption functions. */
2205static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2206{
2207 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209}
2210static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2211{
2212 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214}
2215static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2216{
2217 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219}
2220static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2221{
2222 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224}
2225
2226struct hifn_alg_template {
2227 char name[CRYPTO_MAX_ALG_NAME];
2228 char drv_name[CRYPTO_MAX_ALG_NAME];
2229 unsigned int bsize;
2230 struct skcipher_alg skcipher;
2231};
2232
2233static const struct hifn_alg_template hifn_alg_templates[] = {
2234 /*
2235 * 3DES ECB, CBC, CFB and OFB modes.
2236 */
2237 {
2238 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239 .skcipher = {
2240 .min_keysize = HIFN_3DES_KEY_LENGTH,
2241 .max_keysize = HIFN_3DES_KEY_LENGTH,
2242 .setkey = hifn_des3_setkey,
2243 .encrypt = hifn_encrypt_3des_cfb,
2244 .decrypt = hifn_decrypt_3des_cfb,
2245 },
2246 },
2247 {
2248 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249 .skcipher = {
2250 .min_keysize = HIFN_3DES_KEY_LENGTH,
2251 .max_keysize = HIFN_3DES_KEY_LENGTH,
2252 .setkey = hifn_des3_setkey,
2253 .encrypt = hifn_encrypt_3des_ofb,
2254 .decrypt = hifn_decrypt_3des_ofb,
2255 },
2256 },
2257 {
2258 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259 .skcipher = {
2260 .ivsize = HIFN_IV_LENGTH,
2261 .min_keysize = HIFN_3DES_KEY_LENGTH,
2262 .max_keysize = HIFN_3DES_KEY_LENGTH,
2263 .setkey = hifn_des3_setkey,
2264 .encrypt = hifn_encrypt_3des_cbc,
2265 .decrypt = hifn_decrypt_3des_cbc,
2266 },
2267 },
2268 {
2269 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270 .skcipher = {
2271 .min_keysize = HIFN_3DES_KEY_LENGTH,
2272 .max_keysize = HIFN_3DES_KEY_LENGTH,
2273 .setkey = hifn_des3_setkey,
2274 .encrypt = hifn_encrypt_3des_ecb,
2275 .decrypt = hifn_decrypt_3des_ecb,
2276 },
2277 },
2278
2279 /*
2280 * DES ECB, CBC, CFB and OFB modes.
2281 */
2282 {
2283 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284 .skcipher = {
2285 .min_keysize = HIFN_DES_KEY_LENGTH,
2286 .max_keysize = HIFN_DES_KEY_LENGTH,
2287 .setkey = hifn_setkey,
2288 .encrypt = hifn_encrypt_des_cfb,
2289 .decrypt = hifn_decrypt_des_cfb,
2290 },
2291 },
2292 {
2293 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294 .skcipher = {
2295 .min_keysize = HIFN_DES_KEY_LENGTH,
2296 .max_keysize = HIFN_DES_KEY_LENGTH,
2297 .setkey = hifn_setkey,
2298 .encrypt = hifn_encrypt_des_ofb,
2299 .decrypt = hifn_decrypt_des_ofb,
2300 },
2301 },
2302 {
2303 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304 .skcipher = {
2305 .ivsize = HIFN_IV_LENGTH,
2306 .min_keysize = HIFN_DES_KEY_LENGTH,
2307 .max_keysize = HIFN_DES_KEY_LENGTH,
2308 .setkey = hifn_setkey,
2309 .encrypt = hifn_encrypt_des_cbc,
2310 .decrypt = hifn_decrypt_des_cbc,
2311 },
2312 },
2313 {
2314 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315 .skcipher = {
2316 .min_keysize = HIFN_DES_KEY_LENGTH,
2317 .max_keysize = HIFN_DES_KEY_LENGTH,
2318 .setkey = hifn_setkey,
2319 .encrypt = hifn_encrypt_des_ecb,
2320 .decrypt = hifn_decrypt_des_ecb,
2321 },
2322 },
2323
2324 /*
2325 * AES ECB, CBC, CFB and OFB modes.
2326 */
2327 {
2328 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329 .skcipher = {
2330 .min_keysize = AES_MIN_KEY_SIZE,
2331 .max_keysize = AES_MAX_KEY_SIZE,
2332 .setkey = hifn_setkey,
2333 .encrypt = hifn_encrypt_aes_ecb,
2334 .decrypt = hifn_decrypt_aes_ecb,
2335 },
2336 },
2337 {
2338 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339 .skcipher = {
2340 .ivsize = HIFN_AES_IV_LENGTH,
2341 .min_keysize = AES_MIN_KEY_SIZE,
2342 .max_keysize = AES_MAX_KEY_SIZE,
2343 .setkey = hifn_setkey,
2344 .encrypt = hifn_encrypt_aes_cbc,
2345 .decrypt = hifn_decrypt_aes_cbc,
2346 },
2347 },
2348 {
2349 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350 .skcipher = {
2351 .min_keysize = AES_MIN_KEY_SIZE,
2352 .max_keysize = AES_MAX_KEY_SIZE,
2353 .setkey = hifn_setkey,
2354 .encrypt = hifn_encrypt_aes_cfb,
2355 .decrypt = hifn_decrypt_aes_cfb,
2356 },
2357 },
2358 {
2359 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360 .skcipher = {
2361 .min_keysize = AES_MIN_KEY_SIZE,
2362 .max_keysize = AES_MAX_KEY_SIZE,
2363 .setkey = hifn_setkey,
2364 .encrypt = hifn_encrypt_aes_ofb,
2365 .decrypt = hifn_decrypt_aes_ofb,
2366 },
2367 },
2368};
2369
2370static int hifn_init_tfm(struct crypto_skcipher *tfm)
2371{
2372 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2373 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2375
2376 ctx->dev = ha->dev;
2377 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2378
2379 return 0;
2380}
2381
2382static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2383{
2384 struct hifn_crypto_alg *alg;
2385 int err;
2386
2387 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2388 if (!alg)
2389 return -ENOMEM;
2390
2391 alg->alg = t->skcipher;
2392 alg->alg.init = hifn_init_tfm;
2393
2394 snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2395 snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2396 t->drv_name, dev->name);
2397
2398 alg->alg.base.cra_priority = 300;
2399 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2400 alg->alg.base.cra_blocksize = t->bsize;
2401 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2402 alg->alg.base.cra_alignmask = 0;
2403 alg->alg.base.cra_module = THIS_MODULE;
2404
2405 alg->dev = dev;
2406
2407 list_add_tail(&alg->entry, &dev->alg_list);
2408
2409 err = crypto_register_skcipher(&alg->alg);
2410 if (err) {
2411 list_del(&alg->entry);
2412 kfree(alg);
2413 }
2414
2415 return err;
2416}
2417
2418static void hifn_unregister_alg(struct hifn_device *dev)
2419{
2420 struct hifn_crypto_alg *a, *n;
2421
2422 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423 list_del(&a->entry);
2424 crypto_unregister_skcipher(&a->alg);
2425 kfree(a);
2426 }
2427}
2428
2429static int hifn_register_alg(struct hifn_device *dev)
2430{
2431 int i, err;
2432
2433 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435 if (err)
2436 goto err_out_exit;
2437 }
2438
2439 return 0;
2440
2441err_out_exit:
2442 hifn_unregister_alg(dev);
2443 return err;
2444}
2445
2446static void hifn_tasklet_callback(unsigned long data)
2447{
2448 struct hifn_device *dev = (struct hifn_device *)data;
2449
2450 /*
2451 * This is ok to call this without lock being held,
2452 * althogh it modifies some parameters used in parallel,
2453 * (like dev->success), but they are used in process
2454 * context or update is atomic (like setting dev->sa[i] to NULL).
2455 */
2456 hifn_clear_rings(dev, 0);
2457
2458 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2459 hifn_process_queue(dev);
2460}
2461
2462static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463{
2464 int err, i;
2465 struct hifn_device *dev;
2466 char name[8];
2467
2468 err = pci_enable_device(pdev);
2469 if (err)
2470 return err;
2471 pci_set_master(pdev);
2472
2473 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474 if (err)
2475 goto err_out_disable_pci_device;
2476
2477 snprintf(name, sizeof(name), "hifn%d",
2478 atomic_inc_return(&hifn_dev_number) - 1);
2479
2480 err = pci_request_regions(pdev, name);
2481 if (err)
2482 goto err_out_disable_pci_device;
2483
2484 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488 err = -ENODEV;
2489 goto err_out_free_regions;
2490 }
2491
2492 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493 GFP_KERNEL);
2494 if (!dev) {
2495 err = -ENOMEM;
2496 goto err_out_free_regions;
2497 }
2498
2499 INIT_LIST_HEAD(&dev->alg_list);
2500
2501 snprintf(dev->name, sizeof(dev->name), "%s", name);
2502 spin_lock_init(&dev->lock);
2503
2504 for (i = 0; i < 3; ++i) {
2505 unsigned long addr, size;
2506
2507 addr = pci_resource_start(pdev, i);
2508 size = pci_resource_len(pdev, i);
2509
2510 dev->bar[i] = ioremap(addr, size);
2511 if (!dev->bar[i]) {
2512 err = -ENOMEM;
2513 goto err_out_unmap_bars;
2514 }
2515 }
2516
2517 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518 &dev->desc_dma);
2519 if (!dev->desc_virt) {
2520 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521 err = -ENOMEM;
2522 goto err_out_unmap_bars;
2523 }
2524
2525 dev->pdev = pdev;
2526 dev->irq = pdev->irq;
2527
2528 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529 dev->sa[i] = NULL;
2530
2531 pci_set_drvdata(pdev, dev);
2532
2533 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534
2535 crypto_init_queue(&dev->queue, 1);
2536
2537 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538 if (err) {
2539 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540 dev->irq, err);
2541 dev->irq = 0;
2542 goto err_out_free_desc;
2543 }
2544
2545 err = hifn_start_device(dev);
2546 if (err)
2547 goto err_out_free_irq;
2548
2549 err = hifn_register_rng(dev);
2550 if (err)
2551 goto err_out_stop_device;
2552
2553 err = hifn_register_alg(dev);
2554 if (err)
2555 goto err_out_unregister_rng;
2556
2557 INIT_DELAYED_WORK(&dev->work, hifn_work);
2558 schedule_delayed_work(&dev->work, HZ);
2559
2560 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561 "successfully registered as %s.\n",
2562 pci_name(pdev), dev->name);
2563
2564 return 0;
2565
2566err_out_unregister_rng:
2567 hifn_unregister_rng(dev);
2568err_out_stop_device:
2569 hifn_reset_dma(dev, 1);
2570 hifn_stop_device(dev);
2571err_out_free_irq:
2572 free_irq(dev->irq, dev);
2573 tasklet_kill(&dev->tasklet);
2574err_out_free_desc:
2575 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576 dev->desc_virt, dev->desc_dma);
2577
2578err_out_unmap_bars:
2579 for (i = 0; i < 3; ++i)
2580 if (dev->bar[i])
2581 iounmap(dev->bar[i]);
2582 kfree(dev);
2583
2584err_out_free_regions:
2585 pci_release_regions(pdev);
2586
2587err_out_disable_pci_device:
2588 pci_disable_device(pdev);
2589
2590 return err;
2591}
2592
2593static void hifn_remove(struct pci_dev *pdev)
2594{
2595 int i;
2596 struct hifn_device *dev;
2597
2598 dev = pci_get_drvdata(pdev);
2599
2600 if (dev) {
2601 cancel_delayed_work_sync(&dev->work);
2602
2603 hifn_unregister_rng(dev);
2604 hifn_unregister_alg(dev);
2605 hifn_reset_dma(dev, 1);
2606 hifn_stop_device(dev);
2607
2608 free_irq(dev->irq, dev);
2609 tasklet_kill(&dev->tasklet);
2610
2611 hifn_flush(dev);
2612
2613 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2614 dev->desc_virt, dev->desc_dma);
2615 for (i = 0; i < 3; ++i)
2616 if (dev->bar[i])
2617 iounmap(dev->bar[i]);
2618
2619 kfree(dev);
2620 }
2621
2622 pci_release_regions(pdev);
2623 pci_disable_device(pdev);
2624}
2625
2626static struct pci_device_id hifn_pci_tbl[] = {
2627 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2628 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2629 { 0 }
2630};
2631MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2632
2633static struct pci_driver hifn_pci_driver = {
2634 .name = "hifn795x",
2635 .id_table = hifn_pci_tbl,
2636 .probe = hifn_probe,
2637 .remove = hifn_remove,
2638};
2639
2640static int __init hifn_init(void)
2641{
2642 unsigned int freq;
2643 int err;
2644
2645 /* HIFN supports only 32-bit addresses */
2646 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2647
2648 if (strncmp(hifn_pll_ref, "ext", 3) &&
2649 strncmp(hifn_pll_ref, "pci", 3)) {
2650 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651 return -EINVAL;
2652 }
2653
2654 /*
2655 * For the 7955/7956 the reference clock frequency must be in the
2656 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657 * but this chip is currently not supported.
2658 */
2659 if (hifn_pll_ref[3] != '\0') {
2660 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661 if (freq < 20 || freq > 100) {
2662 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663 "be in the range of 20-100");
2664 return -EINVAL;
2665 }
2666 }
2667
2668 err = pci_register_driver(&hifn_pci_driver);
2669 if (err < 0) {
2670 pr_err("Failed to register PCI driver for %s device.\n",
2671 hifn_pci_driver.name);
2672 return -ENODEV;
2673 }
2674
2675 pr_info("Driver for HIFN 795x crypto accelerator chip "
2676 "has been successfully registered.\n");
2677
2678 return 0;
2679}
2680
2681static void __exit hifn_fini(void)
2682{
2683 pci_unregister_driver(&hifn_pci_driver);
2684
2685 pr_info("Driver for HIFN 795x crypto accelerator chip "
2686 "has been successfully unregistered.\n");
2687}
2688
2689module_init(hifn_init);
2690module_exit(hifn_fini);
2691
2692MODULE_LICENSE("GPL");
2693MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/mod_devicetable.h>
11#include <linux/interrupt.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
17#include <linux/scatterlist.h>
18#include <linux/highmem.h>
19#include <linux/crypto.h>
20#include <linux/hw_random.h>
21#include <linux/ktime.h>
22
23#include <crypto/algapi.h>
24#include <crypto/internal/des.h>
25
26static char hifn_pll_ref[sizeof("extNNN")] = "ext";
27module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
28MODULE_PARM_DESC(hifn_pll_ref,
29 "PLL reference clock (pci[freq] or ext[freq], default ext)");
30
31static atomic_t hifn_dev_number;
32
33#define ACRYPTO_OP_DECRYPT 0
34#define ACRYPTO_OP_ENCRYPT 1
35#define ACRYPTO_OP_HMAC 2
36#define ACRYPTO_OP_RNG 3
37
38#define ACRYPTO_MODE_ECB 0
39#define ACRYPTO_MODE_CBC 1
40#define ACRYPTO_MODE_CFB 2
41#define ACRYPTO_MODE_OFB 3
42
43#define ACRYPTO_TYPE_AES_128 0
44#define ACRYPTO_TYPE_AES_192 1
45#define ACRYPTO_TYPE_AES_256 2
46#define ACRYPTO_TYPE_3DES 3
47#define ACRYPTO_TYPE_DES 4
48
49#define PCI_VENDOR_ID_HIFN 0x13A3
50#define PCI_DEVICE_ID_HIFN_7955 0x0020
51#define PCI_DEVICE_ID_HIFN_7956 0x001d
52
53/* I/O region sizes */
54
55#define HIFN_BAR0_SIZE 0x1000
56#define HIFN_BAR1_SIZE 0x2000
57#define HIFN_BAR2_SIZE 0x8000
58
59/* DMA registres */
60
61#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
62#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
63#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
64#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
65#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
66#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
67#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
68#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
69#define HIFN_CHIP_ID 0x98 /* Chip ID */
70
71/*
72 * Processing Unit Registers (offset from BASEREG0)
73 */
74#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
75#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
76#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
77#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
78#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
79#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
80#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
81#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
82#define HIFN_0_SPACESIZE 0x20 /* Register space size */
83
84/* Processing Unit Control Register (HIFN_0_PUCTRL) */
85#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
86#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
87#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
88#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
89#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
90
91/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
92#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
93#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
94#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
95#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
96#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
97#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
98#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
99#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
100#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
101#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
102
103/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
104#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
105#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
106#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
107#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
108#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
109#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
110#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
111#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
112#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
113#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
114#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
115#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
116#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
117#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
118#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
119#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
120#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
121#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
122#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
123#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
124#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
125#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
126#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
127
128/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
129#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
130#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
131#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
132#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
133#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
134#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
135#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
136#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
137#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
138#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
139
140/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
141#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
142#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
143#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
144#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
145#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
146#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
147#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
148#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
149#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
150#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
151#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
152#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
153#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
154#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
155#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
156#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
157#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
158
159/* FIFO Status Register (HIFN_0_FIFOSTAT) */
160#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
161#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
162
163/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
164#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
165
166/*
167 * DMA Interface Registers (offset from BASEREG1)
168 */
169#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
170#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
171#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
172#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
173#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
174#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
175#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
176#define HIFN_1_PLL 0x4c /* 795x: PLL config */
177#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
178#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
179#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
180#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
181#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
182#define HIFN_1_REVID 0x98 /* Revision ID */
183#define HIFN_1_UNLOCK_SECRET1 0xf4
184#define HIFN_1_UNLOCK_SECRET2 0xfc
185#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
186#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
187#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
188#define HIFN_1_PUB_OP 0x308 /* Public Operand */
189#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
190#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
191#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
192#define HIFN_1_RNG_DATA 0x318 /* RNG data */
193#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
194#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
195
196/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
197#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
198#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
199#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
200#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
201#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
202#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
203#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
204#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
205#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
206#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
207#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
208#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
209#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
210#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
211#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
212#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
213#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
214#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
215#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
216#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
217#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
218#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
219#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
220#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
221#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
222#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
223#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
224#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
225#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
226#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
227#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
228#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
229#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
230#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
231#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
232#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
233#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
234#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
235
236/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
237#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
238#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
239#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
240#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
241#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
242#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
243#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
244#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
245#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
246#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
247#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
248#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
249#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
250#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
251#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
252#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
253#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
254#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
255#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
256#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
257#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
258#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
259
260/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
261#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
262#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
263#define HIFN_DMACNFG_UNLOCK 0x00000800
264#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
265#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
266#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
267#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
268#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
269
270/* PLL configuration register */
271#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
272#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
273#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
274#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
275#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
276#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
277#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
278#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
279#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
280#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
281#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
282#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
283#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
284#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
285#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
286#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
287#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
288
289#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
290
291/* Public key reset register (HIFN_1_PUB_RESET) */
292#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
293
294/* Public base address register (HIFN_1_PUB_BASE) */
295#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
296
297/* Public operand length register (HIFN_1_PUB_OPLEN) */
298#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
299#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
300#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
301#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
302#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
303#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
304
305/* Public operation register (HIFN_1_PUB_OP) */
306#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
307#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
308#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
309#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
310#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
311#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
312#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
313#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
314#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
315#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
316#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
317#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
318#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
319#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
320#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
321#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
322#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
323#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
324#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
325#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
326
327/* Public status register (HIFN_1_PUB_STATUS) */
328#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
329#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
330
331/* Public interrupt enable register (HIFN_1_PUB_IEN) */
332#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
333
334/* Random number generator config register (HIFN_1_RNG_CONFIG) */
335#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
336
337#define HIFN_NAMESIZE 32
338#define HIFN_MAX_RESULT_ORDER 5
339
340#define HIFN_D_CMD_RSIZE (24 * 1)
341#define HIFN_D_SRC_RSIZE (80 * 1)
342#define HIFN_D_DST_RSIZE (80 * 1)
343#define HIFN_D_RES_RSIZE (24 * 1)
344
345#define HIFN_D_DST_DALIGN 4
346
347#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
348
349#define AES_MIN_KEY_SIZE 16
350#define AES_MAX_KEY_SIZE 32
351
352#define HIFN_DES_KEY_LENGTH 8
353#define HIFN_3DES_KEY_LENGTH 24
354#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
355#define HIFN_IV_LENGTH 8
356#define HIFN_AES_IV_LENGTH 16
357#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
358
359#define HIFN_MAC_KEY_LENGTH 64
360#define HIFN_MD5_LENGTH 16
361#define HIFN_SHA1_LENGTH 20
362#define HIFN_MAC_TRUNC_LENGTH 12
363
364#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
365#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
366#define HIFN_USED_RESULT 12
367
368struct hifn_desc {
369 volatile __le32 l;
370 volatile __le32 p;
371};
372
373struct hifn_dma {
374 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
375 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
376 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
377 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
378
379 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
380 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
381
382 /*
383 * Our current positions for insertion and removal from the descriptor
384 * rings.
385 */
386 volatile int cmdi, srci, dsti, resi;
387 volatile int cmdu, srcu, dstu, resu;
388 int cmdk, srck, dstk, resk;
389};
390
391#define HIFN_FLAG_CMD_BUSY (1 << 0)
392#define HIFN_FLAG_SRC_BUSY (1 << 1)
393#define HIFN_FLAG_DST_BUSY (1 << 2)
394#define HIFN_FLAG_RES_BUSY (1 << 3)
395#define HIFN_FLAG_OLD_KEY (1 << 4)
396
397#define HIFN_DEFAULT_ACTIVE_NUM 5
398
399struct hifn_device {
400 char name[HIFN_NAMESIZE];
401
402 int irq;
403
404 struct pci_dev *pdev;
405 void __iomem *bar[3];
406
407 void *desc_virt;
408 dma_addr_t desc_dma;
409
410 u32 dmareg;
411
412 void *sa[HIFN_D_RES_RSIZE];
413
414 spinlock_t lock;
415
416 u32 flags;
417 int active, started;
418 struct delayed_work work;
419 unsigned long reset;
420 unsigned long success;
421 unsigned long prev_success;
422
423 u8 snum;
424
425 struct tasklet_struct tasklet;
426
427 struct crypto_queue queue;
428 struct list_head alg_list;
429
430 unsigned int pk_clk_freq;
431
432#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
433 unsigned int rng_wait_time;
434 ktime_t rngtime;
435 struct hwrng rng;
436#endif
437};
438
439#define HIFN_D_LENGTH 0x0000ffff
440#define HIFN_D_NOINVALID 0x01000000
441#define HIFN_D_MASKDONEIRQ 0x02000000
442#define HIFN_D_DESTOVER 0x04000000
443#define HIFN_D_OVER 0x08000000
444#define HIFN_D_LAST 0x20000000
445#define HIFN_D_JUMP 0x40000000
446#define HIFN_D_VALID 0x80000000
447
448struct hifn_base_command {
449 volatile __le16 masks;
450 volatile __le16 session_num;
451 volatile __le16 total_source_count;
452 volatile __le16 total_dest_count;
453};
454
455#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
456#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
457#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
458#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
459#define HIFN_BASE_CMD_DECODE 0x2000
460#define HIFN_BASE_CMD_SRCLEN_M 0xc000
461#define HIFN_BASE_CMD_SRCLEN_S 14
462#define HIFN_BASE_CMD_DSTLEN_M 0x3000
463#define HIFN_BASE_CMD_DSTLEN_S 12
464#define HIFN_BASE_CMD_LENMASK_HI 0x30000
465#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
466
467/*
468 * Structure to help build up the command data structure.
469 */
470struct hifn_crypt_command {
471 volatile __le16 masks;
472 volatile __le16 header_skip;
473 volatile __le16 source_count;
474 volatile __le16 reserved;
475};
476
477#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
478#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
479#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
480#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
481#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
482#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
483#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
484#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
485#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
486#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
487#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
488#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
489#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
490#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
491#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
492#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
493#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
494#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
495#define HIFN_CRYPT_CMD_SRCLEN_S 14
496
497/*
498 * Structure to help build up the command data structure.
499 */
500struct hifn_mac_command {
501 volatile __le16 masks;
502 volatile __le16 header_skip;
503 volatile __le16 source_count;
504 volatile __le16 reserved;
505};
506
507#define HIFN_MAC_CMD_ALG_MASK 0x0001
508#define HIFN_MAC_CMD_ALG_SHA1 0x0000
509#define HIFN_MAC_CMD_ALG_MD5 0x0001
510#define HIFN_MAC_CMD_MODE_MASK 0x000c
511#define HIFN_MAC_CMD_MODE_HMAC 0x0000
512#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
513#define HIFN_MAC_CMD_MODE_HASH 0x0008
514#define HIFN_MAC_CMD_MODE_FULL 0x0004
515#define HIFN_MAC_CMD_TRUNC 0x0010
516#define HIFN_MAC_CMD_RESULT 0x0020
517#define HIFN_MAC_CMD_APPEND 0x0040
518#define HIFN_MAC_CMD_SRCLEN_M 0xc000
519#define HIFN_MAC_CMD_SRCLEN_S 14
520
521/*
522 * MAC POS IPsec initiates authentication after encryption on encodes
523 * and before decryption on decodes.
524 */
525#define HIFN_MAC_CMD_POS_IPSEC 0x0200
526#define HIFN_MAC_CMD_NEW_KEY 0x0800
527
528struct hifn_comp_command {
529 volatile __le16 masks;
530 volatile __le16 header_skip;
531 volatile __le16 source_count;
532 volatile __le16 reserved;
533};
534
535#define HIFN_COMP_CMD_SRCLEN_M 0xc000
536#define HIFN_COMP_CMD_SRCLEN_S 14
537#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
538#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
539#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
540#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
541#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
542#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
543#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
544#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
545
546struct hifn_base_result {
547 volatile __le16 flags;
548 volatile __le16 session;
549 volatile __le16 src_cnt; /* 15:0 of source count */
550 volatile __le16 dst_cnt; /* 15:0 of dest count */
551};
552
553#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
554#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
555#define HIFN_BASE_RES_SRCLEN_S 14
556#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
557#define HIFN_BASE_RES_DSTLEN_S 12
558
559struct hifn_comp_result {
560 volatile __le16 flags;
561 volatile __le16 crc;
562};
563
564#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
565#define HIFN_COMP_RES_LCB_S 8
566#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
567#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
568#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
569
570struct hifn_mac_result {
571 volatile __le16 flags;
572 volatile __le16 reserved;
573 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
574};
575
576#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
577#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
578
579struct hifn_crypt_result {
580 volatile __le16 flags;
581 volatile __le16 reserved;
582};
583
584#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
585
586#ifndef HIFN_POLL_FREQUENCY
587#define HIFN_POLL_FREQUENCY 0x1
588#endif
589
590#ifndef HIFN_POLL_SCALAR
591#define HIFN_POLL_SCALAR 0x0
592#endif
593
594#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
595#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
596
597struct hifn_crypto_alg {
598 struct list_head entry;
599 struct crypto_alg alg;
600 struct hifn_device *dev;
601};
602
603#define ASYNC_SCATTERLIST_CACHE 16
604
605#define ASYNC_FLAGS_MISALIGNED (1 << 0)
606
607struct hifn_cipher_walk {
608 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
609 u32 flags;
610 int num;
611};
612
613struct hifn_context {
614 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
615 struct hifn_device *dev;
616 unsigned int keysize;
617};
618
619struct hifn_request_context {
620 u8 *iv;
621 unsigned int ivsize;
622 u8 op, type, mode, unused;
623 struct hifn_cipher_walk walk;
624};
625
626#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
627
628static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
629{
630 return readl(dev->bar[0] + reg);
631}
632
633static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
634{
635 return readl(dev->bar[1] + reg);
636}
637
638static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
639{
640 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
641}
642
643static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
644{
645 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
646}
647
648static void hifn_wait_puc(struct hifn_device *dev)
649{
650 int i;
651 u32 ret;
652
653 for (i = 10000; i > 0; --i) {
654 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
655 if (!(ret & HIFN_PUCTRL_RESET))
656 break;
657
658 udelay(1);
659 }
660
661 if (!i)
662 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
663}
664
665static void hifn_reset_puc(struct hifn_device *dev)
666{
667 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
668 hifn_wait_puc(dev);
669}
670
671static void hifn_stop_device(struct hifn_device *dev)
672{
673 hifn_write_1(dev, HIFN_1_DMA_CSR,
674 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
675 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
676 hifn_write_0(dev, HIFN_0_PUIER, 0);
677 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
678}
679
680static void hifn_reset_dma(struct hifn_device *dev, int full)
681{
682 hifn_stop_device(dev);
683
684 /*
685 * Setting poll frequency and others to 0.
686 */
687 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689 mdelay(1);
690
691 /*
692 * Reset DMA.
693 */
694 if (full) {
695 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
696 mdelay(1);
697 } else {
698 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
699 HIFN_DMACNFG_MSTRESET);
700 hifn_reset_puc(dev);
701 }
702
703 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
704 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
705
706 hifn_reset_puc(dev);
707}
708
709static u32 hifn_next_signature(u32 a, u_int cnt)
710{
711 int i;
712 u32 v;
713
714 for (i = 0; i < cnt; i++) {
715 /* get the parity */
716 v = a & 0x80080125;
717 v ^= v >> 16;
718 v ^= v >> 8;
719 v ^= v >> 4;
720 v ^= v >> 2;
721 v ^= v >> 1;
722
723 a = (v & 1) ^ (a << 1);
724 }
725
726 return a;
727}
728
729static struct pci2id {
730 u_short pci_vendor;
731 u_short pci_prod;
732 char card_id[13];
733} pci2id[] = {
734 {
735 PCI_VENDOR_ID_HIFN,
736 PCI_DEVICE_ID_HIFN_7955,
737 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
738 0x00, 0x00, 0x00, 0x00, 0x00 }
739 },
740 {
741 PCI_VENDOR_ID_HIFN,
742 PCI_DEVICE_ID_HIFN_7956,
743 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
744 0x00, 0x00, 0x00, 0x00, 0x00 }
745 }
746};
747
748#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
749static int hifn_rng_data_present(struct hwrng *rng, int wait)
750{
751 struct hifn_device *dev = (struct hifn_device *)rng->priv;
752 s64 nsec;
753
754 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
755 nsec -= dev->rng_wait_time;
756 if (nsec <= 0)
757 return 1;
758 if (!wait)
759 return 0;
760 ndelay(nsec);
761 return 1;
762}
763
764static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
765{
766 struct hifn_device *dev = (struct hifn_device *)rng->priv;
767
768 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
769 dev->rngtime = ktime_get();
770 return 4;
771}
772
773static int hifn_register_rng(struct hifn_device *dev)
774{
775 /*
776 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
777 */
778 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
779 dev->pk_clk_freq) * 256;
780
781 dev->rng.name = dev->name;
782 dev->rng.data_present = hifn_rng_data_present,
783 dev->rng.data_read = hifn_rng_data_read,
784 dev->rng.priv = (unsigned long)dev;
785
786 return hwrng_register(&dev->rng);
787}
788
789static void hifn_unregister_rng(struct hifn_device *dev)
790{
791 hwrng_unregister(&dev->rng);
792}
793#else
794#define hifn_register_rng(dev) 0
795#define hifn_unregister_rng(dev)
796#endif
797
798static int hifn_init_pubrng(struct hifn_device *dev)
799{
800 int i;
801
802 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
803 HIFN_PUBRST_RESET);
804
805 for (i = 100; i > 0; --i) {
806 mdelay(1);
807
808 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
809 break;
810 }
811
812 if (!i) {
813 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
814 } else {
815 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
816 dev->dmareg |= HIFN_DMAIER_PUBDONE;
817 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
818
819 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
820 }
821
822 /* Enable RNG engine. */
823
824 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
825 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
826 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
827
828#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
829 /* First value must be discarded */
830 hifn_read_1(dev, HIFN_1_RNG_DATA);
831 dev->rngtime = ktime_get();
832#endif
833 return 0;
834}
835
836static int hifn_enable_crypto(struct hifn_device *dev)
837{
838 u32 dmacfg, addr;
839 char *offtbl = NULL;
840 int i;
841
842 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
843 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
844 pci2id[i].pci_prod == dev->pdev->device) {
845 offtbl = pci2id[i].card_id;
846 break;
847 }
848 }
849
850 if (!offtbl) {
851 dev_err(&dev->pdev->dev, "Unknown card!\n");
852 return -ENODEV;
853 }
854
855 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
856
857 hifn_write_1(dev, HIFN_1_DMA_CNFG,
858 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
859 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
860 mdelay(1);
861 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
862 mdelay(1);
863 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
864 mdelay(1);
865
866 for (i = 0; i < 12; ++i) {
867 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
868 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
869
870 mdelay(1);
871 }
872 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
873
874 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
875
876 return 0;
877}
878
879static void hifn_init_dma(struct hifn_device *dev)
880{
881 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
882 u32 dptr = dev->desc_dma;
883 int i;
884
885 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
886 dma->cmdr[i].p = __cpu_to_le32(dptr +
887 offsetof(struct hifn_dma, command_bufs[i][0]));
888 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
889 dma->resr[i].p = __cpu_to_le32(dptr +
890 offsetof(struct hifn_dma, result_bufs[i][0]));
891
892 /* Setup LAST descriptors. */
893 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
894 offsetof(struct hifn_dma, cmdr[0]));
895 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
896 offsetof(struct hifn_dma, srcr[0]));
897 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
898 offsetof(struct hifn_dma, dstr[0]));
899 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
900 offsetof(struct hifn_dma, resr[0]));
901
902 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
903 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
904 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
905}
906
907/*
908 * Initialize the PLL. We need to know the frequency of the reference clock
909 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
910 * allows us to operate without the risk of overclocking the chip. If it
911 * actually uses 33MHz, the chip will operate at half the speed, this can be
912 * overridden by specifying the frequency as module parameter (pci33).
913 *
914 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
915 * stable clock and the PCI clock frequency may vary, so the default is the
916 * external clock. There is no way to find out its frequency, we default to
917 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
918 * has an external crystal populated at 66MHz.
919 */
920static void hifn_init_pll(struct hifn_device *dev)
921{
922 unsigned int freq, m;
923 u32 pllcfg;
924
925 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
926
927 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
928 pllcfg |= HIFN_PLL_REF_CLK_PLL;
929 else
930 pllcfg |= HIFN_PLL_REF_CLK_HBI;
931
932 if (hifn_pll_ref[3] != '\0')
933 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
934 else {
935 freq = 66;
936 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
937 freq, hifn_pll_ref);
938 }
939
940 m = HIFN_PLL_FCK_MAX / freq;
941
942 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
943 if (m <= 8)
944 pllcfg |= HIFN_PLL_IS_1_8;
945 else
946 pllcfg |= HIFN_PLL_IS_9_12;
947
948 /* Select clock source and enable clock bypass */
949 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
950 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
951
952 /* Let the chip lock to the input clock */
953 mdelay(10);
954
955 /* Disable clock bypass */
956 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
957 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
958
959 /* Switch the engines to the PLL */
960 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
961 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
962
963 /*
964 * The Fpk_clk runs at half the total speed. Its frequency is needed to
965 * calculate the minimum time between two reads of the rng. Since 33MHz
966 * is actually 33.333... we overestimate the frequency here, resulting
967 * in slightly larger intervals.
968 */
969 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
970}
971
972static void hifn_init_registers(struct hifn_device *dev)
973{
974 u32 dptr = dev->desc_dma;
975
976 /* Initialization magic... */
977 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
978 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
979 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
980
981 /* write all 4 ring address registers */
982 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
983 offsetof(struct hifn_dma, cmdr[0]));
984 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
985 offsetof(struct hifn_dma, srcr[0]));
986 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
987 offsetof(struct hifn_dma, dstr[0]));
988 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
989 offsetof(struct hifn_dma, resr[0]));
990
991 mdelay(2);
992#if 0
993 hifn_write_1(dev, HIFN_1_DMA_CSR,
994 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
995 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
996 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
997 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
998 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
999 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1000 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1001 HIFN_DMACSR_S_WAIT |
1002 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1003 HIFN_DMACSR_C_WAIT |
1004 HIFN_DMACSR_ENGINE |
1005 HIFN_DMACSR_PUBDONE);
1006#else
1007 hifn_write_1(dev, HIFN_1_DMA_CSR,
1008 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1009 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1010 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1011 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1012 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1013 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1014 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1015 HIFN_DMACSR_S_WAIT |
1016 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1017 HIFN_DMACSR_C_WAIT |
1018 HIFN_DMACSR_ENGINE |
1019 HIFN_DMACSR_PUBDONE);
1020#endif
1021 hifn_read_1(dev, HIFN_1_DMA_CSR);
1022
1023 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1024 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1025 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1026 HIFN_DMAIER_ENGINE;
1027 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1028
1029 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1030 hifn_read_1(dev, HIFN_1_DMA_IER);
1031#if 0
1032 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1033 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1034 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1035 HIFN_PUCNFG_DRAM);
1036#else
1037 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1038#endif
1039 hifn_init_pll(dev);
1040
1041 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1042 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1043 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1044 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1045 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1046}
1047
1048static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1049 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1050{
1051 struct hifn_base_command *base_cmd;
1052 u8 *buf_pos = buf;
1053
1054 base_cmd = (struct hifn_base_command *)buf_pos;
1055 base_cmd->masks = __cpu_to_le16(mask);
1056 base_cmd->total_source_count =
1057 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1058 base_cmd->total_dest_count =
1059 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1060
1061 dlen >>= 16;
1062 slen >>= 16;
1063 base_cmd->session_num = __cpu_to_le16(snum |
1064 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1065 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1066
1067 return sizeof(struct hifn_base_command);
1068}
1069
1070static int hifn_setup_crypto_command(struct hifn_device *dev,
1071 u8 *buf, unsigned dlen, unsigned slen,
1072 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1073{
1074 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1075 struct hifn_crypt_command *cry_cmd;
1076 u8 *buf_pos = buf;
1077 u16 cmd_len;
1078
1079 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1080
1081 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1082 dlen >>= 16;
1083 cry_cmd->masks = __cpu_to_le16(mode |
1084 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1085 HIFN_CRYPT_CMD_SRCLEN_M));
1086 cry_cmd->header_skip = 0;
1087 cry_cmd->reserved = 0;
1088
1089 buf_pos += sizeof(struct hifn_crypt_command);
1090
1091 dma->cmdu++;
1092 if (dma->cmdu > 1) {
1093 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1094 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1095 }
1096
1097 if (keylen) {
1098 memcpy(buf_pos, key, keylen);
1099 buf_pos += keylen;
1100 }
1101 if (ivsize) {
1102 memcpy(buf_pos, iv, ivsize);
1103 buf_pos += ivsize;
1104 }
1105
1106 cmd_len = buf_pos - buf;
1107
1108 return cmd_len;
1109}
1110
1111static int hifn_setup_cmd_desc(struct hifn_device *dev,
1112 struct hifn_context *ctx, struct hifn_request_context *rctx,
1113 void *priv, unsigned int nbytes)
1114{
1115 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1116 int cmd_len, sa_idx;
1117 u8 *buf, *buf_pos;
1118 u16 mask;
1119
1120 sa_idx = dma->cmdi;
1121 buf_pos = buf = dma->command_bufs[dma->cmdi];
1122
1123 mask = 0;
1124 switch (rctx->op) {
1125 case ACRYPTO_OP_DECRYPT:
1126 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1127 break;
1128 case ACRYPTO_OP_ENCRYPT:
1129 mask = HIFN_BASE_CMD_CRYPT;
1130 break;
1131 case ACRYPTO_OP_HMAC:
1132 mask = HIFN_BASE_CMD_MAC;
1133 break;
1134 default:
1135 goto err_out;
1136 }
1137
1138 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1139 nbytes, mask, dev->snum);
1140
1141 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1142 u16 md = 0;
1143
1144 if (ctx->keysize)
1145 md |= HIFN_CRYPT_CMD_NEW_KEY;
1146 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1147 md |= HIFN_CRYPT_CMD_NEW_IV;
1148
1149 switch (rctx->mode) {
1150 case ACRYPTO_MODE_ECB:
1151 md |= HIFN_CRYPT_CMD_MODE_ECB;
1152 break;
1153 case ACRYPTO_MODE_CBC:
1154 md |= HIFN_CRYPT_CMD_MODE_CBC;
1155 break;
1156 case ACRYPTO_MODE_CFB:
1157 md |= HIFN_CRYPT_CMD_MODE_CFB;
1158 break;
1159 case ACRYPTO_MODE_OFB:
1160 md |= HIFN_CRYPT_CMD_MODE_OFB;
1161 break;
1162 default:
1163 goto err_out;
1164 }
1165
1166 switch (rctx->type) {
1167 case ACRYPTO_TYPE_AES_128:
1168 if (ctx->keysize != 16)
1169 goto err_out;
1170 md |= HIFN_CRYPT_CMD_KSZ_128 |
1171 HIFN_CRYPT_CMD_ALG_AES;
1172 break;
1173 case ACRYPTO_TYPE_AES_192:
1174 if (ctx->keysize != 24)
1175 goto err_out;
1176 md |= HIFN_CRYPT_CMD_KSZ_192 |
1177 HIFN_CRYPT_CMD_ALG_AES;
1178 break;
1179 case ACRYPTO_TYPE_AES_256:
1180 if (ctx->keysize != 32)
1181 goto err_out;
1182 md |= HIFN_CRYPT_CMD_KSZ_256 |
1183 HIFN_CRYPT_CMD_ALG_AES;
1184 break;
1185 case ACRYPTO_TYPE_3DES:
1186 if (ctx->keysize != 24)
1187 goto err_out;
1188 md |= HIFN_CRYPT_CMD_ALG_3DES;
1189 break;
1190 case ACRYPTO_TYPE_DES:
1191 if (ctx->keysize != 8)
1192 goto err_out;
1193 md |= HIFN_CRYPT_CMD_ALG_DES;
1194 break;
1195 default:
1196 goto err_out;
1197 }
1198
1199 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1200 nbytes, nbytes, ctx->key, ctx->keysize,
1201 rctx->iv, rctx->ivsize, md);
1202 }
1203
1204 dev->sa[sa_idx] = priv;
1205 dev->started++;
1206
1207 cmd_len = buf_pos - buf;
1208 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1209 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1210
1211 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1212 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1213 HIFN_D_VALID | HIFN_D_LAST |
1214 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1215 dma->cmdi = 0;
1216 } else {
1217 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1218 }
1219
1220 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1221 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1222 dev->flags |= HIFN_FLAG_CMD_BUSY;
1223 }
1224 return 0;
1225
1226err_out:
1227 return -EINVAL;
1228}
1229
1230static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1231 unsigned int offset, unsigned int size, int last)
1232{
1233 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1234 int idx;
1235 dma_addr_t addr;
1236
1237 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1238
1239 idx = dma->srci;
1240
1241 dma->srcr[idx].p = __cpu_to_le32(addr);
1242 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1243 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1244
1245 if (++idx == HIFN_D_SRC_RSIZE) {
1246 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1247 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1248 (last ? HIFN_D_LAST : 0));
1249 idx = 0;
1250 }
1251
1252 dma->srci = idx;
1253 dma->srcu++;
1254
1255 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1256 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1257 dev->flags |= HIFN_FLAG_SRC_BUSY;
1258 }
1259
1260 return size;
1261}
1262
1263static void hifn_setup_res_desc(struct hifn_device *dev)
1264{
1265 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1266
1267 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1268 HIFN_D_VALID | HIFN_D_LAST);
1269 /*
1270 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1271 * HIFN_D_LAST);
1272 */
1273
1274 if (++dma->resi == HIFN_D_RES_RSIZE) {
1275 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1276 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1277 dma->resi = 0;
1278 }
1279
1280 dma->resu++;
1281
1282 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1283 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1284 dev->flags |= HIFN_FLAG_RES_BUSY;
1285 }
1286}
1287
1288static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1289 unsigned offset, unsigned size, int last)
1290{
1291 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1292 int idx;
1293 dma_addr_t addr;
1294
1295 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1296
1297 idx = dma->dsti;
1298 dma->dstr[idx].p = __cpu_to_le32(addr);
1299 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1300 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1301
1302 if (++idx == HIFN_D_DST_RSIZE) {
1303 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1304 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1305 (last ? HIFN_D_LAST : 0));
1306 idx = 0;
1307 }
1308 dma->dsti = idx;
1309 dma->dstu++;
1310
1311 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1312 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1313 dev->flags |= HIFN_FLAG_DST_BUSY;
1314 }
1315}
1316
1317static int hifn_setup_dma(struct hifn_device *dev,
1318 struct hifn_context *ctx, struct hifn_request_context *rctx,
1319 struct scatterlist *src, struct scatterlist *dst,
1320 unsigned int nbytes, void *priv)
1321{
1322 struct scatterlist *t;
1323 struct page *spage, *dpage;
1324 unsigned int soff, doff;
1325 unsigned int n, len;
1326
1327 n = nbytes;
1328 while (n) {
1329 spage = sg_page(src);
1330 soff = src->offset;
1331 len = min(src->length, n);
1332
1333 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1334
1335 src++;
1336 n -= len;
1337 }
1338
1339 t = &rctx->walk.cache[0];
1340 n = nbytes;
1341 while (n) {
1342 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1343 BUG_ON(!sg_page(t));
1344 dpage = sg_page(t);
1345 doff = 0;
1346 len = t->length;
1347 } else {
1348 BUG_ON(!sg_page(dst));
1349 dpage = sg_page(dst);
1350 doff = dst->offset;
1351 len = dst->length;
1352 }
1353 len = min(len, n);
1354
1355 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1356
1357 dst++;
1358 t++;
1359 n -= len;
1360 }
1361
1362 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1363 hifn_setup_res_desc(dev);
1364 return 0;
1365}
1366
1367static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1368 int num, gfp_t gfp_flags)
1369{
1370 int i;
1371
1372 num = min(ASYNC_SCATTERLIST_CACHE, num);
1373 sg_init_table(w->cache, num);
1374
1375 w->num = 0;
1376 for (i = 0; i < num; ++i) {
1377 struct page *page = alloc_page(gfp_flags);
1378 struct scatterlist *s;
1379
1380 if (!page)
1381 break;
1382
1383 s = &w->cache[i];
1384
1385 sg_set_page(s, page, PAGE_SIZE, 0);
1386 w->num++;
1387 }
1388
1389 return i;
1390}
1391
1392static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1393{
1394 int i;
1395
1396 for (i = 0; i < w->num; ++i) {
1397 struct scatterlist *s = &w->cache[i];
1398
1399 __free_page(sg_page(s));
1400
1401 s->length = 0;
1402 }
1403
1404 w->num = 0;
1405}
1406
1407static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1408 unsigned int size, unsigned int *nbytesp)
1409{
1410 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1411 int idx = 0;
1412
1413 if (drest < size || size > nbytes)
1414 return -EINVAL;
1415
1416 while (size) {
1417 copy = min3(drest, size, dst->length);
1418
1419 size -= copy;
1420 drest -= copy;
1421 nbytes -= copy;
1422
1423 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1424 __func__, copy, size, drest, nbytes);
1425
1426 dst++;
1427 idx++;
1428 }
1429
1430 *nbytesp = nbytes;
1431 *drestp = drest;
1432
1433 return idx;
1434}
1435
1436static int hifn_cipher_walk(struct ablkcipher_request *req,
1437 struct hifn_cipher_walk *w)
1438{
1439 struct scatterlist *dst, *t;
1440 unsigned int nbytes = req->nbytes, offset, copy, diff;
1441 int idx, tidx, err;
1442
1443 tidx = idx = 0;
1444 offset = 0;
1445 while (nbytes) {
1446 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1447 return -EINVAL;
1448
1449 dst = &req->dst[idx];
1450
1451 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1452 __func__, dst->length, dst->offset, offset, nbytes);
1453
1454 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1455 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1456 offset) {
1457 unsigned slen = min(dst->length - offset, nbytes);
1458 unsigned dlen = PAGE_SIZE;
1459
1460 t = &w->cache[idx];
1461
1462 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1463 if (err < 0)
1464 return err;
1465
1466 idx += err;
1467
1468 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1469 diff = slen & (HIFN_D_DST_DALIGN - 1);
1470
1471 if (dlen < nbytes) {
1472 /*
1473 * Destination page does not have enough space
1474 * to put there additional blocksized chunk,
1475 * so we mark that page as containing only
1476 * blocksize aligned chunks:
1477 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1478 * and increase number of bytes to be processed
1479 * in next chunk:
1480 * nbytes += diff;
1481 */
1482 nbytes += diff;
1483
1484 /*
1485 * Temporary of course...
1486 * Kick author if you will catch this one.
1487 */
1488 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1489 __func__, dlen, nbytes, slen, offset);
1490 pr_err("%s: please contact author to fix this "
1491 "issue, generally you should not catch "
1492 "this path under any condition but who "
1493 "knows how did you use crypto code.\n"
1494 "Thank you.\n", __func__);
1495 BUG();
1496 } else {
1497 copy += diff + nbytes;
1498
1499 dst = &req->dst[idx];
1500
1501 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1502 if (err < 0)
1503 return err;
1504
1505 idx += err;
1506 }
1507
1508 t->length = copy;
1509 t->offset = offset;
1510 } else {
1511 nbytes -= min(dst->length, nbytes);
1512 idx++;
1513 }
1514
1515 tidx++;
1516 }
1517
1518 return tidx;
1519}
1520
1521static int hifn_setup_session(struct ablkcipher_request *req)
1522{
1523 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1524 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1525 struct hifn_device *dev = ctx->dev;
1526 unsigned long dlen, flags;
1527 unsigned int nbytes = req->nbytes, idx = 0;
1528 int err = -EINVAL, sg_num;
1529 struct scatterlist *dst;
1530
1531 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1532 goto err_out_exit;
1533
1534 rctx->walk.flags = 0;
1535
1536 while (nbytes) {
1537 dst = &req->dst[idx];
1538 dlen = min(dst->length, nbytes);
1539
1540 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1541 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1542 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1543
1544 nbytes -= dlen;
1545 idx++;
1546 }
1547
1548 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1549 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1550 if (err < 0)
1551 return err;
1552 }
1553
1554 sg_num = hifn_cipher_walk(req, &rctx->walk);
1555 if (sg_num < 0) {
1556 err = sg_num;
1557 goto err_out_exit;
1558 }
1559
1560 spin_lock_irqsave(&dev->lock, flags);
1561 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1562 err = -EAGAIN;
1563 goto err_out;
1564 }
1565
1566 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1567 if (err)
1568 goto err_out;
1569
1570 dev->snum++;
1571
1572 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1573 spin_unlock_irqrestore(&dev->lock, flags);
1574
1575 return 0;
1576
1577err_out:
1578 spin_unlock_irqrestore(&dev->lock, flags);
1579err_out_exit:
1580 if (err) {
1581 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1582 "type: %u, err: %d.\n",
1583 rctx->iv, rctx->ivsize,
1584 ctx->key, ctx->keysize,
1585 rctx->mode, rctx->op, rctx->type, err);
1586 }
1587
1588 return err;
1589}
1590
1591static int hifn_start_device(struct hifn_device *dev)
1592{
1593 int err;
1594
1595 dev->started = dev->active = 0;
1596 hifn_reset_dma(dev, 1);
1597
1598 err = hifn_enable_crypto(dev);
1599 if (err)
1600 return err;
1601
1602 hifn_reset_puc(dev);
1603
1604 hifn_init_dma(dev);
1605
1606 hifn_init_registers(dev);
1607
1608 hifn_init_pubrng(dev);
1609
1610 return 0;
1611}
1612
1613static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1614 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1615{
1616 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1617 void *daddr;
1618 int idx = 0;
1619
1620 if (srest < size || size > nbytes)
1621 return -EINVAL;
1622
1623 while (size) {
1624 copy = min3(srest, dst->length, size);
1625
1626 daddr = kmap_atomic(sg_page(dst));
1627 memcpy(daddr + dst->offset + offset, saddr, copy);
1628 kunmap_atomic(daddr);
1629
1630 nbytes -= copy;
1631 size -= copy;
1632 srest -= copy;
1633 saddr += copy;
1634 offset = 0;
1635
1636 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1637 __func__, copy, size, srest, nbytes);
1638
1639 dst++;
1640 idx++;
1641 }
1642
1643 *nbytesp = nbytes;
1644 *srestp = srest;
1645
1646 return idx;
1647}
1648
1649static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1650{
1651 unsigned long flags;
1652
1653 spin_lock_irqsave(&dev->lock, flags);
1654 dev->sa[i] = NULL;
1655 dev->started--;
1656 if (dev->started < 0)
1657 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1658 dev->started);
1659 spin_unlock_irqrestore(&dev->lock, flags);
1660 BUG_ON(dev->started < 0);
1661}
1662
1663static void hifn_process_ready(struct ablkcipher_request *req, int error)
1664{
1665 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1666
1667 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1668 unsigned int nbytes = req->nbytes;
1669 int idx = 0, err;
1670 struct scatterlist *dst, *t;
1671 void *saddr;
1672
1673 while (nbytes) {
1674 t = &rctx->walk.cache[idx];
1675 dst = &req->dst[idx];
1676
1677 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1678 "sg_page(dst): %p, dst->length: %u, "
1679 "nbytes: %u.\n",
1680 __func__, sg_page(t), t->length,
1681 sg_page(dst), dst->length, nbytes);
1682
1683 if (!t->length) {
1684 nbytes -= min(dst->length, nbytes);
1685 idx++;
1686 continue;
1687 }
1688
1689 saddr = kmap_atomic(sg_page(t));
1690
1691 err = ablkcipher_get(saddr, &t->length, t->offset,
1692 dst, nbytes, &nbytes);
1693 if (err < 0) {
1694 kunmap_atomic(saddr);
1695 break;
1696 }
1697
1698 idx += err;
1699 kunmap_atomic(saddr);
1700 }
1701
1702 hifn_cipher_walk_exit(&rctx->walk);
1703 }
1704
1705 req->base.complete(&req->base, error);
1706}
1707
1708static void hifn_clear_rings(struct hifn_device *dev, int error)
1709{
1710 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1711 int i, u;
1712
1713 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1714 "k: %d.%d.%d.%d.\n",
1715 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1716 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1717 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1718
1719 i = dma->resk; u = dma->resu;
1720 while (u != 0) {
1721 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1722 break;
1723
1724 if (dev->sa[i]) {
1725 dev->success++;
1726 dev->reset = 0;
1727 hifn_process_ready(dev->sa[i], error);
1728 hifn_complete_sa(dev, i);
1729 }
1730
1731 if (++i == HIFN_D_RES_RSIZE)
1732 i = 0;
1733 u--;
1734 }
1735 dma->resk = i; dma->resu = u;
1736
1737 i = dma->srck; u = dma->srcu;
1738 while (u != 0) {
1739 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1740 break;
1741 if (++i == HIFN_D_SRC_RSIZE)
1742 i = 0;
1743 u--;
1744 }
1745 dma->srck = i; dma->srcu = u;
1746
1747 i = dma->cmdk; u = dma->cmdu;
1748 while (u != 0) {
1749 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1750 break;
1751 if (++i == HIFN_D_CMD_RSIZE)
1752 i = 0;
1753 u--;
1754 }
1755 dma->cmdk = i; dma->cmdu = u;
1756
1757 i = dma->dstk; u = dma->dstu;
1758 while (u != 0) {
1759 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1760 break;
1761 if (++i == HIFN_D_DST_RSIZE)
1762 i = 0;
1763 u--;
1764 }
1765 dma->dstk = i; dma->dstu = u;
1766
1767 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1768 "k: %d.%d.%d.%d.\n",
1769 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1770 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1771 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1772}
1773
1774static void hifn_work(struct work_struct *work)
1775{
1776 struct delayed_work *dw = to_delayed_work(work);
1777 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1778 unsigned long flags;
1779 int reset = 0;
1780 u32 r = 0;
1781
1782 spin_lock_irqsave(&dev->lock, flags);
1783 if (dev->active == 0) {
1784 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1785
1786 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1787 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1788 r |= HIFN_DMACSR_C_CTRL_DIS;
1789 }
1790 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1791 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1792 r |= HIFN_DMACSR_S_CTRL_DIS;
1793 }
1794 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1795 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1796 r |= HIFN_DMACSR_D_CTRL_DIS;
1797 }
1798 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1799 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1800 r |= HIFN_DMACSR_R_CTRL_DIS;
1801 }
1802 if (r)
1803 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1804 } else
1805 dev->active--;
1806
1807 if ((dev->prev_success == dev->success) && dev->started)
1808 reset = 1;
1809 dev->prev_success = dev->success;
1810 spin_unlock_irqrestore(&dev->lock, flags);
1811
1812 if (reset) {
1813 if (++dev->reset >= 5) {
1814 int i;
1815 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816
1817 dev_info(&dev->pdev->dev,
1818 "r: %08x, active: %d, started: %d, "
1819 "success: %lu: qlen: %u/%u, reset: %d.\n",
1820 r, dev->active, dev->started,
1821 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1822 reset);
1823
1824 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1825 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1826 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1827 if (dev->sa[i]) {
1828 hifn_process_ready(dev->sa[i], -ENODEV);
1829 hifn_complete_sa(dev, i);
1830 }
1831 }
1832 pr_info("\n");
1833
1834 hifn_reset_dma(dev, 1);
1835 hifn_stop_device(dev);
1836 hifn_start_device(dev);
1837 dev->reset = 0;
1838 }
1839
1840 tasklet_schedule(&dev->tasklet);
1841 }
1842
1843 schedule_delayed_work(&dev->work, HZ);
1844}
1845
1846static irqreturn_t hifn_interrupt(int irq, void *data)
1847{
1848 struct hifn_device *dev = (struct hifn_device *)data;
1849 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1850 u32 dmacsr, restart;
1851
1852 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1853
1854 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1855 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1856 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1857 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1858 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1859
1860 if ((dmacsr & dev->dmareg) == 0)
1861 return IRQ_NONE;
1862
1863 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1864
1865 if (dmacsr & HIFN_DMACSR_ENGINE)
1866 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1867 if (dmacsr & HIFN_DMACSR_PUBDONE)
1868 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1869 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1870
1871 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1872 if (restart) {
1873 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1874
1875 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1876 !!(dmacsr & HIFN_DMACSR_R_OVER),
1877 !!(dmacsr & HIFN_DMACSR_D_OVER),
1878 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1879 if (!!(puisr & HIFN_PUISR_DSTOVER))
1880 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1881 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1882 HIFN_DMACSR_D_OVER));
1883 }
1884
1885 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1886 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1887 if (restart) {
1888 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1889 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1890 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1891 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1892 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1893 hifn_reset_dma(dev, 1);
1894 hifn_init_dma(dev);
1895 hifn_init_registers(dev);
1896 }
1897
1898 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1899 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1900 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1901 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1902 }
1903
1904 tasklet_schedule(&dev->tasklet);
1905
1906 return IRQ_HANDLED;
1907}
1908
1909static void hifn_flush(struct hifn_device *dev)
1910{
1911 unsigned long flags;
1912 struct crypto_async_request *async_req;
1913 struct ablkcipher_request *req;
1914 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1915 int i;
1916
1917 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1918 struct hifn_desc *d = &dma->resr[i];
1919
1920 if (dev->sa[i]) {
1921 hifn_process_ready(dev->sa[i],
1922 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1923 hifn_complete_sa(dev, i);
1924 }
1925 }
1926
1927 spin_lock_irqsave(&dev->lock, flags);
1928 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1929 req = ablkcipher_request_cast(async_req);
1930 spin_unlock_irqrestore(&dev->lock, flags);
1931
1932 hifn_process_ready(req, -ENODEV);
1933
1934 spin_lock_irqsave(&dev->lock, flags);
1935 }
1936 spin_unlock_irqrestore(&dev->lock, flags);
1937}
1938
1939static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1940 unsigned int len)
1941{
1942 struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1943 struct hifn_device *dev = ctx->dev;
1944 int err;
1945
1946 err = verify_ablkcipher_des_key(cipher, key);
1947 if (err)
1948 return err;
1949
1950 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1951
1952 memcpy(ctx->key, key, len);
1953 ctx->keysize = len;
1954
1955 return 0;
1956}
1957
1958static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1959 unsigned int len)
1960{
1961 struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1962 struct hifn_device *dev = ctx->dev;
1963 int err;
1964
1965 err = verify_ablkcipher_des3_key(cipher, key);
1966 if (err)
1967 return err;
1968
1969 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1970
1971 memcpy(ctx->key, key, len);
1972 ctx->keysize = len;
1973
1974 return 0;
1975}
1976
1977static int hifn_handle_req(struct ablkcipher_request *req)
1978{
1979 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1980 struct hifn_device *dev = ctx->dev;
1981 int err = -EAGAIN;
1982
1983 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1984 err = hifn_setup_session(req);
1985
1986 if (err == -EAGAIN) {
1987 unsigned long flags;
1988
1989 spin_lock_irqsave(&dev->lock, flags);
1990 err = ablkcipher_enqueue_request(&dev->queue, req);
1991 spin_unlock_irqrestore(&dev->lock, flags);
1992 }
1993
1994 return err;
1995}
1996
1997static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
1998 u8 type, u8 mode)
1999{
2000 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2001 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2002 unsigned ivsize;
2003
2004 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2005
2006 if (req->info && mode != ACRYPTO_MODE_ECB) {
2007 if (type == ACRYPTO_TYPE_AES_128)
2008 ivsize = HIFN_AES_IV_LENGTH;
2009 else if (type == ACRYPTO_TYPE_DES)
2010 ivsize = HIFN_DES_KEY_LENGTH;
2011 else if (type == ACRYPTO_TYPE_3DES)
2012 ivsize = HIFN_3DES_KEY_LENGTH;
2013 }
2014
2015 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2016 if (ctx->keysize == 24)
2017 type = ACRYPTO_TYPE_AES_192;
2018 else if (ctx->keysize == 32)
2019 type = ACRYPTO_TYPE_AES_256;
2020 }
2021
2022 rctx->op = op;
2023 rctx->mode = mode;
2024 rctx->type = type;
2025 rctx->iv = req->info;
2026 rctx->ivsize = ivsize;
2027
2028 /*
2029 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2030 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 */
2033
2034 return hifn_handle_req(req);
2035}
2036
2037static int hifn_process_queue(struct hifn_device *dev)
2038{
2039 struct crypto_async_request *async_req, *backlog;
2040 struct ablkcipher_request *req;
2041 unsigned long flags;
2042 int err = 0;
2043
2044 while (dev->started < HIFN_QUEUE_LENGTH) {
2045 spin_lock_irqsave(&dev->lock, flags);
2046 backlog = crypto_get_backlog(&dev->queue);
2047 async_req = crypto_dequeue_request(&dev->queue);
2048 spin_unlock_irqrestore(&dev->lock, flags);
2049
2050 if (!async_req)
2051 break;
2052
2053 if (backlog)
2054 backlog->complete(backlog, -EINPROGRESS);
2055
2056 req = ablkcipher_request_cast(async_req);
2057
2058 err = hifn_handle_req(req);
2059 if (err)
2060 break;
2061 }
2062
2063 return err;
2064}
2065
2066static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2067 u8 type, u8 mode)
2068{
2069 int err;
2070 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2071 struct hifn_device *dev = ctx->dev;
2072
2073 err = hifn_setup_crypto_req(req, op, type, mode);
2074 if (err)
2075 return err;
2076
2077 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2078 hifn_process_queue(dev);
2079
2080 return -EINPROGRESS;
2081}
2082
2083/*
2084 * AES ecryption functions.
2085 */
2086static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2087{
2088 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2089 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090}
2091static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2092{
2093 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2094 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095}
2096static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2097{
2098 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2099 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2100}
2101static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2102{
2103 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2104 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2105}
2106
2107/*
2108 * AES decryption functions.
2109 */
2110static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2111{
2112 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2113 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2114}
2115static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2116{
2117 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2118 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2119}
2120static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2121{
2122 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2123 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2124}
2125static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2126{
2127 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2128 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2129}
2130
2131/*
2132 * DES ecryption functions.
2133 */
2134static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2135{
2136 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2137 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2138}
2139static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2140{
2141 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2142 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2143}
2144static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2145{
2146 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2147 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2148}
2149static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2150{
2151 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2152 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2153}
2154
2155/*
2156 * DES decryption functions.
2157 */
2158static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2159{
2160 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2161 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2162}
2163static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2164{
2165 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2166 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2167}
2168static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2169{
2170 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2171 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2172}
2173static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2174{
2175 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2176 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2177}
2178
2179/*
2180 * 3DES ecryption functions.
2181 */
2182static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2183{
2184 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2185 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2186}
2187static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2188{
2189 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2190 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2191}
2192static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2193{
2194 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2195 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2196}
2197static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2198{
2199 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2200 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2201}
2202
2203/* 3DES decryption functions. */
2204static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2205{
2206 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2207 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2208}
2209static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2210{
2211 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2212 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2213}
2214static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2215{
2216 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2217 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2218}
2219static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2220{
2221 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2222 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2223}
2224
2225struct hifn_alg_template {
2226 char name[CRYPTO_MAX_ALG_NAME];
2227 char drv_name[CRYPTO_MAX_ALG_NAME];
2228 unsigned int bsize;
2229 struct ablkcipher_alg ablkcipher;
2230};
2231
2232static struct hifn_alg_template hifn_alg_templates[] = {
2233 /*
2234 * 3DES ECB, CBC, CFB and OFB modes.
2235 */
2236 {
2237 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2238 .ablkcipher = {
2239 .min_keysize = HIFN_3DES_KEY_LENGTH,
2240 .max_keysize = HIFN_3DES_KEY_LENGTH,
2241 .setkey = hifn_des3_setkey,
2242 .encrypt = hifn_encrypt_3des_cfb,
2243 .decrypt = hifn_decrypt_3des_cfb,
2244 },
2245 },
2246 {
2247 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2248 .ablkcipher = {
2249 .min_keysize = HIFN_3DES_KEY_LENGTH,
2250 .max_keysize = HIFN_3DES_KEY_LENGTH,
2251 .setkey = hifn_des3_setkey,
2252 .encrypt = hifn_encrypt_3des_ofb,
2253 .decrypt = hifn_decrypt_3des_ofb,
2254 },
2255 },
2256 {
2257 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2258 .ablkcipher = {
2259 .ivsize = HIFN_IV_LENGTH,
2260 .min_keysize = HIFN_3DES_KEY_LENGTH,
2261 .max_keysize = HIFN_3DES_KEY_LENGTH,
2262 .setkey = hifn_des3_setkey,
2263 .encrypt = hifn_encrypt_3des_cbc,
2264 .decrypt = hifn_decrypt_3des_cbc,
2265 },
2266 },
2267 {
2268 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2269 .ablkcipher = {
2270 .min_keysize = HIFN_3DES_KEY_LENGTH,
2271 .max_keysize = HIFN_3DES_KEY_LENGTH,
2272 .setkey = hifn_des3_setkey,
2273 .encrypt = hifn_encrypt_3des_ecb,
2274 .decrypt = hifn_decrypt_3des_ecb,
2275 },
2276 },
2277
2278 /*
2279 * DES ECB, CBC, CFB and OFB modes.
2280 */
2281 {
2282 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2283 .ablkcipher = {
2284 .min_keysize = HIFN_DES_KEY_LENGTH,
2285 .max_keysize = HIFN_DES_KEY_LENGTH,
2286 .setkey = hifn_setkey,
2287 .encrypt = hifn_encrypt_des_cfb,
2288 .decrypt = hifn_decrypt_des_cfb,
2289 },
2290 },
2291 {
2292 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2293 .ablkcipher = {
2294 .min_keysize = HIFN_DES_KEY_LENGTH,
2295 .max_keysize = HIFN_DES_KEY_LENGTH,
2296 .setkey = hifn_setkey,
2297 .encrypt = hifn_encrypt_des_ofb,
2298 .decrypt = hifn_decrypt_des_ofb,
2299 },
2300 },
2301 {
2302 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2303 .ablkcipher = {
2304 .ivsize = HIFN_IV_LENGTH,
2305 .min_keysize = HIFN_DES_KEY_LENGTH,
2306 .max_keysize = HIFN_DES_KEY_LENGTH,
2307 .setkey = hifn_setkey,
2308 .encrypt = hifn_encrypt_des_cbc,
2309 .decrypt = hifn_decrypt_des_cbc,
2310 },
2311 },
2312 {
2313 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2314 .ablkcipher = {
2315 .min_keysize = HIFN_DES_KEY_LENGTH,
2316 .max_keysize = HIFN_DES_KEY_LENGTH,
2317 .setkey = hifn_setkey,
2318 .encrypt = hifn_encrypt_des_ecb,
2319 .decrypt = hifn_decrypt_des_ecb,
2320 },
2321 },
2322
2323 /*
2324 * AES ECB, CBC, CFB and OFB modes.
2325 */
2326 {
2327 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2328 .ablkcipher = {
2329 .min_keysize = AES_MIN_KEY_SIZE,
2330 .max_keysize = AES_MAX_KEY_SIZE,
2331 .setkey = hifn_setkey,
2332 .encrypt = hifn_encrypt_aes_ecb,
2333 .decrypt = hifn_decrypt_aes_ecb,
2334 },
2335 },
2336 {
2337 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2338 .ablkcipher = {
2339 .ivsize = HIFN_AES_IV_LENGTH,
2340 .min_keysize = AES_MIN_KEY_SIZE,
2341 .max_keysize = AES_MAX_KEY_SIZE,
2342 .setkey = hifn_setkey,
2343 .encrypt = hifn_encrypt_aes_cbc,
2344 .decrypt = hifn_decrypt_aes_cbc,
2345 },
2346 },
2347 {
2348 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2349 .ablkcipher = {
2350 .min_keysize = AES_MIN_KEY_SIZE,
2351 .max_keysize = AES_MAX_KEY_SIZE,
2352 .setkey = hifn_setkey,
2353 .encrypt = hifn_encrypt_aes_cfb,
2354 .decrypt = hifn_decrypt_aes_cfb,
2355 },
2356 },
2357 {
2358 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2359 .ablkcipher = {
2360 .min_keysize = AES_MIN_KEY_SIZE,
2361 .max_keysize = AES_MAX_KEY_SIZE,
2362 .setkey = hifn_setkey,
2363 .encrypt = hifn_encrypt_aes_ofb,
2364 .decrypt = hifn_decrypt_aes_ofb,
2365 },
2366 },
2367};
2368
2369static int hifn_cra_init(struct crypto_tfm *tfm)
2370{
2371 struct crypto_alg *alg = tfm->__crt_alg;
2372 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2373 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2374
2375 ctx->dev = ha->dev;
2376 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2377 return 0;
2378}
2379
2380static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2381{
2382 struct hifn_crypto_alg *alg;
2383 int err;
2384
2385 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2386 if (!alg)
2387 return -ENOMEM;
2388
2389 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2390 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2391 t->drv_name, dev->name);
2392
2393 alg->alg.cra_priority = 300;
2394 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2395 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2396 alg->alg.cra_blocksize = t->bsize;
2397 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2398 alg->alg.cra_alignmask = 0;
2399 alg->alg.cra_type = &crypto_ablkcipher_type;
2400 alg->alg.cra_module = THIS_MODULE;
2401 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2402 alg->alg.cra_init = hifn_cra_init;
2403
2404 alg->dev = dev;
2405
2406 list_add_tail(&alg->entry, &dev->alg_list);
2407
2408 err = crypto_register_alg(&alg->alg);
2409 if (err) {
2410 list_del(&alg->entry);
2411 kfree(alg);
2412 }
2413
2414 return err;
2415}
2416
2417static void hifn_unregister_alg(struct hifn_device *dev)
2418{
2419 struct hifn_crypto_alg *a, *n;
2420
2421 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2422 list_del(&a->entry);
2423 crypto_unregister_alg(&a->alg);
2424 kfree(a);
2425 }
2426}
2427
2428static int hifn_register_alg(struct hifn_device *dev)
2429{
2430 int i, err;
2431
2432 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2433 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2434 if (err)
2435 goto err_out_exit;
2436 }
2437
2438 return 0;
2439
2440err_out_exit:
2441 hifn_unregister_alg(dev);
2442 return err;
2443}
2444
2445static void hifn_tasklet_callback(unsigned long data)
2446{
2447 struct hifn_device *dev = (struct hifn_device *)data;
2448
2449 /*
2450 * This is ok to call this without lock being held,
2451 * althogh it modifies some parameters used in parallel,
2452 * (like dev->success), but they are used in process
2453 * context or update is atomic (like setting dev->sa[i] to NULL).
2454 */
2455 hifn_clear_rings(dev, 0);
2456
2457 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2458 hifn_process_queue(dev);
2459}
2460
2461static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2462{
2463 int err, i;
2464 struct hifn_device *dev;
2465 char name[8];
2466
2467 err = pci_enable_device(pdev);
2468 if (err)
2469 return err;
2470 pci_set_master(pdev);
2471
2472 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2473 if (err)
2474 goto err_out_disable_pci_device;
2475
2476 snprintf(name, sizeof(name), "hifn%d",
2477 atomic_inc_return(&hifn_dev_number) - 1);
2478
2479 err = pci_request_regions(pdev, name);
2480 if (err)
2481 goto err_out_disable_pci_device;
2482
2483 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2484 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2485 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2486 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2487 err = -ENODEV;
2488 goto err_out_free_regions;
2489 }
2490
2491 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2492 GFP_KERNEL);
2493 if (!dev) {
2494 err = -ENOMEM;
2495 goto err_out_free_regions;
2496 }
2497
2498 INIT_LIST_HEAD(&dev->alg_list);
2499
2500 snprintf(dev->name, sizeof(dev->name), "%s", name);
2501 spin_lock_init(&dev->lock);
2502
2503 for (i = 0; i < 3; ++i) {
2504 unsigned long addr, size;
2505
2506 addr = pci_resource_start(pdev, i);
2507 size = pci_resource_len(pdev, i);
2508
2509 dev->bar[i] = ioremap_nocache(addr, size);
2510 if (!dev->bar[i]) {
2511 err = -ENOMEM;
2512 goto err_out_unmap_bars;
2513 }
2514 }
2515
2516 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2517 &dev->desc_dma);
2518 if (!dev->desc_virt) {
2519 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2520 err = -ENOMEM;
2521 goto err_out_unmap_bars;
2522 }
2523
2524 dev->pdev = pdev;
2525 dev->irq = pdev->irq;
2526
2527 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2528 dev->sa[i] = NULL;
2529
2530 pci_set_drvdata(pdev, dev);
2531
2532 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2533
2534 crypto_init_queue(&dev->queue, 1);
2535
2536 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2537 if (err) {
2538 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2539 dev->irq, err);
2540 dev->irq = 0;
2541 goto err_out_free_desc;
2542 }
2543
2544 err = hifn_start_device(dev);
2545 if (err)
2546 goto err_out_free_irq;
2547
2548 err = hifn_register_rng(dev);
2549 if (err)
2550 goto err_out_stop_device;
2551
2552 err = hifn_register_alg(dev);
2553 if (err)
2554 goto err_out_unregister_rng;
2555
2556 INIT_DELAYED_WORK(&dev->work, hifn_work);
2557 schedule_delayed_work(&dev->work, HZ);
2558
2559 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2560 "successfully registered as %s.\n",
2561 pci_name(pdev), dev->name);
2562
2563 return 0;
2564
2565err_out_unregister_rng:
2566 hifn_unregister_rng(dev);
2567err_out_stop_device:
2568 hifn_reset_dma(dev, 1);
2569 hifn_stop_device(dev);
2570err_out_free_irq:
2571 free_irq(dev->irq, dev);
2572 tasklet_kill(&dev->tasklet);
2573err_out_free_desc:
2574 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2575 dev->desc_virt, dev->desc_dma);
2576
2577err_out_unmap_bars:
2578 for (i = 0; i < 3; ++i)
2579 if (dev->bar[i])
2580 iounmap(dev->bar[i]);
2581 kfree(dev);
2582
2583err_out_free_regions:
2584 pci_release_regions(pdev);
2585
2586err_out_disable_pci_device:
2587 pci_disable_device(pdev);
2588
2589 return err;
2590}
2591
2592static void hifn_remove(struct pci_dev *pdev)
2593{
2594 int i;
2595 struct hifn_device *dev;
2596
2597 dev = pci_get_drvdata(pdev);
2598
2599 if (dev) {
2600 cancel_delayed_work_sync(&dev->work);
2601
2602 hifn_unregister_rng(dev);
2603 hifn_unregister_alg(dev);
2604 hifn_reset_dma(dev, 1);
2605 hifn_stop_device(dev);
2606
2607 free_irq(dev->irq, dev);
2608 tasklet_kill(&dev->tasklet);
2609
2610 hifn_flush(dev);
2611
2612 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2613 dev->desc_virt, dev->desc_dma);
2614 for (i = 0; i < 3; ++i)
2615 if (dev->bar[i])
2616 iounmap(dev->bar[i]);
2617
2618 kfree(dev);
2619 }
2620
2621 pci_release_regions(pdev);
2622 pci_disable_device(pdev);
2623}
2624
2625static struct pci_device_id hifn_pci_tbl[] = {
2626 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2627 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2628 { 0 }
2629};
2630MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2631
2632static struct pci_driver hifn_pci_driver = {
2633 .name = "hifn795x",
2634 .id_table = hifn_pci_tbl,
2635 .probe = hifn_probe,
2636 .remove = hifn_remove,
2637};
2638
2639static int __init hifn_init(void)
2640{
2641 unsigned int freq;
2642 int err;
2643
2644 /* HIFN supports only 32-bit addresses */
2645 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2646
2647 if (strncmp(hifn_pll_ref, "ext", 3) &&
2648 strncmp(hifn_pll_ref, "pci", 3)) {
2649 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2650 return -EINVAL;
2651 }
2652
2653 /*
2654 * For the 7955/7956 the reference clock frequency must be in the
2655 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2656 * but this chip is currently not supported.
2657 */
2658 if (hifn_pll_ref[3] != '\0') {
2659 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2660 if (freq < 20 || freq > 100) {
2661 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2662 "be in the range of 20-100");
2663 return -EINVAL;
2664 }
2665 }
2666
2667 err = pci_register_driver(&hifn_pci_driver);
2668 if (err < 0) {
2669 pr_err("Failed to register PCI driver for %s device.\n",
2670 hifn_pci_driver.name);
2671 return -ENODEV;
2672 }
2673
2674 pr_info("Driver for HIFN 795x crypto accelerator chip "
2675 "has been successfully registered.\n");
2676
2677 return 0;
2678}
2679
2680static void __exit hifn_fini(void)
2681{
2682 pci_unregister_driver(&hifn_pci_driver);
2683
2684 pr_info("Driver for HIFN 795x crypto accelerator chip "
2685 "has been successfully unregistered.\n");
2686}
2687
2688module_init(hifn_init);
2689module_exit(hifn_fini);
2690
2691MODULE_LICENSE("GPL");
2692MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2693MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");