Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 
 
 11#include <linux/mfd/stm32-timers.h>
 12#include <linux/mod_devicetable.h>
 13#include <linux/module.h>
 14#include <linux/pinctrl/consumer.h>
 15#include <linux/platform_device.h>
 16
 17#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 18#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 19			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 20#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 21			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 22
 23struct stm32_timer_regs {
 24	u32 cr1;
 25	u32 cnt;
 26	u32 smcr;
 27	u32 arr;
 28};
 29
 30struct stm32_timer_cnt {
 31	struct counter_device counter;
 32	struct regmap *regmap;
 33	struct clk *clk;
 34	u32 ceiling;
 35	bool enabled;
 36	struct stm32_timer_regs bak;
 37};
 38
 39/**
 40 * enum stm32_count_function - enumerates stm32 timer counter encoder modes
 41 * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
 42 * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
 43 * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
 44 * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
 45 */
 46enum stm32_count_function {
 47	STM32_COUNT_SLAVE_MODE_DISABLED = -1,
 48	STM32_COUNT_ENCODER_MODE_1,
 49	STM32_COUNT_ENCODER_MODE_2,
 50	STM32_COUNT_ENCODER_MODE_3,
 51};
 52
 53static enum counter_count_function stm32_count_functions[] = {
 54	[STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
 55	[STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
 56	[STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
 57};
 58
 59static int stm32_count_read(struct counter_device *counter,
 60			    struct counter_count *count, unsigned long *val)
 
 61{
 62	struct stm32_timer_cnt *const priv = counter->priv;
 63	u32 cnt;
 64
 65	regmap_read(priv->regmap, TIM_CNT, &cnt);
 66	*val = cnt;
 67
 68	return 0;
 69}
 70
 71static int stm32_count_write(struct counter_device *counter,
 72			     struct counter_count *count,
 73			     const unsigned long val)
 74{
 75	struct stm32_timer_cnt *const priv = counter->priv;
 
 
 76
 77	if (val > priv->ceiling)
 
 
 
 
 78		return -EINVAL;
 79
 80	return regmap_write(priv->regmap, TIM_CNT, val);
 81}
 82
 83static int stm32_count_function_get(struct counter_device *counter,
 84				    struct counter_count *count,
 85				    size_t *function)
 86{
 87	struct stm32_timer_cnt *const priv = counter->priv;
 88	u32 smcr;
 89
 90	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 91
 92	switch (smcr & TIM_SMCR_SMS) {
 93	case 1:
 94		*function = STM32_COUNT_ENCODER_MODE_1;
 95		return 0;
 96	case 2:
 97		*function = STM32_COUNT_ENCODER_MODE_2;
 98		return 0;
 99	case 3:
100		*function = STM32_COUNT_ENCODER_MODE_3;
101		return 0;
102	}
103
104	return -EINVAL;
105}
106
107static int stm32_count_function_set(struct counter_device *counter,
108				    struct counter_count *count,
109				    size_t function)
110{
111	struct stm32_timer_cnt *const priv = counter->priv;
112	u32 cr1, sms;
113
114	switch (function) {
115	case STM32_COUNT_ENCODER_MODE_1:
116		sms = 1;
117		break;
118	case STM32_COUNT_ENCODER_MODE_2:
119		sms = 2;
120		break;
121	case STM32_COUNT_ENCODER_MODE_3:
122		sms = 3;
123		break;
124	default:
125		sms = 0;
126		break;
127	}
128
129	/* Store enable status */
130	regmap_read(priv->regmap, TIM_CR1, &cr1);
131
132	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
133
134	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
135	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
136	regmap_write(priv->regmap, TIM_ARR, priv->ceiling);
137
138	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
139
140	/* Make sure that registers are updated */
141	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
142
143	/* Restore the enable status */
144	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
145
146	return 0;
147}
148
149static ssize_t stm32_count_direction_read(struct counter_device *counter,
150				      struct counter_count *count,
151				      void *private, char *buf)
152{
153	struct stm32_timer_cnt *const priv = counter->priv;
154	const char *direction;
155	u32 cr1;
156
157	regmap_read(priv->regmap, TIM_CR1, &cr1);
158	direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
159
160	return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
161}
162
163static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
164					struct counter_count *count,
165					void *private, char *buf)
166{
167	struct stm32_timer_cnt *const priv = counter->priv;
168	u32 arr;
169
170	regmap_read(priv->regmap, TIM_ARR, &arr);
171
172	return snprintf(buf, PAGE_SIZE, "%u\n", arr);
173}
174
175static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
176					 struct counter_count *count,
177					 void *private,
178					 const char *buf, size_t len)
179{
180	struct stm32_timer_cnt *const priv = counter->priv;
181	unsigned int ceiling;
182	int ret;
183
184	ret = kstrtouint(buf, 0, &ceiling);
185	if (ret)
186		return ret;
187
188	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
189	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
190	regmap_write(priv->regmap, TIM_ARR, ceiling);
191
192	priv->ceiling = ceiling;
193	return len;
194}
195
196static ssize_t stm32_count_enable_read(struct counter_device *counter,
197				       struct counter_count *count,
198				       void *private, char *buf)
199{
200	struct stm32_timer_cnt *const priv = counter->priv;
201	u32 cr1;
202
203	regmap_read(priv->regmap, TIM_CR1, &cr1);
204
205	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
206}
207
208static ssize_t stm32_count_enable_write(struct counter_device *counter,
209					struct counter_count *count,
210					void *private,
211					const char *buf, size_t len)
212{
213	struct stm32_timer_cnt *const priv = counter->priv;
214	int err;
215	u32 cr1;
216	bool enable;
217
218	err = kstrtobool(buf, &enable);
219	if (err)
220		return err;
221
222	if (enable) {
223		regmap_read(priv->regmap, TIM_CR1, &cr1);
224		if (!(cr1 & TIM_CR1_CEN))
225			clk_enable(priv->clk);
226
227		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
228				   TIM_CR1_CEN);
229	} else {
230		regmap_read(priv->regmap, TIM_CR1, &cr1);
231		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
232		if (cr1 & TIM_CR1_CEN)
233			clk_disable(priv->clk);
234	}
235
236	/* Keep enabled state to properly handle low power states */
237	priv->enabled = enable;
238
239	return len;
240}
241
242static const struct counter_count_ext stm32_count_ext[] = {
243	{
244		.name = "direction",
245		.read = stm32_count_direction_read,
246	},
247	{
248		.name = "enable",
249		.read = stm32_count_enable_read,
250		.write = stm32_count_enable_write
251	},
252	{
253		.name = "ceiling",
254		.read = stm32_count_ceiling_read,
255		.write = stm32_count_ceiling_write
256	},
257};
258
259enum stm32_synapse_action {
260	STM32_SYNAPSE_ACTION_NONE,
261	STM32_SYNAPSE_ACTION_BOTH_EDGES
262};
263
264static enum counter_synapse_action stm32_synapse_actions[] = {
265	[STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
266	[STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
267};
268
269static int stm32_action_get(struct counter_device *counter,
270			    struct counter_count *count,
271			    struct counter_synapse *synapse,
272			    size_t *action)
273{
274	size_t function;
275	int err;
276
277	/* Default action mode (e.g. STM32_COUNT_SLAVE_MODE_DISABLED) */
278	*action = STM32_SYNAPSE_ACTION_NONE;
279
280	err = stm32_count_function_get(counter, count, &function);
281	if (err)
282		return 0;
283
284	switch (function) {
285	case STM32_COUNT_ENCODER_MODE_1:
286		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
287		if (synapse->signal->id == count->synapses[0].signal->id)
288			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
289		break;
290	case STM32_COUNT_ENCODER_MODE_2:
291		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
292		if (synapse->signal->id == count->synapses[1].signal->id)
293			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
294		break;
295	case STM32_COUNT_ENCODER_MODE_3:
296		/* counts up/down on both TI1FP1 and TI2FP2 edges */
297		*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
298		break;
299	}
300
301	return 0;
302}
303
304static const struct counter_ops stm32_timer_cnt_ops = {
305	.count_read = stm32_count_read,
306	.count_write = stm32_count_write,
307	.function_get = stm32_count_function_get,
308	.function_set = stm32_count_function_set,
309	.action_get = stm32_action_get,
310};
311
312static struct counter_signal stm32_signals[] = {
313	{
314		.id = 0,
315		.name = "Channel 1 Quadrature A"
316	},
317	{
318		.id = 1,
319		.name = "Channel 1 Quadrature B"
320	}
321};
322
323static struct counter_synapse stm32_count_synapses[] = {
324	{
325		.actions_list = stm32_synapse_actions,
326		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
327		.signal = &stm32_signals[0]
328	},
329	{
330		.actions_list = stm32_synapse_actions,
331		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
332		.signal = &stm32_signals[1]
333	}
334};
335
336static struct counter_count stm32_counts = {
337	.id = 0,
338	.name = "Channel 1 Count",
339	.functions_list = stm32_count_functions,
340	.num_functions = ARRAY_SIZE(stm32_count_functions),
341	.synapses = stm32_count_synapses,
342	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
343	.ext = stm32_count_ext,
344	.num_ext = ARRAY_SIZE(stm32_count_ext)
345};
346
347static int stm32_timer_cnt_probe(struct platform_device *pdev)
348{
349	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
350	struct device *dev = &pdev->dev;
351	struct stm32_timer_cnt *priv;
352
353	if (IS_ERR_OR_NULL(ddata))
354		return -EINVAL;
355
356	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
357	if (!priv)
358		return -ENOMEM;
359
360	priv->regmap = ddata->regmap;
361	priv->clk = ddata->clk;
362	priv->ceiling = ddata->max_arr;
363
364	priv->counter.name = dev_name(dev);
365	priv->counter.parent = dev;
366	priv->counter.ops = &stm32_timer_cnt_ops;
367	priv->counter.counts = &stm32_counts;
368	priv->counter.num_counts = 1;
369	priv->counter.signals = stm32_signals;
370	priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
371	priv->counter.priv = priv;
372
373	platform_set_drvdata(pdev, priv);
374
375	/* Register Counter device */
376	return devm_counter_register(dev, &priv->counter);
377}
378
379static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
380{
381	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
382
383	/* Only take care of enabled counter: don't disturb other MFD child */
384	if (priv->enabled) {
385		/* Backup registers that may get lost in low power mode */
386		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
387		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
388		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
389		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
390
391		/* Disable the counter */
392		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
393		clk_disable(priv->clk);
394	}
395
396	return pinctrl_pm_select_sleep_state(dev);
397}
398
399static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
400{
401	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
402	int ret;
403
404	ret = pinctrl_pm_select_default_state(dev);
405	if (ret)
406		return ret;
407
408	if (priv->enabled) {
409		clk_enable(priv->clk);
410
411		/* Restore registers that may have been lost */
412		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
413		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
414		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
415
416		/* Also re-enables the counter */
417		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
418	}
419
420	return 0;
421}
422
423static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
424			 stm32_timer_cnt_resume);
425
426static const struct of_device_id stm32_timer_cnt_of_match[] = {
427	{ .compatible = "st,stm32-timer-counter", },
428	{},
429};
430MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
431
432static struct platform_driver stm32_timer_cnt_driver = {
433	.probe = stm32_timer_cnt_probe,
434	.driver = {
435		.name = "stm32-timer-counter",
436		.of_match_table = stm32_timer_cnt_of_match,
437		.pm = &stm32_timer_cnt_pm_ops,
438	},
439};
440module_platform_driver(stm32_timer_cnt_driver);
441
442MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
443MODULE_ALIAS("platform:stm32-timer-counter");
444MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
445MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * STM32 Timer Encoder and Counter driver
  4 *
  5 * Copyright (C) STMicroelectronics 2018
  6 *
  7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  8 *
  9 */
 10#include <linux/counter.h>
 11#include <linux/iio/iio.h>
 12#include <linux/iio/types.h>
 13#include <linux/mfd/stm32-timers.h>
 
 14#include <linux/module.h>
 
 15#include <linux/platform_device.h>
 16
 17#define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
 18#define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
 19			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
 20#define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
 21			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
 22
 
 
 
 
 
 
 
 23struct stm32_timer_cnt {
 24	struct counter_device counter;
 25	struct regmap *regmap;
 26	struct clk *clk;
 27	u32 ceiling;
 
 
 28};
 29
 30/**
 31 * stm32_count_function - enumerates stm32 timer counter encoder modes
 32 * @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
 33 * @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
 34 * @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
 35 * @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
 36 */
 37enum stm32_count_function {
 38	STM32_COUNT_SLAVE_MODE_DISABLED = -1,
 39	STM32_COUNT_ENCODER_MODE_1,
 40	STM32_COUNT_ENCODER_MODE_2,
 41	STM32_COUNT_ENCODER_MODE_3,
 42};
 43
 44static enum counter_count_function stm32_count_functions[] = {
 45	[STM32_COUNT_ENCODER_MODE_1] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_A,
 46	[STM32_COUNT_ENCODER_MODE_2] = COUNTER_COUNT_FUNCTION_QUADRATURE_X2_B,
 47	[STM32_COUNT_ENCODER_MODE_3] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
 48};
 49
 50static int stm32_count_read(struct counter_device *counter,
 51			    struct counter_count *count,
 52			    struct counter_count_read_value *val)
 53{
 54	struct stm32_timer_cnt *const priv = counter->priv;
 55	u32 cnt;
 56
 57	regmap_read(priv->regmap, TIM_CNT, &cnt);
 58	counter_count_read_value_set(val, COUNTER_COUNT_POSITION, &cnt);
 59
 60	return 0;
 61}
 62
 63static int stm32_count_write(struct counter_device *counter,
 64			     struct counter_count *count,
 65			     struct counter_count_write_value *val)
 66{
 67	struct stm32_timer_cnt *const priv = counter->priv;
 68	u32 cnt;
 69	int err;
 70
 71	err = counter_count_write_value_get(&cnt, COUNTER_COUNT_POSITION, val);
 72	if (err)
 73		return err;
 74
 75	if (cnt > priv->ceiling)
 76		return -EINVAL;
 77
 78	return regmap_write(priv->regmap, TIM_CNT, cnt);
 79}
 80
 81static int stm32_count_function_get(struct counter_device *counter,
 82				    struct counter_count *count,
 83				    size_t *function)
 84{
 85	struct stm32_timer_cnt *const priv = counter->priv;
 86	u32 smcr;
 87
 88	regmap_read(priv->regmap, TIM_SMCR, &smcr);
 89
 90	switch (smcr & TIM_SMCR_SMS) {
 91	case 1:
 92		*function = STM32_COUNT_ENCODER_MODE_1;
 93		return 0;
 94	case 2:
 95		*function = STM32_COUNT_ENCODER_MODE_2;
 96		return 0;
 97	case 3:
 98		*function = STM32_COUNT_ENCODER_MODE_3;
 99		return 0;
100	}
101
102	return -EINVAL;
103}
104
105static int stm32_count_function_set(struct counter_device *counter,
106				    struct counter_count *count,
107				    size_t function)
108{
109	struct stm32_timer_cnt *const priv = counter->priv;
110	u32 cr1, sms;
111
112	switch (function) {
113	case STM32_COUNT_ENCODER_MODE_1:
114		sms = 1;
115		break;
116	case STM32_COUNT_ENCODER_MODE_2:
117		sms = 2;
118		break;
119	case STM32_COUNT_ENCODER_MODE_3:
120		sms = 3;
121		break;
122	default:
123		sms = 0;
124		break;
125	}
126
127	/* Store enable status */
128	regmap_read(priv->regmap, TIM_CR1, &cr1);
129
130	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
131
132	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
133	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
134	regmap_write(priv->regmap, TIM_ARR, priv->ceiling);
135
136	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
137
138	/* Make sure that registers are updated */
139	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
140
141	/* Restore the enable status */
142	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
143
144	return 0;
145}
146
147static ssize_t stm32_count_direction_read(struct counter_device *counter,
148				      struct counter_count *count,
149				      void *private, char *buf)
150{
151	struct stm32_timer_cnt *const priv = counter->priv;
152	const char *direction;
153	u32 cr1;
154
155	regmap_read(priv->regmap, TIM_CR1, &cr1);
156	direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
157
158	return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
159}
160
161static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
162					struct counter_count *count,
163					void *private, char *buf)
164{
165	struct stm32_timer_cnt *const priv = counter->priv;
166	u32 arr;
167
168	regmap_read(priv->regmap, TIM_ARR, &arr);
169
170	return snprintf(buf, PAGE_SIZE, "%u\n", arr);
171}
172
173static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
174					 struct counter_count *count,
175					 void *private,
176					 const char *buf, size_t len)
177{
178	struct stm32_timer_cnt *const priv = counter->priv;
179	unsigned int ceiling;
180	int ret;
181
182	ret = kstrtouint(buf, 0, &ceiling);
183	if (ret)
184		return ret;
185
186	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
187	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
188	regmap_write(priv->regmap, TIM_ARR, ceiling);
189
190	priv->ceiling = ceiling;
191	return len;
192}
193
194static ssize_t stm32_count_enable_read(struct counter_device *counter,
195				       struct counter_count *count,
196				       void *private, char *buf)
197{
198	struct stm32_timer_cnt *const priv = counter->priv;
199	u32 cr1;
200
201	regmap_read(priv->regmap, TIM_CR1, &cr1);
202
203	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
204}
205
206static ssize_t stm32_count_enable_write(struct counter_device *counter,
207					struct counter_count *count,
208					void *private,
209					const char *buf, size_t len)
210{
211	struct stm32_timer_cnt *const priv = counter->priv;
212	int err;
213	u32 cr1;
214	bool enable;
215
216	err = kstrtobool(buf, &enable);
217	if (err)
218		return err;
219
220	if (enable) {
221		regmap_read(priv->regmap, TIM_CR1, &cr1);
222			if (!(cr1 & TIM_CR1_CEN))
223				clk_enable(priv->clk);
224
225		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
226				   TIM_CR1_CEN);
227	} else {
228		regmap_read(priv->regmap, TIM_CR1, &cr1);
229		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
230		if (cr1 & TIM_CR1_CEN)
231			clk_disable(priv->clk);
232	}
233
 
 
 
234	return len;
235}
236
237static const struct counter_count_ext stm32_count_ext[] = {
238	{
239		.name = "direction",
240		.read = stm32_count_direction_read,
241	},
242	{
243		.name = "enable",
244		.read = stm32_count_enable_read,
245		.write = stm32_count_enable_write
246	},
247	{
248		.name = "ceiling",
249		.read = stm32_count_ceiling_read,
250		.write = stm32_count_ceiling_write
251	},
252};
253
254enum stm32_synapse_action {
255	STM32_SYNAPSE_ACTION_NONE,
256	STM32_SYNAPSE_ACTION_BOTH_EDGES
257};
258
259static enum counter_synapse_action stm32_synapse_actions[] = {
260	[STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
261	[STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
262};
263
264static int stm32_action_get(struct counter_device *counter,
265			    struct counter_count *count,
266			    struct counter_synapse *synapse,
267			    size_t *action)
268{
269	size_t function;
270	int err;
271
272	/* Default action mode (e.g. STM32_COUNT_SLAVE_MODE_DISABLED) */
273	*action = STM32_SYNAPSE_ACTION_NONE;
274
275	err = stm32_count_function_get(counter, count, &function);
276	if (err)
277		return 0;
278
279	switch (function) {
280	case STM32_COUNT_ENCODER_MODE_1:
281		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
282		if (synapse->signal->id == count->synapses[0].signal->id)
283			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
284		break;
285	case STM32_COUNT_ENCODER_MODE_2:
286		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
287		if (synapse->signal->id == count->synapses[1].signal->id)
288			*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
289		break;
290	case STM32_COUNT_ENCODER_MODE_3:
291		/* counts up/down on both TI1FP1 and TI2FP2 edges */
292		*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
293		break;
294	}
295
296	return 0;
297}
298
299static const struct counter_ops stm32_timer_cnt_ops = {
300	.count_read = stm32_count_read,
301	.count_write = stm32_count_write,
302	.function_get = stm32_count_function_get,
303	.function_set = stm32_count_function_set,
304	.action_get = stm32_action_get,
305};
306
307static struct counter_signal stm32_signals[] = {
308	{
309		.id = 0,
310		.name = "Channel 1 Quadrature A"
311	},
312	{
313		.id = 1,
314		.name = "Channel 1 Quadrature B"
315	}
316};
317
318static struct counter_synapse stm32_count_synapses[] = {
319	{
320		.actions_list = stm32_synapse_actions,
321		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
322		.signal = &stm32_signals[0]
323	},
324	{
325		.actions_list = stm32_synapse_actions,
326		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
327		.signal = &stm32_signals[1]
328	}
329};
330
331static struct counter_count stm32_counts = {
332	.id = 0,
333	.name = "Channel 1 Count",
334	.functions_list = stm32_count_functions,
335	.num_functions = ARRAY_SIZE(stm32_count_functions),
336	.synapses = stm32_count_synapses,
337	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
338	.ext = stm32_count_ext,
339	.num_ext = ARRAY_SIZE(stm32_count_ext)
340};
341
342static int stm32_timer_cnt_probe(struct platform_device *pdev)
343{
344	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
345	struct device *dev = &pdev->dev;
346	struct stm32_timer_cnt *priv;
347
348	if (IS_ERR_OR_NULL(ddata))
349		return -EINVAL;
350
351	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
352	if (!priv)
353		return -ENOMEM;
354
355	priv->regmap = ddata->regmap;
356	priv->clk = ddata->clk;
357	priv->ceiling = ddata->max_arr;
358
359	priv->counter.name = dev_name(dev);
360	priv->counter.parent = dev;
361	priv->counter.ops = &stm32_timer_cnt_ops;
362	priv->counter.counts = &stm32_counts;
363	priv->counter.num_counts = 1;
364	priv->counter.signals = stm32_signals;
365	priv->counter.num_signals = ARRAY_SIZE(stm32_signals);
366	priv->counter.priv = priv;
367
 
 
368	/* Register Counter device */
369	return devm_counter_register(dev, &priv->counter);
370}
371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372static const struct of_device_id stm32_timer_cnt_of_match[] = {
373	{ .compatible = "st,stm32-timer-counter", },
374	{},
375};
376MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
377
378static struct platform_driver stm32_timer_cnt_driver = {
379	.probe = stm32_timer_cnt_probe,
380	.driver = {
381		.name = "stm32-timer-counter",
382		.of_match_table = stm32_timer_cnt_of_match,
 
383	},
384};
385module_platform_driver(stm32_timer_cnt_driver);
386
387MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
388MODULE_ALIAS("platform:stm32-timer-counter");
389MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
390MODULE_LICENSE("GPL v2");