Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 11#include <asm/switch_to.h>
 12#include <linux/uaccess.h>
 13#include <asm/inst.h>
 14
 15/* Functions in vector.S */
 16extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 17extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 18extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 19extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 20extern void vrefp(vector128 *dst, vector128 *src);
 21extern void vrsqrtefp(vector128 *dst, vector128 *src);
 22extern void vexptep(vector128 *dst, vector128 *src);
 23
 24static unsigned int exp2s[8] = {
 25	0x800000,
 26	0x8b95c2,
 27	0x9837f0,
 28	0xa5fed7,
 29	0xb504f3,
 30	0xc5672a,
 31	0xd744fd,
 32	0xeac0c7
 33};
 34
 35/*
 36 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 37 * single-precision floating-point representation of x.
 38 */
 39static unsigned int eexp2(unsigned int s)
 40{
 41	int exp, pwr;
 42	unsigned int mant, frac;
 43
 44	/* extract exponent field from input */
 45	exp = ((s >> 23) & 0xff) - 127;
 46	if (exp > 7) {
 47		/* check for NaN input */
 48		if (exp == 128 && (s & 0x7fffff) != 0)
 49			return s | 0x400000;	/* return QNaN */
 50		/* 2^-big = 0, 2^+big = +Inf */
 51		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 52	}
 53	if (exp < -23)
 54		return 0x3f800000;	/* 1.0 */
 55
 56	/* convert to fixed point integer in 9.23 representation */
 57	pwr = (s & 0x7fffff) | 0x800000;
 58	if (exp > 0)
 59		pwr <<= exp;
 60	else
 61		pwr >>= -exp;
 62	if (s & 0x80000000)
 63		pwr = -pwr;
 64
 65	/* extract integer part, which becomes exponent part of result */
 66	exp = (pwr >> 23) + 126;
 67	if (exp >= 254)
 68		return 0x7f800000;
 69	if (exp < -23)
 70		return 0;
 71
 72	/* table lookup on top 3 bits of fraction to get mantissa */
 73	mant = exp2s[(pwr >> 20) & 7];
 74
 75	/* linear interpolation using remaining 20 bits of fraction */
 76	asm("mulhwu %0,%1,%2" : "=r" (frac)
 77	    : "r" (pwr << 12), "r" (0x172b83ff));
 78	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 79	mant += frac;
 80
 81	if (exp >= 0)
 82		return mant + (exp << 23);
 83
 84	/* denormalized result */
 85	exp = -exp;
 86	mant += 1 << (exp - 1);
 87	return mant >> exp;
 88}
 89
 90/*
 91 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 92 * single-precision floating-point representation of x.
 93 */
 94static unsigned int elog2(unsigned int s)
 95{
 96	int exp, mant, lz, frac;
 97
 98	exp = s & 0x7f800000;
 99	mant = s & 0x7fffff;
100	if (exp == 0x7f800000) {	/* Inf or NaN */
101		if (mant != 0)
102			s |= 0x400000;	/* turn NaN into QNaN */
103		return s;
104	}
105	if ((exp | mant) == 0)		/* +0 or -0 */
106		return 0xff800000;	/* return -Inf */
107
108	if (exp == 0) {
109		/* denormalized */
110		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
111		mant <<= lz - 8;
112		exp = (-118 - lz) << 23;
113	} else {
114		mant |= 0x800000;
115		exp -= 127 << 23;
116	}
117
118	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
119		exp |= 0x400000;			/* 0.5 * 2^23 */
120		asm("mulhwu %0,%1,%2" : "=r" (mant)
121		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
122	}
123	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
124		exp |= 0x200000;			/* 0.25 * 2^23 */
125		asm("mulhwu %0,%1,%2" : "=r" (mant)
126		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
127	}
128	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
129		exp |= 0x100000;			/* 0.125 * 2^23 */
130		asm("mulhwu %0,%1,%2" : "=r" (mant)
131		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
132	}
133	if (mant > 0x800000) {				/* 1.0 * 2^23 */
134		/* calculate (mant - 1) * 1.381097463 */
135		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
136		asm("mulhwu %0,%1,%2" : "=r" (frac)
137		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
138		exp += frac;
139	}
140	s = exp & 0x80000000;
141	if (exp != 0) {
142		if (s)
143			exp = -exp;
144		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
145		lz = 8 - lz;
146		if (lz > 0)
147			exp >>= lz;
148		else if (lz < 0)
149			exp <<= -lz;
150		s += ((lz + 126) << 23) + exp;
151	}
152	return s;
153}
154
155#define VSCR_SAT	1
156
157static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
158{
159	int exp, mant;
160
161	exp = (x >> 23) & 0xff;
162	mant = x & 0x7fffff;
163	if (exp == 255 && mant != 0)
164		return 0;		/* NaN -> 0 */
165	exp = exp - 127 + scale;
166	if (exp < 0)
167		return 0;		/* round towards zero */
168	if (exp >= 31) {
169		/* saturate, unless the result would be -2^31 */
170		if (x + (scale << 23) != 0xcf000000)
171			*vscrp |= VSCR_SAT;
172		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
173	}
174	mant |= 0x800000;
175	mant = (mant << 7) >> (30 - exp);
176	return (x & 0x80000000)? -mant: mant;
177}
178
179static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
180{
181	int exp;
182	unsigned int mant;
183
184	exp = (x >> 23) & 0xff;
185	mant = x & 0x7fffff;
186	if (exp == 255 && mant != 0)
187		return 0;		/* NaN -> 0 */
188	exp = exp - 127 + scale;
189	if (exp < 0)
190		return 0;		/* round towards zero */
191	if (x & 0x80000000) {
192		/* negative => saturate to 0 */
193		*vscrp |= VSCR_SAT;
194		return 0;
195	}
196	if (exp >= 32) {
197		/* saturate */
198		*vscrp |= VSCR_SAT;
199		return 0xffffffff;
200	}
201	mant |= 0x800000;
202	mant = (mant << 8) >> (31 - exp);
203	return mant;
204}
205
206/* Round to floating integer, towards 0 */
207static unsigned int rfiz(unsigned int x)
208{
209	int exp;
210
211	exp = ((x >> 23) & 0xff) - 127;
212	if (exp == 128 && (x & 0x7fffff) != 0)
213		return x | 0x400000;	/* NaN -> make it a QNaN */
214	if (exp >= 23)
215		return x;		/* it's an integer already (or Inf) */
216	if (exp < 0)
217		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
218	return x & ~(0x7fffff >> exp);
219}
220
221/* Round to floating integer, towards +/- Inf */
222static unsigned int rfii(unsigned int x)
223{
224	int exp, mask;
225
226	exp = ((x >> 23) & 0xff) - 127;
227	if (exp == 128 && (x & 0x7fffff) != 0)
228		return x | 0x400000;	/* NaN -> make it a QNaN */
229	if (exp >= 23)
230		return x;		/* it's an integer already (or Inf) */
231	if ((x & 0x7fffffff) == 0)
232		return x;		/* +/-0 -> +/-0 */
233	if (exp < 0)
234		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
235		return (x & 0x80000000) | 0x3f800000;
236	mask = 0x7fffff >> exp;
237	/* mantissa overflows into exponent - that's OK,
238	   it can't overflow into the sign bit */
239	return (x + mask) & ~mask;
240}
241
242/* Round to floating integer, to nearest */
243static unsigned int rfin(unsigned int x)
244{
245	int exp, half;
246
247	exp = ((x >> 23) & 0xff) - 127;
248	if (exp == 128 && (x & 0x7fffff) != 0)
249		return x | 0x400000;	/* NaN -> make it a QNaN */
250	if (exp >= 23)
251		return x;		/* it's an integer already (or Inf) */
252	if (exp < -1)
253		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
254	if (exp == -1)
255		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
256		return (x & 0x80000000) | 0x3f800000;
257	half = 0x400000 >> exp;
258	/* add 0.5 to the magnitude and chop off the fraction bits */
259	return (x + half) & ~(0x7fffff >> exp);
260}
261
262int emulate_altivec(struct pt_regs *regs)
263{
264	struct ppc_inst instr;
265	unsigned int i, word;
266	unsigned int va, vb, vc, vd;
267	vector128 *vrs;
268
269	if (get_user_instr(instr, (void __user *)regs->nip))
270		return -EFAULT;
271
272	word = ppc_inst_val(instr);
273	if (ppc_inst_primary_opcode(instr) != 4)
274		return -EINVAL;		/* not an altivec instruction */
275	vd = (word >> 21) & 0x1f;
276	va = (word >> 16) & 0x1f;
277	vb = (word >> 11) & 0x1f;
278	vc = (word >> 6) & 0x1f;
279
280	vrs = current->thread.vr_state.vr;
281	switch (word & 0x3f) {
282	case 10:
283		switch (vc) {
284		case 0:	/* vaddfp */
285			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
286			break;
287		case 1:	/* vsubfp */
288			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
289			break;
290		case 4:	/* vrefp */
291			vrefp(&vrs[vd], &vrs[vb]);
292			break;
293		case 5:	/* vrsqrtefp */
294			vrsqrtefp(&vrs[vd], &vrs[vb]);
295			break;
296		case 6:	/* vexptefp */
297			for (i = 0; i < 4; ++i)
298				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
299			break;
300		case 7:	/* vlogefp */
301			for (i = 0; i < 4; ++i)
302				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
303			break;
304		case 8:		/* vrfin */
305			for (i = 0; i < 4; ++i)
306				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
307			break;
308		case 9:		/* vrfiz */
309			for (i = 0; i < 4; ++i)
310				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
311			break;
312		case 10:	/* vrfip */
313			for (i = 0; i < 4; ++i) {
314				u32 x = vrs[vb].u[i];
315				x = (x & 0x80000000)? rfiz(x): rfii(x);
316				vrs[vd].u[i] = x;
317			}
318			break;
319		case 11:	/* vrfim */
320			for (i = 0; i < 4; ++i) {
321				u32 x = vrs[vb].u[i];
322				x = (x & 0x80000000)? rfii(x): rfiz(x);
323				vrs[vd].u[i] = x;
324			}
325			break;
326		case 14:	/* vctuxs */
327			for (i = 0; i < 4; ++i)
328				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
329					&current->thread.vr_state.vscr.u[3]);
330			break;
331		case 15:	/* vctsxs */
332			for (i = 0; i < 4; ++i)
333				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
334					&current->thread.vr_state.vscr.u[3]);
335			break;
336		default:
337			return -EINVAL;
338		}
339		break;
340	case 46:	/* vmaddfp */
341		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
342		break;
343	case 47:	/* vnmsubfp */
344		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
345		break;
346	default:
347		return -EINVAL;
348	}
349
350	return 0;
351}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Routines to emulate some Altivec/VMX instructions, specifically
  4 * those that can trap when given denormalized operands in Java mode.
  5 */
  6#include <linux/kernel.h>
  7#include <linux/errno.h>
  8#include <linux/sched.h>
  9#include <asm/ptrace.h>
 10#include <asm/processor.h>
 11#include <asm/switch_to.h>
 12#include <linux/uaccess.h>
 
 13
 14/* Functions in vector.S */
 15extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b);
 16extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b);
 17extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 18extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c);
 19extern void vrefp(vector128 *dst, vector128 *src);
 20extern void vrsqrtefp(vector128 *dst, vector128 *src);
 21extern void vexptep(vector128 *dst, vector128 *src);
 22
 23static unsigned int exp2s[8] = {
 24	0x800000,
 25	0x8b95c2,
 26	0x9837f0,
 27	0xa5fed7,
 28	0xb504f3,
 29	0xc5672a,
 30	0xd744fd,
 31	0xeac0c7
 32};
 33
 34/*
 35 * Computes an estimate of 2^x.  The `s' argument is the 32-bit
 36 * single-precision floating-point representation of x.
 37 */
 38static unsigned int eexp2(unsigned int s)
 39{
 40	int exp, pwr;
 41	unsigned int mant, frac;
 42
 43	/* extract exponent field from input */
 44	exp = ((s >> 23) & 0xff) - 127;
 45	if (exp > 7) {
 46		/* check for NaN input */
 47		if (exp == 128 && (s & 0x7fffff) != 0)
 48			return s | 0x400000;	/* return QNaN */
 49		/* 2^-big = 0, 2^+big = +Inf */
 50		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */
 51	}
 52	if (exp < -23)
 53		return 0x3f800000;	/* 1.0 */
 54
 55	/* convert to fixed point integer in 9.23 representation */
 56	pwr = (s & 0x7fffff) | 0x800000;
 57	if (exp > 0)
 58		pwr <<= exp;
 59	else
 60		pwr >>= -exp;
 61	if (s & 0x80000000)
 62		pwr = -pwr;
 63
 64	/* extract integer part, which becomes exponent part of result */
 65	exp = (pwr >> 23) + 126;
 66	if (exp >= 254)
 67		return 0x7f800000;
 68	if (exp < -23)
 69		return 0;
 70
 71	/* table lookup on top 3 bits of fraction to get mantissa */
 72	mant = exp2s[(pwr >> 20) & 7];
 73
 74	/* linear interpolation using remaining 20 bits of fraction */
 75	asm("mulhwu %0,%1,%2" : "=r" (frac)
 76	    : "r" (pwr << 12), "r" (0x172b83ff));
 77	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant));
 78	mant += frac;
 79
 80	if (exp >= 0)
 81		return mant + (exp << 23);
 82
 83	/* denormalized result */
 84	exp = -exp;
 85	mant += 1 << (exp - 1);
 86	return mant >> exp;
 87}
 88
 89/*
 90 * Computes an estimate of log_2(x).  The `s' argument is the 32-bit
 91 * single-precision floating-point representation of x.
 92 */
 93static unsigned int elog2(unsigned int s)
 94{
 95	int exp, mant, lz, frac;
 96
 97	exp = s & 0x7f800000;
 98	mant = s & 0x7fffff;
 99	if (exp == 0x7f800000) {	/* Inf or NaN */
100		if (mant != 0)
101			s |= 0x400000;	/* turn NaN into QNaN */
102		return s;
103	}
104	if ((exp | mant) == 0)		/* +0 or -0 */
105		return 0xff800000;	/* return -Inf */
106
107	if (exp == 0) {
108		/* denormalized */
109		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant));
110		mant <<= lz - 8;
111		exp = (-118 - lz) << 23;
112	} else {
113		mant |= 0x800000;
114		exp -= 127 << 23;
115	}
116
117	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */
118		exp |= 0x400000;			/* 0.5 * 2^23 */
119		asm("mulhwu %0,%1,%2" : "=r" (mant)
120		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */
121	}
122	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */
123		exp |= 0x200000;			/* 0.25 * 2^23 */
124		asm("mulhwu %0,%1,%2" : "=r" (mant)
125		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */
126	}
127	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */
128		exp |= 0x100000;			/* 0.125 * 2^23 */
129		asm("mulhwu %0,%1,%2" : "=r" (mant)
130		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */
131	}
132	if (mant > 0x800000) {				/* 1.0 * 2^23 */
133		/* calculate (mant - 1) * 1.381097463 */
134		/* 1.381097463 == 0.125 / (2^0.125 - 1) */
135		asm("mulhwu %0,%1,%2" : "=r" (frac)
136		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a));
137		exp += frac;
138	}
139	s = exp & 0x80000000;
140	if (exp != 0) {
141		if (s)
142			exp = -exp;
143		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp));
144		lz = 8 - lz;
145		if (lz > 0)
146			exp >>= lz;
147		else if (lz < 0)
148			exp <<= -lz;
149		s += ((lz + 126) << 23) + exp;
150	}
151	return s;
152}
153
154#define VSCR_SAT	1
155
156static int ctsxs(unsigned int x, int scale, unsigned int *vscrp)
157{
158	int exp, mant;
159
160	exp = (x >> 23) & 0xff;
161	mant = x & 0x7fffff;
162	if (exp == 255 && mant != 0)
163		return 0;		/* NaN -> 0 */
164	exp = exp - 127 + scale;
165	if (exp < 0)
166		return 0;		/* round towards zero */
167	if (exp >= 31) {
168		/* saturate, unless the result would be -2^31 */
169		if (x + (scale << 23) != 0xcf000000)
170			*vscrp |= VSCR_SAT;
171		return (x & 0x80000000)? 0x80000000: 0x7fffffff;
172	}
173	mant |= 0x800000;
174	mant = (mant << 7) >> (30 - exp);
175	return (x & 0x80000000)? -mant: mant;
176}
177
178static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp)
179{
180	int exp;
181	unsigned int mant;
182
183	exp = (x >> 23) & 0xff;
184	mant = x & 0x7fffff;
185	if (exp == 255 && mant != 0)
186		return 0;		/* NaN -> 0 */
187	exp = exp - 127 + scale;
188	if (exp < 0)
189		return 0;		/* round towards zero */
190	if (x & 0x80000000) {
191		/* negative => saturate to 0 */
192		*vscrp |= VSCR_SAT;
193		return 0;
194	}
195	if (exp >= 32) {
196		/* saturate */
197		*vscrp |= VSCR_SAT;
198		return 0xffffffff;
199	}
200	mant |= 0x800000;
201	mant = (mant << 8) >> (31 - exp);
202	return mant;
203}
204
205/* Round to floating integer, towards 0 */
206static unsigned int rfiz(unsigned int x)
207{
208	int exp;
209
210	exp = ((x >> 23) & 0xff) - 127;
211	if (exp == 128 && (x & 0x7fffff) != 0)
212		return x | 0x400000;	/* NaN -> make it a QNaN */
213	if (exp >= 23)
214		return x;		/* it's an integer already (or Inf) */
215	if (exp < 0)
216		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */
217	return x & ~(0x7fffff >> exp);
218}
219
220/* Round to floating integer, towards +/- Inf */
221static unsigned int rfii(unsigned int x)
222{
223	int exp, mask;
224
225	exp = ((x >> 23) & 0xff) - 127;
226	if (exp == 128 && (x & 0x7fffff) != 0)
227		return x | 0x400000;	/* NaN -> make it a QNaN */
228	if (exp >= 23)
229		return x;		/* it's an integer already (or Inf) */
230	if ((x & 0x7fffffff) == 0)
231		return x;		/* +/-0 -> +/-0 */
232	if (exp < 0)
233		/* 0 < |x| < 1.0 rounds to +/- 1.0 */
234		return (x & 0x80000000) | 0x3f800000;
235	mask = 0x7fffff >> exp;
236	/* mantissa overflows into exponent - that's OK,
237	   it can't overflow into the sign bit */
238	return (x + mask) & ~mask;
239}
240
241/* Round to floating integer, to nearest */
242static unsigned int rfin(unsigned int x)
243{
244	int exp, half;
245
246	exp = ((x >> 23) & 0xff) - 127;
247	if (exp == 128 && (x & 0x7fffff) != 0)
248		return x | 0x400000;	/* NaN -> make it a QNaN */
249	if (exp >= 23)
250		return x;		/* it's an integer already (or Inf) */
251	if (exp < -1)
252		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */
253	if (exp == -1)
254		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
255		return (x & 0x80000000) | 0x3f800000;
256	half = 0x400000 >> exp;
257	/* add 0.5 to the magnitude and chop off the fraction bits */
258	return (x + half) & ~(0x7fffff >> exp);
259}
260
261int emulate_altivec(struct pt_regs *regs)
262{
263	unsigned int instr, i;
 
264	unsigned int va, vb, vc, vd;
265	vector128 *vrs;
266
267	if (get_user(instr, (unsigned int __user *) regs->nip))
268		return -EFAULT;
269	if ((instr >> 26) != 4)
 
 
270		return -EINVAL;		/* not an altivec instruction */
271	vd = (instr >> 21) & 0x1f;
272	va = (instr >> 16) & 0x1f;
273	vb = (instr >> 11) & 0x1f;
274	vc = (instr >> 6) & 0x1f;
275
276	vrs = current->thread.vr_state.vr;
277	switch (instr & 0x3f) {
278	case 10:
279		switch (vc) {
280		case 0:	/* vaddfp */
281			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]);
282			break;
283		case 1:	/* vsubfp */
284			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]);
285			break;
286		case 4:	/* vrefp */
287			vrefp(&vrs[vd], &vrs[vb]);
288			break;
289		case 5:	/* vrsqrtefp */
290			vrsqrtefp(&vrs[vd], &vrs[vb]);
291			break;
292		case 6:	/* vexptefp */
293			for (i = 0; i < 4; ++i)
294				vrs[vd].u[i] = eexp2(vrs[vb].u[i]);
295			break;
296		case 7:	/* vlogefp */
297			for (i = 0; i < 4; ++i)
298				vrs[vd].u[i] = elog2(vrs[vb].u[i]);
299			break;
300		case 8:		/* vrfin */
301			for (i = 0; i < 4; ++i)
302				vrs[vd].u[i] = rfin(vrs[vb].u[i]);
303			break;
304		case 9:		/* vrfiz */
305			for (i = 0; i < 4; ++i)
306				vrs[vd].u[i] = rfiz(vrs[vb].u[i]);
307			break;
308		case 10:	/* vrfip */
309			for (i = 0; i < 4; ++i) {
310				u32 x = vrs[vb].u[i];
311				x = (x & 0x80000000)? rfiz(x): rfii(x);
312				vrs[vd].u[i] = x;
313			}
314			break;
315		case 11:	/* vrfim */
316			for (i = 0; i < 4; ++i) {
317				u32 x = vrs[vb].u[i];
318				x = (x & 0x80000000)? rfii(x): rfiz(x);
319				vrs[vd].u[i] = x;
320			}
321			break;
322		case 14:	/* vctuxs */
323			for (i = 0; i < 4; ++i)
324				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va,
325					&current->thread.vr_state.vscr.u[3]);
326			break;
327		case 15:	/* vctsxs */
328			for (i = 0; i < 4; ++i)
329				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va,
330					&current->thread.vr_state.vscr.u[3]);
331			break;
332		default:
333			return -EINVAL;
334		}
335		break;
336	case 46:	/* vmaddfp */
337		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
338		break;
339	case 47:	/* vnmsubfp */
340		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]);
341		break;
342	default:
343		return -EINVAL;
344	}
345
346	return 0;
347}