Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
   4 * All rights reserved.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/interrupt.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/scatterlist.h>
  18#include <linux/highmem.h>
  19#include <linux/crypto.h>
  20#include <linux/hw_random.h>
  21#include <linux/ktime.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/internal/des.h>
  25#include <crypto/internal/skcipher.h>
  26
  27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
  28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
  29MODULE_PARM_DESC(hifn_pll_ref,
  30		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
  31
  32static atomic_t hifn_dev_number;
  33
  34#define ACRYPTO_OP_DECRYPT	0
  35#define ACRYPTO_OP_ENCRYPT	1
  36#define ACRYPTO_OP_HMAC		2
  37#define ACRYPTO_OP_RNG		3
  38
  39#define ACRYPTO_MODE_ECB		0
  40#define ACRYPTO_MODE_CBC		1
  41#define ACRYPTO_MODE_CFB		2
  42#define ACRYPTO_MODE_OFB		3
  43
  44#define ACRYPTO_TYPE_AES_128	0
  45#define ACRYPTO_TYPE_AES_192	1
  46#define ACRYPTO_TYPE_AES_256	2
  47#define ACRYPTO_TYPE_3DES	3
  48#define ACRYPTO_TYPE_DES	4
  49
  50#define PCI_VENDOR_ID_HIFN		0x13A3
  51#define PCI_DEVICE_ID_HIFN_7955		0x0020
  52#define	PCI_DEVICE_ID_HIFN_7956		0x001d
  53
  54/* I/O region sizes */
  55
  56#define HIFN_BAR0_SIZE			0x1000
  57#define HIFN_BAR1_SIZE			0x2000
  58#define HIFN_BAR2_SIZE			0x8000
  59
  60/* DMA registres */
  61
  62#define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
  63#define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
  64#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
  65#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
  66#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
  67#define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
  68#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
  69#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
  70#define HIFN_CHIP_ID			0x98	/* Chip ID */
  71
  72/*
  73 * Processing Unit Registers (offset from BASEREG0)
  74 */
  75#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
  76#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
  77#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
  78#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
  79#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
  80#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
  81#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
  82#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
  83#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
  84
  85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
  86#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
  87#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
  88#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
  89#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
  90#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
  91
  92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
  93#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
  94#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
  95#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
  96#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
  97#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
  98#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
  99#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
 100#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
 101#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
 102#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
 103
 104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
 105#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
 106#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
 107#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
 108#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
 109#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
 110#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
 111#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
 112#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
 113#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
 114#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
 115#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
 116#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
 117#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
 118#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
 119#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
 120#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
 121#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
 122#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
 123#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
 124#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
 125#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
 126#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
 127#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
 128
 129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
 130#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
 131#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
 132#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 133#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 134#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
 135#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
 136#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
 137#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
 138#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
 139#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
 140
 141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
 142#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
 143#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
 144#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 145#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 146#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
 147#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
 148#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
 149#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
 150#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
 151#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
 152#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
 153#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
 154#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
 155#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
 156#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
 157#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
 158#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
 159
 160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
 161#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
 162#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
 163
 164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
 165#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
 166
 167/*
 168 * DMA Interface Registers (offset from BASEREG1)
 169 */
 170#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
 171#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
 172#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
 173#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
 174#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
 175#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
 176#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
 177#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
 178#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
 179#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
 180#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
 181#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
 182#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
 183#define	HIFN_1_REVID		0x98	/* Revision ID */
 184#define	HIFN_1_UNLOCK_SECRET1	0xf4
 185#define	HIFN_1_UNLOCK_SECRET2	0xfc
 186#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
 187#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
 188#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
 189#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
 190#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
 191#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
 192#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
 193#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
 194#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
 195#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
 196
 197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
 198#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
 199#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
 200#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
 201#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
 202#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
 203#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
 204#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
 205#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
 206#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
 207#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
 208#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
 209#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
 210#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
 211#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 212#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
 213#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
 214#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
 215#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
 216#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
 217#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
 218#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
 219#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
 220#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 221#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
 222#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
 223#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
 224#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
 225#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
 226#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
 227#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
 228#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
 229#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
 230#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 231#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
 232#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
 233#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
 234#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
 235#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
 236
 237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
 238#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
 239#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
 240#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
 241#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
 242#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
 243#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 244#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
 245#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
 246#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
 247#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
 248#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 249#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
 250#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
 251#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
 252#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
 253#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
 254#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 255#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
 256#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
 257#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
 258#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
 259#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
 260
 261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
 262#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
 263#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
 264#define	HIFN_DMACNFG_UNLOCK	0x00000800
 265#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
 266#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
 267#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
 268#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
 269#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
 270
 271/* PLL configuration register */
 272#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
 273#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
 274#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
 275#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
 276#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
 277#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
 278#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
 279#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
 280#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
 281#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
 282#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
 283#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
 284#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
 285#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
 286#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
 287#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
 288#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
 289
 290#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
 291
 292/* Public key reset register (HIFN_1_PUB_RESET) */
 293#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
 294
 295/* Public base address register (HIFN_1_PUB_BASE) */
 296#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
 297
 298/* Public operand length register (HIFN_1_PUB_OPLEN) */
 299#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
 300#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
 301#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
 302#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
 303#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
 304#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
 305
 306/* Public operation register (HIFN_1_PUB_OP) */
 307#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
 308#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
 309#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
 310#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
 311#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
 312#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
 313#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
 314#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
 315#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
 316#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
 317#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
 318#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
 319#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
 320#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
 321#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
 322#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
 323#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
 324#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
 325#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
 326#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
 327
 328/* Public status register (HIFN_1_PUB_STATUS) */
 329#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
 330#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
 331
 332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
 333#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
 334
 335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
 336#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
 337
 338#define HIFN_NAMESIZE			32
 339#define HIFN_MAX_RESULT_ORDER		5
 340
 341#define	HIFN_D_CMD_RSIZE		(24 * 1)
 342#define	HIFN_D_SRC_RSIZE		(80 * 1)
 343#define	HIFN_D_DST_RSIZE		(80 * 1)
 344#define	HIFN_D_RES_RSIZE		(24 * 1)
 345
 346#define HIFN_D_DST_DALIGN		4
 347
 348#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
 349
 350#define AES_MIN_KEY_SIZE		16
 351#define AES_MAX_KEY_SIZE		32
 352
 353#define HIFN_DES_KEY_LENGTH		8
 354#define HIFN_3DES_KEY_LENGTH		24
 355#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
 356#define HIFN_IV_LENGTH			8
 357#define HIFN_AES_IV_LENGTH		16
 358#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
 359
 360#define HIFN_MAC_KEY_LENGTH		64
 361#define HIFN_MD5_LENGTH			16
 362#define HIFN_SHA1_LENGTH		20
 363#define HIFN_MAC_TRUNC_LENGTH		12
 364
 365#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
 366#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
 367#define HIFN_USED_RESULT		12
 368
 369struct hifn_desc {
 370	volatile __le32		l;
 371	volatile __le32		p;
 372};
 373
 374struct hifn_dma {
 375	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
 376	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
 377	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
 378	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
 379
 380	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
 381	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
 382
 383	/*
 384	 *  Our current positions for insertion and removal from the descriptor
 385	 *  rings.
 386	 */
 387	volatile int		cmdi, srci, dsti, resi;
 388	volatile int		cmdu, srcu, dstu, resu;
 389	int			cmdk, srck, dstk, resk;
 390};
 391
 392#define HIFN_FLAG_CMD_BUSY	(1 << 0)
 393#define HIFN_FLAG_SRC_BUSY	(1 << 1)
 394#define HIFN_FLAG_DST_BUSY	(1 << 2)
 395#define HIFN_FLAG_RES_BUSY	(1 << 3)
 396#define HIFN_FLAG_OLD_KEY	(1 << 4)
 397
 398#define HIFN_DEFAULT_ACTIVE_NUM	5
 399
 400struct hifn_device {
 401	char			name[HIFN_NAMESIZE];
 402
 403	int			irq;
 404
 405	struct pci_dev		*pdev;
 406	void __iomem		*bar[3];
 407
 408	void			*desc_virt;
 409	dma_addr_t		desc_dma;
 410
 411	u32			dmareg;
 412
 413	void			*sa[HIFN_D_RES_RSIZE];
 414
 415	spinlock_t		lock;
 416
 417	u32			flags;
 418	int			active, started;
 419	struct delayed_work	work;
 420	unsigned long		reset;
 421	unsigned long		success;
 422	unsigned long		prev_success;
 423
 424	u8			snum;
 425
 426	struct tasklet_struct	tasklet;
 427
 428	struct crypto_queue	queue;
 429	struct list_head	alg_list;
 430
 431	unsigned int		pk_clk_freq;
 432
 433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 434	unsigned int		rng_wait_time;
 435	ktime_t			rngtime;
 436	struct hwrng		rng;
 437#endif
 438};
 439
 440#define	HIFN_D_LENGTH			0x0000ffff
 441#define	HIFN_D_NOINVALID		0x01000000
 442#define	HIFN_D_MASKDONEIRQ		0x02000000
 443#define	HIFN_D_DESTOVER			0x04000000
 444#define	HIFN_D_OVER			0x08000000
 445#define	HIFN_D_LAST			0x20000000
 446#define	HIFN_D_JUMP			0x40000000
 447#define	HIFN_D_VALID			0x80000000
 448
 449struct hifn_base_command {
 450	volatile __le16		masks;
 451	volatile __le16		session_num;
 452	volatile __le16		total_source_count;
 453	volatile __le16		total_dest_count;
 454};
 455
 456#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
 457#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
 458#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
 459#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
 460#define	HIFN_BASE_CMD_DECODE		0x2000
 461#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
 462#define	HIFN_BASE_CMD_SRCLEN_S		14
 463#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
 464#define	HIFN_BASE_CMD_DSTLEN_S		12
 465#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
 466#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
 467
 468/*
 469 * Structure to help build up the command data structure.
 470 */
 471struct hifn_crypt_command {
 472	volatile __le16		masks;
 473	volatile __le16		header_skip;
 474	volatile __le16		source_count;
 475	volatile __le16		reserved;
 476};
 477
 478#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
 479#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
 480#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
 481#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
 482#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
 483#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
 484#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
 485#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
 486#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
 487#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
 488#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
 489#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
 490#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
 491#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
 492#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
 493#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
 494#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
 495#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
 496#define	HIFN_CRYPT_CMD_SRCLEN_S		14
 497
 498/*
 499 * Structure to help build up the command data structure.
 500 */
 501struct hifn_mac_command {
 502	volatile __le16	masks;
 503	volatile __le16	header_skip;
 504	volatile __le16	source_count;
 505	volatile __le16	reserved;
 506};
 507
 508#define	HIFN_MAC_CMD_ALG_MASK		0x0001
 509#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
 510#define	HIFN_MAC_CMD_ALG_MD5		0x0001
 511#define	HIFN_MAC_CMD_MODE_MASK		0x000c
 512#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
 513#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
 514#define	HIFN_MAC_CMD_MODE_HASH		0x0008
 515#define	HIFN_MAC_CMD_MODE_FULL		0x0004
 516#define	HIFN_MAC_CMD_TRUNC		0x0010
 517#define	HIFN_MAC_CMD_RESULT		0x0020
 518#define	HIFN_MAC_CMD_APPEND		0x0040
 519#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
 520#define	HIFN_MAC_CMD_SRCLEN_S		14
 521
 522/*
 523 * MAC POS IPsec initiates authentication after encryption on encodes
 524 * and before decryption on decodes.
 525 */
 526#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
 527#define	HIFN_MAC_CMD_NEW_KEY		0x0800
 528
 529struct hifn_comp_command {
 530	volatile __le16		masks;
 531	volatile __le16		header_skip;
 532	volatile __le16		source_count;
 533	volatile __le16		reserved;
 534};
 535
 536#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
 537#define	HIFN_COMP_CMD_SRCLEN_S		14
 538#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
 539#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
 540#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
 541#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
 542#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
 543#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
 544#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
 545#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
 546
 547struct hifn_base_result {
 548	volatile __le16		flags;
 549	volatile __le16		session;
 550	volatile __le16		src_cnt;		/* 15:0 of source count */
 551	volatile __le16		dst_cnt;		/* 15:0 of dest count */
 552};
 553
 554#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
 555#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
 556#define	HIFN_BASE_RES_SRCLEN_S		14
 557#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
 558#define	HIFN_BASE_RES_DSTLEN_S		12
 559
 560struct hifn_comp_result {
 561	volatile __le16		flags;
 562	volatile __le16		crc;
 563};
 564
 565#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
 566#define	HIFN_COMP_RES_LCB_S		8
 567#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
 568#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
 569#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
 570
 571struct hifn_mac_result {
 572	volatile __le16		flags;
 573	volatile __le16		reserved;
 574	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
 575};
 576
 577#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
 578#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
 579
 580struct hifn_crypt_result {
 581	volatile __le16		flags;
 582	volatile __le16		reserved;
 583};
 584
 585#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
 586
 587#ifndef HIFN_POLL_FREQUENCY
 588#define	HIFN_POLL_FREQUENCY	0x1
 589#endif
 590
 591#ifndef HIFN_POLL_SCALAR
 592#define	HIFN_POLL_SCALAR	0x0
 593#endif
 594
 595#define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
 596#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
 597
 598struct hifn_crypto_alg {
 599	struct list_head	entry;
 600	struct skcipher_alg	alg;
 601	struct hifn_device	*dev;
 602};
 603
 604#define ASYNC_SCATTERLIST_CACHE	16
 605
 606#define ASYNC_FLAGS_MISALIGNED	(1 << 0)
 607
 608struct hifn_cipher_walk {
 609	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
 610	u32			flags;
 611	int			num;
 612};
 613
 614struct hifn_context {
 615	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
 616	struct hifn_device	*dev;
 617	unsigned int		keysize;
 618};
 619
 620struct hifn_request_context {
 621	u8			*iv;
 622	unsigned int		ivsize;
 623	u8			op, type, mode, unused;
 624	struct hifn_cipher_walk	walk;
 625};
 626
 627#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
 628
 629static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
 630{
 631	return readl(dev->bar[0] + reg);
 632}
 633
 634static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
 635{
 636	return readl(dev->bar[1] + reg);
 637}
 638
 639static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
 640{
 641	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
 642}
 643
 644static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
 645{
 646	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
 647}
 648
 649static void hifn_wait_puc(struct hifn_device *dev)
 650{
 651	int i;
 652	u32 ret;
 653
 654	for (i = 10000; i > 0; --i) {
 655		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
 656		if (!(ret & HIFN_PUCTRL_RESET))
 657			break;
 658
 659		udelay(1);
 660	}
 661
 662	if (!i)
 663		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
 664}
 665
 666static void hifn_reset_puc(struct hifn_device *dev)
 667{
 668	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 669	hifn_wait_puc(dev);
 670}
 671
 672static void hifn_stop_device(struct hifn_device *dev)
 673{
 674	hifn_write_1(dev, HIFN_1_DMA_CSR,
 675		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 676		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
 677	hifn_write_0(dev, HIFN_0_PUIER, 0);
 678	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
 679}
 680
 681static void hifn_reset_dma(struct hifn_device *dev, int full)
 682{
 683	hifn_stop_device(dev);
 684
 685	/*
 686	 * Setting poll frequency and others to 0.
 687	 */
 688	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 689			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 690	mdelay(1);
 691
 692	/*
 693	 * Reset DMA.
 694	 */
 695	if (full) {
 696		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
 697		mdelay(1);
 698	} else {
 699		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
 700				HIFN_DMACNFG_MSTRESET);
 701		hifn_reset_puc(dev);
 702	}
 703
 704	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 705			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 706
 707	hifn_reset_puc(dev);
 708}
 709
 710static u32 hifn_next_signature(u32 a, u_int cnt)
 711{
 712	int i;
 713	u32 v;
 714
 715	for (i = 0; i < cnt; i++) {
 716		/* get the parity */
 717		v = a & 0x80080125;
 718		v ^= v >> 16;
 719		v ^= v >> 8;
 720		v ^= v >> 4;
 721		v ^= v >> 2;
 722		v ^= v >> 1;
 723
 724		a = (v & 1) ^ (a << 1);
 725	}
 726
 727	return a;
 728}
 729
 730static struct pci2id {
 731	u_short		pci_vendor;
 732	u_short		pci_prod;
 733	char		card_id[13];
 734} pci2id[] = {
 735	{
 736		PCI_VENDOR_ID_HIFN,
 737		PCI_DEVICE_ID_HIFN_7955,
 738		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 739		  0x00, 0x00, 0x00, 0x00, 0x00 }
 740	},
 741	{
 742		PCI_VENDOR_ID_HIFN,
 743		PCI_DEVICE_ID_HIFN_7956,
 744		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 745		  0x00, 0x00, 0x00, 0x00, 0x00 }
 746	}
 747};
 748
 749#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 750static int hifn_rng_data_present(struct hwrng *rng, int wait)
 751{
 752	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 753	s64 nsec;
 754
 755	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
 756	nsec -= dev->rng_wait_time;
 757	if (nsec <= 0)
 758		return 1;
 759	if (!wait)
 760		return 0;
 761	ndelay(nsec);
 762	return 1;
 763}
 764
 765static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
 766{
 767	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 768
 769	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
 770	dev->rngtime = ktime_get();
 771	return 4;
 772}
 773
 774static int hifn_register_rng(struct hifn_device *dev)
 775{
 776	/*
 777	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
 778	 */
 779	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
 780						   dev->pk_clk_freq) * 256;
 781
 782	dev->rng.name		= dev->name;
 783	dev->rng.data_present	= hifn_rng_data_present,
 784	dev->rng.data_read	= hifn_rng_data_read,
 785	dev->rng.priv		= (unsigned long)dev;
 786
 787	return hwrng_register(&dev->rng);
 788}
 789
 790static void hifn_unregister_rng(struct hifn_device *dev)
 791{
 792	hwrng_unregister(&dev->rng);
 793}
 794#else
 795#define hifn_register_rng(dev)		0
 796#define hifn_unregister_rng(dev)
 797#endif
 798
 799static int hifn_init_pubrng(struct hifn_device *dev)
 800{
 801	int i;
 802
 803	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
 804			HIFN_PUBRST_RESET);
 805
 806	for (i = 100; i > 0; --i) {
 807		mdelay(1);
 808
 809		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
 810			break;
 811	}
 812
 813	if (!i) {
 814		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
 815	} else {
 816		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
 817		dev->dmareg |= HIFN_DMAIER_PUBDONE;
 818		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
 819
 820		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
 821	}
 822
 823	/* Enable RNG engine. */
 824
 825	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
 826			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
 827	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
 828
 829#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 830	/* First value must be discarded */
 831	hifn_read_1(dev, HIFN_1_RNG_DATA);
 832	dev->rngtime = ktime_get();
 833#endif
 834	return 0;
 835}
 836
 837static int hifn_enable_crypto(struct hifn_device *dev)
 838{
 839	u32 dmacfg, addr;
 840	char *offtbl = NULL;
 841	int i;
 842
 843	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
 844		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
 845				pci2id[i].pci_prod == dev->pdev->device) {
 846			offtbl = pci2id[i].card_id;
 847			break;
 848		}
 849	}
 850
 851	if (!offtbl) {
 852		dev_err(&dev->pdev->dev, "Unknown card!\n");
 853		return -ENODEV;
 854	}
 855
 856	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
 857
 858	hifn_write_1(dev, HIFN_1_DMA_CNFG,
 859			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
 860			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 861	mdelay(1);
 862	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
 863	mdelay(1);
 864	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
 865	mdelay(1);
 866
 867	for (i = 0; i < 12; ++i) {
 868		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
 869		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
 870
 871		mdelay(1);
 872	}
 873	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
 874
 875	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
 876
 877	return 0;
 878}
 879
 880static void hifn_init_dma(struct hifn_device *dev)
 881{
 882	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
 883	u32 dptr = dev->desc_dma;
 884	int i;
 885
 886	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
 887		dma->cmdr[i].p = __cpu_to_le32(dptr +
 888				offsetof(struct hifn_dma, command_bufs[i][0]));
 889	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
 890		dma->resr[i].p = __cpu_to_le32(dptr +
 891				offsetof(struct hifn_dma, result_bufs[i][0]));
 892
 893	/* Setup LAST descriptors. */
 894	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
 895			offsetof(struct hifn_dma, cmdr[0]));
 896	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
 897			offsetof(struct hifn_dma, srcr[0]));
 898	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
 899			offsetof(struct hifn_dma, dstr[0]));
 900	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
 901			offsetof(struct hifn_dma, resr[0]));
 902
 903	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
 904	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
 905	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
 906}
 907
 908/*
 909 * Initialize the PLL. We need to know the frequency of the reference clock
 910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 911 * allows us to operate without the risk of overclocking the chip. If it
 912 * actually uses 33MHz, the chip will operate at half the speed, this can be
 913 * overridden by specifying the frequency as module parameter (pci33).
 914 *
 915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 916 * stable clock and the PCI clock frequency may vary, so the default is the
 917 * external clock. There is no way to find out its frequency, we default to
 918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 919 * has an external crystal populated at 66MHz.
 920 */
 921static void hifn_init_pll(struct hifn_device *dev)
 922{
 923	unsigned int freq, m;
 924	u32 pllcfg;
 925
 926	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
 927
 928	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
 929		pllcfg |= HIFN_PLL_REF_CLK_PLL;
 930	else
 931		pllcfg |= HIFN_PLL_REF_CLK_HBI;
 932
 933	if (hifn_pll_ref[3] != '\0')
 934		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
 935	else {
 936		freq = 66;
 937		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
 938			 freq, hifn_pll_ref);
 939	}
 940
 941	m = HIFN_PLL_FCK_MAX / freq;
 942
 943	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
 944	if (m <= 8)
 945		pllcfg |= HIFN_PLL_IS_1_8;
 946	else
 947		pllcfg |= HIFN_PLL_IS_9_12;
 948
 949	/* Select clock source and enable clock bypass */
 950	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 951		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
 952
 953	/* Let the chip lock to the input clock */
 954	mdelay(10);
 955
 956	/* Disable clock bypass */
 957	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 958		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
 959
 960	/* Switch the engines to the PLL */
 961	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 962		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
 963
 964	/*
 965	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
 966	 * calculate the minimum time between two reads of the rng. Since 33MHz
 967	 * is actually 33.333... we overestimate the frequency here, resulting
 968	 * in slightly larger intervals.
 969	 */
 970	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
 971}
 972
 973static void hifn_init_registers(struct hifn_device *dev)
 974{
 975	u32 dptr = dev->desc_dma;
 976
 977	/* Initialization magic... */
 978	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 979	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
 980	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
 981
 982	/* write all 4 ring address registers */
 983	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
 984				offsetof(struct hifn_dma, cmdr[0]));
 985	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
 986				offsetof(struct hifn_dma, srcr[0]));
 987	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
 988				offsetof(struct hifn_dma, dstr[0]));
 989	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
 990				offsetof(struct hifn_dma, resr[0]));
 991
 992	mdelay(2);
 993#if 0
 994	hifn_write_1(dev, HIFN_1_DMA_CSR,
 995	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 996	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
 997	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
 998	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
 999	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002	    HIFN_DMACSR_S_WAIT |
1003	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004	    HIFN_DMACSR_C_WAIT |
1005	    HIFN_DMACSR_ENGINE |
1006	    HIFN_DMACSR_PUBDONE);
1007#else
1008	hifn_write_1(dev, HIFN_1_DMA_CSR,
1009	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016	    HIFN_DMACSR_S_WAIT |
1017	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018	    HIFN_DMACSR_C_WAIT |
1019	    HIFN_DMACSR_ENGINE |
1020	    HIFN_DMACSR_PUBDONE);
1021#endif
1022	hifn_read_1(dev, HIFN_1_DMA_CSR);
1023
1024	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1027	    HIFN_DMAIER_ENGINE;
1028	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1029
1030	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031	hifn_read_1(dev, HIFN_1_DMA_IER);
1032#if 0
1033	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1036		    HIFN_PUCNFG_DRAM);
1037#else
1038	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1039#endif
1040	hifn_init_pll(dev);
1041
1042	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1047}
1048
1049static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1051{
1052	struct hifn_base_command *base_cmd;
1053	u8 *buf_pos = buf;
1054
1055	base_cmd = (struct hifn_base_command *)buf_pos;
1056	base_cmd->masks = __cpu_to_le16(mask);
1057	base_cmd->total_source_count =
1058		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059	base_cmd->total_dest_count =
1060		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1061
1062	dlen >>= 16;
1063	slen >>= 16;
1064	base_cmd->session_num = __cpu_to_le16(snum |
1065	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1067
1068	return sizeof(struct hifn_base_command);
1069}
1070
1071static int hifn_setup_crypto_command(struct hifn_device *dev,
1072		u8 *buf, unsigned dlen, unsigned slen,
1073		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1074{
1075	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1076	struct hifn_crypt_command *cry_cmd;
1077	u8 *buf_pos = buf;
1078	u16 cmd_len;
1079
1080	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1081
1082	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1083	dlen >>= 16;
1084	cry_cmd->masks = __cpu_to_le16(mode |
1085			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086			 HIFN_CRYPT_CMD_SRCLEN_M));
1087	cry_cmd->header_skip = 0;
1088	cry_cmd->reserved = 0;
1089
1090	buf_pos += sizeof(struct hifn_crypt_command);
1091
1092	dma->cmdu++;
1093	if (dma->cmdu > 1) {
1094		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1096	}
1097
1098	if (keylen) {
1099		memcpy(buf_pos, key, keylen);
1100		buf_pos += keylen;
1101	}
1102	if (ivsize) {
1103		memcpy(buf_pos, iv, ivsize);
1104		buf_pos += ivsize;
1105	}
1106
1107	cmd_len = buf_pos - buf;
1108
1109	return cmd_len;
1110}
1111
1112static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113		struct hifn_context *ctx, struct hifn_request_context *rctx,
1114		void *priv, unsigned int nbytes)
1115{
1116	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1117	int cmd_len, sa_idx;
1118	u8 *buf, *buf_pos;
1119	u16 mask;
1120
1121	sa_idx = dma->cmdi;
1122	buf_pos = buf = dma->command_bufs[dma->cmdi];
1123
1124	mask = 0;
1125	switch (rctx->op) {
1126	case ACRYPTO_OP_DECRYPT:
1127		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1128		break;
1129	case ACRYPTO_OP_ENCRYPT:
1130		mask = HIFN_BASE_CMD_CRYPT;
1131		break;
1132	case ACRYPTO_OP_HMAC:
1133		mask = HIFN_BASE_CMD_MAC;
1134		break;
1135	default:
1136		goto err_out;
1137	}
1138
1139	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140			nbytes, mask, dev->snum);
1141
1142	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1143		u16 md = 0;
1144
1145		if (ctx->keysize)
1146			md |= HIFN_CRYPT_CMD_NEW_KEY;
1147		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148			md |= HIFN_CRYPT_CMD_NEW_IV;
1149
1150		switch (rctx->mode) {
1151		case ACRYPTO_MODE_ECB:
1152			md |= HIFN_CRYPT_CMD_MODE_ECB;
1153			break;
1154		case ACRYPTO_MODE_CBC:
1155			md |= HIFN_CRYPT_CMD_MODE_CBC;
1156			break;
1157		case ACRYPTO_MODE_CFB:
1158			md |= HIFN_CRYPT_CMD_MODE_CFB;
1159			break;
1160		case ACRYPTO_MODE_OFB:
1161			md |= HIFN_CRYPT_CMD_MODE_OFB;
1162			break;
1163		default:
1164			goto err_out;
1165		}
1166
1167		switch (rctx->type) {
1168		case ACRYPTO_TYPE_AES_128:
1169			if (ctx->keysize != 16)
1170				goto err_out;
1171			md |= HIFN_CRYPT_CMD_KSZ_128 |
1172				HIFN_CRYPT_CMD_ALG_AES;
1173			break;
1174		case ACRYPTO_TYPE_AES_192:
1175			if (ctx->keysize != 24)
1176				goto err_out;
1177			md |= HIFN_CRYPT_CMD_KSZ_192 |
1178				HIFN_CRYPT_CMD_ALG_AES;
1179			break;
1180		case ACRYPTO_TYPE_AES_256:
1181			if (ctx->keysize != 32)
1182				goto err_out;
1183			md |= HIFN_CRYPT_CMD_KSZ_256 |
1184				HIFN_CRYPT_CMD_ALG_AES;
1185			break;
1186		case ACRYPTO_TYPE_3DES:
1187			if (ctx->keysize != 24)
1188				goto err_out;
1189			md |= HIFN_CRYPT_CMD_ALG_3DES;
1190			break;
1191		case ACRYPTO_TYPE_DES:
1192			if (ctx->keysize != 8)
1193				goto err_out;
1194			md |= HIFN_CRYPT_CMD_ALG_DES;
1195			break;
1196		default:
1197			goto err_out;
1198		}
1199
1200		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201				nbytes, nbytes, ctx->key, ctx->keysize,
1202				rctx->iv, rctx->ivsize, md);
1203	}
1204
1205	dev->sa[sa_idx] = priv;
1206	dev->started++;
1207
1208	cmd_len = buf_pos - buf;
1209	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1211
1212	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214			HIFN_D_VALID | HIFN_D_LAST |
1215			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1216		dma->cmdi = 0;
1217	} else {
1218		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1219	}
1220
1221	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223		dev->flags |= HIFN_FLAG_CMD_BUSY;
1224	}
1225	return 0;
1226
1227err_out:
1228	return -EINVAL;
1229}
1230
1231static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232		unsigned int offset, unsigned int size, int last)
1233{
1234	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1235	int idx;
1236	dma_addr_t addr;
1237
1238	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1239
1240	idx = dma->srci;
1241
1242	dma->srcr[idx].p = __cpu_to_le32(addr);
1243	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1244			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1245
1246	if (++idx == HIFN_D_SRC_RSIZE) {
1247		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1248				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1249				(last ? HIFN_D_LAST : 0));
1250		idx = 0;
1251	}
1252
1253	dma->srci = idx;
1254	dma->srcu++;
1255
1256	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1257		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1258		dev->flags |= HIFN_FLAG_SRC_BUSY;
1259	}
1260
1261	return size;
1262}
1263
1264static void hifn_setup_res_desc(struct hifn_device *dev)
1265{
1266	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1267
1268	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1269			HIFN_D_VALID | HIFN_D_LAST);
1270	/*
1271	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1272	 *					HIFN_D_LAST);
1273	 */
1274
1275	if (++dma->resi == HIFN_D_RES_RSIZE) {
1276		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1277				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1278		dma->resi = 0;
1279	}
1280
1281	dma->resu++;
1282
1283	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1284		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1285		dev->flags |= HIFN_FLAG_RES_BUSY;
1286	}
1287}
1288
1289static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1290		unsigned offset, unsigned size, int last)
1291{
1292	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1293	int idx;
1294	dma_addr_t addr;
1295
1296	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1297
1298	idx = dma->dsti;
1299	dma->dstr[idx].p = __cpu_to_le32(addr);
1300	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1301			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1302
1303	if (++idx == HIFN_D_DST_RSIZE) {
1304		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1306				(last ? HIFN_D_LAST : 0));
1307		idx = 0;
1308	}
1309	dma->dsti = idx;
1310	dma->dstu++;
1311
1312	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1313		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1314		dev->flags |= HIFN_FLAG_DST_BUSY;
1315	}
1316}
1317
1318static int hifn_setup_dma(struct hifn_device *dev,
1319		struct hifn_context *ctx, struct hifn_request_context *rctx,
1320		struct scatterlist *src, struct scatterlist *dst,
1321		unsigned int nbytes, void *priv)
1322{
1323	struct scatterlist *t;
1324	struct page *spage, *dpage;
1325	unsigned int soff, doff;
1326	unsigned int n, len;
1327
1328	n = nbytes;
1329	while (n) {
1330		spage = sg_page(src);
1331		soff = src->offset;
1332		len = min(src->length, n);
1333
1334		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1335
1336		src++;
1337		n -= len;
1338	}
1339
1340	t = &rctx->walk.cache[0];
1341	n = nbytes;
1342	while (n) {
1343		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1344			BUG_ON(!sg_page(t));
1345			dpage = sg_page(t);
1346			doff = 0;
1347			len = t->length;
1348		} else {
1349			BUG_ON(!sg_page(dst));
1350			dpage = sg_page(dst);
1351			doff = dst->offset;
1352			len = dst->length;
1353		}
1354		len = min(len, n);
1355
1356		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1357
1358		dst++;
1359		t++;
1360		n -= len;
1361	}
1362
1363	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1364	hifn_setup_res_desc(dev);
1365	return 0;
1366}
1367
1368static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1369		int num, gfp_t gfp_flags)
1370{
1371	int i;
1372
1373	num = min(ASYNC_SCATTERLIST_CACHE, num);
1374	sg_init_table(w->cache, num);
1375
1376	w->num = 0;
1377	for (i = 0; i < num; ++i) {
1378		struct page *page = alloc_page(gfp_flags);
1379		struct scatterlist *s;
1380
1381		if (!page)
1382			break;
1383
1384		s = &w->cache[i];
1385
1386		sg_set_page(s, page, PAGE_SIZE, 0);
1387		w->num++;
1388	}
1389
1390	return i;
1391}
1392
1393static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1394{
1395	int i;
1396
1397	for (i = 0; i < w->num; ++i) {
1398		struct scatterlist *s = &w->cache[i];
1399
1400		__free_page(sg_page(s));
1401
1402		s->length = 0;
1403	}
1404
1405	w->num = 0;
1406}
1407
1408static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1409		unsigned int size, unsigned int *nbytesp)
1410{
1411	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1412	int idx = 0;
1413
1414	if (drest < size || size > nbytes)
1415		return -EINVAL;
1416
1417	while (size) {
1418		copy = min3(drest, size, dst->length);
1419
1420		size -= copy;
1421		drest -= copy;
1422		nbytes -= copy;
1423
1424		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1425			 __func__, copy, size, drest, nbytes);
1426
1427		dst++;
1428		idx++;
1429	}
1430
1431	*nbytesp = nbytes;
1432	*drestp = drest;
1433
1434	return idx;
1435}
1436
1437static int hifn_cipher_walk(struct skcipher_request *req,
1438		struct hifn_cipher_walk *w)
1439{
1440	struct scatterlist *dst, *t;
1441	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1442	int idx, tidx, err;
1443
1444	tidx = idx = 0;
1445	offset = 0;
1446	while (nbytes) {
1447		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1448			return -EINVAL;
1449
1450		dst = &req->dst[idx];
1451
1452		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1453			 __func__, dst->length, dst->offset, offset, nbytes);
1454
1455		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1456		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1457		    offset) {
1458			unsigned slen = min(dst->length - offset, nbytes);
1459			unsigned dlen = PAGE_SIZE;
1460
1461			t = &w->cache[idx];
1462
1463			err = skcipher_add(&dlen, dst, slen, &nbytes);
1464			if (err < 0)
1465				return err;
1466
1467			idx += err;
1468
1469			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1470			diff = slen & (HIFN_D_DST_DALIGN - 1);
1471
1472			if (dlen < nbytes) {
1473				/*
1474				 * Destination page does not have enough space
1475				 * to put there additional blocksized chunk,
1476				 * so we mark that page as containing only
1477				 * blocksize aligned chunks:
1478				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1479				 * and increase number of bytes to be processed
1480				 * in next chunk:
1481				 *	nbytes += diff;
1482				 */
1483				nbytes += diff;
1484
1485				/*
1486				 * Temporary of course...
1487				 * Kick author if you will catch this one.
1488				 */
1489				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1490				       __func__, dlen, nbytes, slen, offset);
1491				pr_err("%s: please contact author to fix this "
1492				       "issue, generally you should not catch "
1493				       "this path under any condition but who "
1494				       "knows how did you use crypto code.\n"
1495				       "Thank you.\n",	__func__);
1496				BUG();
1497			} else {
1498				copy += diff + nbytes;
1499
1500				dst = &req->dst[idx];
1501
1502				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1503				if (err < 0)
1504					return err;
1505
1506				idx += err;
1507			}
1508
1509			t->length = copy;
1510			t->offset = offset;
1511		} else {
1512			nbytes -= min(dst->length, nbytes);
1513			idx++;
1514		}
1515
1516		tidx++;
1517	}
1518
1519	return tidx;
1520}
1521
1522static int hifn_setup_session(struct skcipher_request *req)
1523{
1524	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1525	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1526	struct hifn_device *dev = ctx->dev;
1527	unsigned long dlen, flags;
1528	unsigned int nbytes = req->cryptlen, idx = 0;
1529	int err = -EINVAL, sg_num;
1530	struct scatterlist *dst;
1531
1532	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1533		goto err_out_exit;
1534
1535	rctx->walk.flags = 0;
1536
1537	while (nbytes) {
1538		dst = &req->dst[idx];
1539		dlen = min(dst->length, nbytes);
1540
1541		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1542		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1543			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1544
1545		nbytes -= dlen;
1546		idx++;
1547	}
1548
1549	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1550		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1551		if (err < 0)
1552			return err;
1553	}
1554
1555	sg_num = hifn_cipher_walk(req, &rctx->walk);
1556	if (sg_num < 0) {
1557		err = sg_num;
1558		goto err_out_exit;
1559	}
1560
1561	spin_lock_irqsave(&dev->lock, flags);
1562	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1563		err = -EAGAIN;
1564		goto err_out;
1565	}
1566
1567	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1568	if (err)
1569		goto err_out;
1570
1571	dev->snum++;
1572
1573	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574	spin_unlock_irqrestore(&dev->lock, flags);
1575
1576	return 0;
1577
1578err_out:
1579	spin_unlock_irqrestore(&dev->lock, flags);
1580err_out_exit:
1581	if (err) {
1582		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583			 "type: %u, err: %d.\n",
1584			 rctx->iv, rctx->ivsize,
1585			 ctx->key, ctx->keysize,
1586			 rctx->mode, rctx->op, rctx->type, err);
1587	}
1588
1589	return err;
1590}
1591
1592static int hifn_start_device(struct hifn_device *dev)
1593{
1594	int err;
1595
1596	dev->started = dev->active = 0;
1597	hifn_reset_dma(dev, 1);
1598
1599	err = hifn_enable_crypto(dev);
1600	if (err)
1601		return err;
1602
1603	hifn_reset_puc(dev);
1604
1605	hifn_init_dma(dev);
1606
1607	hifn_init_registers(dev);
1608
1609	hifn_init_pubrng(dev);
1610
1611	return 0;
1612}
1613
1614static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1615		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1616{
1617	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1618	void *daddr;
1619	int idx = 0;
1620
1621	if (srest < size || size > nbytes)
1622		return -EINVAL;
1623
1624	while (size) {
1625		copy = min3(srest, dst->length, size);
1626
1627		daddr = kmap_atomic(sg_page(dst));
1628		memcpy(daddr + dst->offset + offset, saddr, copy);
1629		kunmap_atomic(daddr);
1630
1631		nbytes -= copy;
1632		size -= copy;
1633		srest -= copy;
1634		saddr += copy;
1635		offset = 0;
1636
1637		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1638			 __func__, copy, size, srest, nbytes);
1639
1640		dst++;
1641		idx++;
1642	}
1643
1644	*nbytesp = nbytes;
1645	*srestp = srest;
1646
1647	return idx;
1648}
1649
1650static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1651{
1652	unsigned long flags;
1653
1654	spin_lock_irqsave(&dev->lock, flags);
1655	dev->sa[i] = NULL;
1656	dev->started--;
1657	if (dev->started < 0)
1658		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1659			 dev->started);
1660	spin_unlock_irqrestore(&dev->lock, flags);
1661	BUG_ON(dev->started < 0);
1662}
1663
1664static void hifn_process_ready(struct skcipher_request *req, int error)
1665{
1666	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1667
1668	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1669		unsigned int nbytes = req->cryptlen;
1670		int idx = 0, err;
1671		struct scatterlist *dst, *t;
1672		void *saddr;
1673
1674		while (nbytes) {
1675			t = &rctx->walk.cache[idx];
1676			dst = &req->dst[idx];
1677
1678			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1679				"sg_page(dst): %p, dst->length: %u, "
1680				"nbytes: %u.\n",
1681				__func__, sg_page(t), t->length,
1682				sg_page(dst), dst->length, nbytes);
1683
1684			if (!t->length) {
1685				nbytes -= min(dst->length, nbytes);
1686				idx++;
1687				continue;
1688			}
1689
1690			saddr = kmap_atomic(sg_page(t));
1691
1692			err = skcipher_get(saddr, &t->length, t->offset,
1693					dst, nbytes, &nbytes);
1694			if (err < 0) {
1695				kunmap_atomic(saddr);
1696				break;
1697			}
1698
1699			idx += err;
1700			kunmap_atomic(saddr);
1701		}
1702
1703		hifn_cipher_walk_exit(&rctx->walk);
1704	}
1705
1706	req->base.complete(&req->base, error);
1707}
1708
1709static void hifn_clear_rings(struct hifn_device *dev, int error)
1710{
1711	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1712	int i, u;
1713
1714	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1715			"k: %d.%d.%d.%d.\n",
1716			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1717			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1718			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1719
1720	i = dma->resk; u = dma->resu;
1721	while (u != 0) {
1722		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1723			break;
1724
1725		if (dev->sa[i]) {
1726			dev->success++;
1727			dev->reset = 0;
1728			hifn_process_ready(dev->sa[i], error);
1729			hifn_complete_sa(dev, i);
1730		}
1731
1732		if (++i == HIFN_D_RES_RSIZE)
1733			i = 0;
1734		u--;
1735	}
1736	dma->resk = i; dma->resu = u;
1737
1738	i = dma->srck; u = dma->srcu;
1739	while (u != 0) {
1740		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1741			break;
1742		if (++i == HIFN_D_SRC_RSIZE)
1743			i = 0;
1744		u--;
1745	}
1746	dma->srck = i; dma->srcu = u;
1747
1748	i = dma->cmdk; u = dma->cmdu;
1749	while (u != 0) {
1750		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1751			break;
1752		if (++i == HIFN_D_CMD_RSIZE)
1753			i = 0;
1754		u--;
1755	}
1756	dma->cmdk = i; dma->cmdu = u;
1757
1758	i = dma->dstk; u = dma->dstu;
1759	while (u != 0) {
1760		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1761			break;
1762		if (++i == HIFN_D_DST_RSIZE)
1763			i = 0;
1764		u--;
1765	}
1766	dma->dstk = i; dma->dstu = u;
1767
1768	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1769			"k: %d.%d.%d.%d.\n",
1770			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1771			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1772			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1773}
1774
1775static void hifn_work(struct work_struct *work)
1776{
1777	struct delayed_work *dw = to_delayed_work(work);
1778	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1779	unsigned long flags;
1780	int reset = 0;
1781	u32 r = 0;
1782
1783	spin_lock_irqsave(&dev->lock, flags);
1784	if (dev->active == 0) {
1785		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1786
1787		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1788			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1789			r |= HIFN_DMACSR_C_CTRL_DIS;
1790		}
1791		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1792			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1793			r |= HIFN_DMACSR_S_CTRL_DIS;
1794		}
1795		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1796			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1797			r |= HIFN_DMACSR_D_CTRL_DIS;
1798		}
1799		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1800			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1801			r |= HIFN_DMACSR_R_CTRL_DIS;
1802		}
1803		if (r)
1804			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1805	} else
1806		dev->active--;
1807
1808	if ((dev->prev_success == dev->success) && dev->started)
1809		reset = 1;
1810	dev->prev_success = dev->success;
1811	spin_unlock_irqrestore(&dev->lock, flags);
1812
1813	if (reset) {
1814		if (++dev->reset >= 5) {
1815			int i;
1816			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1817
1818			dev_info(&dev->pdev->dev,
1819				 "r: %08x, active: %d, started: %d, "
1820				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1821				 r, dev->active, dev->started,
1822				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1823				 reset);
1824
1825			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1826			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1827				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1828				if (dev->sa[i]) {
1829					hifn_process_ready(dev->sa[i], -ENODEV);
1830					hifn_complete_sa(dev, i);
1831				}
1832			}
1833			pr_info("\n");
1834
1835			hifn_reset_dma(dev, 1);
1836			hifn_stop_device(dev);
1837			hifn_start_device(dev);
1838			dev->reset = 0;
1839		}
1840
1841		tasklet_schedule(&dev->tasklet);
1842	}
1843
1844	schedule_delayed_work(&dev->work, HZ);
1845}
1846
1847static irqreturn_t hifn_interrupt(int irq, void *data)
1848{
1849	struct hifn_device *dev = (struct hifn_device *)data;
1850	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1851	u32 dmacsr, restart;
1852
1853	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1854
1855	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1856			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1857		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1858		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1860
1861	if ((dmacsr & dev->dmareg) == 0)
1862		return IRQ_NONE;
1863
1864	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1865
1866	if (dmacsr & HIFN_DMACSR_ENGINE)
1867		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1868	if (dmacsr & HIFN_DMACSR_PUBDONE)
1869		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1870			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1871
1872	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1873	if (restart) {
1874		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1875
1876		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1877			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1878			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1879			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1880		if (!!(puisr & HIFN_PUISR_DSTOVER))
1881			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1882		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1883					HIFN_DMACSR_D_OVER));
1884	}
1885
1886	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1887			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1888	if (restart) {
1889		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1890			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1891			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1892			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1893			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1894		hifn_reset_dma(dev, 1);
1895		hifn_init_dma(dev);
1896		hifn_init_registers(dev);
1897	}
1898
1899	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1900		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1901		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1902		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1903	}
1904
1905	tasklet_schedule(&dev->tasklet);
1906
1907	return IRQ_HANDLED;
1908}
1909
1910static void hifn_flush(struct hifn_device *dev)
1911{
1912	unsigned long flags;
1913	struct crypto_async_request *async_req;
1914	struct skcipher_request *req;
1915	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1916	int i;
1917
1918	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1919		struct hifn_desc *d = &dma->resr[i];
1920
1921		if (dev->sa[i]) {
1922			hifn_process_ready(dev->sa[i],
1923				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1924			hifn_complete_sa(dev, i);
1925		}
1926	}
1927
1928	spin_lock_irqsave(&dev->lock, flags);
1929	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1930		req = skcipher_request_cast(async_req);
1931		spin_unlock_irqrestore(&dev->lock, flags);
1932
1933		hifn_process_ready(req, -ENODEV);
1934
1935		spin_lock_irqsave(&dev->lock, flags);
1936	}
1937	spin_unlock_irqrestore(&dev->lock, flags);
1938}
1939
1940static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1941		unsigned int len)
1942{
1943	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1944	struct hifn_device *dev = ctx->dev;
1945	int err;
1946
1947	err = verify_skcipher_des_key(cipher, key);
1948	if (err)
1949		return err;
1950
1951	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1952
1953	memcpy(ctx->key, key, len);
1954	ctx->keysize = len;
1955
1956	return 0;
1957}
1958
1959static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1960			    unsigned int len)
1961{
1962	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1963	struct hifn_device *dev = ctx->dev;
1964	int err;
1965
1966	err = verify_skcipher_des3_key(cipher, key);
1967	if (err)
1968		return err;
1969
1970	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971
1972	memcpy(ctx->key, key, len);
1973	ctx->keysize = len;
1974
1975	return 0;
1976}
1977
1978static int hifn_handle_req(struct skcipher_request *req)
1979{
1980	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981	struct hifn_device *dev = ctx->dev;
1982	int err = -EAGAIN;
1983
1984	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985		err = hifn_setup_session(req);
1986
1987	if (err == -EAGAIN) {
1988		unsigned long flags;
1989
1990		spin_lock_irqsave(&dev->lock, flags);
1991		err = crypto_enqueue_request(&dev->queue, &req->base);
1992		spin_unlock_irqrestore(&dev->lock, flags);
1993	}
1994
1995	return err;
1996}
1997
1998static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1999		u8 type, u8 mode)
2000{
2001	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002	struct hifn_request_context *rctx = skcipher_request_ctx(req);
2003	unsigned ivsize;
2004
2005	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2006
2007	if (req->iv && mode != ACRYPTO_MODE_ECB) {
2008		if (type == ACRYPTO_TYPE_AES_128)
2009			ivsize = HIFN_AES_IV_LENGTH;
2010		else if (type == ACRYPTO_TYPE_DES)
2011			ivsize = HIFN_DES_KEY_LENGTH;
2012		else if (type == ACRYPTO_TYPE_3DES)
2013			ivsize = HIFN_3DES_KEY_LENGTH;
2014	}
2015
2016	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017		if (ctx->keysize == 24)
2018			type = ACRYPTO_TYPE_AES_192;
2019		else if (ctx->keysize == 32)
2020			type = ACRYPTO_TYPE_AES_256;
2021	}
2022
2023	rctx->op = op;
2024	rctx->mode = mode;
2025	rctx->type = type;
2026	rctx->iv = req->iv;
2027	rctx->ivsize = ivsize;
2028
2029	/*
2030	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033	 */
2034
2035	return hifn_handle_req(req);
2036}
2037
2038static int hifn_process_queue(struct hifn_device *dev)
2039{
2040	struct crypto_async_request *async_req, *backlog;
2041	struct skcipher_request *req;
2042	unsigned long flags;
2043	int err = 0;
2044
2045	while (dev->started < HIFN_QUEUE_LENGTH) {
2046		spin_lock_irqsave(&dev->lock, flags);
2047		backlog = crypto_get_backlog(&dev->queue);
2048		async_req = crypto_dequeue_request(&dev->queue);
2049		spin_unlock_irqrestore(&dev->lock, flags);
2050
2051		if (!async_req)
2052			break;
2053
2054		if (backlog)
2055			backlog->complete(backlog, -EINPROGRESS);
2056
2057		req = skcipher_request_cast(async_req);
2058
2059		err = hifn_handle_req(req);
2060		if (err)
2061			break;
2062	}
2063
2064	return err;
2065}
2066
2067static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2068		u8 type, u8 mode)
2069{
2070	int err;
2071	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072	struct hifn_device *dev = ctx->dev;
2073
2074	err = hifn_setup_crypto_req(req, op, type, mode);
2075	if (err)
2076		return err;
2077
2078	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2079		hifn_process_queue(dev);
2080
2081	return -EINPROGRESS;
2082}
2083
2084/*
2085 * AES ecryption functions.
2086 */
2087static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2088{
2089	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091}
2092static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2093{
2094	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096}
2097static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2098{
2099	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101}
2102static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2103{
2104	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106}
2107
2108/*
2109 * AES decryption functions.
2110 */
2111static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2112{
2113	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115}
2116static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2117{
2118	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120}
2121static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2122{
2123	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125}
2126static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2127{
2128	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130}
2131
2132/*
2133 * DES ecryption functions.
2134 */
2135static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2136{
2137	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139}
2140static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2141{
2142	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144}
2145static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2146{
2147	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149}
2150static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2151{
2152	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154}
2155
2156/*
2157 * DES decryption functions.
2158 */
2159static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2160{
2161	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163}
2164static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2165{
2166	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168}
2169static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2170{
2171	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173}
2174static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2175{
2176	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178}
2179
2180/*
2181 * 3DES ecryption functions.
2182 */
2183static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2184{
2185	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187}
2188static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2189{
2190	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192}
2193static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2194{
2195	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197}
2198static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2199{
2200	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202}
2203
2204/* 3DES decryption functions. */
2205static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2206{
2207	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209}
2210static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2211{
2212	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214}
2215static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2216{
2217	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219}
2220static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2221{
2222	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224}
2225
2226struct hifn_alg_template {
2227	char name[CRYPTO_MAX_ALG_NAME];
2228	char drv_name[CRYPTO_MAX_ALG_NAME];
2229	unsigned int bsize;
2230	struct skcipher_alg skcipher;
2231};
2232
2233static const struct hifn_alg_template hifn_alg_templates[] = {
2234	/*
2235	 * 3DES ECB, CBC, CFB and OFB modes.
2236	 */
2237	{
2238		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239		.skcipher = {
2240			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2241			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2242			.setkey		=	hifn_des3_setkey,
2243			.encrypt	=	hifn_encrypt_3des_cfb,
2244			.decrypt	=	hifn_decrypt_3des_cfb,
2245		},
2246	},
2247	{
2248		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249		.skcipher = {
2250			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2251			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2252			.setkey		=	hifn_des3_setkey,
2253			.encrypt	=	hifn_encrypt_3des_ofb,
2254			.decrypt	=	hifn_decrypt_3des_ofb,
2255		},
2256	},
2257	{
2258		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259		.skcipher = {
2260			.ivsize		=	HIFN_IV_LENGTH,
2261			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2262			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2263			.setkey		=	hifn_des3_setkey,
2264			.encrypt	=	hifn_encrypt_3des_cbc,
2265			.decrypt	=	hifn_decrypt_3des_cbc,
2266		},
2267	},
2268	{
2269		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270		.skcipher = {
2271			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2272			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2273			.setkey		=	hifn_des3_setkey,
2274			.encrypt	=	hifn_encrypt_3des_ecb,
2275			.decrypt	=	hifn_decrypt_3des_ecb,
2276		},
2277	},
2278
2279	/*
2280	 * DES ECB, CBC, CFB and OFB modes.
2281	 */
2282	{
2283		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284		.skcipher = {
2285			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2286			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2287			.setkey		=	hifn_setkey,
2288			.encrypt	=	hifn_encrypt_des_cfb,
2289			.decrypt	=	hifn_decrypt_des_cfb,
2290		},
2291	},
2292	{
2293		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294		.skcipher = {
2295			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2296			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2297			.setkey		=	hifn_setkey,
2298			.encrypt	=	hifn_encrypt_des_ofb,
2299			.decrypt	=	hifn_decrypt_des_ofb,
2300		},
2301	},
2302	{
2303		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304		.skcipher = {
2305			.ivsize		=	HIFN_IV_LENGTH,
2306			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2307			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2308			.setkey		=	hifn_setkey,
2309			.encrypt	=	hifn_encrypt_des_cbc,
2310			.decrypt	=	hifn_decrypt_des_cbc,
2311		},
2312	},
2313	{
2314		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315		.skcipher = {
2316			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2317			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2318			.setkey		=	hifn_setkey,
2319			.encrypt	=	hifn_encrypt_des_ecb,
2320			.decrypt	=	hifn_decrypt_des_ecb,
2321		},
2322	},
2323
2324	/*
2325	 * AES ECB, CBC, CFB and OFB modes.
2326	 */
2327	{
2328		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329		.skcipher = {
2330			.min_keysize	=	AES_MIN_KEY_SIZE,
2331			.max_keysize	=	AES_MAX_KEY_SIZE,
2332			.setkey		=	hifn_setkey,
2333			.encrypt	=	hifn_encrypt_aes_ecb,
2334			.decrypt	=	hifn_decrypt_aes_ecb,
2335		},
2336	},
2337	{
2338		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339		.skcipher = {
2340			.ivsize		=	HIFN_AES_IV_LENGTH,
2341			.min_keysize	=	AES_MIN_KEY_SIZE,
2342			.max_keysize	=	AES_MAX_KEY_SIZE,
2343			.setkey		=	hifn_setkey,
2344			.encrypt	=	hifn_encrypt_aes_cbc,
2345			.decrypt	=	hifn_decrypt_aes_cbc,
2346		},
2347	},
2348	{
2349		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350		.skcipher = {
2351			.min_keysize	=	AES_MIN_KEY_SIZE,
2352			.max_keysize	=	AES_MAX_KEY_SIZE,
2353			.setkey		=	hifn_setkey,
2354			.encrypt	=	hifn_encrypt_aes_cfb,
2355			.decrypt	=	hifn_decrypt_aes_cfb,
2356		},
2357	},
2358	{
2359		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360		.skcipher = {
2361			.min_keysize	=	AES_MIN_KEY_SIZE,
2362			.max_keysize	=	AES_MAX_KEY_SIZE,
2363			.setkey		=	hifn_setkey,
2364			.encrypt	=	hifn_encrypt_aes_ofb,
2365			.decrypt	=	hifn_decrypt_aes_ofb,
2366		},
2367	},
2368};
2369
2370static int hifn_init_tfm(struct crypto_skcipher *tfm)
2371{
2372	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2373	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2375
2376	ctx->dev = ha->dev;
2377	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2378
2379	return 0;
2380}
2381
2382static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2383{
2384	struct hifn_crypto_alg *alg;
2385	int err;
2386
2387	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2388	if (!alg)
2389		return -ENOMEM;
2390
2391	alg->alg = t->skcipher;
2392	alg->alg.init = hifn_init_tfm;
2393
2394	snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2395	snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2396		 t->drv_name, dev->name);
2397
2398	alg->alg.base.cra_priority = 300;
2399	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2400	alg->alg.base.cra_blocksize = t->bsize;
2401	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2402	alg->alg.base.cra_alignmask = 0;
2403	alg->alg.base.cra_module = THIS_MODULE;
 
 
 
 
2404
2405	alg->dev = dev;
2406
2407	list_add_tail(&alg->entry, &dev->alg_list);
2408
2409	err = crypto_register_skcipher(&alg->alg);
2410	if (err) {
2411		list_del(&alg->entry);
2412		kfree(alg);
2413	}
2414
2415	return err;
2416}
2417
2418static void hifn_unregister_alg(struct hifn_device *dev)
2419{
2420	struct hifn_crypto_alg *a, *n;
2421
2422	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423		list_del(&a->entry);
2424		crypto_unregister_skcipher(&a->alg);
2425		kfree(a);
2426	}
2427}
2428
2429static int hifn_register_alg(struct hifn_device *dev)
2430{
2431	int i, err;
2432
2433	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435		if (err)
2436			goto err_out_exit;
2437	}
2438
2439	return 0;
2440
2441err_out_exit:
2442	hifn_unregister_alg(dev);
2443	return err;
2444}
2445
2446static void hifn_tasklet_callback(unsigned long data)
2447{
2448	struct hifn_device *dev = (struct hifn_device *)data;
2449
2450	/*
2451	 * This is ok to call this without lock being held,
2452	 * althogh it modifies some parameters used in parallel,
2453	 * (like dev->success), but they are used in process
2454	 * context or update is atomic (like setting dev->sa[i] to NULL).
2455	 */
2456	hifn_clear_rings(dev, 0);
2457
2458	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2459		hifn_process_queue(dev);
2460}
2461
2462static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463{
2464	int err, i;
2465	struct hifn_device *dev;
2466	char name[8];
2467
2468	err = pci_enable_device(pdev);
2469	if (err)
2470		return err;
2471	pci_set_master(pdev);
2472
2473	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474	if (err)
2475		goto err_out_disable_pci_device;
2476
2477	snprintf(name, sizeof(name), "hifn%d",
2478			atomic_inc_return(&hifn_dev_number) - 1);
2479
2480	err = pci_request_regions(pdev, name);
2481	if (err)
2482		goto err_out_disable_pci_device;
2483
2484	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488		err = -ENODEV;
2489		goto err_out_free_regions;
2490	}
2491
2492	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493			GFP_KERNEL);
2494	if (!dev) {
2495		err = -ENOMEM;
2496		goto err_out_free_regions;
2497	}
2498
2499	INIT_LIST_HEAD(&dev->alg_list);
2500
2501	snprintf(dev->name, sizeof(dev->name), "%s", name);
2502	spin_lock_init(&dev->lock);
2503
2504	for (i = 0; i < 3; ++i) {
2505		unsigned long addr, size;
2506
2507		addr = pci_resource_start(pdev, i);
2508		size = pci_resource_len(pdev, i);
2509
2510		dev->bar[i] = ioremap(addr, size);
2511		if (!dev->bar[i]) {
2512			err = -ENOMEM;
2513			goto err_out_unmap_bars;
2514		}
2515	}
2516
2517	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518					       &dev->desc_dma);
2519	if (!dev->desc_virt) {
2520		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521		err = -ENOMEM;
2522		goto err_out_unmap_bars;
2523	}
2524
2525	dev->pdev = pdev;
2526	dev->irq = pdev->irq;
2527
2528	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529		dev->sa[i] = NULL;
2530
2531	pci_set_drvdata(pdev, dev);
2532
2533	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534
2535	crypto_init_queue(&dev->queue, 1);
2536
2537	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538	if (err) {
2539		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540			dev->irq, err);
2541		dev->irq = 0;
2542		goto err_out_free_desc;
2543	}
2544
2545	err = hifn_start_device(dev);
2546	if (err)
2547		goto err_out_free_irq;
2548
2549	err = hifn_register_rng(dev);
2550	if (err)
2551		goto err_out_stop_device;
2552
2553	err = hifn_register_alg(dev);
2554	if (err)
2555		goto err_out_unregister_rng;
2556
2557	INIT_DELAYED_WORK(&dev->work, hifn_work);
2558	schedule_delayed_work(&dev->work, HZ);
2559
2560	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561		"successfully registered as %s.\n",
2562		pci_name(pdev), dev->name);
2563
2564	return 0;
2565
2566err_out_unregister_rng:
2567	hifn_unregister_rng(dev);
2568err_out_stop_device:
2569	hifn_reset_dma(dev, 1);
2570	hifn_stop_device(dev);
2571err_out_free_irq:
2572	free_irq(dev->irq, dev);
2573	tasklet_kill(&dev->tasklet);
2574err_out_free_desc:
2575	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576			dev->desc_virt, dev->desc_dma);
2577
2578err_out_unmap_bars:
2579	for (i = 0; i < 3; ++i)
2580		if (dev->bar[i])
2581			iounmap(dev->bar[i]);
2582	kfree(dev);
2583
2584err_out_free_regions:
2585	pci_release_regions(pdev);
2586
2587err_out_disable_pci_device:
2588	pci_disable_device(pdev);
2589
2590	return err;
2591}
2592
2593static void hifn_remove(struct pci_dev *pdev)
2594{
2595	int i;
2596	struct hifn_device *dev;
2597
2598	dev = pci_get_drvdata(pdev);
2599
2600	if (dev) {
2601		cancel_delayed_work_sync(&dev->work);
2602
2603		hifn_unregister_rng(dev);
2604		hifn_unregister_alg(dev);
2605		hifn_reset_dma(dev, 1);
2606		hifn_stop_device(dev);
2607
2608		free_irq(dev->irq, dev);
2609		tasklet_kill(&dev->tasklet);
2610
2611		hifn_flush(dev);
2612
2613		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2614				dev->desc_virt, dev->desc_dma);
2615		for (i = 0; i < 3; ++i)
2616			if (dev->bar[i])
2617				iounmap(dev->bar[i]);
2618
2619		kfree(dev);
2620	}
2621
2622	pci_release_regions(pdev);
2623	pci_disable_device(pdev);
2624}
2625
2626static struct pci_device_id hifn_pci_tbl[] = {
2627	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2628	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2629	{ 0 }
2630};
2631MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2632
2633static struct pci_driver hifn_pci_driver = {
2634	.name     = "hifn795x",
2635	.id_table = hifn_pci_tbl,
2636	.probe    = hifn_probe,
2637	.remove   = hifn_remove,
2638};
2639
2640static int __init hifn_init(void)
2641{
2642	unsigned int freq;
2643	int err;
2644
2645	/* HIFN supports only 32-bit addresses */
2646	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2647
2648	if (strncmp(hifn_pll_ref, "ext", 3) &&
2649	    strncmp(hifn_pll_ref, "pci", 3)) {
2650		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2651		return -EINVAL;
2652	}
2653
2654	/*
2655	 * For the 7955/7956 the reference clock frequency must be in the
2656	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657	 * but this chip is currently not supported.
2658	 */
2659	if (hifn_pll_ref[3] != '\0') {
2660		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661		if (freq < 20 || freq > 100) {
2662			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663			       "be in the range of 20-100");
2664			return -EINVAL;
2665		}
2666	}
2667
2668	err = pci_register_driver(&hifn_pci_driver);
2669	if (err < 0) {
2670		pr_err("Failed to register PCI driver for %s device.\n",
2671		       hifn_pci_driver.name);
2672		return -ENODEV;
2673	}
2674
2675	pr_info("Driver for HIFN 795x crypto accelerator chip "
2676		"has been successfully registered.\n");
2677
2678	return 0;
2679}
2680
2681static void __exit hifn_fini(void)
2682{
2683	pci_unregister_driver(&hifn_pci_driver);
2684
2685	pr_info("Driver for HIFN 795x crypto accelerator chip "
2686		"has been successfully unregistered.\n");
2687}
2688
2689module_init(hifn_init);
2690module_exit(hifn_fini);
2691
2692MODULE_LICENSE("GPL");
2693MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
   4 * All rights reserved.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/interrupt.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/delay.h>
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/scatterlist.h>
  18#include <linux/highmem.h>
  19#include <linux/crypto.h>
  20#include <linux/hw_random.h>
  21#include <linux/ktime.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/internal/des.h>
 
  25
  26static char hifn_pll_ref[sizeof("extNNN")] = "ext";
  27module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
  28MODULE_PARM_DESC(hifn_pll_ref,
  29		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
  30
  31static atomic_t hifn_dev_number;
  32
  33#define ACRYPTO_OP_DECRYPT	0
  34#define ACRYPTO_OP_ENCRYPT	1
  35#define ACRYPTO_OP_HMAC		2
  36#define ACRYPTO_OP_RNG		3
  37
  38#define ACRYPTO_MODE_ECB		0
  39#define ACRYPTO_MODE_CBC		1
  40#define ACRYPTO_MODE_CFB		2
  41#define ACRYPTO_MODE_OFB		3
  42
  43#define ACRYPTO_TYPE_AES_128	0
  44#define ACRYPTO_TYPE_AES_192	1
  45#define ACRYPTO_TYPE_AES_256	2
  46#define ACRYPTO_TYPE_3DES	3
  47#define ACRYPTO_TYPE_DES	4
  48
  49#define PCI_VENDOR_ID_HIFN		0x13A3
  50#define PCI_DEVICE_ID_HIFN_7955		0x0020
  51#define	PCI_DEVICE_ID_HIFN_7956		0x001d
  52
  53/* I/O region sizes */
  54
  55#define HIFN_BAR0_SIZE			0x1000
  56#define HIFN_BAR1_SIZE			0x2000
  57#define HIFN_BAR2_SIZE			0x8000
  58
  59/* DMA registres */
  60
  61#define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
  62#define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
  63#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
  64#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
  65#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
  66#define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
  67#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
  68#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
  69#define HIFN_CHIP_ID			0x98	/* Chip ID */
  70
  71/*
  72 * Processing Unit Registers (offset from BASEREG0)
  73 */
  74#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
  75#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
  76#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
  77#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
  78#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
  79#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
  80#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
  81#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
  82#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
  83
  84/* Processing Unit Control Register (HIFN_0_PUCTRL) */
  85#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
  86#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
  87#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
  88#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
  89#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
  90
  91/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
  92#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
  93#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
  94#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
  95#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
  96#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
  97#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
  98#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
  99#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
 100#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
 101#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
 102
 103/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
 104#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
 105#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
 106#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
 107#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
 108#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
 109#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
 110#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
 111#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
 112#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
 113#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
 114#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
 115#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
 116#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
 117#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
 118#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
 119#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
 120#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
 121#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
 122#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
 123#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
 124#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
 125#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
 126#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
 127
 128/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
 129#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
 130#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
 131#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 132#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 133#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
 134#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
 135#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
 136#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
 137#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
 138#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
 139
 140/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
 141#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
 142#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
 143#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
 144#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
 145#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
 146#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
 147#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
 148#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
 149#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
 150#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
 151#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
 152#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
 153#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
 154#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
 155#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
 156#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
 157#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
 158
 159/* FIFO Status Register (HIFN_0_FIFOSTAT) */
 160#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
 161#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
 162
 163/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
 164#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
 165
 166/*
 167 * DMA Interface Registers (offset from BASEREG1)
 168 */
 169#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
 170#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
 171#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
 172#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
 173#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
 174#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
 175#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
 176#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
 177#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
 178#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
 179#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
 180#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
 181#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
 182#define	HIFN_1_REVID		0x98	/* Revision ID */
 183#define	HIFN_1_UNLOCK_SECRET1	0xf4
 184#define	HIFN_1_UNLOCK_SECRET2	0xfc
 185#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
 186#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
 187#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
 188#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
 189#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
 190#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
 191#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
 192#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
 193#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
 194#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
 195
 196/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
 197#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
 198#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
 199#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
 200#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
 201#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
 202#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
 203#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
 204#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
 205#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
 206#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
 207#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
 208#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
 209#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
 210#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 211#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
 212#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
 213#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
 214#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
 215#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
 216#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
 217#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
 218#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
 219#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 220#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
 221#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
 222#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
 223#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
 224#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
 225#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
 226#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
 227#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
 228#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
 229#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 230#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
 231#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
 232#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
 233#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
 234#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
 235
 236/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
 237#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
 238#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
 239#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
 240#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
 241#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
 242#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
 243#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
 244#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
 245#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
 246#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
 247#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
 248#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
 249#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
 250#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
 251#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
 252#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
 253#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
 254#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
 255#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
 256#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
 257#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
 258#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
 259
 260/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
 261#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
 262#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
 263#define	HIFN_DMACNFG_UNLOCK	0x00000800
 264#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
 265#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
 266#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
 267#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
 268#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
 269
 270/* PLL configuration register */
 271#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
 272#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
 273#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
 274#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
 275#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
 276#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
 277#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
 278#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
 279#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
 280#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
 281#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
 282#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
 283#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
 284#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
 285#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
 286#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
 287#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
 288
 289#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
 290
 291/* Public key reset register (HIFN_1_PUB_RESET) */
 292#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
 293
 294/* Public base address register (HIFN_1_PUB_BASE) */
 295#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
 296
 297/* Public operand length register (HIFN_1_PUB_OPLEN) */
 298#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
 299#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
 300#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
 301#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
 302#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
 303#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
 304
 305/* Public operation register (HIFN_1_PUB_OP) */
 306#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
 307#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
 308#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
 309#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
 310#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
 311#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
 312#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
 313#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
 314#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
 315#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
 316#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
 317#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
 318#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
 319#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
 320#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
 321#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
 322#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
 323#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
 324#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
 325#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
 326
 327/* Public status register (HIFN_1_PUB_STATUS) */
 328#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
 329#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
 330
 331/* Public interrupt enable register (HIFN_1_PUB_IEN) */
 332#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
 333
 334/* Random number generator config register (HIFN_1_RNG_CONFIG) */
 335#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
 336
 337#define HIFN_NAMESIZE			32
 338#define HIFN_MAX_RESULT_ORDER		5
 339
 340#define	HIFN_D_CMD_RSIZE		(24 * 1)
 341#define	HIFN_D_SRC_RSIZE		(80 * 1)
 342#define	HIFN_D_DST_RSIZE		(80 * 1)
 343#define	HIFN_D_RES_RSIZE		(24 * 1)
 344
 345#define HIFN_D_DST_DALIGN		4
 346
 347#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
 348
 349#define AES_MIN_KEY_SIZE		16
 350#define AES_MAX_KEY_SIZE		32
 351
 352#define HIFN_DES_KEY_LENGTH		8
 353#define HIFN_3DES_KEY_LENGTH		24
 354#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
 355#define HIFN_IV_LENGTH			8
 356#define HIFN_AES_IV_LENGTH		16
 357#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
 358
 359#define HIFN_MAC_KEY_LENGTH		64
 360#define HIFN_MD5_LENGTH			16
 361#define HIFN_SHA1_LENGTH		20
 362#define HIFN_MAC_TRUNC_LENGTH		12
 363
 364#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
 365#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
 366#define HIFN_USED_RESULT		12
 367
 368struct hifn_desc {
 369	volatile __le32		l;
 370	volatile __le32		p;
 371};
 372
 373struct hifn_dma {
 374	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
 375	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
 376	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
 377	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
 378
 379	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
 380	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
 381
 382	/*
 383	 *  Our current positions for insertion and removal from the descriptor
 384	 *  rings.
 385	 */
 386	volatile int		cmdi, srci, dsti, resi;
 387	volatile int		cmdu, srcu, dstu, resu;
 388	int			cmdk, srck, dstk, resk;
 389};
 390
 391#define HIFN_FLAG_CMD_BUSY	(1 << 0)
 392#define HIFN_FLAG_SRC_BUSY	(1 << 1)
 393#define HIFN_FLAG_DST_BUSY	(1 << 2)
 394#define HIFN_FLAG_RES_BUSY	(1 << 3)
 395#define HIFN_FLAG_OLD_KEY	(1 << 4)
 396
 397#define HIFN_DEFAULT_ACTIVE_NUM	5
 398
 399struct hifn_device {
 400	char			name[HIFN_NAMESIZE];
 401
 402	int			irq;
 403
 404	struct pci_dev		*pdev;
 405	void __iomem		*bar[3];
 406
 407	void			*desc_virt;
 408	dma_addr_t		desc_dma;
 409
 410	u32			dmareg;
 411
 412	void			*sa[HIFN_D_RES_RSIZE];
 413
 414	spinlock_t		lock;
 415
 416	u32			flags;
 417	int			active, started;
 418	struct delayed_work	work;
 419	unsigned long		reset;
 420	unsigned long		success;
 421	unsigned long		prev_success;
 422
 423	u8			snum;
 424
 425	struct tasklet_struct	tasklet;
 426
 427	struct crypto_queue	queue;
 428	struct list_head	alg_list;
 429
 430	unsigned int		pk_clk_freq;
 431
 432#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 433	unsigned int		rng_wait_time;
 434	ktime_t			rngtime;
 435	struct hwrng		rng;
 436#endif
 437};
 438
 439#define	HIFN_D_LENGTH			0x0000ffff
 440#define	HIFN_D_NOINVALID		0x01000000
 441#define	HIFN_D_MASKDONEIRQ		0x02000000
 442#define	HIFN_D_DESTOVER			0x04000000
 443#define	HIFN_D_OVER			0x08000000
 444#define	HIFN_D_LAST			0x20000000
 445#define	HIFN_D_JUMP			0x40000000
 446#define	HIFN_D_VALID			0x80000000
 447
 448struct hifn_base_command {
 449	volatile __le16		masks;
 450	volatile __le16		session_num;
 451	volatile __le16		total_source_count;
 452	volatile __le16		total_dest_count;
 453};
 454
 455#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
 456#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
 457#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
 458#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
 459#define	HIFN_BASE_CMD_DECODE		0x2000
 460#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
 461#define	HIFN_BASE_CMD_SRCLEN_S		14
 462#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
 463#define	HIFN_BASE_CMD_DSTLEN_S		12
 464#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
 465#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
 466
 467/*
 468 * Structure to help build up the command data structure.
 469 */
 470struct hifn_crypt_command {
 471	volatile __le16		masks;
 472	volatile __le16		header_skip;
 473	volatile __le16		source_count;
 474	volatile __le16		reserved;
 475};
 476
 477#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
 478#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
 479#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
 480#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
 481#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
 482#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
 483#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
 484#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
 485#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
 486#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
 487#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
 488#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
 489#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
 490#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
 491#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
 492#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
 493#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
 494#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
 495#define	HIFN_CRYPT_CMD_SRCLEN_S		14
 496
 497/*
 498 * Structure to help build up the command data structure.
 499 */
 500struct hifn_mac_command {
 501	volatile __le16	masks;
 502	volatile __le16	header_skip;
 503	volatile __le16	source_count;
 504	volatile __le16	reserved;
 505};
 506
 507#define	HIFN_MAC_CMD_ALG_MASK		0x0001
 508#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
 509#define	HIFN_MAC_CMD_ALG_MD5		0x0001
 510#define	HIFN_MAC_CMD_MODE_MASK		0x000c
 511#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
 512#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
 513#define	HIFN_MAC_CMD_MODE_HASH		0x0008
 514#define	HIFN_MAC_CMD_MODE_FULL		0x0004
 515#define	HIFN_MAC_CMD_TRUNC		0x0010
 516#define	HIFN_MAC_CMD_RESULT		0x0020
 517#define	HIFN_MAC_CMD_APPEND		0x0040
 518#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
 519#define	HIFN_MAC_CMD_SRCLEN_S		14
 520
 521/*
 522 * MAC POS IPsec initiates authentication after encryption on encodes
 523 * and before decryption on decodes.
 524 */
 525#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
 526#define	HIFN_MAC_CMD_NEW_KEY		0x0800
 527
 528struct hifn_comp_command {
 529	volatile __le16		masks;
 530	volatile __le16		header_skip;
 531	volatile __le16		source_count;
 532	volatile __le16		reserved;
 533};
 534
 535#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
 536#define	HIFN_COMP_CMD_SRCLEN_S		14
 537#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
 538#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
 539#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
 540#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
 541#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
 542#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
 543#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
 544#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
 545
 546struct hifn_base_result {
 547	volatile __le16		flags;
 548	volatile __le16		session;
 549	volatile __le16		src_cnt;		/* 15:0 of source count */
 550	volatile __le16		dst_cnt;		/* 15:0 of dest count */
 551};
 552
 553#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
 554#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
 555#define	HIFN_BASE_RES_SRCLEN_S		14
 556#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
 557#define	HIFN_BASE_RES_DSTLEN_S		12
 558
 559struct hifn_comp_result {
 560	volatile __le16		flags;
 561	volatile __le16		crc;
 562};
 563
 564#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
 565#define	HIFN_COMP_RES_LCB_S		8
 566#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
 567#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
 568#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
 569
 570struct hifn_mac_result {
 571	volatile __le16		flags;
 572	volatile __le16		reserved;
 573	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
 574};
 575
 576#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
 577#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
 578
 579struct hifn_crypt_result {
 580	volatile __le16		flags;
 581	volatile __le16		reserved;
 582};
 583
 584#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
 585
 586#ifndef HIFN_POLL_FREQUENCY
 587#define	HIFN_POLL_FREQUENCY	0x1
 588#endif
 589
 590#ifndef HIFN_POLL_SCALAR
 591#define	HIFN_POLL_SCALAR	0x0
 592#endif
 593
 594#define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
 595#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
 596
 597struct hifn_crypto_alg {
 598	struct list_head	entry;
 599	struct crypto_alg	alg;
 600	struct hifn_device	*dev;
 601};
 602
 603#define ASYNC_SCATTERLIST_CACHE	16
 604
 605#define ASYNC_FLAGS_MISALIGNED	(1 << 0)
 606
 607struct hifn_cipher_walk {
 608	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
 609	u32			flags;
 610	int			num;
 611};
 612
 613struct hifn_context {
 614	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
 615	struct hifn_device	*dev;
 616	unsigned int		keysize;
 617};
 618
 619struct hifn_request_context {
 620	u8			*iv;
 621	unsigned int		ivsize;
 622	u8			op, type, mode, unused;
 623	struct hifn_cipher_walk	walk;
 624};
 625
 626#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
 627
 628static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
 629{
 630	return readl(dev->bar[0] + reg);
 631}
 632
 633static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
 634{
 635	return readl(dev->bar[1] + reg);
 636}
 637
 638static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
 639{
 640	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
 641}
 642
 643static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
 644{
 645	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
 646}
 647
 648static void hifn_wait_puc(struct hifn_device *dev)
 649{
 650	int i;
 651	u32 ret;
 652
 653	for (i = 10000; i > 0; --i) {
 654		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
 655		if (!(ret & HIFN_PUCTRL_RESET))
 656			break;
 657
 658		udelay(1);
 659	}
 660
 661	if (!i)
 662		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
 663}
 664
 665static void hifn_reset_puc(struct hifn_device *dev)
 666{
 667	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 668	hifn_wait_puc(dev);
 669}
 670
 671static void hifn_stop_device(struct hifn_device *dev)
 672{
 673	hifn_write_1(dev, HIFN_1_DMA_CSR,
 674		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 675		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
 676	hifn_write_0(dev, HIFN_0_PUIER, 0);
 677	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
 678}
 679
 680static void hifn_reset_dma(struct hifn_device *dev, int full)
 681{
 682	hifn_stop_device(dev);
 683
 684	/*
 685	 * Setting poll frequency and others to 0.
 686	 */
 687	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 688			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 689	mdelay(1);
 690
 691	/*
 692	 * Reset DMA.
 693	 */
 694	if (full) {
 695		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
 696		mdelay(1);
 697	} else {
 698		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
 699				HIFN_DMACNFG_MSTRESET);
 700		hifn_reset_puc(dev);
 701	}
 702
 703	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
 704			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 705
 706	hifn_reset_puc(dev);
 707}
 708
 709static u32 hifn_next_signature(u32 a, u_int cnt)
 710{
 711	int i;
 712	u32 v;
 713
 714	for (i = 0; i < cnt; i++) {
 715		/* get the parity */
 716		v = a & 0x80080125;
 717		v ^= v >> 16;
 718		v ^= v >> 8;
 719		v ^= v >> 4;
 720		v ^= v >> 2;
 721		v ^= v >> 1;
 722
 723		a = (v & 1) ^ (a << 1);
 724	}
 725
 726	return a;
 727}
 728
 729static struct pci2id {
 730	u_short		pci_vendor;
 731	u_short		pci_prod;
 732	char		card_id[13];
 733} pci2id[] = {
 734	{
 735		PCI_VENDOR_ID_HIFN,
 736		PCI_DEVICE_ID_HIFN_7955,
 737		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 738		  0x00, 0x00, 0x00, 0x00, 0x00 }
 739	},
 740	{
 741		PCI_VENDOR_ID_HIFN,
 742		PCI_DEVICE_ID_HIFN_7956,
 743		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 744		  0x00, 0x00, 0x00, 0x00, 0x00 }
 745	}
 746};
 747
 748#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 749static int hifn_rng_data_present(struct hwrng *rng, int wait)
 750{
 751	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 752	s64 nsec;
 753
 754	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
 755	nsec -= dev->rng_wait_time;
 756	if (nsec <= 0)
 757		return 1;
 758	if (!wait)
 759		return 0;
 760	ndelay(nsec);
 761	return 1;
 762}
 763
 764static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
 765{
 766	struct hifn_device *dev = (struct hifn_device *)rng->priv;
 767
 768	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
 769	dev->rngtime = ktime_get();
 770	return 4;
 771}
 772
 773static int hifn_register_rng(struct hifn_device *dev)
 774{
 775	/*
 776	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
 777	 */
 778	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
 779						   dev->pk_clk_freq) * 256;
 780
 781	dev->rng.name		= dev->name;
 782	dev->rng.data_present	= hifn_rng_data_present,
 783	dev->rng.data_read	= hifn_rng_data_read,
 784	dev->rng.priv		= (unsigned long)dev;
 785
 786	return hwrng_register(&dev->rng);
 787}
 788
 789static void hifn_unregister_rng(struct hifn_device *dev)
 790{
 791	hwrng_unregister(&dev->rng);
 792}
 793#else
 794#define hifn_register_rng(dev)		0
 795#define hifn_unregister_rng(dev)
 796#endif
 797
 798static int hifn_init_pubrng(struct hifn_device *dev)
 799{
 800	int i;
 801
 802	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
 803			HIFN_PUBRST_RESET);
 804
 805	for (i = 100; i > 0; --i) {
 806		mdelay(1);
 807
 808		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
 809			break;
 810	}
 811
 812	if (!i) {
 813		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
 814	} else {
 815		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
 816		dev->dmareg |= HIFN_DMAIER_PUBDONE;
 817		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
 818
 819		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
 820	}
 821
 822	/* Enable RNG engine. */
 823
 824	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
 825			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
 826	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
 827
 828#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
 829	/* First value must be discarded */
 830	hifn_read_1(dev, HIFN_1_RNG_DATA);
 831	dev->rngtime = ktime_get();
 832#endif
 833	return 0;
 834}
 835
 836static int hifn_enable_crypto(struct hifn_device *dev)
 837{
 838	u32 dmacfg, addr;
 839	char *offtbl = NULL;
 840	int i;
 841
 842	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
 843		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
 844				pci2id[i].pci_prod == dev->pdev->device) {
 845			offtbl = pci2id[i].card_id;
 846			break;
 847		}
 848	}
 849
 850	if (!offtbl) {
 851		dev_err(&dev->pdev->dev, "Unknown card!\n");
 852		return -ENODEV;
 853	}
 854
 855	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
 856
 857	hifn_write_1(dev, HIFN_1_DMA_CNFG,
 858			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
 859			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
 860	mdelay(1);
 861	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
 862	mdelay(1);
 863	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
 864	mdelay(1);
 865
 866	for (i = 0; i < 12; ++i) {
 867		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
 868		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
 869
 870		mdelay(1);
 871	}
 872	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
 873
 874	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
 875
 876	return 0;
 877}
 878
 879static void hifn_init_dma(struct hifn_device *dev)
 880{
 881	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
 882	u32 dptr = dev->desc_dma;
 883	int i;
 884
 885	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
 886		dma->cmdr[i].p = __cpu_to_le32(dptr +
 887				offsetof(struct hifn_dma, command_bufs[i][0]));
 888	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
 889		dma->resr[i].p = __cpu_to_le32(dptr +
 890				offsetof(struct hifn_dma, result_bufs[i][0]));
 891
 892	/* Setup LAST descriptors. */
 893	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
 894			offsetof(struct hifn_dma, cmdr[0]));
 895	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
 896			offsetof(struct hifn_dma, srcr[0]));
 897	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
 898			offsetof(struct hifn_dma, dstr[0]));
 899	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
 900			offsetof(struct hifn_dma, resr[0]));
 901
 902	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
 903	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
 904	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
 905}
 906
 907/*
 908 * Initialize the PLL. We need to know the frequency of the reference clock
 909 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 910 * allows us to operate without the risk of overclocking the chip. If it
 911 * actually uses 33MHz, the chip will operate at half the speed, this can be
 912 * overridden by specifying the frequency as module parameter (pci33).
 913 *
 914 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 915 * stable clock and the PCI clock frequency may vary, so the default is the
 916 * external clock. There is no way to find out its frequency, we default to
 917 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 918 * has an external crystal populated at 66MHz.
 919 */
 920static void hifn_init_pll(struct hifn_device *dev)
 921{
 922	unsigned int freq, m;
 923	u32 pllcfg;
 924
 925	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
 926
 927	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
 928		pllcfg |= HIFN_PLL_REF_CLK_PLL;
 929	else
 930		pllcfg |= HIFN_PLL_REF_CLK_HBI;
 931
 932	if (hifn_pll_ref[3] != '\0')
 933		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
 934	else {
 935		freq = 66;
 936		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
 937			 freq, hifn_pll_ref);
 938	}
 939
 940	m = HIFN_PLL_FCK_MAX / freq;
 941
 942	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
 943	if (m <= 8)
 944		pllcfg |= HIFN_PLL_IS_1_8;
 945	else
 946		pllcfg |= HIFN_PLL_IS_9_12;
 947
 948	/* Select clock source and enable clock bypass */
 949	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 950		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
 951
 952	/* Let the chip lock to the input clock */
 953	mdelay(10);
 954
 955	/* Disable clock bypass */
 956	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 957		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
 958
 959	/* Switch the engines to the PLL */
 960	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
 961		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
 962
 963	/*
 964	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
 965	 * calculate the minimum time between two reads of the rng. Since 33MHz
 966	 * is actually 33.333... we overestimate the frequency here, resulting
 967	 * in slightly larger intervals.
 968	 */
 969	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
 970}
 971
 972static void hifn_init_registers(struct hifn_device *dev)
 973{
 974	u32 dptr = dev->desc_dma;
 975
 976	/* Initialization magic... */
 977	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
 978	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
 979	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
 980
 981	/* write all 4 ring address registers */
 982	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
 983				offsetof(struct hifn_dma, cmdr[0]));
 984	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
 985				offsetof(struct hifn_dma, srcr[0]));
 986	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
 987				offsetof(struct hifn_dma, dstr[0]));
 988	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
 989				offsetof(struct hifn_dma, resr[0]));
 990
 991	mdelay(2);
 992#if 0
 993	hifn_write_1(dev, HIFN_1_DMA_CSR,
 994	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
 995	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
 996	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
 997	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
 998	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
 999	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1000	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1001	    HIFN_DMACSR_S_WAIT |
1002	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1003	    HIFN_DMACSR_C_WAIT |
1004	    HIFN_DMACSR_ENGINE |
1005	    HIFN_DMACSR_PUBDONE);
1006#else
1007	hifn_write_1(dev, HIFN_1_DMA_CSR,
1008	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1009	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1010	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1011	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1012	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1013	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1014	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1015	    HIFN_DMACSR_S_WAIT |
1016	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1017	    HIFN_DMACSR_C_WAIT |
1018	    HIFN_DMACSR_ENGINE |
1019	    HIFN_DMACSR_PUBDONE);
1020#endif
1021	hifn_read_1(dev, HIFN_1_DMA_CSR);
1022
1023	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1024	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1025	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1026	    HIFN_DMAIER_ENGINE;
1027	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1028
1029	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1030	hifn_read_1(dev, HIFN_1_DMA_IER);
1031#if 0
1032	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1033		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1034		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1035		    HIFN_PUCNFG_DRAM);
1036#else
1037	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1038#endif
1039	hifn_init_pll(dev);
1040
1041	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1042	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1043	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1044	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1045	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1046}
1047
1048static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1049		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1050{
1051	struct hifn_base_command *base_cmd;
1052	u8 *buf_pos = buf;
1053
1054	base_cmd = (struct hifn_base_command *)buf_pos;
1055	base_cmd->masks = __cpu_to_le16(mask);
1056	base_cmd->total_source_count =
1057		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1058	base_cmd->total_dest_count =
1059		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1060
1061	dlen >>= 16;
1062	slen >>= 16;
1063	base_cmd->session_num = __cpu_to_le16(snum |
1064	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1065	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1066
1067	return sizeof(struct hifn_base_command);
1068}
1069
1070static int hifn_setup_crypto_command(struct hifn_device *dev,
1071		u8 *buf, unsigned dlen, unsigned slen,
1072		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1073{
1074	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1075	struct hifn_crypt_command *cry_cmd;
1076	u8 *buf_pos = buf;
1077	u16 cmd_len;
1078
1079	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1080
1081	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1082	dlen >>= 16;
1083	cry_cmd->masks = __cpu_to_le16(mode |
1084			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1085			 HIFN_CRYPT_CMD_SRCLEN_M));
1086	cry_cmd->header_skip = 0;
1087	cry_cmd->reserved = 0;
1088
1089	buf_pos += sizeof(struct hifn_crypt_command);
1090
1091	dma->cmdu++;
1092	if (dma->cmdu > 1) {
1093		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1094		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1095	}
1096
1097	if (keylen) {
1098		memcpy(buf_pos, key, keylen);
1099		buf_pos += keylen;
1100	}
1101	if (ivsize) {
1102		memcpy(buf_pos, iv, ivsize);
1103		buf_pos += ivsize;
1104	}
1105
1106	cmd_len = buf_pos - buf;
1107
1108	return cmd_len;
1109}
1110
1111static int hifn_setup_cmd_desc(struct hifn_device *dev,
1112		struct hifn_context *ctx, struct hifn_request_context *rctx,
1113		void *priv, unsigned int nbytes)
1114{
1115	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1116	int cmd_len, sa_idx;
1117	u8 *buf, *buf_pos;
1118	u16 mask;
1119
1120	sa_idx = dma->cmdi;
1121	buf_pos = buf = dma->command_bufs[dma->cmdi];
1122
1123	mask = 0;
1124	switch (rctx->op) {
1125	case ACRYPTO_OP_DECRYPT:
1126		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1127		break;
1128	case ACRYPTO_OP_ENCRYPT:
1129		mask = HIFN_BASE_CMD_CRYPT;
1130		break;
1131	case ACRYPTO_OP_HMAC:
1132		mask = HIFN_BASE_CMD_MAC;
1133		break;
1134	default:
1135		goto err_out;
1136	}
1137
1138	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1139			nbytes, mask, dev->snum);
1140
1141	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1142		u16 md = 0;
1143
1144		if (ctx->keysize)
1145			md |= HIFN_CRYPT_CMD_NEW_KEY;
1146		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1147			md |= HIFN_CRYPT_CMD_NEW_IV;
1148
1149		switch (rctx->mode) {
1150		case ACRYPTO_MODE_ECB:
1151			md |= HIFN_CRYPT_CMD_MODE_ECB;
1152			break;
1153		case ACRYPTO_MODE_CBC:
1154			md |= HIFN_CRYPT_CMD_MODE_CBC;
1155			break;
1156		case ACRYPTO_MODE_CFB:
1157			md |= HIFN_CRYPT_CMD_MODE_CFB;
1158			break;
1159		case ACRYPTO_MODE_OFB:
1160			md |= HIFN_CRYPT_CMD_MODE_OFB;
1161			break;
1162		default:
1163			goto err_out;
1164		}
1165
1166		switch (rctx->type) {
1167		case ACRYPTO_TYPE_AES_128:
1168			if (ctx->keysize != 16)
1169				goto err_out;
1170			md |= HIFN_CRYPT_CMD_KSZ_128 |
1171				HIFN_CRYPT_CMD_ALG_AES;
1172			break;
1173		case ACRYPTO_TYPE_AES_192:
1174			if (ctx->keysize != 24)
1175				goto err_out;
1176			md |= HIFN_CRYPT_CMD_KSZ_192 |
1177				HIFN_CRYPT_CMD_ALG_AES;
1178			break;
1179		case ACRYPTO_TYPE_AES_256:
1180			if (ctx->keysize != 32)
1181				goto err_out;
1182			md |= HIFN_CRYPT_CMD_KSZ_256 |
1183				HIFN_CRYPT_CMD_ALG_AES;
1184			break;
1185		case ACRYPTO_TYPE_3DES:
1186			if (ctx->keysize != 24)
1187				goto err_out;
1188			md |= HIFN_CRYPT_CMD_ALG_3DES;
1189			break;
1190		case ACRYPTO_TYPE_DES:
1191			if (ctx->keysize != 8)
1192				goto err_out;
1193			md |= HIFN_CRYPT_CMD_ALG_DES;
1194			break;
1195		default:
1196			goto err_out;
1197		}
1198
1199		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1200				nbytes, nbytes, ctx->key, ctx->keysize,
1201				rctx->iv, rctx->ivsize, md);
1202	}
1203
1204	dev->sa[sa_idx] = priv;
1205	dev->started++;
1206
1207	cmd_len = buf_pos - buf;
1208	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1209			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1210
1211	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1212		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1213			HIFN_D_VALID | HIFN_D_LAST |
1214			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1215		dma->cmdi = 0;
1216	} else {
1217		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1218	}
1219
1220	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1221		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1222		dev->flags |= HIFN_FLAG_CMD_BUSY;
1223	}
1224	return 0;
1225
1226err_out:
1227	return -EINVAL;
1228}
1229
1230static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1231		unsigned int offset, unsigned int size, int last)
1232{
1233	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1234	int idx;
1235	dma_addr_t addr;
1236
1237	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1238
1239	idx = dma->srci;
1240
1241	dma->srcr[idx].p = __cpu_to_le32(addr);
1242	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1243			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1244
1245	if (++idx == HIFN_D_SRC_RSIZE) {
1246		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1247				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1248				(last ? HIFN_D_LAST : 0));
1249		idx = 0;
1250	}
1251
1252	dma->srci = idx;
1253	dma->srcu++;
1254
1255	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1256		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1257		dev->flags |= HIFN_FLAG_SRC_BUSY;
1258	}
1259
1260	return size;
1261}
1262
1263static void hifn_setup_res_desc(struct hifn_device *dev)
1264{
1265	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1266
1267	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1268			HIFN_D_VALID | HIFN_D_LAST);
1269	/*
1270	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1271	 *					HIFN_D_LAST);
1272	 */
1273
1274	if (++dma->resi == HIFN_D_RES_RSIZE) {
1275		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1276				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1277		dma->resi = 0;
1278	}
1279
1280	dma->resu++;
1281
1282	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1283		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1284		dev->flags |= HIFN_FLAG_RES_BUSY;
1285	}
1286}
1287
1288static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1289		unsigned offset, unsigned size, int last)
1290{
1291	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1292	int idx;
1293	dma_addr_t addr;
1294
1295	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1296
1297	idx = dma->dsti;
1298	dma->dstr[idx].p = __cpu_to_le32(addr);
1299	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1300			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1301
1302	if (++idx == HIFN_D_DST_RSIZE) {
1303		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1304				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1305				(last ? HIFN_D_LAST : 0));
1306		idx = 0;
1307	}
1308	dma->dsti = idx;
1309	dma->dstu++;
1310
1311	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1312		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1313		dev->flags |= HIFN_FLAG_DST_BUSY;
1314	}
1315}
1316
1317static int hifn_setup_dma(struct hifn_device *dev,
1318		struct hifn_context *ctx, struct hifn_request_context *rctx,
1319		struct scatterlist *src, struct scatterlist *dst,
1320		unsigned int nbytes, void *priv)
1321{
1322	struct scatterlist *t;
1323	struct page *spage, *dpage;
1324	unsigned int soff, doff;
1325	unsigned int n, len;
1326
1327	n = nbytes;
1328	while (n) {
1329		spage = sg_page(src);
1330		soff = src->offset;
1331		len = min(src->length, n);
1332
1333		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1334
1335		src++;
1336		n -= len;
1337	}
1338
1339	t = &rctx->walk.cache[0];
1340	n = nbytes;
1341	while (n) {
1342		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1343			BUG_ON(!sg_page(t));
1344			dpage = sg_page(t);
1345			doff = 0;
1346			len = t->length;
1347		} else {
1348			BUG_ON(!sg_page(dst));
1349			dpage = sg_page(dst);
1350			doff = dst->offset;
1351			len = dst->length;
1352		}
1353		len = min(len, n);
1354
1355		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1356
1357		dst++;
1358		t++;
1359		n -= len;
1360	}
1361
1362	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1363	hifn_setup_res_desc(dev);
1364	return 0;
1365}
1366
1367static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1368		int num, gfp_t gfp_flags)
1369{
1370	int i;
1371
1372	num = min(ASYNC_SCATTERLIST_CACHE, num);
1373	sg_init_table(w->cache, num);
1374
1375	w->num = 0;
1376	for (i = 0; i < num; ++i) {
1377		struct page *page = alloc_page(gfp_flags);
1378		struct scatterlist *s;
1379
1380		if (!page)
1381			break;
1382
1383		s = &w->cache[i];
1384
1385		sg_set_page(s, page, PAGE_SIZE, 0);
1386		w->num++;
1387	}
1388
1389	return i;
1390}
1391
1392static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1393{
1394	int i;
1395
1396	for (i = 0; i < w->num; ++i) {
1397		struct scatterlist *s = &w->cache[i];
1398
1399		__free_page(sg_page(s));
1400
1401		s->length = 0;
1402	}
1403
1404	w->num = 0;
1405}
1406
1407static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1408		unsigned int size, unsigned int *nbytesp)
1409{
1410	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1411	int idx = 0;
1412
1413	if (drest < size || size > nbytes)
1414		return -EINVAL;
1415
1416	while (size) {
1417		copy = min3(drest, size, dst->length);
1418
1419		size -= copy;
1420		drest -= copy;
1421		nbytes -= copy;
1422
1423		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1424			 __func__, copy, size, drest, nbytes);
1425
1426		dst++;
1427		idx++;
1428	}
1429
1430	*nbytesp = nbytes;
1431	*drestp = drest;
1432
1433	return idx;
1434}
1435
1436static int hifn_cipher_walk(struct ablkcipher_request *req,
1437		struct hifn_cipher_walk *w)
1438{
1439	struct scatterlist *dst, *t;
1440	unsigned int nbytes = req->nbytes, offset, copy, diff;
1441	int idx, tidx, err;
1442
1443	tidx = idx = 0;
1444	offset = 0;
1445	while (nbytes) {
1446		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1447			return -EINVAL;
1448
1449		dst = &req->dst[idx];
1450
1451		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1452			 __func__, dst->length, dst->offset, offset, nbytes);
1453
1454		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1455		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1456		    offset) {
1457			unsigned slen = min(dst->length - offset, nbytes);
1458			unsigned dlen = PAGE_SIZE;
1459
1460			t = &w->cache[idx];
1461
1462			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1463			if (err < 0)
1464				return err;
1465
1466			idx += err;
1467
1468			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1469			diff = slen & (HIFN_D_DST_DALIGN - 1);
1470
1471			if (dlen < nbytes) {
1472				/*
1473				 * Destination page does not have enough space
1474				 * to put there additional blocksized chunk,
1475				 * so we mark that page as containing only
1476				 * blocksize aligned chunks:
1477				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1478				 * and increase number of bytes to be processed
1479				 * in next chunk:
1480				 *	nbytes += diff;
1481				 */
1482				nbytes += diff;
1483
1484				/*
1485				 * Temporary of course...
1486				 * Kick author if you will catch this one.
1487				 */
1488				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1489				       __func__, dlen, nbytes, slen, offset);
1490				pr_err("%s: please contact author to fix this "
1491				       "issue, generally you should not catch "
1492				       "this path under any condition but who "
1493				       "knows how did you use crypto code.\n"
1494				       "Thank you.\n",	__func__);
1495				BUG();
1496			} else {
1497				copy += diff + nbytes;
1498
1499				dst = &req->dst[idx];
1500
1501				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1502				if (err < 0)
1503					return err;
1504
1505				idx += err;
1506			}
1507
1508			t->length = copy;
1509			t->offset = offset;
1510		} else {
1511			nbytes -= min(dst->length, nbytes);
1512			idx++;
1513		}
1514
1515		tidx++;
1516	}
1517
1518	return tidx;
1519}
1520
1521static int hifn_setup_session(struct ablkcipher_request *req)
1522{
1523	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1524	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1525	struct hifn_device *dev = ctx->dev;
1526	unsigned long dlen, flags;
1527	unsigned int nbytes = req->nbytes, idx = 0;
1528	int err = -EINVAL, sg_num;
1529	struct scatterlist *dst;
1530
1531	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1532		goto err_out_exit;
1533
1534	rctx->walk.flags = 0;
1535
1536	while (nbytes) {
1537		dst = &req->dst[idx];
1538		dlen = min(dst->length, nbytes);
1539
1540		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1541		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1542			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1543
1544		nbytes -= dlen;
1545		idx++;
1546	}
1547
1548	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1549		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1550		if (err < 0)
1551			return err;
1552	}
1553
1554	sg_num = hifn_cipher_walk(req, &rctx->walk);
1555	if (sg_num < 0) {
1556		err = sg_num;
1557		goto err_out_exit;
1558	}
1559
1560	spin_lock_irqsave(&dev->lock, flags);
1561	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1562		err = -EAGAIN;
1563		goto err_out;
1564	}
1565
1566	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1567	if (err)
1568		goto err_out;
1569
1570	dev->snum++;
1571
1572	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1573	spin_unlock_irqrestore(&dev->lock, flags);
1574
1575	return 0;
1576
1577err_out:
1578	spin_unlock_irqrestore(&dev->lock, flags);
1579err_out_exit:
1580	if (err) {
1581		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1582			 "type: %u, err: %d.\n",
1583			 rctx->iv, rctx->ivsize,
1584			 ctx->key, ctx->keysize,
1585			 rctx->mode, rctx->op, rctx->type, err);
1586	}
1587
1588	return err;
1589}
1590
1591static int hifn_start_device(struct hifn_device *dev)
1592{
1593	int err;
1594
1595	dev->started = dev->active = 0;
1596	hifn_reset_dma(dev, 1);
1597
1598	err = hifn_enable_crypto(dev);
1599	if (err)
1600		return err;
1601
1602	hifn_reset_puc(dev);
1603
1604	hifn_init_dma(dev);
1605
1606	hifn_init_registers(dev);
1607
1608	hifn_init_pubrng(dev);
1609
1610	return 0;
1611}
1612
1613static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1614		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1615{
1616	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1617	void *daddr;
1618	int idx = 0;
1619
1620	if (srest < size || size > nbytes)
1621		return -EINVAL;
1622
1623	while (size) {
1624		copy = min3(srest, dst->length, size);
1625
1626		daddr = kmap_atomic(sg_page(dst));
1627		memcpy(daddr + dst->offset + offset, saddr, copy);
1628		kunmap_atomic(daddr);
1629
1630		nbytes -= copy;
1631		size -= copy;
1632		srest -= copy;
1633		saddr += copy;
1634		offset = 0;
1635
1636		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1637			 __func__, copy, size, srest, nbytes);
1638
1639		dst++;
1640		idx++;
1641	}
1642
1643	*nbytesp = nbytes;
1644	*srestp = srest;
1645
1646	return idx;
1647}
1648
1649static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1650{
1651	unsigned long flags;
1652
1653	spin_lock_irqsave(&dev->lock, flags);
1654	dev->sa[i] = NULL;
1655	dev->started--;
1656	if (dev->started < 0)
1657		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1658			 dev->started);
1659	spin_unlock_irqrestore(&dev->lock, flags);
1660	BUG_ON(dev->started < 0);
1661}
1662
1663static void hifn_process_ready(struct ablkcipher_request *req, int error)
1664{
1665	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1666
1667	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1668		unsigned int nbytes = req->nbytes;
1669		int idx = 0, err;
1670		struct scatterlist *dst, *t;
1671		void *saddr;
1672
1673		while (nbytes) {
1674			t = &rctx->walk.cache[idx];
1675			dst = &req->dst[idx];
1676
1677			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1678				"sg_page(dst): %p, dst->length: %u, "
1679				"nbytes: %u.\n",
1680				__func__, sg_page(t), t->length,
1681				sg_page(dst), dst->length, nbytes);
1682
1683			if (!t->length) {
1684				nbytes -= min(dst->length, nbytes);
1685				idx++;
1686				continue;
1687			}
1688
1689			saddr = kmap_atomic(sg_page(t));
1690
1691			err = ablkcipher_get(saddr, &t->length, t->offset,
1692					dst, nbytes, &nbytes);
1693			if (err < 0) {
1694				kunmap_atomic(saddr);
1695				break;
1696			}
1697
1698			idx += err;
1699			kunmap_atomic(saddr);
1700		}
1701
1702		hifn_cipher_walk_exit(&rctx->walk);
1703	}
1704
1705	req->base.complete(&req->base, error);
1706}
1707
1708static void hifn_clear_rings(struct hifn_device *dev, int error)
1709{
1710	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1711	int i, u;
1712
1713	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1714			"k: %d.%d.%d.%d.\n",
1715			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1716			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1717			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1718
1719	i = dma->resk; u = dma->resu;
1720	while (u != 0) {
1721		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1722			break;
1723
1724		if (dev->sa[i]) {
1725			dev->success++;
1726			dev->reset = 0;
1727			hifn_process_ready(dev->sa[i], error);
1728			hifn_complete_sa(dev, i);
1729		}
1730
1731		if (++i == HIFN_D_RES_RSIZE)
1732			i = 0;
1733		u--;
1734	}
1735	dma->resk = i; dma->resu = u;
1736
1737	i = dma->srck; u = dma->srcu;
1738	while (u != 0) {
1739		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1740			break;
1741		if (++i == HIFN_D_SRC_RSIZE)
1742			i = 0;
1743		u--;
1744	}
1745	dma->srck = i; dma->srcu = u;
1746
1747	i = dma->cmdk; u = dma->cmdu;
1748	while (u != 0) {
1749		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1750			break;
1751		if (++i == HIFN_D_CMD_RSIZE)
1752			i = 0;
1753		u--;
1754	}
1755	dma->cmdk = i; dma->cmdu = u;
1756
1757	i = dma->dstk; u = dma->dstu;
1758	while (u != 0) {
1759		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1760			break;
1761		if (++i == HIFN_D_DST_RSIZE)
1762			i = 0;
1763		u--;
1764	}
1765	dma->dstk = i; dma->dstu = u;
1766
1767	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1768			"k: %d.%d.%d.%d.\n",
1769			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1770			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1771			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1772}
1773
1774static void hifn_work(struct work_struct *work)
1775{
1776	struct delayed_work *dw = to_delayed_work(work);
1777	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1778	unsigned long flags;
1779	int reset = 0;
1780	u32 r = 0;
1781
1782	spin_lock_irqsave(&dev->lock, flags);
1783	if (dev->active == 0) {
1784		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1785
1786		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1787			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1788			r |= HIFN_DMACSR_C_CTRL_DIS;
1789		}
1790		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1791			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1792			r |= HIFN_DMACSR_S_CTRL_DIS;
1793		}
1794		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1795			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1796			r |= HIFN_DMACSR_D_CTRL_DIS;
1797		}
1798		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1799			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1800			r |= HIFN_DMACSR_R_CTRL_DIS;
1801		}
1802		if (r)
1803			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1804	} else
1805		dev->active--;
1806
1807	if ((dev->prev_success == dev->success) && dev->started)
1808		reset = 1;
1809	dev->prev_success = dev->success;
1810	spin_unlock_irqrestore(&dev->lock, flags);
1811
1812	if (reset) {
1813		if (++dev->reset >= 5) {
1814			int i;
1815			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816
1817			dev_info(&dev->pdev->dev,
1818				 "r: %08x, active: %d, started: %d, "
1819				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1820				 r, dev->active, dev->started,
1821				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1822				 reset);
1823
1824			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1825			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1826				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1827				if (dev->sa[i]) {
1828					hifn_process_ready(dev->sa[i], -ENODEV);
1829					hifn_complete_sa(dev, i);
1830				}
1831			}
1832			pr_info("\n");
1833
1834			hifn_reset_dma(dev, 1);
1835			hifn_stop_device(dev);
1836			hifn_start_device(dev);
1837			dev->reset = 0;
1838		}
1839
1840		tasklet_schedule(&dev->tasklet);
1841	}
1842
1843	schedule_delayed_work(&dev->work, HZ);
1844}
1845
1846static irqreturn_t hifn_interrupt(int irq, void *data)
1847{
1848	struct hifn_device *dev = (struct hifn_device *)data;
1849	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1850	u32 dmacsr, restart;
1851
1852	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1853
1854	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1855			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1856		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1857		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1858		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1859
1860	if ((dmacsr & dev->dmareg) == 0)
1861		return IRQ_NONE;
1862
1863	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1864
1865	if (dmacsr & HIFN_DMACSR_ENGINE)
1866		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1867	if (dmacsr & HIFN_DMACSR_PUBDONE)
1868		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1869			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1870
1871	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1872	if (restart) {
1873		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1874
1875		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1876			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1877			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1878			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1879		if (!!(puisr & HIFN_PUISR_DSTOVER))
1880			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1881		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1882					HIFN_DMACSR_D_OVER));
1883	}
1884
1885	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1886			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1887	if (restart) {
1888		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1889			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1890			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1891			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1892			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1893		hifn_reset_dma(dev, 1);
1894		hifn_init_dma(dev);
1895		hifn_init_registers(dev);
1896	}
1897
1898	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1899		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1900		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1901		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1902	}
1903
1904	tasklet_schedule(&dev->tasklet);
1905
1906	return IRQ_HANDLED;
1907}
1908
1909static void hifn_flush(struct hifn_device *dev)
1910{
1911	unsigned long flags;
1912	struct crypto_async_request *async_req;
1913	struct ablkcipher_request *req;
1914	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1915	int i;
1916
1917	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1918		struct hifn_desc *d = &dma->resr[i];
1919
1920		if (dev->sa[i]) {
1921			hifn_process_ready(dev->sa[i],
1922				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1923			hifn_complete_sa(dev, i);
1924		}
1925	}
1926
1927	spin_lock_irqsave(&dev->lock, flags);
1928	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1929		req = ablkcipher_request_cast(async_req);
1930		spin_unlock_irqrestore(&dev->lock, flags);
1931
1932		hifn_process_ready(req, -ENODEV);
1933
1934		spin_lock_irqsave(&dev->lock, flags);
1935	}
1936	spin_unlock_irqrestore(&dev->lock, flags);
1937}
1938
1939static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1940		unsigned int len)
1941{
1942	struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1943	struct hifn_device *dev = ctx->dev;
1944	int err;
1945
1946	err = verify_ablkcipher_des_key(cipher, key);
1947	if (err)
1948		return err;
1949
1950	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1951
1952	memcpy(ctx->key, key, len);
1953	ctx->keysize = len;
1954
1955	return 0;
1956}
1957
1958static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1959			    unsigned int len)
1960{
1961	struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1962	struct hifn_device *dev = ctx->dev;
1963	int err;
1964
1965	err = verify_ablkcipher_des3_key(cipher, key);
1966	if (err)
1967		return err;
1968
1969	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1970
1971	memcpy(ctx->key, key, len);
1972	ctx->keysize = len;
1973
1974	return 0;
1975}
1976
1977static int hifn_handle_req(struct ablkcipher_request *req)
1978{
1979	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1980	struct hifn_device *dev = ctx->dev;
1981	int err = -EAGAIN;
1982
1983	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1984		err = hifn_setup_session(req);
1985
1986	if (err == -EAGAIN) {
1987		unsigned long flags;
1988
1989		spin_lock_irqsave(&dev->lock, flags);
1990		err = ablkcipher_enqueue_request(&dev->queue, req);
1991		spin_unlock_irqrestore(&dev->lock, flags);
1992	}
1993
1994	return err;
1995}
1996
1997static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
1998		u8 type, u8 mode)
1999{
2000	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2001	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2002	unsigned ivsize;
2003
2004	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2005
2006	if (req->info && mode != ACRYPTO_MODE_ECB) {
2007		if (type == ACRYPTO_TYPE_AES_128)
2008			ivsize = HIFN_AES_IV_LENGTH;
2009		else if (type == ACRYPTO_TYPE_DES)
2010			ivsize = HIFN_DES_KEY_LENGTH;
2011		else if (type == ACRYPTO_TYPE_3DES)
2012			ivsize = HIFN_3DES_KEY_LENGTH;
2013	}
2014
2015	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2016		if (ctx->keysize == 24)
2017			type = ACRYPTO_TYPE_AES_192;
2018		else if (ctx->keysize == 32)
2019			type = ACRYPTO_TYPE_AES_256;
2020	}
2021
2022	rctx->op = op;
2023	rctx->mode = mode;
2024	rctx->type = type;
2025	rctx->iv = req->info;
2026	rctx->ivsize = ivsize;
2027
2028	/*
2029	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2030	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032	 */
2033
2034	return hifn_handle_req(req);
2035}
2036
2037static int hifn_process_queue(struct hifn_device *dev)
2038{
2039	struct crypto_async_request *async_req, *backlog;
2040	struct ablkcipher_request *req;
2041	unsigned long flags;
2042	int err = 0;
2043
2044	while (dev->started < HIFN_QUEUE_LENGTH) {
2045		spin_lock_irqsave(&dev->lock, flags);
2046		backlog = crypto_get_backlog(&dev->queue);
2047		async_req = crypto_dequeue_request(&dev->queue);
2048		spin_unlock_irqrestore(&dev->lock, flags);
2049
2050		if (!async_req)
2051			break;
2052
2053		if (backlog)
2054			backlog->complete(backlog, -EINPROGRESS);
2055
2056		req = ablkcipher_request_cast(async_req);
2057
2058		err = hifn_handle_req(req);
2059		if (err)
2060			break;
2061	}
2062
2063	return err;
2064}
2065
2066static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2067		u8 type, u8 mode)
2068{
2069	int err;
2070	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2071	struct hifn_device *dev = ctx->dev;
2072
2073	err = hifn_setup_crypto_req(req, op, type, mode);
2074	if (err)
2075		return err;
2076
2077	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2078		hifn_process_queue(dev);
2079
2080	return -EINPROGRESS;
2081}
2082
2083/*
2084 * AES ecryption functions.
2085 */
2086static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2087{
2088	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2089			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090}
2091static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2092{
2093	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2094			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095}
2096static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2097{
2098	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2099			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2100}
2101static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2102{
2103	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2104			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2105}
2106
2107/*
2108 * AES decryption functions.
2109 */
2110static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2111{
2112	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2113			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2114}
2115static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2116{
2117	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2118			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2119}
2120static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2121{
2122	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2123			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2124}
2125static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2126{
2127	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2128			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2129}
2130
2131/*
2132 * DES ecryption functions.
2133 */
2134static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2135{
2136	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2137			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2138}
2139static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2140{
2141	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2142			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2143}
2144static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2145{
2146	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2147			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2148}
2149static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2150{
2151	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2152			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2153}
2154
2155/*
2156 * DES decryption functions.
2157 */
2158static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2159{
2160	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2161			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2162}
2163static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2164{
2165	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2166			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2167}
2168static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2169{
2170	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2171			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2172}
2173static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2174{
2175	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2176			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2177}
2178
2179/*
2180 * 3DES ecryption functions.
2181 */
2182static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2183{
2184	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2185			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2186}
2187static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2188{
2189	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2190			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2191}
2192static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2193{
2194	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2195			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2196}
2197static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2198{
2199	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2200			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2201}
2202
2203/* 3DES decryption functions. */
2204static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2205{
2206	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2207			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2208}
2209static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2210{
2211	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2212			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2213}
2214static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2215{
2216	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2217			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2218}
2219static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2220{
2221	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2222			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2223}
2224
2225struct hifn_alg_template {
2226	char name[CRYPTO_MAX_ALG_NAME];
2227	char drv_name[CRYPTO_MAX_ALG_NAME];
2228	unsigned int bsize;
2229	struct ablkcipher_alg ablkcipher;
2230};
2231
2232static struct hifn_alg_template hifn_alg_templates[] = {
2233	/*
2234	 * 3DES ECB, CBC, CFB and OFB modes.
2235	 */
2236	{
2237		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2238		.ablkcipher = {
2239			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2240			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2241			.setkey		=	hifn_des3_setkey,
2242			.encrypt	=	hifn_encrypt_3des_cfb,
2243			.decrypt	=	hifn_decrypt_3des_cfb,
2244		},
2245	},
2246	{
2247		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2248		.ablkcipher = {
2249			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2250			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2251			.setkey		=	hifn_des3_setkey,
2252			.encrypt	=	hifn_encrypt_3des_ofb,
2253			.decrypt	=	hifn_decrypt_3des_ofb,
2254		},
2255	},
2256	{
2257		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2258		.ablkcipher = {
2259			.ivsize		=	HIFN_IV_LENGTH,
2260			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2261			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2262			.setkey		=	hifn_des3_setkey,
2263			.encrypt	=	hifn_encrypt_3des_cbc,
2264			.decrypt	=	hifn_decrypt_3des_cbc,
2265		},
2266	},
2267	{
2268		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2269		.ablkcipher = {
2270			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2271			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2272			.setkey		=	hifn_des3_setkey,
2273			.encrypt	=	hifn_encrypt_3des_ecb,
2274			.decrypt	=	hifn_decrypt_3des_ecb,
2275		},
2276	},
2277
2278	/*
2279	 * DES ECB, CBC, CFB and OFB modes.
2280	 */
2281	{
2282		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2283		.ablkcipher = {
2284			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2285			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2286			.setkey		=	hifn_setkey,
2287			.encrypt	=	hifn_encrypt_des_cfb,
2288			.decrypt	=	hifn_decrypt_des_cfb,
2289		},
2290	},
2291	{
2292		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2293		.ablkcipher = {
2294			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2295			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2296			.setkey		=	hifn_setkey,
2297			.encrypt	=	hifn_encrypt_des_ofb,
2298			.decrypt	=	hifn_decrypt_des_ofb,
2299		},
2300	},
2301	{
2302		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2303		.ablkcipher = {
2304			.ivsize		=	HIFN_IV_LENGTH,
2305			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2306			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2307			.setkey		=	hifn_setkey,
2308			.encrypt	=	hifn_encrypt_des_cbc,
2309			.decrypt	=	hifn_decrypt_des_cbc,
2310		},
2311	},
2312	{
2313		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2314		.ablkcipher = {
2315			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2316			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2317			.setkey		=	hifn_setkey,
2318			.encrypt	=	hifn_encrypt_des_ecb,
2319			.decrypt	=	hifn_decrypt_des_ecb,
2320		},
2321	},
2322
2323	/*
2324	 * AES ECB, CBC, CFB and OFB modes.
2325	 */
2326	{
2327		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2328		.ablkcipher = {
2329			.min_keysize	=	AES_MIN_KEY_SIZE,
2330			.max_keysize	=	AES_MAX_KEY_SIZE,
2331			.setkey		=	hifn_setkey,
2332			.encrypt	=	hifn_encrypt_aes_ecb,
2333			.decrypt	=	hifn_decrypt_aes_ecb,
2334		},
2335	},
2336	{
2337		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2338		.ablkcipher = {
2339			.ivsize		=	HIFN_AES_IV_LENGTH,
2340			.min_keysize	=	AES_MIN_KEY_SIZE,
2341			.max_keysize	=	AES_MAX_KEY_SIZE,
2342			.setkey		=	hifn_setkey,
2343			.encrypt	=	hifn_encrypt_aes_cbc,
2344			.decrypt	=	hifn_decrypt_aes_cbc,
2345		},
2346	},
2347	{
2348		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2349		.ablkcipher = {
2350			.min_keysize	=	AES_MIN_KEY_SIZE,
2351			.max_keysize	=	AES_MAX_KEY_SIZE,
2352			.setkey		=	hifn_setkey,
2353			.encrypt	=	hifn_encrypt_aes_cfb,
2354			.decrypt	=	hifn_decrypt_aes_cfb,
2355		},
2356	},
2357	{
2358		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2359		.ablkcipher = {
2360			.min_keysize	=	AES_MIN_KEY_SIZE,
2361			.max_keysize	=	AES_MAX_KEY_SIZE,
2362			.setkey		=	hifn_setkey,
2363			.encrypt	=	hifn_encrypt_aes_ofb,
2364			.decrypt	=	hifn_decrypt_aes_ofb,
2365		},
2366	},
2367};
2368
2369static int hifn_cra_init(struct crypto_tfm *tfm)
2370{
2371	struct crypto_alg *alg = tfm->__crt_alg;
2372	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2373	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2374
2375	ctx->dev = ha->dev;
2376	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
 
2377	return 0;
2378}
2379
2380static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2381{
2382	struct hifn_crypto_alg *alg;
2383	int err;
2384
2385	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2386	if (!alg)
2387		return -ENOMEM;
2388
2389	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2390	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
 
 
 
2391		 t->drv_name, dev->name);
2392
2393	alg->alg.cra_priority = 300;
2394	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2395				CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2396	alg->alg.cra_blocksize = t->bsize;
2397	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2398	alg->alg.cra_alignmask = 0;
2399	alg->alg.cra_type = &crypto_ablkcipher_type;
2400	alg->alg.cra_module = THIS_MODULE;
2401	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2402	alg->alg.cra_init = hifn_cra_init;
2403
2404	alg->dev = dev;
2405
2406	list_add_tail(&alg->entry, &dev->alg_list);
2407
2408	err = crypto_register_alg(&alg->alg);
2409	if (err) {
2410		list_del(&alg->entry);
2411		kfree(alg);
2412	}
2413
2414	return err;
2415}
2416
2417static void hifn_unregister_alg(struct hifn_device *dev)
2418{
2419	struct hifn_crypto_alg *a, *n;
2420
2421	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2422		list_del(&a->entry);
2423		crypto_unregister_alg(&a->alg);
2424		kfree(a);
2425	}
2426}
2427
2428static int hifn_register_alg(struct hifn_device *dev)
2429{
2430	int i, err;
2431
2432	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2433		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2434		if (err)
2435			goto err_out_exit;
2436	}
2437
2438	return 0;
2439
2440err_out_exit:
2441	hifn_unregister_alg(dev);
2442	return err;
2443}
2444
2445static void hifn_tasklet_callback(unsigned long data)
2446{
2447	struct hifn_device *dev = (struct hifn_device *)data;
2448
2449	/*
2450	 * This is ok to call this without lock being held,
2451	 * althogh it modifies some parameters used in parallel,
2452	 * (like dev->success), but they are used in process
2453	 * context or update is atomic (like setting dev->sa[i] to NULL).
2454	 */
2455	hifn_clear_rings(dev, 0);
2456
2457	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2458		hifn_process_queue(dev);
2459}
2460
2461static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2462{
2463	int err, i;
2464	struct hifn_device *dev;
2465	char name[8];
2466
2467	err = pci_enable_device(pdev);
2468	if (err)
2469		return err;
2470	pci_set_master(pdev);
2471
2472	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2473	if (err)
2474		goto err_out_disable_pci_device;
2475
2476	snprintf(name, sizeof(name), "hifn%d",
2477			atomic_inc_return(&hifn_dev_number) - 1);
2478
2479	err = pci_request_regions(pdev, name);
2480	if (err)
2481		goto err_out_disable_pci_device;
2482
2483	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2484	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2485	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2486		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2487		err = -ENODEV;
2488		goto err_out_free_regions;
2489	}
2490
2491	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2492			GFP_KERNEL);
2493	if (!dev) {
2494		err = -ENOMEM;
2495		goto err_out_free_regions;
2496	}
2497
2498	INIT_LIST_HEAD(&dev->alg_list);
2499
2500	snprintf(dev->name, sizeof(dev->name), "%s", name);
2501	spin_lock_init(&dev->lock);
2502
2503	for (i = 0; i < 3; ++i) {
2504		unsigned long addr, size;
2505
2506		addr = pci_resource_start(pdev, i);
2507		size = pci_resource_len(pdev, i);
2508
2509		dev->bar[i] = ioremap_nocache(addr, size);
2510		if (!dev->bar[i]) {
2511			err = -ENOMEM;
2512			goto err_out_unmap_bars;
2513		}
2514	}
2515
2516	dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2517					       &dev->desc_dma);
2518	if (!dev->desc_virt) {
2519		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2520		err = -ENOMEM;
2521		goto err_out_unmap_bars;
2522	}
2523
2524	dev->pdev = pdev;
2525	dev->irq = pdev->irq;
2526
2527	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2528		dev->sa[i] = NULL;
2529
2530	pci_set_drvdata(pdev, dev);
2531
2532	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2533
2534	crypto_init_queue(&dev->queue, 1);
2535
2536	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2537	if (err) {
2538		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2539			dev->irq, err);
2540		dev->irq = 0;
2541		goto err_out_free_desc;
2542	}
2543
2544	err = hifn_start_device(dev);
2545	if (err)
2546		goto err_out_free_irq;
2547
2548	err = hifn_register_rng(dev);
2549	if (err)
2550		goto err_out_stop_device;
2551
2552	err = hifn_register_alg(dev);
2553	if (err)
2554		goto err_out_unregister_rng;
2555
2556	INIT_DELAYED_WORK(&dev->work, hifn_work);
2557	schedule_delayed_work(&dev->work, HZ);
2558
2559	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2560		"successfully registered as %s.\n",
2561		pci_name(pdev), dev->name);
2562
2563	return 0;
2564
2565err_out_unregister_rng:
2566	hifn_unregister_rng(dev);
2567err_out_stop_device:
2568	hifn_reset_dma(dev, 1);
2569	hifn_stop_device(dev);
2570err_out_free_irq:
2571	free_irq(dev->irq, dev);
2572	tasklet_kill(&dev->tasklet);
2573err_out_free_desc:
2574	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2575			dev->desc_virt, dev->desc_dma);
2576
2577err_out_unmap_bars:
2578	for (i = 0; i < 3; ++i)
2579		if (dev->bar[i])
2580			iounmap(dev->bar[i]);
2581	kfree(dev);
2582
2583err_out_free_regions:
2584	pci_release_regions(pdev);
2585
2586err_out_disable_pci_device:
2587	pci_disable_device(pdev);
2588
2589	return err;
2590}
2591
2592static void hifn_remove(struct pci_dev *pdev)
2593{
2594	int i;
2595	struct hifn_device *dev;
2596
2597	dev = pci_get_drvdata(pdev);
2598
2599	if (dev) {
2600		cancel_delayed_work_sync(&dev->work);
2601
2602		hifn_unregister_rng(dev);
2603		hifn_unregister_alg(dev);
2604		hifn_reset_dma(dev, 1);
2605		hifn_stop_device(dev);
2606
2607		free_irq(dev->irq, dev);
2608		tasklet_kill(&dev->tasklet);
2609
2610		hifn_flush(dev);
2611
2612		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2613				dev->desc_virt, dev->desc_dma);
2614		for (i = 0; i < 3; ++i)
2615			if (dev->bar[i])
2616				iounmap(dev->bar[i]);
2617
2618		kfree(dev);
2619	}
2620
2621	pci_release_regions(pdev);
2622	pci_disable_device(pdev);
2623}
2624
2625static struct pci_device_id hifn_pci_tbl[] = {
2626	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2627	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2628	{ 0 }
2629};
2630MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2631
2632static struct pci_driver hifn_pci_driver = {
2633	.name     = "hifn795x",
2634	.id_table = hifn_pci_tbl,
2635	.probe    = hifn_probe,
2636	.remove   = hifn_remove,
2637};
2638
2639static int __init hifn_init(void)
2640{
2641	unsigned int freq;
2642	int err;
2643
2644	/* HIFN supports only 32-bit addresses */
2645	BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2646
2647	if (strncmp(hifn_pll_ref, "ext", 3) &&
2648	    strncmp(hifn_pll_ref, "pci", 3)) {
2649		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2650		return -EINVAL;
2651	}
2652
2653	/*
2654	 * For the 7955/7956 the reference clock frequency must be in the
2655	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2656	 * but this chip is currently not supported.
2657	 */
2658	if (hifn_pll_ref[3] != '\0') {
2659		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2660		if (freq < 20 || freq > 100) {
2661			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2662			       "be in the range of 20-100");
2663			return -EINVAL;
2664		}
2665	}
2666
2667	err = pci_register_driver(&hifn_pci_driver);
2668	if (err < 0) {
2669		pr_err("Failed to register PCI driver for %s device.\n",
2670		       hifn_pci_driver.name);
2671		return -ENODEV;
2672	}
2673
2674	pr_info("Driver for HIFN 795x crypto accelerator chip "
2675		"has been successfully registered.\n");
2676
2677	return 0;
2678}
2679
2680static void __exit hifn_fini(void)
2681{
2682	pci_unregister_driver(&hifn_pci_driver);
2683
2684	pr_info("Driver for HIFN 795x crypto accelerator chip "
2685		"has been successfully unregistered.\n");
2686}
2687
2688module_init(hifn_init);
2689module_exit(hifn_fini);
2690
2691MODULE_LICENSE("GPL");
2692MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2693MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");