Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * STM32 Timer Encoder and Counter driver
4 *
5 * Copyright (C) STMicroelectronics 2018
6 *
7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8 *
9 */
10#include <linux/counter.h>
11#include <linux/mfd/stm32-timers.h>
12#include <linux/mod_devicetable.h>
13#include <linux/module.h>
14#include <linux/pinctrl/consumer.h>
15#include <linux/platform_device.h>
16
17#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
18#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
19 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
20#define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
21 TIM_CCER_CC2P | TIM_CCER_CC2NP)
22
23struct stm32_timer_regs {
24 u32 cr1;
25 u32 cnt;
26 u32 smcr;
27 u32 arr;
28};
29
30struct stm32_timer_cnt {
31 struct counter_device counter;
32 struct regmap *regmap;
33 struct clk *clk;
34 u32 ceiling;
35 bool enabled;
36 struct stm32_timer_regs bak;
37};
38
39/**
40 * enum stm32_count_function - enumerates stm32 timer counter encoder modes
41 * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
42 * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
43 * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
44 * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
45 */
46enum stm32_count_function {
47 STM32_COUNT_SLAVE_MODE_DISABLED = -1,
48 STM32_COUNT_ENCODER_MODE_1,
49 STM32_COUNT_ENCODER_MODE_2,
50 STM32_COUNT_ENCODER_MODE_3,
51};
52
53static enum counter_count_function stm32_count_functions[] = {
54 [STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
55 [STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
56 [STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
57};
58
59static int stm32_count_read(struct counter_device *counter,
60 struct counter_count *count, unsigned long *val)
61{
62 struct stm32_timer_cnt *const priv = counter->priv;
63 u32 cnt;
64
65 regmap_read(priv->regmap, TIM_CNT, &cnt);
66 *val = cnt;
67
68 return 0;
69}
70
71static int stm32_count_write(struct counter_device *counter,
72 struct counter_count *count,
73 const unsigned long val)
74{
75 struct stm32_timer_cnt *const priv = counter->priv;
76
77 if (val > priv->ceiling)
78 return -EINVAL;
79
80 return regmap_write(priv->regmap, TIM_CNT, val);
81}
82
83static int stm32_count_function_get(struct counter_device *counter,
84 struct counter_count *count,
85 size_t *function)
86{
87 struct stm32_timer_cnt *const priv = counter->priv;
88 u32 smcr;
89
90 regmap_read(priv->regmap, TIM_SMCR, &smcr);
91
92 switch (smcr & TIM_SMCR_SMS) {
93 case 1:
94 *function = STM32_COUNT_ENCODER_MODE_1;
95 return 0;
96 case 2:
97 *function = STM32_COUNT_ENCODER_MODE_2;
98 return 0;
99 case 3:
100 *function = STM32_COUNT_ENCODER_MODE_3;
101 return 0;
102 }
103
104 return -EINVAL;
105}
106
107static int stm32_count_function_set(struct counter_device *counter,
108 struct counter_count *count,
109 size_t function)
110{
111 struct stm32_timer_cnt *const priv = counter->priv;
112 u32 cr1, sms;
113
114 switch (function) {
115 case STM32_COUNT_ENCODER_MODE_1:
116 sms = 1;
117 break;
118 case STM32_COUNT_ENCODER_MODE_2:
119 sms = 2;
120 break;
121 case STM32_COUNT_ENCODER_MODE_3:
122 sms = 3;
123 break;
124 default:
125 sms = 0;
126 break;
127 }
128
129 /* Store enable status */
130 regmap_read(priv->regmap, TIM_CR1, &cr1);
131
132 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
133
134 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
135 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
136 regmap_write(priv->regmap, TIM_ARR, priv->ceiling);
137
138 regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
139
140 /* Make sure that registers are updated */
141 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
142
143 /* Restore the enable status */
144 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
145
146 return 0;
147}
148
149static ssize_t stm32_count_direction_read(struct counter_device *counter,
150 struct counter_count *count,
151 void *private, char *buf)
152{
153 struct stm32_timer_cnt *const priv = counter->priv;
154 const char *direction;
155 u32 cr1;
156
157 regmap_read(priv->regmap, TIM_CR1, &cr1);
158 direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
159
160 return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
161}
162
163static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
164 struct counter_count *count,
165 void *private, char *buf)
166{
167 struct stm32_timer_cnt *const priv = counter->priv;
168 u32 arr;
169
170 regmap_read(priv->regmap, TIM_ARR, &arr);
171
172 return snprintf(buf, PAGE_SIZE, "%u\n", arr);
173}
174
175static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
176 struct counter_count *count,
177 void *private,
178 const char *buf, size_t len)
179{
180 struct stm32_timer_cnt *const priv = counter->priv;
181 unsigned int ceiling;
182 int ret;
183
184 ret = kstrtouint(buf, 0, &ceiling);
185 if (ret)
186 return ret;
187
188 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
189 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
190 regmap_write(priv->regmap, TIM_ARR, ceiling);
191
192 priv->ceiling = ceiling;
193 return len;
194}
195
196static ssize_t stm32_count_enable_read(struct counter_device *counter,
197 struct counter_count *count,
198 void *private, char *buf)
199{
200 struct stm32_timer_cnt *const priv = counter->priv;
201 u32 cr1;
202
203 regmap_read(priv->regmap, TIM_CR1, &cr1);
204
205 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
206}
207
208static ssize_t stm32_count_enable_write(struct counter_device *counter,
209 struct counter_count *count,
210 void *private,
211 const char *buf, size_t len)
212{
213 struct stm32_timer_cnt *const priv = counter->priv;
214 int err;
215 u32 cr1;
216 bool enable;
217
218 err = kstrtobool(buf, &enable);
219 if (err)
220 return err;
221
222 if (enable) {
223 regmap_read(priv->regmap, TIM_CR1, &cr1);
224 if (!(cr1 & TIM_CR1_CEN))
225 clk_enable(priv->clk);
226
227 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
228 TIM_CR1_CEN);
229 } else {
230 regmap_read(priv->regmap, TIM_CR1, &cr1);
231 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
232 if (cr1 & TIM_CR1_CEN)
233 clk_disable(priv->clk);
234 }
235
236 /* Keep enabled state to properly handle low power states */
237 priv->enabled = enable;
238
239 return len;
240}
241
242static const struct counter_count_ext stm32_count_ext[] = {
243 {
244 .name = "direction",
245 .read = stm32_count_direction_read,
246 },
247 {
248 .name = "enable",
249 .read = stm32_count_enable_read,
250 .write = stm32_count_enable_write
251 },
252 {
253 .name = "ceiling",
254 .read = stm32_count_ceiling_read,
255 .write = stm32_count_ceiling_write
256 },
257};
258
259enum stm32_synapse_action {
260 STM32_SYNAPSE_ACTION_NONE,
261 STM32_SYNAPSE_ACTION_BOTH_EDGES
262};
263
264static enum counter_synapse_action stm32_synapse_actions[] = {
265 [STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
266 [STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
267};
268
269static int stm32_action_get(struct counter_device *counter,
270 struct counter_count *count,
271 struct counter_synapse *synapse,
272 size_t *action)
273{
274 size_t function;
275 int err;
276
277 /* Default action mode (e.g. STM32_COUNT_SLAVE_MODE_DISABLED) */
278 *action = STM32_SYNAPSE_ACTION_NONE;
279
280 err = stm32_count_function_get(counter, count, &function);
281 if (err)
282 return 0;
283
284 switch (function) {
285 case STM32_COUNT_ENCODER_MODE_1:
286 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
287 if (synapse->signal->id == count->synapses[0].signal->id)
288 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
289 break;
290 case STM32_COUNT_ENCODER_MODE_2:
291 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
292 if (synapse->signal->id == count->synapses[1].signal->id)
293 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
294 break;
295 case STM32_COUNT_ENCODER_MODE_3:
296 /* counts up/down on both TI1FP1 and TI2FP2 edges */
297 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
298 break;
299 }
300
301 return 0;
302}
303
304static const struct counter_ops stm32_timer_cnt_ops = {
305 .count_read = stm32_count_read,
306 .count_write = stm32_count_write,
307 .function_get = stm32_count_function_get,
308 .function_set = stm32_count_function_set,
309 .action_get = stm32_action_get,
310};
311
312static struct counter_signal stm32_signals[] = {
313 {
314 .id = 0,
315 .name = "Channel 1 Quadrature A"
316 },
317 {
318 .id = 1,
319 .name = "Channel 1 Quadrature B"
320 }
321};
322
323static struct counter_synapse stm32_count_synapses[] = {
324 {
325 .actions_list = stm32_synapse_actions,
326 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
327 .signal = &stm32_signals[0]
328 },
329 {
330 .actions_list = stm32_synapse_actions,
331 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
332 .signal = &stm32_signals[1]
333 }
334};
335
336static struct counter_count stm32_counts = {
337 .id = 0,
338 .name = "Channel 1 Count",
339 .functions_list = stm32_count_functions,
340 .num_functions = ARRAY_SIZE(stm32_count_functions),
341 .synapses = stm32_count_synapses,
342 .num_synapses = ARRAY_SIZE(stm32_count_synapses),
343 .ext = stm32_count_ext,
344 .num_ext = ARRAY_SIZE(stm32_count_ext)
345};
346
347static int stm32_timer_cnt_probe(struct platform_device *pdev)
348{
349 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
350 struct device *dev = &pdev->dev;
351 struct stm32_timer_cnt *priv;
352
353 if (IS_ERR_OR_NULL(ddata))
354 return -EINVAL;
355
356 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
357 if (!priv)
358 return -ENOMEM;
359
360 priv->regmap = ddata->regmap;
361 priv->clk = ddata->clk;
362 priv->ceiling = ddata->max_arr;
363
364 priv->counter.name = dev_name(dev);
365 priv->counter.parent = dev;
366 priv->counter.ops = &stm32_timer_cnt_ops;
367 priv->counter.counts = &stm32_counts;
368 priv->counter.num_counts = 1;
369 priv->counter.signals = stm32_signals;
370 priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
371 priv->counter.priv = priv;
372
373 platform_set_drvdata(pdev, priv);
374
375 /* Register Counter device */
376 return devm_counter_register(dev, &priv->counter);
377}
378
379static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
380{
381 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
382
383 /* Only take care of enabled counter: don't disturb other MFD child */
384 if (priv->enabled) {
385 /* Backup registers that may get lost in low power mode */
386 regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
387 regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
388 regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
389 regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
390
391 /* Disable the counter */
392 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
393 clk_disable(priv->clk);
394 }
395
396 return pinctrl_pm_select_sleep_state(dev);
397}
398
399static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
400{
401 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
402 int ret;
403
404 ret = pinctrl_pm_select_default_state(dev);
405 if (ret)
406 return ret;
407
408 if (priv->enabled) {
409 clk_enable(priv->clk);
410
411 /* Restore registers that may have been lost */
412 regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
413 regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
414 regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
415
416 /* Also re-enables the counter */
417 regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
418 }
419
420 return 0;
421}
422
423static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
424 stm32_timer_cnt_resume);
425
426static const struct of_device_id stm32_timer_cnt_of_match[] = {
427 { .compatible = "st,stm32-timer-counter", },
428 {},
429};
430MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
431
432static struct platform_driver stm32_timer_cnt_driver = {
433 .probe = stm32_timer_cnt_probe,
434 .driver = {
435 .name = "stm32-timer-counter",
436 .of_match_table = stm32_timer_cnt_of_match,
437 .pm = &stm32_timer_cnt_pm_ops,
438 },
439};
440module_platform_driver(stm32_timer_cnt_driver);
441
442MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
443MODULE_ALIAS("platform:stm32-timer-counter");
444MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
445MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * STM32 Timer Encoder and Counter driver
4 *
5 * Copyright (C) STMicroelectronics 2018
6 *
7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8 *
9 */
10#include <linux/counter.h>
11#include <linux/iio/iio.h>
12#include <linux/iio/types.h>
13#include <linux/mfd/stm32-timers.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16
17#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
18#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
19 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
20#define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
21 TIM_CCER_CC2P | TIM_CCER_CC2NP)
22
23struct stm32_timer_cnt {
24 struct counter_device counter;
25 struct regmap *regmap;
26 struct clk *clk;
27 u32 ceiling;
28};
29
30/**
31 * stm32_count_function - enumerates stm32 timer counter encoder modes
32 * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
33 * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
34 * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
35 * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
36 */
37enum stm32_count_function {
38 STM32_COUNT_SLAVE_MODE_DISABLED = -1,
39 STM32_COUNT_ENCODER_MODE_1,
40 STM32_COUNT_ENCODER_MODE_2,
41 STM32_COUNT_ENCODER_MODE_3,
42};
43
44static enum counter_count_function stm32_count_functions[] = {
45 [STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
46 [STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
47 [STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
48};
49
50static int stm32_count_read(struct counter_device *counter,
51 struct counter_count *count,
52 struct counter_count_read_value *val)
53{
54 struct stm32_timer_cnt *const priv = counter->priv;
55 u32 cnt;
56
57 regmap_read(priv->regmap, TIM_CNT, &cnt);
58 counter_count_read_value_set(val, COUNTER_COUNT_POSITION, &cnt);
59
60 return 0;
61}
62
63static int stm32_count_write(struct counter_device *counter,
64 struct counter_count *count,
65 struct counter_count_write_value *val)
66{
67 struct stm32_timer_cnt *const priv = counter->priv;
68 u32 cnt;
69 int err;
70
71 err = counter_count_write_value_get(&cnt, COUNTER_COUNT_POSITION, val);
72 if (err)
73 return err;
74
75 if (cnt > priv->ceiling)
76 return -EINVAL;
77
78 return regmap_write(priv->regmap, TIM_CNT, cnt);
79}
80
81static int stm32_count_function_get(struct counter_device *counter,
82 struct counter_count *count,
83 size_t *function)
84{
85 struct stm32_timer_cnt *const priv = counter->priv;
86 u32 smcr;
87
88 regmap_read(priv->regmap, TIM_SMCR, &smcr);
89
90 switch (smcr & TIM_SMCR_SMS) {
91 case 1:
92 *function = STM32_COUNT_ENCODER_MODE_1;
93 return 0;
94 case 2:
95 *function = STM32_COUNT_ENCODER_MODE_2;
96 return 0;
97 case 3:
98 *function = STM32_COUNT_ENCODER_MODE_3;
99 return 0;
100 }
101
102 return -EINVAL;
103}
104
105static int stm32_count_function_set(struct counter_device *counter,
106 struct counter_count *count,
107 size_t function)
108{
109 struct stm32_timer_cnt *const priv = counter->priv;
110 u32 cr1, sms;
111
112 switch (function) {
113 case STM32_COUNT_ENCODER_MODE_1:
114 sms = 1;
115 break;
116 case STM32_COUNT_ENCODER_MODE_2:
117 sms = 2;
118 break;
119 case STM32_COUNT_ENCODER_MODE_3:
120 sms = 3;
121 break;
122 default:
123 sms = 0;
124 break;
125 }
126
127 /* Store enable status */
128 regmap_read(priv->regmap, TIM_CR1, &cr1);
129
130 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
131
132 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
133 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
134 regmap_write(priv->regmap, TIM_ARR, priv->ceiling);
135
136 regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
137
138 /* Make sure that registers are updated */
139 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
140
141 /* Restore the enable status */
142 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
143
144 return 0;
145}
146
147static ssize_t stm32_count_direction_read(struct counter_device *counter,
148 struct counter_count *count,
149 void *private, char *buf)
150{
151 struct stm32_timer_cnt *const priv = counter->priv;
152 const char *direction;
153 u32 cr1;
154
155 regmap_read(priv->regmap, TIM_CR1, &cr1);
156 direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
157
158 return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
159}
160
161static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
162 struct counter_count *count,
163 void *private, char *buf)
164{
165 struct stm32_timer_cnt *const priv = counter->priv;
166 u32 arr;
167
168 regmap_read(priv->regmap, TIM_ARR, &arr);
169
170 return snprintf(buf, PAGE_SIZE, "%u\n", arr);
171}
172
173static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
174 struct counter_count *count,
175 void *private,
176 const char *buf, size_t len)
177{
178 struct stm32_timer_cnt *const priv = counter->priv;
179 unsigned int ceiling;
180 int ret;
181
182 ret = kstrtouint(buf, 0, &ceiling);
183 if (ret)
184 return ret;
185
186 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
187 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
188 regmap_write(priv->regmap, TIM_ARR, ceiling);
189
190 priv->ceiling = ceiling;
191 return len;
192}
193
194static ssize_t stm32_count_enable_read(struct counter_device *counter,
195 struct counter_count *count,
196 void *private, char *buf)
197{
198 struct stm32_timer_cnt *const priv = counter->priv;
199 u32 cr1;
200
201 regmap_read(priv->regmap, TIM_CR1, &cr1);
202
203 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
204}
205
206static ssize_t stm32_count_enable_write(struct counter_device *counter,
207 struct counter_count *count,
208 void *private,
209 const char *buf, size_t len)
210{
211 struct stm32_timer_cnt *const priv = counter->priv;
212 int err;
213 u32 cr1;
214 bool enable;
215
216 err = kstrtobool(buf, &enable);
217 if (err)
218 return err;
219
220 if (enable) {
221 regmap_read(priv->regmap, TIM_CR1, &cr1);
222 if (!(cr1 & TIM_CR1_CEN))
223 clk_enable(priv->clk);
224
225 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
226 TIM_CR1_CEN);
227 } else {
228 regmap_read(priv->regmap, TIM_CR1, &cr1);
229 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
230 if (cr1 & TIM_CR1_CEN)
231 clk_disable(priv->clk);
232 }
233
234 return len;
235}
236
237static const struct counter_count_ext stm32_count_ext[] = {
238 {
239 .name = "direction",
240 .read = stm32_count_direction_read,
241 },
242 {
243 .name = "enable",
244 .read = stm32_count_enable_read,
245 .write = stm32_count_enable_write
246 },
247 {
248 .name = "ceiling",
249 .read = stm32_count_ceiling_read,
250 .write = stm32_count_ceiling_write
251 },
252};
253
254enum stm32_synapse_action {
255 STM32_SYNAPSE_ACTION_NONE,
256 STM32_SYNAPSE_ACTION_BOTH_EDGES
257};
258
259static enum counter_synapse_action stm32_synapse_actions[] = {
260 [STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
261 [STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
262};
263
264static int stm32_action_get(struct counter_device *counter,
265 struct counter_count *count,
266 struct counter_synapse *synapse,
267 size_t *action)
268{
269 size_t function;
270 int err;
271
272 /* Default action mode (e.g. STM32_COUNT_SLAVE_MODE_DISABLED) */
273 *action = STM32_SYNAPSE_ACTION_NONE;
274
275 err = stm32_count_function_get(counter, count, &function);
276 if (err)
277 return 0;
278
279 switch (function) {
280 case STM32_COUNT_ENCODER_MODE_1:
281 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
282 if (synapse->signal->id == count->synapses[0].signal->id)
283 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
284 break;
285 case STM32_COUNT_ENCODER_MODE_2:
286 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
287 if (synapse->signal->id == count->synapses[1].signal->id)
288 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
289 break;
290 case STM32_COUNT_ENCODER_MODE_3:
291 /* counts up/down on both TI1FP1 and TI2FP2 edges */
292 *action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
293 break;
294 }
295
296 return 0;
297}
298
299static const struct counter_ops stm32_timer_cnt_ops = {
300 .count_read = stm32_count_read,
301 .count_write = stm32_count_write,
302 .function_get = stm32_count_function_get,
303 .function_set = stm32_count_function_set,
304 .action_get = stm32_action_get,
305};
306
307static struct counter_signal stm32_signals[] = {
308 {
309 .id = 0,
310 .name = "Channel 1 Quadrature A"
311 },
312 {
313 .id = 1,
314 .name = "Channel 1 Quadrature B"
315 }
316};
317
318static struct counter_synapse stm32_count_synapses[] = {
319 {
320 .actions_list = stm32_synapse_actions,
321 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
322 .signal = &stm32_signals[0]
323 },
324 {
325 .actions_list = stm32_synapse_actions,
326 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
327 .signal = &stm32_signals[1]
328 }
329};
330
331static struct counter_count stm32_counts = {
332 .id = 0,
333 .name = "Channel 1 Count",
334 .functions_list = stm32_count_functions,
335 .num_functions = ARRAY_SIZE(stm32_count_functions),
336 .synapses = stm32_count_synapses,
337 .num_synapses = ARRAY_SIZE(stm32_count_synapses),
338 .ext = stm32_count_ext,
339 .num_ext = ARRAY_SIZE(stm32_count_ext)
340};
341
342static int stm32_timer_cnt_probe(struct platform_device *pdev)
343{
344 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
345 struct device *dev = &pdev->dev;
346 struct stm32_timer_cnt *priv;
347
348 if (IS_ERR_OR_NULL(ddata))
349 return -EINVAL;
350
351 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
352 if (!priv)
353 return -ENOMEM;
354
355 priv->regmap = ddata->regmap;
356 priv->clk = ddata->clk;
357 priv->ceiling = ddata->max_arr;
358
359 priv->counter.name = dev_name(dev);
360 priv->counter.parent = dev;
361 priv->counter.ops = &stm32_timer_cnt_ops;
362 priv->counter.counts = &stm32_counts;
363 priv->counter.num_counts = 1;
364 priv->counter.signals = stm32_signals;
365 priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
366 priv->counter.priv = priv;
367
368 /* Register Counter device */
369 return devm_counter_register(dev, &priv->counter);
370}
371
372static const struct of_device_id stm32_timer_cnt_of_match[] = {
373 { .compatible = "st,stm32-timer-counter", },
374 {},
375};
376MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
377
378static struct platform_driver stm32_timer_cnt_driver = {
379 .probe = stm32_timer_cnt_probe,
380 .driver = {
381 .name = "stm32-timer-counter",
382 .of_match_table = stm32_timer_cnt_of_match,
383 },
384};
385module_platform_driver(stm32_timer_cnt_driver);
386
387MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
388MODULE_ALIAS("platform:stm32-timer-counter");
389MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
390MODULE_LICENSE("GPL v2");