Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Faraday Technology FTTMR010 timer driver
  4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
  5 *
  6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
  7 * Copyright (C) 2001-2006 Storlink, Corp.
  8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
  9 */
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/clockchips.h>
 16#include <linux/clocksource.h>
 17#include <linux/sched_clock.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/bitops.h>
 21#include <linux/delay.h>
 22
 23/*
 24 * Register definitions common for all the timer variants.
 25 */
 26#define TIMER1_COUNT		(0x00)
 27#define TIMER1_LOAD		(0x04)
 28#define TIMER1_MATCH1		(0x08)
 29#define TIMER1_MATCH2		(0x0c)
 30#define TIMER2_COUNT		(0x10)
 31#define TIMER2_LOAD		(0x14)
 32#define TIMER2_MATCH1		(0x18)
 33#define TIMER2_MATCH2		(0x1c)
 34#define TIMER3_COUNT		(0x20)
 35#define TIMER3_LOAD		(0x24)
 36#define TIMER3_MATCH1		(0x28)
 37#define TIMER3_MATCH2		(0x2c)
 38#define TIMER_CR		(0x30)
 39
 40/*
 41 * Control register set to clear for ast2600 only.
 42 */
 43#define AST2600_TIMER_CR_CLR	(0x3c)
 44
 45/*
 46 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
 47 */
 48#define TIMER_1_CR_ENABLE	BIT(0)
 49#define TIMER_1_CR_CLOCK	BIT(1)
 50#define TIMER_1_CR_INT		BIT(2)
 51#define TIMER_2_CR_ENABLE	BIT(3)
 52#define TIMER_2_CR_CLOCK	BIT(4)
 53#define TIMER_2_CR_INT		BIT(5)
 54#define TIMER_3_CR_ENABLE	BIT(6)
 55#define TIMER_3_CR_CLOCK	BIT(7)
 56#define TIMER_3_CR_INT		BIT(8)
 57#define TIMER_1_CR_UPDOWN	BIT(9)
 58#define TIMER_2_CR_UPDOWN	BIT(10)
 59#define TIMER_3_CR_UPDOWN	BIT(11)
 60
 61/*
 62 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
 63 * The aspeed timers move bits around in the control register and lacks
 64 * bits for setting the timer to count upwards.
 65 */
 66#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 67#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 68#define TIMER_1_CR_ASPEED_INT		BIT(2)
 69#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 70#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 71#define TIMER_2_CR_ASPEED_INT		BIT(6)
 72#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 73#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 74#define TIMER_3_CR_ASPEED_INT		BIT(10)
 75
 76/*
 77 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
 78 * timers.
 79 * The registers don't exist and they are not needed on aspeed timers
 80 * because:
 81 *   - aspeed timer overflow interrupt is controlled by bits in Control
 82 *     Register (TMC30).
 83 *   - aspeed timers always generate interrupt when either one of the
 84 *     Match registers equals to Status register.
 85 */
 86#define TIMER_INTR_STATE	(0x34)
 87#define TIMER_INTR_MASK		(0x38)
 88#define TIMER_1_INT_MATCH1	BIT(0)
 89#define TIMER_1_INT_MATCH2	BIT(1)
 90#define TIMER_1_INT_OVERFLOW	BIT(2)
 91#define TIMER_2_INT_MATCH1	BIT(3)
 92#define TIMER_2_INT_MATCH2	BIT(4)
 93#define TIMER_2_INT_OVERFLOW	BIT(5)
 94#define TIMER_3_INT_MATCH1	BIT(6)
 95#define TIMER_3_INT_MATCH2	BIT(7)
 96#define TIMER_3_INT_OVERFLOW	BIT(8)
 97#define TIMER_INT_ALL_MASK	0x1ff
 98
 99struct fttmr010 {
100	void __iomem *base;
101	unsigned int tick_rate;
102	bool is_aspeed;
103	u32 t1_enable_val;
104	struct clock_event_device clkevt;
105	int (*timer_shutdown)(struct clock_event_device *evt);
106#ifdef CONFIG_ARM
107	struct delay_timer delay_timer;
108#endif
109};
110
111/*
112 * A local singleton used by sched_clock and delay timer reads, which are
113 * fast and stateless
114 */
115static struct fttmr010 *local_fttmr;
116
117static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118{
119	return container_of(evt, struct fttmr010, clkevt);
120}
121
122static unsigned long fttmr010_read_current_timer_up(void)
123{
124	return readl(local_fttmr->base + TIMER2_COUNT);
125}
126
127static unsigned long fttmr010_read_current_timer_down(void)
128{
129	return ~readl(local_fttmr->base + TIMER2_COUNT);
130}
131
132static u64 notrace fttmr010_read_sched_clock_up(void)
133{
134	return fttmr010_read_current_timer_up();
135}
136
137static u64 notrace fttmr010_read_sched_clock_down(void)
138{
139	return fttmr010_read_current_timer_down();
140}
141
142static int fttmr010_timer_set_next_event(unsigned long cycles,
143				       struct clock_event_device *evt)
144{
145	struct fttmr010 *fttmr010 = to_fttmr010(evt);
146	u32 cr;
147
148	/* Stop */
149	fttmr010->timer_shutdown(evt);
 
 
150
151	if (fttmr010->is_aspeed) {
152		/*
153		 * ASPEED Timer Controller will load TIMER1_LOAD register
154		 * into TIMER1_COUNT register when the timer is re-enabled.
155		 */
156		writel(cycles, fttmr010->base + TIMER1_LOAD);
157	} else {
158		/* Setup the match register forward in time */
159		cr = readl(fttmr010->base + TIMER1_COUNT);
160		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161	}
162
163	/* Start */
164	cr = readl(fttmr010->base + TIMER_CR);
165	cr |= fttmr010->t1_enable_val;
166	writel(cr, fttmr010->base + TIMER_CR);
167
168	return 0;
169}
170
171static int ast2600_timer_shutdown(struct clock_event_device *evt)
172{
173	struct fttmr010 *fttmr010 = to_fttmr010(evt);
174
175	/* Stop */
176	writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177
178	return 0;
179}
180
181static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182{
183	struct fttmr010 *fttmr010 = to_fttmr010(evt);
184	u32 cr;
185
186	/* Stop */
187	cr = readl(fttmr010->base + TIMER_CR);
188	cr &= ~fttmr010->t1_enable_val;
189	writel(cr, fttmr010->base + TIMER_CR);
190
191	return 0;
192}
193
194static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195{
196	struct fttmr010 *fttmr010 = to_fttmr010(evt);
197	u32 cr;
198
199	/* Stop */
200	fttmr010->timer_shutdown(evt);
 
 
201
202	/* Setup counter start from 0 or ~0 */
203	writel(0, fttmr010->base + TIMER1_COUNT);
204	if (fttmr010->is_aspeed) {
205		writel(~0, fttmr010->base + TIMER1_LOAD);
206	} else {
207		writel(0, fttmr010->base + TIMER1_LOAD);
208
209		/* Enable interrupt */
210		cr = readl(fttmr010->base + TIMER_INTR_MASK);
211		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212		cr |= TIMER_1_INT_MATCH1;
213		writel(cr, fttmr010->base + TIMER_INTR_MASK);
214	}
215
216	return 0;
217}
218
219static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220{
221	struct fttmr010 *fttmr010 = to_fttmr010(evt);
222	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223	u32 cr;
224
225	/* Stop */
226	fttmr010->timer_shutdown(evt);
 
 
227
228	/* Setup timer to fire at 1/HZ intervals. */
229	if (fttmr010->is_aspeed) {
230		writel(period, fttmr010->base + TIMER1_LOAD);
231	} else {
232		cr = 0xffffffff - (period - 1);
233		writel(cr, fttmr010->base + TIMER1_COUNT);
234		writel(cr, fttmr010->base + TIMER1_LOAD);
235
236		/* Enable interrupt on overflow */
237		cr = readl(fttmr010->base + TIMER_INTR_MASK);
238		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239		cr |= TIMER_1_INT_OVERFLOW;
240		writel(cr, fttmr010->base + TIMER_INTR_MASK);
241	}
242
243	/* Start the timer */
244	cr = readl(fttmr010->base + TIMER_CR);
245	cr |= fttmr010->t1_enable_val;
246	writel(cr, fttmr010->base + TIMER_CR);
247
248	return 0;
249}
250
251/*
252 * IRQ handler for the timer
253 */
254static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255{
256	struct clock_event_device *evt = dev_id;
257
258	evt->event_handler(evt);
259	return IRQ_HANDLED;
260}
261
262static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263{
264	struct clock_event_device *evt = dev_id;
265	struct fttmr010 *fttmr010 = to_fttmr010(evt);
266
267	writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268
269	evt->event_handler(evt);
270	return IRQ_HANDLED;
271}
272
273static int __init fttmr010_common_init(struct device_node *np,
274		bool is_aspeed,
275		int (*timer_shutdown)(struct clock_event_device *),
276		irq_handler_t irq_handler)
277{
278	struct fttmr010 *fttmr010;
279	int irq;
280	struct clk *clk;
281	int ret;
282	u32 val;
283
284	/*
285	 * These implementations require a clock reference.
286	 * FIXME: we currently only support clocking using PCLK
287	 * and using EXTCLK is not supported in the driver.
288	 */
289	clk = of_clk_get_by_name(np, "PCLK");
290	if (IS_ERR(clk)) {
291		pr_err("could not get PCLK\n");
292		return PTR_ERR(clk);
293	}
294	ret = clk_prepare_enable(clk);
295	if (ret) {
296		pr_err("failed to enable PCLK\n");
297		return ret;
298	}
299
300	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
301	if (!fttmr010) {
302		ret = -ENOMEM;
303		goto out_disable_clock;
304	}
305	fttmr010->tick_rate = clk_get_rate(clk);
306
307	fttmr010->base = of_iomap(np, 0);
308	if (!fttmr010->base) {
309		pr_err("Can't remap registers\n");
310		ret = -ENXIO;
311		goto out_free;
312	}
313	/* IRQ for timer 1 */
314	irq = irq_of_parse_and_map(np, 0);
315	if (irq <= 0) {
316		pr_err("Can't parse IRQ\n");
317		ret = -EINVAL;
318		goto out_unmap;
319	}
320
321	/*
322	 * The Aspeed timers move bits around in the control register.
323	 */
324	if (is_aspeed) {
325		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
326			TIMER_1_CR_ASPEED_INT;
327		fttmr010->is_aspeed = true;
328	} else {
329		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
330
331		/*
332		 * Reset the interrupt mask and status
333		 */
334		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
335		writel(0, fttmr010->base + TIMER_INTR_STATE);
336	}
337
338	/*
339	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
340	 * where everything just counts down.
341	 */
342	if (is_aspeed)
343		val = TIMER_2_CR_ASPEED_ENABLE;
344	else {
345		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
346			TIMER_2_CR_UPDOWN;
347	}
348	writel(val, fttmr010->base + TIMER_CR);
349
350	/*
351	 * Setup free-running clocksource timer (interrupts
352	 * disabled.)
353	 */
354	local_fttmr = fttmr010;
355	writel(0, fttmr010->base + TIMER2_COUNT);
356	writel(0, fttmr010->base + TIMER2_MATCH1);
357	writel(0, fttmr010->base + TIMER2_MATCH2);
358
359	if (fttmr010->is_aspeed) {
360		writel(~0, fttmr010->base + TIMER2_LOAD);
361		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
362				      "FTTMR010-TIMER2",
363				      fttmr010->tick_rate,
364				      300, 32, clocksource_mmio_readl_down);
365		sched_clock_register(fttmr010_read_sched_clock_down, 32,
366				     fttmr010->tick_rate);
367	} else {
368		writel(0, fttmr010->base + TIMER2_LOAD);
369		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
370				      "FTTMR010-TIMER2",
371				      fttmr010->tick_rate,
372				      300, 32, clocksource_mmio_readl_up);
373		sched_clock_register(fttmr010_read_sched_clock_up, 32,
374				     fttmr010->tick_rate);
375	}
376
377	fttmr010->timer_shutdown = timer_shutdown;
378
379	/*
380	 * Setup clockevent timer (interrupt-driven) on timer 1.
381	 */
382	writel(0, fttmr010->base + TIMER1_COUNT);
383	writel(0, fttmr010->base + TIMER1_LOAD);
384	writel(0, fttmr010->base + TIMER1_MATCH1);
385	writel(0, fttmr010->base + TIMER1_MATCH2);
386	ret = request_irq(irq, irq_handler, IRQF_TIMER,
387			  "FTTMR010-TIMER1", &fttmr010->clkevt);
388	if (ret) {
389		pr_err("FTTMR010-TIMER1 no IRQ\n");
390		goto out_unmap;
391	}
392
393	fttmr010->clkevt.name = "FTTMR010-TIMER1";
394	/* Reasonably fast and accurate clock event */
395	fttmr010->clkevt.rating = 300;
396	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
397		CLOCK_EVT_FEAT_ONESHOT;
398	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
399	fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
400	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
401	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
402	fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
403	fttmr010->clkevt.cpumask = cpumask_of(0);
404	fttmr010->clkevt.irq = irq;
405	clockevents_config_and_register(&fttmr010->clkevt,
406					fttmr010->tick_rate,
407					1, 0xffffffff);
408
409#ifdef CONFIG_ARM
410	/* Also use this timer for delays */
411	if (fttmr010->is_aspeed)
412		fttmr010->delay_timer.read_current_timer =
413			fttmr010_read_current_timer_down;
414	else
415		fttmr010->delay_timer.read_current_timer =
416			fttmr010_read_current_timer_up;
417	fttmr010->delay_timer.freq = fttmr010->tick_rate;
418	register_current_timer_delay(&fttmr010->delay_timer);
419#endif
420
421	return 0;
422
423out_unmap:
424	iounmap(fttmr010->base);
425out_free:
426	kfree(fttmr010);
427out_disable_clock:
428	clk_disable_unprepare(clk);
429
430	return ret;
431}
432
433static __init int ast2600_timer_init(struct device_node *np)
434{
435	return fttmr010_common_init(np, true,
436			ast2600_timer_shutdown,
437			ast2600_timer_interrupt);
438}
439
440static __init int aspeed_timer_init(struct device_node *np)
441{
442	return fttmr010_common_init(np, true,
443			fttmr010_timer_shutdown,
444			fttmr010_timer_interrupt);
445}
446
447static __init int fttmr010_timer_init(struct device_node *np)
448{
449	return fttmr010_common_init(np, false,
450			fttmr010_timer_shutdown,
451			fttmr010_timer_interrupt);
452}
453
454TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Faraday Technology FTTMR010 timer driver
  4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
  5 *
  6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
  7 * Copyright (C) 2001-2006 Storlink, Corp.
  8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
  9 */
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/clockchips.h>
 16#include <linux/clocksource.h>
 17#include <linux/sched_clock.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/bitops.h>
 21#include <linux/delay.h>
 22
 23/*
 24 * Register definitions common for all the timer variants.
 25 */
 26#define TIMER1_COUNT		(0x00)
 27#define TIMER1_LOAD		(0x04)
 28#define TIMER1_MATCH1		(0x08)
 29#define TIMER1_MATCH2		(0x0c)
 30#define TIMER2_COUNT		(0x10)
 31#define TIMER2_LOAD		(0x14)
 32#define TIMER2_MATCH1		(0x18)
 33#define TIMER2_MATCH2		(0x1c)
 34#define TIMER3_COUNT		(0x20)
 35#define TIMER3_LOAD		(0x24)
 36#define TIMER3_MATCH1		(0x28)
 37#define TIMER3_MATCH2		(0x2c)
 38#define TIMER_CR		(0x30)
 39
 40/*
 
 
 
 
 
 41 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
 42 */
 43#define TIMER_1_CR_ENABLE	BIT(0)
 44#define TIMER_1_CR_CLOCK	BIT(1)
 45#define TIMER_1_CR_INT		BIT(2)
 46#define TIMER_2_CR_ENABLE	BIT(3)
 47#define TIMER_2_CR_CLOCK	BIT(4)
 48#define TIMER_2_CR_INT		BIT(5)
 49#define TIMER_3_CR_ENABLE	BIT(6)
 50#define TIMER_3_CR_CLOCK	BIT(7)
 51#define TIMER_3_CR_INT		BIT(8)
 52#define TIMER_1_CR_UPDOWN	BIT(9)
 53#define TIMER_2_CR_UPDOWN	BIT(10)
 54#define TIMER_3_CR_UPDOWN	BIT(11)
 55
 56/*
 57 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
 58 * The aspeed timers move bits around in the control register and lacks
 59 * bits for setting the timer to count upwards.
 60 */
 61#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 62#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 63#define TIMER_1_CR_ASPEED_INT		BIT(2)
 64#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 65#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 66#define TIMER_2_CR_ASPEED_INT		BIT(6)
 67#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 68#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 69#define TIMER_3_CR_ASPEED_INT		BIT(10)
 70
 71/*
 72 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
 73 * timers.
 74 * The registers don't exist and they are not needed on aspeed timers
 75 * because:
 76 *   - aspeed timer overflow interrupt is controlled by bits in Control
 77 *     Register (TMC30).
 78 *   - aspeed timers always generate interrupt when either one of the
 79 *     Match registers equals to Status register.
 80 */
 81#define TIMER_INTR_STATE	(0x34)
 82#define TIMER_INTR_MASK		(0x38)
 83#define TIMER_1_INT_MATCH1	BIT(0)
 84#define TIMER_1_INT_MATCH2	BIT(1)
 85#define TIMER_1_INT_OVERFLOW	BIT(2)
 86#define TIMER_2_INT_MATCH1	BIT(3)
 87#define TIMER_2_INT_MATCH2	BIT(4)
 88#define TIMER_2_INT_OVERFLOW	BIT(5)
 89#define TIMER_3_INT_MATCH1	BIT(6)
 90#define TIMER_3_INT_MATCH2	BIT(7)
 91#define TIMER_3_INT_OVERFLOW	BIT(8)
 92#define TIMER_INT_ALL_MASK	0x1ff
 93
 94struct fttmr010 {
 95	void __iomem *base;
 96	unsigned int tick_rate;
 97	bool is_aspeed;
 98	u32 t1_enable_val;
 99	struct clock_event_device clkevt;
 
100#ifdef CONFIG_ARM
101	struct delay_timer delay_timer;
102#endif
103};
104
105/*
106 * A local singleton used by sched_clock and delay timer reads, which are
107 * fast and stateless
108 */
109static struct fttmr010 *local_fttmr;
110
111static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
112{
113	return container_of(evt, struct fttmr010, clkevt);
114}
115
116static unsigned long fttmr010_read_current_timer_up(void)
117{
118	return readl(local_fttmr->base + TIMER2_COUNT);
119}
120
121static unsigned long fttmr010_read_current_timer_down(void)
122{
123	return ~readl(local_fttmr->base + TIMER2_COUNT);
124}
125
126static u64 notrace fttmr010_read_sched_clock_up(void)
127{
128	return fttmr010_read_current_timer_up();
129}
130
131static u64 notrace fttmr010_read_sched_clock_down(void)
132{
133	return fttmr010_read_current_timer_down();
134}
135
136static int fttmr010_timer_set_next_event(unsigned long cycles,
137				       struct clock_event_device *evt)
138{
139	struct fttmr010 *fttmr010 = to_fttmr010(evt);
140	u32 cr;
141
142	/* Stop */
143	cr = readl(fttmr010->base + TIMER_CR);
144	cr &= ~fttmr010->t1_enable_val;
145	writel(cr, fttmr010->base + TIMER_CR);
146
147	if (fttmr010->is_aspeed) {
148		/*
149		 * ASPEED Timer Controller will load TIMER1_LOAD register
150		 * into TIMER1_COUNT register when the timer is re-enabled.
151		 */
152		writel(cycles, fttmr010->base + TIMER1_LOAD);
153	} else {
154		/* Setup the match register forward in time */
155		cr = readl(fttmr010->base + TIMER1_COUNT);
156		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
157	}
158
159	/* Start */
160	cr = readl(fttmr010->base + TIMER_CR);
161	cr |= fttmr010->t1_enable_val;
162	writel(cr, fttmr010->base + TIMER_CR);
163
164	return 0;
165}
166
 
 
 
 
 
 
 
 
 
 
167static int fttmr010_timer_shutdown(struct clock_event_device *evt)
168{
169	struct fttmr010 *fttmr010 = to_fttmr010(evt);
170	u32 cr;
171
172	/* Stop */
173	cr = readl(fttmr010->base + TIMER_CR);
174	cr &= ~fttmr010->t1_enable_val;
175	writel(cr, fttmr010->base + TIMER_CR);
176
177	return 0;
178}
179
180static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
181{
182	struct fttmr010 *fttmr010 = to_fttmr010(evt);
183	u32 cr;
184
185	/* Stop */
186	cr = readl(fttmr010->base + TIMER_CR);
187	cr &= ~fttmr010->t1_enable_val;
188	writel(cr, fttmr010->base + TIMER_CR);
189
190	/* Setup counter start from 0 or ~0 */
191	writel(0, fttmr010->base + TIMER1_COUNT);
192	if (fttmr010->is_aspeed) {
193		writel(~0, fttmr010->base + TIMER1_LOAD);
194	} else {
195		writel(0, fttmr010->base + TIMER1_LOAD);
196
197		/* Enable interrupt */
198		cr = readl(fttmr010->base + TIMER_INTR_MASK);
199		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
200		cr |= TIMER_1_INT_MATCH1;
201		writel(cr, fttmr010->base + TIMER_INTR_MASK);
202	}
203
204	return 0;
205}
206
207static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
208{
209	struct fttmr010 *fttmr010 = to_fttmr010(evt);
210	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
211	u32 cr;
212
213	/* Stop */
214	cr = readl(fttmr010->base + TIMER_CR);
215	cr &= ~fttmr010->t1_enable_val;
216	writel(cr, fttmr010->base + TIMER_CR);
217
218	/* Setup timer to fire at 1/HZ intervals. */
219	if (fttmr010->is_aspeed) {
220		writel(period, fttmr010->base + TIMER1_LOAD);
221	} else {
222		cr = 0xffffffff - (period - 1);
223		writel(cr, fttmr010->base + TIMER1_COUNT);
224		writel(cr, fttmr010->base + TIMER1_LOAD);
225
226		/* Enable interrupt on overflow */
227		cr = readl(fttmr010->base + TIMER_INTR_MASK);
228		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
229		cr |= TIMER_1_INT_OVERFLOW;
230		writel(cr, fttmr010->base + TIMER_INTR_MASK);
231	}
232
233	/* Start the timer */
234	cr = readl(fttmr010->base + TIMER_CR);
235	cr |= fttmr010->t1_enable_val;
236	writel(cr, fttmr010->base + TIMER_CR);
237
238	return 0;
239}
240
241/*
242 * IRQ handler for the timer
243 */
244static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
245{
246	struct clock_event_device *evt = dev_id;
247
248	evt->event_handler(evt);
249	return IRQ_HANDLED;
250}
251
252static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253{
254	struct fttmr010 *fttmr010;
255	int irq;
256	struct clk *clk;
257	int ret;
258	u32 val;
259
260	/*
261	 * These implementations require a clock reference.
262	 * FIXME: we currently only support clocking using PCLK
263	 * and using EXTCLK is not supported in the driver.
264	 */
265	clk = of_clk_get_by_name(np, "PCLK");
266	if (IS_ERR(clk)) {
267		pr_err("could not get PCLK\n");
268		return PTR_ERR(clk);
269	}
270	ret = clk_prepare_enable(clk);
271	if (ret) {
272		pr_err("failed to enable PCLK\n");
273		return ret;
274	}
275
276	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
277	if (!fttmr010) {
278		ret = -ENOMEM;
279		goto out_disable_clock;
280	}
281	fttmr010->tick_rate = clk_get_rate(clk);
282
283	fttmr010->base = of_iomap(np, 0);
284	if (!fttmr010->base) {
285		pr_err("Can't remap registers\n");
286		ret = -ENXIO;
287		goto out_free;
288	}
289	/* IRQ for timer 1 */
290	irq = irq_of_parse_and_map(np, 0);
291	if (irq <= 0) {
292		pr_err("Can't parse IRQ\n");
293		ret = -EINVAL;
294		goto out_unmap;
295	}
296
297	/*
298	 * The Aspeed timers move bits around in the control register.
299	 */
300	if (is_aspeed) {
301		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
302			TIMER_1_CR_ASPEED_INT;
303		fttmr010->is_aspeed = true;
304	} else {
305		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
306
307		/*
308		 * Reset the interrupt mask and status
309		 */
310		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
311		writel(0, fttmr010->base + TIMER_INTR_STATE);
312	}
313
314	/*
315	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
316	 * where everything just counts down.
317	 */
318	if (is_aspeed)
319		val = TIMER_2_CR_ASPEED_ENABLE;
320	else {
321		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
322			TIMER_2_CR_UPDOWN;
323	}
324	writel(val, fttmr010->base + TIMER_CR);
325
326	/*
327	 * Setup free-running clocksource timer (interrupts
328	 * disabled.)
329	 */
330	local_fttmr = fttmr010;
331	writel(0, fttmr010->base + TIMER2_COUNT);
332	writel(0, fttmr010->base + TIMER2_MATCH1);
333	writel(0, fttmr010->base + TIMER2_MATCH2);
334
335	if (fttmr010->is_aspeed) {
336		writel(~0, fttmr010->base + TIMER2_LOAD);
337		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
338				      "FTTMR010-TIMER2",
339				      fttmr010->tick_rate,
340				      300, 32, clocksource_mmio_readl_down);
341		sched_clock_register(fttmr010_read_sched_clock_down, 32,
342				     fttmr010->tick_rate);
343	} else {
344		writel(0, fttmr010->base + TIMER2_LOAD);
345		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
346				      "FTTMR010-TIMER2",
347				      fttmr010->tick_rate,
348				      300, 32, clocksource_mmio_readl_up);
349		sched_clock_register(fttmr010_read_sched_clock_up, 32,
350				     fttmr010->tick_rate);
351	}
352
 
 
353	/*
354	 * Setup clockevent timer (interrupt-driven) on timer 1.
355	 */
356	writel(0, fttmr010->base + TIMER1_COUNT);
357	writel(0, fttmr010->base + TIMER1_LOAD);
358	writel(0, fttmr010->base + TIMER1_MATCH1);
359	writel(0, fttmr010->base + TIMER1_MATCH2);
360	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
361			  "FTTMR010-TIMER1", &fttmr010->clkevt);
362	if (ret) {
363		pr_err("FTTMR010-TIMER1 no IRQ\n");
364		goto out_unmap;
365	}
366
367	fttmr010->clkevt.name = "FTTMR010-TIMER1";
368	/* Reasonably fast and accurate clock event */
369	fttmr010->clkevt.rating = 300;
370	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
371		CLOCK_EVT_FEAT_ONESHOT;
372	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
373	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
374	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
375	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
376	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
377	fttmr010->clkevt.cpumask = cpumask_of(0);
378	fttmr010->clkevt.irq = irq;
379	clockevents_config_and_register(&fttmr010->clkevt,
380					fttmr010->tick_rate,
381					1, 0xffffffff);
382
383#ifdef CONFIG_ARM
384	/* Also use this timer for delays */
385	if (fttmr010->is_aspeed)
386		fttmr010->delay_timer.read_current_timer =
387			fttmr010_read_current_timer_down;
388	else
389		fttmr010->delay_timer.read_current_timer =
390			fttmr010_read_current_timer_up;
391	fttmr010->delay_timer.freq = fttmr010->tick_rate;
392	register_current_timer_delay(&fttmr010->delay_timer);
393#endif
394
395	return 0;
396
397out_unmap:
398	iounmap(fttmr010->base);
399out_free:
400	kfree(fttmr010);
401out_disable_clock:
402	clk_disable_unprepare(clk);
403
404	return ret;
405}
406
 
 
 
 
 
 
 
407static __init int aspeed_timer_init(struct device_node *np)
408{
409	return fttmr010_common_init(np, true);
 
 
410}
411
412static __init int fttmr010_timer_init(struct device_node *np)
413{
414	return fttmr010_common_init(np, false);
 
 
415}
416
417TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
418TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
419TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
420TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
421TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);